
 
 

Delft University of Technology

Comparison of three control structures for inducing higher-order sliding modes

Wang, Xuerui; Van Kampen, Erik Jan; Chu, Qiping

DOI
10.23919/ECC.2019.8795872
Publication date
2019
Document Version
Final published version
Published in
2019 18th European Control Conference, ECC 2019

Citation (APA)
Wang, X., Van Kampen, E. J., & Chu, Q. (2019). Comparison of three control structures for inducing higher-
order sliding modes. In 2019 18th European Control Conference, ECC 2019 (pp. 4073-4080). Article
8795872 IEEE. https://doi.org/10.23919/ECC.2019.8795872

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.23919/ECC.2019.8795872
https://doi.org/10.23919/ECC.2019.8795872


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



Comparison of Three Control Structures for Inducing
Higher-Order Sliding Modes

Xuerui Wang1, Erik-Jan van Kampen2, and Qiping Chu3

Abstract— For mitigating the chattering effect in the slid-
ing mode control (SMC), many adaption mechanisms have
been proposed to reduce the switching gains. However, less
attention is paid to the control structure, which influences
the resulting uncertainty term and determines the minimum
possible gains. This paper compares three control structures for
inducing higher-order sliding modes in finite time: nonlinear
dynamic inversion (NDI) based SMC, higher-order sliding mode
control (HOSMC) with artificially increased relative degree,
and the recently proposed incremental nonlinear dynamic
inversion (INDI) based SMC. The latter two control structures
have reduced model dependency as compared to NDI-SMC.
Moreover, their nominal control increments are found to be
approximately equivalent if the sampling interval is sufficiently
small and if their gains satisfy certain conditions. Under the
same circumstances, the norm value of the resulting uncertainty
using INDI-SMC is several orders of magnitude smaller than
those using other control structures. For maintaining the sliding
modes, the minimum possible gains required by HOSMC
approximately equal those needed by INDI-SMC divided by
the sampling interval. Nevertheless, these two approaches have
comparable chattering degrees, which are effectively reduced
as compared to NDI-SMC. The analytical results are verified
by numerical simulations.

I. INTRODUCTION

Featured by its invariance to the matched uncertainty and
its finite time convergence property, Sliding Mode Control
(SMC) is a useful approach for stabilizing perturbed systems.
However, many SMC methods suffer from the chattering
phenomenon, which is the high frequency switching in the
control signal. Although continuous approximations of the
signum function and a class of higher order sliding mode
control (HOSMC) techniques can mitigate the chattering
effect, it is shown in [1] that none of these methods can
totally eliminate chattering.

In view of the fact that the chattering amplitude is pro-
portional to the discontinuous switching gain [2], a recent
research focus in the SMC community is on adapting the
switching gains to their minimum possible values whilst
maintaining the sliding modes and the finite-time conver-
gence property [1], [2], [3], [4]. An adaption mechanism for
the super-twisting algorithm based on direct measurements of
the equivalent control is presented in [2]. A dual-layer nested
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adaptive method is proposed in [4] and further developed
in [1], [3], which can be applied to super-twisting, conven-
tional (first-order), and higher-order sliding mode schemes.
These methods are derived for the sliding variable dynamics,
which contain a lumped uncertainty term and decoupled
control inputs. However, the real system dynamics usually
have coupled control inputs, and are perturbed by both
additive and multiplicative uncertainties. Converting the real
coupled system dynamics to the decoupled sliding variable
dynamics is an important intermediate step which has been
overlooked in the literature. This issue is influential because
different control structures used for this conversion will
result in different closed-loop uncertainty terms which are
crucial to the minimum possible values of the sliding mode
control/observer gains.

Feedback linearization, also known as Nonlinear Dynamic
Inversion (NDI) in the aerospace community [5], [6], [7] is
a widely used control structure for solving nonlinear system
sliding mode control problems. A recent review of NDI
based SMC with various sliding orders and virtual control
designs can be found in [8]. It is also shown in [8] that SMC
which contains a model-based estimation of the equivalent
control [1], [2] is essentially NDI based. However, the NDI
control structure has a contradiction between the reduction of
uncertainty and model dependency. To be specific, reducing
the model dependency of NDI is beneficial for complex
system (such as an airplane) control implementations, but
would increase the norm of the remaining uncertainties in
the sliding variable dynamics, which eventually requires
higher sliding mode control/observer gain for perturbation
compensations.

In order to solve this contradiction, recent research pro-
poses to use the control structure of Incremental Nonlinear
Dynamic Inversion (INDI) for inducing sliding modes [8].
INDI is a so-called, sensor-based control approach developed
in the aerospace community, which designs the control incre-
ment ∆u in one sampling interval ∆t [5]. The idea of INDI
can be traced back to the late nineties, when it was found
in [9] that the feedback of angular acceleration and control
surface position can enhance the robustness of NDI to model
uncertainties. Inheriting this idea, INDI was first proposed
in [6], and has shown promising effectiveness on fault-
tolerant flight control [7], helicopter control [10], flexible
aircraft control [11], and high-speed control of a damaged
quadrotor with complete loss of a single rotor [12], in the
past decade. A recent research generalized INDI for generic
nonlinear uncertain systems with arbitrary relative degree,
without using the time-scale separation assumption [5]. It
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is found in [5], that part of the system dynamics and
external disturbances are contained in the output derivatives
and control inputs at the previous time step. Therefore,
feeding back their latest samples/estimations can improve the
robustness of NDI to regular perturbations while reducing its
model dependency. This analytical conclusion is verified by
real-world passenger airplane flight tests in [13], [14]. The
sensor-based control idea of INDI is also shared by [15],
[16], where the signals at the previous time step are used
to estimate disturbance. Different from [15], [16], the only
model information required by INDI is the estimation of
the control effectiveness matrix. By virtue of the sensor-
based nature of INDI, SMC using the control structure of
INDI instead of NDI can simultaneously reduce the control
model dependency and uncertainties remaining in the sliding
variable dynamics [8], which is beneficial for chattering
reduction.

Another strategy for chattering mitigation is artificially
increasing the input-output relative degree, and designing
the higher-order derivatives of the control input [17], [18].
The actual control input is then integrated from the designed
control derivatives. Because of this integration process, the
high frequency chattering can be smoothened. Although
this strategy is widely used, the property of the resulting
uncertainty term and its influences on the minimum possible
SMC gains remain unclear in the literature. In this paper,
particular interest is paid to HOSMC which artificially in-
creases the relative degree by one order (designs u̇). Since
u̇ approximately equals ∆u/∆t when ∆t is sufficiently
small, an interesting research question emerges: is there any
relationship between the INDI-SMC and HOSMC with artifi-
cially increased relative degree, although these two methods
originate from completely different ideas?

The main contributions of this paper are the compar-
isons among three different control structures that can be
used for inducing higher-order sliding modes. These three
control structures are NDI-SMC and HOSMC with arti-
ficially increased relative degree developed in the SMC
community, and the INDI-SMC recently proposed in the
aerospace community. The comparisons are mainly in three
aspects: 1) Model dependency and the required signals for
implementation; 2) The relationships of the nominal controls;
3) The properties of the resulting uncertainty terms and their
influences on the minimum possible values of the sliding
mode control/observer gains.

This paper is structured as follows: The three control
structures will be presented in Sec. II, analytically compared
in Sec. III, and numerically compared in Sec. IV. Main
conclusions are drawn in Sec. V.

II. THREE CONTROL STRUCTURES FOR INDUCING
HIGHER-ORDER SLIDING MODES

Consider a multi-input/multi-output nonlinear control-
affine system

ẋ = f(x) +G(x)u+ dx, y = h(x) (1)

where f : Rn → Rn and h : Rn → Rm are smooth
vector fields. G is a smooth function mapping Rn →
Rn×m, whose columns are smooth vector fields. dx ∈ Rn
represents external disturbances. Boldfaces indicate vectors
and matrices.

Assumption 1: The vector relative degree of y with re-
spect to u denoted as r = [r1, r2, ..., rm]T is constant and
known, and the corresponding internal dynamics are stable.

By differentiating the output, the input-output mapping of
the system is given by

y(r) = α(x) + B(x)u+ d (2)

where y(r) = [y
(r1)
1 , ..., y

(rm)
m ]T , B(x) ∈ Rm×m,

Bij = LgjL
ri−1
f hi, α(x) = [Lr1f h1, ...,Lrmf hm]T , d =

[Lr1dxh1, ...,Lrmdx hm]T , with Lrif hi, L
ri
dx
hi, LgjL

ri−1
f hi the

corresponding Lie derivatives. The control effectiveness ma-
trix B(x) is nonsingular under Assumption 1.

The control objective is to make the output y track
a reference signal yc(t) = [yc1(t), ..., ycm(t)]T . Assume
yci(t), i = 1, ...,m, and its derivatives up to y(ri+1)

ci (t) are
bounded for all t. Choose the sliding variable as σ = y−yc.

Definition 1: [17], [18] Consider the nonlinear system
given by Eq. (1) and the sliding variable σ, assume the time
derivatives of σi, σ̇i, ..., σi(ri−1) are continuous functions for
all i = 1, ...,m. The manifold defined as

Sr = {x|σi(x) = σ̇i(x)... = σi
(ri−1)(x) = 0, i = 1, ...m}

(3)
is called the “rth-order sliding set” [18], [19]. If this sliding
set is non empty and locally an integral set in the Filippov
sense [20], then the motion on Sr is called the “rth-order
sliding mode” with respect to the sliding variable σ.

In the following subsections, three control structures for
inducing the rth-order sliding mode will be presented.

A. Nonlinear Dynamic Inversion based Control

The estimated system dynamics y(r) = ᾱ(x)+B̄(x)u are
used for control design, which bring both additive uncertain-
ties α− ᾱ+ d, and multiplicative uncertainties B − B̄. For
inducing the rth-order sliding mode, the Nonlinear Dynamic
Inversion (NDI) control structure is adopted in [18], [21] as:

undi-s = B̄−1(x)(νn + νs + y(r)
c − ᾱ(x)) (4)

where y(r)
c = [yr1c1 , y

r2
c2 , ..., y

rm
cm ]T . νn and νs are two virtual

control terms. This control structure will be abbreviated as
NDI-SMC in the subsequent context. Using Eq. (4), the
dynamics of σ are

σ(r) = y(r) − y(r)
c = ᾱ(x) + B̄(x)undi-s + εndi-s − y(r)

c

= νn + νs + εndi-s (5)

where

εndi-s = (α− ᾱ) + (BB̄−1 − I)(νn + νs + y(r)
c − ᾱ)

= (α− ᾱ) + (B − B̄)undi-s + d (6)

εndi-s in Eq. (6) is the closed-loop uncertainty term caused
by model uncertainties, external disturbances, actuator faults,
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structural damage, etc [8]. If νs can compensate for εndi-s,
and if the nominal virtual control νn can stabilize the
unperturbed rth-order integrator chains [18], [22], then the
rth-order sliding mode can be established by Eq. (4).

B. Incremental Sliding Mode Control

Incremental Sliding Mode Control (INDI-SMC) is a re-
cently proposed control framework [8] which can simul-
taneously reduce the model dependency and the minimum
possible switching gains of NDI-SMC. Denote the sampling
interval as ∆t. To begin with, the incremental dynamic
equation is derived by taking the first-order Taylor series
expansion of Eq. (2) around the condition at t−∆t (denoted
by the subscript 0) as

y(r) = y
(r)
0 + B(x0)∆u+ ∆d

+
∂[α(x) + B(x)u]

∂x

∣∣∣∣
0

∆x+O(∆x2) (7)

where ∆x = x − x0, ∆u = u − u0, ∆d = d − d0

respectively denote the variations of states, control inputs and
external disturbances in one incremental time step. Based on
Eq. (7), the INDI-SMC framework is proposed as [8]

∆uindi-s = B̄−1(x0)(νn + νs + y(r)
c − y

(r)
0 ) (8)

The total control command vector for the actuators is
uindi-s = uindi-s,0 + ∆uindi-s.

Remark 1: uindi-s,0 denotes the latest sampled actuator
position vector, instead of the control command given to
the actuator at the previous time step. The flight tests
in [23] shows that this sensing process can mitigate the
influences of actuator dynamics. If actuator dynamics are
not considered, uindi-s =

∑
∆uindi-s, which is essentially a

numerical integration process.
As compared to the NDI based control structure (Eq. (4)),

INDI-SMC is independent of the model information ᾱ(x),
which simplifies the implementation process. Only the esti-
mation of the control effectiveness (B̄) is needed by INDI-
SMC. The calculation of the partial derivatives in Eq. (7)
is not needed for control implementation. It will be shown
later that the multiplications of these partial derivatives with
∆x are treated as perturbations in the closed-loop system.
This approach also inherits the sensor-based nature of INDI,
since the measurements/estimations of y(r)

0 and uindi-s,0 are
needed. For some physical systems, including aircraft, y(r)

0

and uindi-s,0 can be directly measured [13], [14].
Finally, substituting Eq. (8) into Eq. (7), and using the

definition of σ, the resulting dynamics are

σ(r) = y(r) − y(r)
c = y

(r)
0 + B̄(x0)∆uindi-s + εindi-s − y(r)

c

= νn + νs + εindi-s (9)

where

εindi-s =
∂[α(x) + B(x)uindi-s]

∂x

∣∣∣∣
0

∆x+O(∆x2)

+(B − B̄)|0∆uindi-s + ∆d (10)

in which (B − B̄)|0 denotes B(x0) − B̄(x0). Eq. (9) is
in the same form as Eq. (5), thus the rth-order sliding
mode can be achieved by properly designing νn and νs.
However, the NDI and INDI based control structures result
in different closed-loop perturbation terms: εndi-s and εindi-s.
The properties of these two terms, and their influences on the
minimum possible gains will be elaborated in III-B and III-C.

C. Higher-order Sliding Mode Control with Artificially In-
creased Relative Degree

Consider artificially increasing ri by one order for all i =
1, ...,m. Dynamically extend Eq. (2) as

y(r+1) =
∂(α(x) + B(x)u)

∂x
ẋ+ B(x)u̇+ ḋ (11)

Design the control derivative in the structure of

u̇ho-s = B̄−1(x)(ν′n + ν′s + y(r+1)
c ) (12)

which is referred to as HOSMC with artificially increased r.
This control structure leads to

σ(r+1) = y(r+1) − y(r+1)
c = B̄(x)u̇ho-s + εho-s − y(r+1)

c

= ν′n + ν′s + εho-s (13)

where

εho-s =
∂(α(x) + B(x)uho-s)

∂x
ẋ+ (B − B̄)u̇ho-s + ḋ (14)

It is noteworthy that the y(r+1)
c term is viewed as uncer-

tainty by [24], and is not used in Eq. (12). It is suggested
in this paper to include this term in Eq. (12) as a known
term. In view of Eq. (13), the r + 1th- order sliding mode
can be induced if ν′s can compensate for εho-s, and if the
nominal virtual control ν′n can achieve the stabilization of
the r + 1th-order unperturbed integrator chains [18], [22].

The actual control is integrated from Eq. (12) and can be
further derived as

uho-s =

∫ t

0

u̇ho-s =

∫ t−∆t

0

u̇ho-s +

∫ t

t−∆t

u̇ho-s

≈ uho-s,0 + u̇ho-s(t)∆t (15)

which means the control increment of uho-s in ∆t approxi-
mately equals

∆uho-s ≈ u̇ho-s(t)∆t = B̄−1(x)(ν′n+ν′s+y
(r+1)
c )∆t (16)

The control increment of uho-s is derived in Eqs. (15) and
(16) for the convenience of comparison with Eq. (8). As
compared to ∆uindi-s in Eq. (8), uho-s is also independent
of the model information ᾱ(x). However, the y(r+1)

c term
used in Eq. (16) is not needed by INDI-SMC (Eq. (8)). Other
similarities and differences between this method and INDI-
SMC will be further explored in Sec. III.

III. ANALYTICAL COMPARISONS

In this section, the three control structures presented in
Sec. II will be analytically compared. The nominal control
parts will be considered in III-A. The properties of the per-
turbation terms will be compared in III-B. The perturbation
compensations and minimum possible gain requirements will
be discussed in III-C.

4075



A. Comparisons of the Nominal Control

This subsection considers the nominal case where the
perturbation terms in Eqs. (5, 9, 13) all equal to zero. The
virtual controls νs and ν′s for perturbation compensation
are also zero. Under this circumstance, the closed-loop
dynamics using NDI-SMC and INDI-SMC become rth-
order integrator chains with the nominal virtual control νn
as an input, namely σ(r) = νn. Analogously, using the
control structure of HOSMC with artificially increased r,
σ(r+1) = ν′n according to Eq. (13). Three approaches of
the nominal dynamics stabilization will be discussed.

1) Asymptotic Stabilization: It is classical to stabilize the
unperturbed integrator chains asymptotically by linear virtual
controls. For NDI and INDI based SMC, νn in Eqs. (4, 8)
is consistently designed as:

νn = −Kr−1σ
(r−1) −Kr−2σ

(r−2)...−K0σ (17)

where the positive definite diagonal gain matrices Kr−1 =
diag{Kr−1,i}, ...,K0 = diag{K0,i}, i = 1, ...,m are
designed such that the rth- order polynomials pri +
Kr−1,ip

ri−1 +Kr−2,ip
ri−2...+K0,i are Hurwitz.

Analogously, for asymptotically stabilizing the r + 1th-
order integrator chains, ν′n in Eq. (16) is designed as:

ν′n = −K ′rσ(r) −K ′r−1σ
(r−1) −K ′r−2σ

(r−2)...−K ′0σ
(18)

where K ′r = diag{K ′r,i}, ...,K
′
0 = diag{K ′0,i}, i = 1, ...,m

are designed such that the r+1th- order polynomials pri+1+
K ′rip

ri +K ′r−1,ip
ri−1...+K ′0,i are Hurwitz.

Using the definition of the sliding variable, σ(r) =

y(r) − y(r)
c in Eq. (18). Therefore, the nominal control part

B̄−1(x0)(νn +y
(r)
c −y(r)

0 ) in Eq. (8) approximately equals
the nominal control increment B̄−1(x)ν′n∆t in Eq. (16) if

1) B̄−1(x0) ≈ B̄−1(x)

2) y(r) ≈ y(r)
0

3) K ′r = Im

∆t , K ′r−1 = Kr−1

∆t , ..., K ′0 = K0

∆t .

where Im is an m dimensional identity matrix. Using the
continuity of x, lim∆t→0 ‖x−x0‖ = 0. Therefore, the first
condition can be satisfied when ∆t is sufficiently small.
y

(r)
0 used by Eq. (8) represents the value of y(r) at the

previous time step, which can be directly measured [5],
[14] or estimated [13], [23]. For HOSMC, y(r) is normally
numerically differentiated from y using, for example, sliding
mode differentiator [17], [24]. Although based on different
ideas, y(r) and y(r)

0 become close under sufficiently small
∆t. The last gain condition can be derived by comparing
Eq. (8) with Eq. (16), and comparing Eq. (17) with Eq. (18).

2) Finite Time Stabilization: The unperturbed integrator
chains can also be stabilized in finite time using nonlinear
continuous virtual controls.

Proposition 1: Consider the unperturbed integrator chain
set σ(r) = νn, there exists εi ∈ (0, 1), i = 1, ...,m, such
that for every αi ∈ (1 − εi, 1), the rth- order sliding mode

is established in finite time by

νn = [νn,1, νn,2, ..., νn,m]T

νn,i = −Kr−1,i|σ(ri−1)
i |αri,isign(σ

(ri−1)
i )− ...

−K0,i|σi|α1,isign(σi), i = 1, ...,m (19)

where Kr−1 = diag{Kr−1,i}, ...,K0 = diag{K0,i}, and
their elements are chosen such that the rth- order polynomi-
als pri +Kr−1,ip

ri−1 +Kr−2,ip
ri−2...+K0,i are Hurwitz.

The scalars α1,i, ..., αri,i satisfy

αk−1,i =
αk,iαk+1,i

2αk+1,i − αk,i
, k = 2, ..., ri, i = 1, ...,m (20)

with αri+1,i = 1, αri,i = αi.
Proof: Using Definition 1, this proposition is essen-

tially a multi-input/multi-output generalization of the Propo-
sition 8.1 in [22].

Using Proposition 1, there exists ε′i ∈ (0, 1), i = 1, ...,m,
such that for every α′i ∈ (1−ε′i, 1), the r+1th- order sliding
mode is established in finite time by

ν′n = [ν′n,1, ν
′
n,2, ..., ν

′
n,m]T

ν′n,i = −K ′r,i|σ
(ri)
i |α

′
ri+1,isign(σ

(ri)
i )− ...

−K ′0,i|σi|α
′
1,isign(σi), i = 1, ...,m (21)

The gain choices are the same as in Eq. (18). The scalars
α′1,i, ..., α

′
ri+1,i satisfy

α′k−1,i =
α′k,iα

′
k+1,i

2α′k+1,i − α′k,i
, k = 2, ..., ri + 1, i = 1, ...,m

(22)
with α′ri+2,i = 1, α′ri+1,i = α′i.

Comparing Eq. (19) with Eq. (21), the nominal control part
B̄−1(x0)(νn +y

(r)
c −y(r)

0 ) in Eq. (8) approximately equals
the nominal control increment B̄−1(x)ν′n∆t in Eq. (16) if

1) B̄−1(x0) ≈ B̄−1(x)

2) y(r) ≈ y(r)
0

3) K ′r = Im

∆t , K ′r−1 = Kr−1

∆t , ..., K ′0 = K0

∆t .
4) α′ri,i = αri,i, ..., α

′
1,i = α1,i.

5) εi � 1, α′ri+1,i =
2α′ri,i

1+α′ri,i
.

As discussed in subsection III-A.1, the first two conditions
can be satisfied using sufficiently small ∆t. If the third and
fourth conditions are satisfied, νn,i in Eq. (19) exactly equals
ν′n,i + K ′r,i|σ

(ri)
i |α

′
ri+1,isign(σ

(ri)
i ) in Eq. (21) multiplied

with ∆t. If α′ri+1,i = 1, then |σ(ri)
i |α

′
ri+1,isign(σ

(ri)
i ) =

σ
(ri)
i = y

(ri)
i −y(ri)

ci , which means the first terms in Eq. (21),
multiplied with ∆t, approximate y(r)

c −y(r)
0 in Eq. (8), under

the second and third conditions. In order to enforce the finite
time convergence, the fifth condition is proposed, in which
α′ri+1,i satisfies Eq. (22), while α′ri+1,i and α′ri,i = αri,i are
sufficiently close to one by requiring εi � 1.

Remark 2: The unperturbed integral chains can also
be stabilized in fixed-time using continuous νn and
ν′n [25]. Analogous conditions can be derived which make
B̄−1(x0)(νn + y

(r)
c − y(r)

0 ) in Eq. (8) and B̄−1(x)ν′n∆t in
Eq. (16) approximately equal.
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B. Comparisons of the Perturbation Terms
εndi-s (Eq. (6)) and εindi-s (Eq. (10)) have been compared

in [8]. The main conclusions are summarized as follows:
1) A diagonally dominant structure of BB̄−1 and a suf-

ficiently small ∆t ensure the boundedness of εindi-s,
while εndi-s can become unbounded under the same
conditions.

2) Even if εndi-s is bounded, under the same perturbation
circumstance, there exists a ∆t such that the bound of
εindi-s is smaller than that of εndi-s.

3) εindi-s has less variations in different fault scenarios,
while εndi-s is more fault-case dependent.

By virtue of these properties, the INDI-SMC framework
is able to passively resist a wide range of uncertainties with
lower sliding mode control/observer gains, as compared to
the widely used NDI-SMC framework.

The properties of εho-s will be addressed here. Using
Eq. (14), the first-order approximation of εho-s equals

εho-s ≈
∂(α(x) + B(x)uho-s)

∂x

∆x

∆t
+ (B − B̄)

∆uho-s

∆t
+

∆d

∆t
(23)

Therefore, in comparison with Eq. (10), εho-s(t)∆t ≈
εindi-s(t), ε̇ho-s(t)∆t ≈ ε̇indi-s(t) if uho-s(t) ≈ uindi-s(t). Al-
though uho-s and uindi-s are designed using different control
structures, their nominal increments are approximately equiv-
alent if the conditions in III-A are satisfied. Moreover, based-
on the equivalent control concept [2], [26], the required
average control to maintain the sliding mode is identical
in spite of the control structures. To be specific, once the
r+1th-order sliding mode is achieved by HOSMC, σr ≡ 0,
thus uho-s ≡ B−1(y

(r)
c −α− d) according to Eq. (2). This

value is also what uindi-s must take on average to maintain
the rth-order sliding mode [26]. In other words, once the rth

and r + 1th-order sliding modes are respectively achieved
by INDI-SMC and HOSMC, the condition uho-s ≈ uindi-s is
satisfied.

C. Perturbation Compensations and the Minimum Possible
Gains

The three control structures discussed in Sec. II result in
different closed-loop perturbation terms, which have different
properties (III-B). It will be shown in this subsection that the
minimum possible gains in νs and ν′s are determined by the
norms of these perturbation terms.

1) First-Order Perturbation Compensation: For stabiliz-
ing the perturbed dynamics in Eqs. (5, 9), design an auxiliary
sliding variable as s = σ(r−1) −

∫
νn, then ṡ = νs +

εndi-s/indi-s under the control of NDI and INDI based SMC.
These dynamics can be stabilized using a first-order SMC as
νs = −Kssign(s) = −[Ks,1sign(s1), ...,Ks,msign(sm)]T .
The sufficient condition to enforce a sliding motion in finite
time is that Ks,i(t) > η + |εndi-s/indi-s,i(t)|, which coincides
with the time-varying minimum possible gain requirement
in [1]. η is a small positive design constant for satisfying the
η-reachability condition [1], [26].

When the sliding surface s = 0 is reached, the equiv-
alent closed-loop dynamics [18], [26] become σ(r) = νn,

which recover the nominal condition despite the presence of
perturbations. Using the νn designed in III-A, the rth-order
sliding mode with respect to σ is achieved.

Analogously, for HOSMC with artificially increased r,
design an auxiliary sliding variable as s′ = σ(r) −

∫
ν′n,

then ṡ′ = ν′s + εho-s using Eq. (13). s′ can be stabi-
lized at zero in finite time by ν′s = −K ′ssign(s′) =
−[K ′s,1sign(s′1), ...,K ′s,msign(s′m)]T , with K ′s,i(t) > η +

|εho-s,i(t)| for all t. As a result, within finite time, σ(r+1) =
ν′n on the sliding surface s′ = 0. Using ν′n designed in III-A
ensures the establishment of the r+ 1th-order sliding mode
with respect to σ.

Since there exists a ∆t, such that the bound of εindi-s
is smaller than that of εndi-s (III-B), the minimum possible
gains needed by INDI-SMC are lower than those required
by NDI-SMC. Moreover, it has been shown in III-B that
once the sliding modes are achieved, εho-s(t)∆t ≈ εindi-s(t).
Therefore, for maintaining the sliding modes, the minimum
possible value of K ′s(t) approximately equals Ks(t) used
by INDI-SMC divided by ∆t.

Remark 3: Although K ′s(t) used by HOSMC with arti-
ficially increased r should be several orders of magnitude
higher than Ks(t) used by INDI-SMC, the chattering mag-
nitudes of these two methods are comparable since ν′s is
multiplied with ∆t in ∆uho-s (Eq. (16)).

2) Super-twisting Observer: In this subsection, νs and ν′s
will be designed by a super-twisting observer. The classical
fixed-gain super-twisting observer will be designed first, then
the observer with time-varying gain will be discussed.

Assumption 2: The time derivatives of εndi-s(t) (Eq. (6)),
εindi-s(t) (Eq. (10)), εho-s(t) (Eq. (14)) are bounded. Denote
their upper-bounds as: |ε̇ndi-s,i(t)| < ε̄ndi-s,i, |ε̇indi-s,i(t)| <
ε̄indi-s,i, |ε̇ho-s,i(t)| < ε̄ho-s,i.

Use the same auxiliary sliding variables s and s′ as in III-
C.1, and design

νs = −λ|s|1/2sign(s)− β
∫

sign(s) (24)

where λ = diag{λi}, λi = 1.5ε̄
1/2
ndi-s/indi-s,i, β =

diag{βi}, βi = 1.1ε̄ndi-s/indi-s, i = 1, ...,m, then s = ṡ =
0 is established in finite time [4]. On the sliding surfaces,
νs(t) observes −εndi-s/indi-s(t) according to Eqs. (5, 9), thus
the unperturbed dynamics σ(r) = νn are recovered in finite
time. Analogously, s′ is stabilized in finite time by

ν′s = −λ′|s′|1/2sign(s′)− β′
∫

sign(s′) (25)

where λ′ = diag{λ′i}, λ′i = 1.5ε̄
1/2
ho-s,i, β = diag{βi}, βi =

1.1ε̄ho-s,i, i = 1, ...,m, then ν′s observes −εho-s in finite
time. Consequently, the unperturbed dynamics σ(r+1) = ν′n
are achieved in finite time. Adopting ν′n designed in III-A
enforces the r + 1th-order sliding mode with respect to σ.

Once the sliding modes are achieved ε̇ho-s(t)∆t ≈
ε̇indi-s(t) according to the analyses in III-B. Therefore, in
view of the gain conditions, λ′ approximately equals λ used
by INDI-SMC divided by

√
∆t to maintain the sliding mode.
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Moreover, β′ approximately equals β used by INDI-SMC
divided by ∆t.

The super-twisting observers designed by Eqs. (24, 25)
use fixed gain matrices. Although the discontinuous signum
functions have been integrated, the chattering effects can not
be totally eliminated [1], [2]. This issue inspires some recent
researches to use time-varying β(t) and β′(t) for mitigat-
ing the chattering effects. Different adaptation mechanisms
are proposed in [1], [2], [3] which make βi(t) and β′i(t)
as low as possible, whilst still guaranteeing that βi(t) >
|ε̇ndi-s/indi-s,i(t)|, β′i(t) > |ε̇ho-s,i(t)|, i = 1, ...,m. In view
of these conditions, for maintaining the sliding modes, the
minimum possible value of β′(t) still approximately equals
β(t) used by INDI-SMC divided by ∆t.

Remark 4: When the super-twisting observers are used,
the chattering magnitude of HOSMC with artificially in-
creased r is similar with that of INDI-SMC, because ν′s
will be multiplied with ∆t in Eq. (16).

Remark 5: The influences of control structures on the
minimum possible control/observer gain values are not re-
stricted to the two preceding νs/ν′s designs. This is because
for most sliding mode control/observer designs, the minimum
possible gains are positively correlated with the norms of the
closed-loop uncertainties or the norms of the corresponding
derivatives.

IV. NUMERICAL COMPARISONS

Consider a nonlinear control-affine system:

ẍ = ẋ+ 3x+ x2 + 10u+ d (26)

where the external disturbance d = 0.5 sin(10t). The control
aim is making the output y = x track the reference signal
yc = 5 sin(t) in finite time. The relative degree r of the
system equals two. As compared to Eq. (2), α = ẋ+3x+x2,
B = 10 for this system. Assume the estimated model used
for control design is ᾱ = x + 0.5x2, B̄ = 15, which has
mismatches with the plant. The disturbance d is unknown
by the controllers. Design the sliding variable as σ = y−yc.
The initial conditions are: y(t = 0) = 2, ẏ(t = 0) = 0. The
sampling frequency is fs = 1000 Hz (∆t = 0.001 s).

Using Eqs. (4, 8, 12), the control inputs using the three
discussed control structures are

undi-s = (1/15)(νn + νs + ÿc − (x+ 0.5x2)) (27)
∆uindi-s = (1/15)(νn + νs + ÿc − ÿ0) (28)
u̇ho-s = (1/15)(ν′n + ν′s +

...
y c) (29)

νn in Eqs. (27, 28) are designed using Proposition 1 with
the control parameters K0 = 16, K1 = 6.4, α2 = 0.98.
α1 is calculated using Eq. (20) as α1 = 0.96. Design
ν′n using Eq. (21, 22), while satisfying the five conditions
in subsection III-A.2, then the nominal control increment
B̄−1(x)ν′n∆t in Eq. (16) becomes close to the nominal
control increment of INDI-SMC (Eq. (8)). Explicitly, K ′0 =
16/∆t, K ′1 = 6.4/∆t, K ′2 = 1/∆t, α′2 = 0.98, α′1 =
0.96, α′3 = 0.99. νs and ν′s are designed using the super-
twisting observer in III-C.2, their gain selection issues will
be addressed later on.
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Fig. 1. Evolutions of the output y, and the derivatives of σ.

Evolutions of the output, and the derivatives of σ using
three different control structures are shown in Fig. 1. It can
be seen that the 2nd-order sliding mode with respect to σ
is achieved within finite time by both NDI-SMC and INDI-
SMC despite the presence of the disturbance and model mis-
matches. The 3rd-order sliding mode is also established by
HOSMC within finite time. Because the control parameters
are chosen correspondingly, similar transient responses are
present, with |σndi-s − σindi-s| < 0.020 and |σindi-s − σho-s| <
0.007 throughout the entire time history.

As discussed in subsection III-B, the three considered
control structures result in different perturbation terms. The
evolutions of these terms are shown in the left subplot of
Fig. 2, from which it can be seen that εndi-s (Eq. (6)) is quite
different form εindi-s/∆t (Eq. (10)) and εho-s (Eq. (14)). This
difference can be revealed by comparing the formulations
of the uncertainty terms, where it can be found that only
εndi-s contains α − ᾱ. Worse ᾱ estimation would result
in increased |εndi-s|. The upper bound of εindi-s is three
orders of magnitude smaller than that of εndi-s and εho-s.
Except for rare time instances where εndi-s = 0, while
εindi-s 6= 0, |εindi-s(t)| < |εndi-s(t)| throughout the entire time
history. This inequality is beneficial for chattering reduction,
since the time-varying minimum possible switching gain is
determined by the absolute value of the uncertainty (III-C.1).

Moreover, for all t ∈ (0, 10], |εindi-s/∆t − εho-s| <
1.24, which verifies the analyses in subsection III-B. As a
consequence, K ′s(t) used by HOSMC should be three orders
of magnitude higher than Ks(t) used by INDI-SMC if νs
and ν′s are designed using the first-order SMC (III-C.1).
Nevertheless, these two methods will lead to comparable
chattering magnitude according to Remark 3.

The evolutions of the uncertainty derivatives are shown in
the right subplot of Fig. 2. ε̇ndi-s has quite different responses
as compared to ε̇indi-s/∆t and ε̇ho-s. For all t ∈ (0, 10],
|ε̇indi-s/∆t − ε̇ho-s| < 2.51, which verifies the analyses in
subsection III-B. In this simulation case, ε̄ndi-s = 120, ε̄ho-s =
350, while ε̄indi-s is only 0.35. Using the gain conditions
imposed on Eqs. (24, 25), the super-twisting observations are
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Fig. 2. Evolutions of the uncertainties (left) and their derivatives (right).

illustrated in Fig. 3. All the three observers converge within
0.3 seconds, after which the nominal dynamics are recovered,
thus the higher-order sliding modes are established in spite
of perturbations as shown in Fig. 1.
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Fig. 3. The real and observed (via super-twisting observers) uncertainties.

Even though the observations provided by the super-
twisting observers are continuous, chattering is only atten-
uated instead of being totally rejected by the integration
in Eqs. (24, 25) [1]. This is verified by Fig. 4, where the
NDI-SMC control input has a chattering magnitude of about
0.06. By contrast, because of the three orders of magnitude
smaller observer gains, uindi-s is much smoother, which is
verified by Fig. 4 in both time and frequency domains. The
right subplot of Fig. 4 illustrates the Welch’s power spectral
density estimation of the control inputs (using the Matlab
command “pwelch”). It can also be observed from Fig. 4
that although HOSMC has even higher observer gains than
NDI-SMC, the chattering magnitude of uho-s is comparable
with that of uindi-s. This has been explained by Remark 4 and
is verified by Fig. 4. Furthermore, because the five conditions
in subsection III-A.2 are satisfied, HOSMC with artificially
increased r and INDI-SMC provide similar control inputs as
|uindi-s − uho-s| < 0.014 for all t ∈ (0, 10] s.

It can be seen from the evolutions of the uncertainty
derivatives that once the sliding modes are established, the
gains determined by the upper bounds can be conserva-

tive. As argued in subsection III-A.2, even if the observer
gains are adapted, their minimum possible values are still
constrained by the norms of the uncertainty derivatives. In
view of the right subplot of Fig. 2, INDI-SMC has the
smallest minimum possible observer gains among all the
three discussed control structures.
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Fig. 4. Control inputs in the time (left) and the frequency (right) domains.

In view of the preceding results, when the five conditions
in III-A.2 are satisfied, INDI-SMC and HOSMC with arti-
ficially increased r have similar performance and chattering
magnitude. Their resulting uncertainties, uncertainty deriva-
tives, and the minimum possible gains are directly connected
by ∆t. A natural research question would be: what if the
conditions in III-A.2 are unsatisfied? This is tested by a case
where the previously used K ′0 and K ′1 are multiplied with
0.3, with the results shown in Fig. 5.

0 5 10
-1

0

1

2

0 5 10

-4

-2

0

2
u

0 5 10

Time [s]

-50

0

50

100

0 5 10

Time [s]

-200

0

200

400

Fig. 5. A test case in which the conditions in III-A.2 are not satisfied.

In this case, Fig. 5 shows that the transient responses
of INDI-SMC and HOSMC no long resemble each other.
Since K ′0 and K ′1 are reduced, it takes longer (six seconds)
for HOSMC to converge. However, once the sliding modes
are enforced, uho-s ≈ uindi-s. Furthermore, εho-s(t) ≈
εindi-s(t)/∆t, ε̇ho-s(t) ≈ ε̇indi-s(t)/∆t after t = 6 s in Fig. 5.
These results verify the analyses in subsection III-B.
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V. CONCLUSIONS

In this paper, three control structures for inducing higher-
order sliding modes: nonlinear dynamic inversion based slid-
ing mode control (abbreviated to NDI-SMC, which designs
undi-s), incremental sliding mode control (indicated as INDI-
SMC, which designs ∆uindi-s), and higher-order sliding
mode control (HOSMC) with artificially increased relative
degree by one order (designs u̇ho-s) are compared analyti-
cally and numerically. undi-s needs both the estimations of
system dynamics and control effectiveness for control imple-
mentation, while only the estimated control effectiveness is
needed by ∆uindi-s and u̇ho-s. Nevertheless, ∆uindi-s depends
on the measurements/estimations of the output derivatives,
while u̇ho-s relies on the numerically differentiated output
derivatives and the higher-order derivatives of the tracking
commands.

Although the considered HOSMC and INDI-SMC orig-
inate from completely different ideas, their nominal con-
trol increments are found to be approximately equivalent
if the sampling interval ∆t is sufficiently small and if
their control parameters satisfy the conditions presented in
subsection III-A. When these conditions are satisfied, similar
transient responses and control performance are achieved by
HOSMC and INDI-SMC. Otherwise, although their transient
responses would be different, once the higher-order sliding
modes are achieved, the control efforts needed to maintain
the sliding modes become the same.

In the presence of external disturbances and model un-
certainties, these three control structures result in different
closed-loop uncertainty terms, namely εndi-s, εindi-s and εho-s.
It is verified in this paper that there exists a ∆t such that
‖εindi-s(t)‖ < ‖εndi-s(t)‖ almost everywhere. Moreover, it is
found that once the sliding modes are enforced, εho-s(t)∆t ≈
εindi-s(t), ε̇ho-s(t)∆t ≈ ε̇indi-s(t). For most sliding mode
control/observer designs, the minimum possible gains are de-
termined by the norms of the uncertainty terms or the norms
of the corresponding derivatives. Therefore, for maintaining
the sliding modes, the minimum possible gains required by
HOSMC approximately equal those needed by INDI-SMC
divided by ∆t. Even so, these two control structures lead to
comparable chattering magnitudes, which are efficaciously
reduced as compared to NDI-SMC.
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