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Foreword

I n 1997 the Board of Delft University of Technology initiated a univer-
sity wide research programme by the name of DIOC (a Dutch acronym

for ‘Delft Interfacultary Research Centres’) in order to encourage multidisci-
plinary research activities. One of the 17 programmes that was approved was
‘Reliability of Materials and Constructions’ which became known as DIOC 10.
The programme focused on studies to investigate the reliability of structural
materials, such as concrete and fibre-metal laminates. The individual research
projects within DIOC 10 were of both experimental and analytical nature.

The project I was involved in was entitled ’Delamination Buckling in Glare’
and was in a way intended as a follow-up of the PhD project of Frank Hasha-
gen. Whereas Hashagen’s study focused on the development of numerical
techniques to model failure mechanisms in laminates, my research aimed at
applying and, if necessary, extending these techniques to analyse material fail-
ure in combination with the loss of structural stability of laminated materials.

It appeared to be a highly topical subject. Glare was on the verge to be
selected as the main material for the skin of the fuselage of Airbus A380 aero-
plane. An important factor in the decision making process was the residual
strength of the material under different circumstances. The stability of pan-
els with initial delaminations that are subjected to compressive or shear loads
was one of the cases under investigation.

The numerical models as developed by Frank Hashagen could be used
with hardly any modifications. The first results showed that delamination
growth in combination with local buckling did not appear to be a problem for
a fibre-metal laminate like Glare. Conclusions that were confirmed by a large
number of experimental observations by other people.
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The next step in the project was to optimise the numerical model in such a
way that it could be used for a detailed failure analysis of large panels. This
new model was based on a novel technique for the simulation of crack growth,
the partition of unity method. Indeed, the new model appeared to be very
efficient. Encouraged by these results, it was decided to use the approach to
analyse different failure mechanism on different levels of observation. The
development of these models forms the basis of this thesis.

I have been fortunate for having two excellent researchers as thesis advis-
ers. I would like to express my appreciation to René de Borst for his excel-
lent support and guidance, for giving me the opportunity to chart my own
course and for sharing his expertise whenever I encountered problems. I am
also much indebted to Alan Needleman for inviting me to work with him in
Providence. His sparkling enthusiasm encouraged me to further develop the
models and explore new areas.

Partition of unity based models can only be implemented in a flexible nu-
merical framework. Most of the models in this thesis have been programmed
using the Jem/Jive finite element toolkit which has been developed by Ha-
banera. In particular, I would like to thank Erik-Jan Lingen for designing and
supporting this magnificent piece of software. Many thanks go to Garth Wells
for introducing me to the basic concepts of the partition of unity approach
to cohesive fracture. Miguel Gutiérrez and Clemens Verhoosel are acknowl-
edged for the useful discussions that helped me to implement and fine-tune
the energy release control path-following method.

The development of the cohesive segments method led to a collaborative
research project in the field of finite strain discrete dislocation analysis. I am
most grateful to Vikram Deshpande for inviting me at Cambridge University
to work on this new model and I thank the British Council - NWO Partnership
Programme in Science for the financial support. Carlos Dávila is acknowl-
edged for inviting me at NASA Langley Research Center to work on fracture
in fibre reinforced composites. Many thanks go to Frank Hashagen for writing
an excellent thesis that served as a source of inspiration.

A word of appreciation for the members of the DIOC 10 group for their
role as a sounding board during the early stages of my research. In particular, I
would like to thank scientific director Sybrand van der Zwaag, project leaders
Fred van Keulen, Jan van Mier, Erik van der Giessen and Ad Vlot and my

vi



fellow Ph.D. students Michiel Hagenbeek, Carel ten Horn, Jan Bisschop and
Arjan Woerden. I am grateful to Eduard Riks for encouraging me to continue
my education as a Ph.D. candidate.

This work could not have been completed without the help of a number
of people that made sure that all the paperwork was done correctly and the
computers were running. In particular, I would like to thank Carla Roovers
and Harold Thung at Delft University of Technology and Pat Capece at Brown
University.

Finally, I would like to thank all my colleagues who have contributed
by means of fruitful discussions, useful comments and, most important, by
providing a pleasant working atmosphere: Ido Akkerman, Amine Benzerga,
Henk de Boer, Harald van Brummelen, Pedro Camanho, Dominique Cha-
moret, Doo-Bo Chung, Marcela Cid, Demir Coker, Elena Correa, Otto Heeres,
Thomas Hettich, Thomas Hille, Steve Hulshoff, Eelco Jansen, Bart Koene,
Ellen Kuhl, Claudio Lopes, Juliana Lopez de la Cruz, Akihiro Matsuda, Chris-
tian Michler, Edwin Munts, Marco Nawijn, Julien Réthoré, Reinout van Rooij-
en, Gillian Saunders-Smits, Edwin Schimmel, Ingrid Schipperen, Alexander
Schmetz, Jingyi Shi, Angelo Simone, Bert Sluys, Felicia Stan, Martijn Stroe-
ven, Akke Suiker, Martin Tijssens, Denny Tjahjanto, Albert Turon, Sergio Tur-
teltaub, André Vaders, Tjerk de Vries and Kris van der Zee.

Joris Remmers

Delft, July 2006
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Chapter 1

Introduction

O ur modern society is completely dominated by mechanical systems and
installations. We are protected from floods by civil works such as dams;

we use electricity generated by plants and distributed via power lines; we
travel on aeroplanes or high speed trains and our communications rely on a
network of satellites. If one or more of these systems fail, it will at least disturb
our common life. In some circumstances however, it can cause environmental
or financial damage, for example in the case of an accident with an oil tanker.
The worst case scenario is the failure of critical systems such as dams or large
industrial installations in densely populated areas which could possibly result
in a large number of casualties.

In order to reduce the probability of failure to an absolute minimum, struc-
tures and installations are designed in such a way that, for a given spectrum
of expected external loads, no critical damage is suffered. The possibility of
damage due to unexpected loading situations, such as extreme gust loads on
an aircraft, is prevented by using safety factors. The load carrying components
of a structure are deliberately designed in such a way that they are stronger
than necessary in order to withstand extreme loads. In addition, the safety
factor is further increased to compensate for possible material flaws or initial
damage in the structure introduced during the production phase.

The use of large safety factors has a significant drawback. Overdimension-
ing of a structure will restrict its applicability. The possible span of a bridge
for example is reduced when the roadway is too thick and too heavy. Apart
from that, overdimensioning will irrevocably result in an increase in mainte-
nance and operating costs. These considerations play an important role in the
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Introduction

design of aeroplanes, where every kilogramme that can be gained will save a
few litres of kerosene per flight.

The magnitude of safety factors is always a compromise between safety
on one hand and economical considerations on the other hand. In the design
of civil structures such as bridges, a safety factor around 2.5 is generally used
for the most important load carrying parts. When saving weight is a primary
goal, for example in the aerospace or automotive industry, safety factors as
low as 1.4 are not uncommon. But for nuclear power plants, where safety is of
the utmost importance, the most critical parts in the structure, the foundation
and the concrete dome that covers the reactor, can be dimensioned with a
safety factor as high as 50.0.

A better understanding of the behaviour of materials under high external
loads can increase the efficiency of the designs of these structures, without
indulging the safety requirements. Therefore, the study of failure mechanisms
in engineering materials has become an important part in the design process.
Not only the onset of the first damage in a material is analysed, the complete
evolution of the fracture process is investigated as well, in order to predict its
residual strength and the probability of total failure of the structure.

In this chapter, we will have a closer look at some aspects of fracture mech-
anisms in materials and we will discuss a number of numerical techniques to
model these mechanisms.

§ 1.1 The physics of fracture

From a mechanical point of view, fracture can be described by a number
of successive events. The first onset to fracture is the nucleation of micro-
separations in a small area around an existing dominant crack, notch or cut-
out, the process zone, see Figure 1.1. These micro-separations can be considered
as small cracks in the micro-structure of the material. They generally nucle-
ate at inhomogeneities such as a cavity or a phase boundary: places where
the stresses are high and the inter-atomic bonds are relatively weak. Alterna-
tively, micro-separations can nucleate at imperfections at the free surface of
the specimen. These free surface sites play a key role in stress corrosion crack-
ing and fatigue failure in crystalline solids, such as metals and silicon based
semi-conductors.
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The physics of fracture

Figure 1.1 Simplified representation of a granular material with an initial
crack and process zone (shaded area) with micro-separations.

The nucleation of these micro-separations is an irreversible process, which
reduces the strength and the stiffness of the material. It is accompanied by the
dissipation of energy through plastic deformation of the surrounding bulk
material and the production of heat by means of friction. When the applied
load is removed, the micro-separations remain and the structure shows per-
manent deformations. When the applied load is increased, the existing micro-
separations can grow and coalesce forming larger defects, which can become
visible for the naked eye. These defects give rise to even higher stress concen-
trations in the structure. This, in combination with the reduced strength and
stiffness of the material, preludes the final failure of the structure.

The evolution from micro-separations to final failure is different for each
material type. An important factor is the nature of the micro-structure of the
material, or more precisely, the homogeneity of the material and the amount of
initial defects (Broberg 1999). A good example of a class of homogeneous ma-
terials are ceramics, where the dominating micro-structure consists of atoms
that are mutually tied by sharing electrons. The nature of such a bond is ex-
tremely rigid. In the special case that the atomic structure is regular, without
inhomogeneities or imperfections, for example in materials as quartz or di-
amond, there are hardly any sources for the nucleation of micro-separations
away from the existing crack tip. As a result, the size of the process zone in
these materials is of the order of magnitude of the inter-atomic distance and
the final crack, if it can be created at all, is extremely sharp.

3
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Figure 1.2 Diffuse crack pattern in concrete (Van Mier 1997).

On the other end of the spectrum we find heterogeneous materials such
as concrete. This material is composed of hardened cement paste with aggre-
gates of various dimensions and shapes. Due to the differences in stiffnesses
and cohesive strengths of the two ingredients, there are many possible sources
for the nucleation of micro-separations. Moreover, concrete can contain a
large number of initial micro-cracks due to drying shrinkage (Bisschop 2002).
It may be obvious that the process zone of this material is relatively wide and
the final crack pattern diffuse, as shown in Figure 1.2 (van Mier 1997).

Loading conditions also play an important role in the failure process. Crys-
talline solids such as metals show a different fracture behaviour under mono-
tonic loading than under repeated (or cyclic) loading. In the latter case, the
ultimate load that leads to total failure appears to be much smaller than in
the monotonic loading case, a phenomenon that is often referred to as fatigue
fracture. Again, this can be explained by investigating the processes in the
micro-structure of these materials. Here, the governing process is the creation
of micro-slip planes due to collective motion of dislocations, i.e. vacancies in
the atomic grid of the material. In the case of cyclic loading, the slip planes
created by dislocation-glide in opposite directions give rise to larger imperfec-
tions at the free surfaces and therefore a different fracture behaviour at lower
external loads.

Finally, environmental conditions can influence the fracture process as well.
Aggressive environments such as salt water can accelerate the fracture process
in metals at relatively small load levels, a process known as stress-corrosion.
Another example is the effect of temperature changes on the failure behaviour
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of composite materials such as carbon fibre reinforced plastics. Elevated tem-
peratures can decrease the strength of the adhesive bond between the epoxy
and the fibres, which may lead to fibre pull-out or delamination.

§ 1.2 Modelling fracture

Regardless of the micro-structure of the material, the loading state and the
environmental conditions, the complete fracture process can be summarised
as the nucleation, growth and coalescence of small cracks or slip systems, or
more general, discontinuities in the material. In classical mechanical mod-
els however, the material is modelled as a continuum. This means that (i) it
completely fills the space that it occupies, leaving no pores or empty spaces
and (ii) its properties are described by continuous functions (Malvern 1969).
It may be obvious that this assumption does not allow the incorporation of
detailed information on the micro-structure of the material with its initial
imperfections, not to mention the nucleation and coalescence of the micro-
separations in the process zone.

Instead of modelling the complete micro-structure and each individual
micro-separation, the most common approach is to lump the effects of all
micro-separations in the process zone in one single model that governs the
propagation of a single dominant crack. Such a model should preferably take
into account the following two important properties of the fracture process.
First, the stiffness and the strength of the material must be reduced in a realis-
tic way and secondly, this reduction of stiffness and strength must be accom-
panied by the correct reduction of internal energy in the material.

In early mechanical models, the propagation of a single crack in elastic
solids was simulated using the theorem of minimum energy. Griffith (1920)
assumed that a crack, which can be modelled as a discontinuity in a smooth
displacement field, is only allowed to propagate over a certain length when
the surface energy in the structure equals the energy needed for the micro-
separations in the process zone to nucleate and grow. The motivation to use
this energy criterion instead of the more obvious notion of maximum tensile
stress was based on the work of Inglis (1913), who had demonstrated that in
a linear elastic mechanical model, the stresses in the vicinity of a sharp notch
are unbounded and therefore useless for the determination of crack growth.
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Griffith’s theory was extended for ductile materials by Irwin (1957) who in-
cluded small-scale yielding near the crack tip and introduced the concept of
stress intensity factors in relation to the energy release rate in order to qualify
the stress conditions around the crack tip.

The generalisation of Griffith’s work for application to elastic-plastic solids
(Rice 1968) and the use of the method in combination with the finite element
method, has led to a powerful tool for the simulation of crack growth, often
denoted as linear elastic fracture mechanics (LEFM). Despite the successful
application in a variety of engineering problems, the method has a number
of drawbacks. First, since the phenomena in the process zone are lumped in
a single point at the current tip of the crack, the method can only be used
in those cases where the process zone is relatively small. Second, the method
does not allow for the nucleation of a crack in undamaged material away from
a dominant flaw. And finally, the procedure that determines the direction of
the crack propagation has never been truly incorporated into the finite ele-
ment model. Instead, the results of the finite element calculations serve as
an input for the prediction of the new crack path and vice versa (Ingraffea
and Saouma 1985, Knops 1994). This means that when the crack is extended,
the elements in the vicinity of the crack tip need remeshing, a procedure that
limits the applicability of LEFM.

On the other hand, the rise of the finite element method in mechanical
engineering marked the development of completely new techniques for the
simulation of fracture, commonly denoted as nonlinear theories. Over the
years, two trends can be distinguished, the smeared or continuous approach
and the discrete or discontinuous approach.

The smeared approach

The smeared approach to fracture stems from the idea that the micro-mecha-
nical phenomena in the vicinity of an integration point in the finite element
model are translated into deterioration of the stiffness and the strength of the
material in this point. Initially, the material properties in all integration points
in the model are assumed to be linear elastic. When an equivalent stress in an
integration point satisfies a specified criterion, e.g. the principal stress exceeds
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a yield limit, the linear elastic stress-strain relation is changed.∗ Total failure
of the structure is reached when the stiffness in the material is reduced to zero.
Although the global behaviour of the model is in agreement with reality, from
a structural point of view, a real crack is never really introduced in the model:
neither as a discontinuity in the displacement field, nor as the introduction of
a separation in the finite element mesh.

In early studies, the stiffness parameters in the direction tangential to the
crack were set to zero (Rashid 1968, Cope et al. 1980). It was soon realised that
a gradual decrease of the stiffness parameters was needed for a more realistic
mechanical behaviour. This is for instance accomplished in continuum dam-
age models where the stiffness of the material point is decreased by means of a
damage parameter or damage tensor (Lemaitre and Chaboche 1990). Initially,
when the material is completely intact, this damage parameter is equal to
zero. As soon as the stress state in a material point exceeds a threshold value,
the damage parameter is increased according to a material specific damage
law that describes the release of internal energy during the damage process.
The maximum value of the damage parameter is equal to 1.0, which corre-
sponds to the situation that the material has completely lost its load carrying
capability. The method has become a standard technique for the simulation
of fracture and has been used successfully in a variety of applications, e.g.
(Mazars 1984, Mazars and Pijaudier-Cabot 1989).

Instead of the creation of a real crack in the material (a discontinuity in
the displacement field), the deformations in the process zone will localise and
give rise to large deformation gradients in a narrow band in the process zone,
which eventually causes numerical problems. Moreover, the width of this
band must be at least equal to the width of a specific element in the finite el-
ement mesh. Clearly, this imposes serious limitations to the applicability of
the method to materials with relatively small process zones. In order to avoid
these problems, models have been developed where the large deformation
gradient is incorporated in the kinematic relation of the element as an addi-
tional strain field. These models are commonly denoted as embedded disconti-
nuity approaches (Ortiz et al. 1987, Belytschko et al. 1988, Simo et al. 1993). In-

∗The smeared or continuous crack models are members of a much larger family of non-
linear material relations, such as plasticity models. In this section, we will confine attention
to those models that eventually simulate total failure of the material.
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deed, these approaches enhance the deformational capabilities of the element,
but often at the expense of obtaining a non-symmetric (and computationally
expensive) stiffness matrix. Furthermore, a true discontinuity is not obtained
because the kinematics of the embedded crack band are diffused over the ele-
ment.

Unfortunately, all previously described models suffer from an additional
deficiency. Since the material is considered to be homogeneous, the models
fail to describe the correct width of the process zone. Instead, all damage
tends to concentrate in a single material point. Since this problem is related
to the mathematical formulation of the model, numerical remedies such as
mesh-refinement or the aforementioned embedded discontinuity approaches
do not offer a solution. Instead, the underlying model must be improved.

Strategies that try to incorporate some information of the micro-structure
in the continuum are normally denoted by the term regularisation models. An
important class of such strategies includes higher order derivatives of the dis-
placement field in the kinematic model (de Borst and Muhlhaus 1992). In the
context of damage models, nonlocal models in an integral format (Pijaudier-
Cabot and Baz̆ant 1987) or in a differential format (Peerlings et al. 1996, Peer-
lings et al. 1998) have been proposed. Anisotropic versions of gradient models
have been published as well (Kuhl et al. 2000). In all models, the strain term
is extended with a higher order derivative (the so-called nonlocal strain), usu-
ally by deriving a set of Helmholtz equations. An additional parameter de-
termines the slope of this decaying second order strain term, which sets the
length scale that is related to the homogeneity of the material.

Although these formulations adequately repair the loss of well-posedness
of the incremental boundary value problem, the application in engineering
practice is somewhat limited. This is partly the result of the ongoing discus-
sions on the kind of boundary conditions, which should be adopted for the
higher order strain terms, and is partly due to the difficulties in determining
the aforementioned nonlocal parameter.

Discrete fracture models

In order to model fracture in materials where the process zone is relatively
narrow compared to the structural dimensions, a different class of techniques
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t

v

debonding perfect bondtraction free

Figure 1.3 Schematic representation of the cohesive surface approach to frac-
ture. The opening of the surface is denoted as v. The interface tractions that
describe the perfect bond and the debonding process are represented by t.

is available: the discrete fracture models. The most prominent in this class is the
cohesive zone approach, pioneered independently as a continuation of LEFM
by Dugdale (1960) in the United Kingdom and Barenblatt (1962) in the Soviet
Union. Whereas the use of LEFM is confined to cases where the length of
the process zone is small compared to the structural dimensions, the cohesive
zone approach can also be used when this limitation fails to hold.

In the cohesive zone approach, the complete process zone is lumped in a
single plane or line ahead of the existing crack, as shown in Figure 1.3. The
relation between the work expended in this cohesive zone and that in the
crack tip field is typically such that the stress singularity is cancelled and the
near tip stresses in the process zone are finite. Needleman (1987) extended
the approach by inserting cohesive constitutive relations at specified planes
in the materials, whether or not there is a crack. Apart from the fact that this
approach can capture crack nucleation, there is an additional technical advan-
tage. By specifying the cohesive relation along a surface, there is no need to
determine the length of the cohesive zone. The failure characteristics of the
material are governed by an independent constitutive relation that describes
the separation of the cohesive surface. This cohesive constitutive relation, to-
gether with the constitutive relation for the bulk material and the appropri-
ate balance laws and boundary and initial conditions, completely specify the
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problem. Fracture, if it takes place, emerges as a natural outcome of the de-
formation process without introducing any additional failure criterion.

The simplest cohesive constitutive relation is one where the cohesive sur-
face traction is a function of the displacement jump across this surface. For
ductile fracture, the most important parameters appear to be the (tensile)
strength and the work of separation or fracture energy (Hutchinson and Evans
2000). From dimensional considerations, this introduces a characteristic length
in the model. For more brittle decohesion relations, i.e. when the decohe-
sion law stems from micro-cracking as in concrete or ceramics, the shape of
the stress-separation relation plays a much larger role and is sometimes even
more important than the value of the tensile strength (Rots 1986).

Conventionally, the cohesive surfaces have been incorporated in the finite
element mesh beforehand by means of interface elements that are placed be-
tween the standard continuum elements (Allix and Ladevèze 1992, Schellekens
and de Borst 1994, Alfano and Crisfield 2001). These elements consist of two
surfaces that are connected to the adjacent continuum elements. A perfect
bond prior to cracking can be simulated by applying a high dummy stiffness
to the interface elements.

In cases when fracture takes place along well defined interfaces as, for ex-
ample in a lamellar solid (Schellekens and de Borst 1994), the placement of
interface elements in the finite element mesh is clear. When the crack path
is known in advance from experiments, the interface elements can be placed
in the finite mesh along the known crack path (Rots 1991). However, for a
solid that is homogeneous on the scale modelled, the crack path is often not
known and the placement of cohesive surfaces can be problematic. In (Xu
and Needleman 1993) interface elements are placed between all continuum
elements in the mesh. This approach allowed the simulation of complex frac-
ture phenomena such as crack branching (Xu and Needleman 1994) and crack
initiation away from the crack tip, see Figure 1.4. Alternatively, Tijssens et al.
(2001) have been using the method to simulate nucleation and coalescence of
micro-cracks in the micro-structure of heterogeneous materials.

Nevertheless, the approach of placing interfaces between all continuum
elements is not completely mesh independent. In fact, since the interface el-
ements are aligned with element boundaries, the orientation of cracks is re-
stricted to a limited number of angles. In addition, if, as in (Xu and Needleman
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The partition of unity method

Figure 1.4 Simulation of crack branching in Polymethyl Methacrylate
(PMMA) using inter-element cohesive surface models (Xu and Needleman
1994). Note that although the crack can only propagate in the 0◦, ±45◦ and
90◦ directions, the propagation in other directions is captured relatively well.

1993) the initial compliances are taken to be non-zero, the presence of the in-
terfaces contributes to the overall compliance of the body and an ill-posed
problem results. The magnitude of this error can be reduced by increas-
ing the dummy stiffness that describes the elastic behaviour of the cohesive
zone prior to fracture. Unfortunately, this can cause numerical problems.
High dummy stiffnesses in combination with a standard Gaussian integration
scheme give rise to traction oscillations at the cohesive surfaces (Schellekens
and de Borst 1993). And for dynamic simulations, large differences in com-
pliances can lead to spurious stress wave reflections (Papoulia et al. 2003).

§ 1.3 The partition of unity method

Clearly, the application of both the smeared and discrete fracture models is
restricted due to mesh dependency. This can vary from practical problems,
such as the placement of the interface elements in the finite element mesh to
numerical anomalies caused by large deformation gradients and localisation
in smeared crack models or spurious traction oscillation in the cohesive sur-

11



Introduction

Figure 1.5 Crack growth in a single edge notched beam, simulated with the
partition of unity approach to cohesive fracture. The cohesive surface (the
bold line) crosses the continuum elements (Wells and Sluys 2001).

face approach. In order to avoid these deficiencies, recent developments in
the field of numerical fracture mechanics have focused on new techniques to
avoid mesh dependencies.∗

In order to avoid finite element mesh related problems in cohesive sur-
face models, Camacho and Ortiz (1996) used initially rigid cohesive surfaces
in conjunction with adaptive mesh refinement. When the stress state in the
material exceeds the maximum ultimate stress, a new, initially rigid interface
element is inserted in the finite element mesh. The intersected continuum
elements are replaced by means of a remeshing algorithm. In principle, this
approach is based on the procedure that is commonly used in LEFM (Ingraffea
and Saouma 1985), where the simulation is stopped each time a crack is prop-
agated in order to reconstruct a new finite element mesh. Especially in the
case of a finite deformation formulation or nonlinear material model for the
bulk material, this requires a laborious operation of reallocating local stresses
and other variables to the new material points in the finite element mesh.

∗Smeared fracture models suffer from a mesh bias as well. These problems have been
solved using techniques, which are rather similar to the methods used for discrete fracture
models. In order to overcome numerical anomalies in the process zone due to high defor-
mation gradients, the finite element mesh can be refined using a number of mesh refine-
ment techniques. An overview can be found in (Askes and Rodrı́guez-Ferran 2001). Alterna-
tively, meshless methods such as the element free Galerkin (EFG) have been used in combi-
nation with smeared models in order to develop a true mesh-independent method (Klein et
al. 2001, Belytschko et al. 1996, Askes 2000).

12
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In a more elegant approach, the cohesive surface is incorporated in the
continuum elements by using the partition-of-unity property of finite element
shape functions (Babuška and Melenk 1997) in conjunction with a discontinu-
ous mode incorporated at the element level (Moës et al. 1999). Here, the cohe-
sive zone is represented by a jump in the displacement field of the continuum
elements (Wells and Sluys 2001a, Wells et al. 2002, Moës and Belytschko 2002).
The magnitude of the displacement field is governed by additional degrees of
freedom, which are added to the existing nodes of the finite element mesh.
A crack (or cohesive surface) can be extended during the simulation at any
time and in any direction by adding new additional degrees of freedom, see
Figure 1.5. An important advantage over remeshing techniques as presented
by Camacho and Ortiz (1996) is that the topology of the finite element mesh is
not modified. The number of nodes and elements remains the same, as well
as their mutual connectivity.∗

The partition of unity approach to cohesive fracture has been used in a
number of situations. Wells et al. (2002) extended the approach for finite strain
kinematics in order to simulate delamination growth in laminated structures.
Moës et al. (2002) applied the method for fracture in three-dimensional speci-
men.

§ 1.4 Levels of observation

The aforementioned numerical models can be used to simulate fracture pro-
cesses on different levels of observation, varying from a propagating crack in a
water dam (Ingraffea and Saouma 1985) to the debonding of a single fibre in a
carbon fibre-epoxy prepreg (Schellekens 1992). In literature, various arrange-
ments of levels of observation can be found. Based on the topics that will be

∗The partition of unity approach to cohesive fracture is often denoted as an application of
the eXtended Finite Element Method (X-FEM), for example by Belytschko and Black (1999).
This name is slightly misleading since it suggests that the method is an extension of the finite
element method. In fact, the approach exploits a property of the standard finite element
shape functions that has not been acknowledged until the seminal publication of Babuška and
Melenk (1997). Nevertheless, this partition-of-unity property has been used unintentionally
before in a number of publications, e.g. (Goto et al. 1992).
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dealt with in this thesis, the following arrangement is used, see also Table 1.1.∗

Macroscopic level: This level of observation is often denoted as the structural
level. The emphasis is put on the structural behaviour rather than dam-
age or fracture in the material. The overall dimensions of the structures
under investigation are much larger than the dimensions of the fracture
process zone. Due to the resolution of the finite element mesh, subtle
stress gradients in the vicinity of cracks cannot be captured, not to men-
tion the events in the process zone that lead to fracture. In practice,
simulations on this level are used to check whether a structure meets
its design criteria such as the maximum allowable stress. Examples of
analyses on this level are the structural stability (buckling) of a stringer
stiffened panel in an aerospace structure, the deflection of an off-shore
structure due to wave loading or the pressure distribution in a water
dam.

Mesoscopic level: The scale where both structural effects and material prop-
erties are captured is called the mesoscopic level of observation. Dimen-
sions of the specimen are in the order of magnitude of a few centimetres,
which is in general of the same order of magnitude as the dimensions of
the process zone. Although the specimen under investigation is often
relatively small, it is still possible to describe structural aspects in com-
bination with the failure behaviour. The analysis of fracture in small
structures or structural components is an example of a simulation on
the mesoscopic level of observation.

Microscopic level: On an even smaller length scale, the microscopic scale, the
structural effects are neglected. The model represents a small specimen
or a representative volume element, which is generally subject to a uni-
form load. On this level, some phenomena in the process zone can be
revealed, such as the nucleation and coalescence of small cracks in the

∗A similar division can be made with respect to timescales. Failure processes can last for
years, such as creep fracture in metals, down to a few microseconds in the case of dynamic
fracture in brittle materials. However, a detailed overview is omitted here, since all numerical
models that are presented in this thesis, apart from the ones in chapters 6 and 7, are assumed
to be rate independent and inertia effects are neglected.
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micro-structure of the material. An illustrative example is the simulation
of crack growth in cementitious materials by Tijssens et al. (2001).

Nanoscopic level: On all previously mentioned levels, the material was con-
sidered to be continuum, which implies that the atomic structure is ne-
glected. However, on the nanoscopic scale, the influence of atomic struc-
ture is taken into account, although the individual atoms are not sim-
ulated explicitly. A good example is the discrete dislocation plasticity
model (van der Giessen and Needleman 1995). Here, the material is
taken to be continuous, but the field is enhanced with an additional dis-
placement field caused by imperfections (dislocations). There is a strong
coupling between both mechanisms and the model has been used suc-
cessfully to predict a number of fatigue related phenomena such as Paris
law behaviour and the accelerated growth of short cracks (Deshpande et
al. 2003a).

Atomic level: The atomic level of observation used to be the domain of physi-
cists, but has gradually become of interest to the engineering community
as well. On this level, the material is no longer regarded as a continuum.
Each individual atom is represented by a particle with an energy poten-
tial (Daw 1990). The method is able to reveal the smallest changes in the
atomic structure of the material, such as the creation and movement of
dislocations near a crack tip (Farkas et al. 2001) or the positions of atoms
near a grain boundary.

The choice for the correct level of observation depends on the context in which
the fracture mechanism is studied with respect to the design of the structure.
This can be illustrated by means of the following example.

Example - Delamination buckling

Recently, the application of laminated materials gained popularity in the au-
tomotive and aeroplane industries. An example of such a material is Glare,
which can be used as an alternative for traditional materials such as alu-
minium in aeroplane structures. This hybrid material consists of alternating
layers of aluminium and glass fibre reinforced epoxy and has a number of ad-
vantages, including excellent impact and fire-resistance properties. The most
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Scale Dimensions Example

Macroscopic > 1 cm Deformation of a wing.

Mesoscopic 1 mm-10 cm Fracture in structural components.

Microscopic 1 µm-10 mm Micro-crack nucleation.

Nanoscopic 1 nm-10 µm Discrete dislocation plasticity.

Atomic < 1 nm Cleavage at crack tip.

Table 1.1 Overview of the different levels of observations.

prominent advantage is the excellent fatigue resistance due to the fibres in the
prepreg layers. Nevertheless, laminates, and Glare is no exception, have some
disadvantages as well. Due to the combination of different materials, new fail-
ure mechanisms are introduced. One of such a mechanism is delamination,
which can have serious consequences for the overall stiffness of the material,
especially in those cases where compressive or shear loadings are an issue. In
that case a complicated failure mechanism can arise: delamination buckling . In
this failure mechanism, a structural mechanism (local buckling of a debonded
layer) amplifies the fracture delamination process. This mechanism has been
studied experimentally by de Jong et al. (2001), see Figure 1.6.

In order to capture both the material (debonding) and the structural ef-
fects, the mesoscopic level of observation is the best approach. Here, the in-
dividual layers are modelled by structural elements with higher order kine-
matic relations in order to capture nonlinear displacement fields, needed for
the simulation of buckling. Naturally, since on this level, delamination can
be observed as a discrete failure mechanism, the debonding of the layers is
modelled with interface elements, which are equipped with a cohesive degra-
dation algorithm. Eventually, damage in the layers can be described by a
smeared damage model, but in this case, coupling between delamination and
layer damage is not taken into account. A more detailed implementation of
this approach is given in the chapters 3 and 4.

Although this approach provides a good understanding of the coupling
between delamination growth and local buckling, it does not reveal the de-
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Figure 1.6 SEM picture of local
buckling of the top layer of a Glare
2-3/2-0.3 specimen after being sub-
jected to a three point bending test
(De Jong et al. 2001).

B
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tails of the delamination mechanism itself. Questions regarding the above-
mentioned coupling between damage in the prepreg layers and delamination
growth or the effect on the density of fibres in the prepreg layers remain unan-
swered. When zooming in on the actual delamination tip, we notice that de-
lamination in Glare is not the failure of the bond between the aluminium and
the epoxy, but adhesive debonding of the fibres and the prepreg in the tran-
sition of fibre rich and resin rich areas in the prepreg material (de Jong et
al. 2001), detail B in Figure 1.6. Apparently, due to the treatments in the fabri-
cation process, the bond between the aluminium and the epoxy is far stronger
than the bond between epoxy and fibres.

Clearly, this phenomenon must be modelled on the microscopic level of ob-
servation. Both the fibres and the epoxy can be modelled with continuum
elements, which in principle, can have linear kinematic relations. Since the
fracture on this level of observation is a rather diffuse process, with the nucle-
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ation and coalescence of many micro-separations, detail B in Figure 1.6, it can
be simulated using a smeared approach (Schellekens 1992) or by a cohesive
surface framework, e.g. (Tijssens et al. 2001). In chapter 5 we will discuss a
new technique based on the partition of unity method to solve this problem
in a true mesh independent way.

This example demonstrates that when zooming in to lower levels of obser-
vation, the kinematic relations that govern the (nonlinear) deformation fields
in the finite element model become less complicated. On the macroscopic
level, the behaviour of a structure is often simulated using structural elements
such as shell or thin-plate elements. These elements are based on a higher or-
der shell theory, which incorporates additional features to capture secondary
effects such as bending in thin-walled structures. On smaller length scales,
the structural elements are replaced by continuum elements with a straight-
forward kinematic model. Here, the material model (and especially the part
that describes the phenomena in the process zone) is more important. On the
smallest level of interest, the atomic level, the notion of a kinematic model has
completely disappeared. The behaviour of the material follows from the co-
hesive relation only (the energy potential), which describes the relative move-
ment of the rigid atoms.

Over the years, the interests of researchers in numerical fracture mechan-
ics have moved towards lower levels of observation, for two reasons. Al-
though the numerical simulations do not increase in complexity, the number
of degrees of freedom expand when zooming in to lower levels of observa-
tion. Only recently, computers or clusters of computers are capable of han-
dling such large numbers of equations in a reasonable amount of time. Sec-
ondly, due to miniaturising and sophistication of mechanical devices, there is
a strong need for the analysis of mechanical behaviour on small length-scales.
A good example in this case is the development of Micro-Electro-Mechanical
Systems (MEMS). The specific dimensions of such systems approach a few
microns, a length-scale where the position of individual atoms starts to play a
role in the fracture process and cannot be neglected.

For completeness, an additional remark is made for studies that combine
analyses on different length-scales by incorporating the deformations and frac-
ture processes in the micro-structure of a material on a higher level of obser-
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vation. A good example is the work of Kouznetsova et al. (2002). Here, the
deformation gradient of a material point on the mesoscopic scale is imposed
on a microstructural representative volume element (RVE). The solution of the
corresponding boundary value problem is translated into a constitutive rela-
tion and inserted in the material point of the mesoscopic model. A promising
technique to merge the atomic and the nanoscopic levels of observation has
been proposed by Shilkrot et al. (2004). In this method, the region of interest
is modelled by discrete atoms, whereas the surrounding material, which is of
less interest, is modelled with a discrete dislocation model. The emphasis here
is put on the transfer of defects in the atomistic structure, in particular edge
dislocations, into the enhanced continuum model. Recently, Guidault et al.
(2006) suggested a multiscale approach for the simulation of fracture. Here,
the active crack tips in the macroscopic model are replaced by microscopic
models in which crack propagation is governed by the aforementioned parti-
tion of unity approach.

§ 1.5 The objective and lay-out of this thesis

The partition of unity approach to cohesive fracture has proven to be a promis-
ing tool for modelling fracture mechanisms (Wells and Sluys 2001a, Moës and
Belytschko 2002). However, so far, the application of the method has been
limited to rather academic studies. The objective of this research is to extend
this approach to developing new techniques to simulate realistic situations of
fracture in the engineering practice on different levels of observation. A con-
cise overview of the partition of unity approach to cohesive fracture is given
in the next chapter. For reasons of clarity, the implementation is restricted
to the most simple case, a two-dimensional quasi-static model with a small
strain kinematic relation. Besides that, some remarks are made on the imple-
mentation in a finite element code. The chapter concludes with a number of
numerical examples to demonstrate the performance of the method compared
to traditional interface elements.

The remainder of the thesis can be divided into three parts. The first part
discusses the application of the method for the simulation of delamination
growth in thin-walled laminated structures on a macroscopic level of observa-
tion. Chapter 3 deals with the implementation into a three-dimensional solid-
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like shell element (Remmers et al. 2003b). This geometrically nonlinear ele-
ment, which has originally been derived by Parisch (1995), can be used to sim-
ulate the mechanical behaviour of thin-walled structures such as aeroplane
fuselages. In chapter 4 the new model is used to analyse a topical subject: de-
lamination buckling in fibre-metal laminates (Remmers and de Borst 2001b).

All aforementioned implementations of the partition of unity method have
one thing in common; they do not allow for nucleation of (multiple) cracks
or discontinuities. In the second part of this thesis, a new model is intro-
duced, which can be used to simulate the nucleation, growth and coalescence
of micro-separation on a microscopic level, the cohesive segments method
(Remmers et al. 2003a). The derivation of this method and the implementa-
tion into a finite element framework are discussed in chapter 5. The extension
of the method for the simulation of fast crack growth is given in chapter 6.

The final part of the thesis deals with discontinuities at an even smaller
level of observation. The finite strain dislocation glide model as derived by
Deshpande et al. (2003b) describes the creation of slip systems due to the
collective motion of dislocations in a finite strain framework. However, the
current implementation of this model suffers from numerical problems since
the displacement jumps at the slip-systems are smeared out in the finite ele-
ment mesh. In chapter 7, an alternative approach, inspired by the partition
of unity method, is suggested that does not experience this shortcoming. The
thesis concludes with a number of final remarks.
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Chapter 2

The partition of unity approach to
cohesive fracture

T he cohesive surface methodology (Dugdale 1960, Barenblatt 1962, Hiller-
borg et al. 1976) is a versatile technique to simulate fracture processes

in engineering materials. All the events in the process zone that eventually
result in the creation of a crack are lumped into a single surface ahead of the
crack tip. The separation of this cohesive surface is governed by an inde-
pendent constitutive relation which characterises the fracture process of the
material. A generalisation of the methodology (Needleman 1987) even allows
the nucleation of new cracks, away from an existing crack tip or void, to be
modelled.

Strictly speaking, the cohesive surface can be considered as a discontinuity
in the displacement field of the body. This is in direct conflict with the classi-
cal formulation of solid mechanics, where the state of a body is described by
continuous and smooth displacement, strain and stress fields. The spatial dis-
cretisation of the domain in finite elements offers an appropriate possibility
to introduce discontinuities. By simply disconnecting the junction between
two adjacent elements, a jump in the displacement field is created (Ngo and
Scordelis 1967). The relative displacement of the elements is a measure for
the separation of the cohesive zone. The corresponding tractions that follow
from the cohesive constitutive relation are extrapolated onto nodal forces at
the disconnected elements.

Instead of just disconnecting elements in the finite element model, the dis-
continuity can be modelled with a special type of element, the interface ele-
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ment (Rots 1988, Allix and Ladevèze 1992, Schellekens and deBorst 1993, Al-
fano and Crisfield 2001). Such an element consists of two surfaces, which
are connected to the adjacent continuum elements. Apart from the relative
displacement of the two surfaces, the total rotation of the cohesive zone can
be obtained as well. For that reason, interface elements are preferred for the
simulation of mixed-mode fracture processes and in cases where significant
geometrical effects can be expected, such as delamination buckling (Allix and
Corigliano 1999).

By inserting the discontinuity after the discretisation process, the trajectory
of a crack is related to the finite element mesh, which gives rise to mesh depen-
dent solutions. This can be avoided by incorporating the displacement jump
in the analytical displacement field before performing the discretisation. As
a result, the discontinuity is truly a part of the boundary value problem and
obviously, the mechanical model is well posed. An elegant way to introduce
a discontinuity in a further continuous and smooth displacement field is to
add a second displacement field multiplied with a step function on top of the
existing base field (Belytschko and Black 1999). This step function, or Heavi-
side function, is equal to zero on one side of the discontinuity and equals one
on the other side. The magnitude of the displacement jump is equal to the
magnitude of the additional field exactly at the discontinuity.

The discontinuous displacement field can be transformed into a discre-
tised field by exploiting the partition-of-unity property of finite element shape
functions (Babuška and Melenk 1997). The additional displacement field is
represented by an extra set of degrees of freedom, which is added to the ex-
isting nodes of the finite element mesh. Initially, this approach was applied
for the simulation of fracture in a linear elastic fracture mechanics framework
by Moës et al. (1999). Later, the method was extended in a cohesive surface
formulation by Wells and Sluys (2001a) and Moës and Belytschko (2002).

The partition of unity approach to cohesive fracture has a number of ad-
vantages over the conventional models. The cohesive surface can be placed
as a discontinuity anywhere in the model, irrespective of the structure of the
underlying finite element mesh. Moreover, it is possible to extend a cohe-
sive surface during the simulation by adding additional degrees of freedom.
This avoids the use of high dummy stiffnesses to model a perfect bond prior
to cracking and prevents numerical problems such as spurious stress oscilla-
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Figure 2.1 A domain Ω is crossed by a discontinuity Γd (denoted by the
dashed line).

tions (Schellekens and de Borst 1993) or stress wave reflections in dynamic
simulations. Since degrees of freedom are only added when a cohesive sur-
face is extended, the total number of degrees of freedom can also be smaller.
Finally, since the method is based on an existing cohesive surface formulation,
existing cohesive constitutive models can still be used.

In this chapter, a concise overview of the partition of unity approach to
cohesive fracture is given, following the work by Wells et al. (2001-2002). In
the first sections, the kinematic relations and the derivation of the equilibrium
equations in the weak form are derived. Next, the discretisation of the gov-
erning equation by means of shape functions is discussed. The largest part
of the chapter is dedicated to the implementation in a two-dimensional finite
element model. Important aspects are illustrated by means of a number of
numerical examples. The chapter is concluded with an overview of recent
applications of the partition of unity approach to fracture.

§ 2.1 Kinematic relations

Consider the domain Ω with external boundary Γ as shown in Figure 2.1.
The domain is crossed by a discontinuity Γd. The two resulting parts of the
domain are denoted as Ω+ and Ω−. The total displacement field u consists of
a continuous regular field û and a continuous additional displacement field ũ

23



The partition of unity approach to cohesive fracture

Jump function H+ H− h

Heaviside 1 0 1

Symmetric 1/2 -1/2 1

Unit Symmetric 1 -1 2

Table 2.1 An overview of different step functions that can be used to create
a jump in the displacement field, see equations (2.2) and (2.3).

(Wells and Sluys 2001a):∗

u(x, t) = û(x, t) +HΓd(x) ũ(x, t) , (2.1)

where x denotes the position of the material point in the body expressed in a
Cartesian coordinate system x = xi1 + yi2 + zi3; t is time and HΓd(x) is a step
function which is constant on either side of the discontinuity:

HΓd =

{
H+ if x ∈ Ω+,

H− if x ∈ Ω− .
(2.2)

The magnitude of the step h in this function is defined as:

h = H+ −H− . (2.3)

Wells and Sluys (2001a) used a standard Heaviside step function to describe
the jump:

HΓd(x) =

{
1 if x ∈ Ω+ ;

0 if x ∈ Ω− ,
(2.4)

but as we will see in chapter 6, alternative functions can have certain advan-
tages, (Réthoré et al. 2005). An overview of step functions that will be dis-
cussed in the scope of this thesis is given in Table 2.1.

∗In this thesis, all variables related to the regular part of a field are denoted with a hat (ˆ).
All variables related to the additional part are denoted with a tilde (˜).
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Equilibrium equations

Assuming a small strain formulation, the strain field is found by taking
the derivative of the displacement field (2.1) with respect to the position in
the body x:

εεε(x, t) = ∇sû(x, t) +HΓd∇sũ(x, t) x /∈ Γd , (2.5)

where ∇s denotes the symmetric differential operator:

(∇s�)i j =
1
2

(
∂

∂xi
� j +

∂
∂xj

�i

)
; i = 1, 2, 3 . (2.6)

Since the jump function is not uniquely defined at the discontinuity, the cor-
responding strain field is unbounded. Here, we use the magnitude of the
displacement jump v as the relevant kinematic quantity:

v(x, t) = hũ(x, t) x ∈ Γd , (2.7)

where h is the magnitude of the jump in the step function HΓd, see equa-
tion (2.3).

§ 2.2 Equilibrium equations

The equilibrium of the body can be expressed in the following quasi-static
equilibrium equation without body forces:

∇ ·σσσ = 0 x ∈ Ω ; (2.8)

with the following boundary conditions:

nt ·σσσ = t̄ x ∈ Γt ; (2.9)

u = ū x ∈ Γu , (2.10)

whereσσσ is the Cauchy stress in the bulk material, t̄ are the prescribed tractions
on the external boundary Γt with outward normal vector nt and ū are the
prescribed displacements on Γu. Since the discontinuity Γd can be considered
as an internal boundary, the following relation can be added:

nd ·σσσ = t x ∈ Γd , (2.11)
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where t are the tractions at the internal boundary Γd with normal vector nd
pointing into Ω+. The equilibrium equation (2.8) can be expressed in a weak
form by multiplication with an admissible variational displacement field δu:

∫
Ω

δu · (∇·σσσ)dΩ = 0 . (2.12)

Taking the space of the admissible variations to be the same as the actual dis-
placement field (2.1), the variations of the displacements can be decomposed
in a regular and an additional field:

δu = δû +HΓdδũ . (2.13)

Similarly, the admissible displacement jump δv at the internal boundary Γd
can be written as, see equation (2.7):

δv = hδũ . (2.14)

Substituting the variations into equation (2.12) gives:
∫

Ω
δû · (∇·σσσ)dΩ +

∫
Ω
HΓdδũ · (∇·σσσ)dΩ = 0 . (2.15)

Applying Gauss’ theorem, using the symmetry of the Cauchy stress tensor,
introducing the internal boundary Γd and the corresponding admissible dis-
placement jump and using the boundary conditions at the external boundary
Γt gives:

∫
Ω
∇sδû : σσσdΩ+

∫
Ω
HΓd∇sδũ : σσσdΩ+

∫
Γd

hδũ · tdΓ =∫
Γt

δû · t̄dΓ+
∫

Γt
HΓdδũ · t̄dΓ .

(2.16)

The first term on the left hand side of this equation describes the internal
forces in the body due to the regular displacement field, whereas the second
term represent the internal forces due to the additional displacement field.
The third term describes the internal forces due to the tractions at the disconti-
nuity. The right hand side of the equation contains terms related to prescribed
tractions imposed on the external boundary of the domain.
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Figure 2.2 Discretisation of the domain Ω into nelm finite elements supported
by nnod nodes. Element I is a regular element with integration volume V .
Element II is crossed by the discontinuity, which can be considered as an
internal boundary Sd. The integration domain is split into two parts V+ and
V−.

§ 2.3 Finite element formulation

In order to arrive at a versatile model, the equations will be solved using the
finite element method. In this method, the domain Ω is divided into a num-
ber of elements with finite volume V , which are supported by nodes, see Fig-
ure 2.2. A continuous scalar field f (x, t) in the domain can be represented
by discrete values which are assigned to the nodes and their corresponding
shape functions:

f (x, t) =
nnod

∑
i=1

φi(x)ai(t) , (2.17)

where φi(x) is the shape function associated to node i and ai(t) is the discrete
value of the scalar field f in that node. The shape function φi(x) is equal to 1
in node i and 0 in all other nodes, see Figure 2.3. Additionally, the set of shape
functions possesses the so-called partition-of-unity property, which implies
that the sum of all shape functions in an arbitrary point x in the domain is
equal to 1:

nnod

∑
i=1

φi(x) = 1 ∀ x ∈ Ω . (2.18)
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Figure 2.3 Shape functions φi for linear element (top) and quadratic (bottom)
finite elements. Note that the sum of the shape functions is equal to one
everywhere.

The part of the domain Ω for which the magnitude of the shape function of
node i is non-zero is called the support of the node. In the case of standard
iso-parametric shape functions, the support of the node is identical to the ele-
ments that are attached to this node.

It was shown by Babuška and Melenk (1997) that when the field f (x, t) is
not continuous, it can still be discretised using the finite element shape func-
tions in combination with an enhanced basis function, according to:

f (x, t) =
nnod

∑
i=1

φi(x)
(

ai(t) +
m

∑
j=1

γ j(x)bi j(t)
)

, (2.19)

where γ j(x, t) is an enhanced basis with m orthogonal terms and bi j are the ad-
ditional nodal degrees of freedom that support the enhanced basis functions.
The number m of enhanced base functions may be different for each node i
in the model. However, in order to avoid linear dependency, the enhanced
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basis γ j and the shape functions φi may not originate from the same span of
functions.

Discrete kinematic relations

In case of a three-dimensional displacement field with a single discontinuity
as given in equation (2.1), the enhanced basis term γ j in (2.19) can be replaced
by the step function HΓd to give:

u(x, t) =
nnod

∑
i=1

φi(x)
(

ai(t) +HΓd(x)bi(t)
)

, (2.20)

where ai and bi contain the regular and additional nodal degrees of freedom
of node i, respectively:

ai = [ax, ay, az]i ; bi = [bx, by, bz]i . (2.21)

Alternatively, the discrete displacement field in (2.20) can be cast in the fol-
lowing form for a single element:

u = Na +HΓd Nb , (2.22)

where the matrix N contains the shape functions for all the nodes that support
this element. The strain field can be obtained by differentiating the discrete
displacement field with respect to x, see also equation (2.5):

εεε = Ba +HΓd Bb x /∈ Sd , (2.23)

where Sd is the discontinuity in the element and matrix B contains the deriva-
tives of the finite element shape functions, according to:

B = ∇sN . (2.24)

Finally, the discrete displacement jump at the discontinuity Sd as presented
in equation (2.7) is equal to:

v = Hb = hNb . (2.25)

29



The partition of unity approach to cohesive fracture

Equilibrium equations

In the spirit of a Bubnov-Galerkin approach, the variations of the displace-
ment fields and their derivatives with respect to position vector x are discre-
tised accordingly:

δû = Nδa ; δũ = Nδb ;

∇sδû = B δa ; ∇sδũ = B δb .
(2.26)

Inserting these relations into the equilibrium equation (2.16) yields the discre-
tised equilibrium equation in weak form for a single element:∫

V
(Bδa)TσσσdV +

∫
V
HΓd(Bδb)TσσσdV +

∫
Sd

(Hδb)TtdS =∫
St

(Nδa)T t̄dS +
∫
St
HΓd(Nδb)T t̄dS .

(2.27)

By taking one of the admissible variations δa and δb at the time, the weak
form of equilibrium can be separated into two sets of equations:∫

V
BTσσσdV =

∫
St

NT t̄dS ;∫
V
HΓd BTσσσdV +

∫
Sd

HTtdS =
∫
St
HΓd NT t̄dS .

(2.28)

The first equation is related to the regular degrees of freedom of the element,
which is identical to the equilibrium equation for an element without a discon-
tinuity. As a result, it is possible to add a discontinuity to an element during
the calculations with a minimal effort by adding the additional equilibrium
relations and the corresponding degrees of freedom b.

Constitutive relations

We assume that the stress rate in the bulk material σ̇σσ is a function of the strain
rate ε̇εε and can be expressed in terms of the nodal velocities written as:

σ̇σσ = Cε̇εε = C
(

Bȧ +HΓd Bḃ
)

, (2.29)

where (˙) denotes the partial derivative with respect to time ∂( )/∂t; ȧ and
ḃ denote the regular and additional nodal velocities, respectively, and C is
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the tangent stiffness matrix of the bulk material.∗ The traction rates at the
discontinuity Sd can be expressed in terms of the corresponding enhanced
nodal velocities:

ṫd = Tdv̇d , (2.30)

where td denote the tractions defined in a frame of reference which is aligned
with the orientation of the discontinuity in the element, see Figure 2.4. The
tractions can be written as: td = tnn + ts2 s2 + ts3 s3, where tn is the normal
traction and ts2 and ts3 are the shear tractions in the plane of the disconti-
nuity. The displacement jump in this local frame of reference is denoted ac-
cordingly as vd = vnn + vs2 s2 + vs3 s3 and Td is the tangent stiffness of the
traction-separation law. Transformation of the cohesive constitutive relation,
equation (2.30), into the global frame of reference gives:

ṫ = QT ṫd = QTTdv̇d = QTTdQv̇ = QTTdQhNḃ , (2.31)

so that the tangent stiffness matrix in the element local frame of reference is
equal to:

T = QTTdQ . (2.32)

The orthogonal transformation matrix Q performs the transformation of the
orientation of the discontinuity to the global coordinate system. Following the
standard procedures, this matrix can be constructed using the triad (n, s2, s3)
which is attached to the discontinuity (Bathe 1996):

Q =




cos(i1, n) cos(i1, s2) cos(i1, s3)

cos(i2, n) cos(i2, s2) cos(i2, s3)

cos(i3, n) cos(i3, s2) cos(i3, s3)




.

(2.33)

∗In this derivation, it is assumed that the constitutive relation for the bulk material is both
linear elastic and rate independent, but this is not a limitation of the formulation. In general,
any material law can be used to model the behaviour of the bulk material, as demonstrated
by Wells et al. (2002) and Simone and Sluys (2004).
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Figure 2.4 Orientation of the discontinuity within an element.

Linearisation of the equilibrium equations

In order to calculate the deformation history in an incremental fashion, the
nonlinear system (2.28) is differentiated with respect to the displacement vari-
ables a and b. In the small strain formulation elaborated here, only the stress
field in the bulk material σσσ and the tractions at the discontinuity t are func-
tions of the discrete displacement terms a and b, according to:

∂σσσ
∂a

= CB ;
∂σσσ
∂b

= HΓd CB ;
∂t
∂b

= QTTdQN . (2.34)

Using these relations, the linearised system of equations reads:




Kaa Kab

Kba Kbb







ȧ

ḃ


=




fext
a

fext
b


−



fint
a

fint
b




,

(2.35)

where the terms in the stiffness matrix are:

Kaa =
∫
V

BTCBdV ;

Kab = Kba =
∫
V
HΓd BTCBdV ;

Kbb =
∫
V
HΓdHΓd BTCBdV +

∫
Sd

HTQTTdQHdS .

(2.36)
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The internal forces are given by:

fint
a =

∫
V

BTσσσdV ;

fint
b =

∫
V
HΓd BTσσσdV +

∫
Sd

HTQTtddS .
(2.37)

Finally, the expression for the external forces is:

fext
a =

∫
St

NT t̄dS ;

fext
b =

∫
St
HΓd NT t̄dS .

(2.38)

Note that if the tangent matrices C and Td are symmetric, symmetry of the
sub-matrices Kaa, Kab and Kbb is preserved. Consequently, the total stiffness
matrix also remains symmetric.

§ 2.4 Implementation aspects and examples

The governing equations have been derived in the most general way and can
be implemented in any kind of continuum element as long as the underlying
shape functions obey the partition-of-unity property. In the remainder of this
chapter, the attention is confined to the implementation of the method in two-
dimensional continuum elements with a linear elastic plane strain or plane
stress constitutive relation for the bulk material.

The most important aspects of the implementation will be illustrated by
means of examples with increasing complexity. First, the incorporation of a
discontinuity as a static interface in a domain is discussed. Here, the emphasis
is put on the enhancement of individual nodes and the numerical integration
of the elements that are crossed by a discontinuity. In addition, the numerical
performance of this implementation is compared with traditional interface
elements (Simone et al. 2001, Remmers et al. 2001).

Next, the implementation of a discontinuity with a crack tip and the prop-
agation of this discontinuity in a predefined direction is presented. A number
of ways to model a crack tip are discussed as well as criteria for the extension
of the discontinuity into a new element. The simulation of such a propagating
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Enhanced node

Regular node

Ω+
Ω−

Figure 2.5 Two-dimensional finite element mesh with a discontinuity de-
noted by the bold line. The grey elements contain additional terms in the
stiffness matrix and the internal force vector.

crack is illustrated with a peel test of a double cantilever beam (Remmers et
al. 2001, Wells et al. 2002).

In the final part of the section, the modelling of a propagating crack in a di-
rection that is not set beforehand is discussed. This requires an algorithm that
predicts the correct direction in which the cohesive zone should be extended.
In the accompanying example, the performance of this model is demonstrated
by means of a classical example, the single-edge nodged beam (Wells and
Sluys 2001a).

Static discontinuity

Consider the specimen with a static interface as shown in Figure 2.5. In the fi-
nite element model, the interface is modelled as a discontinuity in a structured
mesh composed of four node elements. In principle, the additional displace-
ment field ũ must be constructed by enhancing all shape functions φi in the
domain by the enhancement function HΓd. This enhanced basis is then sup-
ported by additional degrees of freedom bi in each node i. However, when
the support of a node is not crossed by the discontinuity, the enhancement
function is constant and belongs to the same span of functions as the finite
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Figure 2.6 Numerical integration of quadrilateral elements crossed by a dis-
continuity (bold line). The sample points are denoted by a +. The element
on the left is split into a sub-element with five vertices and one with three
vertices. The first part must be triangulated into five smaller areas, denoted
by the dashed lines. Each of these areas is integrated using a standard 1 point
Gauss integration scheme. The element on the right is split into two quadri-
lateral sub-elements. Each of these parts can be integrated with a standard
2 × 2 Gauss integration scheme.

element shape functions. This is in violation with the requirement of the par-
tition of unity method that the shape function and the enhanced base must
be linear independent (Babuška and Melenk 1997). Therefore, only the shape
functions whose supports are crossed by the discontinuity will be enriched. In
the figure, these nodes are marked by black circles. The other nodes (the white
circles in the figure) remain unchanged. Since only the nodes of elements that
are crossed by the discontinuity have additional degrees of freedom bi, the
total number of degrees of freedom of the system is slightly larger than for
the case without a discontinuity.

When an element is supported by one or more enriched nodes, its stiff-
ness matrix and force vector will obtain the additional coupling terms as de-
rived in equations (2.36) to (2.38). The elements that contain a discontinuity
as well, will be augmented with the surface integrals that govern the cohesive
behaviour. It is assumed that the discontinuity within an element is a straight
line, Figure 2.5. As a result, the transformation matrix Q that maps the discon-
tinuity local frame of reference to the global x− y coordinate system, see (2.33)
is constant throughout the element. It was demonstrated by Wells and Sluys
(2001a) that the error introduced is negligible.

The various integrals in the equilibrium equations (2.35)-(2.38) can be inte-
grated numerically, e.g. using a Newton-Cotes or the Gauss-Seidel scheme.
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The latter one is often preferred since an optimal accuracy is achieved by
using only a small number of sample points. A prerequisite for the use of
the Gauss-Seidel scheme is that the field that is integrated is continuous and
smooth. In this case however, the stress field in the elements that are crossed
by a discontinuity is only piecewise continuous. Although the accuracy will
increase when more sample points are being used, the result of the numerical
procedure will never be exact.

The stress field is continuous and smooth on either side of a discontinu-
ity in an element. And since the position of the discontinuity in the element
is known exactly, the terms in the equilibrium equation can be integrated in
parts (Wells and Sluys 2001a). The element is divided into a number of tri-
angular or quadrilateral sub-elements which are integrated in a conventional
way, using a Gauss integration scheme, and a minimum number of integra-
tion points, see Figure 2.6.

The integration of the discontinuity terms over Sd in the equilibrium equa-
tions is rather straightforward. In the case of a two-dimensional implementa-
tion, the discontinuity is represented by a straight line and can be integrated
using a one-dimensional integration scheme.

The introduction of enhanced basis terms to the conventional finite ele-
ment shape functions has an effect on the condition number of the stiffness
matrix of the problem. When the discontinuity crosses an element close to one
of the nodes, as shown in Figure 2.7, the contributions of the various terms in
the stiffness matrix is unbalanced. This will give rise to an ill-conditioned stiff-
ness matrix, that cannot be solved, even when a direct solver is used (Wells
and Sluys 2001a).

This problem can be circumvented by only enhancing the shape function
of a node when it has a significant contribution to the global stiffness matrix.
In order to determine which nodes should not be enhanced, Wells and Sluys
(2001a) proposed the following criterion: When the discontinuity splits the
element in such a way that one part of the element is much smaller than the
other part, the node that supports the smallest part is not enhanced. Or, to
put it in a more general way, all nodes of the element are enhanced, when the
following condition is satisfied:

min(V+,V−)
V > εtol , (2.39)
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Figure 2.7 An element is crossed by a discontinuity near one of the nodes.

where εtol is a specific tolerance value which can be chosen between zero and
one. When equation (2.39) is not met, only the nodes that support the larger
of the two parts are enhanced. Clearly, omitting a support of the additional
displacement field will affect the numerical results, but for reasonable low
tolerance values, e.g. εtol = 0.05, these effects are negligible.∗

At this point, it is interesting to investigate the accuracy and the robust-
ness of the partition of unity method with respect to conventional interface el-
ements. In the following comparative numerical experiment, the effect of dif-
ferent schemes for the integration of the discontinuity term is studied (Schel-
lekens and de Borst 1993, Remmers et al. 2001) .

Consider the beam shown in Figure 2.8. The beam is supported on both
sides and has a notch in the centre. The dimensions are w = 125 mm and
h = 100 mm. The length of the notch is a = 20 mm. The beam is made of
an elastic, isotropic material with Young’s modulus E = 20 000 MPa and a
Poisson’s ratio ν=0.2. The applied load is equal to P=1000 N.

The finite element model consists of a structured grid of 51 × 20 four node
elements or 25 × 10 eight node elements. The interface and the notch are
represented by a discontinuity. In the notch, 0 < y < 20 mm, a traction-free
constitutive relation is used, i.e. the tractions and the consistent tangent are
identical to zero, irrespective of the magnitude of the displacement jump. At

∗Due to the fact that the incorporation of a discontinuity affects the condition of a stiffness
matrix, the use of an iterative solver is limited. For systems of equations with a high condition
number, the number of iterations to obtain the correct solution increases significantly.
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Figure 2.8 Geometry and boundary conditions of a notched beam in a three
point bending test.

the interface, when y>20 mm, a linear-elastic constitutive relation is applied:

td = Tdvd ; where Td =


D 0

0 D


 , (2.40)

where D is the elastic dummy stiffness. Calculations have been carried out for
different magnitudes of the dummy stiffness. The discontinuity is integrated
using either a Gauss-Seidel or a lumped Newton-Cotes integration scheme.
Since both the kinematic and the constitutive relations are linear, the equilib-
rium of the beam for the given load can be calculated in just a single iteration.
The traction profiles at the interface are shown in Figures 2.9 to 2.11.
The most striking result from the experiments are the traction oscillations in
the discontinuity when a Gauss-Seidel integration scheme is used. Moreover,
it can be seen that the amplitude of the oscillations increases when the dummy
stiffness D is increased. These phenomena are also observed in traditional in-
terface elements (Schellekens and de Borst 1993). As with these elements, the
oscillations disappear when a lumped integration scheme is used, see Fig-
ure 2.10. In Figure 2.11 it is shown that over-integration with this scheme
again results in stress oscillations.

It can be demonstrated that the partition of unity approach to cohesive
fracture is mathematically identical to the traditional interface element for-
mulation (Simone et al. 2001). And apparently, as can be concluded from the
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Figure 2.9 Normal traction tn vs the location at the interface for differ-
ent magnitudes of the dummy stiffness D using a Gauss-Seidel integration
scheme to integrate the tractions at the discontinuity. Note that the ampli-
tude of the traction oscillations increases with an increasing dummy stiffness
(Remmers et al. 2001).

simulations, the partition of unity elements have inherited exactly the same
numerical anomaly of traction oscillations when a relatively high dummy
stiffness is utilised. In order to avoid possible numerical problems, in the re-
mainder of this thesis, a lumped integration scheme is used for the numerical
integration of the internal boundary Sd.

In principle, since the discontinuity can be extended during a simulation,
it is no longer required to model a perfect bond prior to cracking using a high
dummy stiffness. Nevertheless, the partition of unity method can also be used
to model predefined interfaces in structures, as demonstrated in this example.
The true advantage of this approach is that there is no longer a need to align
the structure of the mesh with the geometry of the interface. A good example
can be found in (Moës et al. 2003), where the complex geometry of a woven
composite is efficiently modelled in three dimensions using the partition of
unity approach. In chapter 5 an alternative application in combination with
discontinuous crack growth will be presented.

Propagating discontinuity in a predetermined direction

The most important advantage of the partition of unity approach over con-
ventional techniques is the possibility to extend a cohesive zone during a sim-
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Figure 2.10 Normal traction tn vs. the location at the interface for different
magnitudes of the dummy stiffness D using a lumped integration scheme
(Remmers et al. 2001).

ulation. Apart from the fact that the number of additional degrees of freedom
remains small, the use of a high dummy stiffness to mimic a perfect bond
prior to cracking is then avoided. As a result, the chance of having traction
oscillations due to large differences in stiffnesses of the interface and the bulk
material is reduced to a minimum.∗

Consider the domain with an initial crack or cohesive zone as shown in
Figure 2.12. In contrast to the previous situation, the discontinuity does not
cross the entire specimen but has a tip instead. When the tip is the termi-
nus of a traction free discontinuity, it will give rise to a singular displacement
field (Inglis 1913). In order to model such a situation adequately, two ap-
proaches can be found in literature.

The most accurate approach is to model the singular displacement fields
exactly by incorporating a second additional enhanced basis in the elements
around the tip (Moës and Belytschko 2002). The origin of this approach dates
back from the days that the partition of unity method was used as a mesh in-
dependent way to represent a traction free discontinuity within a linear elastic
fracture model (Belytschko and Black 1999). In this model, the exact instance

∗Since the problem of traction oscillations is inherent in the cohesive zone approach to
fracture, it will not completely disappear when the use of dummy stiffnesses is avoided. As
noted by Simone et al. (2001), in the case of unloading right after debonding, the stiffness at
the discontinuity can still be very large with respect to the stiffness of the surrounding bulk
material. Nevertheless, this would be a rare event.
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Figure 2.11 Normal traction tn vs. the location at the interface for different
number of integration points. The effect of over-integration on the normal
traction is clearly visible. All simulations are performed using a Newton-
Cotes integration scheme for the discontinuity terms (Remmers et al. 2001).

at which the crack should be extended, a stress criterion based on the full
singular displacement field around the tip, is used. Indeed, the approach is
accurate, also in combination with a cohesive approach to fracture, but loses
generality as soon as a non-linear constitutive relation for the bulk material
is used. Moreover, there is a serious overhead in the computational costs,
because the approach requires a significant number of temporary additional
degrees of freedom on top of the additional degrees of freedom that model
the displacement jump.

An alternative approach, which will be pursued in the remainder of this
thesis, was suggested by Wells and Sluys (2001a). In their model, a disconti-
nuity is always extended across a complete element such that the tip touches
the next element boundary. In order to enforce a zero displacement jump at
the tip, the nodes that support this boundary are not enhanced, as can be seen
in Figure 2.5. In contrast with the previous approach, the displacement field
around the tip is represented by the standard, linear or quadratic, finite ele-
ment shape functions. Nevertheless, by virtue of the fact that in the cohesive
approach, the process zone is smeared out onto a single plane ahead of the
crack tip, the displacement field in this region is relatively smooth. As a re-
sult, neglecting the higher order terms in the displacement field will hardly
influence the accuracy, robustness and stability of the finite element calcula-
tions.
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Figure 2.12 Extension of a discontinuity. Left: When the tractions in the
additional sample point, denoted by ⊗, exceed the threshold value, the dis-
continuity is extend into the next element along the project weak interface
(dashed line). Right: The hashed nodes and elements have just been en-
hanced. Note that in both pictures, the nodes that support the current crack
tip are not enhanced in order to enforce a zero opening at the crack tip.

Crack growth (or strictly speaking: the extension of a discontinuity) is gov-
erned by the stress state at the tip. In the current example, the direction in
which the discontinuity is extended is determined by the original problem.
After all, the crack will propagate along the weak interface between the two
layers of the double cantilever beam.

When the stress state in the tip exceeds the value of the ultimate traction
of the adhesive material, the discontinuity is extended into the next element.
All nodes of this element are enhanced, except for the ones that support the
new tip, see Figure 2.12. The opening of the discontinuity is governed by the
cohesive constitutive relation. The tractions, which are initially identical to the
ultimate tractions, are decreased to zero according to a damage or softening
relation.

The performance of the method is demonstrated in the following test. Con-
sider a laminate as shown in Figure 2.13. The laminate with length l = 10 mm
consists of two layers with the same thickness h = 0.5 mm and with identical
isotropic material properties, Young’s modulus E = 100.0 MPa and Poisson’s
ratio ν = 0.3. The two layers are connected with an adhesive with a normal
strength tmax = 1.0 MPa and a fracture toughness of Gc = 0.1 N/mm. The
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Figure 2.13 Geometry and boundary conditions of a double cantilever beam
with an initial delamination.

initial delamination measures a = 1.0 mm. An external load P is applied at
the tips of both layers.

Delamination growth in a laminate with a symmetric lay-up can be mod-
elled with a mode-I delamination model (Wells and Sluys 2001b) where the
shear traction is assumed to remain zero. In this model, a loading function f
is defined as:

f (vn,κ) = vn −κ , (2.41)

where vn is the normal separation of the crack and κ a history parameter. This
history parameter is equal to the largest value of vn reached hitherto. When
f = 0, loading occurs and when f < 0 there is unloading. The normal traction
force tn at the crack edges decreases exponentially, according to the following
equation:

tn = tmax exp
(
− tmax

Gc
κ

)
.

(2.42)

In order to have quadratic convergence in a Newton-Raphson procedure for
obtaining equilibrium at a structural level, a consistently linearised tangent
matrix Td has been derived:

Td =


T11 0

0 0


 where T11 = − t2

max
Gc

exp
(
− tmax

Gc
κ

)
. (2.43)

Note that the cohesive constitutive relation consists of a debonding part only.
Obviously, since the cohesive surface is only created upon crack propagation,
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Figure 2.14 Applied load P vs. the tip displacement u of the double can-
tilever beam using the partition of unity approach and with traditional inter-
face elements. (Remmers et al. 2001).

the cohesive relation does not need an elastic part to model a perfect bond
prior to cracking. Due to the pure mode-I fracture conditions, the discontinu-
ity is extended when the maximum stress in tip in the direction perpendicular
to the weak interface (i.e. the y-direction) exceeds the normal strength tmax.

The specimen has been analysed with both four node and eight node quad-
rilateral elements, as well with structured as with unstructured meshes. The
results are compared to a model with conventional interface elements which
are placed in the finite element mesh beforehand. The debonding part of the
constitutive relation for these elements is described by equation (2.42). The
behaviour of the interface prior to cracking is modelled with a linear elastic
constitutive model with a dummy stiffness D = 1.0·106 N/mm3.

The load displacement curves of the analyses with the various models are
given in Figure 2.14. The load-displacement curves obtained using the parti-
tion of unity approach are globally identical to the traditional method with in-
terface elements. The small jumps in the load-displacement curve are related
to the coarseness of the finite element mesh. Since a discontinuity is extended
across an entire element, a significant part of the interface, i.e. the length of
the element, is suddenly softening. In conventional interface elements, this
transition from a perfect bond into softening behaviour occurs on the integra-
tion point level. By virtue of the fact that an integration point covers a smaller
part of the interface, the overshoot is considerably smaller.
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Figure 2.15 Applied load P vs. the tip displacement of the double cantilever
beam using the partition of unity approach and with structured and unstruc-
tured meshes (Remmers et al. 2001).

Figure 2.15 shows the load-displacement curves of the model with un-
structured meshes. Clearly, results are insensitive to the structure of the un-
derlying finite element mesh. Figure 2.16 shows the deformed specimen with
a structured and an unstructured mesh. The elements that appear to be ex-
tremely distorted actually contain the discontinuity.

Propagating discontinuity in an arbitrary direction

In the previous example, the direction of the crack was known beforehand. In
most cases however, the trajectory of a crack depends on the boundary and/or
the loading conditions of the specimen.∗ In this situation, an additional crite-
rion must be used to predict the direction of the extension of the crack. The
most efficient choice is to combine this with the criterion that determines the
onset of a crack extension. Wells and Sluys (2001a) used the magnitude and
the directions of the principal stress states at the current tip of the discontinu-
ity. When the maximum principal stress exceeds a specific yield criterion, the
discontinuity is extended into the next element in the direction normal to the

∗Clearly, the micro-structure of the material has an important influence on the trajectory
of the crack as well. In this chapter, the bulk material is considered to be homogeneous. The
effect of heterogeneities in the micro-structure will be discussed in chapter 5.
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(a) Structured mesh (b) Unstructured mesh

Figure 2.16 Deformed mesh of the double cantilever beam peel test (Rem-
mers et al. 2001). The deformations in this picture are not scaled up.

corresponding principal axis.∗
However, the stress state obtained from a temporary sample point at the

tip of the discontinuity gives inaccurate results. A better approach to de-
termine the stress state in the tip is by using a non-local approach using a
Gaussian weight function. This approach has been used successfully to deter-
mine the direction of fracture in an incompatible modes type model by Jirásek
(1998). The stresses in the tip are a weighted sum of local stresses in the Gauss
integration points in the model:

σσσ tip =
nint

∑
i=1

wi

wtot
σσσ i ; using wtot =

nint

∑
j=1

wj , (2.44)

where nint is the total number of integration points in the domain, σσσ i the cur-
rent stress state in that integration point i and wi a weight factor, defined as

wi =
(2π)2/3

l3
a

exp

(
− r2

i
2l2

a

)
. (2.45)

∗In an alternative approach the direction of the extension of the cohesive zone in the finite
element mesh is calculated by means of a level set functions (Moës et al. 2002). Especially in
those situations when the determination of the trajectory of a crack is rather laborious, e.g.
in three-dimensional models, this method has certain advantages. However, it requires the
solution of an additional numerical problem and will not be discussed within the scope of
this thesis.
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Figure 2.17 Geometry and loading conditions of the single-edge notched
beam. All dimensions are in millimetres.

In this relation, ri is the distance between integration point i and the tip of
the discontinuity and la is a length scale parameter which determines how
quickly the influence of a sample point decays away from the tip. Wells and
Sluys (2001a) have taken this parameter l as approximately three times the
typical element length le. A disadvantage of the approach is that the average
stress is significantly smaller than the actual stress at the tip. As a result, the
discontinuity will be extended slightly late.

One of the most illustrative examples to demonstrate the advantages of
the partition of unity method is the single-edge notched beam experiment.
Consider the specimen in Figure 2.17. It is made of concrete with Young’s
modulus E = 35.0 GPa and Poisson’s ratio ν = 0.15. The tensile strength and
the fracture toughness are tmax = 2.8 MPa and Gc = 0.1 N/mm, respectively.
The beam has been analysed under plane strain conditions. Mesh consists of
1184 six node triangular elements. The response of the structure is determined
under a crack mouth opening displacement control (de Borst 1987).

The trajectory of the discontinuity at the end of the analysis is projected
onto the finite element mesh in Figure 2.18. The position of the crack is in
agreement with experimental results (Schlangen 1993) and numerical simu-
lations by Rots (1991) and Peerlings et al. (1998). Note that the position of
the discontinuity is completely independent of the structure of the underly-
ing finite element mesh. Figure 2.19 shows the σxx stresses in the deformed
specimen. In this figure, a new post-processing technique has been used to
visualise the crack. A detailed description can be found in Appendix A.
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Figure 2.18 Position of the discontinuity in the single edge notched beam
(Wells and Sluys 2001).
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Figure 2.19 Deformation of the single edge notched beam and σxx stresses.
The displacements are amplified by a factor 100.

§ 2.5 Other applications

The partition of unity approach to fracture, as presented here in the most ele-
mentary way, has been a starting point for the development of a large number
of numerical techniques. Simone and Sluys (2004) used the partition of unity
method in combination with a continuum damage model to simulate crack
propagation in a regularised strain softening medium.

In order to arrive at a model that is able to handle large deformations, the
method has been implemented in a finite strain continuum model (Wells et
al. 2002). The discontinuous displacement field (2.1) can be used to set up a
position vector of a material point in the deformed configuration, according
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Figure 2.20 Double cantilever beam with an initial delamination a0 under
compression. The small perturbation forces P0 are applied to trigger the
buckling mode (Wells et al. 2003).

to:
x = X + û +HΓd,0 ũ , (2.46)

where x and X are the position vectors of a material point in deformed and
undeformed (reference) configuration, respectively, and HΓd,0 is the step func-
tion with respect to the undeformed configuration. The deformation gradient
F is obtained by taking the gradient of (2.46) with respect to the reference con-
figuration:

F = I +∇Xû +HΓd,0∇Xũ ; X /∈ Γd,0 . (2.47)

The vector that represents the displacement jump remains identical to the dis-
placement jump in the small strain formulation (2.7). The kinematic relations
can be used to construct the equilibrium equations in weak form. This proce-
dure is to a certain extent identical to the derivation of the governing equation
in the small strain case. The update of the orientation of the discontinuity in
the deformed configuration requires some extra attention.

The fact that the deformation gradient on either side of the discontinuity
can be completely different, the model is able to capture geometric instabil-
ities at the interface. This can be simulated by the following delamination
buckling test. Figure 2.20 shows a double cantilever beam with an initial de-
lamination a0 = 10.0 mm (Wells et al. 2003). The beam is subjected to an axial
compressive force 2P. Two perturbation forces P0 = 0.001 N are applied to
trigger the correct buckling mode. Both layers are made of the same material
with Young’s modulus E = 135 GPa and Poisson’s ratio 0.18. The ultimate
strength of the interlaminar bonding in mode I is tmax = 50.0 N/mm2. The
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Figure 2.21 Tip displacement u of the double cantilever beam vs. the com-
pressive load P. The load-displacement curves of two different finite ele-
ment meshes are compared with the case where delamination growth is pre-
vented (Wells et al 2003).

shear stiffness is equal to zero; the fracture toughness is set to Gc = 0.8 N/mm.
The critical load for local buckling (without delamination propagation) can be
calculated analytically using the equation for a single cantilever beam with
length a0 and height h. For the configuration in Figure 2.20 and the adopted
elastic material parameters, the analytical buckling load is equal to:

Pcr =
π2Eh3

48a2
0

= 2.22 N . (2.48)

The finite element mesh consists of 750 eight node quadrilateral elements,
three elements through the thickness and 250 elements in the length. In order
to emphasise the performance of the model with respect to spatial discreti-
sation, the calculations have also been performed with a much coarser mesh
that consists of just one element through the thickness and 100 in length di-
rection. Note that in the latter case, both layers of the double cantilever beam
are modelled with just one element.

Figure 2.21 shows the lateral displacement u of the beam as a function of
the external force P. The load-displacement curve for a specimen with a per-
fect bond is given as a reference. The buckling load is in agreement with the
analytical calculation in (2.48). Delamination propagation is initiated at a lat-
eral displacement u = 4 mm. From this point on, the equilibrium is unstable.
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Figure 2.22 Deformation of the coarse mesh after buckling and delamination
growth, tip displacement 6 mm (Wells et al. 2003).

The small difference between the curves for the dense and the coarse meshes
can be attributed to the different densities of these meshes. Figure 2.22 shows
the final deformation of the two models at a tip displacement u = 6 mm.
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Chapter 3

A solid-like shell element allowing
for arbitrary delaminations

I n the previous chapter, a general framework has been provided for the in-
corporation of a cohesive surface in a continuum finite element by means

of the partition of unity method. It was demonstrated in the final example,
that the method can be applied to elements that are based on a geometri-
cally nonlinear kinematic formulation, without indulging on the special per-
formances of the element (Wells et al. 2003). In this chapter, the method is ap-
plied to a solid-like shell element for the simulation of delamination growth
in thin walled structures on a mesoscopic level of observation.

§ 3.1 The simulation of delamination

Traditionally, the numerical analysis of thin-walled structures on a macro-
scopic level of observation is performed by means of a special class of finite
elements, commonly denoted as shell elements (Naghdi 1972, Simo and Fox
1989). These structural elements take optimal advantage of the fact that the
through-the-thickness dimension of the structure is relatively small compared
to the other, span-wise, dimensions. The kinematic relations and balance
equations that describe the mechanical behaviour of the shell in the through-
the-thickness direction are lumped into a single plane, the mid-surface of the
structure. The rotation of the element’s local frame of reference, which is at-
tached to the mid-surface, is described by an additional set of rotational de-
grees of freedom that is added to all the nodes of the element.

53



A solid-like shell element allowing for arbitrary delaminations

Over the years, this numerical approach has resulted in a large number of
different plate and shell elements, e.g. (Bathe and Dvorkin 1986, Rebel 1998),
which have been used in a variety of applications, such as the analysis of the
structural stability of aerospace structures (Riks and Rankin 1997). Unfortu-
nately, due to the aforementioned approximations, the simulation of material
degradation in the structure on a smaller level of observation, i.e. the meso-
scopic level, appears to be problematic. The correct modelling of plasticity or
damage due to bending or shear deformations requires an exact representa-
tion of the strains in all material points in the trough-the-thickness direction
of the shell. Moreover, the simulation of delamination growth by stacking
multiple shell elements and interface elements is not straightforward either.
Apart from the lack of a physical thickness of a shell element, the coupling of
the rotational degrees of freedom and the kinematic relation of the interface
elements is still a point of discussion.

The mesocopic analysis of failure mechanisms in thin-walled structures
requires a full three-dimensional numerical model. However, due to the slen-
der nature of the structure, a manageable model will automatically consist
of volume elements with an extremely high aspect ratio between the span-
wise dimensions and the through-the-thickness dimension. Under such cir-
cumstances, conventional volume elements show an overly stiff behaviour
(Bisschoff and Ramm 1997). This effect, which is often denoted as Poisson-
thickness locking, can be avoided when the spatial dimensions of the elements
in all three directions are of the same order of magnitude. This will result in
very accurate but large numerical models, which are too expensive to be used
in engineering applications.

Alternatively, Poisson-thickness locking can be avoided by the incorpo-
ration of a higher order strain field in the through-the-thickness direction of
volume elements. This can be achieved in several ways, for example by using
the enhanced assumed strain method (Klinkel et al. 1999). In the solid-like
shell element by Parisch (1995), an additional set of internal degrees of free-
dom is used to add a quadratic term to the displacement field in the through-
the-thickness direction, the internal ‘stretch’ of the element. As a result, the
corresponding strain field varies linearly over the thickness instead of being
constant and Poisson-thickness locking is avoided. The internal degrees of
freedom are condensed on the element level and the element can be used in a
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Figure 3.1 Geometry and kinematics of the thick shell in undeformed and
deformed position. The dash-dotted line denotes the mid-surface of the shell.

finite element model as a regular volume element with only three translational
degrees of freedom per node.

The solid-like shell element has been used successfully in combination
with regular interface elements to model delamination growth in laminated
structures (Hashagen et al. 1999). Plasticity or damage in the layers can be
modelled with regular continuum material models (Hashagen and de Borst
2001). The kinematic relations of the element are described with a geometri-
cal nonlinear theory, which allows the analysis of structural stability, even in
combination with delamination growth (Remmers and de Borst 2001b).

It is possible to model a complete laminate with just one solid-like shell
element in the through-the-thickness direction. In such a situation, the ele-
ment is divided into a number of sub-domains, each with its own material
model. In this chapter, we will extend this model with the possibility to initi-
ate and propagate delaminations at arbitrary locations within the shell during
the loading process. The new model allows for the simulating of the complete
mechanical behaviour of laminated structures with just one element in the
thickness direction.
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§ 3.2 Kinematic relations

Consider a shell with constant thickness as shown in Figure 3.1. The position
of a material point in the shell in the undeformed configuration can be written
as a function of the three curvilinear coordinates [ξ , η,ζ ]:

X(ξ , η,ζ) = X0(ξ , η) +ζD(ξ , η) , (3.1)

where X0(ξ , η) is the projection of the point on the mid-surface of the shell
and D(ξ , η) is the thickness director in this point:

X0(ξ , η) =
1
2
[
Xt(ξ , η) + Xb(ξ , η)

]
,

D(ξ , η) =
1
2
[
Xt(ξ , η)− Xb(ξ , η)

]
.

(3.2)

The subscripts (·)t and (·)b denote the projections of the variable onto the top
and bottom surface, respectively. The position of the material point in the
deformed configuration x(ξ , η,ζ) is related to X(ξ , η,ζ) via the displacement
field φφφ(ξ , η,ζ) according to:

x(ξ , η,ζ) = X(ξ , η,ζ) +φφφ(ξ , η,ζ) , (3.3)

where:
φφφ(ξ , η,ζ) = u0(ξ , η) +ζu1(ξ , η) + (1 −ζ2)u2(ξ , η) . (3.4)

In this relation, u0 and u1 are the displacements of X0 on the shell mid-surface,
and the thickness director D, respectively:

u0(ξ , η) =
1
2
[
ut(ξ , η) + ub(ξ , η)

]
,

u1(ξ , η) =
1
2
[
ut(ξ , η)− ub(ξ , η)

]
,

(3.5)

and u2(ξ , η) denotes the internal stretching of the element, which is co-linear
with the thickness director in the deformed configuration and is a function of
an additional ‘stretch’ parameter w:

u2(ξ , η) = w(ξ , η)[D(ξ , η) + u1(ξ , η)] . (3.6)

In the remainder, the displacement field φφφ will be considered as a function of
two kinds of variables; the ordinary displacement field u, which will be split
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in a displacement of the top and bottom surfaces ut and ub, respectively, and
the internal stretch parameter w:

φφφ = φφφ(ut, ub, w) . (3.7)

Discontinuous displacement field

Next, we assume that the thick shell is crossed by a discontinuity surface Γd,0
which divides the domain into two parts, Ω+

0 and Ω−
0 , see Figure 3.2. It is

assumed that the discontinuity surface is parallel to the mid-surface of the
thick shell. The displacement field φφφ(ξ , η,ζ) can now be regarded as a contin-
uous regular field φ̂φφ with an additional continuous field φ̃φφ that determines the
magnitude of the displacement jump, see also (2.1). The position of a material
point in the deformed configuration can then be written as:

x = X + φ̂φφ +HΓd,0φ̃φφ , (3.8)

where HΓd,0 represents the step function, defined as:∗

HΓd,0(X) =

{
1 if X ∈ Ω+

0 ,

0 if X ∈ Ω−
0 .

(3.9)

Since the displacement fieldφφφ is a function of the variables ut, ub and w, these
three terms must be split in a regular and additional part accordingly:

ut = ût +HΓd,0 ũt;

ub = ûb +HΓd,0 ũb;

w = ŵ +HΓd,0 w̃ .

(3.10)

Inserting equation (3.10) into (3.5) and (3.6) gives:

u0 = û0 +HΓd,0 ũ0;

u1 = û1 +HΓd,0 ũ1;

u2 = û2 +HΓd,0 ũ2 ,

(3.11)

∗Note that in this chapter, the displacement jump is represented by the standard Heavi-
side step function as defined in Table 2.1.
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Figure 3.2 Thick shell crossed by a discontinuity Γd,0 (heavy line). The vec-
tors nt,0 and ud,0 are perpendicular to the shell surface and the discontinuity
surface, respectively.

where:

û0 =
1
2
[
ût + ûb

]
; ũ0 =

1
2
[
ũt + ũb

]
;

û1 =
1
2
[
ût − ûb

]
; ũ1 =

1
2
[
ũt − ũb

]
; (3.12)

û2 = ŵ
[
D + û1

]
; ũ2 = w̃

[
D + û1 + ũ1

]
+ ŵũ1 .

Note that the enhanced part of the internal stretch parameter u2, i.e. ũ2, con-
tains regular variables and additional variables. The base vectors at the mate-
rial point in undeformed configuration Gi can be found by differentiating the
position vector X with respect to the iso-parametric coordinates Θi = [ξ , η,ζ ]:

Gα =
∂X

∂Θα
= Eα +ζD,α α = 1, 2 ;

G3 =
∂X

∂Θ3 = D ,
(3.13)

where (·),α denotes the partial derivative with respect to Θα. Eα is the co-
variant surface vector, which is the projection of the base vector Gα on the
mid-surface and is defined as:

Eα =
∂X0

∂Θα
. (3.14)
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The base vectors of the shell in the deformed configuration gi are found in a
similar fashion:

gα =
∂x

∂Θα
= Eα + û0,α +ζD,α +ζû1,α +HΓd,0

[
ũ0,α +ζũ1,α

]
+ h.o.t. ,

g3 =
∂x

∂Θ3 = D + û1 − 2ζû2 +HΓd,0

[
ũ1 − 2ζũ2

]
+ h.o.t.

(3.15)

Due to the displacement jump, the base vectors in the deformed configuration
gi are not defined at the discontinuity Γd,0. The higher order terms (h.o.t.)
in (3.15) contain terms up to the fourth order in the thickness coordinate ζ

and the derivatives of the stretch parameter u2 with respect to the span-wise
coordinates ξ and η. In the remainder, these terms will be neglected without a
significant loss of accuracy of the kinematic model (Parisch 1995). The metric
tensors G and g can be determined by using the base vectors Gi and gi in
equations (3.13) and (3.15):

Gi j = Gi · G j ; gi j = gi · g j ; i = 1, 2, 3 ; (3.16)

Elaboration of the expressions yields the following components of the metric
tensor in the undeformed configuration:

Gαβ = Eα · Eβ +ζ
[
Eα · D,β + Eβ · D,α

]
;

Gα3 = Eα · D +ζD,α · D ;

G33 = D · D ,

(3.17)

and in the deformed configuration (again neglecting the terms which are quad-
ratic in thickness direction):

gαβ = (Eα + û0,α +HΓd,0 ũ0,α) · (Eβ + û0,β +HΓd,0 ũ0,β)

+ζ
[
(Eα + û0,α +HΓd,0 ũ0,α) · (D,β + û1,β +HΓd,0 ũ1,β)

+ (Eβ + û0,β +HΓd,0 ũ0,β) · (D,α + û1,α +HΓd,0 ũ1,α)
]

;

gα3 = (Eα + û0,α +HΓd,0 ũ0,α) · (D + û1 +HΓd,0 ũ1)

+ζ
[
(D + û1 +HΓd,0 ũ1) · (D,α + û1,α +HΓd,0 ũ1,α)

− 2(Eα + û0,α +HΓd,0 ũ0,α) · (û2 +HΓd,0 ũ2)
]

;

g33 = (D + û1 +HΓd,0 ũ1) · (D + û1 +HΓd,0 ũ1)

−ζ4(D + û1 +HΓd,0 ũ1) · (û2 +HΓd,0 ũ2) .

(3.18)

59



A solid-like shell element allowing for arbitrary delaminations

We can rewrite these relations as:

Gi j = G0
i j +ζG1

i j ;

gi j = g0
i j +ζg1

i j .
(3.19)

where G0
i j and g0

i j correspond to the constant terms in equations (3.17) and
(3.18), whereas G1

i j and g1
i j correspond to the terms that vary linearly with

respect to the thickness ζ . Apart from the covariant base vectors in the unde-
formed state, we will need the contravariant counterparts to derive the strain
field later on. They can be derived as follows:

G j = (Gi j)−1Gi . (3.20)

The contravariant base vector G j is related to the contravariant surface vector
Ek via the so-called shell tensor µ

j
k (Ogden 1984):

G j = µ
j
kEk; µ

j
k = (δ j

k −ζḠ j
k)Ek , (3.21)

where δ
j
k is the Kronecker delta and Ḡ j

k denotes the mixed variant metric ten-
sor which is calculated with the contravariant and the covariant tensor com-
ponents, equation (3.19):

Ḡ j
k = G0 jmG1 mk (3.22)

It is emphasised that Ḡ j
k is only non-zero when the undeformed shell is curved.

Green-Lagrange strain field

The Green-Lagrange strain tensor γγγ is defined conventionally in terms of the
deformation gradient F:

γγγ =
1
2
(FTF − I) , (3.23)

where I is the unit tensor. The deformation gradient F can be written as a
function of the covariant base-vector in the deformed configuration gi and
the contravariant base-vector in the undeformed reference configuration Gi:

F = gi ⊗ Gi . (3.24)
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Inserting this relation in equation (3.23) we can write the Green-Lagrange
strain tensor in terms of the contravariant basis G j:

γγγ = γi jGi ⊗ G j; where: γi j =
1
2
(gi j − Gi j) . (3.25)

Substituting equation (3.21) in this relation yields:

2γi j = (gi j − Gi j)(δi
k −ζḠi

k)(δ
j
l −ζḠ j

l )Ek ⊗ El (3.26)

After some manipulations, the strain tensor can be written in terms of the
membrane mid-surface strain εi j and the bending strain ρi j according to:

2γγγ = (εi j +ζρi j)Ei ⊗ E j , (3.27)

where:

2εαβ = Eα · (û0,β+HΓd,0 ũ0,β) + Eβ · (û0,α+HΓd,0 ũ0,α)

+ (û0,α+HΓd,0 ũ0,α) · (û0,β+HΓd,0 ũ0,β) ;

2εα3 = Eα · (û1+HΓd,0 ũ1) + D· (û0,α+HΓd,0 ũ0,α)

+ (û0,α+HΓd,0 ũ0,α) · (û1+HΓd,0 ũ1) ;

2ε33 = 2D·(û1+HΓd,0 ũ1) + (û1+HΓd,0 ũ1) · (û1+HΓd,0 ũ1) ;

2ραβ = Eβ ·(û1,α+HΓd,0 ũ1,α) + Eα ·(û1,β+HΓd,0 ũ1,β)

+ D,α ·(û0,β+HΓd,0 ũ0,β) + D,β ·(û0,α+HΓd,0 ũ0,α)

+ (û1,α+HΓd,0 ũ1,α) · (û0,β+HΓd,0 ũ0,β)

+ (û1,β+HΓd,0 ũ1,β) · (û0,α+HΓd,0 ũ0,α)

− Ḡλ
α[Eβ ·(û0,λ+HΓd,0 ũ0,λ) + Eλ ·(û0,β+HΓd,0 ũ0,β)

+ (û0,λ +HΓd,0 ũ0,λ) · (û0,β+HΓd,0 ũ1,β)]

− Ḡλ
β[Eα ·(û0,λ+HΓd,0 ũ0,λ) + Eλ ·(û0,α+HΓd,0 ũ0,α)

+ (û0,λ +HΓd,0 ũ0,λ) · (û0,α+HΓd,0 ũ1,α)] ;

2ρα3 = D,α ·(û1+HΓd,0 ũ1) + D·(û1,α +HΓd,0 ũ1,α)

+ (û1 +HΓd,0 ũ1) · (û1,α+HΓd,0 ũ1,α) ;

2ρ33 = − 4(D+û1+HΓd,0 ũ1)·(û2+HΓd,0 ũ2) .

(3.28)

Note that the strain fields on either side of the discontinuity Γd,0 are not neces-
sarily equal. This implies that it is possible to capture phenomena which are
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restricted to just one layer of the laminate such as delamination buckling as
demonstrated by Wells et al. (2003).

The strain field is still defined in the iso-parametric frame of axes Ei. In
order to obtain the strains in the element local frame of reference l j, they must
be transformed using:

γi j = (εi j +ζρi j)Tk
i Tl

j ; Tk
i = Ekli . (3.29)

The magnitude of the displacement jump v at the internal discontinuity Γd,0 is
equal to the magnitude of the additional displacement field at the discontinu-
ity ζd, cf. equation (2.7). In the spirit of previous assumptions, we neglect the
terms that vary quadratically in the thickness direction, so that:

v = ũ0 +ζdũ1 . (3.30)

Since we have used the Heaviside function (3.9), the multiplication factor h is
equal to 1 and may be omitted from the equation.

§ 3.3 Equilibrium equations

The static equilibrium equation for the body Ω with respect to the unde-
formed configuration can be written as:

∇0 · P = 0 in Ω0 ; (3.31)

where P is the nominal stress tensor. The corresponding boundary conditions
are:

nt,0 · P = t̄ on Γt,0 ;

nd,0 · P = t on Γd,0 ,
(3.32)

where t̄ is the applied external load in the reference configuration; nt,0 is the
outward unit normal vector to the body and nd,0 is the inward unit normal
to Ω+

0 , see also Figure 3.2. The governing equations can be written in weak
form by multiplying equation (3.31) by an admissible displacement variation
δφφφ and integrating the result over the domain Ω0:∫

Ω0

δφφφ · (∇0 · P)dΩ0 = 0 , (3.33)
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which must hold for all admissible variation of the displacement field δφφφ.
Following a standard Bubnov-Galerkin approach, the space of admissible dis-
placement variations is taken the same as the field of actual displacements, see
also equation (2.13). Referring to equation (3.8), we can therefore write:

δφφφ = δφ̂φφ +HΓd,0δφ̃φφ . (3.34)

Substituting this relation into equation (3.33) gives:∫
Ω0

δφ̂φφ · (∇0 · P)dΩ0 +
∫

Ω0

HΓd,0δφ̃φφ · (∇0 · P)dΩ0 = 0 , (3.35)

which must hold for all admissible variations δφ̂φφ and δφ̃φφ. The equation can be
expanded using Gauss’ theorem. The Heaviside function can be eliminated
by changing the integration domain Ω0 into Ω+

0 (Wells and Sluys 2001a):∫
Ω0

∇0 · (P · δφ̂φφ)dΩ0 −
∫

Ω0

∇0δφ̂φφ : PdΩ0+∫
Ω+

0

∇0 · (P · δφ̃φφ)dΩ0 −
∫

Ω+
0

∇0δφ̃φφ : PdΩ0 = 0 . (3.36)

In this equation, ∇0δφ̂φφ and ∇0δφ̃φφ are the deformation gradients of the regular
and the additional parts of the admissible displacement variations (Wells et al.
2002). Applying the boundary conditions and the traction at the discontinuity,
equation (3.32), the equation above can be written as:∫

Ω0

∇0δφ̂φφ : P dΩ0+
∫

Ω+
0

∇0δφ̃φφ : P dΩ0 +
∫

Γd,0

δṽ · t dΓ0 =
∫

Γt,0

δφ̂φφ · t̄ dΓ0 +HΓd,0

∫
Γt,0

δφ̃φφ · t̄ dΓ0 . (3.37)

The terms ∇0δφ̂φφ : P and ∇0δφ̃φφ : P can be replaced by the work-conjugate
terms δγ̂γγ : σσσ and δγ̃γγ : σσσ (Belytschko et al. 2000), where δγ̂γγ and δγ̃γγ are the
regular and additional parts of the variation of the Green-Lagrange strain field
andσσσ is the second Piola-Kirchhoff stress tensor:∫

Ω0

δγ̂γγ : σσσ dΩ0+
∫

Ω+
0

δγ̃γγ : σσσ dΩ0 +
∫

Γd,0

δṽ · t dΓ0 =
∫

Γt,0

δφ̂φφ · t̄ dΓ0 +HΓd,0

∫
Γt,0

δφ̃φφ · t̄ dΓ0 . (3.38)
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Figure 3.3 Geometry and location of the nodes for the eight-node (left) and
the sixteen-node solid-like shell element. Each geometrical node contains a
regular set of three degrees of freedom [ax, ay, az]i and an additional set of
three degrees of freedom [bx, by, bz]i. The internal nodes contain one regular
and one additional degree-of-freedom (pj and qj respectively).

The regular and additional variational strain fields δγ̂γγ and δγ̃γγ can be expressed
in terms of the variational displacement components δû and δũ and the vari-
ational stretch terms δŵ and δw̃. This derivation can be found in section B.1.

§ 3.4 Finite element formulation

The solid-like shell element can be formulated as an eight-node or as a sixteen-
node element, see Figure 3.3. In both cases, a linear distribution of the inter-
nal stretch is assumed, so that only four internal degrees of freedom, situated
at the four corners of the mid-surface of the element, are necessary (Parisch
1995). Each geometrical node i contains three degrees of freedom [ax, ay, az]i
that set up the regular displacement field û and a set of three additional de-
grees of freedom [bx, by, bz]i that describes the enhanced displacement field ũ.
Likewise, there are two sets of internal degrees of freedom: pj that constructs
the regular stretch term ŵ and qj that constructs the additional stretch term w̃.

The projected displacement at the bottom surfaces of the element ub is con-
structed using the degrees of freedom at the bottom nodes of the element only.
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Finite element formulation

Likewise, the projected displacement at the top surface ut is constructed using
the degrees of freedom of the top nodes. For example, the sixteen-node ele-
ment has eight bottom and eight top nodes. Hence, the continuous value ub
can be constructed from the eight bottom nodes, using the eight bi-quadratic
shape functions Ψi. In the case of an eight-node element, ub is constructed us-
ing the four bottom nodes in combination with the four bi-linear shape func-
tions for a quadrilateral element. Since the internal stretch w is constructed
with four internal degrees of freedom in both elements, we use the four bi-
linear shape functions Φ j. Comparing equation (2.22), the projection of the
displacement vector can be constructed by interpolating the regular and en-
hanced degrees of freedom at the bottom nodes of the element:

ub = ûb +HΓd,0 ũb =
ns

∑
i=1

ΨΨΨiai +HΓd,0

ns

∑
i=1

ΨΨΨibi , (3.39)

where i denotes the element node number, ns is the number of nodes at the
bottom or top surface of the element, ΨΨΨ represents the conventional matrix
which contains the element shape functions for node i in three directions ξ , η,ζ :

ΨΨΨi = ΨiI3 . (3.40)

I3 is the 3 × 3 identity matrix. The projected displacements on the top surface
ut can be interpolated using the degrees of freedom at the top nodes of the
element:

ut = ût +HΓd,0 ũt =
ns

∑
i=1

ΨΨΨiai+ns +HΓd,0

ns

∑
i=1

ΨΨΨibi+ns , (3.41)

Similarly, the internal degrees of freedom are calculated according to:

w = ŵ +HΓd,0 w̃ =
4

∑
j=1

Φ j p j +HΓd,0

4

∑
j=1

Φ jq j . (3.42)

The discretised displacement of the shell mid-surface and the displacement
of the thickness director, u0 and u1 respectively, can be found using rela-
tions (3.12), (3.39) and (3.41):

û0 = N0a ; ũ0 = N0b ;

û1 = N1a ; ũ1 = N1b ,
(3.43)
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where N0 and N1 are defined as:

N0 =
1
2
[
ΨΨΨ1, ΨΨΨ2, . . ., ΨΨΨns , ΨΨΨ1, ΨΨΨ2, . . ., ΨΨΨns

]T ;

N1 =
1
2
[−ΨΨΨ1,−ΨΨΨ2, . . .,−ΨΨΨns , ΨΨΨ1, ΨΨΨ2, . . ., ΨΨΨns

]T .
(3.44)

From equation (3.42) the interpolation matrix for the internal degrees of free-
dom can be defined:

Nw =
[
Φ1, Φ2, Φ3, Φ4

]T . (3.45)

Trivially, the derivatives of the displacement vectors u0 and u1 with respect to
the iso-parametric coordinates ξ and η can be written as:

û0,α = N0,αa ; ũ0,α = N0,αb ;

û1,α = N1,αa ; ũ1,α = N1,αb ,
(3.46)

where the matrices N0,α and N1,α contain the derivatives of the shape func-
tions:

N0,α =
1
2
[
ΨΨΨ1,α , ΨΨΨ2,α , . . ., ΨΨΨns,α , ΨΨΨ1,α , ΨΨΨ2,α , . . ., ΨΨΨns,α

]T ;

N1,α =
1
2
[−ΨΨΨ1,α ,−ΨΨΨ2,α , . . .,−ΨΨΨns,α , ΨΨΨ1,α , ΨΨΨ2,α , . . ., ΨΨΨns,α

]T ,
(3.47)

with:

ΨΨΨi,α =
∂Ψi

∂α
I3 . (3.48)

There are three kinds of admissible variations that need to be discretised,
namely those of the Green-Lagrange strain tensor δγ̂γγ and δγ̃γγ, that of the dis-
placement jump , δṽ, and that of the displacement field itself, δφ̂φφ and δφ̃φφ. The
variations of the Green-Lagrange strain field can be written as:

δγ̂γγ = Buδa + Bwδp ;

δγ̃γγ = Buδb + Bwδq ,
(3.49)

with Bu and Bw as defined in section B.1. From equation (3.30) one obtains the
discrete variation displacement jump:

δṽ = N0δb +ζdN1δb = Hδb , (3.50)
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Finite element formulation

Since the load can only be applied to the geometrical nodes (Parisch 1995), the
admissible displacement terms in the external load parts of the equilibrium
equations can be replaced by a modified admissible displacement field δφφφ∗

which is defined as:

δφφφ∗ = δφ̂φφ
∗ + δφ̃φφ

∗ = δû0 +ζδû1 +HΓd,0

(
δũ0 +ζδũ1

)
, (3.51)

or in discrete form:

δφ̂φφ
∗

= N∗δa ; δφ̃φφ
∗ = N∗δb , where N∗ = (N0 +ζN1) . (3.52)

Substituting equations (3.49), (3.50) and (3.52) into the equilibrium equation
(3.38) gives:

∫
V0

(Buδa + Bwδp)Tσσσ dV0 +
∫
V+

0

(Buδb + Bwδq)Tσσσ dV0+∫
Sd,0

(Hδb)Tt dS0 =
∫
St

(N∗δa)T t̄ dS0 +
∫
St
HΓd,0(N∗δb)T t̄ dS0 .

(3.53)

By taking the variation of one admissible variation δa, δb,δp or δq at the time
and setting the others to zero, the following four systems of equations can be
derived:

∫
V0

BT
uσσσ dV0 =

∫
St

N∗T t̄ dS0 ;∫
V+

0

BT
uσσσ dV0 +

∫
Sd,0

HTt dS0 =
∫
St
HΓd,0 N∗T t̄ dS0 ;

∫
V0

BT
wσσσ dV0 = 0 ;∫

V+
0

BT
wσσσ dV0 = 0 .

(3.54)
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The left hand sides of these equations constitute the internal force vectors:

fint
a =

∫
V0

BT
uσσσ dV0 ;

fint
b =

∫
V+

0

BT
uσσσ dV0 +

∫
Sd

HTt dS0 ;

fint
p =

∫
V0

BT
wσσσ dV0 ;

fint
q =

∫
V+

0

BT
wσσσ dV0 ,

(3.55)

while the right-hand-sides represent the external force vectors:

fext
a =

∫
St

N∗T t̄ dS0 ;

fext
b =

∫
St
HΓd,0 N∗T t̄ dS0 ;

fext
p = 0 ;

fext
q = 0 .

(3.56)

Constitutive relations

For the bulk material and for the interface standard constitutive relations can
be used. At this stage, the treatment is restricted to small strains, but allows
for arbitrarily large displacement gradients. Consequently, a linear relation
can be postulated between the increments of the second Piola-Kirchhoff stress
∆σσσ , and the Green-Lagrange strain, ∆γγγ, see equation (B.3):

∆σσσ = C∆γγγ , (3.57)

where C is the tangent stiffness matrix of the bulk material. For the disconti-
nuity, the constitutive relation reads:

∆td = Td∆vd , (3.58)

where ∆vd is the incremental displacement jump at the discontinuity in the
current orientation of the discontinuity, denoted by the subscript ‘d’. Trans-
formation into the element local frame of reference in the undeformed config-
uration gives, see (2.31):

∆t = QT∆td = QTTd∆vd = QTTdQ∆v , (3.59)
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ĝ3

ĝ1

Ω+

Γ−d

Γ+
d

Γd

ĝ1+g̃1

ĝ3+g̃3

Ω−

g1,d

g3,d

Figure 3.4 The orientation of the discontinuity in the element in the de-
formed configuration.

so that in the undeformed configuration, the tangent stiffness matrix is equal
to:

T = QTTdQ . (3.60)

The orthogonal transformation matrix Q performs the transformation of the
orientation of the discontinuity in the current configuration into the unde-
formed configuration and can be composed using the base vectors in the de-
formed configuration, equation (3.15). However, since the triads gi at both
sides of the discontinuity are normally different, see Figure 3.4, it is not possi-
ble to assign a unique direction for the discontinuity in the deformed position.
Therefore, the average direction is taken (Wells et al. 2002). The base vectors
in deformed position are then equal to:

gα,d = ĝα +
1
2

g̃α = Eα + û0,α +
1
2

ũ0,α +ζD,α +ζû1,α +
1
2
ζũ1,α ;

g3,d = ĝ3 +
1
2

g̃3 = D + û1 +
1
2

ũ1 − 2ζû2 −ζũ2 .
(3.61)

The base vectors that describe the orientation of the discontinuity can be used
to construct the transformation matrix Q:

Qi j = cos(gi,d, G j) . (3.62)

Note that in this situation, the transformation matrix Q is a function of the
deformation of the element. This is in contrast with the constant transforma-
tion matrix for the element based on a small strain deformation gradient as
presented in the previous chapter.

69



A solid-like shell element allowing for arbitrary delaminations

Linearisation of the governing equations

The stiffness matrix which is needed for the solution of the nonlinear system
of equations can be found by differentiating the internal forces vector, equa-
tion (3.55) with respect to the displacement field. Since both the stresses and
tractions (σσσ and t) as well as the geometric matrices Bu and Bw are a function
of the displacements, the stiffness matrix can be decomposed in two parts, the
so-called material part and the geometric part.

The first part, which is denoted as Km, involves the rate of stresses and
tractions and depends on the response of the constitutive relations of the bulk
material, equation (3.57), and the cohesive surface, equation (3.58). Since:

∂σσσ
∂a

=
∂σσσ
∂b

= CBu ;
∂σσσ
∂p

=
∂σσσ
∂q

= CBw , (3.63)

we obtain for the material part of the bulk material:

Km =




∫
V0

Am
uudV0

∫
V+

0
Am

uudV0
∫
V0

Am
uwdV0

∫
V+

0
Am

uwdV0

∫
V+

0
Am

uudV0
∫
V+

0
Am

uudV0
∫
V+

0
Am

uwdV0
∫
V+

0
Am

uwdV0

∫
V0

Am
wudV0

∫
V+

0
Am

wudV0
∫
V0

Am
wwdV0

∫
V+

0
Am

wwdV0

∫
V+

0
Am

wudV0
∫
V+

0
Am

wudV0
∫
V+

0
Am

wwdV0
∫
V+

0
Am

wwdV0




,

(3.64)

where

Am
uu = BT

uCBu ; Am
uu = BT

uCBw ;

Am
wu = BT

wCBu ; Am
ww = BT

wCBw .
(3.65)

For the discontinuity, the following relation holds:

∂t
∂b

= QTTdQH . (3.66)
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Substitution there gives the contribution of the discontinuity to the material
part of the stiffness matrix:

Km
d =




0 0 0 0

0
∫
Sd,0

Am
d dS0 0 0

0 0 0 0

0 0 0 0




.

(3.67)

where
Am

d = HTQTTdQH . (3.68)

The geometric part of the stiffness matrix, denoted as Kg, accounts for the
geometric effects of the deformation, such as bending. This contribution to
the stiffness matrix is essential for the analysis of structural stability. It is ob-
tained by differentiating the incremental change of the variational strains, see
section B.1, with respect to the displacements. Multiplication of the result
with the current stresses yield:

Kg =




∫
V0

Ag
uudV0

∫
V+

0
Ag

uudV0
∫
V0

Ag
uwdV0

∫
V+

0
Ag

uwdV0

∫
V+

0
Ag

uudV0
∫
V+

0
Ag

uudV0
∫
V+

0
Ag

uwdV0
∫
V+

0
Ag

uwdV0

∫
V0

Ag
wudV0

∫
V+

0
Ag

wudV0 0 0

∫
V+

0
Ag

wudV0
∫
V+

0
Ag

wudV0 0 0




,

(3.69)

where Ag
uu, Ag

uw and Ag
wu are defined in section B.3. Consistent linearisation

of the surface integrals related to the tractions at the discontinuity, as pre-
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sented in equation (3.55), will result in additional, non-symmetric, terms in
the geometric part of the stiffness matrix due to the transformation matrix Q,
equation (3.59). However, since these contributions are relatively small, they
have only a minor impact on the iteration process (Wells et al. 2002). Due
to the additional computational effort required to solve a non-symmetric sys-
tem, these terms are neglected. The total stiffness matrix can be composed
from the three parts as given in equations (3.64), (3.67) and (3.69):

K = Km + Km
d + Kg . (3.70)

§ 3.5 Implementation aspects

The implementation of the model in a finite element code roughly follows
the description in chapter 2. Nevertheless, due to the presence of the internal
degrees of freedom, the geometry of the element and the fact that the direction
of delamination growth is fixed, some differences are worth mentioning.

Adding degrees of freedom

The enhancement of both the geometrical nodes and the internal nodes can be
demonstrated by means of a practical situation. Consider the laminated panel
as depicted in Figure 3.5. The panel has an initial circular delamination and
is locally stiffened by a set of doublers. The finite element model consists of
eight-node solid-like shell elements. The initial delamination is modelled as
a traction free discontinuity. The doubler is modelled by stacking additional
layers of solid-like shell elements.

Figure 3.6 shows a detail of the finite element model near the delamination
front. When an element is crossed by a discontinuity, both the corresponding
geometric nodes as well as the internal degrees of freedom are enhanced. This
implies that each geometrical node contains three additional degrees of free-
dom giving six degrees of freedom in total. The internal node has one extra
degree of freedom added to the single regular degree of freedom. As demon-
strated in the previous chapter, the displacement jump at the delamination
front must be equal to zero. For this specific element, this implies that both
the geometric nodes and the corresponding internal degrees of freedom on
the edges that are touched by the delamination front are not enhanced.
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X
Y Z

Initial delamination

Figure 3.5 A cut-out of a stringer stiffened panel made of a laminate material
with a small initial circular delamination. On the right-hand side, a fragment
of the corresponding finite element model is shown (the highlighted area).
The delamination is modelled as a traction free discontinuity.

The discontinuity is extended when the stress state at the delamination
front exceeds a threshold level. Although the direction of this cohesive surface
is known beforehand (remember that the delamination path is constrained by
the lay-up of laminae in the elements) in a three dimensional model, matters
are slightly more complicated. In order to have a proper discontinuity, it is re-
quired that at most two out of the four edges of a solid-like shell element form
a delamination front. An additional requirement is that these two edges must
be neighbours, as shown in Figure 3.7. In all the other cases, the discontinuity
is never allowed to open since none of the geometric and internal nodes of the
element is enhanced. In order to avoid such situations, the stress state at the
delamination front is only monitored at the corner edges of an element. When
the delamination criterion is violated, the discontinuity is expanded in those
elements that are connected to this corner. As a result, situations as sketched
in Figure 3.7 (a) and (b) are avoided.

An additional remark must be made for the situation where solid-like shell
elements are stacked. Generally, the enhancement of a node affects all sur-
rounding elements. However, the internal nodes that contain the extra degree
of freedom to construct the quadratic displacement field of the element, is an
element local node and the corresponding stiffness and force terms can be con-
densed from the global system of equations (this will be discussed in the next
paragraph). As a result, the internal nodes of stacked elements directly on top
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Enhanced / regular geometrical node

Enhanced / regular internal node

Figure 3.6 Detail of the finite element model. The discontinuity is shown as
grey surface. The nodes on the edge of the discontinuity are not enhanced in
order to assure a zero delamination opening at this location.

or below an enhanced element does not need to be enhanced, see Figure 3.8.

Condensation of the internal degrees of freedom

Since the internal degrees of freedom are not able to support an external load-
ing, it was suggested by Parisch (1995) to eliminate them on element level by
condensation. The complete set of the linearised equilibrium equations for a
single element can be written as:




Kaa Kab Kap Kaq

Kba Kbb Kbp Kbq

Kpa Kpb Kpp Kpq

Kqa Kqb Kqp Kqq







da

db

dp

dq




=




fext
a

fext
b

0

0




−




fint
a

fint
b

fint
p

fint
q




,

(3.71)
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⊗ ⊗

(a) (b) (c)

Figure 3.7 Examples of configuration of eight node solid-like shell elements
with a discontinuity (top view). The black nodes represent the enhanced ge-
ometric and internal nodes, the grey shade the elements with a discontinuity
and the bold line the current delamination front. The configurations in (a)
and (b) are ill-posed. Since none of the nodes that construct the displace-
ment fields in the element marked with a ⊗ is enhanced, the discontinuity is
not able to open. Configuration (c) is a correct example.

where vector [da, db, dp, dq]T denotes the incremental degrees of freedom.
Since the applied force at the internal degrees of freedom are equal to zero, we
can write the incremental internal degrees of freedom dp and dq as follows:


dp

dq


 = −


Kpp Kpq

Kqp Kqq



−1


Kpa Kpb

Kqa Kqb




da

db


+


fint

p

fint
q






.

(3.72)

The internal degrees of freedom can be eliminated by substituting this relation
into equation 3.71. Further derivation yields the condensed stiffness matrix:

K̄ =


Kaa Kab

Kba Kbb


−


Kap Kaq

Kbp Kbq




Kpp Kpq

Kqp Kqq



−1 
Kpa Kpb

Kqa Kqb




,

(3.73)

and the condensed internal forces vector:

f̄int =


fint

a

fint
b


−


Kap Kaq

Kbp Kbq




Kpp Kpq

Kqp Kqq



−1 
fint

p

fint
q




.

(3.74)

It is emphasised that the additional degrees of freedom at geometrical nodes
that describe the displacement jump cannot be condensed. The magnitude of
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Enhanced / regular geometrical node

Enhanced / regular internal node

Figure 3.8 In case of stacked solid-like shell elements, the internal degrees of
freedom in the neighbouring elements are not enhanced.

the displacement jump must be continuous across element boundaries. The
degrees of freedom that describe this jump are therefore global and cannot be
solved on the element local level. An exception is made for the additional in-
ternal degrees of freedom q. Since the regular internal degrees of freedom p
are already discontinuous across element boundaries, there is no need for the
additional internal degrees of freedom to be continuous. In practice, an en-
hanced eight-node solid-like shell element has a total of 56 degrees of free-
dom; two times three in each geometrical node plus two times four internal
degrees of freedom. These last two sets are eliminated by condensation reduc-
ing the contribution of the element to the global solution vector to 48 degrees
of freedom.

Shear locking

It was observed by Parisch (1995) that the eight-node element suffers from
the same shear locking phenomenon as general four node shell elements. A
remedy to this problem is the assumed natural strain approach (Bathe and
Dvorkin 1986). Here, the transverse shear strains ε23 and ε13 in (3.28b) are
composed of alternative strain formulations ε̄23 and ε̄13 which are evaluated
at four alternative positions along the edges of the elements, the tying points
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Figure 3.9 Location of tying points in eight-node solid-like shell element.

A-D in Figure 3.9. The corresponding strain terms in the Gauss integration
points are obtained by straightforward interpolation:

εANS
23 = χAε̄A

23 + χCε̄C
23 ;

εANS
13 = χBε̄

B
13 + χDε̄D

13 .
(3.75)

In this equation χS denote the corresponding linear shape functions. The con-
tributions of the assumed natural strain terms to the discretised variational
strain and the geometric part of the stiffness matrix can be found in section B.4.

Numerical integration

The construction of the element internal force vector and stiffness matrix re-
quires a proper integration of three domains; V0, V+

0 and S0. In this case, all
three domains are standard geometrical entities (two six-sided volumes and
a rectangular surface) and can therefore be integrated numerically with stan-
dard Gauss integration schemes.

§ 3.6 Numerical examples

Two examples are presented to demonstrate the performance of the element.
In the first example, attention is focused on the accuracy of the element for
a decreasing thickness in geometrically linear applications. In the second
example, the performance of the element in a geometrically and physically
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Figure 3.10 Geometry of a delaminated double cantilever beam under peel loading.

nonlinear analysis is illustrated by means of the simulation of a delamination
buckling test.

A peel test

To test the performance of the new element for a decreasing thickness, a peel
test has been performed. The double cantilever beam shown in Figure 3.10
consists of two layers of the same material with Young’s modulus E = 100.0
N/mm2 and Poisson’s ratio ν = 0.0. The beam has delaminated over its entire
length. The test is performed for two different models. The first model con-
tains ten eight-node enhanced solid-like shell elements (SLS+8); the second
model is built with just five sixteen-node enhanced solid-like shell elements
(SLS+16). In both cases, only one element in thickness direction is used. The
delamination is modelled by a traction free discontinuity.

The linear out-of-plane displacements are given as functions of the ratio of
layer thickness and beam length in Figure 3.11. The results are normalised by
the exact solution that follows from the theory of beam deflections. The eight-
node enhanced solid-like shell element gives nearly exact results for aspect
ratios up to 2000. The performance of the sixteen-node solid-like shell element
is even better. Indeed, it appears that the bending properties of the enhanced
element are not affected by the enhancement and give the same performance
as the underlying element (Parisch 1995). The enhanced element effectively
acts as two elements.
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Figure 3.11 Double cantilever beam loaded by a peel force. Left: the nor-
malised linear solution u/uexact as a function of the length over layer thick-
ness ratio l/h. Right: the deformed mesh.
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Figure 3.12 Geometry of double cantilever beam with initial delamination
a0 under compression.

Delamination buckling of a cantilever beam

Next, a combination of delamination growth and structural instability is con-
sidered (Allix and Corigliano 1999, Wells et al. 2003). The double cantilever
beam in Figure 3.12 has an initial delamination length of a0 = 10 mm and
is subjected to an axial compressive load 2P. Two small perturbation forces
P0 are applied to trigger the desired buckling mode. Both layers are made
of the same material with Young’s modulus E = 135 000 N/mm2 and Pois-
son’s ratio ν = 0.18. The ultimate strength of the bond in mode-I is equal
to tI,ult = 50 N/mm2, the fracture toughness is Gc = 0.8 N/mm. The criti-
cal load for local buckling of the beam, prior to delamination growth can be

79



A solid-like shell element allowing for arbitrary delaminations

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6

Perfect bond
Debonding (Gc = 0.8)

u [mm]

P
[N

]

Figure 3.13 Delamination buckling test. Left: tip displacement as a function
of the applied axial load P. Right: final deformation.

calculated analytically using the equation for a single cantilever beam with
length a0 and thickness h. For the given material parameters, the buckling
load Pcr is equal to:

Pcr =
π2Eh3

48a2
0

= 2.22 N . (3.76)

The finite element mesh used for the analysis is composed of eight-node en-
hanced solid-like shell elements and is shown in Figure 3.13. Again, it consists
of only one element in thickness direction. In order to capture delamination
growth correctly, the mesh is locally refined.

Figure 3.13 shows the lateral displacement u of the beam as a function of
the external force P. The load-displacement response for a specimen with
a perfect bond (no delamination) is given as a reference. The numerically
calculated buckling load is in agreement with the analytical solution. Steady
delamination growth starts at a lateral displacement u = 4 mm, which is in
agreement with previous simulations (Allix and Corigliano 1999).

§ 3.7 Conclusions

In this chapter, the partition of unity approach to cohesive fracture is incorpo-
rated in a structural element, the solid-like shell element (Parisch 1995, Rem-
mers et al. 2003b). The new element can be used for the simulation of de-
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Conclusions

lamination growth in thin-walled composite structures. This new approach
has a number of advantages. First, the displacement jump is only activated
as the delamination propagates, which already results in a reduction of the
total number of degrees of freedom. Moreover, it is possible to model a lam-
inate and capture delamination, with just one element in the thickness direc-
tion. With conventional techniques, at least double the number of elements
is needed. These properties allow the use of coarse meshes and to analyse
delamination phenomena on a mesoscopic level of observation.

The two examples clearly demonstrate that the discontinuous solid-like
shell elements possess the same properties as the original element. The de-
lamination buckling example underlines the excellent performance of the ele-
ment in combined geometrically and physically nonlinear analyses.
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Chapter 4

Delamination buckling of
fibre-metal laminates

O ver the last decades, there has been a search for new materials with im-
proved properties that can replace the traditional aluminium alloys in

aerospace structures. At the Faculty of Aerospace Engineering at Delft Uni-
versity of Technology, these activities resulted in the development of fibre-
metal laminates, a hybrid material made of alternating layers of light-weight
metal alloys and fibre-reinforced prepreg (Vlot 2001).

The history of the development of fibre-metal laminates can be traced back
to the early 1950s when the Dutch aerospace manufacturer Fokker started to
use alternative techniques to bond structural components. Instead of riveting
aluminium stringers and doublers to the aluminium skin panels, these struc-
tural parts were literally glued using adhesives in combination with autoclave
cycles. Due to the absence of rivet holes, the resulting structure appeared to
possess an increased residual strength.

Inspired by these results, the search for new materials focused on the de-
velopment of aluminium based laminates. One of the initial designs consisted
of aluminium and aramid reinforced prepreg, which became known under
the acronym Arall. The material showed a significant increase in the fatigue
resistance (Marissen 1988). Further improvements led to the development
of Glare in which the aramid fibres were replaced by glass fibres, see Fig-
ure 4.1. This material has even superior fatigue performance in aircraft struc-
tures (Vogelesang et al. 1995). Moreover, it also appeared to possess excellent
impact and fire resistance properties (Roebroeks 1997). As opposed to tradi-
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 Glare 3 prepreg

Aluminium

Figure 4.1 Schematic overview of Glare 3. The first, third and fifth layer con-
sist of aluminium. The intermediate layers are 0/90◦ glass fibre reinforced
cross plies.

tional composite materials such as carbon fibre-reinforced epoxies, durability
of the material seems of less concern, since the prepreg is protected from the
environment by the relatively durable outer aluminium layer. Even more im-
portant, the material can be applied in the structure in the same way as tradi-
tional aluminium panels, whereas in general, for composite materials, special
methods for fixation are required. In 2001, after a long period of extensive
research, Glare was selected as the main material for the skin in the Airbus
A380.

Despite this success, there are a number of unanswered questions regard-
ing the physical and mechanical properties of fibre-metal laminates such as
Glare. One of these concerns the behaviour of panels with initial delamina-
tions that are subjected to compressive and / or shear loadings, as shown in
Figure 4.2. Upon loading, the delaminated layer may buckle locally. The out-
of-plane displacement of this layer will cause high interlaminar stresses at the
delamination front. When these stresses exceed a yield limit, the delaminated
area will extend, which in turn will lead to a decrease of post-buckling stiff-
ness, progressive delamination growth and eventually, failure of the panel.
Because of these concerns, so far, Glare will only be applied to those parts of
the structure of the A380 that are loaded in pure tension: the crown section of
the fuselage.

84



(b)

(c)

(d)

(a)

Figure 4.2 Schematic representation of the delamination buckling failure
mechanism; (a) initial delamination, (b) local buckling, (c) delamination
growth, (d) failure.

Fortunately, the delamination buckling scenario has never been observed
in laboratory experiments with panels with an initial delamination under ax-
ial compressive loadings (Vlot 1991, Bosker 1998). It was found that the outer
layer buckled locally with a small reduction of the global stiffness of the spec-
imen as a result. Even when the applied load was increased up to 200 MPa, no
delamination growth was observed (Vlot 1991, Bosker 1998). The same con-
clusion could be drawn from fatigue tests (Hooijmeijer and Bosker 2000) and
experiments where the specimen was exposed to extreme environmental con-
ditions that may degenerate the quality of the adhesive material (Bosker 2000).
Apparently, the interlaminar bond is strong enough to withstand the tractions
in the interface and therefore, delamination buckling due to axial compression
is not a major concern for this kind of material.

Numerical simulations have shown that the shear tractions in the interface
between the aluminium and the prepreg layer play an important role in the
initiation of delamination growth (Remmers and de Borst 2001a). This is most
likely the explanation why delamination growth is not observed in axial com-
pression tests, but it also suggests that delamination buckling may be a point
of concern when a delaminated panel is subjected to a shear loading.

In this chapter, the discontinuous solid-like shell element as described in
chapter 3 will be used to simulate the mechanical behaviour of Glare panels
under compression.
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(a) Overview. (b) Detail.

Figure 4.3 SEM picture of local buckling of the top layer of a Glare 2-3/2-0.3
specimen after being subjected to a three-point bending test (de Jong et al.
2001).

§ 4.1 Experimental observations

Figure 4.3 (a) shows a small specimen of Glare 2-3/2-0.3, which has been sub-
jected to a three-point bending test in order to determine the ultimate shear
traction of the interface between the aluminium and the prepreg layer (de
Jong et al. 2001). In this specific case - most likely due to a production error -
the outer layer has buckled and delaminated, as shown in Figure 4.3 (b). The
prepreg layer has remained undamaged, apart from some single fibres that
seemingly have left the prepreg, see Figure 4.4 (a).

When we take a closer look at the crack front, Figure 4.4 (b), we notice that
the actual interface between the two layers -the adhesive bond of aluminium
and epoxy- has remained intact and that the crack starts near a fibre inside the
prepreg layer. This observation can be explained as follows. Before fabrica-
tion, the aluminium panels are extensively treated. First, the existing oxidised
surface is removed by an etching process. Then, the aluminium is anodised
to create an oxide layer with a good morphology. After this, the surface is
treated with a primer in order to enhance the durability of the bond. Finally,
several hours after application of the primer, the laminate is stacked and put
in the autoclave.

Consequently, the adhesive bonding between the aluminium and the pre-
preg layer is of excellent quality. In fact, the ultimate interface strength is
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(a) Overview. (b) Crack tip.

Figure 4.4 SEM picture of delamination front of a Glare 2-3/2-0.3 specimen
due to delamination buckling (de Jong et al. 2001).

much higher than the strength in the transition zone between fibre rich and
resin rich prepreg. A crack will therefore initiate in this area.

§ 4.2 Numerical model

Delamination buckling is a combination of structural effects (instability) and
material nonlinearities. In order to take both mechanisms into account, we
will investigate the phenomena on a mesoscopic level. This means that the
aluminium and the fibre-reinforced prepreg layers will be considered as ho-
mogeneous, orthotropic materials, with given constitutive parameters. The
laminate will be modelled by a single solid-like shell element.

The crack growth in the transition zone between the fibre rich and resin
rich prepreg is simulated by a discontinuity inside the elements. In order to
avoid numerical problems with progressing delamination fronts, the discon-
tinuity is present at the beginning of the analysis, even in the case of a perfect
bond. The delamination characteristics of the transition zone are lumped in
an orthotropic cohesive constitutive relation that governs the opening of the
discontinuity. The perfect bond prior to cracking is simulated by a dummy
stiffness. The initial delamination is modelled by an traction free discontinu-
ity. Self contact in the initial delamination is avoided by a frictionless contact
algorithm.
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Delamination model

From the three-point bending test (Figure 4.4) it appeared that delamination
is a combination of two damage mechanisms on a microscopic scale: an ad-
hesive debonding of the interface between the fibres and the matrix material
and a cohesive matrix crack. In order to capture both mechanisms, a damage
model is used at a mesoscopic scale. In this model, the stiffness of the inter-
face between the aluminium and the prepreg layers is reduced by means of
damage parameters, which are initially equal to zero and equal one when the
material is completely damaged (Lemaitre and Chaboche 1990). An equiva-
lent relative displacement of the interface is taken as the controlling parameter
for damage growth. As soon as the equivalent relative displacement exceeds
an initial or threshold value, the damage parameter starts to increase accord-
ing to a damage growth relation.

Delamination growth in composite materials depends on the angle be-
tween the fibre orientation and the delamination front. Therefore, a single
scalar damage parameter cannot be used. Furthermore, the delamination
crack is a combination of mode I and mode II. Moreover, a difference can be
observed between tension and compression in the mode-I direction. In the lat-
ter case, the material is not damaged, but behaves perfectly plastic. A model
that incorporates these aspects has been derived by Schipperen (2000) and
is based on the constitutive assumptions in the plasticity-based delamination
models by Schellekens and de Borst (1994) and Hashagen (1998).

The constitutive relation of the discontinuity can then be written as:

td = (I − d)Dvd , (4.1)

where D the initial elastic ‘dummy’ stiffness, I is the unit tensor and d a
second-order damage tensor. We consider the case that only the diagonal
terms of this tensor are non-zero. Damage occurs when the current equiva-
lent relative displacement κ exceeds all previously attained values:

κ(v, t) = max[κ(v, τ)|τ < t , κinit] , (4.2)

with κinit the initial or threshold value of κ. The equivalent relative displace-
ment is a function of the relative displacements in the three directions:

κ =

√
1
2

vT
dPvd + qTvd , (4.3)
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Figure 4.5 Traction-relative displacement relation in mode-I direction for the
orthotropic delamination model.
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and:

q = diag
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v̄c

n

)2

, 0, 0
]T

, (4.5)

where v̄t
n and v̄t

c are the relative displacement equivalents for the yield traction
in the normal direction (respectively tension and compression); v̄s1 and v̄s2 are
the relative displacement equivalents under shear loadings.

Softening is governed by the fracture toughness Gc. Experiments with
Glare show a softening behaviour of the interface that resembles an exponen-
tial curve, see Figure 4.5. Inspired by this, the following relation is used for
the diagonal components of damage parameter d:

dii = 1 − κ

|vd| exp
(
−2Diiv̄t

n
Gc

(κ − v̄t
n)
)

, (4.6)

where |vd| is the magnitude of the displacement jump vd. The damage pa-
rameters dii in this model will approach the limit value 1.0 asymptotically.
This improves the numerical stability of the model, which is important, since
we can expect large relative velocities in the case of delamination buckling.
The use of a tangent stiffness matrix guarantees quadratic convergence in the
nonlinear analysis.
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Frictionless contact model

As a result of delamination growth, the local buckling mode of the delam-
inated layer will change. Consequently, some areas of this layer will move
inwards and penetrate the underlying prepreg layers. A contact algorithm is
needed in order to prevent this in the numerical simulation.

In the current model, the traction free discontinuity that represents the
initial delamination is equipped with a penalty contact algorithm. Initially,
the stiffness terms in the constitutive relation are equal to zero. As soon as the
normal component of the relative displacement vn of the two adjacent surfaces
in the element is negative, a penalty stiffness Dpen is applied, according to:

td = Dvd , (4.7)

where {
D = diag[Dpen, 0, 0] if vn < 0,

D = diag[0, 0, 0] if vn > 0.
(4.8)

Note that for reasons of simplicity, the additional stiffnesses in the transverse
directions of the element due to friction are neglected, assuming that this will
not have a large effect on the global behaviour of the structure.

§ 4.3 Small Arall strip with initial delamination

One of the earliest investigations on the behaviour of delaminated fibre-metal
laminates was done by Vlot (1991). Consider a thin strip as shown in Fig-
ure 4.6. The strip is made of Arall, a predecessor of Glare, and consists of two
layers: an aluminium layer with thickness h1 = 0.3 mm and an aramid rein-
forced prepreg layer, thickness h2 = 0.2. The adhesive between these layers
has initially delaminated over a length of l = 18 mm. The strip is attached to a
thick aluminium substrate in order to prevent global buckling of the structure.

Since the specimen is symmetric along both the x-axis and the y-axis, only
one quarter is modelled, see Figure 4.7. Symmetrical boundary conditions are
applied to the cutting edges. In order to decrease the size of the model further,
the thick substrate is not modelled either. Instead, the displacements in the z-
direction of the lower bound of the Arall prepreg layer are constrained. The
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Small Arall strip with initial delamination
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Glare3 prepreg, 0.2 mm
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Figure 4.6 Geometry of the Arall strip with initial delamination subjected to
a compressive force. All dimensions in [mm].

two remaining layers are modelled with just one element in thickness direc-
tion with a total thickness of 0.5 mm. The discontinuity is placed 0.3 mm from
the top. The correct local buckling mode is triggered by a small perturbating
force.

In order to be able to increase the applied load to extreme high levels,
the aluminium is assumed to be linear elastic with Young’s modulus E =
72 000 MPa and Poisson’s ratio 0.3. The aramid fibre-reinforced prepreg is
modelled as a linear elastic orthotropic material. The homogeneous material
properties are obtained from (Verbruggen 1986) and are listed in Table 4.1.

The tractions at the onset of fracture of the interface between the alu-
minium layer and the prepreg layer are obtained from previous simulations
with similar materials (Hashagen 1998). The ultimate traction in normal di-
rection in tension and compression are assumed to be t̄t

n = 50.0 MPa and t̄c
n =

150.0 MPa respectively, and the ultimate traction in the two transverse direc-
tions equals t̄s1 = t̄s2 = 25.0 MPa. The fracture toughness is Gc = 1.1 N/mm.
An initial ‘dummy’ stiffness of the interface elements of Dii = 50 000 N/mm3

is assumed.
An analytical solution for the local buckling load of a clamped panel with
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E11 57 700 MPa G12 5 500 MPa ν12 0.195

E22 5 022 MPa G23 5 500 MPa ν23 0.032

E33 5 022 MPa G13 5 500 MPa ν13 0.032

Table 4.1 Material parameters for a uni-directional Arall prepreg.

Figure 4.7 Top view of the finite element mesh used for the simulation of
delamination growth in the Arall strip. The initial delamination is located at
the grey elements.

thickness h1 = 0.3 mm and length l = 18 mm was formulated by Kachanov
(1988). In this specific case, the critical buckling load is equal to:

σ0,K =
π2E

3(1 − ν2)

(
h1

l

)2

= 72.3 MPa . (4.9)

First, the critical buckling load of the model is determined by means of an
eigenvalue analysis. Since it is not possible to use nonlinear material mod-
els in this type of analysis, the interface elements are assumed to be linear
elastic with a stiffness Dii = 50 000 MPa. The lowest eigenvalue is found
at σ0 = 62.96 MPa. This is not completely in agreement with the analytical
estimation, since in the finite element model, the outer aluminium layer is
supported by a relatively flexible Arall layer, whereas in the analytical esti-
mation, a rigid support was assumed. The buckling load in the laboratory
experiments varied from 40 to 45 MPa (Vlot 1991).

Next, the deformation of the model is calculated in a quasi-static analysis.
The load-displacement curve is shown in Figure 4.8. Due to the small ini-
tial imperfection, it is not possible to pinpoint an unambiguous value for the
buckling load. When the post-buckling path is extrapolated, a buckling load
σ0 ≈ 60.0 MPa is found, which is in agreement with the eigenvalue analysis.
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Figure 4.8 Out-of-plane displacement of the delaminated Arall strip versus
applied axial load σ0. The dashed line corresponds to the critical buckling
load obtained by the eigenvalue analysis.

Progressive delamination growth starts at an axial load levelσ0 = 750 MPa.
This delamination growth is triggered by the shear tractions in the interface
exceeding the ultimate level of 25.0 MPa. The calculations are continued up
to the point that both layers have separated completely.

§ 4.4 Glare panel with circular delamination

In the next example, the behaviour of a Glare panel with a circular initial de-
lamination under both a compressive and a shear loading is examined. The
failure mechanism is now somewhat more complicated, since the direction in
which the delaminated zone will propagate is not evident. Similar studies
with carbon fibre-reinforced epoxies (Rinderknecht 1994) show that the de-
lamination grows in a direction perpendicular to the main loading direction.
As a result, the delaminated area transforms from a circular area into an ellip-
soidal one. Consequently, the buckling mode will change as well, and some
parts of the top layer will tend to move inwards. We consider the possibility
of self-contact and apply the contact algorithm.

Consider the specimen as shown in Figure 4.9. The panel consists of an
aluminium layer with thickness h1 = 0.2 mm and a Glare3 0/90◦ prepreg
layer with a thickness h2 = 0.25 mm. A circular delamination with radius
8 mm is assumed. The layers are attached to a thick backing plate in order
to prevent global buckling. In the first simulation a uni-axial compressive
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Al 7075 backing plate, 10 mm

Glare3 prepreg, 0.2 mm

Al 2024-T3, 0.3 mm
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Figure 4.9 Geometry of the Glare panel with a circular initial delamination,
which is located between the top aluminium layer and the Glare prepreg
layer. All dimensions in [mm].

Figure 4.10 Top view of the finite element mesh used for the simulation of
delamination growth in the Glare panel. The initial delamination located at
the grey elements. Note that just one quarter of the panel (x > 0, y > 0) is
modelled.
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Glare panel with circular delamination

E11 33 170 MPa G12 5 500 MPa ν12 0.195

E22 33 170 MPa G23 5 500 MPa ν23 0.032

E33 9 400 MPa G13 5 500 MPa ν13 0.032

Table 4.2 Material parameters for 0/90◦ Glare3 prepreg.

loading in x-direction is considered (σx = −σ0, σy = 0.0).
The analytical estimation for the local buckling load of a clamped unidirec-

tional panel with thickness h1 subjected to an axial compressive load σ0 was
derived by Shivakumar and Whitcomb (1985). For the given configuration,
the lowest critical buckling load is equal to σ0 = 113.2 MPa.

The finite element mesh is built with the same assumptions as in the pre-
vious example and is shown in Figure 4.10. The material parameters for the
Glare3 layer are obtained from (Hashagen 1998) and are listed in Table 4.2.
The material constants for the delamination damage model are identical to
the parameters in the previous example.

The critical buckling load is determined by means of an eigenvalue analy-
sis. The contact algorithm and the interface damage model are not included in
this analysis yet, for the reasons mentioned before. The lowest buckling mode
was found to be σ0 = 82.03 MPa. The corresponding eigenmode is shown in
Figure 4.11. The buckling load is significantly lower than the analytical esti-
mation. Again, this difference can be attributed to the relatively soft support
of the Glare3 prepreg layer.

The contact algorithm is included in the quasi-static analysis. The penalty
stiffness is set equal to the dummy stiffness of the interface elements with the
delamination model: Dpen = 50 000 MPa. The out-of-plane displacement of
the centre point of the panel, (x, y) = (0, 0), is shown in Figure 4.12. The
local buckling load is in agreement with the eigenvalue analysis. Initial de-
lamination growth does not start before a load σ0 = 300 MPa. Progressive
delamination starts at an external load σ0 ≈ 950 MPa. As expected, the de-
lamination expands in a direction perpendicular to the loading direction, see
Figures 4.13. Figure 4.14 shows the delaminated interface. Here, it is assumed
that the cohesive surface has lost its load carrying capability when d11 > 0.95.
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x

z

y

Figure 4.11 Buckling mode that corresponds to the critical buckling load
σ0 = 82.03 MPa of the Glare panel under uni-axial loading. Note that only
the part of the solid-like shell element that represents the aluminium top
layer is shown.
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Figure 4.12 Out-of-plane displacement of top layer versus applied axial com-
pressive load σ0. The dashed line corresponds to the critical buckling load
obtained by the eigenvalue analysis.
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Glare panel with circular delamination

(a) Post buckling, σ0 = 238 MPa.

(b) First delamination, σ0 = 1009 MPa.

(c) Progressive delamination, σ0 = 1248 MPa.

Figure 4.13 Deformation of the Glare laminate under uni-axial loading. Note
that in (c) a large part of the initial delamination is closed.

97



Delamination buckling of fibre-metal laminates

D

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

Figure 4.14 Damage in the interface at the final step of the simulation of the
panel under the uni-axial loading condition.

The panel has also been subjected to a bi-axial stress state: a compressive
stress in x-direction and a tension in the y direction (σx = −σ0;σy = σ0). At
an angle of 45◦ (x = y), this stress state can be regarded as a pure shear stress
τ = 1

2(σy −σx) = σ0.
The lowest eigenvalue load for this loading case is determined by an eigen-

value analysis and is equal to τ = 154.8 MPa. The corresponding eigenmode
is shown in Figure 4.15. Note that this mode has three half waves in the x-
direction: some parts of the delaminated aluminium tend to move inwards.

Figure 4.16 shows the load-displacement curve of the panel in the quasi-
static simulation. The buckling load in this simulation is much higher (τ ≈
250 MPa) than the lowest eigenvalue. This is due to the fact that in this case,
the aluminium layer cannot buckle in the eigenmode that corresponds to the
critical load, since the frictionless contact algorithm prevents the aluminium
layer to move inwards.

Consequently, the onset of delamination growth is found at a higher load
level too. Progressive delamination is observed at a load level τ ≈ 1300 MPa.
Figure 4.17 shows the delaminated area at the end of the quasi-static analysis.
It can be seen that this zone is less wide than the delaminated area in the sim-
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Glare panel with circular delamination
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Figure 4.15 Buckling mode that corresponds to the critical buckling load
τ = 154.8 MPa under bi-axial loading. Just the aluminium top layer is shown
in this figure. Note that large parts of this layer tend to move in the negative
z-direction.
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Figure 4.16 Out-of-plane displacement of top layer versus applied axial ef-
fective shear loading τ . The dashed line corresponds to the critical buckling
load obtained by the eigenvalue analysis.
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Figure 4.17 Damage in the interface at the final step of the simulation of the
panel under the bi-axial loading condition.

ulation of uni-axial loading, which is an effect of the slightly different initial
buckling mode.

§ 4.5 Conclusions

In this chapter, the discontinuous solid-like shell element has been used to
simulate delamination buckling of fibre-metal laminates on a mesoscopic level.
Experimental observations are used to capture the failure mechanisms at the
interface and to translate these mechanisms in the delamination model.

The numerical tools have been applied to the simulation of three exper-
iments: a small Arall strip under an axial compressive loading and a Glare
panel with a circular initial delamination under both an axial compressive
and a shear loading. In all simulations, delamination growth did not occur
within the ranges of stresses that are usual in aerospace structures. Neverthe-
less, in our simulations, we could raise the stresses to much higher (but also
less realistic levels) in order to determine the load level at which delamination
growth would start and monitor the accompanying failure mechanisms.

Suggestions that delamination buckling of fibre-metal laminates can be a
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point of concern when the panel is loaded in shear do not hold. Even in these
cases, the load level at which progressive delamination growth is observed is
far beyond the stresses that can be expected in the engineering practice.
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Chapter 5

The cohesive segments method

I t has been demonstrated in the previous chapters that the partition of unity
approach to cohesive fracture is a flexible tool to simulate crack growth in

structures on a macro- or mesoscopic level of observation. On these levels,
the material is assumed to be homogeneous and the complex interaction of
multiple micro-separations in the process zone can altogether be lumped in
a cohesive zone which is incorporated in the finite element mesh by a single
discontinuity.

On smaller levels of observation, the assumption that the material is ho-
mogeneous loses validity. Different constituents and imperfections in the ma-
terial lead to inhomogeneous stress distributions, which in turn give rise to
the nucleation of many microscopic cracks. The specific length at which these
events happen, i.e. the length of the process zone, is now of the same order
of magnitude as the dimensions of the specimen under investigation. When
these phenomena are lumped into a single dominant crack some crucial fea-
tures of the fracture process will be lost. In an accurate numerical analysis
at this level of observation, the nucleation and growth of individual micro-
cracks as well as their coalescence must be simulated.

The cohesive zone formulation, which proved to be capable of simulat-
ing crack nucleation (Needleman 1987), can be used to perform such detailed
analyses. By placing cohesive interfaces at all interelement boundaries in the
finite element mesh, crack branching and crack nucleation away from the
crack tip can be captured (Xu and Needleman 1994). By equipping these
cohesive interfaces with different constitutive relations, both fracture at the
interfaces between constituents as well as cohesive fracture in the bulk ma-
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Figure 5.1 Simulation of fracture in a cementitious material. The figure on
the left shows the finite element mesh of a specimen with circular aggregates.
The figure on the right shows the hydrostatic stress and the deformed geom-
etry after total fracture. The displacements are magnified by a factor 10.0
(Tijssens et al. 2001).

terial can be modelled. Examples of the simulation of complex crack growth
in heterogeneous materials can be found in (Tijssens et al. 2001, Arata et
al. 2001, Coker et al. 2003), see also Figure 5.1.

In the aforementioned contributions, the cohesive constitutive relations are
equipped with a non-zero initial compliance to model a perfect bond prior to
cracking. When the tractions exceed a limit value, also when this occurs in
virgin material away from the crack tip, the stiffness of the interface is de-
creased according to a softening law. Since the interfaces form a web that
covers the complete specimen, the nucleation, growth, branching and coales-
cence of multiple cracks is captured anywhere in the domain, without using
additional requirements.

Notwithstanding the success of the method, it suffers from a small mesh
bias since cracks are forced to propagate in prescribed directions, along the in-
terelement boundaries. However, when the mesh is dense enough, any direc-
tion of crack growth is captured automatically by the composition of different
angles. A more serious problem is related to the fact that the interfaces have a
non-zero compliance prior to cracking. As a result, the overall stiffness of the
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2
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Figure 5.2 Domain Ω with two discontinuities, Γd,1 and Γd,2 (dashed lines).
It is assumed that the discontinuities do not cross.

material is reduced, which may influence the accuracy of the results, at least
in a quantitative sense.

These problems can be avoided when the interfaces are only introduced
in the finite element mesh when needed. Camacho and Ortiz (1996) used
the cohesive zone approach in conjunction with an adaptive mesh refinement
technique. When the traction in a material point exceeds a threshold value,
an interface is inserted in the mesh in the correct direction. An important dis-
advantage is that since the surrounding elements are modified, the material
history in the corresponding integration points needs to be remapped onto
the new integration points in the modified elements. Apart from the compu-
tational overhead, such a procedure will inevitably lead to the introduction of
small errors.

The next logical step in the development of a truly mesh independent tool
to simulate complex fracture phenomena in a discrete manner is the use of
the partition of unity approach. In this chapter, the original formulation is
extended to the cohesive segments method , which is able to describe multiple
interacting cracks in a domain. Apart from a number of small modifications to
the kinematic relations and equilibrium equations, additional implementation
rules are presented in order to simulate the nucleation of a new crack, the
coalescence of multiple cracks and crack branching.
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§ 5.1 Kinematic relations

The key feature of the cohesive segments approach is the possible emergence
of multiple cohesive zones in a domain. Consider the domain Ω with bound-
ary Γ as shown in Figure 5.2. The domain contains m discontinuities Γd, j,
where j = 1...m. It is assumed that the discontinuities do not cross. Each dis-
continuity splits the domain into two parts, which are denoted accordingly
as Ω−

j and Ω+
j . For all discontinuities j in the domain, the following relation

must hold:

Ω−
j ∪ Ω+

j = Ω ∀ j = 1...m . (5.1)

The displacement field in the domain Ω consists of a continuous regular dis-
placement field û plus m additional continuous displacement fields ũ j, cf.
(Daux et al. 2000):

u(x, t) = û(x, t) +
m

∑
j=1

HΓd, j(x)ũ j(x, t) , (5.2)

where x denotes the position of a material point, t is time and HΓd, j is a step
function, associated to the discontinuity Γd, j, see equation (2.2). As in the orig-
inal implementation of the partition of unity method, different step functions
can be used, see Table 2.1. The strain field in the bulk material is obtained by
taking the derivative of the displacement field (5.2) with respect to the posi-
tion of the material point:

ε(x, t) = ∇sû(x, t) +
m

∑
j=1

HΓd, j(x)∇sũ j(x, t) x /∈ Γd, j , (5.3)

where a superscript s denotes the symmetric part of a differential operator.
Note that at the discontinuities Γd, j, the strains are not defined. There, the
magnitude of the displacement jump

v j(x, t) = hũ j(x, t) , (5.4)

is the relevant kinematic quantity with h defined in (2.3).
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§ 5.2 Equilibrium equations

Consider the quasi-static equilibrium equations without body forces and the
corresponding boundary conditions:

∇ ·σσσ = 0 x ∈ Ω , (5.5)

nt ·σσσ = t̄ x ∈ Γt , (5.6)

u = ū x ∈ Γu , (5.7)

nd, j ·σσσ = t j x ∈ Γd, j , (5.8)

whereσσσ is the Cauchy stress in the bulk material, t̄ are the prescribed tractions
on Γt with outward normal vector nt, ū are the prescribed displacements on
Γu and t j are the tractions at discontinuity Γd, j. The normal nd, j at disconti-
nuity Γd, j points into Ω+

j . Equilibrium can be expressed in a weak form by
multiplication with an admissible variational displacement field δu:∫

Ω
δu · (∇·σσσ)dΩ = 0 . (5.9)

Taking the space of the admissible variations to be the same as the actual dis-
placement field, equation (5.2), the variations of the displacements can be de-
composed as:

δu = δû +
m

∑
j=1

HΓd, jδũ j . (5.10)

Substituting the variations into equation (5.9) gives:
∫

Ω
δû · (∇·σσσ)dΩ +

m

∑
j=1

∫
Ω
HΓd, jδũ j · (∇·σσσ)dΩ = 0 . (5.11)

Applying Gauss’ theorem, using the symmetry of the Cauchy stress tensor
and using the boundary conditions at the external boundary Γt and at the
discontinuity planes Γd, j gives:

∫
Ω
∇sδû : σσσdΩ +

m

∑
j=1

∫
Ω
HΓd, j∇sδũ j : σσσdΩ +

m

∑
j=1

∫
Γd, j

δũ j · t jdΓ =

∫
Γt

δû · t̄dΓ +
m

∑
j=1

∫
Γt
HΓd, jδũ j · t̄dΓ .

(5.12)
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Note that the only difference in this equation with respect to the original equa-
tion with just a single discontinuity (2.16) is the appearance of the summation
symbol in front of the terms that contain the additional admissible displace-
ment field δũ j or derivations thereof.

§ 5.3 Finite element formulation

The interpolation scheme according to Babuška and Melenk (1997), allows for
the existence of multiple enhanced base functions. When the enhanced basis
terms γ j(x) in equation (2.19) are substituted by the step functions HΓd, j(x),
the displacement field in equation (5.2) can be written in the following discrete
form:

u = Na +
m

∑
j=1

HΓd, j Nb j . (5.13)

Here, the vector a contains the regular nodal degrees of freedom of the el-
ement and b j contains the additional nodal degrees of freedom associated
with discontinuity Γd, j. Note that the magnitude of each displacement jump
is supported by a unique set of degrees of freedom b j. As a result, multiple
discontinuities in the same element can be simulated, which is necessary for
the correct implementation of coalescing cracks. The matrix N contains the
conventional element shape functions.

The discretised strain field can be derived by straightforward differentia-
tion:

εεε = Ba +
m

∑
j=1

HΓd, j Bb j , (5.14)

where B contains the spatial derivatives of the element shape functions. The
discrete displacement jump at discontinuity Γd, j, see equation (5.4), is equal
to:

v j = Hb j , (5.15)

where H is defined in equation (2.25). Finally the variations of the displace-
ment fields and their spatial derivatives can be discretised as:

δû = Nδa ; δũ j = Nδb j ;

∇sδû = Bδa ; ∇sδũ j = Bδb j , (5.16)
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Inserting these relations into the weak form of the equilibrium equation (5.12)
yields the equilibrium equation for a single element with volume V and dis-
continuities S :

∫
V
(Bδa)TσσσdV +

m

∑
j=1

∫
V
HΓd, j(Bδb j)TσσσdV +

m

∑
j=1

∫
Sd, j

(Nδb j)Tt jdS =

∫
St

(Nδa)T t̄dS +
m

∑
j=1

∫
St
HΓd, j(Nδb j)T t̄dS .

(5.17)

By taking all the variations δa and δb j respectively, the weak equilibrium
equations can be separated in a set of m + 1 equilibrium equations:

∫
V
BTσσσdV =

∫
St
NT t̄dS ;∫

V
HΓd,1 BTσσσdV +

∫
Sd,1

NTt1dS =
∫
St
HΓd,1 NT t̄dS ;

∫
V
HΓd,2 BTσσσdV +

∫
Sd,2

NTt2dS =
∫
St
HΓd,2 NT t̄dS ;

...∫
V
HΓd,m BTσσσdV +

∫
Sd,m

NTtmdS =
∫
St
HΓd,m NT t̄dS .

(5.18)

The equilibrium equation that is related to the regular degrees of freedom is
identical to the equilibrium equation for an element without a discontinuity.
Therefore, it is possible to add a discontinuity to an element during the calcu-
lations with a minimal effort by adding the additional equilibrium relations
and the corresponding degrees of freedom b j.

After inserting the cohesive relations for the bulk material (2.29) and the
various cohesive surfaces (2.31), the discretised equilibrium equation (5.18)
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can be linearised in a standard manner, giving:


Kaa Kab1 . . . Kabm

Kab1 Kb1b1 . . . Kb1bm

...
... . . . ...

Kabm Kb1bm . . . Kbmbm







ȧ

ḃ1

...

ḃm




=




fext
a

fext
b1

...

fext
bm




−




fint
a

fint
b1

...

fint
bm




,

(5.19)

where the terms in the stiffness matrix are:

Kaa =
∫
V

BTCBdV ;

Kab j =
∫
V
HΓd, j B

TCBdV ;

Kb jb j =
∫
V
H2

Γd, j
BTCBdV +

∫
Sd, j

HTQTTdQHdS ;

Kb jbk
=
∫
V
HΓd, jHΓd,k BTCBdV ; if j �= k .

(5.20)

The internal forces are given by:

fint
a =

∫
V

BTσσσdV ;

fint
b j

=
∫
V
HΓd, j B

TσσσdV +
∫
Sd, j

HTQTtd, jdS .
(5.21)

Finally, the expression for the external forces is:

fext
a =

∫
St

NT t̄dS ;

fext
b j

=
∫
St
HΓd, j N

T t̄dS .
(5.22)

Note that if the tangent matrices C and Td are symmetric, symmetry of the
sub-matrices Kaa, Kab j and Kb jbk

is preserved. Consequently, the total stiffness
matrix also remains symmetric.
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interface elements

Figure 5.3 Conventional finite element mesh of a specimen with two ag-
gregates (grey continuum elements) in a matrix material. To visualise the
interface elements in the detail on the right, the continuum elements that
represent the matrix material have a small offset.

§ 5.4 Implementation and constitutive relations

Cohesive segments can be used in two ways. First, they can be applied to
model the interfaces between different constituents in the material. Secondly,
cohesive segments can be employed to model the nucleation, propagation and
coalescence of micro-cracks in the bulk material. In both applications, the
same kinematic model is used, but the implementation is different, as well
as the corresponding cohesive constitutive relations. In the remainder of this
chapter, both cases are discussed separately.

Material interfaces

In general, an interface between two constituents can be regarded as a weak
discontinuity in the kinematic relation. That is, as long as the interface is in-
tact, the displacement field across the interface is continuous. But due to the
stiffness mismatch on either side of the interface, the strain field is discontin-
uous. In a classical finite element model, such an interface can be modelled
using C0 continuum elements, where, by definition, the strain field is dis-
continuous at the interelement boundaries. When the structure of the finite
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element mesh is aligned with the internal structure of the material, the re-
quirement of having a weak discontinuity at the interfaces is automatically
satisfied, see Figure 5.3.

Debonding of the interface or delamination can be simulated by placing
interface elements at the element boundaries that represent the material inter-
face. The weak discontinuity in the strain field is now replaced by a strong
discontinuity in the displacement field. The opening of the interface elements
is governed by a cohesive constitutive relation that specifies the debonding
process (Schellekens and deBorst 1993).

In the cohesive segments method, a strong discontinuity is introduced in
the displacement field by means of an additional displacement field in combi-
nation with a step function. Obviously, the corresponding strain field, which
is the spatial derivative of the displacement field, is locally unbounded. From
a kinematic point of view, the cohesive segments method is identical to the
classical interface element approach and can be used to model material inter-
faces (Moës et al. 2003).

A cohesive segment that models a material interface is inserted in the fi-
nite element mesh at the start of a simulation, see Figure 5.4. The procedure
to insert these segments is identical to the procedure used in the original for-
mulation as presented in section 2.4. The nodes that support an element that
is crossed by the discontinuity are enhanced by a set of additional degrees of
freedom. In order to perform a correct numerical integration of the domain of
the element, the element is divided into two parts, each with the appropriate
positions of Gauss points. The constitutive laws for the bulk material on either
side of the discontinuity can be different. An important characteristic of this
application of a cohesive segment is that it does not have a tip: the segment is
either a closed loop or ends at the boundary of the specimen. As a result, the
segment is not able to propagate.

Obviously, modelling material interfaces in this way has certain advan-
tages. First, the finite element mesh does not have to coincide with the po-
sitions of the interfaces in the domain. As demonstrated in Figure 5.4, even
a structured mesh consisting of quadrilateral elements can be used to model
relatively complex structures. Moreover, since the structure of the mesh is not
related to the position of interfaces, the same mesh can be used multiple times
to perform analyses of specimens with identical dimensions and boundary
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cohesive segment

Figure 5.4 Finite element mesh of a specimen with two aggregates (grey
areas) that are represented by cohesive segments. The nodes that support
the elements that are crossed by the cohesive segment are enhanced with an
additional set of degrees of freedom.

conditions, but with different topologies of the internal structure. This is in
contrast to the classical interface element approach, where each distribution
of material interfaces in the domain requires a new finite element mesh, as
demonstrated in (Tijssens et al. 2001).

Since the cohesive segment must represent a perfect bond at the beginning
of the simulation, the corresponding cohesive constitutive relation must con-
tain an elastic part to model the initial bond. Of course, this is in contradiction
with one of the advantages of partition of unity based methods: to avoid the
use of cohesive zones with dummy stiffnesses to model a perfect bond. How-
ever, in the case of interfaces between materials, there is a good physical rea-
son to use initial stiffnesses. In reality, the interface between two constituents
is hardly ever a perfect bond. Incomplete adhesion and cavities will locally re-
sult in a reduction of the stiffness. Even though it is difficult to determine the
magnitude of this stiffness reduction, the use of a dummy stiffness can take
that reduction into account, at least in a qualitative sense. To avoid traction
oscillations due to the relatively large dummy stiffness, the interface terms
in the internal force vector and the stiffness matrix (5.19) are integrated us-
ing a Newton-Cotes integration scheme (Schellekens and de Borst 1993, Rem-
mers et al. 2001, Simone et al. 2001).
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The constitutive relation that governs the opening of these cohesive seg-
ments can be chosen from a long list of interface constitutive relations (Allix
and Ladevèze 1992, Schipperen and de Borst 2001, Camanho et al. 2003). In
this context, we prefer to use a mixed-mode relation that has been suggested
by Xu and Needleman (1993). Here, the work of separation of the interface G
as a function of the displacement jump is described by the following relation:

G =Gc + Gc exp
(
−vn

δn

)

×
{[

1 − r +
vn

δn

]
1 − q
r − 1

−
[

q +
(

r − q
r − 1

)
vn

δn

]
exp

(
−v2

t
δ2

t

)}
,

(5.23)

where Gc is the fracture toughness of the interface, vn and vs are the normal
and shear components of the displacement jump in the discontinuity frame of
reference: vd, respectively and δn and δs are the corresponding characteristic
lengths. These characteristic lengths in turn are related to the normal and
shear cohesive strengths of the interface, tn,max and ts,max and the normal and
shear works of separation Gc,n and Gc,s

Gc,n = e tn,maxδn ; Gc,s =

√
1
2

ets,maxδs , where e = exp(1) . (5.24)

The mode-mixity of the model is controlled by the parameters q and r. The
first parameter denotes the ratio of the fracture energy in the normal and shear
direction q = Gs/Gn, the second parameter controls the magnitude of the nor-
mal opening v∗n in case of a complete pure shear separation when the normal
traction is zero: r = v∗n/δn.

The interface tractions are obtained by taking the first derivative of (5.23)
with respect to the displacement jump v:

tn = −Gc

δn
exp

(−vn

δn

)

×
{[

−r +
vn

δn

]
1 − q
r − 1

−
[

q − (r − q)(vn − δn)
(r − 1)δn

exp
(
−v2

t
δ2

t

)]}
;

ts =
2Gc

δ2
t

exp
(−vn

δn

) [
q +

(
r − q
r − 1

)
vn

δn

]
vs exp

(
−v2

t
δ2

t

)
.

(5.25)
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Figure 5.5 The normalised tractions across the discontinuity as a function
of the corresponding component of the displacement jump when q = 1 and
r = 0. (a) Normal traction versus the normal component of the displacement
jump vn with vs = 0. (b) Shear traction versus the shear component of the
displacement jump vs with vn = 0 (Xu and Needleman, 1994).

The load displacement curves for the normal and shear traction as a function
of the normal and shear opening of the cohesive segment are given in Fig-
ure 5.5. The maximum value of tn in pure mode-I fracture is attained when
the normal opening vn is equal to δn. The maximum value of the shear traction
in a pure mode-II opening ts is reached when |vs| =

√
2δs/2.

The consistent tangent matrix Td is obtained by taking the second deriva-
tive of the energy potential (5.23) with respect to the displacement jump v. Un-
fortunately, this tangent matrix is not symmetric, hence destroying the sym-
metry in the element stiffness matrix K, see equation (5.19).

In most situations, the parameters that characterise the mode-mixity of the
model q and r are set to 1 and 0 respectively. Hence, the complete debond-
ing behaviour of the interface can be described with only two parameters Gc

and tn,max. In addition, the complete pre- and post-failure behaviour is de-
scribed by a single continuous function and derivatives thereof. As a result,
this nonlinear constitutive relation has proven to be extremely robust.

Cohesive cracks

The other application of cohesive segments is to model the nucleation, growth
and coalesce of micro-cracks in the virgin material. In this case, the segments
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Regular node

Integration point
Enhanced node

Figure 5.6 Creation of a new cohesive segment (bold line) in virgin material.
The segment crosses the integration point in the bulk material in which the
criterion was violated. The segment is stretched until it touches the boundary
of the patch of elements (grey area) that share the nodes of the element in
which the yield criterion was violated.

are not present in the material at the onset of the analysis, but are created and
extended during the course of a simulation.

The evolution of micro-cracks can be divided into three stages: the nu-
cleation, the growth and finally the coalescence with other segments. In all
cases, the same criterion is used to determine when and in which direction a
segment is created or extended. In order to arrive at a consistent numerical
model, this fracture criterion is narrowly connected to the cohesive constitu-
tive relation that governs the debonding process of a cohesive segment. This
fracture criterion and the constitutive relation are discussed at the end of this
section.

When the stress state in a specific integration point in the bulk material vio-
lates the yield criterion of the material, a new cohesive segment is added. The
segment, which is assumed to be straight, crosses this integration point and
is extended into the neighbouring elements until it touches the outer bound-
aries of these elements, see Figure 5.6. The patch of neighbouring elements
consists of all elements that share one of the nodes of the central element that
contains the integration point in which the criterion was violated. The nodes
that support these outer boundaries are not enhanced in order to guarantee a
zero crack opening at the tips of the new segments.
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The reason to create a micro-crack by extending a cohesive segment over
multiple elements is based on practical considerations. Since the nodes that
construct the tip of an element are not enhanced, a segment that only crosses
one element would be kinematically impossible since, at least in bi-linear ele-
ments, all nodes support the tips of the segment.

Creating a new segment will not immediately reduce the high stresses in
the bulk material. Depending on the fracture toughness of the material and
the magnitude of the load step, the stresses in the vicinity of the centre of the
new segment will only slowly fade away. Even so, especially in dynamic sim-
ulations, it can occur that the stress state locally increases for a small period of
time. To prevent new segments from being nucleated in the same position in
a short period of time, an element and its neighbours can only be the source
of a new segment once in a simulation.

The extension of a cohesive segment is modelled in the same way as in the
original formulation by Wells and Sluys (2001a). When the stress state in the
tip violates the fracture criterion for a specific angle, the segment is extended
into the next element in that direction, until it touches the boundary of that
element. As reported in chapter 2, the stress state at the tip is not known ex-
actly. Therefore, the stresses are estimated by calculating the average stress
state in the vicinity using a Gauss averaging criterion (2.45). The most accu-
rate prediction of the direction of the crack was obtained when the specific
averaging length la was chosen to be three times the specific element length
in the mesh around the tip. As a result, the stress state is underestimated and
in general, the cohesive segment is extended slightly too late. In the original
formulation by Wells and Sluys (2001a), this did not appear to be a serious
problem, but in the cohesive segments method, a discrepancy is created since
the fracture criterion is used to determine both the nucleation of a segment
as well as its extension. The nucleation is based on the stress state in a single
integration point instead of an average stress state that is too low by defini-
tion. Hence, the nucleation of a new segment is biased over the extension of
an existing segment, which will hamper quantitative analysis of diffuse frac-
ture problems. In transient simulations, which will be discussed in the next
chapter, these problems will be even more pronounced.

In order to solve this discrepancy, two alternative approaches have been
examined. In the first approach, different stress states are used to determine
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(i) when a segment should be extended and (ii) in which direction the segment
should be extended. In practice, the method works as follows. At the tip of a
segment, the stress state in the nearest integration point, which is in general
a good representative of the peak stress, is monitored. When this stress state
violates the criterion for extension, a second, averaged stress state is deter-
mined, based on a number of integration point within a certain radius of the
tip, according to equation (2.45). The direction of the extension is then based
on this averaged stress state. Note that the averaged stress state is significantly
smaller than the peak stress.

The advantages of this approach are evident. The segment is extended at
the correct load step and in the correct direction. However, this method is
unreliable in situations where mode transitions become an important factor.
A good example of the mode transition phenomenon is observed in dynamic
shear failure experiments (Kalthoff and Winkler 1988). Here, the direction of
crack propagation depends on the magnitude of the applied load. For low
impact velocities, the crack propagates as a cleavage crack at an angle of 70◦
with respect to the initial crack, at high impact velocities, the crack propagates
nearly straight ahead as an adiabatic shear band. In numerical simulations, it
appears that the proposed method is able to capture both mechanisms, but
the exact impact velocity for which mode transition occurs cannot be found,
since the criterion is based on inconsistent stress states.

In an alternative approach, both the creation as well as the extension of a
cohesive segment are based on averaged stress states. A single average length
la is used for all cases. In order to reduce the computational effort, a new seg-
ment can only be nucleated at one point for each element, e.g. the geometric
centre of the element. In both situations, the average stress state is used to
determine both the instance as well as the direction of creation or extension.
Obviously, failure will occur with some delay, the creation of a new segment
is no longer biased over the extension of an existing one.

Since it is not clear which of the two approaches is preferred, both tech-
niques will be used in the remainder of this thesis.

A key feature of the method is the possibility to have multiple, interacting
cohesive segments. To accommodate this, each cohesive segment is supported
by a unique set of additional degrees of freedom. When two segments meet
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Enh. node segm. II
Enh. node segm. I
Regular node

I

II

I

II

Figure 5.7 Merging of two cohesive segments (bold lines). Segment II is ex-
tended until it touches segment I (right picture). Segment I can be regarded
as a free edge so that segment II will not have a tip in this case. Consequently,
all nodes of the element will be enhanced in order to support displacement
discontinuity of segment II. Note that the nodes of these elements are en-
hanced twice.

within a single element, the nodes that support the elements are enhanced
twice. Consider the situation depicted in Figure 5.7 (a), in which segment II is
approaching another segment (I), which can either be a material interface or
a previously created cohesive crack. When the fracture criterion at the tip of
segment II is violated, the segment is extended accordingly. The position of
segment I marks a discontinuity and can therefore be considered as a free edge
in the material. Hence, segment two is only extended until it touches segment
I, see Figure 5.7 (b). Since this segments forms a free edge, there is no new tip
for segment II and all nodes of the corresponding element are enhanced.

Taking into account all previously mentioned rules, crack branching is
taken care of automatically. When the fracture criterion in an integration point
in the vicinity of an existing segment is violated, a new segment is created
which may cross the existing one, see Figure 5.8. In that case, the new seg-
ment only contains a single tip.

In previous implementations, the orientation of the extension of a dis-
continuity is taken perpendicular to the direction of the major axis of the
principal stress. Although this method has proven to be efficient (Wells and
Sluys 2001a), there are two important drawbacks. First, in a principal stress
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Enh. node segm. II
Enh. node segm. I
Regular node

Integration point

I

II

Figure 5.8 Crack branching. When the equivalent stress in an integration
point near an existing segment (I) exceeds the strength of the bulk material,
a new segment (II) is created. This new segment is extended until it touches
either the boundary of its neighbour elements or the existing segment (I). In
the situation depicted in the figure, the new segment only has one tip.

formulation, no distinction is made between compressive and tensile stresses.
Hence, a violation can be triggered by a combination of compressive stresses,
whereas in reality, such a state is not likely to lead to crack growth. Moreover,
the contribution of the normal and shear stresses in the criterion is of equal
importance, whereas in many cohesive models, the influence of the shear trac-
tion is reduced by applying a weight factor.

Here, a different approach is pursued. In order to arrive at an unbiased
stress-based fracture model, the failure criterion is closely related to the co-
hesive constitutive relation (Camacho and Ortiz 1996). A stress state σσσ in a
point can be transformed into normal and shear tractions tn and ts along an
imaginary axis η, which is rotated by an angle θ with respect to the x-axis, see
Figure 5.9:

tn = nTσσσn ; ts = sTσσσn , (5.26)

where n and s are the unit normal and tangent vectors to the η-axis respec-
tively:

n = [− sinθ, cosθ]T ; s = [cosθ, sinθ]T . (5.27)

The normal and shear tractions tn and ts can be used to construct an equivalent
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Figure 5.9 Calculation of the equivalent traction teq along an imaginary axis
η at an angle θ with respect to the x-axis.

traction teq which is a function of the angle θ of the η-axis:

teq(θ) =

√
< tn >2 +

1
β

t2
s , (5.28)

where < ·> are the McCauley brackets:

< x>=

{
0 if x ≤ 0,

x if x > 0 ,
(5.29)

and β is a scaling factor that is typically set to 2.3 (Camacho and Ortiz 1996).
For a given stress stateσσσ , the equivalent stress state teq can be determined for
all orientations θ of the imaginary axis η. Because of the periodic nature of
trigonometric functions, it is sufficient to determine the tractions in the range
0 < θ < π . An example is presented in Figure 5.10.

The angle for which the equivalent traction exceeds the maximum allow-
able traction first is the direction in which the crack will propagate. This angle
θmax can be found by solving the corresponding minimisation problem. Since
the equivalent traction teq is a function of quadratic trigonometry functions, it
can be demonstrated that the function contains two local maxima within the
region 0 < θ < π . Each of these maxima resides in one of the two quadrants.
In order to determine the global maximum equivalent traction it is necessary
to obtain the local maxima first. This can be done by a minimisation algo-
rithm, such as a one-dimensional bisection algorithm (Press et al. 1988). Out
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Figure 5.10 The equivalent stress teq versus the angle θ with respect to the x-
axis for the stress state σσσ = [σ11,σ22,σ12]T = [60,−40, 20]T MPa. The scaling
factor β is taken to be 2.3.

of the two local maxima, it is easy to determine the absolute maximum in the
domain teq,max. When this maximum equivalent traction exceeds the strength
of the material tmax, a new segment is inserted, or an existing one is extended
in the direction of the corresponding angle θmax.

To avoid sudden jumps in stresses when a discontinuity is inserted, the
constitutive behaviour of the cohesive segment is related to the stress state in
the bulk material that violates the fracture criterion. The initial tractions in
this irreversible model are taken to be equal to the normal and shear tractions
in the bulk material at the exact moment of nucleation, see equation (5.26), see
also (Camacho and Ortiz 1996).

For the debonding behaviour, a distinction is made between normal and
shear behaviour. When the normal traction component tn,0 is positive, the
cohesive segment is assumed to open as a cleavage crack. The cohesive trac-
tions in both normal and shear directions tn and ts decrease monotonically
from their initial values tn,0 and ts,0 to zero as a function of the normal dis-
placement jump, see Figure 5.11 (a):

tn = tn,0

(
1 − vn

vn,cr

)
; ts = ts,0

(
1 − vn

vn,cr

)
sgn(vs) , (5.30)

where vn and vs are the normal and sliding displacement respectively, sgn(�)
is the signum function:

sgn(x) =
x
|x| . (5.31)
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Figure 5.11 The normalised tractions across the discontinuity as a function
of the corresponding component of the displacement jump for a pure mode-I
cleavage crack and a shear crack (Camacho and Ortiz, 1996).

The characteristic length of the cohesive law is determined by the critical nor-
mal opening displacement vn,cr at which the crack has fully developed and
the tractions have reduced to zero. This parameter is related to the fracture
toughness Gc, or the area under the softening curve and can be determined as
follows:

vn,cr =
2Gc

tn,0
. (5.32)

When after some opening displacement vn,1, the crack starts to close due to
local unloading, the following relation is applied:

tn = tn,0

(
1 − vn,1

vn,cr

)
vn

vn,1
; ts = ts,0

(
1 − vn,1

vn,cr

)
vn

vn,1
sgn(vs) . (5.33)

Once the normal displacement jump exceeds the critical opening vn,cr, the
tractions in both normal and shear directions are set to zero.

When the initial normal traction t0,n is negative, the discontinuity is assumed
to open in a shear mode. The shear tractions decay in a linear fashion from
the initial value ts,0 to zero according to, see Figure 5.11 (b):

ts = ts,0

(
1 − |vs|

vs,cr

)
sgn(vs) . (5.34)
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As in the tensile case, a linear relation is assumed for the reloading curve:

ts = ts,0

(
1 − |vs|

vs,cr

)
vs

|vs,1| . (5.35)

§ 5.5 Solution procedure

The possibility of having a number of active crack tips in various locations
in the domain gives rise to new problems related to the robustness of the so-
lution technique. Traditionally, nonlinear algebraic systems are solved in an
incremental iterative manner. The external vector fext is represented by a unit
load f̄, which is multiplied by a loading parameter λ:

fext = λf̄ . (5.36)

This loading parameter λ is increased monotonically and for each intermedi-
ate value λi the current equilibrium of the system is calculated. This process
is repeated until the final load factor is reached.

When the behaviour of a structure is dominated by structural instabilities
or fracture, the complete deformation envelop is not governed by a mono-
tonically increasing external load. Instead, the load-displacement curve is
characterised by a limit point, as shown in Figure 5.12. The alternative ap-
proach where the magnitude of a set of degrees of freedom is monotonically
increased (prescribed displacement) fails when this load-displacement curve
shows a snap-back behaviour.

The arc-length or path-following method developed by Riks (1979) is a
technique that allows to solve the complete solution of a system, irrespective
of the presence of limit and snap-back points. Here, the loading parameter
λ is regarded as an additional unknown variable of the system, which brings
the total sum of unknowns of the model to N + 1, where N is the total number
of degrees of freedom of the displacement field u. Since the number of gov-
erning equations is still equal to N, the system is undetermined and an ad-
ditional equation needs to be introduced. This constraint equation defines an
additional relation between the (incremental) load parameter λ and the dis-
placement field u. In the procedure suggested by Riks (1979) the constraint
equation defines an auxiliary plane in the solution space that is perpendicu-
lar to the load-displacement path in the current equilibrium point. The new
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λ1
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λ λ

uu ulimu2u1

Figure 5.12 Load vs displacement curves. The figure on the left shows a
limit point situation. The complete path cannot be followed using a mono-
tonically increasing load factor λ. Moreover, the solution for λ2 is not unique.
The maximum attainable load is marked by λlim. The figure on the right de-
picts a snap-back point. The solution cannot be found with a monotonically
increasing prescribed displacement u and the solution at u2 is not unique.
The maximum prescribed displacement is denoted by ulim.

equilibrium-state (u, λ) is confined to this plane. It can be observed from Fig-
ure 5.13 that this procedure allows to cross a limit point or a snap back point.
In an attempt to improve the convergence speed and robustness of the method
under more severe circumstances, a number of authors have suggested al-
ternative constraint equations (Ramm 1981, Crisfield 1982), which basically
adopt the original idea from Riks (1979).

These methods perform well as long as the non-linearity in the system
of equations is of a global nature, which is the case in structural stability or
buckling analyses, for example. When the non-linearity is confined to a small
portion of the system, the procedure often fails to find the new equilibrium
state. Examples of such behaviour can be found in fracture mechanics. The
onset and propagation of fracture is generally governed by a nonlinear con-
stitutive behaviour in only a few integration points, which are the numerical
representation of the process zone. Typically, this only affects the degrees of
freedom that are located in the nodes that support the elements that contain
these integration points. The overall mechanical behaviour remains almost
linear and the constraint equation will not guide the solution into the right
direction. Consequently, the new equilibrium state will not be found.

In order to increase the sensitivity in cases where the non-linearity is con-
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Figure 5.13 Load factor λ vs. an arbitrary displacement u using Riks’ path-
following method. The new solution i+1(u, λ) is confined to the auxiliary
plane.

fined to a small area, the constraint equation can be constructed by using a
selected group of degrees of freedom. In the crack mouth opening displace-
ment control method (CMOD), weight factors are applied in such a way that
only the degrees of freedom that reside in the process zone contribute to the
constraint equation (de Borst 1987). Unfortunately, these weight factors need
to be assigned manually, which requires knowledge of the direction of the
crack in advance. If this information is not available, the simulation must be
stopped to apply new weight factors each time the process zone has propa-
gated over a considerable distance in the finite element mesh. Alternatively,
Geers (1999a) introduced algorithms to determine the weight factors automat-
ically. This approach, in combination with problem specific constraint equa-
tions has resulted in a standard framework that allows for the efficient and
robust analysis of various nonlinear problems (Geers 1999b).

Recently, an alternative approach has been suggested by Gutiérrez (2004).
Instead of projecting a surface based on the current equilibrium position in or-
der to confine the next solution, the constraint equation is based on an energy
criterion, in such a way that the amount of energy that is dissipated in the
deformation process is always a maximum for a given displacement and load
increment. Obviously, this approach is much more appealing from a physi-
cal point of view in a sense that it actually obeys the most important rule for
fracture mechanics, which is that a system always prefers to go to an energetic
minimum.

The energy release during the fracture process in a mechanical system can
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be obtained from the first principle of thermodynamics and can be written in
rate form as:

V̇ = P − G , (5.37)

where V̇ is the rate of the elastic potential, P is the power of the applied forces
and G is the energy release rate. The elastic potential energy V stored in an
equilibrium configuration is equal to the energy stored in the bulk material
plus the energy stored in the cohesive segments:

V =
1
2

∫
Ω

εεε ·σσσdΩ +
m

∑
j=1

1
2

∫
Γd, j

v j · t jdΓ . (5.38)

Casting this relation in a discrete form by substituting equations (5.14) and
(5.15) gives:

V =
1
2

∫
V

(
aTBT +

m

∑
j=1

HΓd, j b
T
j B

T

)
σσσdV +

1
2

m

∑
j=1

∫
Sd, j

bT
j N

Tt jdS , (5.39)

which, according to the global equilibrium equations (5.18) - (5.22) can be writ-
ten as:

V =
1
2

aTfint
a +

1
2

m

∑
j=1

bT
j f

int
b j

, (5.40)

where fint
a and fint

b j
are the total internal force vectors associated to the regular

and enhanced degrees of freedom a and b j, respectively. This relation should
hold for any converged equilibrium state, where the internal force vectors are
equal to the external force vectors. Hence, equation (5.40) can be written as:

V =
1
2

aTfext
a +

m

∑
j=1

bT
j f

ext
b j

. (5.41)

We now assume that the total solution space is described by a global vector
d that contains the regular and the enhanced degrees of freedom, i.e. d =
[a, b1, ..., bm]T. When the applied external force is formulated as a constant
unit force vector f̄ times a multiplication factor λ (5.36), the expression for the
internal energy can finally be stated as:

V =
1
2

dTλf̄ . (5.42)
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The rate form of this equation can be found by differentiating this equation
with respect to a quasi time:

V̇ =
1
2

ḋTλf̄ +
1
2

dTλ̇f̄ . (5.43)

The power of the external forces is equal to the product of the external force
vector and the displacement rate at the current load increment:

P = ḋTλf̄ . (5.44)

By substituting equations (5.43) and (5.44) into (5.37), the amount of energy
that has been dissipated from the system G can be written as:

G =
1
2

(
λḋT − λ̇dT

)
f̄ . (5.45)

By the second law of thermodynamics, the amount of energy that has dissi-
pated in a system is increasing monotonically. Hence, equation (5.45), which
consists of the displacement degrees of freedom d and the load factor λ, is
an ideal candidate to construct the additional constraint equation. Replacing
the dissipated energy G by the rate of the path parameter τ , the constraint
equation in rate form reads:

1
2

(
λḋ − λ̇dT

)
f̄ − τ̇ = 0 . (5.46)

This parametrisation can be written in a discrete form by applying an Euler-
forward scheme:

1
2

(
iλ∆dT − ∆λ(id)T

)
f̄ − ∆τ = 0 , (5.47)

where i is the time step number and ∆( ) =i+1 ( )−i ( ). The incremental path
parameter ∆τ represents the amount of energy that is dissipated in one load
step. A graphical representation is given in figure 5.14.

The augmented system of equation r(d, λ) consists of the set of N equilib-
rium equations (5.18) and the constraint equation in discrete form (5.47):

r(d, ∆λ) =


 fint(i+1d)− (∆λ + iλ)f̄ext

1
2

(iλ(i+1d −i d) − ∆λ idT
)

f̄ − ∆τ


 = 0 (5.48)
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Figure 5.14 The load factor λ vs. a specific displacement u of a system under
energy constraint control. The shaded area is a measure for the additionally
dissipated energy between two load steps i and i + 1. Note that the method
will only converge when this area is positive, i.e. when the direction of the
enclosed boundary is clockwise.

This system can be solved in an iterative manner by using a Newton-Raphson
approach. Assuming that k is the iteration number, the new state is defined
as: 

i+1d

∆λ




(k+1)

=


i+1d

∆λ




(k)

−
(

∂r
∂(i+1d, ∆λ)

)−1

r(k) (5.49)

with the (N + 1) × (N + 1) Jacobian matrix of the form:

∂r
∂(i+1d, ∆λ)

=


K(d) −f̄

1
2

i
λf̄T − 1

2
i
dT f̄


 (5.50)

where K(d) is the total stiffness matrix of the system, which is obviously a
function of the total set of degrees of freedom d.

Note that the Jacobian of the system of equations is not symmetric. More-
over, due to the additional column and row vectors, the optimal band struc-
ture of this Jacobian is destroyed and cannot be recovered. In order to guar-
antee a relatively efficient solution, the system needs to be solved in parts.
Details of this approach are given in Appendix C.

Clearly, the constraint equation can only be used when a certain amount of
energy is dissipated in a single load step. In most cases however, the specimen
is completely intact at the beginning of the simulation and fracture is only
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initiated when a certain external load level is attained. Hence, the analysis is
normally started using a standard force controlled solution method where the
load factor ∆λ is increased monotonically. As soon as a fracture is initiated
and enough energy is dissipated, the force control is switched into an energy
control. In (Gutiérrez 2004), this switching point is determined by means of
the number of iterations used in the Newton-Raphson procedure to obtain a
new converged solution. Assuming that both the constitutive relation for the
bulk material as well as the kinematic relations are linear functions, a sudden
increase of the the number of iterations is a measure for the activation of the
nonlinear softening relations that describe the fracture processes.

Here, an alternative procedure to switch from a force controlled to an
energy controlled solution technique is used. The amount of energy that
has dissipated during a force controlled step can be monitored using equa-
tion (5.45). As soon as the incremental dissipated energy exceeds a threshold
value τinit, the next equilibrium is determined by using an energy controlled
procedure.∗ The initial incremental path parameter ∆τ is assumed to be equal
to the amount of energy that has been dissipated in the previous step. The
magnitude of the threshold value τinit can be based on the fracture toughness
of the material and the equivalent length of an element.

In order to calculate the complete quasi-static behaviour of the specimen
in as few steps as possible, the incremental path parameter ∆τ is adjusted in
such a way that the number of iterations per load step is equal to an optimal
kopt (Riks 1979). The magnitude of the new incremental path parameter is re-
lated to the previous magnitude and the number of iterations in the previous
step ki−1, according to:

∆τ i = ∆τ i−10.5n where n =
ki−1 − kopt

4
. (5.51)

In general, kopt = 5 is considered to be an efficient number of iterations in
these kind of analyses (Riks 1979).

A limiting factor in the current partition of unity based implementation is
the fact that a cohesive segment can only be extended or nucleated after each

∗This procedure to initiate the energy constraint method is step-size dependent. When the
initial loadstep is taken to large, it can occur that the energy constraint method is not initiated
in time.
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Figure 5.15 Dimensions and boundary conditions of the single fibre in an
epoxy matrix.

converged time step. As a result, the maximum incremental path parameter is
bounded by the fracture toughness of the material and an equivalent element
length. A maximum value for the path parameter ∆τ is chosen such that the
tip of a cohesive zone will at most propagate through a single element within
one load step:

∆τcrit = αsGcle . (5.52)

In this equation, αs is a scaling parameter which can be varied between 0.0
and 1.0. In the numerical examples presented in this chapter, αs is chosen to
be 0.5.

§ 5.6 Numerical examples

The features of the cohesive segments method are illustrated in two numerical
problems with increasing complexity. In both simulations, the behaviour of
the bulk material is taken to be linear elastic.

Debonding of a single fibre

Consider a single fibre in epoxy material as shown in Figure 5.15. The ra-
dius of the fibre is taken to be r = 5 µm, which is equal to the average radius
of a single fibre in the prepreg layers in Glare, as can be deduced from Fig-
ure 4.4 (b). In order to minimise the effect of the boundary of the specimen on
the debonding of the fibre, L is assumed to be 15 µm. The specimen is sub-

131



The cohesive segments method

Figure 5.16 Finite element mesh of the single fibre in the epoxy material.
The cohesive segment that represents the fibre-epoxy interface is denoted by
the bold line. Because of symmetry in both geometry as in boundary and
loading conditions, only one quarter of the specimen is modelled.

jected to a prescribed displacement ū in the x-direction. The top and bottom
edges, y = ±L, are constrained in the y-direction.

Both the fibre as well as the epoxy are modelled as a linear elastic materials.
Young’s modulus and the Poisson’s ratio of the fibre is taken E = 225 GPa and
ν = 0.2 respectively. The stiffness of the epoxy material is E = 4.3 GPa and
the corresponding Poisson’s ratio is set to ν = 0.34. The interface is modelled
by Xu-Needleman’s cohesive law, equation (5.23) to (5.25). The strength of
the interface is taken to be tmax = 50.0 MPa. The fracture toughness Gc of the
interface will be varied. The additional parameters in this constitutive relation
β, r and q are set to 2.3, 1.0 and 0.0 respectively.

The geometry of the specimen, the boundary conditions and the applied
load are symmetric about both the x- and y-axes. Hence, only one quarter of
the specimen is modelled. The finite element mesh consists of 50 × 50 quadri-
lateral elements of side length 0.3 µm, see Figure 5.16. The interface of the
fibre is represented by a cohesive segment that is placed in the mesh at the
start of the analysis.

In order to demonstrate the performance of the energy constraint arc-length
method, the complete evolution of fibre debonding is simulated for different
values of the fracture toughness of the interface, varying from Gc = 0.001 to
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step ∆λ ∆τ iter.

7 1.67 · 10−1 5.97 · 10−5 3

8 8.71 · 10−2 8.44 · 10−5 3

9 −3.38 · 10−2 1.19 · 10−4 3

10 −1.82 · 10−1 1.69 · 10−4 3

Table 5.1 Step number, load factor λ, incremental path parameter ∆τ and the
number of iterations for the simulation of fibre debonding with an interface
fracture toughness Gc = 0.001 N/mm.

Gc = 0.004 N/mm. In all simulations, the first steps are carried out under dis-
placement control. Here, the unit prescribed displacement is ū = 0.025 µm.
The displacement control is switched into energy control when the dissipated
energy in a single step exceeds the value of 1.0 · 10−5 Nm. Since the position
of the interface is fixed and the creation of new cohesive segments is not taken
into account, there is no need to limit the incremental path-parameter ∆τ .

Figure 5.17 shows the σxx stress in the bottom right corner of the finite
element mesh versus the magnitude of the prescribed displacement ū. In all
simulations, the energy control method is initiated after load step 3. The small
differences in the slopes of the three curves prior to failure can be attributed to
different initial stiffnesses of the fibre-epoxy interface. This is a consequence
of the fact that in Xu-Needleman’s cohesive law the initial stiffness is not set
explicitly but is related to the fracture toughness Gc and the strength of the
interface tmax.

A detail of the stress-displacement curve around the limit point in the case
Gc = 0.001 N/mm is shown in Figure 5.18. It shows that the energy constraint
method is able to capture both the limit point and the snap-back behaviour
in relatively a little amount of load steps. The number of iterations in these
critical steps as well as the corresponding values of the incremental path pa-
rameter and the load factor are given in Table 5.1. In all load steps around this
critical point, the number of iterations never exceeds 3, which demonstrates
that the energy constraint method is indeed a robust algorithm.
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Figure 5.17 The σxx stress in point A of the specimen, at [x, y] = [15, 0]µm,
versus the prescribed displacement of the single fibre in the epoxy with an
interface fracture toughness of Gc = 0.001, 0.002 and 0.004 N/mm, respec-
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ū [µm]

σ
xx

[M
Pa

]

7
8

9

10

11

12

3
4

5

6

Figure 5.18 Detail ofσxx stress in point A versus the prescribed displacement
of the simulation with an interface fracture toughness Gc = 0.001 N/mm.
The numbers correspond to the current load step.
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P, u
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Figure 5.19 Geometry and loading conditions of a double-cantilever beam
with an initial notch.

A notched double-cantilever beam

In the following example, the nucleation of a crack in virgin material is in-
vestigated, as well as the coalescence of this crack with an interface. Con-
sider the double cantilever beam with a small notch as shown in Figure 5.19,
(de Borst et al. 2004). The beam is subjected to bending by a point load at the
tip of the lower beam. The two beams are assumed to be isotropic linear elastic
and have identical properties: Young’s modulus E = 20.0 GPa and Poisson’s
ratio ν = 0.2. The cohesive tensile strength of this material is tmax = 2.5 MPa,
the work of separation is Gc = 40.0 N/m. The fracture in the bulk material is
modelled by the Camacho-Ortiz cohesive law (5.30). The adhesive that bonds
the two layers is modelled with Xu-Needleman’s delamination model with
a non-zero compliance prior to cracking. In this example, we assume that
Gadh

c = 10.0 N/m, tn,max = ts,max = 1.0 MPa.
The specimen is analysed with a mesh having 99×21 elements. The notch

is simulated by removing a single element from the mesh. The interface be-
tween the two layers is modelled by a cohesive segment, which is added to the
mesh beforehand. This implies that one part of the element that is crossed by
this segment belongs to the top layer of the double-cantilever beam, the other
part belongs to the bottom layer. The analysis is started under load control,
with a unit load P̄ = 0.1 N. The energy control is used when the dissipated
energy in a single step exceeds the value of 1.0 · 10−6 Nm. The maximum
incremental path parameter ∆τmax is set to 2.0 · 10−5 Nm.

The tip displacement u is plotted against the applied load in Figure 5.20.
When the applied load is equal to P ≈ 2.4 N, a crack nucleates at the notch in
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Figure 5.20 Load-displacement curve of the double-cantilever beam with an
initial notch.

(a) (b)

Figure 5.21 Position of cohesive segments during the simulation at crack
initiation in the top layer (a) and after total failure of the top layer (b).
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Figure 5.22 Final deformation of the specimen (amplification factor 100.0).

the top layer. A new cohesive segment is added to the finite element model as
shown in Figure 5.21 (a). Upon further loading, the crack propagates towards
the interface, Figure 5.21 (b). From this moment on, the interface is loaded in
nearly a pure mode-II. When the shear tractions in the interface exceed the
decohesion strength, the two layers start to debond. Figure 5.22 shows the
deformation of the specimen at the final stage of loading, when u = 0.5 mm.

§ 5.7 Conclusions

In this chapter, a method has been described in which the nucleation, growth
and coalescence of multiple cracks can be simulated. Individual cracks are
represented by cohesive segments, which are added to finite elements by us-
ing the partition-of-unity property of the finite element shape functions. The
numerical formulation is a moderate extension to existing partition of unity
approaches to cohesive fracture. Nevertheless, the actual implementation of
the method can be somewhat elaborate from a bookkeeping point of view,
since a single element can be crossed by multiple discontinuities, each with
its own additional degrees of freedom.

The method can in principle naturally simulate distributed cracking which
frequently occurs in a heterogeneous solid. Thus, the cohesive segments ap-
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proach embraces both extremes, distributed cracking with crack nucleation,
growth and eventual coalescence at multiple locations as well as the initiation
and propagation of a single, dominant crack without needing special assump-
tions. What is needed is a decohesion constitutive relation which then implic-
itly specifies the conditions for crack nucleation and the crack propagation
direction. In this fashion, the cohesive segments method can be regarded as
a bridge between two historically opposing methodologies for the simulation
of fracture.

Some capabilities of the cohesive segments method have been illustrated
by simple two dimensional examples. The extension of the formulation to
more complex bulk and cohesive constitutive relations and to three dimen-
sions is straightforward in principle. The ability of the method to capture
complex crack patterns accurately, such as shown in Figure 5.1, remains to be
demonstrated. However, the initial studies here suggest that the cohesive seg-
ments method provides a promising approach for modelling complex fracture
behaviour.
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Chapter 6

Dynamic crack growth

F ast crack propagation in brittle solids is typically accompanied by dif-
fuse cracking patterns such as crack branching and micro-crack nucle-

ation away from the crack tip. These phenomena play an important role in
the overall cracking behaviour and determine the attainable crack speeds of
the material (Freund 1998). The prediction of these crack speeds appeared
to be not straightforward. Whereas analytical models reveal that the limiting
crack speed approaches the Rayleigh wave speed of the material, in reality,
the crack speeds are rarely greater than half this value.

The exact path of a crack and the position of the tip may play an important
role in this discrepancy. Based on experiments, Ravi-Chandar and Knauss
(1984) argued that the occurrence of micro-cracks ahead of a main crack tip
influences the overall speed of the main crack and plays a role in the crack
branching process. Gao (1993) suggested a wavy-crack model that incorpo-
rates small deviations of the crack tip from its original crack path, hence re-
ducing the apparent crack speed. Although the models were based on fairly
idealised assumptions, they provided reasonably good explanations for the
described phenomena.

To arrive at a more flexible model, Xu and Needleman (1994) simulated
fast crack propagation using a modified version of the original cohesive sur-
face framework (Needleman 1987). The method appeared to be able to ad-
dress crack branching and micro-crack nucleation (Xu and Needleman 1996).
Nevertheless, some fundamental numerical problems remained. Since the co-
hesive surfaces are aligned with element boundaries, the orientation of cracks
is restricted to a number of predefined angles. When the mesh is relatively
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dense, the global path of a crack can be captured by a combination of angles.
But on smaller levels of observation, the model is not able to reveal very small
deviations of a crack path. Another disadvantage is caused by the fact that
the cohesive surfaces have an initial non-zero compliance. The presence of
the cohesive surfaces reduces the overall stiffness of the body, especially in
the vicinity of a crack tip. As a result, the Rayleigh wave speed in the material
drops, which could possibly lead to spurious nucleation of micro-cracks or
improper crack branches.

In order to compensate for the last deficiency, cohesive zones with an ini-
tial zero compliance have been used by Falk et al. (2001). Here, the cohe-
sive surfaces at the inter-element boundaries are only activated when the local
stress exceeds a yield limit. The problems related to the mismatch in the com-
pliance of the material were hereby solved. Unfortunately, the model failed to
predict the occurrence of branches and the attained crack speed in the differ-
ent simulations reached as high as the Rayleigh wave speed.

The cohesive segments method as discussed in the previous chapter is
a logical alternative to study these phenomena in more detail. Apart from
the fact that a cohesive segment is only inserted when needed, cracks are al-
lowed to propagate through the mesh in arbitrary directions, irrespective of
the structure of the underlying finite element mesh. Consequently, every little
detail, related to the trajectory of the mesh can be captured and the issues of
the attainable crack speeds can possibly be revealed.

In this chapter, the cohesive segments method is extended to a time de-
pendent model that can be used to address dynamic fracture problems. The
corresponding equilibrium equations are presented in the next section, fol-
lowed by an extensive survey into the numerical stability of the time integra-
tion technique. The application of the model is demonstrated by means of a
number of examples.

§ 6.1 Linear momentum balance

The kinematic relations for a material point in a domain with m discontinu-
ities have been derived for a quasi-static implementation in chapter 5. The
displacement field can be written as a regular displacement field û plus m
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additional fields ũ j, see equation (5.2):

u(x, t) = û(x, t) +
m

∑
j=1

HΓd, j(x)ũ j(x, t) .

The strain field follows by taking the spatial derivative of the total displace-
ment field, see (5.3):

ε(x, t) = ∇sû(x, t) +
m

∑
j=1

HΓd, j(x)∇sũ j(x, t) x /∈ Γd, j ,

In addition, the acceleration of a material point can be found by differentiating
the displacement field, equation (5.2) twice with respect to time: ∗

ü(x, t) = ¨̂u(x, t) +
m

∑
j=1

HΓd, j(x) ¨̃u j(x, t) , (6.1)

where (¨) denotes the second time derivative: ∂2( )/∂t2.
The linear momentum balance equations for the domain Ω including iner-

tia terms, but without body forces, are equal to:

ρü +∇ ·σσσ = 0 x ∈ Ω , (6.2)

where ρ is the density of the material and σσσ is the Cauchy stress in the bulk
material. The corresponding boundary conditions for the external boundary
and the discontinuities are respectively:

nt ·σσσ = t̄ x ∈ Γt ;

nd, j ·σσσ = t j x ∈ Γd, j ,
(6.3)

where t̄ are the prescribed tractions on Γt with outward normal vector nt and
t j are the tractions at discontinuity Γd, j. The normal vector nd, j points from
Ω−

j to Ω+
j .

∗Strictly speaking, since the additional displacement field can be added during a sim-
ulation, the step functions HΓd, j are functions of time as well. However, as we will see in
section 6.3, the system of equations will be solved in a discrete manner, which allows us to
omit this time derivative.
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Equilibrium can be expressed in a weak form by multiplication with an
admissible variational displacement field δu:

∫
Ω

δu·(ρü)dΩ +
∫

Ω
δu·(∇·σ)dΩ = 0 , (6.4)

In line with previous derivations, it is assumed that the space of the admissible
variation η is the same as the field of the actual displacements, equation (5.10):

δu = δ̂u +
m

∑
j=1

HΓd, jδ̃u j .

Inserting the strain and the acceleration field (6.1), applying Gauss’ theorem,
eliminating some of the Heaviside functions by changing the integration do-
main and incorporating the boundary conditions, the momentum balance
(6.4), can be written as:

∫
Ω

ρδû· ¨̂udΩ +
m

∑
j=1

∫
Ω
HΓd, jρ

(
δũ j · ¨̂u + δû· ¨̃u j

)
dΩ +

m

∑
j=1

m

∑
k=1

∫
Ω
HΓd, jHΓd,kρδũ j · ¨̃ukdΩ

+
∫

Ω
∇sδû : σdΩ +

m

∑
j=1

∫
Ω
HΓd, j∇sδũ j : σdΩ +

m

∑
j=1

∫
Γd, j

δũ j · t jdΓ =

∫
Γt

δû · t̄dΓ +
m

∑
j=1

∫
Γt

HΓd, jδũ j · t̄dΓ . (6.5)

The first three terms in the equation represent the inertia of the body, whereas
the remaining terms are related to the internal forces, the cohesive tractions
and the applied external tractions, respectively, cf. equation (5.12).

§ 6.2 Finite element discretisation

The spatial discretisation of the system of equations in weak form is identi-
cal to the quasi-static formulation. The discretised acceleration can be found
by differentiating the discrete displacement field, equation (5.13) twice with
respect to time:

ü = Nä +
m

∑
j=1

HΓd, j Nb̈ j . (6.6)
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Inserting this expression and the discrete admissible variation, equation (5.16)
into (6.5) and taking the variations δa and δb j respectively, gives the following
set of equilibrium equations:




Maa Mab1 . . . Mabm

Mab1 Mb1b1 . . . Mb1bm

...
... . . . ...

Mabm Mb1bm . . . Mbmbm







ä

b̈1

...

b̈m




=




fext
a

fext
b1

...

fext
bm




−




fint
a

fint
b1

...

fint
bm




.

(6.7)

The internal and external force vectors have been defined in equations (5.21)
and (5.22). The terms in the mass matrix M are:

Maa =
∫
V

ρNTNdV ;

Mab j =
∫
V
HΓd, jρNTNdV ;

Mb jbk
=
∫
V
HΓd, jHΓd,kρNTNdV .

(6.8)

Note that this element mass matrix is completely filled.
The implementation of the method in the finite element mesh is identi-

cal to the implementation in the quasi-static case. The cohesive constitutive
relations are the same as well.

§ 6.3 Solution procedure

The equilibrium equations are discretised in the time domain using a variant
of the Newmark-β explicit time integration scheme with β=0 (Belytschko et
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al. 1976):

ḋt+ 1
2 ∆t = ḋt +

1
2
∆t d̈t ; (6.9a)

dt+∆t = dt + ∆t ḋt+ 1
2 ∆t ;

1
2

(6.9b)

d̈t+∆t = M−1
(

fext,t+∆t − fint,t+∆t
)

; (6.9c)

ḋt+∆t = ḋt+ 1
2 ∆t +

1
2
∆t d̈t+∆t , (6.9d)

In these equations ∆t is the discrete time step and d represents the total array
of degrees of freedom in the system: d = [a, b1, . . ., bm]T.

For wave equations, the time step is limited by the speed of the stress wave
in the material, or the dilation speed cd. In general, the simulation becomes
unstable when the stress wave crosses a single element with a specific element
length le within one time interval ∆t. Hence, the critical interval is equal to:

∆tcr =
le

cd
. (6.10)

Traditionally, the calculation time of an explicit time integration procedure is
reduced significantly by using a diagonal mass representation Mdiag in equa-
tion (6.9c). In such a matrix, all terms are zero except for the ones on the
diagonal. The inverse of a diagonal matrix can easily be determined by taking
the inverse of each diagonal component. As a result, the system of equa-
tions (6.9c) is no longer coupled and each degree of freedom i can be solved
separately:

dt+∆t
i =

f ext,t+∆t
i − f int,t+∆t

i

Mdiag
i

. (6.11)

A diagonal mass matrix can be constructed in several different ways. In
the case of a standard continuum element formulation, it is possible to con-
centrate the mass of the element in its nodes. Each node then has a portion
of the total mass of the element, which is placed on the diagonal term of the
corresponding degrees of freedom in the mass matrix.

An alternative approach that is pursued here is to lump the mass matrix by
replacing the diagonal term of the mass matrix by the total sum of the mass
terms on the corresponding row. The off-diagonal terms are set to zero. In
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Figure 6.1 Geometry and loading condition of the block.

the case of a system with n unknowns, the diagonal mass matrix Mdiag can be
written as:

Mdiag
i =

n

∑
j

Mi j . (6.12)

It can be seen from equation (6.7) that the mass matrix contains terms that
couple the regular and additional degrees of freedom. By lumping the matrix,
this information will be lost. In order to determine the effects of lumping, the
different approaches are studied in the following example, which is based on
a numerical test by Xu and Needleman (1994).

Consider the plane strain wave propagation block in Figure 6.1. The block
has dimensions L = 5 mm and W = 10 mm and is made of PMMA with
Young’s modulus E = 3.24 GPa, Poisson’s ratio ν = 0.35 and density ρ =
1190 kg/m3. The corresponding dilatational, shear and Rayleigh wave speeds
can be obtained from the following relations (Freund 1998):

cd =

√
E(1−ν)

ρ(1+ν)(1−2ν)
; cs =

√
E

2ρ(1+ν)
; cR = cs

0.862+1.14ν

1+ν
. (6.13)

According to these relations, the dilatational, shear and Rayleigh wave speeds
for the given material are cd = 2090 m/s, cs = 1004 m/s and cR = 938 m/s
respectively.

The block is not supported and is loaded by an impact velocity ˙̄u, acting
in the positive y direction on the top boundary of the block (at y = +L). The
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Figure 6.2 Stress curves σyy versus vertical position y measured along the
centre of the plane strain wave specimen (x = 0.0 mm) at different times
during the simulation.

impact velocity is increased linearly to a constant value V within a certain rise
time tr, according to:

˙̄u =

{
Vt/tr for t < tr ,

V for t ≥ tr .
(6.14)

In this experiment, the rise time is taken to be tr = 1.0 · 10−7 s and the pre-
scribed velocity V = 10 m/s. The uni-axial stress wave created by these load-
ing conditions will propagate through the block at approximately the dilata-
tional wave speed, cd = 2090 m/s, carrying a tensile stress of 25.0 MPa.

Since the block and the loading conditions are symmetric about the y-
axis, only the part in the positive x-axis is modelled using a regular mesh
with 39 × 39 four node elements. The specific length of each element is le =
0.256 mm. The displacements x-direction of the nodes at x = 0.0 mm are
constrained in order to enforce symmetric boundary conditions. Regarding
the specific length of an element and the magnitude of the dilatational wave
speed, a sufficiently small time step of ∆t = 1.0 · 10−9 s has been used in the
simulations, which have been performed using both a lumped and a consis-
tent representation of the mass matrix.
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traction free discontinuity

Figure 6.3 Geometry and loading condition of the block with a traction free
discontinuity.

Figure 6.2 shows the profile of the σyy stress along the y-axis at x=0.0 mm
during the simulation. It can be seen that the average magnitude of the stress
wave is in agreement with the analytical prediction of 25 MPa. The small
stress oscillations of approximately 5.0 MPa can be contributed to the rela-
tively coarse mesh that has been used in these simulations. The wave speed
can be determined from the progression of the stress front with respect to time.
Due to the numerical smoothing in the coarse mesh, the position of the stress
wave cannot be determined exactly. Nevertheless, a rough estimation reveals
that the wave speed is in good agreement with the analytically obtained di-
latational speed cd = 2090 m/s.

A remarkable difference between the simulations with the lumped mass
matrix and the simulations with the consistent mass matrix is the appearance
of the stress overshoot. The lumped mass matrix gives rise to an extra over-
shoot of approximately 5.0 MPa on top of the wave front of 25.0 MPa, whereas
in the case of a consistent mass matrix, the stress wave is proceeded by a dip
of 5.0 MPa.

Subsequently, the block is divided into two parts by means of a horizontal
crack at y=0 mm crossing the entire width of the specimen, Figure 6.3. In the
finite element model, this crack is represented as a traction free cohesive seg-
ment. In this particular case, the discontinuity is modelled using a standard
Heaviside enhancement function, where H+ = 1 and H− = 0, see Table 2.1.
The boundary conditions and material parameters of the specimen, as well as
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Figure 6.4 Stress curves σyy versus vertical position y measured along the
centre of the plane strain wave specimen (x = 0.0 mm) at t = 3 µs. The initial
crack (denoted by the dotted line) is modelled as a traction free cohesive
segment which is constructed using a Heaviside jump function.

the impact velocity are not changed.
In the simulations, the stress wave carrying a tensile stress of 25 MPa will

propagate from the top side of the specimen to reach the crack after approxi-
mately t = 2 µs. Since the crack can be considered as a traction free boundary,
the wave will reflect and move upwards. Obviously, the traction free crack
prevents any kind of physical contact between the two parts of the specimen
and the stresses in the lower part of the specimen will remain zero throughout
the simulation.

Figure 6.4 shows the σyy stress curves along the y-axis in the centre of the
specimen for both the model with a consistent and with a lumped representa-
tion of the mass matrix. In both graphs, the stress state at t = 3 µs is shown.
At this instance, the stress wave has been reflected by the traction free crack.
Both simulations are compared with a benchmark calculation in which the slit
is modelled in the traditional way: by disconnecting adjacent elements. The
benchmark calculations are performed using a consistent and a lumped mass
matrix, respectively.

The simulation of the specimen with the crack using the consistent mass
matrix shows perfect agreement with the benchmark simulation, see Figu-
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Figure 6.5 Stress curves σyy versus vertical position y measured along the
centre of the plane strain wave specimen (x = 0.0 mm) at t = 3 µs. The initial
crack (denoted by the dotted line) is modelled as a traction free cohesive
segment which is constructed using a unit symmetric jump function.

re 6.4 (a). The stress wave is properly reflected and, more important, the lower
part of the specimen remains completely stress free. This is not the case in the
simulation with a lumped mass matrix, Figure 6.4 (b). Here a considerable
amount of the energy is transferred across the cohesive segment to result in a
stress wave with an amplitude of 10 MPa in the lower part of the specimen.
As a matter of fact, this spurious stress wave propagates with exactly the di-
latation speed. Even more alarming is the extremely high stress peak of over
42 MPa in the integration points just below the discontinuity. Compared to
this, the small mismatch of the stresses in the top part of the specimen, can be
considered as a modest problem.

The simulations are now repeated with a different jump function. In-
stead of the Heaviside function a symmetric jump function is used, in which
H+ = 1 and H− = −1, Table 2.1. The corresponding traction profiles are
shown in Figure 6.5. Remarkably, the spurious stress wave reflections in the
simulations with the lumped mass matrix representation have disappeared,
Figure 6.5 (b). The stresses in the lower part of the specimen remain zero. Ap-
parently, this can be contributed to the symmetric nature of the enhancement
function. Nevertheless, the mismatch in the reflected stress wave in the top
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part of the specimen did not disappear, which reveals a small inconsistency
in the current lumped matrix model. The stress waves in the simulation with
the consistent mass matrix again show a perfect agreement to the benchmark
simulations, see Figure 6.5 (a).

An alternative way to check the accuracy of the method is to look at the
energy balance of the system. Obviously, the amount of external work that
is used to deform the specimen must be equal to the total internal energy,
which is composed of the strain energy and the kinetic energy. The exter-
nal work W at time t + ∆t is obtained by integration in time, according to,
see (Belytschko et al. 2000):

W t+∆t = W t +
1
2
∆t
(

ḋt+ 1
2 ∆t
)T (

fext,t + fext,t+∆t
)

. (6.15)

When the specimen is loaded by a prescribed velocity instead of an external
force, this relation can be written as:

W t+∆t = W t +
1
2
∆t
(

ḋt+ 1
2 ∆t

p

)T (
fint,t + fint,t+∆t

)
, (6.16)

where ḋt+ 1
2 ∆t

p denotes the prescribed velocity vector in which the unconstrained
degrees of freedom are replaced by zeros. The internal strain energy is ob-
tained as follows:

E t+∆t
int = E t

int +
1
2
∆t
(

ḋt+ 1
2 ∆t
)T (

fint,t + fint,t+∆t
)

, (6.17)

whereas the kinetic energy is given by:

E t
kin =

1
2

(
ḋt
)T

Mḋt . (6.18)

Energy conservation requires that the sum of internal and kinetic energy is
equal to the total external work, or:

|Ekin + Eint −W| < ε max(|W|, |Eint|, Ekin) , (6.19)

where ε is a small tolerance. When this tolerance is on the order of 10−2 or
smaller, it can be concluded that energy is conserved (Belytschko et al. 2000).

The energy variations as a function of time for the simulations with the
traction free discontinuity are shown in Figure 6.6. Figure 6.6 (a) shows the
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Figure 6.6 Energy variations as a function of time. Figure (a) shows the
benchmark simulation with a traditional finite element mesh. The other fig-
ures show the calculations with a traction free cohesive segment with (b)
a consistent mass matrix, (c) a lumped mass matrix and a Heaviside jump
function and (d) a lumped mass matrix and a symmetric jump function.

variation of energy for the benchmark calculation in which the crack is mod-
elled in the traditional way by disconnecting adjacent elements. In this par-
ticular case, a consistent mass matrix is used. The energy variations for the
calculation with a lumped mass matrix are nearly identical. It can be seen
that in these calculations, the kinetic and internal strain energy sum up to the
external work, which indicates that energy is conserved.∗

Figures 6.6 (b) to (d) show the energy variations for the simulations in
which the slit is modelled by traction free discontinuity. In (b) a consistent

∗The line that represents the total internal energy Etot is hardly visible in Fig-
ures 6.6 (a) to (d) since it is overlapped by the line representing the external work W .
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mass matrix has been used, in combination with a Heaviside jump function
for the discontinuity. In the calculation depicted in (c) a lumped mass matrix
has been used. Here, the discontinuity has been modelled with a Heaviside
step function. Finally, Figure 6.6 (d) shows the energy variation of the simu-
lation with a lumped mass matrix in combination with a unit symmetric step
function for the discontinuity.

Although in both simulations with the lumped mass matrix energy is con-
served, the variation of total internal energy in time is different than the vari-
ation of total energy in the benchmark case. For the calculations with the
Heaviside jump this was to be expected. It was demonstrated before that a
significant amount of energy was transferred across the discontinuity. As a
result, the magnitude of the stress waves reflecting back from the discontinu-
ity is smaller, which in turn gives rise to a different behaviour at the clamped
edge. The deviation of the total energy in the case of a lumped mass matrix in
combination with a unit symmetric jump function, Figure 6.6 (d) may come
as a surprise. In the previous tests, this combination did not give rise to spuri-
ous stress wave reflections into the lower part of the specimen. Nevertheless,
the magnitude of the σyy stress carried by the reflecting stress wave is slightly
different than the magnitude of this stress in the benchmark simulation, see
Figure 6.5 (b). It appears that this relatively small deviation gives rise to a
difference in the total energy variation.

Despite the differences in energy variations, in all cases, the total energy is
well conserved. Apparently, the traction free discontinuity does not give rise
to the creation or dissipation of internal energy, even when a lumped mass
matrix and a Heaviside jump function are used. The magnitudes of the toler-
ance ε for all four cases are shown in Figure 6.7. Apart from a few peaks, the
average value of the tolerance is indeed on the order of 10−2. The large peak
at the start of the simulation is due to the fact that at this instant the prescribed
velocity ū is increased to its final value V in a relatively short amount of time.
The second peak after approximately t = 10 µs is caused by the reflecting
stress wave that reaches the crack of the specimen for the second time. This
marks a sudden change in the direction of stress wave propagation, which
results in an abrupt change of external work and therefore in an increase of
the energy mismatch. In general, these boundary effects are less significant
when a denser finite element mesh is used in which the amount of degrees of
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Figure 6.7 Energy tolerances as a function of time for the four simulations:
the benchmark simulation, the traction free discontinuity with a consistent
mass matrix, the lumped mass matrix in combination with the Heaviside
jump function and the lumped mass matrix in combination with the sym-
metric jump function.

freedom that are constrained is relatively small.
In general, the simulations in which a consistent mass matrix is used gives

results that are identical to the benchmark simulations. When a lumped mass
matrix is used, different jump functions to give rise to different results. When
the discontinuity is modelled by a Heaviside function, spurious reflections of
stress waves are observed. This is not the case with a unit-symmetric jump
function. However, in both cases, the results are not identical to the bench-
mark calculations, which can be seen from the energy analysis.

It goes without saying that in this case, numerical accuracy is preferred
over computational efficiency. Therefore, all simulations in the remainder
of this chapter are performed using a consistent mass matrix in combination
with a Heaviside jump function.

§ 6.4 Stability of the time-integration algorithm

It has already been observed by Babuška and Melenk (1997) and later con-
firmed by Munts et al. (2003), that in most cases, the condition of the ma-
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a le

Ω−

Ω+

discontinuity

Figure 6.8 Detail of the quadrilateral finite element mesh that has been used
to determine the critical time step for various positions of a discontinuity.

trix decreases significantly when base functions are added to shape functions
by using the partition of unity method. In the case of creating displacement
a jump, it can occur that when a discontinuity crosses an element close to
a node, the matrix becomes ill-conditioned. This can be solved by enhanc-
ing only those nodes that have a significant contribution to the stiffness ma-
trix (Wells and Sluys 2001a), see also Figure 2.7.

In dynamic crack growth simulations, where the equations of motions are
discretised in the time domain by using an explicit integration method, a more
or less equivalent problem occurs. It appears that when an element is crossed
by a discontinuity, the two separated parts can be considered as individual
elements, each with a smaller effective length le than the original element. In
principle, an element can be crossed by a discontinuity in such a way that one
of the two resulting portions of the element becomes so small that, according
to relation (6.10), the critical time increment for a stable solution procedure
will almost be infinitesimal. In such a situation, numerical solutions, such as
the selective enhancement of nodes, do not work.

In order to determine the exact effect of the position of the discontinuity on
the critical time step of the explicit time integration method, the simulation of
the plane strain wave specimen with an initial slit is considered again. In this
case, the specimen is modelled using a structured mesh of 40 × 40 quadrilat-
eral elements with an specific element length le = 0.25 mm. The position of
the horizontal traction free cohesive segment that models the initial slit is var-
ied between a = 0.0 mm and a = 0.25 mm so that it covers all positions within
a single element, see Figure 6.8. The material parameters and the boundary
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Figure 6.9 The critical time step vs. the position of the discontinuity within
the element. s denotes the distance of the discontinuity with respect to the
nodes in the Ω− part of the domain.

and loading conditions remain the same. The simulations are performed us-
ing a standard Heaviside function and a unit-symmetric enhancement func-
tion.

The critical time increment ∆tcr is shown as a function of the position of
the discontinuity within the element in Figure 6.9. The critical time increments
are normalised by the critical time step in case of a simulation without a dis-
continuity ∆t0

cr. This value is found to be 0.1172 µs which is relatively close to
the estimation from equation (6.10): ∆t0

cr = 0.1196 µs.
As expected, the critical time increment decreases almost linearly to zero

when the discontinuity approaches the boundary of the element. In the case of
the standard Heaviside enhancement function, there is no difference whether
this boundary is in the Ω+ or the Ω− part of the domain. When using the unit-
symmetric enhancement function, this effect only occurs when the disconti-
nuity is in the vicinity of nodes in the Ω+ part of the domain. On the other
side of the element, the critical time increment increases up to over 80% of the
nominal critical increment when the discontinuity approaches the boundary
in the Ω− part of the domain.

In order to avoid an infinitesimal critical increments, a discontinuity is not
allowed to cross an element boundary within a certain distance hle to a node,
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hle

le

Figure 6.10 Overview of the algorithm that prevents a discontinuity to cross
an element boundary in the vicinity of a supporting node. The grey dashed
line denotes the original position of the discontinuity. Since it crosses the
node within a distance hle (denoted by the dashed circle), it is moved away
from the node.

where h is an offset factor between 0.0 and 0.5, see Figure 6.10. And although
the exact position of a new segment is slightly modified, it can be demon-
strated that for reasonably small values of h the deflection is minimal. In the
remaining simulations in this chapter, an offset factor h = 0.1 has been used.
The corresponding deflection of the crack is then in the order of a few de-
grees.∗

Because of the nearly linear relation between the critical time step and the
distance between the discontinuity, the stability requirement can be expanded
as follows:

∆t = α
h le

cd
, (6.20)

whereα is a factor to compensate for shock wave effects at delamination prop-
agation (Xu and Needleman 1994). When α = 0.1 the solution appears to be

∗An alternative approach is to move the node towards the original terminus of the dis-
continuity. The small cut-off is then avoided and the discontinuity is allowed to propagate in
its original direction. A drawback of this approach is that this small remeshing operation will
change the position of the nodes and the shape of all surrounding elements, which, in turn,
requires a remapping of the integration points in these elements as well.
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stable.
It is worth noting that the aforementioned problem does not occur when

the equations are solved using an implicit time integration scheme, such as
the multi-step method (Park 1975). This method is unconditionally stable,
which implies that there is no restriction to the magnitude of the time step.
On the other hand, an implicit scheme requires the solution of a full nonlinear
system of equations by means of a Newton-Raphson iteration scheme. Tak-
ing into account that the matrix in this system of equations contains stiffness
terms that change continuously, the time needed to solve the system increases
dramatically, especially when a direct solver is used.

Apart from this, an implicit time integration procedure is only an ade-
quate alternative when the time increment can be chosen sufficiently large,
e.g. in cases where high frequency effects are of secondary importance. In
the simulation of dynamic crack growth, the propagation of the stress waves
plays a major role in the overall fracture behaviour. Since these stress waves
propagate through the mesh at the relatively high dilatational speed, the time
increment must be chosen very small. In a typical simulation, time increments
of the order of magnitude of ∆t = 1.0 · 10−9 s are not uncommon so that the
analysis of a specimen in the first 10.0 µs after impact requires 10 000 time
steps. Clearly, under these circumstances, an explicit time integration scheme
is preferred.

§ 6.5 Numerical examples

The performance of the explicit cohesive segments method is demonstrated
in three numerical examples. First, the propagation of a single crack in a spec-
imen loaded in tension is analysed. In this example, the emphasis is put on
the numerical consistency of the method. The second example deals with the
propagation of a crack in the classical dynamic shear failure test (Kalthoff and
Winkler 1988). Finally, the ability of crack branching is investigated in a bi-
material specimen loaded in tension.
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Crack propagation under tension

In the previous section, it was observed that the inclusion of a discontinuity
in a finite element model can influence the robustness of the explicit time in-
tegration scheme. In the following example, the effects of extending a cohesive
segment during a simulation is considered. Here, the attention is focused on
the energy balance of the system.

Consider the square block with length sides L = 3 mm as shown in Fig-
ure 6.11. The block is made of PMMA with a Young’s modulus E = 3.24 GPa,
Poisson’s ratio ν = 0.35 and density ρ = 1190 kg/m3 and contains an edge
crack that penetrates a = 0.25 mm into the material. The block is loaded
in tension by two pulse loads that are applied to the top and bottom edges
respectively. In the finite element model, these pulses are represented by pre-
scribed velocities with magnitudes V = 6 m/s. This magnitude is reached
after a rise time tr = 1.0·10−7 s, see equation (6.14). The fracture properties of
the material are slightly modified to avoid a small cohesive length and there-
fore the necessity to use dense finite element meshes. In this simulation, the
strength of the material is set to tmax = 1.0·108 N/m2 and the fracture tough-
ness Gc = 700 N/m. Because of symmetry, it is assumed that the crack will
propagate in a straight line along the x-axis. The initiation criterion is mod-
ified such that the cohesive segment is extended when the σyy stress in the
crack tip exceeds the strength tmax. The stress state in the tip is determined by
using the averaging function (2.44). The averaging length la is taken to be two
times the element length in the finite element mesh.

The block is analysed with three different finite element meshes that con-
sist of quadrilateral elements only. In the first mesh, the specific length of an
element is le = 37.5 µm, in the second mesh, which is depicted in Figure 6.12,
this length is le = 25.0 µm and in the third mesh le = 12.5 µm. In all simula-
tions a timestep ∆t = 1.0 · 10−9 s is used. The initial edge crack is modelled as
a traction free cohesive segment. When the segment is extended, its opening
is governed by the Camacho-Ortiz cohesive law, see equation (5.30).

Since in this specific case, the trajectory of the crack is known beforehand,
a comparative study is performed in which the crack is modelled as a weak
interface. In this benchmark calculation, an cohesive segment is inserted over
the full width of the specimen at the start of the analysis. The first 0.25 mm
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Figure 6.11 Geometry and loading conditions of a square block with an ini-
tial side crack.

Figure 6.12 Finite element mesh of the square block with an initial side crack,
indicated by the bold line. The specific length of the elements in the zone
through which the crack will propagate is le = 25.0 µm.
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of this segment are traction free, the remaining part is equipped with Xu-
Needleman’s cohesive law, see equation (5.25), with the same cohesive prop-
erties as mentioned above. Apart from the fact that the cohesive zone in this
case has an initial non-zero compliance, the overall behaviour of this model
must be nearly identical. However, note that in contrast with the original
calculations, no degrees of freedom are added during the simulation in this
benchmark model.

The energy variations of the simulations are given in Figure 6.13. In these
plots, a distinction is made between the contribution of the bulk material and
the cohesive segments to the internal energy Eint:

Eint = Ebulk + Ecoh , (6.21)

where Ebulk is the internal energy of the bulk material, which is defined as:

E t+∆t
bulk = E t

bulk +
1
2
∆t
(

ḋt+ 1
2 ∆t
)T (

fint,t
bulk + fint,t+∆t

bulk

)
, (6.22)

where fint
bulk is the contribution of the bulk material to the internal forces, see

equation (5.21). For the cohesive segments, a similar relation can be formu-
lated:

E t+∆t
coh = E t

coh +
1
2
∆t
(

ḋt+ 1
2 ∆t
)T (

fint,t
coh + fint,t+∆t

coh

)
, (6.23)

where fint
coh is the contribution of the cohesive segments to the internal forces,

see (5.21).
Figure 6.13 (a) shows the variations of the total work W , the sum of inter-

nal energies Etot and the variations of the individual terms Ebulk, Ecoh and Ekin
for the benchmark simulation with a predefined cohesive segment in combi-
nation with Xu-Needleman’s cohesive relation, i.e. the simulation in which no
degrees of freedom are added during the simulation. In this particular figure,
the energy variations of the simulation with the dense mesh are shown, but
the results with the coarser meshes are nearly identical. Figures 6.13 (b) to (d)
show the variations of the simulations with the coarse, medium and dense
mesh respectively. It appears that in all four cases, the total internal energy is
in good agreement with the external work of the simulations. This can also
be seen in Figure 6.14 in which the error tolerances of the four simulations are
plotted. In none of the cases ε exceeds the value of 0.01. It can be concluded
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Figure 6.13 Energy variations as a function of time. Figure (a) shows
the benchmark simulation with an initial cohesive segment with Xu-
Needleman’s cohesive relation. The other figures show the calculations with
a propagating cohesive segment in meshes with different specific element
lengths (b) 37.5 µm, (c) 25.0 µm and (d) 12.5 µm.

that irrespective of the coarseness of the finite element mesh, the creation of
new degrees of freedom does not destroy the energy balance. This is a result
of the fact that in the cohesive constitutive relation, the value of the strength
tn,0 is taken to be equal to the the stress state that caused the cohesive segment
to propagate. Effects of overshoot are thus cancelled and stress continuity is
ensured (Papoulia et al. 2003).

Nevertheless, a remarkable difference in the simulations with the coarser
meshes can be observed, Figure 6.13 (b) and (c). Here, the total work is sig-
nificantly larger than the total work in the benchmark simulation (a) and the
simulation with the dense mesh (d). This a consequence of the fact that the
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Figure 6.14 Energy tolerances as a function of time for the four simulations
of a propagating straight crack through a square block.

averaging length la in these simulations is of the same order of magnitude, or
even larger, than the cohesive length. As a result, the new segment is extended
too late, allowing the bulk material to store too much internal energy prior to
crack propagation. This can also be concluded from Figure 6.15 where the po-
sition of the crack tip are plotted as a function of time. Here, the position of
the crack tip is defined as the first point along the cohesive segment where the
tractions have reduced to 5% the value of the strength of the material. In the
simulations with the coarser meshes, the crack starts to propagate slightly too
late.

Figure 6.16 shows the velocity of the crack tip as a function of time. It can
be seen that the crack tip quickly accelerates to arrive at the Rayleigh wave
speed of the material, cR = 938 m/s, which is in agreement with analytical
studies. In this figure, only the graph of the simulation with the densest fi-
nite element mesh is shown: the graphs of the simulations with the coarser
meshes show extreme velocity peaks. This can be explained by the fact that
the elements are too large compared to the length of the cohesive zone. In
these situations, the cohesive segment is extended over a few elements in a
small period of time (three extensions in three consecutive time steps is not
uncommon) and subsequently remains stationary for a longer period.

The coarseness of the mesh does not have an effect on the internal energy
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Figure 6.15 Position of the crack tip as a function of time for the four simu-
lations of a propagating straight crack through a square block.

dissipated by the cohesive segment. In all simulations with a propagating
segment, the final value of the cohesive internal energy Ecoh, when the crack
has completely crossed the specimen is equal to Ecoh = 1.92 J, which is exactly
identical to the length of the crack, 2.75 mm times the fracture toughness of the
material Gc = 700 N/m. In the benchmark simulation, with a initial cohesive
segment, this value is slightly bigger, Ecoh = 1.93 J, which is probably due
to the fact that prior to cracking, the cohesive zone, with its initial non-zero
compliance, already contributes to the internal energy.

The stress distribution and the deformed mesh are shown in Figure 6.17. In
this picture, the results of the simulation with a propagating cohesive segment
in a finite element mesh with le = 12.5 µm are depicted.

Dynamic shear failure

An experimental set-up for subjecting edge cracks in plate specimens to high
rate shear loading has been proposed by Kalthoff and Winkler (1988) and re-
lated configurations have been used subsequently in a variety of investiga-
tions, e.g. (Mason et al. 1994) and (Ravi-Chandar 1995). At sufficiently high
rates of loading, fracture in this configuration takes place by cleavage cracking
at an angle of approximately 60◦ to 70◦ with respect to the initial crack. This
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Figure 6.16 Velocity of the crack tip as a function of time for the simulation
with the le = 12.5 µm.
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Figure 6.17 The deformed specimen and the σyy stress distribution at t =
5.0 µs for the simulation with a propagating cohesive segment le = 12.5 µm.
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Figure 6.18 Geometry and loading conditions of the specimen for the dy-
namic shear failure test.

type of failure has been modelled by Needleman and Tvergaard (1995) and
Li et al. (2002). At higher impact velocities, the crack propagates as an adia-
batic shear band at an angle of approximately −5◦ with respect to the original
crack (Kalthoff and Bürgel 2004). Here, we explore the use of the cohesive
segments method to analyse the configuration shown in Figure 6.18.

The specimen in the figure has dimensions L = 0.003 m and W = 0.0015 m
and has an initial crack with length a = 0.0015 m. It is made of an isotropic
linear elastic material with Young’s modulus 3.24 · 109 N/m2, Poisson’s ra-
tio 0.35 and density ρ = 1190.0 kg/m3. The corresponding dilatational, shear
and Rayleigh wave speeds are cd = 2090 m/s, cs = 1004 m/s and cR =
938 m/s, respectively. The ultimate normal traction of the material is set
to 100.0 · 106 N/m2 and the fracture toughness is 700 N/m. The lower part
of the specimen is subjected to an impulse load in the positive x−direction
which is modelled as a prescribed velocity with magnitude V with a rise time
tr = 0.1 µs, see equation (6.14).

The specimen is discretised using quadrilateral elements. In the region
around the crack tip, the mesh is locally refined such that the specific length
of the elements equals le = 15.0 µm, see Figure 6.19. According to equa-
tion (6.20), the time increment is set to ∆t = 1.0 · 10−10 s. At the start of the
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(a) Full mesh (b) Detail of crack tip region

Figure 6.19 Finite element mesh of the dynamic shear failure experiment.
The initial crack is modelled as a cohesive segment, which is denoted by
the bold line. The specific length of the elements ahead of the crack tip is
le = 15.0µm.

simulation, the model contains 11587 degrees of freedom. The initial crack is
modelled as a traction free discontinuity and therefore, in contrast with the
simulations done by Needleman and Tvergaard (1995), the crack tip is sharp.
The possibility of crack nucleation away from the main crack tip is not taken
into account.

The specimen is loaded with three different impact velocities profiles ¯̇u,
see equation (6.14), with maximum values V = 25, V = 40 and V = 55 m/s.
In all cases, the rise time is taken tr = 1.0 · 10−7. The trajectories of the cracks
are shown in Figure 6.20. The corresponding positions of the crack tips as
a function of time are shown in Figure 6.21. In this graph, the position of
the crack tip is the sample point on the cohesive segment that has just become
traction free. Clearly, this point is not the same as the actual tip of the cohesive
segment.

In the case of the V = 25 m/s impact loading, the cohesive segment is
extended for the first time at t = 3.01 µs at an angle of roughly 65◦, which
is in agreement with experimental observations (Kalthoff and Winkler 1988).
At t ≈ 3.7 µs the propagation of the crack slows down and the orientation
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Figure 6.20 The trajectory of the cracks in the dynamic shear failure simula-
tion for different impact velocities. The original crack tip was located at the
origin of the coordinate system. All dimensions in millimetres.
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Figure 6.21 Crack length s versus time for different impact velocities. Dis-
tance s is measured with respect to the original crack tip.
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of the trajectory changes to 50◦. This small deviation is caused by one of the
reflections of the initial compressive stress wave which travels through the
specimen in the horizontal direction at the dilatational speed cd. At approxi-
mately 3.7 µs after impact, this stress waves passes the region just to the right
of the original crack tip for the third time. The additional compressive stress
changes the stress state at the current crack tip and therefore the angle of the
principal stress. Once this wave has passed, the crack trajectory continues at
an angle of approximately 65◦. Figure 6.22 shows the position of the crack and
the corresponding stress contours at various instances during the simulation.

When the impact load is 40 m/s, the trajectory of the crack is almost a
straight line. Apparently, the direction of the crack is less influenced by reflect-
ing stress waves. When the specimen is loaded by an impact load of 55 m/s,
the crack will not propagate as a cleavage crack at an angle of 70◦ but as an
adiabatic shear crack. However, in the current model, the bulk material is as-
sumed to be linear elastic, which means that no energy is dissipated and the
adiabatic shear band is not sustained.

Figure 6.22 shows the deformed specimen and the σxx stress distribution
at the end of the simulation for the three different loading cases. Note that
in the simulation with an impact velocity V = 55 m/s, the initial crack has
a negative normal normal displacement jump. This could have been avoided
by extending the initial traction free discontinuity with a contact cohesive law.
However, since the shear jump displacements in this region are of the order of
10 times the element length le, the use of such a contact algorithm is no longer
correct from a physical point of view.

Crack growth along an interface

The specimen in Figure 6.23 consists of two parts with different elastic mate-
rial properties that are bonded along y = 0 with a centre crack along the bond
line. The dimensions of the specimen are 2W = 12 mm and 2L = 6 mm. The
centre crack measures 2a = 2 mm. The top and bottom edges of the specimen
are subjected to impact loads that are modelled as prescribed velocities that
increase linearly to a value V = 20 m/s with a rise time tr = 10−7 s.

The top part of the specimen is made of a material with Young’s mod-
ulus E = 3.24 · 109 N/m2. The Poisson’s ratio is ν = 0.3 and the density
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(c) V = 55 m/s, t = 2.56 µs

Figure 6.22 Deformed specimen andσxx stresses of the dynamic shear failure
experiment under different impact velocities V. All stresses in [N/m2].
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Figure 6.23 Geometry and loading conditions of the interface crack growth
specimen.

is ρ = 1190 kg/m3. The material properties of the lower part are: E =
12.2 · 109 N/m2, ν = 0.3 and ρ = 1190 kg/m3, respectively. The interface is
represented by a cohesive segment with Xu-Needleman’s constitutive relation
with tmax = 3.24 · 108 N/m2 and Gc = 700 N/m. At the initially debonded
part, a traction free constitutive relation is used. In the simulation, cracks are
allowed to nucleate in the top part of the specimen. Here, the fracture proper-
ties are tmax = 410 · 106 N/m2 and Gc = 700 N/m.

Because of symmetry along the y-axis, only one half of the specimen is
modelled. The relatively coarse mesh consists of 39 × 39 four node elements,
the time step chosen to be ∆t = 1.0 · 10−9 s.

Upon loading, after approximately t = 2.0 µs, the interface starts to debond,
see Figure 6.24 (a). The stress state around the crack tip soon builds up to a
level such that a new cohesive segment nucleates in the top half of the speci-
men, Figure 6.24 (b). This segment crosses the interface at an angle of approx-
imately 65◦ with the interface. According to the implementation as described
in the previous chapter, this new segment has a finite length of two elements.
During the creation and opening of this branch, the debonding of the interface
arrests. However, the new cohesive segment is not extended and the branch
seems to arrest. Instead, after some time, the interface starts to debond away
from the branch position as a so-called daughter crack, similar to the fracture
patterns in (Coker et al. 2003), Figure 6.24 (c). After 3.3 µs the interface has
completely debonded and the specimen has lost its load carrying capability.
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(d) t = 3.3 µs

Figure 6.24 Evolution of fracture in the bi-material specimen. The colour
gradient represents the σyy stresses [N/m2]. (a) Onset of debonding at the
interface. (b) Creation of a new cohesive segment in the bulk material. This
new segment is created at an angle of 68◦ with respect to the interface. (c)
Continuation of debonding of the interface as a daughter crack ahead of the
current crack tip. (d) Total failure of the specimen.
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A mesh refinement study reveals that the reason that the branch arrest
is not a physical one, but is related to a flaw in the numerical model. Both
the nucleation of a crack, as well as its extension, are controlled by the same
criterion. However, in order to arrive at a reliable stress state in the tip of
a cohesive segment, the stresses are determined by averaging the stresses in
the vicinity using equation (2.45). As a result, the corresponding tip stress is
slightly lower than the actual local stress and a higher stress state is needed
to extend a segment. The nucleation of a new cohesive segment however, is
determined by the exact stress state in an integration point the bulk material.

In dynamic simulations, the instant of crack propagation appears to be
an important factor. In the case of two competing cracks, as displayed in
this example, the slight unbalance in propagation criterion can result in the
spurious arrest of a crack that is expected to propagate.

§ 6.6 Conclusions

In this chapter, the cohesive segments method has been used to simulate fast
crack propagation in brittle solids. Special attention is paid to the implemen-
tation of the method in a Newmark-β explicit time integration scheme. An
important conclusion is that, in contrast to more traditional finite element
models, it is not possible to lump the mass matrix to decrease the compu-
tational effort needed to solve the system of equations. When a Heaviside
jump function is used, spurious transfer of tractions has been observed. This
phenomenon disappears when the Heaviside function is replaced by a unit-
symmetric jump function. However, from an energetic point of view, the nu-
merical results still showed small deviations.

Additional studies showed that adding degrees of freedom during a sim-
ulation, does not affect the energy conservation. Even in the case of relatively
coarse meshes, the internal and kinetic energy of the system sums up to the
total external work.

The fine qualities of the cohesive segments method are demonstrated in
the dynamic shear test. For modest impact velocities, the crack propagates at
an angle of approximately 70◦ with the initial crack, which is in agreement
with various experimental observations and analytical studies. Even small
deviations of this trajectory due to reflecting stress waves are captured. The
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adiabatic shear crack, which is observed under high impact velocities, is ob-
tained as well.

The criterion that is used to calculate the stress state at the tip of a seg-
ment is still a point of concern. Due to stress averaging, it is not possible to
determine the exact impact velocity that marks the failure mode transition in
the dynamic shear test. It also hampers a quantitative analysis in the case
of multiple, interacting cracks, as shown in the final example. Here, the cre-
ation of a new, deviating crack was captured well. However, it is not clear if
this crack arrested for physical reasons, or because of the ill-posedness of the
crack propagation algorithm.
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Chapter 7

Finite strain
discrete dislocation plasticity

T he fracture characteristics of brittle materials are determined by the nu-
cleation, growth and coalescence of micro-separations in the process zone.

The heterogeneity of the material on the microscopic level of observation plays
an important role, as well as imperfections. The cohesive segments method,
which has been developed in the previous chapters, is able to simulate these
different aspects in a mesh-independent way.

There is a class of materials in which an additional mechanism plays an
important role in the overall fracture behaviour. In crystalline solids, a con-
siderable amount of energy is dissipated by plastic deformation of the mate-
rial. At relatively low stress levels, the collective motion of dislocations, often
denoted as slip, influences the fracture process in two ways. First, due to the
plastic flow, the stress intensity in the process zone is reduced significantly,
slowing down the fracture process. On the other hand, when multiple dis-
locations leave the material at a free surface, they create small imperfections.
These imperfections can give rise to local stress concentrations and become a
new site for micro-crack nucleation.

In conventional continuum plasticity models, the glide of individual dis-
locations in materials is neglected. By smearing out the effect of the slip in the
bulk material’s constitutive relation, the interaction between plastic flow and
the fracture process is lost. Additionally, continuum plasticity models suffer
from a similar deficiency as continuum damage models: they fail to predict
the exact size of the plastic zone.
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Since the late 1980s considerable activity has been directed at representing
plastic flow on a nanoscopic level of observation in terms of the dynamics of
large numbers of interacting dislocations. In the discrete dislocation formula-
tion by Devincre and Kubin (1994) and van der Giessen and Needleman (1995)
dislocations are represented as line singularities in an elastic solid. The dis-
placements and stresses due to dislocations are obtained by an analytical so-
lution for an infinite medium (Hirth and Lothe 1982). In order to compensate
for the finite dimensions of the specimen and the boundary and loading con-
ditions, a complementary finite element solution is added. Additional con-
stitutive laws that describe dislocation glide, pinning at obstacles and annihi-
lation enable to predict the collective motion of dislocations. The framework
accounts for both stress enhancement due to organised dislocation structures
and stress relaxation arising from dislocation glide. Recently, the model has
been used in combination with cohesive zone formulations to simulate the
interaction between plastic flow and (fatigue) crack growth (Cleveringa et
al. 2001, Deshpande et al. 2003a).

The discrete dislocation plasticity framework however is restricted to in-
finitesimal deformations. As a result, the effect of lattice reorientation on the
dislocation glide and the effect of geometry changes on the momentum bal-
ance are not taken into account. Moreover, the creation of new surfaces when
dislocations leave the specimen is neglected, which hampers the simulation
of crack nucleation at free surfaces.

In order to solve the first problem, Deshpande et al. (2003b) have devel-
oped a finite strain discrete dislocation plasticity model. Here, the finite el-
ement model is based on a large displacement kinematic description. The
additional dislocation stress field is determined analytically with respect to
the deformed configuration and added in an incremental fashion. Due to the
change of geometry, the model naturally accounts for the reorientation of the
slip planes.

Because of dislocation glide, the total displacement field that is used in the
updated Lagrange algorithm is only piece-wise continuous, as shown in Fig-
ure 7.1 (b). In the current finite strain dislocation model however, this jump
in the displacement field is neglected and smeared out on the element level,
which gives rise to deformations as shown in Figure 7.1 (c). Consequently,
the deformation gradient, which is derived from the nodal displacements, is
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(a) (b) (c)

Figure 7.1 (a) Undeformed lattice with one active slip plane. (b) Geometry
change due to slip discontinuity across the active slip plane. (c) Effect of
smearing slip on a finite element mesh.

overestimated. Apart from the fact that this introduces a numerical error, the
model fails to converge when the smeared deformation gradient becomes too
large. Additionally, neglecting the displacement jumps at slip planes avoids
the creation of new surfaces at the free edges when dislocations leave the ma-
terial.

In the light of the previous chapters, the partition of unity property of finite
element shape functions would be an ideal candidate to introduce the discon-
tinuity in the finite element mesh. The singular displacement field generated
by a line dislocation can be incorporated in the numerical displacement field
by enhancing the existing nodes of the finite element mesh. In (Ventura et
al. 2005) such an implementation is presented for a small strain discrete dis-
location model. Here, the displacement and stress fields are embedded in the
kinematic relations of the finite element model. By using the appropriate con-
stitutive relations for the nucleation and glide of individual dislocations, the
complete problem is specified by a single boundary value problem.

This approach has certain prospects, but in the current implementation by
Ventura et al. (2005) there are some disadvantages. The displacement field
of a single dislocation decays with the order of reciprocal distance. In other
words, the influence of a dislocation is observed far away from its position in
the domain. In the partition of unity framework, this implies that all nodes
should be enhanced in order to represent the contribution to the displace-
ment field of a single dislocation field exactly. Taking into account that in a
typical simulation hundreds of dislocations can be active, it is obvious that
the computational overhead is very large. Moreover, since dislocations con-
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stantly move through the specimen, their positions, and therefore their nodal
enhancement functions, must be updated after each time step. Finally, the
resolution of the finite element mesh is too low to capture the large strain gra-
dient in the vicinity of a dislocation core. In principle, these gradients can be
captured by adding the correct, singular base functions, but the numerical in-
tegration of the elements remains a point of concern. No matter how many
integration points are used, the strain gradients will be smeared out to a cer-
tain extend. Since the glide of a dislocation is partly a function of the stress
field generated by the other dislocations, it is obvious that small deviations of
these stress fields may alter the behaviour of a dislocation. When dislocations
are relatively close, e.g. in the case of a pile-up near an obstacle or a grain
boundary, the effect of the errors in the stress fields becomes significant.

In this chapter, an alternative approach for the simulation of discrete dis-
location plasticity in a finite strain framework is presented. The approach is
based on the original idea by van der Giessen and Needleman (1995). The
displacement and stress fields are described by analytical relations (Nabarro
1967). A complementary boundary value problem, the finite element solution,
is used to correct for the appropriate boundary and loading conditions. As op-
posed to the small strain formulation, both the analytical and the complemen-
tary problem are cast in a rate form and projected on the current, deformed
configuration of the specimen. The key feature of the proposed model is that
in the kinematic formulation, the contribution of the displacement jump due
to slip in this deformed configuration is separated from the total deformation
gradient in the kinematic formulation.

After a description of the kinematic relations, the equilibrium equations
are presented. The chapter concludes with some remarks on the implementa-
tion of the method in a finite element code and some future prospects.

§ 7.1 Kinematic relations

The finite strain discrete dislocation model that is presented in this chapter,
is based on the same kinematical framework as used in the original small
strain model by van der Giessen and Needleman (1995). The total stresses and
the strains of the body are written as the superposition of singular analytical
fields, containing the contributions of discrete dislocations, and complemen-
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tary numerical fields that enforce the boundary conditions. In a small strain
formulation, the undeformed and the deformed configuration coincide and as
a results, the two fields may be added.

In a finite strain formulation however, the superposition principle does no
longer hold. Here, the mutual positions of the discrete dislocations depend on
the total deformation of the body. The stress and strain fields that are gener-
ated by these discrete dislocations can only be expressed in rate form, related
to the current configuration of the body according to an updated Lagrangian
integration scheme (Deshpande et al. 2003b).

Consider a crystalline solid with plastic deformation taking place by glide
of a collection of discrete dislocations along a specified set of crystallographic
directions, the so-called slipsystems. The total deformation is composed of
the summation of the singular fields of all dislocations and the complemen-
tary numerical deformation. As in continuum crystal plasticity models, a dis-
tinction is made between deformation of the lattice and deformation of the
material. At each material point, a set of three orthonormal vectors define the
orientation of the lattice. Stress is related to the deformation of the lattice by an
elastic constitutive relation. The basic assumptions are: (i) dislocation glide is
the only mechanism that gives rise to plastic deformation; (ii) the elastic prop-
erties are unaffected by dislocation glide and (iii) outside the dislocation cores,
the dislocation stress, strain and displacement fields are well approximated by
linear elasticity. All finite deformations arise as a consequence of the displace-
ment jumps induced by dislocation glide. These displacement jumps lead to
lattice rotations that may be finite. Hence, the finite deformation effects that
the formulation aims to capture are those due to deformation-induced lattice
rotations and the change in shape of the body due to slip. Additional phe-
nomena that may be involved in finite plastic deformation, such as modified
elastic properties, finite lattice strains and dislocation mobility mechanisms
other than slip, are not accounted for.

Both the original undeformed state as well as the current deformed config-
uration are represented in the same rectangular Cartesian coordinate system.
Let X be the position of a material point in the undeformed configuration. The
position of this point in the deformed configuration x is then:

x(X, t) = X + û(X, t) + ũ(X, t) , (7.1)
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Figure 7.2 The total deformation of the body can be expressed in terms of the
slip due to dislocation glide Fp and the elastic deformation of the lattice F∗.
The grid on the body represents the structure of the material. For the sake of
clarity, only one slip system is pictured.

where û(X, t) is the displacement of the material point in the numerical mirror
field and ũ(X, t) is the total analytical displacement of this point due to the
dislocations.∗ It should be noted that since the analytical displacement field
will only be used in rate form, projected on the deformed configuration, the
total value of ũ is never known exactly.

At any stage of the deformation history, the total deformation of the mate-
rial is completely described by the deformation gradient F, see Figure 7.2. The
deformation gradient F is defined as:

F =
∂x(X, t)

∂X
= ∇Xx , (7.2)

∗In this derivation, the ’hat’ symbol (ˆ) and the ’tilde’ symbol (˜) have a different mean-
ing than in the previous chapters. Historically, the symbols are used in partition of unity
related as well as discrete dislocation related publications. In order to avoid the introduction
of alternative symbols, the standard conventions have been adopted.
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where ∇X is the differential operator that takes the spatial derivative with re-
spect to the undeformed configuration. In the remainder of this chapter, this
operator will simply be denoted as ∇X = ∇. Each increment of deformation
consists of two parts as shown schematically in Figure 7.2. First, the material
slips on the currently active slip planes. These slips do not affect the orienta-
tion or structure of the crystal lattice and are described by a deformation gra-
dient Fp. Since the bulk material will not deform due to slip, this deformation
gradient is equal to the unit tensor I at all material points except for mate-
rial points that reside on the dislocation slip traces where Fp is unbounded.
Second, the lattice and material deform together, the elastic response of the
lattice and any rigid body rotations are realised. This deformation is denoted
by F∗. Note that the deformation gradient F∗ consists of both terms from the
numerical ’hat’ fields (ˆ) as well as the continuous part of the analytical ’tilde’
fields (˜) due the discrete dislocations. The total deformation gradient of the
body can be written as, see Figure 7.2:

F = F∗ · Fp . (7.3)

At time t the body contains K edge dislocations which are moving with respect
to the material with velocities v(I), where I indicates the dislocation number:
I = 1, . . . , K. The change in position of a dislocation gives rise to a displace-
ment rate field ˙̃u(I). The total displacement rate field at time t of the body is
written as the superposition:

u̇(x, t) = ˙̂u(x, t) + ˙̃u(x, t), (7.4)

where ˙̂u(x, t) is the displacement rate of the numerical field that arises from
satisfying the boundary conditions and ˙̃u(x, t) is the sum of displacement
rates generated by all dislocations:

˙̃u(x, t) =
K

∑
I=1

˙̃u(I)(x, t) . (7.5)

The displacement rate ˙̃u(I), which contains singular terms along the trace of
dislocation I, can be determined numerically, according to:

˙̃u(I)(x, t) =
ũ(I)(x, t)− ũ(I)(x, t − ∆t)

∆t
, (7.6)
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where ũ(I) is the displacement field generated by dislocation I.
The stretching and rotation of the lattice of the material F∗ at time t is

obtained in an incremental fashion:

F∗(t) = I +∇Xû(t) +
∫ t

τ=0
∇x ˙̃u(τ) · F∗(τ)dτ , (7.7)

where ∇x is the spatial differential operator with respect to the current con-
figuration ∂(·)/∂x. Thus, ∇x ˙̃u is the displacement rate gradient not including
the slip contribution, which is obtained by the analytical differentiation of the
combined displacement rate field of the dislocations ˙̃u. The total displacement
of the mirror field û(t) is obtained by the integration of the corresponding dis-
placement rate with respect to time:

û(t) =
∫ t

τ=0
˙̂udτ . (7.8)

Note that since the stretch in the material is assumed to be small compared to
the deformation due to slip, it is allowed to take the Jacobian of the deforma-
tion gradient equal to J = det(F∗) ≈ 1. As a result, the deformation gradient
of the crystal lattice F∗ can be assumed to be identical to its rotation: F∗ ≈ R∗.

Additionally, the corresponding rate of deformation D̂ of the numerical
field is defined, which is the symmetric part of the velocity gradient:

D̂ =
1
2

(
∇ ˙̂u +∇ ˙̂uT

)
(7.9)

The material consists of a set of crystallographic planes in which the edge dis-
locations reside and glide. In the undeformed configuration, the unit normal
to slip plane α is denoted by m(α)

0 and s(α)
0 is a unit vector in this slip plane

such that s(α)
0 × m(α)

0 is a unit vector pointing out of the plane, see Figure 7.2.
The current orientations of these vectors, which are denoted by s(α) and m(α)

respectively, are obtained by:

s(α) = F∗ · s(α)
0 ; m(α) = F∗ · m(α)

0 . (7.10)

Due to lattice curvature, s(α) and m(α) vary with position. Also, we define a
unit vector r(I) such that

r(I)
0 = F∗−1 · r(I) , (7.11)
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where r(I) is a unit vector in the direction of the velocity v(I) of dislocation I.
In equation (7.3), the term Fp describes the deformation due to a discrete

set of slip traces, which are created by the gliding dislocations. Each disloca-
tion I creates a trace Γ (I) from the position of the source it nucleated from to
its current position in the domain. The trace represents the jump in the dis-
placement field with the magnitude of a Burgers’ vector. Thus, Fp is equal to
the unit tensor I at all material points except for the ones along the slip traces
Γ (I), where:

Fp|Γ (I) = I + lim
h→0

|b(I)|
h

s(α)m(α)sign
(

b(I) · r(I)
)

, (7.12)

where b(I) is the Burgers’ vector of dislocation I on slip system α with length
|b(I)| and h is a width along the slip segment normal m(α). When the width
of the band around the trace is decreased to zero, Fp is unbounded.∗ The
Burgers’ vector b(I) of dislocation I in the current configuration is related to
its Burgers’ vector b(I)

0 in the undeformed configuration via:

b(I) = F∗ · b(I)
0 . (7.13)

§ 7.2 Equilibrium equations

The total stress in a material point can be written in terms of the Kirchhoff
stress τττ as a superposition:

τ = τ̂ + τ̃ . (7.14)

In this equation, τ̂ denotes the numerical stress field that enforces the bound-
ary conditions and τ̃ is the sum of the analytically known stress fields of dis-
locations I:

τ̃ =
K

∑
I=1

σ̃ (I) . (7.15)

The weak formulation of the linear moment balance is equal to:∫
Ω
∇xδû : τ̂dΩ =

∫
Γ
δû · (t − t̃)dΓ , (7.16)

∗Note the similarity with the unbounded part of the strain field in the traditional partition
of unity approach to cohesive fracture, equation (2.5).
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where δû is a continuous displacement variation, t denotes the applied trac-
tions on a surface with the outward normal n in the current configuration:

t = τ · n ; t̃ = τ̃ · n . (7.17)

In equation (7.16), Γ is the portion of the boundary on which tractions are
specified and Ω is the area of the body, both in the current configuration.

The integral on the left hand side of the balance equation in (7.16) can be
written in the undeformed configuration so as to make the contributions due
to slip explicit. Noting the fact that J ≈ 1, the equation is re-written as:∫

Ω0

(∇δû : Ŝ · FT
)

dΩ =
∫

Γ
δû · (T − T̃)dΓ , (7.18)

where Ω0 denotes the area in the undeformed configuration and Ŝ is the sec-
ond Piola-Kirchhoff stress related to τ̂ via

τ̂ = F · Ŝ · FT . (7.19)

By isolating small areas around the slip traces Γ (I), which are assumed to have
a width h → 0 along the normal m(α) and by employing the fact that F ≈ F∗ on
material points that are not lying on these slip traces and using equation (7.12)
for the points on these slip traces, the equilibrium equation can be written as:

∫
Ω0\Γ0

∇δû :Ŝ · F∗TdΩ +
N

∑
I=1

∫
Γ

(I)
0

∇δû : Ŝ · (F∗ · F(I))TdΓ =
∫

Γ
δû · (T − T̃

)
dΓ ,

(7.20)

where Ω0\Γ0 denotes the area in the undeformed configuration excluding the
slip segments. In the second left-hand-term of the equation, F(I) denotes the
displacement jump at the slip trace Γ (I) which is equal to, see equation (7.12):

F(I) = |b(I)| s(α)m(α)sign
(

b(I) · r(I)
)

.
(7.21)

The integral on the right-hand-side of equation (7.20) is over the surface Γ on
which tractions are specified in the current configuration. Due to slip, inte-
rior material points can become boundary points when dislocations exit the
domain. Hence, this term can be rewritten as:∫

Γ
δû · (T − T̃

)
dΓ =

∫
Γ0

δû · (T − T̃
)

dΓ +
M

∑
I=1

δû · τ̃m(α) · b(I)s(α) , (7.22)

184



Implementation

where Γ0 is the boundary on which tractions are specified in the undeformed
configuration, M the number of dislocations that have exited the domain and
m(α) is the slip plane normal at the slip step in the current configuration. It
is assumed here that the surface steps due to the dislocations are traction free
and that τ̃ is a constant over the individual slip steps.

§ 7.3 Implementation

In the current model, attention is restricted to isotropic elastic behaviour of
the lattice. The strain rate Ṡ can be written as:

Ṡ = L : Ė∗ . (7.23)

In this equation, Ė∗ is the rate of the Green-Lagrange strain of the lattice, with:

E∗ =
1
2

((F∗)T · F∗ − I) , (7.24)

and L is the fourth order tensor of elastic moduli, which is defined as:

L = λI ⊗ I + 2µI′ . (7.25)

In this constitutive relation, λ and µ are the Lamé constants and I and I′ are a
second and a fourth order unit tensor respectively. The stress rate ˙̂S associated
with the rate of the numerical mirror displacement field ˙̂u is given by:

˙̂S = L :
(
F∗T · D̂ · F∗) , (7.26)

where D̂ is the rate of deformation of the numerical field, equation (7.9).
The constitutive relations that govern the nucleation of a dislocation, its

subsequent glide and pinning at obstacles are in general identical to the rela-
tions for small strain analyses as presented by van der Giessen and Needle-
man (1995). A significant difference in this finite strain model is that the un-
derlying lattice is subject to deformations and that the slip systems are rotating
as well. As a result, the relative positions of dislocations, nucleation sources
and obstacles vary with the deformation state as well as with the local orien-
tation of the slip system.
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The nucleation and the subsequent glide of a dislocation J is governed by
a Peach-Koehler force f (J), which can be written as:

f (J) = m(α) ·
(

Ŝ + ∑
I �=J

S̃(I)

)
· b(α) . (7.27)

The direction of the force is in the current orientation of the slip plane s(α).
New dislocation pairs are generated by simulating Frank-Read sources. The
initial dislocation segment of a Frank-Read source bows out until it produces
a new dislocation loop and a replica of itself. The Frank-Read source is mod-
elled in terms of a critical value of the Peach-Koehler force, the time it takes to
generate a dislocation loop and the size of the generated loop. In two dimen-
sions, this is simulated by point sources which generate a dislocation dipole
when the magnitude of the Peach-Koehler force at the source exceeds a critical
value τnuc during a period of time ∆tnuc. The distance Lnuc between the two
dislocations at nucleation is set by:

Lnuc =
µ

2π(1 − ν)
|b|
τnuc

. (7.28)

At this distance, the shear stress of one dislocation acting on the other is bal-
anced by the slip plane shear stress.

It is assumed that dislocations are only allowed to glide along slip planes.
The magnitude glide velocity of the dislocation, |v(I)| is taken to be linearly
related to the Peach-Koehler force:

|v(I)| = B f (I), (7.29)

where B is the drag coefficient. Obviously, the dislocation glides in the current
direction of the slip plane s(α).

Since nucleation sources and obstacles are tied to the lattice of the mate-
rial, their positions follow the corresponding material points. Dislocations
however glide with respect to the material with a velocity v(I). In order to ob-
tain the position of a dislocation I in the current configuration, one first must
know its position in the undeformed frame of reference X(I) at time t, which
can be determined in an incremental fashion:

X(I) = X(I)
nuc +

∫ t

τ=tnuc

F−1(τ) · v(I)(τ)dτ , (7.30)
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slipsystem (1)

slipsystem (2)

Figure 7.3 Cross slip in a body with 2 active slip planes. Due to the glide
of dislocations along slip plane (1), slip plane (2) denoted by the bold line
has shifted. When a dislocation on this plane crosses slip plane (1), it will
continue to glide along the dashed line. Note that for the sake of clarity, the
deformation of the lattice F∗ is not shown here.

where X(I)
nuc is the position of the parent source in the undeformed configura-

tion where dislocation I was nucleated; tnuc is the time of nucleation. Since
the glide velocity of the dislocation v(I) is expressed in the deformed config-
uration, it needs to be transformed into the undeformed frame of reference
using the total deformation gradient F(τ) of the lattice at which dislocation I
was located at time τ .

In the case the material only contains one active slip system, dislocation I
does not cross the slip traces of dislocations tied to other slip systems, so that
in equation (7.30), the deformation gradient F can be replaced by F∗. When
the material has multiple slip systems, the displacement discontinuities due
to dislocation glide at different slip systems may give rise to cross-slip, which
contributes to an additional motion of a dislocation, see Figure 7.3. Due to
the glide of a dislocation, the entire lattice on the other side of the disloca-
tion trace has an additional displacement with magnitude |b| with respect to
the undeformed configuration. When determining the position of a disloca-
tion in the undeformed frame of reference, equation (7.30), this effect must be
compensated for.

In the original formulation by van der Giessen and Needleman (1995), dis-
locations, nucleation sources and obstacles are assumed to reside on a limited
number of slip planes. Whereas in reality, the spacing between slip planes in a
material is equal to one Burgers’ vector, in the discrete dislocation models the
spacing between active slip planes is set to 60 Burgers’ vectors. Annihilation
and pinning of dislocations is determined by measuring the relative distance:
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Figure 7.4 Position of the trace (dashed line) generated by a dislocation in
the finite element mesh. The trace starts at the nucleation source of the dislo-
cation, denoted by the diamond and is supported by the intersections of the
dislocation with element boundaries.

when two dislocations with opposite signs are within a specific distance of
Le = 6|b|, they are annihilated. When a dislocation approaches an obstacle
within a distance 2|b| it is pinned to this obstacle. It is only allowed to pass if
the Peach-Koehler force exceeds an obstacle depending strength τobs.

In the proposed finite strain model, this approach cannot be followed. Due
to cross-slip, dislocations will leave their original slip planes to end up at
planes that are not accounted for in the model. As a result, the chances of
meeting obstacles or other dislocations decrease significantly and the original
constitutive relations that govern pinning and annihilation will predict a dif-
ferent behaviour. An alternative approach is to increase the obstacle density
in the model and no longer assign individual obstacles to specific slip planes.
Another alternative is to use different cut-off distances in the aforementioned
constitutive relations.

The method can be implemented in a three node finite element using stan-
dard iso-parametric interpolation functions. An advantage of this approach
is that the numerical parts of the deformation gradient and the stress field are
constant within an element, which avoids the use of additional interpolation
schemes to determine the exact stress state at a dislocation, nucleation source
or an obstacle.

The slip trace terms Γ (I) in the equilibrium equation (7.20) are integrated
as line integrals, in a similar fashion as the cohesive terms in the partition of
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unity cohesive crack formulation, e.g. equation (2.37). This implies that the
position of a trace generated by a moving dislocation must be known exactly.
When a new dislocation is nucleated, the position of the corresponding nucle-
ation source is stored as the starting point of the line representing the trace,
see Figure 7.4. Each time that the dislocation crosses the boundary of an el-
ement, the intersection is stored and the line is augmented. This is repeated
until the dislocation leaves the domain.

For practical reasons, the line is only extended when the corresponding
dislocation crosses an element. As a result, a small error is introduced since
the contribution of the discontinuity just behind the dislocation is neglected.
In addition, since the lines are assumed to be straight within the element, the
effect of cross-slip is neglected and the numerical representation of the slip
trace is longer than the actual slip trace.

§ 7.4 Future prospects

In this chapter, an alternative approach is presented to model discrete dislo-
cations in a finite strain kinematic framework. As opposed to the work by
Deshpande et al. (2003b), the new model explicitly takes into account the ef-
fects of slip generated by gliding dislocations. To this end, the deformation
gradient is split into an elastic part and an unbounded part that represents
the slip displacement. The performance of the model remains to be demon-
strated.

In principle, the model can be coupled with the cohesive segments model
as discussed in Chapter 5 to arrive at a general tool to simulate crack propa-
gation that is driven by dislocation glide. Additionally, since the creation of
new surfaces at free edges is accounted for, the combined model is an ideal
candidate to study fatigue crack initiation.
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Chapter 8

Conclusions

C rack growth in solid materials can be modelled with the cohesive zone
approach. In this approach, the micro-separations in the process zone

that set the fracture behaviour of the material are lumped in a single plane
ahead of the dominant crack tip. In traditional finite element models, this
cohesive zone is represented by interface elements. These elements consist
of two surfaces that are connected to the adjacent continuum elements that
represent the bulk material. The relative distance between the two surfaces,
which represents the opening of the element, is governed by an additional
constitutive relation. This cohesive constitutive relation, together with a con-
stitutive relation for the bulk material and the appropriate balance laws and
boundary and initial conditions, completely specify the fracture behaviour of
the material.

The cohesive zone approach has proven to be a very robust numerical tech-
nique for the analysis of fracture in brittle materials. Nevertheless, it has an
important drawback. The trajectory of the crack must be known beforehand
and is restricted to the position of interface elements in the finite element
mesh. Moreover, in order to ensure a perfect bond prior to cracking, the inter-
face elements are equipped with an initial dummy stiffness, which increases
the overall compliance of the bulk material and influences the numerical re-
sults, at least in a qualitative sense.

The partition of unity property of finite element shape functions offers the
possibility to model a cohesive zone as a discontinuity in the displacement
field by adding a second displacement field to the regular field on one side of
the domain only. This additional field is supported by extra degrees of free-
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dom, which are added to the existing nodes of the finite element mesh. The
opening of the cohesive zone is equal to the magnitude of the additional field
at the discontinuity. An important feature of the partition of unity method
is that the discontinuity can be added or extended during a simulation, irre-
spective of the structure of the underlying finite element mesh. This allows
for a truly mesh-independent representation of a crack. Moreover, since the
cohesive zone is only created upon fracture, the constitutive relation no longer
needs an initial dummy stiffness to model a perfect bond.

In principle, the partition of unity method does not impose any restrictions
on the underlying kinematic relations of the finite element formulation. In
chapter 3 of this thesis, the method has been applied to a geometrically non-
linear solid-like shell element to analyse delamination growth in laminates.
The kinematic relations of the original solid-like shell element are based on
a classical shell theory. In addition, the element is equipped with extra de-
grees of freedom to construct a second-order displacement field in thickness
direction, the so-called stretch of the element, in order to avoid Poisson thick-
ness locking. As a result, the element can be used to model relatively thin
structures. Apart from that, the element is equipped with an assumed natural
strain formulation to overcome transverse shear locking.

In the enhanced solid-like shell element, the discontinuous displacement
field has been carefully elaborated throughout all aspects of the kinematic
formulation, including the alternative strain relations. The performance of the
element has been demonstrated by two small examples, which clearly show
that the enhanced element inherits all special properties: it can still be used
in thin applications and, even more important, it allows for the simulation
of local buckling in combination with delamination growth, which has been
demonstrated in the final example of the chapter.

An important problem of the current implementation is related to delam-
ination growth under mixed-mode conditions. In order to avoid the use of
additional formulations to determine whether a discontinuity needs to be
extended, the criterion that controls the extension of a discontinuity is only
based on the stress state in the delamination front. In pure mode-I delamina-
tion cases, this approach works well, but in the complex cases as presented in
chapter 4, the approach fails to predict the instant of delamination propaga-
tion correctly. Here, the discontinuity is inserted in the element beforehand,
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as if it were a traditional interface element. A cohesive constitutive relation
with an initial dummy stiffness is used to model the delamination. Although
in this way, many of the advantages of the partition of unity method were
negated, the large models in this chapter clearly show the robustness of the
method.

The cohesive segments method, presented in chapter 5, is an extension
of the partition of unity approach and allows for the simulation of multiple
cracks in a domain. Each crack is modelled as a discontinuity by using as
many additional displacement fields, which are supported by unique sets of
additional degrees of freedom. The method allows for the simulation of the
nucleation of new cracks, the coalescence of cracks and crack branching. In all
cases, the same stress based criterion is used to add or extend a cohesive seg-
ment. Crack branching is therefore a natural outcome of the loading process,
without using additional criteria.

The cohesive segments method can be used to simulate the diffuse crack
patterns on the microscopic level that can be observed in structural materials
such as fibre reinforced composites. Since the topology of the internal, hetero-
geneous structure is defined by cohesive segments as well, it is even possible
to use structured meshes, which are easy to generate. In order to solve prob-
lems with multiple propagating cracks, the energy constraint solution method
has been implemented, which appears to be robust. Unfortunately, since co-
hesive segments are only allowed to propagate into the next element only, the
maximum allowable incremental path parameter is limited.

In chapter 6, the cohesive segments method has been extended to sim-
ulate fast crack growth in brittle materials. The governing system of equa-
tions is solved using an explicit time integration technique. Traditionally, the
computational effort is reduced by lumping the mass matrix. In the cohesive
segments method, this cannot be done. The full mass matrix of an element
with a discontinuity contains crucial information on the coupling of the reg-
ular and additional displacement terms. By lumping the mass matrix, this
information is lost and spurious transfer of strain energy across a disconti-
nuity is observed. When a different jump function is chosen, for example
a unit-symmetric function, this problem is only partly solved. Hence, in all
simulations, the computationally more expensive consistent mass matrix has
been used.
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The critical time step in an explicit transient analysis is roughly equal to
the time needed for a stress wave to cross a single element. However, when
an element is split by a discontinuity, the equivalent length of the two remain-
ing parts, at least from a kinematic point of view, is smaller than the original
length of the element. In the case of a discontinuity crossing an element near
one of its boundaries, the equivalent length approaches zero, hence decreas-
ing the critical time step. In order to avoid the use of extremely small time
steps in the solution procedure, an offset criterion is used to keep a discon-
tinuity away from the nodes in the domain. This implies that in some cases,
the direction of the extension of a segment is slightly modified, but for small
offset values, the corresponding error is negligible.

The dynamic shear fracture example clearly shows the benefits of the co-
hesive segments method. The propagating crack follows the exact angle as
observed in experiments and predicted in a linear elastic fracture model. The
transit of reflected stress waves gives rise to small disturbances in the orienta-
tion of the propagating crack, which are neatly captured by the model. Even
the adiabatic shear crack, which occurs at high impact loads can be simulated.
The crack branching example however uncovers one of the deficiencies of the
current model. The creation of a new segment and the propagation of an ex-
isting segment are governed by the same stress based nucleation criterion. In
the latter case, an averaged stress state is used, whereas the nucleation of a
new segment is based on the exact stress state in a single integration point.
The averaged stress in the vicinity of the terminus of a cohesive segment is,
by definition, smaller than the actual stress. As a result, a cohesive segment is
always extended slightly too late, which in principle is not a serious problem
except in the case of crack branching. In this case, the propagation of existing
segments is competing with the nucleation of new segments.

The partition of unity approach to cohesive fracture has proven to be a suit-
able tool for the simulation of crack growth in arbitrary directions, on many
levels of observation. However, the elegance of the mathematical formulation
is not reflected in the implementation. When a discontinuity is extended into
the next element, the nodes that support this element will be enhanced with
additional degrees of freedom. Subsequently, all elements that are connected
to these nodes, including the one that contains the discontinuity, will obtain
an augmented system of equations. Obviously, this update operation requires
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some exchange of data between the elements and nodes. In most commercial
finite element codes this inter-element communication is not provided, which
hampers an efficient implementation of the method in these codes. In addi-
tion, in order to perform an accurate numerical integration, the element that
is crossed by a discontinuity must be divided in a number of subelements
that are integrated separately. To this end, new integration points have to
be created, and possible material history parameters must be reallocated. In
that respect, the implementation of the partition of unity approach to cohesive
fracture can be considered as a single element remeshing technique.

Apart from the issues related to the implementation, the present imple-
mentation can be improved. The current algorithm that detects the direction
in which a discontinuity needs to be extended is far from robust. Future ef-
forts should therefore be directed towards new crack propagation algorithms.
This will most likely also change the way the stress fields in the vicinity of
the tip are represented, since the resolution of the finite element mesh is too
small to capture the large stress gradients in those regions. Recently, a remedy
for this problem has been presented by Xiao and Karihaloo (2006). Here, the
stresses near the tip are corrected by a statically admissible field that meets
the tractions at the edges of the discontinuity and uses moving least squares
to fit the stresses at the existing integration points of the model. In principle,
the method allows to determine the stress state at the tip of a segment more
accurately, such that the use of an averaging algorithm is avoided. As a result,
the nucleation and extension of a cohesive segment are completely equivalent,
which enables a quantitative analysis of diffuse fracture problems.

Practical considerations refrained from using the partition of unity in the fi-
nite strain dislocation model as described in chapter 7. In theory, the method
can be used to enhance the finite element displacement field with the dis-
placement field generated by the individual dislocations. But in practice, this
would result in a large, inefficient numerical code. The displacement field of
a single dislocation decays with the order of inverse distance, which implies
that the nodes in a large area around the dislocation need to be enhanced by
additional degrees of freedom. Moreover, taking into account that a standard
specimen can contain hundreds of dislocations, which all move through the
specimen as well, it is not hard to imagine that computational overhead is
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enormous.
Nevertheless, the need to explicitly take into account the contribution of

slip in the finite strain discrete dislocation model is evident. In the original
formulation, the slip displacement, accumulated by the collective motion of
dislocations, was smeared out over the element. As a result, the deforma-
tion gradient, which is supposed to remain relatively small, is too large. In
the proposed model, the deformation gradient is split into an elastic part and
an unbounded part related to the slip displacement. The regular part of the
displacement field generated by dislocations is dealt with in the same way
as the original discrete dislocation models. The creation of new surfaces at
free edges is taken into account, which provides a firm basis for the combined
analysis of micro-crack nucleation driven by dislocation glide.
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Appendix A

Visualisation of a discontinuity

W hen the cohesive zone in the finite element is modelled by means of
interface elements, the position of the crack in the deformed specimen

is visible as a gap between elements (Xu and Needleman 1994, Camacho and
Ortiz 1996). In the partition of unity approach, where a cohesive zone is mod-
elled as a jump in the displacement field of continuum elements, this is not
the case. Here, the topology of the mesh is by no means related to the loca-
tion of a cohesive zone and the trajectory of the crack can only be revealed
vaguely by following the highly distorted elements in the deformed mesh, as
demonstrated in Figure A.1.

As an alternative, the position of the crack in the deformed specimen can
be shown by creating a second mesh, which is derived from the original finite
element mesh. This post-processing mesh is used for visualisation purposes
only and is not involved in any numerical operation. As a result, the topol-
ogy of this mesh can be modified endlessly without losing computational ef-
ficiency. Moreover, the elements in the post-processing mesh do not have to
satisfy quality requirements regarding aspect ratios.

In this Appendix, the technique to create a post-processing mesh of a spec-
imen with a discontinuity is explained. In the second section, an extension of
this technique to visualise multiple interacting discontinuities is presented.

§ A.1 A single discontinuity

Consider the situation depicted in Figure A.2. The triangular finite element
mesh is crossed by a discontinuity dividing the domain in two parts denoted
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Figure A.1 The single edge notched beam in deformed configuration (Wells
and Sluys, 2001). The displacements are magnified by a factor 100. The crack
crosses the highly distorted elements.

Ω+

Ω−

Figure A.2 Detail of a triangular finite element mesh that is crossed by a
single discontinuity (bold line) dividing it into an Ω+ and an Ω− part.

Ω+ and an Ω−. Due to the corresponding discontinuous displacement field,
each part of the domain is able to move independently. To facilitate this be-
haviour, the elements that contain the discontinuity are cut in two parts, see
Figure A.3. At each intersection of the discontinuity, a pair of two nodes is
created. The two nodes in a pair have identical positions in the undeformed
configuration, but they are subjected to different displacement fields.

For a more elaborated explanation, consider the element ABC in Figure A.4.
The original element is replaced by two new elements representing the V+

and the V− part of the original element. In the post-processing mesh, two
pairs of new nodes are created at the intersection of edges AB and BC and
the discontinuity. On edge AB, these new nodes are called P and P’, on edge
BC they are denoted Q and Q’. Both P’ and Q’ are part of the Ω+ part of the
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A single discontinuity

Figure A.3 Visualisation of the discontinuity in the triangular mesh. The
smaller grey dots denote the new post-processing nodes. For reasons of clar-
ity, the two additional nodes that form a pair are drawn with a small offset. In
reality, the two nodes in a pair have identical coordinates in the undeformed
position.

P Q

Q’

A
B

C

A
B

C

P’

Figure A.4 The element ABC is crossed by the discontinuity and is split in
two parts. At the intersection of the discontinuity with edge AC the nodes
P and P’ are created, on the intersection of the discontinuity with BC, the Q
and Q’ are created.

domain, whereas P and Q belong to the Ω− part.
The displacement ui of node i consists of the regular degrees of freedom ai

and the additional degrees of freedom bi multiplied with the enhanced basis
function HΓd(xi):

ui = ai +HΓd(xi)bi , (A.1)

where xi is the original position of node i. In the example in Figure A.4, node
A resides in the Ω+ part of the domain and node C is in the Ω− part. Using
the standard Heaviside jump function as stated in equation (2.4), the total
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Visualisation of a discontinuity

Figure A.5 The deformed visualisation mesh. Since most visualisation tools
are not able to handle meshes that consist of elements with various number
of supporting nodes, all four node elements are triangulated. The element
boundaries that are created in this procedure are dashed.

displacements of nodes A and C are equal to:

uA = aA + bA ; uC = aC . (A.2)

The displacement of the new nodes can be derived from the displacement of
the adjacent nodes using the corresponding shape functions, equation (2.22).
In case of nodes P and P’, which are located in point xP, the only shape func-
tions that have non-zero contributions belong to nodes A and C. Hence, equa-
tion (2.22) reduces to:

u(xP) = φA(xP)
(
aA +H+bA

)
+φC(xP)

(
aC +H−bC

)
(A.3)

where φA and φC are the shape functions that correspond to node A and C,
respectively, and H+ and H− are defined in (2.2).

The procedure is demonstrated by means of the single edge notched beam
example from chapter 2. A detail of the deformed post-processing mesh is
shown in Figure A.6. In order to get a better perception of the crack, the
displacements are magnified by a factor 100. The stress state at integration
points is extrapolated into the nodes in the conventional way.

§ A.2 Multiple discontinuities

The procedure can be repeated in case an element is crossed by a discontinuity
more than once. Consider the situation shown in Figure A.7 in which a second
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Multiple discontinuities

Figure A.6 Detail of the deformed post-processing mesh of the single edge
notched beam. The displacements are magnified by a factor 100. Note the
smaller triangulated elements near the crack surface.

Ω−
1

Ω+
1 , Ω−

2
Ω+

1 , Ω+
2

Figure A.7 Detail of a triangular mesh with two discontinuities, denoted by
the bold lines. Discontinuity 1 divides the mesh into an Ω+

1 and an Ω−
1 part.

Discontinuity 2, which is added later, touches discontinuity 1 and devides
the Ω+

1 part into an Ω+
2 and Ω−

2 part.
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Q’
P Q

A
B

C

A
B

C

S S’

R’R

P’

Figure A.8 The element ABC is crossed by two discontinuities. At the in-
tersection of the second discontinuity with vertex AB the two nodes R and
R’ are created, at the intersection with vertex PP’ the new nodes are called S
and S’.

discontinuity touches the initial discontinuity inside the element of interest
ABC. The part of the mesh below the initial discontinuity is now denoted as
Ω−

1 , whereas the part above is Ω+
1 . In addition, due to the new discontinuity,

the area on the left is enhanced for a second time and denoted by Ω+
2 , while

the other side of this discontinuity is called Ω−
2 .

The second discontinuity is visualised by creating two new pairs of nodes:
R and R’ on the vertex AB and Q and Q’ on the vertex PP’, see Figure A.8.
The position of the nodes can be determined by applying equation (5.13) in a
similar fashion as explained before. A remark must be made with respect to
nodes S and S’. Since these nodes reside in the element (and not on one of the
original vertices), their displacements consist of the regular displacements ai
and additional displacements bi1 and bi2 of all three nodes of the element in
combination with the correct shape functions and the corresponding value for
the enhancement function.

As a rule of thumb, in complex situations as described here, the enhance-
ment functions of an additional node are identical to the enhancement func-
tions of the regular node in the same sub-element. For example, the enhance-
ment functions of node S’ are equal to the enhancement functions of node B.
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Appendix B

Kinematic relations of
the solid-like shell element

T he calculation of the element internal force vector and the incremental
strain field requires a straightforward derivation of kinematic relations.

In this appendix, these derivations are elaborated for the solid-like shell ele-
ment. In addition, the assumed natural shear strains which are needed for the
eight node element are presented.

§ B.1 Variational and incremental strain fields

The variation of the discontinuous strain field δγγγ can be derived from the
strain field γγγ in equation (3.28) in terms of the displacement components:

2δεαβ = eβ ·(δû0,α+HΓd,0δũ0,α) + eα ·(δû0,β+HΓd,0δũ0,β) ;

2δεα3 = d·(δû0,α+HΓd,0δũ0,α) + eα ·(δû1+HΓd,0δũ1) ;

2δε33 = 2d·(δû1+HΓd,0δũ1) ;

2δραβ = eβ ·(δû1,α+HΓd,0δũ1,α) + eα ·(δû1,β+HΓd,0δũ1,β)+

d,α ·(δû0,β+HΓd,0δũ0,β) + d,β ·(δû0,α+HΓd,0δũ0,α)

− Ḡλ
α[eβ ·(δû0,λ+HΓd,0δũ0,λ) + eλ ·(δû0,β+HΓd,0δũ0,β)]

− Ḡλ
β[eα ·(δû0,λ+HΓd,0δũ0,λ) + eλ ·(δû0,α+HΓd,0δũ0,α)] ;

2δρα3 = d·(δû1,α+HΓd,0δũ1,α) + d,α ·(δû1+HΓd,0δũ1) ;

2δρ33 = − 8u2 · (δû1 +HΓd,0δũ1) − 4d · d(δŵ +HΓd,0δw̃) ,

(B.1)
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Kinematic relations of the solid-like shell element

where eα, d, d,α and u2 denote the current orientation of the base vectors and
internal stretch:

eα = Eα + û0,α +HΓd,0 ũ0,α ;

d = D + û1 +HΓd,0 ũ1 ;

d,α = D,α + û1,α +HΓd,0 û1,α ;

u2 = û2 +HΓd,0 ũ2 .

(B.2)

In an incremental iterative solution scheme, the strain increment ∆γγγ with re-
spect to the previous converged solution is normally needed. It can be derived
as:

2∆εαβ = eα ·∆u0,β + eβ ·∆u0,α + ∆u0,α ·∆u0,β ;

2∆εα3 = eα ·∆u1 + d·∆u0,α + ∆u0,α ·∆u1 ;

2∆ε33 = 2d·∆u1 + 2∆u1 ·∆u1 ;

2∆ραβ = eβ ·∆u1,α + d,α ·∆u0,β + ∆u1,α ·∆u0,β

+ eα ·∆u1,β + d,β ·∆u0,α + ∆u1,β ·∆u0,α

− Ḡλ
α[eβ ·∆u0,λ + eλ ·∆u0,β + ∆u0,λ ·∆u0,β]

− Ḡλ
β[eα ·∆u0,λ + eλ ·∆u0,α + ∆u0,λ ·∆u0,α] ;

2∆ρα3 = d,α ·∆u1 + d·∆u1,α + ∆u1,α ·∆u1 ;

2∆ρ33 = − 4d·∆u1 − 2w∆u1 ·u1 − 2∆wd·d
− 4∆wu1 ·d − 2∆w∆u1 ·∆u1 ,

(B.3)

where eα, d, d,α and u2 are the orientation of the base vectors and internal
stretch in the previous converged solution and ∆u1, ∆u1,α, ∆u1,α, ∆d,α and ∆w
are:

∆u1 = ∆û1 +HΓd,0∆ũ1 ;

∆u0,α = ∆û0,α +HΓd,0∆ũ0,α ;

∆u1,α = ∆û1,α +HΓd,0∆ũ1,α ;

∆d,α = ∆d̂,α +HΓd,0∆d̃,α ;

∆w = ∆ŵ +HΓd,0∆w̃ .

(B.4)
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§ B.2 Derivation of the B matrix.

The variational strains as derived in equation (B.1) can be split in terms of
regular and additional variational displacement components and written in
the following matrix notation:

δγγγ = H1δû1+H0
1δû0,1+H1

1δû1,1+H0
2δû0,2+H1

2δû1,2+Hwδŵ+

HΓd,0(H1δû1+H0
1δû0,1+H1

1δû1,1+H0
2δû0,2+H1

2δû1,2+Hwδŵ) ,
(B.5)

where,

H1 =




0

0

dT − 4ζwdT

0

eT
2 +ζdT

,2

eT
1 +ζdT

,1




H1
1 =




ζeT
1

0

0

ζeT
2

0

ζdT




H1
2 =




0

ζeT
2

0

ζeT
1

ζdT

0




Hw =




0

0

−2ζd · d

0

0

0




H1
1 =




eT
1 +ζ(dT

,1 − 2eT
1Ḡ1

1 − eT
2Ḡ2

1)

−ζeT
2Ḡ1

2

0

eT
2 +ζ(dT

,2 − eT
2Ḡ1

1 − 2eT
1Ḡ1

2 − eT
2Ḡ2

2)

0

dT




H1
2 =




−ζeT
1Ḡ2

1

eT
2(dT

,2 − eT
1Ḡ1

2 − 2eT
2 Ḡ2

2)

0

eT
1 +ζ(dT

,1 − eT
1Ḡ1

1 − 2eT
2 Ḡ2

1 − eT
1Ḡ2

2)

dT

0




.

The variational displacement vectors can be obtained from the nodal degrees
of freedom via the shape functions as defined in equations (3.44) to (3.47).

δû1 = N1δa; δũ1 = N1δb;

δû0,α = N0,αδa; δũ0,α = N0,αδb; (B.6)

δû1,α = N1,αδa; δũ1,α = N1,αδb;

δŵ = Nwδp; δw̃ = Nwδq;
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Substituting these equations into (B.5) gives:

δγγγ = Buδa + Bwδp +HΓd,0(Buδb + Bwδq) . (B.7)

where Bu and Bw are defined as:

Bu = H1N1 + H0
1N0,1 + H1

1N1,1 + H0
2N0,2 + H1

2N1,2 ;

Bw = HwNw .
(B.8)

Note that the matrices Bu and Bw are identical for the regular displacement
terms a and p as well as the additional terms b and q. The matrices Bu and
Bw are still defined in the iso-parametric frame of reference and must be trans-
formed in the element local system l j, using the transformation tensor Ti

k in
equation (3.29).

§ B.3 Stress dependent part of the stiffness matrix

The derivative of the variational strains with respect to the displacement field
is equal to:

2d(δεαβ) = (δû0,α +HΓd,0δũ0,α)·(dû0,β+HΓd,0 dũ0,β)

+ (δû0,β +HΓd,0δũ0,β)·(dû0,α+HΓd,0 dũ0,α) ;

2d(δεα3) = (δû0,α +HΓd,0δũ0,α)·(dû1+HΓd,0 dũ1)

+ (δû1 +HΓd,0δũ1)·(dû0,α+HΓd,0 dũ0,α) ;

2d(δε33) = 2(δû1 +HΓd,0δũ1)·(dû1+HΓd,0 dũ1) ;

2d(δραβ) = (δû1,α +HΓd,0δũ1,α)·(dû0,β+HΓd,0 dũ0,β)

+ (δû1,β +HΓd,0δũ1,β)·(dû0,α+HΓd,0 dũ0,α)

+ (δû0,α +HΓd,0δũ0,α)·(dû1,β+HΓd,0 dũ1,β)

+ (δû0,β +HΓd,0δũ0,β)·(dû1,α+HΓd,0 dũ1,α)

− Ḡλ
α[(δû0,λ +HΓd,0δũ0,λ)·(dû0,β+HΓd,0 dũ0,β)

+ (δû0,β +HΓd,0δũ0,β)·(dû0,λ+HΓd,0 dũ0,λ)]

− Ḡλ
β[(δû0,α +HΓd,0δũ0,α)·(dû0,λ+HΓd,0 dũ0,λ)

+ (δû0,λ +HΓd,0δũ0,λ)·(dû0,α+HΓd,0 dũ0,α)] ;

(B.9)
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2d(δρα3) = (δû1,α +HΓd,0δũ1,α)·(dû1+HΓd,0 dũ1)

+ (δû1 +HΓd,0δũ1)·(dû1,α+HΓd,0 dũ1,α) ;

2d(δρ33) = − 8
[
(δû1 +HΓd,0δũ1)·d (dŵ +HΓd,0 dw̃)

+ (δŵ +HΓd,0δw̃)d · (dû1 +HΓd,0 dũ1)

+ w(δû1 +HΓd,0δũ1) · (û1 +HΓd,0 ũ1)
]

.

(B.9)

These relations can be written as a function of the nodal degrees of freedom a
and b and the internal degrees of freedom p and q by using the shape func-
tions as defined in equations (3.44), (3.45) and (3.47).

2d(δεαβ) = (δa +HΓd,0δb)TNT
0,αN0,β(da +HΓd,0 db)

+ (δa +HΓd,0δb)TNT
0,βN0,α(da +HΓd,0 db) ;

2d(δεα3) = (δa +HΓd,0δb)TNT
0,αN1(da +HΓd,0 db)

+ (δa +HΓd,0δb)TNT
1N0,α(da +HΓd,0 db) ;

2d(δε33) = 2(δa +HΓd,0δb)TNT
1N1(da +HΓd,0 db) ;

2d(δραβ) = (δa +HΓd,0δb)TNT
1,αN0,β(da +HΓd,0 db)

+ (δa +HΓd,0δb)TNT
0,βN1,α(da +HΓd,0 db)

+ (δa +HΓd,0δb)TNT
0,αN1,β(da +HΓd,0 db)

+ (δa +HΓd,0δb)TNT
1,βN0,α(da +HΓd,0 db)

− (δa +HΓd,0δb)TCT
αN1,β(da +HΓd,0 db)

− (δa +HΓd,0δb)TCT
βN0,α(da +HΓd,0 db)

− (δa +HΓd,0δb)TNT
0,αCβ(da +HΓd,0 db)

− (δa +HΓd,0δb)TNT
0,βCα(da +HΓd,0 db) ;

2d(δρα3) = (δa +HΓd,0δb)TNT
1,αN1(da +HΓd,0 db)

+ (δa +HΓd,0δb)TNT
1N1,α(da +HΓd,0 db) ;

2d(δρ33) = (δa +HΓd,0δb)TNT
1dNw(da +HΓd,0 db)

+ (δa +HΓd,0δb)TNT
wdTN1(da +HΓd,0 db)

+ w(δa +HΓd,0δb)TNT
1N1(da +HΓd,0 db) ,

(B.10)

where
Cα = Ḡ1

αN0,1 + Ḡ2
αN0,2 . (B.11)

207



Kinematic relations of the solid-like shell element

The incremental change of the virtual strains still refers to the covariant com-
ponents. However, the stress components are referred to the local system l j.
Hence, for the set-up of the stress dependent part of the stiffness matrix Kg

the factor ωi j is introduced as:

ωmn = Tm
k Tn

l σσσkl . (B.12)

Elaboration of equations (B.10) and equation (B.12) gives the following matri-
ces:

Ag
uu =ω11NT

0,1N0,1 + ω22NT
0,2N0,2 + ω33NT

1N1

+ ω12
(

NT
0,1N0,2 + NT

0,2N0,1

)

+ ω23
(

NT
0,2N1 + NT

1N0,2

)
+ ω13

(
NT

0,1N1 + NT
1N0,1

)

+ζω11
(

NT
1,1N0,1 + NT

0,1N1,1 − CT
1N0,1 − NT

0,1C1

)

+ζω22
(

NT
1,2N0,2 + NT

0,2N1,2 − CT
2N0,2 − NT

0,2C2

)
−ζω334wNT

1N1

+ζω23
(

NT
1,2N1 + NT

1N1,2

)
+ζω13

(
NT

1,1N1 + NT
1N1,1

)

+ζω12
(

NT
1,1N0,2 + NT

1,2N0,1 + NT
0,1N1,2 + NT

0,2N1,1

− CT
1N0,2 − CT

2N0,1 − NT
0,1C2 − NT

0,2C1

)
;

Ag
wu =−ζω334NT

wdTN1 ;

Ag
uw =−ζω334NT

1dTNw ;

Ag
ww =0 .

(B.13)

§ B.4 Assumed natural strains

It was noted by Parisch (1995) that the eight node shell element, which can be
compared with an original four node shell element suffers from shear lock-
ing: the shear stiffness is overestimated. As proposed by Bathe and Dvorkin
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(1986), an assumed natural strain approach is applied to overcome this prob-
lem. Here, the strain terms εa3 are replaced by an alternative strain, deter-
mined in four tying points located at the mid-surface of the element as shown
in figure 3.9. The strains are defined as:

ε23 =χCε̂C
23 + χAε̂A

23 +HΓd,0(χCε̃C
23 + χAε̃A

23) ;

ε13 =χBε̂
B
13 + χDε̂D

13 +HΓd,0(χCε̃B
13 + χAε̃D

13) .
(B.14)

The virtual strains in tying point S can be written directly in terms of the
regular and enhanced variational degrees of freedom δa and δb:

2δεS
α3 = BANS

u




δaJ

δaK

δaL

δaM




+HΓd,0 BANS
u




δbJ

δbK

δbL

δbM




,

(B.15)

where the superscripts J, K, L and M represent the nodes which span the side
on which the sampling point S is located, see also Table B.1. The matrix BANS

u
replaces the terms that are related to the membrane strainsε13 andε23 in equa-
tion (B.8) and is equal to:

BANS
u =

1
4
[(e − d), (−e − d), (e + d), (−e + d)]S , (B.16)

where,

eS =
1
4
(−xJ − xK + xL + xM

)
; dS =

1
4
(
xJ − xK + xL − xM

)
. (B.17)

where for example, xJ is the position of node J in deformed configuration:

xJ = XJ + aJ +HΓd,0 bJ . (B.18)

Furthermore, the terms in the geometric part of the stiffness matrix Kg in
equation (3.69) that correspond to the shear stresses ω13 and ω23 are replaced
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Point Coordinates Corresponding nodes

ξ η J K L M

A 0.0 -1.0 5 1 6 2

B 1.0 0.0 6 2 7 3

C 0.0 1.0 8 4 7 3

D -1.0 0.0 5 1 8 4

Table B.1 Position of tying points and the corresponding node numbers.

by:

Kg,ANS =




∫
Ω AANS

uu dΩ
∫
Ω+ AANS

uu dΩ 0 0

∫
Ω+ AANS

uu dΩ
∫
Ω+ AANS

uu dΩ 0 0

0 0 0 0

0 0 0 0




,

(B.19)

where,

AANS
uu = ω23(χBHB

23 + χDHD
23) + ω13(χAHA

13 + χCHC
13) , (B.20)

where HS
α3 represents the mapping matrices and is obtained by expanding

the terms of the compact matrix H̄S
α3 to the correct nodal degrees of freedom
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according to Table B.1(Parisch 1995).

H̄S
α3 =

1
8




−I3 0 0 I3

0 I3 −I3 0

0 −I3 I3 0

I3 0 0 −I3




,

(B.21)

where I3 is a three-dimensional unit matrix.
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Appendix C

A solution algorithm to solve an
augmented system of equations

I n the solution procedure as described in section 5.5, the system of equa-
tions is augmented with an additional degree of freedom, the load factor.

The constraint equation that relates this additional unknown to the displace-
ment degrees of freedom gives rise to an additional column and row in the
Jacobian of the system, hence destroying the banded structure of the original
matrix. The time needed to solve a system of equations with a direct solver
increases with the width of the matrix. In the current situation, the time re-
quired to solve the augmented system would become undesirably long. In
this section, an alternative procedure, where the banded structure of the ma-
trix is not affected, is presented (Dı́ez 1996, Gutiérrez and de Borst 1998).

§ C.1 General case

The augmented system of equilibrium equations as presented in (5.49) and
(5.50) can be written in a general form as:

Ax = y (C.1)

where A is the Jacobian of the system; x contains the unknowns and y is the
right hand side:

A =


K h

gT w


 ; x =


∆d

∆λ


 ; y =


r

q


 (C.2)
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Here, K represents the non-singular stiffness matrix of the system with di-
mensions N × N. The column vector h, the row vector g and scalar w are
defined in equation (5.50). Vector ∆d contains the incremental displacement
degrees of freedom (both regular and enhanced), ∆λ is the increment of the
load factor. Finally, r denotes the residual force vector of the system and q can
be found in equation (5.48).

In order to solve the augmented system of equations, the inverse of Ja-
cobian A is needed. This inverse can be obtained by using the Sherman-
Morrison formula for the evaluation of a non-singular matrix plus a rank 1
matrix:

(C + uvT)−1 = C−1 − C−1uvTC−1

1 − vTC−1u
. (C.3)

The Jacobian A of the augmented system can be written as the sum of four
matrices Ai, i = 1..4, according to:

K h

gT w


 =


K 0N×1

01×N 1


+


0N×N h

01×N 0


+


0N×N 0N×1

gT −1


+


0N×N 0N×1

01×N w




.

(C.4)

In this equation, 0i× j represents a zero matrix with i rows and j columns. In
order to be able to use the matrices in the Sherman-Morrison formula, the sec-
ond, third and fourth term of the equation may be decomposed into a vector
product:

A2 =


h

0


 [01×N 1

]
; A3 =


0N×1

1


 [gT −1

]
; A4 =


0N×1

w


 [01×N 1

]
. (C.5)

Using equation (C.3), the inverse of the two first terms of equation (C.5) can
be obtained:

A−1
12 = (A1 + A2)

−1 =


K−1 −K−1h

0 1




.

(C.6)

The inverse of the first three parts of the Jacobian can be expressed as:

A−1
123 = (A1 + A2 + A3)

−1 = (A12 + A3)
−1 . (C.7)
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Substitution of equation (C.6) yields:

A−1
123 =


K−1 0N×1

01×N 1


− 1

gTK−1h


K−1hgTK−1 −K−1h

−gTK−1 1 + gTK−1h




.

(C.8)

Similarly, the fourth term can be added to obtain the complete inverse of the
Jacobian:

A−1 =


K−1 0N×1

01×N 1


− 1

gTK−1h − w


K−1hgTK−1 −K−1h

−gTK−1 1 + gTK−1h − w




.

(C.9)

Multiplying this equation by the right hand side vector y, equation (C.2) and
reordening gives the total solution of the augmented system.

∆d

∆λ


 =


K−1r

q


− 1

gTK−1h − w


 K−1hgTK−1r − K−1hq

−gTK−1r + [1 + gTK−1h − w]q




.

(C.10)

Note that in the equation above, the inverse of the stiffness matrix K is al-
ways multiplied by the vectors r or h. These combinations can be replaced
by the vectors dI and dI I , respectively, which can be obtained by solving the
following two systems of equations.

KdI = r ; KdI I = h . (C.11)

Substitution of dI and dI I into equation (C.10) and introducing the scalar
product notation yields:

∆d

∆λ


 =


dI

q


− 1

g · dI I − w


 dI I [g · dI − q]

−g · dI + [1 + g · dI I − w]q


 (C.12)

Hence, the total solution of the augmented system of equations is obtained
by solving the two systems of equations (C.11). These equations share the
same Jacobian with a relatively good band structure: the original stiffness
matrix. When using a direct solver, this matrix needs to be decomposed only
once. Since the decomposition of the matrix roughly takes about 90% of the
total solution time, the current approach is considerable faster than solving
the augmented system of equations in a single procedure.
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§ C.2 Prescribed displacements

Alternatively, a specimen can be loaded by prescribing the displacements of
a selected group of nodes. A technique to solve such an augmented system
is presented by Verhoosel et al. (2006). The solution vector that contains all
degrees of freedom, can be written as:

d =


df

dp




,

(C.13)

where df is a vector with length Nf representing the ’free’ degrees of freedom,
which are still part of the solution space, dp is a vector with length Np de-
noting the prescribed degrees of freedom and Nf + Np = N, where N is the
total number of degrees of freedom. The prescribed degrees of freedom can
be written in terms of a unit prescribed displacement vector d̄p times the load
factor λ, according to:

dp = λd̄p . (C.14)

Accordingly, the augmented system of equations as presented in (5.50) can be
written in terms of the free and prescribed degrees of freedom as well:


Kff Kfp hf

Kpf Kpp hp

gT
f gT

p w







∆df

∆dp

∆λ


 =




rf

rp

q




,

(C.15)

where ∆dp can be replaced by, see equation (C.14):

∆dp = ∆λd̄p . (C.16)

These prescribed degrees of freedom can be eliminated from the system of
equations by condensation:


Kff hf

gT
f w




∆df

∆λ


 =


rf − Kfp(∆λd̄p)

q − gT
p(∆λd̄p)




.

(C.17)
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A degree of freedom that is prescribed cannot be subjected to an external force,
such that gp = 1

2λf̄p is equal to zero. As a result, the term gT
p(∆λd̄p) in the

right-hand-side of equation (C.17) is identical to zero too.
The condensed system of equations now has the same form as the system

in equation (C.14) and the solution is identical to the one presented in equa-
tion (C.12), where:

dIf = K−1
ff rf − K−1

ff Kfp(∆λdp) ; dIIf = K−1
ff hf . (C.18)

From an implementation point of view, the prescribed degrees of freedom are
dealt with in the solver of the finite element code. The degrees of freedom
that have a fixed value beforehand, are given as an input to the solver to-
gether with the Jacobian of the system and the right-hand-side vector. In this
particular case, the final solution of the problem is composed of two vectors
dI and dI I which are obtained by solving two systems of equations indepen-
dently. In the following derivation, the corresponding prescribed degrees of
freedom dIp and dIIp are obtained.

Consider a regular system of equations with a positive definite Jacobian
A with dimensions N × N and a right hand side y that consists of a Np pre-
scribed degrees of freedom vector xp:

Aff Afp

Apf App




xf

xp


 =


yf

yp




.

(C.19)

The solution xf of this system is equal to:

xf = A−1
ff yf − A−1

ff Afpxp . (C.20)

When comparing this solution to the expression for dIf, equation (C.18), it is
clear that the corresponding prescribed term dIp, which can be used as input
to solve for dIf, is equal to the total incremental prescribed displacement:

dIp = ∆λup . (C.21)

When comparing the solution in equation (C.19) with the expression for dI If
in (C.18), it follows that:

dI Ip = 0 . (C.22)

217



A solution algorithm to solve an augmented system of equations

218



Bibliography

G. Alfano and M.A. Crisfield, 2001. Finite element interface models for the
delamination analysis of laminated composites. International Journal for Nu-
merical Methods in Engineering, 50 (7), 1701–1736.

O. Allix and A. Corigliano, 1999. Geometrical and interfacial non-lineararities
in the analysis of delamination in composites. International Journal of Solids
and Structures, 36, 2189–2216.
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Summary

DISCONTINUITIES IN MATERIALS

AND STRUCTURES

A UNIFYING COMPUTATIONAL APPROACH

JORIS J.C. REMMERS

I n order to arrive at an efficient and safe design of structures, a complete
understanding of the behaviour of the materials, including their failure

mechanisms, is a requisite. These failure mechanisms can be studied at dif-
ferent levels of observation. On the structural level, fracture can be regarded
as a single crack or defect, which propagates through the material or along an
interface under the action of external forces. On smaller levels of observation,
the area ahead of the apparent crack tip, the process zone, contains a collec-
tion of micro-cracks that nucleate, grow and coalescence in order to form the
dominant crack. The mechanisms that cause nucleation of micro-separations
in the process zone can be traced back to even smaller levels of observation.
In crystalline solids such as metals, the collective glide of dislocations in the
atomic structure gives rise to small imperfections at the free edges of the ma-
terial, which in turn trigger the nucleation of micro-separations.

From a mathematical point of view, interface cracks, interacting micro-
separations in the process zone and slip planes created by gliding disloca-
tions can be considered as jumps in the displacement field of the specimen.
This is in contradiction with the assumption stated in classical formulations,
in which the material is regarded as a continuum with smooth displacement
fields. A possible solution to this is to smear out displacement jumps. In some
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cases however, this technique cannot be used. In brittle materials, where the
process zone is relatively narrow compared to the structural dimensions, ne-
glecting the discontinuous nature of a crack leads to numerical deficiencies.
In finite strain discrete dislocation models, the effect of smearing the displace-
ment jump gives rise to spurious stresses in the surrounding material.

An alternative is to model the discontinuous displacement fields explicitly
by exploiting the partition of unity property of finite element shape functions.
In this approach, the displacement jump is represented by adding a second
displacement field multiplied with a step function on top of the existing base
field. The second displacement field is supported by additional sets of degrees
of freedom, which are added to the existing nodes of the finite element mesh.

This approach has a number of advantages, in particular for the analysis of
crack growth in a cohesive surface framework. First, the discontinuity can be
introduced and extended irrespective of the structure of the underlying finite
element mesh. This enables the simulation of crack propagation in arbitrary
directions and avoids the use of initial cohesive dummy stiffnesses to model
a perfect bond prior to cracking. Moreover, since the new degrees of freedom
are added to existing nodes, the topology of the finite element mesh does not
change. Finally, the computational effort remains relatively small since the
system is only augmented when the crack propagates.

In this thesis, the partition of unity method has been implemented to anal-
yse fracture processes at various levels of observation. In chapter 3, a discon-
tinuous solid-like shell element has been presented that allows for the simula-
tion of delamination growth. The kinematic relations of the original solid-like
shell element are chosen such that the element can be used to model very
thin structures. In the discontinuous solid-like shell element, these kinematic
relations are meticulously enhanced to incorporate a displacement jump. It
has been demonstrated that the new element inherits the advantageous prop-
erties of the original solid-like shell element. It can even be used to analyse
delamination buckling growth in a bi-layer material with only one element in
thickness direction. In chapter 4, the discontinuous solid-like shell element
has been used to study the delamination buckling behaviour of fibre-metal
laminates under various loading conditions.

In chapter 5 the partition of unity method has been extended to the cohe-
sive segments method that allows for the simulation of the nucleation, growth
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and coalescence of multiple interacting cracks. In this chapter, special atten-
tion is paid to a solution technique that is able to solve this highly nonlinear
system of equations. To this end, the energy release control path-following
method has been used, in which the constraint equation is based on the max-
imum energy dissipation of the system.

Diffuse fracture phenomena also play an important role in dynamic frac-
ture. In chapter 6, the application of the cohesive segments method for tran-
sient simulations is discussed. The stability and accuracy of the explicit time
integration scheme is investigated in detail. It has been demonstrated that
adding degrees of freedom during a simulation does not affect the energy bal-
ance of the system. However, it is not possible to use a diagonal mass matrix
to solve the system of equations. By lumping the mass matrix, information
regarding the coupling of regular and additional degrees of freedom is lost.
The performance of the method is demonstrated in a dynamic shear failure
example. The method appears to be able to capture both the cleavage as well
as the adiabatic shear failure mode. The possibility to capture crack branch-
ing has been shown in a second example. Unfortunately, due to the averaging
technique to determine the stress at the tip of a segment, the nucleation of a
new segment is biased over the propagation of an existing segment, which
hampers a quantitative analysis.

In principle, the partition of unity method is a suitable candidate to incor-
porate the discontinuous fields generated by dislocations in the finite element
solution. Unfortunately, this appears to be inefficient for a number of rea-
sons. Since a typical model consists of hundreds of interacting dislocations
with long range effects, the number of additional degrees of freedom would
become very large. In addition, it is questionable whether the resolution of
the mesh is sufficient to model dislocation pile-up correctly.

In the method that is proposed in chapter 7, the deformation gradient is
split into an elastic part and an unbounded part related to the slip displace-
ment. The regular part of the displacement field generated by dislocations
is dealt with in the same way as the original small strain discrete dislocation
models, albeit in an incremental fashion. The creation of new surfaces at free
edges is taken into account, which provides a firm basis for the combined
analysis of micro-crack nucleation driven by dislocation glide.
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DISCONTINUITEITEN IN MATERIALEN

EN CONSTRUCTIES

EEN GENERALISERENDE NUMERIEKE BENADERING

JORIS J.C. REMMERS

O m tot een efficiënt en veilig ontwerp van constructies te komen is een
volledig begrip van het materiaal gedrag, inclusief het bezwijkgedrag,

vereist. Dit bezwijkgedrag kan worden bestudeerd op verschillende lengte-
schalen. Op het niveau van de constructie is het bezwijken zichtbaar als een
enkele scheur die zich voortplant door het materiaal of langs een grensvlak.
Op lagere schaalniveau’s blijkt echter dat het gebied voor de scheur tip, de
proces zone, bestaat uit een verzameling microscheuren die door samengroei-
en een dominante scheur vormen. Het mechanisme dat het ontstaan van de-
ze microscheuren veroorzaakt, kan worden herleid naar nog lagere schaalni-
veau’s. In kristallijne materialen zoals metalen, leidt het collectief bewegen
van dislocaties tot kleine imperfecties aan de vrije rand van het materiaal.
Deze imperfecties geven op hun beurt weer aanleiding tot het ontstaan van
microscheuren.

Vanuit een wiskundig oogpunt kunnen scheuren langs grensvlakken, mi-
croscheuren in de proces zone en schuifvlakken ten gevolge van het verplaat-
sen van dislocaties worden beschouwd als sprongen in het verplaatsingsveld.
Dit is in tegenspraak met de klassieke formuleringen in de mechanica, waarin
wordt aangenomen dat het materiaal een continuüm en het verplaatsings-
veld glad is. Een mogelijke oplossing is om het effect van de discontinuı̈teit
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uit te smeren over een bepaalde breedte, zodanig dat het verplaatsingsveld
zijn continue karakter behoudt. In sommige gevallen kan echter niet voor
deze aanpak worden gekozen. In brosse materialen, waarin de proces zone
relatief smal is, leidt dit onherroepelijk tot numerieke problemen. In het ge-
val van een eindige rek formulering in een discreet dislocatie model geeft het
uitsmeren van de sprong in het verplaatsingsveld aanleiding tot oneigenlijke
spanningen in het omliggende materiaal.

Eén van de alternatieven om het discontinue verplaatsingsveld expliciet te
modelleren is door gebruik te maken van de ’partition of unity’ eigenschap
van standaard eindige elementen interpolatie-functies. In deze aanpak wordt
de sprong in het verplaatsingsveld gerepresenteerd door een tweede verplaat-
singsveld, vermenigvuldigd met een stap functie, toe te voegen aan het be-
staande basis veld. Dit tweede verplaatsingsveld wordt ondersteund door
extra vrijheidsgraden die worden toegevoegd aan de reeds bestaande knoop-
punten van het eindige elementen rooster.

Deze benadering heeft een aantal voordelen, in het bijzonder voor het mo-
delleren van scheurgroei met behulp van de cohesieve zone formulering. Op
de eerste plaats kan de discontinuı̈teit op elke gewenste positie in het model
worden toegevoegd of uitgebreid, ongeacht de structuur van het onderliggen-
de eindige elementen rooster. Hierdoor is het mogelijk om scheurvoortplan-
ting in willekeurige richtingen te simuleren en wordt het gebruik van initiële
cohesieve stijfheden voorkomen. Bovendien blijft de oorspronkelijke topolo-
gie van het eindige elementen rooster behouden omdat de nieuwe vrijheids-
graden worden toegevoegd aan bestaande knooppunten. Tenslotte is de me-
thode relatief goedkoop omdat er enkel vrijheidsgraden worden toegevoegd
als de scheur zich ook daadwerkelijk voortplant.

In dit proefschrift is de partition of unity methode gebruikt om scheur-
groeiprocessen op verschillende lengteschalen te analyseren. In hoofdstuk 3
wordt een discontinu ’solid-like shell’ element gepresenteerd waarmee het
mogelijk is om delaminatiegroei langs een grensvlak in een laminaat te ana-
lyseren. De kinematische relaties van het oorspronkelijke solid-like shell ele-
ment zijn zodanig gekozen dat het element gebruikt kan worden om zeer dun-
ne constructies mee te modelleren. In het discontinue solid-like shell element
zijn deze kinematische relaties zorgvuldig uitgewerkt zodat ze een discontinu
verplaatsingsveld representeren. Het is aangetoond dat dit nieuwe element
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dezelfde gunstige eigenschappen heeft als het oorspronkelijke element. Het
kan zelfs gebruikt worden om delaminatie-knik in een laminaat te analyse-
ren door slechts één element in de dikte-richting te gebruiken. In hoofdstuk 4
is het discontinue solid-like shell element gebruikt om het delaminatie-knik
gedrag van vezel-metaal laminaten voor verschillende belastingen te bestu-
deren.

In hoofdstuk 5 is de partition of unity methode omgevormd tot de cohe-
sieve segmenten methode die in staat is om zowel het ontstaan, het groeien
en het samengroeien van meerdere microscheuren te modelleren. Hierbij is
in het bijzonder aandacht geschonken aan een techniek die in staat is om dit
niet-lineaire stelsel vergelijkingen op een efficiënte manier op te lossen. Hier
is gekozen voor een padvolg methode die stuurt op de maximale energie dis-
sipatie van het systeem.

Diffuse scheurpatronen spelen ook een belangrijke rol in snelle scheur-
voortplanting. In hoofdstuk 6 wordt de toepassing van de cohesieve segmen-
ten methode voor transiënte berekeningen besproken. Met name de stabiliteit
en de nauwkeurigheid van de methode is uitgebreid bestudeerd. Het wordt
aangetoond dat het toevoegen van vrijheidsgraden tijdens een simulatie geen
invloed heeft op de energie balans van het systeem. Het blijkt echter niet
mogelijk te zijn om een diagonale massa matrix te gebruiken bij het oplossen
van het stelsel vergelijkingen. Door de massa matrix te diagonaliseren gaat
de informatie over de koppeling van reguliere en additionele vrijheidsgraden
verloren.

De eigenschappen van het model worden gedemonstreerd in een dyna-
mische afschuif scheurgroei voorbeeld. De methode is in staat om zowel
mode-I scheurgroei als adiabatische mode-II scheurvorming te kunnen be-
schrijven. De mogelijkheid om scheurvertakking te modelleren is besproken
in een tweede voorbeeld. Het is echter moeilijk om deze berekening op waar-
de te schatten. Door het middelen van de spanningen in de buurt van de
scheur tip, is de creatie van een nieuw segment eenvoudiger dan het groeien
van een bestaand segment.

In principe is de partition of unity methode een geschikte manier om de
discontinue velden veroorzaakt door dislocaties in het eindige elementen mo-
del te beschrijven. Dit blijkt echter erg inefficiënt te zijn. Omdat een standaard
model uit honderden dislocaties kan bestaan en de effecten van een disloca-
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tie op grote afstand merkbaar zijn, zou het aantal extra vrijheidsgraden dat
nodig is om deze effecten op een juiste manier te representeren zeer groot
worden. Bovendien is het maar de vraag of de resolutie van het eindige ele-
menten rooster voldoende is om het effect van opgestapelde dislocaties, een
zogenaamde ’pile-up’, met voldoende nauwkeurigheid te representeren.

In de alternatieve methode die wordt gepresenteerd in hoofdstuk 7 is de
vervormingsgradiënt gesplitst in een elastisch deel en een onbegrensd deel
dat de afschuif sprong vertegenwoordigt. Het reguliere gedeelte van het ver-
plaatsingsveld dat gegenereerd wordt door de dislocaties wordt op dezelfde
manier beschreven als in de conventionele, kleine rek formulering, zij het op
een incrementele manier. Het ontstaan van nieuwe oppervlakken aan de vrije
randen van het proefstuk is ook beschouwd. Het model biedt daarom een
goede basis voor een gecombineerde analyse van het ontstaan van de door
dislocatie veroorzaakte microscheuren.
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