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Abstract1

Listening in noise is a challenging problem that affects the hearing capability of not only normal hearing2
but especially hearing impaired people. Since the last four decades, enhancing the quality and intelli-3
gibility of noise corrupted speech by reducing the effect of noise has been addressed using statistical4
signal processing techniques as well as neural networks. However, the fundamental idea behind imple-5
menting these methods is the same, i.e., to achieve the best possible estimate of a single target speech6
waveform. This thesis explores a different route using generative modeling with deep neural networks7
where speech is artificially generated by conditioning the model on previously predicted samples and8
features extracted from noisy speech. The proposed system consists of the U-Net model for enhanc-9
ing the noisy features and the WaveRNN synthesizer (originally proposed for text-to-speech synthesis)10
re-designed for synthesizing clean sounding speech from noisy features. Subjective results indicate11
that speech generated by the proposed system is preferred over listening to noisy speech however,12
the improvement in intelligibility is not significant.13
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11
Introduction2

The problem of enhancing speech that is degraded by uncorrelated additive noise has received much3
attention [1, 2]. In the earlier years (1980 − 2015), this problem was mainly viewed as a statistical4
signal processing problem [3–6]. The classical speech enhancement approaches analyze the speech5
signals in the frequency domain, apply suitable gains by designing filters to suppress bands where noise6
is predominant and then synthesize the spectrum back to a waveform. The calculation of appropriate7
filter gains was dependent on the noise and speech power spectral density estimates [2]. For stationary8
noise, this gain calculation was relatively straightforward, but in case of non-stationary noise, statistical9
estimation techniques were used to actively track the varying noise power [5–7]. Relatively fewer10
attempts have been made by approaches based on machine learning or deep learning but this number11
is increasing drastically since 2013 [8–13].12

Recently, there has been a boost in using machine and deep learning based methods for solving13
problems in several domains of science and engineering. Among the reasons why, are that deep Neural14
Networks can take advantage of large training sets and infer structure autonomously whereas most15
heuristic and statistical approaches require much more upfront definition by engineers to achieve high16
performance. Deep learning approaches have achieved state of the art results for various problems17
in the field of computer vision, language processing and speech recognition [14–16]. In recent years,18
classical signal processing strategies for the task of speech enhancement have been outflanked by19
machine learning and deep learning approaches [8, 10, 12]. Most methods introduced, so far, rely on20
regression based techniques that attempt to map to the waveform or spectral features of speech in21
the clean dataset from the noisy one [8–10, 13]. However, it is believed that there are limitations in22
their performance in terms of speech quality due to distortions and artifacts. This aspect is discussed23
in more detail in section 1.1.24

Since the last five years, research in the field of deep learning is tending towards Generative Neural25
Network models [14, 17–20]. Certain applications, such as, Text to Speech conversion have been26
said to achieve their pinnacle after the recent introduction of generative models called WaveNet [19]27
and WaveRNN [21]. The advent of Generative Adversarial Networks (GANs) by Goodfellow et al. in28
2014 [18] has provided a new perspective of looking at problems of style transfer in images, caption29
generation for images, video and music generation. The aim of this thesis is to acquire inspiration30
from existing generative modeling techniques and develop a new generative model for enhancing the31
quality and intelligibility of noise corrupted speech and also evaluate its performance. The motivation32
and goals behind employing a generative model for a speech enhancement task will be stated more33
clearly in 1.2.34

In hearing aid devices, resources such as computational power, memory, etc. are restricted by35
orders of magnitude as compared to the processing units on high-end servers where Deep learning36
models are actually implemented. Therefore, applying neural networks on a hearing aid device is not37
straightforward and requires a strong understanding of how the benefits of Neural Networks ensue.38
This thesis attempts at designing neural network with compact architectures that consume less com-39
putational and memory resources. The proposed architecture is not yet ready to be deployed on a40

1
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hearing aid device but has the capability to be easily deployed on a mobile phone CPU. Now-a-days, a1
mobile phone is also a part of the hearing aid system, and it operates at a higher power, can perform2
faster computations and has more memory than a hearing aid device. A comparative analysis on the3
computation and memory requirements for the proposed network will be conducted, and followed by4
a discussion on its applicability in current hearing aid systems.5

This chapter consists of three sections; first, the gap in research, contributions of this thesis and6
motivation behind this study are described in section 1.1. This is followed by section 1.2 where the7
goals of this research are stated explicitly. Thereafter, an overview of the entire thesis is provided in8
section 1.3, which briefly explains the contents within the subsequent chapters.9

1.1. Research Gap & Contributions10
Most solutions developed for the problem of speech enhancement have been implemented by analyzing11
the speech signal in the frequency domain [1, 2, 8, 9]. Traditional signal processing techniques are an-12
alytically derived such that the system should produce speech that is the best estimate of the reference13
in terms of the minimum mean square error [2]. This leads to distortions and artifacts present in the14
output speech which shows room for further improvement in quality. The shift towards machine/deep15
learning approaches have lead to certain improvements in results in terms of quality and intelligibility16
[12, 13, 22]. The advantages of these models over classical methods is that instead of being derived17
from a set of assumptions, they learn characteristics from data to adapt themselves such that they18
can generalize to unseen scenarios. Additionally, they apply non-linear transformations which lead to19
an effective mapping. However, most deep learning methods developed for the task of speech en-20
hancement also minimize either the least squares metric or the mean absolute distance between the21
estimated and reference spectral features or waveforms [8–13, 22–24].22

The aim of majority of the research done so far in the field of speech enhancement has been to either23
reproduce the target waveform or reproduce target features and then synthesize them to a waveform.24
This ideology is revealed by the definition of their objective, i.e., minimizing the distance between the25
system output and the target. This thesis looks at the problem from a different perspective. If one26
visualizes the speech waveforms or spectra of multiple recordings of the same utterance, it is observed27
that these waveforms or spectra are not the same. This can be seen in figure 1.1 where four different28
recordings of the word ”Hello” spoken by the same talker have been displayed. This shows that a29
particular waveform is not unique to the information conveyed by speech. Hence, trying to map to30
one particular reference or target seems to limit the performance of such systems and causes output31
speech to be distorted.32

Figure 1.1: Multiple recordings of the word ”Hello” spoken by the same talker
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The system proposed in this thesis attempts at artificially generating speech by modeling it as a1
conditional probability distribution dependent on previous speech samples and the context provided2
by features extracted from noisy speech. This can be achieved with the help of generative models for3
speech synthesis such as WaveNet [19] or WaveRNN [21] that have been originally designed for the task4
of speech synthesis from text. Literature shows an increasing trend towards using generative models for5
speech enhancement but these methods also partially rely on minimizing the distance metrics between6
the speech waveform or features [12, 22]. Hence, there does not exist a completely generative model7
for speech enhancement. The contribution of this thesis is to explore the domain of generative modeling8
of speech and propose a system that can synthesize clean sounding and understandable speech from9
context provided by noisy features.10

1.2. Research Goals11
After highlighting the gap in the research of speech enhancement and proposing a novel route for12
solving the problem in section 1.1, this section specifies the goals of this research. This thesis report13
aims to address the following research questions.14

How can clean sounding and intelligible speech be generated when the context pro-15
vided to a generative model is noisy16

hat are the functionalities of the key components used in the proposed generative17
model18

1.3. Overview of the Thesis19
This section briefly summarizes the contents within the chapters in this report. The aim of this section20
is to guide the readers by providing a gist of the narrative and highlight important outcomes from every21
chapter upfront. The beginning of each chapter has an introduction explaining the topics covered in22
it. The chapters are organised as follows:23
Literature Review24
This chapter focuses more on existing solutions for the problem of speech enhancement and also speech25
generation or synthesis. Literature right from classical signal processing to deep neural networks are26
explored and critically evaluated. The transition from classical signal processing methods to machine27
learning approaches is explained. Generative methods outside the scope of speech synthesis have also28
been studied in order to gain inspiration with the aim to apply them for this research. After weighing29
the advantages and disadvantages of various generative neural network modeling techniques, the30
WaveRNN synthesizer is chosen for the desired task.31
Feature Engineering32
The definition and derivation of features obtained from speech such as spectrograms, Mel spectrograms,33
Mel frequency cepstra and Spectral Delta are discussed in this chapter. A non-conventional method for34
normalizing the data using the sigmoid function is proposed. An analysis that compares different noise35
contaminated features with their clean ones indicate the effect of noise on speech information. Since,36
the WaveRNN model needs context that delivers appropriate information about speech, this chapter37
also aims to find the best possible feature representation.38
The WaveRNN Synthesizer39
This chapter provides a detailed description of the design, training and audio generation procedures for40
the WaveRNN architecture. Experiments conducted and results obtained are discussed. An analysis of41
the results, network performance and its components reveal interesting findings about the functionality42
of the system. It is concluded that synthesizing audio from a WaveRNN model trained directly with43
noisy features as context does not yield understandable speech as compared to that when trained with44
clean features. Hence, the noisy features must be enhanced before audio synthesis.45
Denoising Features46
Based on the conclusions from chapter 4, different denoising networks are proposed in this chapter,47
namely, the U-Net and the Variance constrained Auto Encoder (VCAE) architectures. Their design,48
theoretical interpretation, training and inference procedures are described. Furthermore, it contains49
a discussion on results obtained from training these networks for different configurations. Despite50
conducting a comparative analysis on the denoised features obtained from both types of architectures51
and the network performance, it was difficult to finalize on a particular network at this stage.52
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Fine-tuning the Synthesizer1
The principles of transfer learning are highlighted and applied in this chapter to fine-tune a WaveRNN2
synthesizer with denoised features that was initially trained on clean features. Denoised features from3
both the U-Net and VCAE networks were utilized for fine-tuning the synthesizer. With the proposed con-4
figuration and settings for both feature denoising architectures, results revealed that the combination5
of the WaveRNN synthesizer with the U-Net architecture yields better quality speech than that with the6
VCAE network. Finally, the generated speech samples are also compared with existing state-of-the-art7
speech enhancement models.8

Conclusion & Discussion9
The final chapter encompasses a discussion section about the advantages and drawbacks of the pro-10
posed method for speech enhancement. It also gives an insight into the applicability of this method11
in existing hearing aid systems. In the end, some remarks on the future extensions of this project are12
made.13

Bibliography & Appendix14
The bibliography lists all sources referred to while pursuing this research. There are in total four15
appendices where appendix A describes fundamental signal processing and machine/deep learning16
concepts relevant to the subject of the thesis. The topics mentioned in this chapter are discussed from17
a theoretical perspective. It provides information about basic functioning of different neural network18
modules which can then be extrapolated to understand the proposed system. Appendix B highlights19
some extra experiments (besides the ones mentioned in the main text) that contain valuable details.20
Appendix C mentions the configurations for all the experiments mentioned in the main narrative as21
well as the ones in appendix B. The last appendix contains a table of specifications for the hardware22
devices used for experimentation, a mobile phone CPU and a hearing aid processor.23

Note24
Experimentation performed and analysis conducted were implemented in the ’Python’ programming25
language. The ’PyTorch’ deep learning framework developed by Faceboook was used for implemen-26
tation of the neural networks [25]. The audio files for examples discussed in the experiment sections27
of chapters 4, 5 and 6 are uploaded on this link. The link contains directories and sub-directories for28
the chapters and their experiments respectively. Apart from the examples used to discuss the results,29
other examples are also shared. The readers are advised to listen to the audio files which can help30
evaluate and understand the results better.31

https://drive.google.com/drive/folders/1N4q_JkNImB5NTSTtprw8uGZ991j3E1ge?usp=sharing


21
Literature Study2

This chapter delineates the journey of the development that has occurred in the field of Speech en-3
hancement right from the classical methods to the current trend in deep learning approaches. Some4
examples also portray the co-existence of both approaches in finding solutions to related problems.5
Research that has led to significant improvement in speech quality and intelligibility are mentioned and6
discussed. Certain drawbacks in these systems are also highlighted which led to the development of7
better systems. Certain distinctive characteristics from all possible methods are kept in mind so that it8
would be helpful while implementing the desired approach based on generative neural network models.9

10

Recent study in deep learning focuses more on generative neural networks as compared to the11
regression based approaches. In contrast to the conventional estimation techniques that focus more12
on increasing signal to noise ratio, the philosophy of artificially generating clean speech from noisy13
speech or its features is the driving force behind pursuing this direction of research. State-of-the-art14
generative deep learning methodologies not only designed for speech enhancement but also applied in15
the realms of computer vision, text-to-speech conversion and speech recognition are investigated. The16
aim is to shed light on some striking features and unique ideas that have led to a progress. Inspiration17
is sought from literature that have introduced novel network architectures, training procedures and18
their interpretation. Exploring different domains help discover opportunities to apply those ideas for19
the problem of speech enhancement.20

2.1. Classical Speech Enhancement Methods21
This section highlights one of the classical speech enhancement systems shown in figure 2.1. Most22
modules from this block diagram still play an active role in telecommunications and hearing aid systems.23
Speech is analysed by dividing it into short-time segments (usually 20 − 40 ms) to ensure wide sense24
stationarity and then transformed into the frequency domain. This helps in obtaining reliable spectral25
estimates. The processing pipeline is applied in the frequency domain and later the speech waveform26
is synthesized by using a short-time inverse Fourier transform along with an overlap and add module.27
The processing pipeline consists of 4 blocks that serve different purposes.28

The ’Apply Gain’ block applies suitable gains to certain frequency bands at different time segments29
that are calculated in the ’Target Estimation’ block by methods such as spectral subtraction [1] or30
Wiener filtering [2] (descibed in Appendix A segment A.1.3). The function of this block is to suppress31
those frequency bands in which noise is predominant so as to increase the Signal to Noise ratio (SNR)32
for the enhanced output speech. Furthermore, this module faces a difficulty in generalizing to different33
types of background noises in practice [5]. To circumvent this effect, some additional modifications34
have to be added to the system such as ’Noise PSD Estimation’ which employs statistical models for35
voice activity detection [4, 26]. Later, they were substituted by superior modules that could actively36
track non-stationary noise [5–7] and adapt to different types of background noises by minor parameter37
tweaking. A ’Target PSD Estimation’ module is used for recursively estimating the signal to noise ratio38
[27]. The processing pipeline also relies on prior information either about the speech or noise signals39

5
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Figure 2.1: Block diagram of a Classical Speech Enhancement System

or the mixing process. This helps in further improving the system performance. Such techniques have1
led to a notable improvement but minor distortions still exist due to the tracking delay introduced by the2
modules. These systems could greatly improve the intelligibility but there is still room for significant3
enhancement in speech quality. In this section, a survey of some state-of-the-art signal processing4
approaches are presented.5

2.1.1. Noise Power Estimation6
Noise Power Spectral Density Estimation plays an essential role within a speech enhancement system7
because it allows the system to adapt its parameters according to the change in noise characteristics8
over time leading to better enhancement in speech quality. The first step towards solving this problem9
is to determine speech activity. Hence, a voice activity detection (VAD) module is used to differentiate10
between speech and non-speech activity in noisy speech conditions. Speech activity is further classified11
into voiced and unvoiced speech. Detecting unvoiced speech within noise is a challenging problem12
to solve because their energy levels normally lie within the same range. Rabiner et al. proposed13
thresholding short-time energy levels and zero crossing rate (ZCR) [28] in the time domain to solve14
this problem. This rudimentary approach yielded a binary mask which was then applied to noisy15
speech. Despite being sufficiently reliable in capturing some details from unvoiced speech, there exist16
unprecedented glitches and distortions especially in low SNR situations.17

Statistical model based algorithms were introduced which made soft decisions over voice activity18
instead of hard binary rulings. This was further improved by Sohn et al. where the model parameters19
were estimated first by means of a decision-directed (DD) approach [4] before detecting voice in20
speech. This led to high detection accuracy as compared to the conventional algorithms. All statistical21
approaches so far assumed that speech spectra was characterized by Gaussian distributions but a study22
in 2003 revealed that they could be described more effectively with Gamma and Laplacian distributions23
[29]. As a result, the distributions defining the hypothesis functions for speech and noise changed24
which boosted the efficiency in detection [26]. One drawback in VAD based models was that it was25
difficult to detect sudden rise in noise power and was usually interpreted as speech onset especially for26
non-stationary noise scenarios [6]. Additionally, noise was not suppressed appropriately in segments27
where it co-existed with speech. Thus, some fragments in estimated speech sounded silent whereas28
some noise was still audible in the speech components. This led to an idea of estimating noise statistics29
in silence periods which can then be used to actively track and minimize its presence during speech30
activity.31

Certain speech enhancement systems contain both VAD models to determine speech activity as32
well as models to track the noise power spectral density during no speech activity so as to effectively33
suppress the effect of noise during speech activity [30]. Although, there exists some methods that34
completely replace the VAD process and directly perform noise tracking [5–7]. R. Martin proposed35
to do so by tracking the spectral minima in each frequency band irrespective of speech activity or36
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pause [5]. The algorithm recursively smooths out the power spectrum with an optimal smoothing1
parameter obtained by minimizing a conditional mean square error. In order to track the minima of the2
periodogram, a collection of large number of frames is required to ensure that speech activity is less.3
This introduces large tracking delay in the order of 1 − 2 seconds resulting in an underestimation of4
the noise variance [31]. Thus, a bias compensation is applied which gives approximate solutions. The5
performance is accurate for stationary and slowly varying noise but in case of a sudden rise in noise6
level it fails to catch up due to the large delay resulting in residual noise.7

A different viewpoint for solving this problem was provided by Hendriks et al. by using a Bayesian8
minimum mean square estimation [7] of the noise power given the noisy speech spectrum. Their9
method significantly reduced the tracking delay by applying an analytically derived bias compensation10
that can effectively counter noise under-estimation. In cases where the noise level changes abruptly,11
the recursive parameter updates may stop and lead to stagnation which in turn stops tracking. Hence,12
it also employs a safety-net by storing past noisy periodogram frames up to 0.8 seconds to overcome13
this stagnation. This makes the system memory inefficient. Moreover, it cannot compensate well in14
case of an over-estimation. Later, they proposed an unbiased estimator based on speech presence15
probability that neglects the bias compensation and the safety net in [7] thus reducing the complexity16
[6]. A significant improvement in terms of reduced complexity and memory requirement is achieved17
by replacing the safety-net with a limit on the SPP parameter update. There is slight improvement18
in tracking delay but residual noise components would still be present due to this delay. However, it19
provides very reasonable estimates for tracking both stationary and non-stationary noises.20

2.1.2. Speech Power Estimation21
The estimation of speech power spectral density is a challenging task as speech is even more non-22
stationary than most noises and so the speech periodogram exhibits large variance. A simple estimate23
of the speech power spectral density can be obtained by maximizing the likelihood function with respect24
to the clean speech variance. However, this gives rise to isolated spectral peaks in the estimated25
speech spectrum due to large fluctuations in the noisy speech periodogram [31]. Upon synthesis, these26
peaks are perceived as musical noise. The effect of musical noise can be reduced by averaging over27
successive noisy periodograms by assuming independent successive bins. However, this assumption is28
violated in practice due to the non-stationary nature of speech thus giving rise to distortions in speech29
onsets and transients and resulting in poor quality. Hence, Ephraim & Malah introduced a soft-decision30
based approach called the decision directed estimator that recursively updates the clean speech power31
spectrum based on the estimates in the previous frame [27].32

The decision-directed method is a way of applying adaptive smoothing for fast tracking of increasing33
levels of the speech power. Consequently, fewer speech distortions are introduced at speech onsets and34
transitions as compared to the averaging. Nonetheless, being sensitive to rising spectral amplitudes,35
the issue of musical noise is not completely overcome. It not only responds to speech onsets, but36
also to abrupt shifts in the noise signal. Therefore, outliers in the noise are likely to contribute to37
the residual noise in the clean-speech estimate which may be perceived as annoying musical tones. In38
order to control the trade-off between the distortions and the effect of the residual noise, the smoothing39
parameter and a limit on the a priori signal to noise ratio must be carefully tuned [3].40

Summary & Remarks41
As seen in this section, a classical speech enhancement system consists of several modules dedicated42
for handling tasks such as speech estimation, noise tracking, speech power estimation and finally43
applying suitable gains to the frequency bands in the noisy speech spectra. These systems are derived44
analytically by studying the speech and noise distributions. To briefly summarize, the goal of this45
system is to suppress those frequency bands in which noise predominantly exists and enhance the46
ones in which speech prevails. This improves the intelligibility factor by a considerable degree but47
the enhancement in quality is limited due to existence of distortions and residual noise components.48
This occurs because of several reasons such as tracking delay introduced by recursively updating the49
parameters and suppression of bands in which speech and noise co-exist.50

Most of the techniques seen so far assume that Speech DFT coefficients are Gaussian distributed for51
simplicity in analytically deriving the formulations despite knowing that the coefficients tend to be more52
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super-Gaussian. Non-linear systems based on gamma and laplacian distributions are difficult to develop1
and analyze. Designing non-linear systems for this task is important to preserve the non-linearity in2
speech. Moreover, the human auditory system also applies non-linear transforms on speech. Due to the3
complexity involved in developing non-linear systems analytically, it seems promising to explore neural4
networks for this task because of their highly non-linear nature and their ability to adapt themselves5
to the data.6

2.2. Speech Enhancement using Deep Neural Networks7
Recently, Deep Neural Networks are also applied to the problem of speech enhancement and they seem8
to outperform most of the traditional techniques [8–11, 13, 23, 32, 33]. In this section, deep neural9
networks developed for processing speech that are based on a regression approach are highlighted.10
These techniques are called regression based because they minimize a distance metric between the11
network estimated speech features and the corresponding clean speech features. The usage of Neural12
network architectures enable high non-linearity in these systems which leads to an improved estimation13
of the speech manifold. Different methods are categorized according to the type of architectures used14
in the following sections.15

2.2.1. Fully-connected Neural Networks16
Xu, et al. designed a flattened, dense and fully connected feed forward DNN architecture that employs17
a non linear regression function on spectrograms of noisy and clean speech [8]. Certain strategies such18
as global variance equalization, noise aware training and dropout were implemented so as to improve19
the generalization capabilities of the network [8]. Experimental results indicated an improvement20
over classical methods in terms of objective measures. However, the estimated waveform does contain21
distortions for examples with mid and low Signal-to-Noise ratios. Distortions occur because this method22
minimizes the 𝐿 norm objective function between the network output and reference spectrograms.23
Thus, the model tries to match high energy (low frequency) signals precisely but fail to do so for low24
energy signals (high frequency). Moreover, for high dimensional spaces, distance metrics such as 𝐿25
norm tend to perform better than the 𝐿 norm [34].26

Instead of feature estimation, mask approximation methods namely, Ideal Binary Mask (IBM) [32]27
and Ideal Ratio Mask (IRM) [33] were proposed for estimating the target gain vectors using fully28
connected networks. The predicted gains were multiplied with the noisy speech spectrum to estimate29
the reference spectrum. An IBM is defined by applying a unity gain if the Signal-to-Noise Ratio (SNR) is30
greater than a pre-defined threshold and otherwise the gain is set to zero. A fully-connected network31
developed to estimate the IBM for speech enhancement [32] led to improvements as compared to some32
classical approaches. A significant improvement in speech intelligibility was reported. However, this33
system was based on using prior information not available in real life situations as the noise sequences34
used during training and testing were similar [35]. Thus, these systems did not reveal any information35
about performance in real life scenarios. Although, estimating an IBM led to a good performance, a36
continuous mask might perform better than a binary segmentation that seems too coarse for scenarios37
where speech and noise are likely to be present at the same time [33]. Additionally, a binary masks38
would cause more artifacts to be present in the estimated speech due to sudden changes. Thus, an39
IRM replaced the IBM where an IRM greatly resembles the Wiener filter in frequency domain with a40
tuning parameter. Note, that the IRM is not statistically optimal and was just motivated heuristically. A41
DNN trained for estimating the IRM target outperformed the IBM in terms of quality and intelligibility42
[33]. Though, it could not generalize well for varied types of noises such as babble and cafeteria noise43
but did considerably well for certain noise types not seen during training [35].44

2.2.2. Recurrent Neural Networks45
The benefit of using RNNs for this purpose is that it estimates the current set of samples by considering46
it’s relationship with the previously predicted samples. The system proposed by Osako et al. was47
partitioned into three LSTM [36] layers where one each was designed to track noise, track speech48
and perform filtering [10]. Two different networks were trained, one for the magnitude spectrum49
and the other for the complex spectrum and concluded that both outperformed spectral subtraction50
[10]. The network trained for complex spectrograms outperforms the one trained using magnitude51
spectrograms because noisy phase was reused in the latter whereas it was estimated in the former. It52
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is crucial to estimate the correct phase especially for low SNR examples. However, the improvement1
was not very significant because the 𝐿 norm minimization in the complex domain is not analytic and2
not differentiable, hence it had to be approximated [10]. Osako et al. believe that by altering the3
objective function they minimize, the output could be improved.4

Jean-Marc V. developed a hybrid end-to-end speech enhancement system using Signal Processing5
techniques to extract features and RNNs to estimate the ideal ratio band gains that are applied between6
pitch harmonics along with pitch comb filters to attenuate the noise [11]. It produces significantly7
higher quality audio as compared to the traditional MMSE spectral estimator while having a complexity8
low enough for real-time operation on CPUs [11]. The architecture uses Gated recurrent Units (GRU)9
[37] as it outperforms LSTMs on this task [11]. Jean-Marc V. also reports that the loss function and10
training data construction plays a more significant role on the final quality of the results as compared11
to altering the network architecture [11].12

2.2.3. Convolutional Neural Networks13
Convolutional Neural Networks (CNNs) are also successful at enhancing noise corrupted speech signals.14
CNNs are known to have lesser trainable parameters as compared to Recurrent Neural Networks (RNNs)15
and Feed-forward Neural Networks (FNNs) which can make them suitable for applications which require16
less hardware resources [9]. However, CNNs are not suitable for real-time speech processing applica-17
tions since they operate on blocks of data. S. Park and J. Lee introduced a novel network architecture18
called Redundant Convolutional Encoder Decoder (R-CED) which extracts redundant representations of19
a noisy spectrogram at the encoder and maps it back to a clean spectrogram at the decoder [9]. The20
network minimizes an 𝐿 norm between the clean and estimated denoised spectrograms. There is a21
slight improvement in speech quality as compared to RNNs and FNNs which is suggested by objective22
evaluation metrics. However, as discussed in section 2.2.1, the usage of 𝐿 norm yields a distorted23
output. Also, instead of extracting time-frequency spectral features, CNNs can also be applied directly24
on speech waveforms as they are known for temporal signal modeling as well [38].25

Rethage et al. proposed a method for speech denoising using the WaveNet architecture. WaveNet26
is an autoregressive model used for generating speech samples from text inputs which is described27
in detail in section 2.3.2. However, this denoising method discards the generative modeling aspects28
and rather adopts a regression based discriminative model [13]. Additionally, their model introduces29
non-causality based on a facet that real-time applications can afford a few milliseconds of latency.30
However, this is not valid for real-time operations since future information is not available. Rethage31
et al. introduced an ’Energy-conserving loss’ which is a combination of the standard 𝐿 loss for the32
estimated denoised signal and the estimated noise with respect to their respective references. The33
proposed model estimates not just one sample but a set of samples as compared to the original WaveNet34
which reduces the time-complexity problem in the latter [13]. The model is also conditioned on a binary35
encoded scalar corresponding to the speaker identity which has shown marginal improvement in results36
tested for the dataset but this information is unknown in many situations which questions its benefits37
in real-time application scenarios.38

An end-to-end system based on a fully convolutional network architecture using context aggregation39
was developed for Speech Denoising [23]. This paper achieved state-of-the-art results in 2018. Ger-40
main et al. designed a system comprising of 2 CNNs, where one performs the denoising on raw speech41
waveforms (called Denoising Net) and the other performs an audio classification (called Feature Loss42
Net). First, the Feature Loss Net is trained for an acoustic scene classification task. This pre-trained43
Feature Loss network is then used to train the denoising network. The denoising network minimizes a44
loss called ’feature’ loss that is defined by computing the weighted 𝐿 norm on the difference between45
the feature activations in different layers of the Feature Net corresponding to the reference speech46
waveform and the noisy speech waveform. This loss function was inspired from a computer vision47
research for image stylization and synthesis [39].48

Summary & Remarks49
All the methods discussed so far in the domain of deep learning have focused on speech enhancement50
based on regression. By incorporating various techniques, hybrid systems, different architectures all51
the approaches in the end attempted to either match the estimated speech waveform or spectral fea-52
tures (without correctly estimating the phase) with that of the reference. This was done by minimizing53
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distance metrics such as 𝐿 , 𝐿 norms or the newly introduced ’Feature’ loss. The ideology behind this1
comes from an assumption that there is only one possible target speech waveform. The addition of2
noise introduces some uncertainty because of which details in the speech information are lost com-3
pletely. Due to such mixing, the information is not conveyed correctly and it is difficult to retrieve the4
original target.5

In order for the networks to succeed in correctly estimating the clean speech waveform, they6
require information about that particular waveform in terms of features or other representations as7
input. However, such information is not available in real application scenarios. As depicted in chapter8
1 section 1.1, it is very unlikely that multiple recordings of the same utterance to have the same9
waveform. Thus, there is a possibility for a different objective apart from matching the waveform or its10
features. Following such a route has indeed displayed considerable improvement in listening but it has11
its limitations in terms of quality. As a result, the following sections in this chapter explore, generative12
neural network models as they can generate clean sounding speech samples by not constraining the13
system to preserve a particular waveform.14

2.3. Generative Neural Network Models15
As inferred by the concluding paragraphs of the previous section 2.2, a scope to explore generative16
neural network models was induced. Because generative models learn an effective mapping that can17
imitate the training data distribution, it can generate novel samples belonging to such a distribution.18
In the following segments, different generative models related to speech enhancement [12, 22, 24,19
40] and speech synthesis [19, 21, 41] are discussed.20

2.3.1. Generative Adversarial Networks21
Very recently introduced, Generative Adversarial Networks (GANs) were also used for speech enhance-22
ment [12]. Most of the techniques discussed previously were designed to be used in the frequency23
domain whereas this method uses the raw audio waveform directly thus preserving information re-24
garding phase. Having being trained for different speakers and noise types, the system incorporates25
generalization through shared parametrization [12]. GANs have shown good results when it comes to26
images but this is the first attempt at using GANs for audio [12]. Here, an encoding-decoding con-27
volutional network with residual skip connections is used as the Generator network which takes the28
noisy speech signals as inputs and attempts to recreate clean speech signals with the help of the Dis-29
criminator network. One highlight of the generator is that it is an end-to-end structure. This system30
shows improvements in results as compared to the Wiener Filter in terms of subjective and objective31
measures. The objective function optimized by this network was inspired by Least-squares GAN [42].32
After preliminary experiments, Pascal et al. found it convenient to add an 𝐿 metric to the generator33
objective function so as to minimize the distance between the generated waveform and and its cor-34
responding clean samples. Moreover, experiments in [43] reveal that the SE-GAN method also relied35
more heavily on the 𝐿 norm minimization as compared to the GAN objective. The generative aspect36
came into effect once the model was trained well enough to be able to replicate the speech waveform.37
Thus, the true potential of GANs has not been harnessed. The system runs into a instability issues due38
to mode collapse if the 𝐿 criterion is discarded.39

Training GANs is a tedious task and requires patience as they can be very unstable. Certain mea-40
sures need to be undertaken in order to train them efficiently and encourage convergence as mentioned41
in [44]. The performance of GANs was further improved in terms of stability by using the Wasserstein42
loss criterion [45]. These networks are called Wasserstein Generative Adversarial Networks (WGANs).43
However, in certain situations these models also faced problems while training. To solve these problems44
certain strategies were suggested in the paper [46] which have proven to improve the performance45
of WGANs. One of the striking modifications was to penalize the norm of the gradients in the WGAN46
objective function and Gulrajani et al. named this technique Wassersteins GAN with Gradient Penalty47
(WGAN-GP). Experiments in [43] show that implementing these changes over the architecture em-48
ployed in [12] enforces stability, however, the generated speech samples contained high frequency49
leaks. This occured due to implementation issues mentioned in [47] and can be rectified by hyper-50
parameter tuning.51
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Further literature study revealed that Shan et al. had developed a similar speech enhancement sys-1
tem using ’WGAN-GP’ [40]. However, the generator objective function also incorporated a weighted2
sum of both 𝐿 and 𝐿 metrics between the generated speech waveform and its reference. The pro-3
cedure to set weights controlling the contribution of these metrics to the overall loss function is done4
through trial and error [40]. This change fails to add much value and also improvements in the results5
are very minor. Thus, these examples of GANs for speech enhancement exhibit the need for superior6
network architectures and improvements in finding better regularization metrics that not only stabilize7
the training but also yield better quality results.8

In 2018, a group of researchers from NVIDIA corporation developed a novel generator architecture9
which yields state-of-the-art results and generated images with high-quality resolution [14]. The GAN10
is designed for the application of style transfer to morph the style of an image with another image11
which results in generating a new image that is a blend of both the input images. The proposed12
study introduces a way of reducing the entanglement in the feature space which leads to drastic13
improvements in image quality. Similarly, the idea can be extended to noisy speech being morphed14
to clean speech. Takeru et al. introduced a new study that aims to improve the instability in GAN15
training by proposing a regularization metric based on the spectral normalization of weights of the16
discriminator network [48]. Spectral Normalization is a method in which the weight of every layer in17
the discriminator is regularized by estimating the largest singular value for that layer using iterative18
techniques. Additionally, the method is free from intensive hyper-parameter tuning and does not even19
incur additional computation cost. claim that this regularization technique improves the quality of20
generated samples as compared to many previous techniques. The method seems promising to be21
implemented for improving the performance of the SE-GAN architecture. By constaining the weights of22
the network, the flow of information can be controlled which could lower the amount of high frequency23
leaks in the generated speech samples.24

2.3.2. Autoregressive Temporal Convolutional Networks25
van den Oord et al. developed a state-of-the-art deep neural network model that produces natural26
sounding speech from textual features. WaveNet is a fully probabilistic and autoregressive model that27
predicts the distribution for each audio sample conditioned on previous ones [19]. In order to capture,28
the short term and long term temporal dependencies in modeling audio, the network was designed29
using dilated causal convolutions [49] [50] with large receptive fields. The network outputs a categorical30
distribution over the next sample value with a softmax layer [19] and is optimized to maximize the31
log-likelihood of the data with respect to the parameters. Furthermore, to make the computations32
more tractable, 𝜇-law companding transformation [51] was used to quantize the audio sample to 8-bit33
values instead of a simple linear quantization scheme. The model can also produce different kinds34
of voices by conditioning the data on speaker identity [19]. Subjective MOS test results indicate that35
the quality of generated speech is significantly better than all existing systems. One of the trade-offs36
of using WaveNets is that it has a massive architecture and requires more computational resources37
thus having a larger training time. Despite of taking many steps at reducing the time complexity by38
incorporating dilated convolutions and residual skip connections [19] it still requires large resources. A39
faster implementation of WaveNet that preserves the quality was launched very recently [52].40

Another attempt addressing the problem of speech enhancement was made using the WaveNet41
architecture. This time its autoregressive and generative modeling properties were utilized. Qian et al.42
name it the Bayesian Speech Enhancement WaveNet framework as it uses three WaveNet models, one43
known as the prior model which learns the prior distribution of clean speech so as to regularize the44
output to be in the speech space and the other two form the likelihood model that learn to model the45
noise given the noisy raw audio and the estimated clean audio as input [24]. A combination of both46
these distributions is used to define the posterior expectation of the speech sample to be predicted.47
The likelihood model is very complex to train due to its humongous architecture and in addition to that48
it is non-causal in nature which it not very suitable for real-time applications. Moreover, the model is49
also speaker dependent and this information is not known in most real case scenarios. Moreover, due50
to increased complexity of the likelihood model, it is trained only on a small size of noisy training data51
thus making it less aware about the noisy conditions and more reliant on the prior model.52
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2.3.3. Autoregressive Recurrent Neural Networks1
The SampleRNN model consists of a hierarchical structure combining memory-less modules named2
autoregressive multilayer perceptrons (MLPs) and stateful modules such as LSTM [36] or GRU [37]3
modules to capture the variation in temporal sequences in order to generate audio samples one at a4
time [41]. This model is unconditional, i.e., it does not require any hand crafted features describing the5
properties of the generated audio waveform. The modules within this system operate at different clock6
rates (in contrast to WaveNets) such that a module dedicated for audio sample generation operates7
at the sampling frequency and another module that maps slowly varying long term dependencies8
(phonemes) operates at a slower rate [41]. Hence, it provides flexibility in allocating computational9
resources in modeling different levels of abstraction. Since, SampleRNN is an unconditional model, it10
cannot be used for modeling speech as the output would simply contain mumbling sounds with varying11
voice and no sensible information. In order to generate speech, additional information should be12
provided such as pitch, Mel frequency coefficients or even text [21]. However, this literature provides13
a novel network architecture that can be used for generating high quality audio. On conditioning the14
input data with features that contain information about speech, this network can be made suitable for15
generating speech.16

Thereafter, Kalchbrenner et al. proposed a sequential generative model with a focus on text-to-17
speech synthesis using single-layer RNN with a dual softmax layer that generates human-like sounding18
speech samples. Despite having a compact network architecture, the quality of generated speech19
samples match the state-of-the-art and at a rate much faster than existing text-to-speech models [21].20
The main goal of this paper was to reduce the time complexity in generating high-fidelity audio samples21
from text in order to make it real-time. Moreover, by applying a weight pruning technique the number22
of weights in WaveRNN are reduced considerably thus making it a sparse network. The single-layer23
RNN architecture along with a weight pruning method reduced the number of parameters and hence24
the computations to a great extent [21]. This also makes it possible to run this network on a mobile25
CPU. Later, an even faster version was proposed by adding a Linear Predictive Coding (LPC) scheme26
to the WaveRNN network called the LPC-Net [53]. WaveRNN uses text input as features (although not27
mentioned in the literature about how it is used) conditioned with the previously generated speech28
samples to generate new samples. For the speech enhancement application, features from the noisy29
speech can be either handcrafted or extracted with the help of another neural network. These features30
would represent information related to speech and hence can be used for generating clean sounding31
speech.32

2.4. Digital Signal Processing vs. Deep Learning33
This section highlights some striking differences between Signal Processing and Deep Learning ap-34
proaches. This helps in understanding certain advantages and disadvantages of both methods and35
justifying the shift to neural networks from signal processing.36

1. Linearity vs. Non-Linearity - For simplicity, most signal processing methods used for noise37
removal apply linear transformations which restricts their capability of effectively mapping the38
target space. There exist non-linear signal processing methods as well but deriving them analyti-39
cally and implementing them are difficult tasks. On the other hand, deep learning approaches are40
known to be highly non-linear processes and are thus suitable to capture non-linear aspects in41
speech as well. The human auditory system also involves many non-linear processes and taking42
inspiration from it to apply neural networks for processing speech is highly attractive. Moreover,43
given the fast-paced development in this field it is also relatively straightforward to implement.44

2. Assumption based vs. Data Dependency - The shift from statistical signal processing based45
approaches to machine learning and deep learning methods are due to the fact that the former46
methods are based on certain assumptions whereas deep learning methods infer structure from47
the data provided which makes them better in certain conditions. Moreover, with the abundance of48
data available today, it becomes very practical to solve complicated problems for which analytically49
derived solutions can sometimes be impractical. However, when data is scarcely available, the50
performance of deep learning systems drops as well. This is where signal/data processing or51
machine learning methods can help.52
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3. Scalability - Deep learning solutions are a bit more scalable than signal processing methods. The1
reason being that deep learning methods are capable of handling various types of input features2
and large data size. By simply tweaking hyper-parameters, a deep learning based system can3
accept input of any type and dimension and learn its mapping to a category. Whereas, signal4
processing methods will have to be derived again and re-designed for it to work for a different5
set of features or data. However, deep learning solutions are also limited on their scalability6
because they have to be re-trained everytime a hyper-parameter is changed. This can be very7
time consuming depending on the complexity of the system.8

4. Complexity - Signal processing solutions are less complex than deep learning solutions in terms9
of time, computational efforts, hardware resources and power consumption. From the trend in10
research, it is seen that the complexity of deep learning systems is on the rise as deeper networks11
are encouraged in order to improve model performance.12

Summary & Remarks13
Both CNNs and RNNs have shown their prowess in modeling sequential data streams. To proceed14
further, a decision has to be made for choosing a generative model to be implemented. Based on the15
existing generative models, a summary of the comparative analysis is made which helps in making this16
decision. Table 2.1 lists some characteristics of the generative systems which helps us compare the17
techniques.18

Table 2.1: Comparative Analysis between several Generative Models for raw Audio

Characteristics
Autoregressive

Temporal Convoluional
Networks

Autoregressive
Recurrent Networks

Generative
Adversarial Networks

Examples for
Speech / Audio
Applications

WaveNet, Parallel WaveNet,
ClariNet, Fast WaveNet WaveRNN, SampleRNN, Tachotron SE-GAN, SE-WGAN

Input Handling

Has a flexible receptive field due
to dilated convolutions which
makes these architectures capable
of handling a larger number of
input samples. Thus they are able
to capture long term and short
term dependencies in audio.

Long term dependencies can be difficult
to capture as an RNN cannot look as far
as a CNN in the input space. The inputs
need to be fed serially. They can capture
short-term dependencies very well.

The generator being made of CNNs
gives them a flexible receptive field
also making them capable of handling
a large number of input samples thus
enabling to capture long term and short
term dependencies in audio

Training Time

Convolutional Architectures
normally train faster on GPUs
due to their parallel nature and
shared parameterization.
However, given the network
size, number of parameters of
the models listed in the
examples, these networks take
longer to train.

Generally, Recurrent Architectures
being sequential in nature train slower
on GPUs. However, the models listed in the
examples have lower computation and
overhead times which makes them
equally fast or faster.

Having to train the Generator and
Discriminator architectures
simultaneously in one cycle, increases
the number of computations, thus
making them very long to train.

Training
Stability

The models use Residual blocks
of convolutional layers which
leads to stable gradients ensuring
stability in training.

Recurrent layers generally suffer
from vanishing / exploding gradients
due to backpropagation through time.
However, by using LSTM or GRU units
which the models in the examples use,
these problems do not occur.

Generative Adversarial Networks
are known for instability in training
due to vanishing / exploding gradients
and suffer from problems such as
mode collapse making them extremely
difficult to train.

Inference /
Generation Time

Despite requiring one sample at
a time for inference, audio
generation is quite slow due to
a complex network architecture.
Parallelizing WaveNets have led
to faster inference but longer
training. Thus,not suitable for
real-time applications.

Because Recurrent Networks maintain
a single hidden state and have lesser
number of parameters, they are capable
of generating samples much faster.

They are moderately fast because
only the generator is used. They
are not capable of generating audio
one sample at a time recursively as
compared to the other 2 methods and
require blocks of audio for generation.
This makes it unsuitable for real-time
applications because of latency
issues.

Memory
Retention

It has a larger memory retention
due to large receptive fields and
shared filters.

Relatively lower in practice due to a
single hidden state. It can be improved
by stacking more recurrent layers,
however it would increase training and
inference time.

It also has a larger memory retention
due to shared filters in convolutional
architectures.

Hardware
Requirements

Hardware requirements are large
due to heavy computations.

Hardware requirements are extremely
small due to the less complex
architecture.

Hardware requirements are moderate
as only the generator is used.

Performance
Quality of generated speech is
extremely good. Achieving
state-of-the-art MOS scores.

Quality of generated speech is below
TCNs but by a very small margin.

Quality of generated audio, is not upto
the mark and suffers from distortions.

Amongst all the Generative modeling techniques seen so far, autoregressive TCNs have shown19
better performance in terms of output speech quality. However, they come with a highly expensive20
computational power. Autoregressive RNNs, being less complex and not computionally hungry, have21
also proven to perform well enough. Weighing the strengths and trade-offs of all the methods, Wav-22
eRNNs seem to be a practical approach to begin experimenting with.23



31
Feature Engineering2

The field of machine learning and pattern recognition rely on features that are characteristics of the3
data or measurable entities obtained from the data under observation. It is crucial to choose features4
that are informative, discriminative and independent in nature. This facilitates a better representation5
of the input space and so analyzing features plays an important role in order to make an appropriate6
choice. Deep learning models are known to extract their own learned feature representation from data.7
Input features to neural network models may or may not be independent.8

This chapter is structured as follows where first characteristics of the dataset used for implementing9
the speech enhancement is mentioned. This is followed by segments explaining different features that10
can be extracted from speech and used as input for neural network models. These features include the11
speech waveform itself (section 3.2) and different time-frequency spectral features of speech such as12
spectrograms (section 3.3), Mel spectrograms (section 3.4) and Mel Frequency Cepstrum Coefficients13
(MFCCs) (section 3.5) and Delta features (section 3.6). These sections discuss their advantages and14
disadvantages for being used as context for the speech synthesis system. A modification is proposed15
to the Delta features in section 3.6 where a parameter is introduced to control the difference between16
time segments. Feature normalization is mentioned in section 3.7 where practical implementation prob-17
lems with the min-max normalization is discussed and an alternative of using sigmoidal normalization18
is proposed. With deep learning, neural networks could also be used to map the input space to some19
intermediate latent representation as described in section 3.8. Later, a comparative analysis is con-20
ducted on the clean and noisy versions of these features and reported in section 3.9 which shows the21
effect of the addition of noise on different features.22

For the chosen generative deep learning model as described in chapter 2, features act as context23
or conditioning information that represents the content within speech. Hence, with a feature analysis,24
one can discern what features are least affected by the addition of varied types of noises at different25
signal to noise ratios. This in turn helps to determine what noisy features would provide the most26
suitable context to the generative neural network model for speech synthesis.27

3.1. The VCTK Dataset28
The speech dataset used for experimentation and analysis is called the VCTK dataset [54]. This dataset29
is available publicly and it encourages comparisons with many existing speech enhancement techniques.30
The dataset includes clean and noisy audio recorded at 96kHz sampling rate and downsampled to31
48kHz. For many previously conducted studies and hence also for this thesis, the speech files are32
downsampled to 16kHz for training and testing [12, 13, 22] . The clean speech files are recordings of33
sentences sourced from various text passages, uttered by 30 English-speakers, both male and female,34
with various accents. 28 speakers constitute the training set and 2 are reserved for the test set [54].35
Training samples are synthetically mixed at one of the following four signal-to-noise ratios (SNRs): 0,36
5, 10 and 15dB, with one of the 10 noise types. From the 10 noise types, 2 are generated artificially37
and 8 are sourced from the DEMAND database [55]. This results in 11, 572 training samples from38
28 speakers under 40 different noise conditions with approximately 10 different sentences in each39

14
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condition per training speaker. In total, the training set consists of 10 hours of speech. Test samples1
are also mixed synthetically at one of the following four different SNRs: 2.5, 7.5, 12.5 and 17.5𝑑𝐵, with2
one of the 5 noise types. This results in 20 noise conditions for 2 speakers. Thus, the test set features3
824 samples from unseen speakers and noise conditions.4

3.2. Audio Waveform5
The dataset introduced in section 3.1 consists of audio waveforms for clean speech and its correspond-6
ing noise corrupted version. In end-to-end speech enhancement systems such as [12, 13, 22] speech7
waveforms were directly used as input features. However, if noisy speech waveform is used as context8
for generating clean speech, the information about the phase and alignment of samples is completely9
lost because of the addition of noise. The voiced speech components which have relatively higher10
energy are less affected in contrast to unvoiced speech that is strongly affected by noise. As a result,11
a technique known as pre-emphasis is applied (as a pre-processing stage) on the speech waveforms12
especially to raise the energy of unvoiced speech segments. The usage of pre-emphasis is inspired13
from [12] as it was used to increase the energy of high frequency speech components. Pre-emphasis14
is applied as shown in equation 3.115

𝑦(𝑡) = 𝑥(𝑡) − 𝛼𝑥(𝑡 − 1), ∀ 𝑡 = 1, 2, ..., 𝑇 − 1, (3.1)

where, 𝑦 is the pre-emphasized version of the original waveform 𝑥 governed by a factor 𝛼. 𝛼 normally16
varies between 0.9 − 1. 𝑡 stands for the time indices for the entire length of the audio samples 𝑇. The17
pre-emphasis operation can be inverted to obtain the raw waveform and is called de-emphasis. Figure18
3.1 shows the raw clean and its corresponding noisy speech waveforms with their pre-emphasized19
versions.
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Figure 3.1: Clean and Noisy speech waveforms with their pre-emphasized versions for an example in the dataset

20

A single channel waveform contains information about the energy, phase and alignment of the21
samples. Despite this, it is difficult to comprehend any meaningful linguistic information on a sample22
level. Ideally, deep learning does not and should not involve any feature analysis as the network23
(with increasing depth) is capable of extracting hidden features within the data. However, this highly24
increases the model complexity, would require large amounts of data to learn and might result in other25
computational issues. Thus, simply using the noisy waveform as context to synthesize clean sounding26
speech does not seem to be a very practical approach. Hence, extracting spectral features from speech27
by applying waveform decomposition techniques, namely the short-time Fourier transform (described28
in chapter A, section A.1.1) can be utilized.29
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3.3. Spectrograms1
The power spectrum of a speech waveform calculated over short time frames describes the distribution2
of power into frequency components composing the waveform. A spectrogram is a visual representation3
of the power spectrum as it varies with time. Hence, the spectrogram is a time-frequency visualization4
of audio and is calculated as follows:5

𝑌 (𝑡) = ∑ 𝑦(𝑛 + 𝑡𝐷)𝑤(𝑛)𝑒 , ∀ 𝑡 = 0, 1, ..., ⌊1 + 𝑇 − 𝑁𝐷 ⌋

𝑆 (𝑡) = |𝑌 (𝑡)| ,
𝑆 (𝑡) = 10 log (max(10 , 𝑆 (𝑡)))

(3.2)

where, 𝑦 is the speech waveform (can be raw or pre-emphasized) which is multiplied by the window6
function 𝑤 and 𝑌 is the time-frequency representation of the signal obtained by applying a short time7
Fourier transform 𝑠𝑡𝑓𝑡 (described in chapter A, section A.1.1). The frequency bins are represented by 𝑘8
and 𝑡 stands for the number of short time segments of length𝑁 overlapped by 𝐷 samples (typically while9
obtaining the spectrogram frame lengths of 20−40 ms with a 50% overlap is used). The spectrogram10
𝑆 is obtained by taking the squared magnitude of 𝑌. The intensity can also be displayed on the decibel11
scale 𝑆 as such a logarithmic rescaling aligns the amplitude axis with human perception of loudness.12
Figure 3.2 shows the pre-emphasized clean and its corresponding noisy spectrogram. The spectrogram13
in figure 3.2 was calculated over a 40 ms speech frame with 50% overlap and a 1024-point DFT. A14
Hanning window function was applied to minimize spectral leaks. The frequency bins are represented15
in the continuous domain (Hz) by applying a suitable scaling. The effect of pre-emphasis is visible in16
figure 3.2 as the high frequency components also have higher energy on the decibel scale.
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(a) An example of a pre-emphasized clean
spectrogram
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(b) Corresponding noise corrupted spectrogram of
the same example in (a)

Figure 3.2: Clean and their corresponding Noisy spectrograms obtained from pre-emphasized speech for an examples in the
dataset
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Spectrograms are a 2D representation of speech that convey information about the energy of speech18
and/or noise components present in different frequency bands of clean/noisy speech and the variation19
of this energy across time. The temporal axis of a spectrogram is orders of magnitude more compact20
than that of a waveform, meaning dependencies that span tens of thousands of time-steps in wave-21
forms only span hundreds of time-steps in spectrograms. However, they lack the phase and alignment22
information completely as shown in equation 3.2. Hence, synthesizing a waveform only from spectro-23
grams is difficult when phase information is missing. On addition of noise to clean speech, the energies24
of speech and noise components co-exist during speech activity which leads to loss in speech informa-25
tion. This loss in information can lead to incorrect context representation. Moreover, the dimensionality26
of spectrograms is quite large which can increase the model complexity and resources.27

3.4. Mel Spectrograms28
Mel spectrograms are derived by applying the Mel filter bank on spectrograms. Mel filter bank is a29
set of triangular filters that peak (having a response of 1) on their centre frequencies and decrease30
linearly towards 0 till it reaches the center frequencies of the two adjacent filters. Mel-filter banks are31
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displayed in figure 3.3. These centre frequencies are linearly placed on the Mel-scale. The Mel-scale1
aims to mimic the non-linear human ear perception of sound by being more discriminative at lower2
frequencies and less discriminative at higher frequencies. The reason for using the Mel space is inspired3
by the human auditory system, in particular the cochlea, as it cannot discern the difference between4
two closely spaced frequencies. Hence, the Mel transform is known to align the frequency axis with the5
human perception of pitch. The spectrogram estimate still contains a lot of information which may not6
be required in the context. In essence, The Mel spectrogram takes the weighted average of the energy7
present at different frequency bands in the spectrograms with its neighbouring bands. The Mel-scale8
is a transform derived from the Hertz-scale and is represented by equation 3.3. This mapping from9
Hertz to Mel is interchangeable.10

𝑚 = 2595 log (1 + 𝑓
700),

𝑓 = 700(10 − 1),
(3.3)

where, 𝑚 and 𝑓 represent the frequencies on the Mel and Hertz scales respectively. It can be inferred11
that if centre frequencies are placed linearly on the Mel-scale then they are placed exponentially on the12
Hertz-scale. This is also seen in figure 3.3 where the lower centre frequencies are placed close by and13
the higher ones are widely separated. The first filter is narrow and would indicate the energy present14
in the band around the minimum selected centre frequency (100Hz in the figure). As the frequencies15
get higher, the filter gets wider and would be less concerned about variations in the spectrum. The16
triangular filters around these centre frequencies are modeled as follows:17

𝐻 (𝑘) =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

0, 𝑘 < 𝐿(𝑚 − 1),
𝑘 − 𝐿(𝑚 − 1)

𝐿(𝑚) − 𝐿(𝑚 − 1) , 𝐿(𝑚 − 1) ≤ 𝑘 < 𝐿(𝑚),
1, 𝑘 = 𝐿(𝑚),

𝐿(𝑚 + 1) − 𝑘
𝐿(𝑚 + 1) − 𝐿(𝑚) , 𝐿(𝑚) < 𝑘 ≤ 𝐿(𝑚 + 1),

0, 𝑘 > 𝐿(𝑚 + 1),

(3.4)

where, 𝐻 denotes the triangular Mel filter bank filter with 𝑚 centre frequencies and 𝑘 frequency bins18
present within the spectrogram. And, 𝐿 is the list of the number of mel-spaced centre frequencies.
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Figure 3.3: Mel Filter Bank for filters
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After designing the Mel filter bank, it is applied to the spectrogram as follows:20

𝑀𝑆 (𝑡) = 𝐻 (𝑘) ∘ 𝑆 (𝑡), (3.5)

where, 𝑀𝑆 stands for the Mel spectrogram at the 𝑚 centre frequency, 𝐻 represents the Mel filter21
bank and 𝑆 denotes the Spectrogram with 𝑘 frequency bins and 𝑡 time segments.22

Figure 3.4 shows an examples of the clean Mel spectrograms and its corresponding noise corrupted23
version with 80 Mel bands extracted from the frequency bins in the spectrogram shown in figure 3.2.24
The harmonics during speech activity are well preserved for clean speech examples, however, with25
the addition of noise, these harmonics are a bit distorted (depending on the noise power and its26
characteristics).27
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(a) An example of a pre-emphasized clean Mel
spectrogram
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(b) Corresponding noise corrupted Mel spectrogram
of the same example in (a)

Figure 3.4: Clean and their corresponding Noisy Mel spectrograms obtained from pre-emphasized speech for an example in the
dataset

3.5. Mel Frequency Cepstrum Coefficients1
Mel Frequency Cepstra are obtained by applying a Discrete Cosine Transform (DCT) on the Mel Spec-2
trogram. Mel Frequency Cepstrum Coefficients (MFCCs) are known to contain linguistic information3
in speech and hence are extensively used in the application of Automatic Speech Recognition (ASR)4
[56, 57] . In many ASR literature, the higher MFCC bands (typically above 13) are discarded as they5
represent very fast changes and tend to degrade the performance of speech recognition systems [58].6
However, for a speech enhancement application it is suspected that using lesser bands might lead to a7
loss of information (especially high frequency sounds or consonants). MFCCs are obtained by applying8
a DCT as follows:9

𝑚𝑓𝑐 (𝑡) = ∑ 𝑀𝑆 (𝑡) cos [ 𝜋𝑀(𝑚 +
1
2)𝑘], ∀ 𝑘 = 0, 1, ..., 𝑀 − 1, (3.6)

where, 𝑚𝑓𝑐 indicates the mel frequency cepstrum coefficient and 𝑀𝑆 stands for the Mel spectrogram10
at the 𝑚 center frequency for all 𝑀 centre frequencies and 𝑡 time segments. Figure 3.5 shows the11
Mel frequency cepstra for clean speech and its corresponding noise corrupted version. The values of12
the clean MFCC features vary within the range [−500, 200] and that of the noisy MFCC features vary13
within [−300, 100]. However, in order to increase the contrast, this range is reduced to [−100, 20]14
while plotting. This shows the variations along the Mel bands more prominently as compared to a plot15
with the original range.

(a) An example of clean MFCC features (b) Corresponding noise corrupted MFCCs of the
same example in (a)

Figure 3.5: Clean and their corresponding Noisy MFCCs obtained from pre-emphasized speech for an example in the dataset
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One of the outcomes of applying a DCT on the Mel spectrograms is that the energies in neighbouring17

bands become decorrelated. Since, the Mel filter bank has overlapping filters, the energies of the18
bands in the Mel spectrogram are quite correlated with each other. This decorrelation of features turns19
out to be fruitful for many machine learning based approaches. It is because of this decorrelation20
property exhibited by the DCT, MFCCs were so attractive to machine learning models. However, when21
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it comes to deep neural networks, the structure of the data is modelled implicitly without any explicit1
assumptions about the data distribution. Hence, there is no added advantage of favouring MFCCs over2
Mel spectrograms just because they are decorrelated [58]. Besides, a study also reveals that MFCC3
features are not very robust to noise, however, normalization can make then partially robust to noise4
[58].5

3.6. Delta Features6
Delta features are also used in addition with Mel features for many speech recognition applications7
[58]. Delta features are also known as differential coefficients since they represent the change in the8
Mel features along time. The Mel feature vector describes the power spectral envelope of a frame, but9
speech also has dynamic information, i.e., the trajectories of the Mel feature coefficients over time.10
Calculating these trajectories and concatenating them with the original Mel feature vector increases11
performance of ASR models significantly [58]. Delta features can be obtained for both types of Mel12
features, i.e., Mel spectrograms and MFCCs. Ideally, Delta features are obtained by simply taking the13
difference between a Mel feature vector at the current time index and a feature vector in the past.14
Here, an additional variable is used to control this difference. This idea was inspired by the concept of15
pre-emphasis explained in section 3.2.16

𝐷 = 𝑀 − 𝛼 ∗ 𝑀 , 𝑖 = 0, 1, .., 𝑁 − 𝑛. (3.7)

where, 𝐷 represents the Delta feature vector and 𝑀 stands for the Mel feature vector at time index17
𝑖. 𝑛 stands for the shift in time index. A typical value for 𝑛 = 1or2. 𝛼 controls the difference and18
should vary within the range 0 − 1. If the value of 𝛼 is closer to 1, then only the onsets of speech19
or high variation in noise will be present in the Delta features. Whereas, for a low value of 𝛼, the20
Delta features and Mel features would be alike. Thus, a mid value in between 0.4 − 0.6 is ideal since it21
relatively amplifies the onset of speech and also preserves the harmonic structure.

(a) An example of clean Delta features with . (b) Corresponding noise corrupted Delta features
with . of the same example in (a)

Figure 3.6: Clean and their corresponding Noisy Delta features obtained from pre-emphasized speech for an example in the
dataset

22
Figure 3.6 shows the Delta features obtained from Mel spectrograms by setting the 𝛼 parameter to23

0.4. Note that these features are calculated after normalizing the Mel features as described in section24
3.7. Thus, the onsets of speech are amplified which were initially not so clear in the Mel spectrogram or25
MFCC features. The speech onset contains information about consonants and unvoiced speech sounds26
which are generally missing in the presence of noise. Thus, these intricate details are now visible27
to the network and they can also be mapped effectively. Delta features used in the past had to be28
concatenated with the Mel features and this increased the dimensionality of the input features which in29
turn increases model complexity. With the introduction of the 𝛼 parameter, the Delta features not only30
contain information about the speech consonants but also harmonics in voiced speech. Thus, there is31
no need to concatenate Delta features proposed in this segment with the Mel features.32

3.7. Normalization33
Before the features are fed into the neural network it is important to normalize the features in order to34
avoid computational problems and biased results. Features have to be scaled down from the Decibel35
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(dB) scale to a standardized range of [0, 1]. One of the ways to normalize these features is by applying1
a min-max normalization as follows:2

𝑥 = 𝑥 −min(𝑥)
max(𝑥) −min(𝑥) (3.8)

where, 𝑥 represents the features in the decibel scale and 𝑥 represents the data in the normalized scale.3
However, deciding on how to obtain the minimum or maximum values for the normalization is crucial4
here as some practical problems were faced during implementation. The existing ways of selecting the5
minimum and maximum for a min-max normalization are as follows:6

1. Fixed range: The minimum and maximum decibel (dB) values are fixed for the features for all7
examples, i.e., clean and noisy speech. By observing a general trend and visualizing data, let’s8
assume a mapping from (−100, 20) dB → [0, 1]. This mapping means any value above 20 dB9
would be clipped to 1, any value below −100 dB would be clipped to 0 and the values within10
the decibel range would be scaled by the formula mentioned in 3.8. The latter case would not11
matter much, as −100 dB is an extremely low power value and inefficiently mapping low values12
would not severely affect the estimation performance. However, clipping off higher values can13
lead to loss of spectral peaks which correspond to the formants in speech spectrum. Formants14
in speech spectrum provide important information about speech characteristics. Additionally,15
while retrieving values back to the decibel (dB) scale for analysis of estimated features could lead16
to faults due to approximations because of the clipping. Choosing a maximum value depends17
on the Signal to Noise ratio (SNR) which is unknown in general. One simple solution to this18
problem is to choose a maximum value that is high enough for all data samples. But this can19
compress the range very drastically. Another way could be to subtract a reference decibel level20
before normalizing in order to avoid peak clipping but it is still not a fully guaranteed method.21
Motivating the choice of such a reference level is also difficult.22

2. Dataset dependent: The maximum and minimum values can be obtained from the dataset used23
for training the network. This will at least prevent the clipping of peak values within the training24
set, however, it is still not reliable in terms of unseen data (for example, the test set). Retrieving25
estimated features for further analysis would also be inaccurate as the decided minimum and26
maximum value depends on the dataset and is not universally true.27

3. Data dependent: In order to avoid the peak clipping, the minimum and maximum values can be28
obtained separately for different examples from the dataset. However, the normalization would29
not remain standardized anymore. For example, if a clean speech example within the dataset30
varies from [−100, 20] dB and its corresponding noisy version varies from [−80, 40] dB then31
after normalization, 1 represents 20 dB for the clean example and also 40 dB for noisy speech.32
Moreover, retrieving estimated features back to the decibel scale from the normalized range is33
not possible since the minimum and maximum decibel values are not fixed. Hence, an analysis34
on estimated features cannot be performed.35

The approximations involved in these methods could not only lead to some missing details in the36
normalized representation but also somewhat faulty representations while retrieval. As a result, a dif-37
ferent normalization method is proposed which avoids the hard clipping of peak values to 1 irrespective38
of how high the maximum can get and also be completely retrieved back to the original decibel scale.39
This makes it a completely standardized and invertible normalization approach. The normalization40
technique can be expressed as follows:41

𝑥 = 𝑥 − shift
scale

,

𝑥 = 1
fac+ 𝑒 − bias,

(3.9)

where, 𝑥 is the normalized representation of the input data 𝑥. The expression for deriving 𝑥 is inspired42
from the sigmoid function mentioned in chapter A section A.2.1. Sigmoid acts as a soft clipping function43
as it varies extremely slow at higher input values tending towards 1 at input∞ and at lower input values44
saturating at 0 for −∞. The control variables fac and bias are used to control the normalization range,45
i.e., any other value instead of [0, 1]. Setting values for fac and bias do not require much effort and46
depends totally on the decided normalization range.47
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The input to the sigmoid-like function is the scaled down representation denoted by 𝑥 . Since, the1
original decibel scale is a skewed, the shift term compensates for the skewness and scale is used2
to scale down from the shifted decibel range to [−5, 5]. The values for shift and scale can be easily3
calculated by solving two simultaneous equations. This range of [−5, 5] is chosen because the sigmoid4
function almost saturates at those extremities. An advantage of using this normalization is that even5
if a fixed range of input decibel values is decided, an outlier input value will never be hard-clipped to6
1 and will remain distinguishable from other input values that fall within the fixed range. An additional7
benefit of using this normalization method is invertibility back to the decibel range. However, the8
inverse transform is sensitive to outlier input values. If the input value is is very close to the extremes,9
i.e., 0 or 1, it could be mapped to a very large value on the decibel scale which is not desirable. In10
case of such extreme situations, the output decibel scale must be clipped to −100 dB and 50dB. The11
inverse transform of the sigmoidal normalization can be expressed as:12

𝑥 = log ( 𝑥 + bias
(1 − fac ∗ bias) − fac ∗ 𝑥 ),

𝑥 = 𝑥 ∗ scale+ shift.
(3.10)

Figure 3.7 shows the modified sigmoidal curve that maps from the decibel scale to normalized scale13
and its inverse transform. Before, applying the sigmoidal transform, the decibel range of [−100, 30] dB14
is mapped to [−5, 5] by setting the variables shift = −40 and scale = 14. As shown in the figure, the15
control variables fac and bias control the normalization range, i.e., when fac = 0.7 and bias = 0.2,16
then the normalized outputs vary from [−0.2, 1.2] and for fac = 1 and bias = 0, the normalized outputs17
vary from [0, 1]. On comparing the two mappings, the former can be a bit advantageous as the slope18
of the normalized values is slightly larger than 0 at the extremities. Hence, it does not clip faster and19
can preserve the spectral peaks better.20
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Figure 3.7: Variation in the normalization range by changing the variables fac and bias

3.8. Latent Features21
Latent features are intermediate representations that are obtained by mapping the input features such22
as the raw waveform or their spectral features using a neural network. Thus, neural networks could23
themselves determine the most striking or distinguishing characteristics from the input space for the24
task they are trained for. One such example is shown in chapter 5 section 5.6.3.1. In this thesis, these25
features have not been used for training the WaveRNN synthesizer but this could be an interesting26
route to explore in the future. An advantage of doing so would be that the network now receives an27
input that would be the most meaningful representation since it was learned by the network itself. An28
idea of implementing such a system is discussed in chapter 7 section 7.3.29

3.9. Feature Analysis30
After an illustration of the different features that can be used to represent audio and its context to31
the WaveRNN synthesizer, this section reports an analysis conducted on the noisy and clean versions32
of these features. This study can help choose appropriate features that represent the speech content33
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in noisy speech well and that are also not severely affected by the addition of noise. The Pearson’s1
correlation coefficient is used to determine the effect of noise on different Mel features. Figure 3.82
shows the diagonal elements of the the correlation matrix ( between the Mel bands of the clean and3
noisy features. The noisy versions of the Mel spectrograms, Mel Frequency Cepstral Coefficients and4
Delta Features are compared with their respective corresponding clean versions. These features are a5
time-frequency representation of speech, thus the correlation coefficient is calculated by keeping the6
Mel bands as variables and the time-segments as observations. This analysis is done for examples7
of all 4 Signal-to-noise Ratios, i.e., 2.5dB, 7.5dB, 12.5 dB and 17.5 dB and for 4 different noise types8
namely, ’Cafe’, ’Public Square’, ’Bus’ and ’Living’ present in the test dataset.

Cafe Public Square Bus Living

Diagonal Elements of the correlation co-efficient between the bands of the Clean and Noisy Mel Features

Mel Spectrograms
MFCCs
Delta Features

2.5 dB

7.5 dB

12.5 dB

17.5 dB

Figure 3.8: Diagonal Elements of the Pearson’s Correlation Coefficient between the Mel bands of the Clean and Noisy Mel
features. The vertical axis in each subplot represents the correlation coefficient. The horizontal axis stands for the number of
Mel bands. The matrix of subplots consists of examples with different noise types and Signal-to-Noise ratios shown by the left
and top labels in the figure respectively.

9
For higher noise power, the correlation between the clean and noisy versions of all features is poor10

except the noisy type ’Bus’. This noise type does not seem to affect the speech severely since the11
correlation in almost all bands is close to 1 at all SNRs. As compared to the Mel spectrograms and12
Delta Features, the noisy MFCCs show a slightly lower correlation with clean MFCCs and decreases even13
further in the higher Mel bands. This indicates that the MFCC features are affected by the presence of14
the ’Bus’ noise type. Such a characteristic is seen in many such plots for different SNRs and noise types,15
where the noisy MFFC features show a relatively lower correlation with their clean versions as compared16
to other features. Hence, on an average it can be inferred that MFFCs are affected by the presence17
of noise more severely than other Mel features. However, there are two examples for ’Cafe’ noise and18
’Living’ noise at 2.5 dB where the correlation coefficients between the noisy and clean versions of all19
the features are equally affected showing a strong influence of noise.20

Concluding Remarks21
This chapter introduced various features that can be extracted from a speech waveform and can be used22
as informative context for training neural network systems. This section summarizes the key takeaways23
from the topics discussed. Conclusions from this chapter form a baseline for the subsequent chapters.24
The following conclusions are drawn from this chapter:25

• Using the raw wavefrom of speech as input to the WaveRNN synthesizer does not seem to be the26
most appropriate choice since the raw waveform does not contain any linguistic information on27
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the sample level and not to forget the presence of noise in the input for this application. Indeed,1
deep learning models can extract meaningful context from the raw waveform but this would cost2
more in terms of time, complexity and resources to capture long term dependencies in the time3
domain.4

• Providing features in the time-frequency domain seems to be like a viable option since the tem-5
poral axis of a spectrogram is order of magnitude more compact than a waveform. However,6
spectrograms still have a high resolution which not only make the model complex but also allow7
noise to be presented to the model as equally as speech information since the input in this case8
is corrupted by noise.9

• Features in the Mel domain are an attractive choice since it aligns more with human percep-10
tion. Due to the Mel transform, the resolution of the features reduces and it preserves speech11
information at the same time reducing the effect of noise to a certain extent.12

• Applying a DCT over Mel spectrograms to obtain Mel frequency cepstral coefficients (MFCC) does13
not seem to pose any added advantage. Moreover, applying a linear transform could discard14
some highly non-linear information in speech. Research in the past has also revealed that MFCCs15
are susceptible to noise which make them less attractive.16

• The Delta features proposed in this chapter would be interesting to experiment with since they17
not only amplify the power for consonants and unvoiced speech segments but also preserve18
the speech harmonics in the voiced components of speech. Thus, there is no need to append19
them with Mel spectrograms or MFCCs as was done in previous studies. This also reduces the20
dimensionality of the input making the system less complicated.21

• An analysis on different Mel features shows that MFCCs are affected by noise more severely than22
others. Hence, MFCCs must not be used for speech synthesis when they are noise corrupted.23

• The sigmoidal normalization technique for speech features proposed in this chapter seems to be24
a plausible solution for avoiding the clipping problem that arises with the min-max normalization.25
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The WaveRNN Synthesizer2

Originally the WaveRNN architecture [21] was introduced to synthesize natural human-like sounding3
speech from text. In this thesis, the possibility of synthesizing natural sounding speech from context4
provided by features extracted from noisy speech is explored. The features used for this purpose are5
discussed in chapter 3.6

This chapter delineates the design of a WaveRNN synthesis system in section 4.1, its auto-regressive7
generation process and training procedure in sections 4.2 and 4.3 respectively and hyper-parameter8
definitions along with the system setup in section 4.4. Furthermore, different experiments were per-9
formed with clean and noisy context and the results obtained are discussed in section 4.5. Some10
additional experiments are also mentioned in Appendix B. The outcome of these experiments reveal11
that the WaveRNN can generate clean sounding speech but it suffers from low intelligibility when noisy12
features are provided as conditioning input. Hence, features must be enhanced externally before syn-13
thesizing speech. Section 4.6 describes the analysis that was conducted on the network performance.14
The analysis also includes visualization of components such as the hidden state of the GRU, output15
probability distributions, distributions of the network parameters to gain an insight into their function-16
ality. In the end section 4.6.3.4 summarizes the key findings and provides concluding remarks.17

4.1. System Design18
A rudimentary WaveRNN model was constructed for experimentation. To begin with, some charac-19
teristics inspired from the original WaveRNN model [21] are adopted, whereas certain other aspects20
(mentioned later) have not been included for simplicity. However, this architecture is considerably21
modified as compared to the original WaveRNN. Figure 4.1 illustrates the architecture design used22
for training a Speech Enhancement WaveRNN system. The training procedure and speech generation23
process are described in detail in sections 4.3 and 4.2 respectively. Some details about the inputs to24
the network and its design are mentioned in the following paragraphs.25

The WaveRNN Architecture displayed in figure 4.1 primarily consists of a Gated Recurrent Unit (GRU)26
layer [37] followed by two fully connected feed forward layers. Being a compact network with less layers27
allows this architecture to be trained faster and generate speech with few operations, thereby less28
computations are involved in each step. Moreover, having a hidden state to maintain the aggregated29
and compressed representation of the context makes RNNs quite suitable for this purpose. Additionally,30
within a single transformation, RNNs are able to combine the hidden state with the input context. GRU31
units being free from the problems of exploding or vanishing gradients ensure training stability as32
mentioned in Appendix A section A.2.6. Thereafter, a fully connected layer with ReLU non-linearity33
is used. The last layer is also a fully connected layer but with a softmax non-linearity. This yields a34
categorical distribution for predicting the value of a speech sample given the context provided by the35
previous sample and the noisy features for that sample. The network details such as its configurations36
and hyper-parameter settings are described in section 4.4.37

The WaveRNN synthesizer relies on normalized features in the Mel domain that are extracted from38
speech such as Mel Spectrograms, Mel Frequency Cepstra or Delta features as described in chapter39

24
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Figure 4.1: A fully trained WaveRNN Architecture used for synthesizing speech from noisy features
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3 sections 3.4, 3.5 and 3.6 respectively. However, before inputting these features to the WaveRNN1
model, they are passed through an upsampling network which is explained in detail in the following2
paragraph. Additionally, speech samples from the previous time-step are also supplied as input data to3
the WaveRNN and concatenated with the upsampled Mel features as seen in figure 4.1. While training4
this network, a segment of clean speech (that corresponds with the time length of the Mel features) is5
provided as input data so as to enable the auto-regressive nature during generation phase. Hence, the6
network learns a relationships between the clean speech waveform conditioned with its corresponding7
upsampled feature space to effectively model speech.8

The upsampling network consists of three layers as shown in the bottom of the figures 4.1 and 4.2.9
Noisy Mel Spectrograms are fed to this network and the main purpose of the upsampling network is10
to present the features to the network at the sampling frequency. Each upsampling module consists11
of stretch and convolution operations along the time dimension of the features, thus preserving the12
number of Mel bands. In the figure each upsampling module has a number, 𝑁, written on it which13
stands for the stretch operation, i.e., the number of repetitions of every time segment in the input14
features. Convolution by a learnable kernel (size [1, 2 ∗ 𝑁 + 1]) leads to smoothing out the energy15
across time (analysis mentioned in segment 4.6.3.4 reveals this characteristic of the upsampling layers16
in this network). Note that there is only 1 channel in all these convolution layers. One may argue that17
there is no real purpose of dividing the upsampling network into several layers as there is no non-linear18
operation such as ReLU or sigmoid being applied after convolution layer. However, dividing them into19
different layers gives some insight into feature interpretations. Furthermore, fewer parameters are20
used by the upsampling network when it is divided into multiple layers instead of using just 1 layer.21

4.2. Generating Speech22
Before describing the training procedure for the architecture, it would be beneficial to gain an under-23
standing of how this synthesizer generates speech in an auto-regressive manner. Thus, this section24
is based on the assumption of a fully trained WaveRNN architecture. Given noisy features in the Mel25
domain as conditioning input, the model generates one sample of speech at a time and re-uses the26
previously generated sample to predict the next, thus modeling speech as a conditional distribution. To27
understand the idea behind using neural networks for generative modeling, refer to Appendix A section28
A.2.7. Mel features extracted from noisy speech (after being passed through the upsampling network)29
act as conditioning features to the previously generated sample. After these features were scaled and30
matched to the sampling frequency of audio, all feature bands at a particular time index were used to31
predict a sample. The overall operations involved in the proposed architecture are as follows (biases32
omitted for brevity)33

𝑓 = [𝑥 ,𝑀 ]
𝑢 = 𝜎(𝑅 ℎ +𝑊 𝑓 )
𝑟 = 𝜎(𝑅 ℎ +𝑊 𝑓 )
𝑒 = 𝜏(𝑟 ∘ (𝑅 ℎ ) +𝑊 𝑓 )
ℎ = 𝑢 ∘ ℎ + (1 − 𝑢 ) ∘ 𝑒

𝑃(𝑥 ) = Softmax(𝑂 ReLU(𝑂 ℎ ))

(4.1)

where ft is the concatenation of the previously predicted speech sample denoted by xt-1 and the upsam-34
pled Mel features denoted by Mt at the current time-step t. ut, rt, et and ht are the 3 gates and hidden35
state of the GRU layer respectively. The weight matrices R and W are formed from matrices Ru, Rr and36
Re and Wu, Wr and We which are computed as a single vector product to produce the contributions of37
all 3 gates ut, rt and et. 𝜎 and 𝜏 are the sigmoid and tanh non-linearities. O1 and O2 represent the38
weights of the 2 fully connected layers with their respective ReLU and Softmax non-linearities to obtain39
the posterior distribution P(xt).40

The first input speech sample is initialized to 0 as clean speech generally has no utterance in the41
first few milliseconds. The initial hidden state vector for the GRU unit is also initialized to 0 . After42
passing the Mel features through the upsampling network, it’s dimensions along the time axis are now43
approximately the same as the length of the audio file 1. After this, every time index in the upsampled44
1The length is perhaps shorter than the original size because the network simply multiplies the time dimension in the features
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Mel features is concatenated with the previous sample predicted by the network. This input stream is1
fed to the GRU layer which is then passed on to two fully connected layers, one with ReLU non-linearity2
and the other with Softmax to obtain a categorical posterior distribution. The output from the GRU layer,3
besides being propagated forward to the subsequent layers, is also reused to update the hidden state4
of the GRU as described in Appendix A section A.2.6. The next speech sample is obtained by sampling5
from the categorical posterior distribution of the 256 values it can take for 8-bit speech encoding. The6
predicted sample is in the quantized state, i.e., discrete or in the integer domain, ℤ, and so in the end,7
an un-quantization step is applied to map the speech sample back to a continuous domain, ℝ. After8
this step, the predicted sample is fed back as input again and the same cycle continues for all the9
time frames in the speech. The predicted probability distribution for a speech sample is visualized and10
analyzed in segment 4.6.3.2.11

This method of generating speech samples is yet not very fast. The reason and calculations are12
explained in section 4.6.1. The original WaveRNN incorporates a batched sampling with sub-scaling13
method for generating new samples. This method is not implemented in the proposed system.14

4.3. Training15
One of the main parts of training is defining how the input data and/or conditioning features are16
presented to the WaveRNN synthesizer. This is done by defining a ’collate’ function which gathers all17
the information, i.e., noisy Mel features, input and output speech (ground truth) that are required for18
training this model. As mentioned before, the WaveRNN network is provided with clean speech as19
input so that it learns how to model speech alongside Mel features which provide information about20
the linguistic context in terms of the energy contribution within the Mel frequency bands. A look back21
period known as the ’sequence length’ is defined which determines how many samples of clean speech22
are presented to the network during training. Generally, more the samples the better the network can23
learn as it can capture long term dependencies in speech. However, the number of computations and24
training time can increase to a great extent. Furthermore, within the collate function, a window length,25
𝑤 is calculated based on the sequence length 𝑆 and the hop length ℎ of the audio (the definitions26
and configurations of these terms are mentioned in section 4.4) for determining the number of time27
segments of the noisy Mel features that are provided to the upsampling network. A random time28
frame of Mel window length, 𝑤 from every noisy feature in the batch and its corresponding clean29
speech segment of sequence length are then selected for training. The output speech is an 8-bit 𝜇-law30
encoded version of the same clean speech as the input but shifted by 1 sample. The network tries31
to predict this 𝜇-law encoded version of the clean speech for every sample. Note that, the sample is32
assigned an integer label value within the range (0, 255) instead of a real number representation. The33
original WaveRNN model proposes a 16-bit encoding and so the clean speech is split into coarse 8 bits34
and fine 8 bits. This part has not been considered in the proposed system.35

Note that, there is one architectural difference while training the network, i.e., a log softmax opera-36
tion is used in the final layer instead of a softmax which is used while generation. Both serve the same37
purpose but using a log softmax over a softmax function is advantageous. Apart from practical rea-38
sons like improved numerical performance and gradient optimization that boost training performance,39
the log softmax function is known for heavily penalizing the model when it fails to predict the correct40
sample value. Moreover, using a log softmax over a softmax function means yielding log probabilities41
over probabilities thus leading to information theoretic interpretations.42

Network training is performed on different batches of the data. For every batch, the model is loaded43
and its parameters are updated by optimizing a negative log likelihood (NLL) loss function as described44
in Appendix A segment A.2.2.2. Since, the output layer of the WaveRNN network while training is a log45
softmax as shown in figure 4.2, the loss function turns out to be a cross entropy loss. This is expressed46
as follows:47

𝐿(𝑂, 𝑋 ) = −1𝑛 ∑𝑙𝑜𝑔( 𝑒 [ ]

∑ 𝑒 [ ]
) = 1

𝑛 ∑[ − 𝑂[𝑋 ] + 𝑙𝑜𝑔(∑𝑒 [ ])] (4.2)

where, 𝐿(𝑝, 𝑋 ) stands for the cross entropy loss, 𝑂 is the output of the last fully connected layer of the48
WaveRNN network and 𝑋 represents the vector of sequence length containing 8-bit quantized speech49

by the hop length without adding the first frame length. The number of frequency bands is preserved in this operation
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Figure 4.2: Block diagram for training a WaveRNN synthesizer to produce clean speech given noisy features

samples. Equation 4.2 depicts that the output at the last layer of the network, 𝑂, is the logarithm1
of a discrete distribution (softmax) over 256 values for each sample averaged over the mini-batch of2
size 𝑛. This distribution determines the probability of occurrence of a sample value given the previous3
samples and the context provided by Mel features for that sample. On a sample level, this network can4
be viewed as a multi-class classifier that classifies based on the 8-bit quantized representation of clean5
speech that varies from (0, 255). Thus, the value of a particular sample in the entire speech segment is6
determined. An Adam optimizer [59] is used to minimize the NLL loss and the parameters are updated7
by backpropagating the gradients through the network.8

4.4. Setup9
Network hyper-parameter definitions and configurations are mentioned in this section. The following10
table 4.1 enlists the parameters used in the network, their setup and some remarks.11
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Table 4.1: Setup of the WaveRNN Synthesizer

Parameter Name Format Remarks
Network Hyper-parameters

GRU units R Number of Gated Recurrent Unit Nodes
Fully Connected layer 1
units F Number of nodes in the first fully connected hidden layer

Fully Connected layer 2
units P

Number of nodes in the last fully connected layer.
Should be equal to the unquantized representation of audio
varying from [0, 255]. Based on 8-bit 𝜇 law encoding.

Upsample factors [𝑈 , 𝑈 , ..., 𝑈 ] Factors by which the time dimensions in the features are scaled.
Note: Product of all factors should be equal to the Hop Length.

Sequence Length 𝑆
Look back period of audio samples while training.
Scalar multiple of the hop length.
Scalar value chosen arbitrarily.

Batch size b Batch size of data loaded into the model.
Epochs e Training cycles.
Learning rate lr Learning rate for the optimizer.

Feature configurations
Feature Type of features i.e, Mel spectrograms or MFCCs
Mel bands M Number of Mel bands.

Mel window w
Number of time segments considered in Noisy Mel specrogram
while training. Calculated as 𝑆 / ℎ + 2 ∗ 𝑝𝑎𝑑 where 𝑝𝑎𝑑 = 2.

Sampling Frequency sr
Window Length Number of samples in a short time frame of audio.
Hop Length h Number of overlapping samples. 50% overlap considered.
FFT size N N point DFT is computed on every short time frame.

4.5. Experiments & Results1
Experiments were performed by adjusting certain configurations described in section 4.4. The moti-2
vation and aim for each experiment is stated in their respective segments. Results obtained from the3
respective experiments are exhibited. There were no major changes made in the WaveRNN Synthe-4
sizer architecture from the description mentioned in section 4.1. The inference and training procedure5
also remains the same as described in section 4.2 and 4.3 respectively. In this section, only a few6
experiments that align well with the narrative in this chapter are mentioned. However, some extra7
experiments that also led to important findings are mentioned in Appendix B.8

4.5.1. Train with noisy Mel spectrograms as context9
The goal of this experiment is to evaluate the performance of the system when noisy Mel spectrograms10
are used as context for the synthesis of clean speech. Before conducting this experiment, there were a11
few initial attempts at training the WaveRNN model with Mel Frequency Cepstrum Coefficients (MFCCs).12
Some of these experiments are mentioned in Appendix B. Results obtained from the experiments13
described in segments B.1.1 and B.1.2 lead to an urge for analyzing different spectral features that can14
constitute appropriate context for the synthesizer. Since, there was no considerable improvement in15
intelligibility observed after making the respective changes, it was essential to view the features from a16
critical perspective. This led to an analysis described in chapter 3 section 3.9 where it was discovered17
that MFCC features are severely affected by the addition of noise. On the other hand, Mel spectrograms18
are also being affected by noise, but this effect is not as intense as that on MFCC features as depicted19
in figure 3.8.20

After training is completed for the configurations mentioned in table C.3, Mel spectrograms extracted21
from the noisy speech present in the test set are provided as context to the fully trained WaveRNN22
synthesizer. Based on this context, the synthesizer generates audio samples in an auto-regressive23
fashion as described in section 4.2. The results obtained are illustrated in figures 4.3 and 4.4 where,24
the waveforms of the clean, noisy and generated speech along with their respective spectrograms are25
displayed. The generated speech waveform looks completely different from the clean speech waveform26
as expected from a generative model. On listening to the generated audio file from context provided27
by noisy Mel spectrograms, the following observations are made:28

1. The generated speech is free from noise irrespective of SNR as no noise characteristics are heard.29

2. No glitches and artifacts are present.30
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3. Blabbering and mumbling sounds occur especially in extreme noise scenarios. Consonants and1
unvoiced sounds are unclear. This makes it difficult to understand the speech and hence intelligi-2
bility is poor. However, there is a slight improvement over the results obtained from experiments3
B.1.1 and B.1.2.4

4. Pitch and intonation of the speaker are different from the original clean speech example. In case5
of extreme noise in input features, the speaker voice and prosody keeps changing for different6
segments within the speech. However, this happened more frequently in results obtained from7
experiment B.1.1.8

From previous experiments described in B.1.1, B.1.2 and this experiment, it was clear that mumbled9
speech and blabbering sounds occur due to the presence of noise and simply reconfiguring the network10
hyper-parameters would not alleviate this problem. Since, Mel spectrograms are not as severely af-11
fected by noise as MFCC features, the effect of noise was not as pronounced and so there was a slight12
improvement in intelligibility. The generated speech still does not sound very clear and this clarity is13
far from that of the reference clean speech.

Clean 

Noisy 

Generated 

Female Talker, 2.5db Noise

Figure 4.3: Top: Clean speech waveform and its spectrogram for a female talker. Middle: Babble noise added at . dB SNR
to form noisy speech waveform and its spectrogram. Bottom: Speech waveform generated from noisy Mel spectrogram as
context, and its spectrogram.

14

Some characteristics heard in generated speech are also observed in the spectrogram of generated15
speech as shown in figures 4.3 and 4.4. Spectrograms of generated speech in both examples, show16
that the waveform is free from distortions and artifacts. In the spectrogram of generated speech, the17
spacing in between the harmonics is different from that in the spectrogram of clean speech. Thus,18
generated speech sounds different from the clean speech. This spacing does not change very often as19
observed in the figures B.1 and B.2 which shows that voice change within the same speech example20
is lesser than before. The intonation of the speaker is also different from the reference clean speech21
and this is visible by comparing the spectrograms of generated speech with that of the clean reference.22
The variation in the harmonics along the time axis is different for almost all speech segments in the23
spectrogram of generated speech from the spectrogram of clean speech. Despite the effect of noise24
being less severe on Mel spectrograms, the correct pitch and intonation was not captured by the25
network. Thus, it would be beneficial to verify whether the synthesizer is capable of reproducing26
similar sounding speech when only clean features are provided.27
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Clean 

Noisy 

Generated 

Male Talker, 7.5db Noise

Figure 4.4: Top: Clean speech waveform and its spectrogram for a male talker. Middle: Babble noise added at . dB SNR
to form noisy speech waveform and its spectrogram. Bottom: Speech waveform generated from noisy Mel spectrogram as
context, and its spectrogram.

4.5.2. Train with clean Mel features as context1
The aim of this experiment is to test whether the WaveRNN network is capable of generating clean2
speech if trained for a longer time and given clean context. From the results of the previous experiments3
described in segments B.1.1, B.1.2 and 4.5.1, it was clear that the presence of noise in the features was4
indeed causing a severe loss of information such as pitch, intonation and consonant sounds (in extreme5
noise cases). Thus, the generated speech synthesized by the WaveRNN model was not intelligible even6
though the speech sounded free of noise, artifacts and distortions. The measures taken in the previous7
experiments did lead to minor improvements in the intelligibility, however, generated speech was still8
not completely understandable and there is a significant scope of improvement. Thus, it felt imperative9
to verify whether, the WaveRNN synthesizer can generate speech of at least the same quality as the10
reference clean speech when context provided was clean? Moreover, in the previous experiments it was11
suspected that the system was not trained long enough. WaveNet based generative models are trained12
for at least a million steps (close to 1 − 2 weeks) or even more while, this system was trained only up13
to 365k steps (approximately three days). Hence, the number of training cycles was also increased in14
this experiment.15

After training is completed for the configurations mentioned in table C.4, Mel features extracted16
from the clean speech present in the test set are provided as context to the fully trained WaveRNN17
synthesizer. Note that, since Mel features are extracted from clean speech for training, the number of18
Mel Bands was again set to 80 so that details of speech can be completely captured. The synthesizer19
was trained for two cases separately, once with clean Mel spectrograms and then with clean Delta20
features. Based on the context provided by these features, the synthesizer generates audio samples21
in an auto-regressive fashion as described in section 4.2. The results obtained for training with Mel22
spectrograms are illustrated in figures 4.5 and 4.6. While the results obtained for training the synthe-23
sizer with Delta features are shown in figures 4.7 and 4.8. The waveform of the clean and generated24
speech along with their respective spectrograms are shown for both the cases. After listening to the25
generated speech, it is difficult to distinguish it from the reference speech since they sound so alike.26
Despite this, the waveform of generated speech looks completely different from the clean reference27
even though the clean features were used. On listening to the audio files obtained from both the cases,28
the following observations are made:29
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1. No distortions or artifacts are present in the generated speech.1

2. The voice and tone of the speaker are correctly reproduced.2

3. No information is missing and speech is free from mumble sounds and blabbering.3

4. Speaker sounds hoarse as his/her voice quavers when trained for the same number of epochs as4
in experiments 4.5.1 B.1.1 and B.1.2. The quality improves by large margins when the network5
is trained longer and it sounds as good as the reference clean speech.6

Clean 

Generated 

Female Talker

Figure 4.5: Top: Clean speech waveform and its spectrogram for a female talker.
Bottom: Speech generated from clean Mel spectrograms, and its spectrogram.

Clean 

Generated 

Male Talker

Figure 4.6: Top: Clean speech waveform and its spectrogram for a male talker.
Bottom: Speech generated from clean Mel spectrograms, and its spectrogram.

An analysis on the spectrograms of speech generated from Mel spectrograms shown in figures 4.57
and 4.6 reveals that the harmonics in the clean and generated spectrograms are approximately equally8
spaced which indicates that the pitch or the speaker voice identity is preserved. Similar characteristics9
were observed in spectrograms of speech generated from Delta features as shown in figures 4.7 and10
4.8. For most cases, the generated waveform did not exhibit any abrupt discontinuities thus indicating11
that the generated speech is free from distortions and artifacts. However, in figure 4.7 there is an12
artifact present in the time segment between 1800 − 1950 ms. Such occurrences are attributed to13
instability in the GRU layer and is displayed in segment 4.6.3.1. An analysis on the hidden state of the14
GRU layer for that example shows that such regions contain large variations in magnitude and do not15
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Clean 

Generated 

Female Talker

Figure 4.7: Top: Clean speech waveform and its spectrogram for a female talker.
Bottom: Speech generated from clean Delta features, and its spectrogram.

Clean 

Generated 

Male Talker

Figure 4.8: Top: Clean speech waveform and its spectrogram for a male talker.
Bottom: Speech generated from clean Delta features, and its spectrogram.

appear to be as uniform as other silence regions as shown in figure 4.10. This instability in the GRU1
layer can be either due to insufficient training or over-training with a large learning rate [60]. Also note2
that, the existence of such artifacts is very random and do not always occur. If the same example is3
generated once again with the same conditions, the waveform may or may not contain such artifacts.4

Thus, the hypothesis was confirmed that when clean features are provided to the WaveRNN syn-5
thesizer, it generates clean sounding and intelligible speech. Moreover, the WaveRNN synthesizer is6
capable of generating clean sounding speech from any type of feature as far as the features are clean.7
From this experiment, it was inferred that the WaveRNN architecture is not capable of denoising fea-8
tures. However, for the speech enhancement problem only noisy features are available as input. Thus,9
there can be two possible routes from here, where10

1. The architecture can be changed by either adding more layers or introducing a regularization on11
the waveform like other methods such as [12, 13, 24, 40].12

2. Denoise the noisy features separately and then use them to fine-tune the WaveRNN synthesizer13
that is pre-trained on clean features. This is inspired by a phenomenon called ’Transfer Learning’.14

In the first approach, adding more components to the network can make it more complicated and15
does not guarantee any improvement in results. Moreover, if a regularization term for matching the16
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waveform is used, then the technique does not remain solely generative anymore. In the second1
approach, another neural network architecture can be designed specially for denoising the features.2
Thereafter, the WaveRNN synthesizer that is pre-trained on clean features can be fine-tuned by training3
it with denoised features. However, one may wonder, why not train the synthesizer from scratch4
on denoised features instead of fine-tuning a synthesizer pre-trained on clean features? One of the5
reasons is that these denoised features may still contain some spikes or traces of noise and training6
a randomly initialized network on such features may also not produce intelligible speech. On the7
other hand, initializing the weights of the synthesizer with pre-trained weights can be beneficial as the8
network already has learned to model speech. Moreover, it can also be claimed that the synthesizer is9
a completely generative model. Hence, the second approach is selected. The feature denoising and10
fine-tuning processes are discussed in more detail in chapters 5 and 6 respectively.11

When the network is trained for 6000 epochs on the GeForce GTX 2080Ti GPU (specifications12
mentioned in Appendix D), the training time for this network is close to four days. Hence, in order13
to obtain better quality speech, the network must be trained for a significantly longer period of time.14
However, this is still moderate as compared to other methods such as Speech Enhancement GAN and15
WaveNet [12, 19] which take more than one week of training. In order to decrease training time,16
the sampling rate of audio was reduced to 8 kHz and this reduced the training time thus allowing17
experiments to be conducted faster. Details of this experiment are described in Appendix B.1.3.18

4.6. Analysis19
A network analysis is conducted to get some insights into its functioning and performance. This section20
is divided into three segments namely, computational analysis, network performance and visualizations.21
In the first segment, the amount of computations and memory resources required for the operations22
involved in synthesizing the speech samples are estimated. Secondly, the performance of the WaveRNN23
model is evaluated during training and testing with the Negative Log Likelihood score. Lastly, the layer24
components and states within the network are visualized to gain an insight into their functionality.25

4.6.1. Computational Analysis26
The number of operations involved in the WaveRNN are 𝑁 = 5 matrix-vector products. This can be in-27
ferred from equation 4.1. The computational resources required for generating speech are measured in28
’flops’ abbreviation for the number of floating point operations. While calculating flops, the operations29
such as addition of the bias parameter, application of the activation function, etc. are not considered.30
These operations get overshadowed by the matrix-vector multiplications of the features with the net-31
work weights because they are not as intensive as the latter. The dot product between the network32
weights with the feature vectors are basically multiply-accumulate operations where elements in the33
row of the weight matrix are multiplied and summed together. So, if a weight matrix of 𝑘 rows and 𝑛34
columns is dot multiplied with a feature vector of length 𝑛 then the operations involve 𝑛 multiplications35
and 𝑛 − 1 additions, 𝑘 times. Thus, in total there are (2𝑛 − 1) × 𝑘 flops.36

The GRU layer in the WaveRNN consists of three matrix-vector multiplications for the update gate37
𝑢 , reset gate 𝑟 and obtaining the current hidden state 𝑒 . As per the configurations of the network in38
table C.4 and equation 4.1 2, the feature vector 𝑀 consists of 80 Mel bands which is concatenated with39
a speech sample 𝑥 thus making it a total of 81 elements in 𝑓 . The hidden state of the GRU consists40
of 512 elements and thus the length of the update and reset gate vectors will also be the same. The41
weight matrices applied on the feature vector for the current sample 𝑓 and the previous hidden state42
ℎ can be concatenated and expressed as a single matrix vector product as well. Hence, the total43
flops for the GRU layer are (2 × (81 + 512 − 1)) × 512 × 3 ≈ 1.82 Mflops. 3 4 Besides, the GRU layer,44
the WaveRNN model also consists of two fully connected layers and each contain a single matrix-vector45
product. From the network configurations, these operations contain 512 and 256 nodes respectively46
which lead to (2 × 512 − 1) × 512 + (2 × 512 − 1) × 256 ≈ 0.79 Mflops. Hence, the total number of47
computations involved in generating one speech sample are approximately 2.61 Mflops. While training,48
2Configurations from the experiment on training with clean Mel features are considered for these calculations.
3Mflops stands for million or Mega-flops.
4The estimated flops are rounded off to a higher number in the third significant digit because the Hadamard products included
in the calculation of the current and final hidden states, and respectively, are omitted for simplicity.
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the sequence length of the RNN is 1920 samples and so the number of operations in the forward1
calculations are approximately 5 Gflops 5 per batch.2

Along with the number of computations, the memory requirements for the network weights is3
also an important factor. The number of parameters in the WaveRNN network for the configuration4
mentioned in table C.4 are 1.308 million. Since, each element is a 32 bit floating point number, the size5
of the weight file is 1.308𝑀×4bytes ≈ 5.23 MB. As compared to other speech synthesis networks such6
as WaveNet [19], the WaveRNN architecture is significantly smaller. The significance of these numbers7
with respect to different hardware considerations is described in chapter 7.8

The WaveRNN synthesizer generates speech samples at an average rate of 1.6 kHz on the GPU.9
Ideally, the generation rate should match with the sampling frequency of audio, i.e., 16 kHz. Thus the10
generation speed is slow. This can be improved by either implementing the batched sampling method11
and/or by pruning the network weights proposed in the original WaveRNN research [21].12

4.6.2. Network Performance13
The performance of the network while training is determined by the negative log likelihood (NLL) loss14
function (described in Appendix A section A.2.2.2) with respect to the clean reference audio sample.15
Figure 4.9 depicts the training loss curve with the loss expressed in bits on the vertical axis and the16
number of training cycles or epochs on the horizontal axis. This curve is obtained for different experi-17
ments and it is observed that irrespective of the type of feature used whether clean or noisy; they all18
converge close to the same point, i.e., roughly around 2.5 bits. This means that a generated sample19
can be represented by 2.5 bits/sample on an average.20

Figure 4.9: Loss curves for the experiments described in B.1.1, 4.5.1 and 4.5.2.

4.6.3. Visualizations21
In order to gain some perspective about how the network functions and what are the purpose of22
different layers, certain components of the network are visualized.23

RNN Hidden State Visualization24
On generating speech from context provided by clean Mel spectrograms, the hidden state of the Gated25
Recurrent Unit (GRU) layer is recorded as shown in the top half of the figure 4.10. On the vertical26
axis lie the number of nodes in the GRU layer and the horizontal axis shows the length of the audio27
file in milliseconds. The bottom half of the figure displays a waveform of the reference clean speech28
5Gflops stands for billion or Gigaflops.
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whose corresponding Mel spectrogram features were used as context. It is observed that the GRU1
hidden state exhibits a distinct pattern during speech activity. Whereas during no speech activity, the2
transition across time is fairly smooth. If the variation in the GRU hidden state with time is analogized3
with water in a pool, then, this behaviour is analogous to ripples over still water, where the ripples4
indicate speech activity and the still area represents no speech activity.
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Figure 4.10: Top: Hidden State of the GRU obtained from clean Mel spectrogram features. Bottom: The clean speech
waveform from which the Mel spectrogram was obtained

5
On zooming into a time segment with speech activity, as depicted in figure 4.11, different patterns6

repeating periodically are observed as highlighted in red boxes. The significance of the shape of7
these patterns is not known yet, however the frequency at which they repeat seems to be particularly8
interesting. In figure 4.11, several patterns are highlighted and the thing common between all these9
patterns is the frequency of their re-occurrence. A simple calculation reveals that the frequency of this10
repeating pattern lies within the range of the human voice pitch frequency. In the figure, all patterns11
repeat roughly 12 times over a segment of length 120 ms. Thus, each pattern replicates at the rate12
of 100 Hz which lies within the range of the pitch for a male speaker. Moreover, the example chosen13
contains speech narrated by a male speaker. The peaks in the speech waveform that represent the14
pitch frequency of a speaker are aligned with the repeating patterns in the GRU hidden state. A similar15
trend is also observed for female speakers.16

The GRU layer can sometimes become unstable while generating speech as discussed in the results17
of experiment 4.5.2. The hidden state of the GRU exhibits unusual patterns in such cases as shown in18
figure 4.12. Here it is seen that the variation of the hidden state across the nodes for a particular time19
slice is much higher than the case of a stable GRU. This problem can be solved partially by lowering20
the learning rate after the training loss curve has converged. It is shown in experiment 6.6.3 that after21
this change such situations do not arise, although, it is believed that a simple hyper-parameter tweak22
cannot guarantee stability. Another possible solution that is inspired from [61] could alleviate such23
scenarios. An extra penalty function can be added to the objective function while training the network24
such that it enforces a restriction on the total variance of the hidden state with a user-defined variance.25
This solution is not implemented in this thesis, but it could be interesting to apply.26

Predicted Probability Distribution & Information Rate27
The softmax operation applied after the last layer of the WaveRNN network predicts a probability28
distribution of a sample value as shown in figure 4.1. This is a conditional probability distribution that29
depends on the previously predicted sample along with Mel features as context at the current index30
as described in section 4.2.6 The network maps this information to a 𝜇-law encoded 8 bit quantized31
6This analysis was conducted for clean features as context.
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Figure 4.11: Top: Hidden State of the GRU for a ms segment of the same example in figure 4.10. Bottom: Clean speech
waveform for the same segment.

Figure 4.12: Top: An unstable Hidden State of the GRU layer. Bottom: Generated speech waveform due to instability in the
GRU layer.

representation of a speech sample. The top half of figure 4.13 depicts the probability distribution of the1
generated sample values at every time index. The vertical axis represents the 8 bit quantized sample2
values ranging from 0 − 255 and the horizontal axis stands for the time index of a sample. The value3
for a sample is predicted by randomly drawing a sample from the predicted probability distribution.4
This is how speech is generated by the WaveRNN model as shown in the bottom half of figure 4.13.5
The probability distribution in figure 4.13 closely represents a waveform in the log domain because of6
the application of 𝜇-law encoding.7

Inspired by [62], an analysis is conducted from an information theoretic point of view to understand8
the usage of the WaveRNN architecture as a generic generative model for speech coding. The WaveRNN9
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Figure 4.13: Top: Probability distribution of a sample value while generating speech. Bottom: Generated speech waveform.

encodes the conditioning variables, i.e., the Mel features and the observed waveform samples obtained1
from the conditional distribution. The WaveRNN can be characterized by two rates, namely, the average2
entropy rate and an upper bound on the average entropy rate. The average entropy rate of the3
estimated conditional probability distribution is given by:4

�̃� = − 1
|𝔸𝟘|

∑
∈𝔸𝟘

∑
∈ℕ
𝑞( ) log 𝑞( ), (4.3)

where, �̃� represents the average number of bits needed to encode a sample. 𝔸𝟘 stands for the audio5
sequence and its length is denoted by |𝔸𝟘|. ℕ is the space to which the audio signal is mapped after6
applying the 𝜇-law quantization. The conditional probability distribution at the output of the WaveRNN7
for sample 𝑖 is denoted by 𝑞( ). The upper bound on the average entropy rate, denoted by 𝑅, is also8
the lower bound on the real-world rate that is produced by the WaveRNN on the observed sequence.9
If 𝑅 and �̃� are close, then it can be claimed confidently that the true average entropy rate is similar.10

𝑅 = − 1
|𝔸𝟘|

∑
∈𝔸𝟘

log 𝑞( ). (4.4)

The average entropy rate or the uncertainty in predicting a sample value is approximately 2.511
bits/sample as per equation 4.3. This means that the network can process information at an approxi-12
mate rate of 40 kbits/sec on average at a 16 kHz sampling rate. Also, the upper bound for waveform13
coding as per equation 4.4 is approximately 2.49 bits/sample, or 40 kbits/sec on average at a 16 kHz14
sampling rate. Since, the rates are similar the true average entropy rates are also similar.15

Figure 4.14 displays a speech segment of 200 ms and the corresponding instantaneous information16
rates for the WaveRNN. The earlier part is a voiced speech segment where the required rate is low,17
whereas, the latter part is an unvoiced speech segment which is relatively unstructured thus requiring18
a higher rate. The samples constituting of voiced speech have a very sharp probability distribution thus19
requiring very few bits to encode (roughly 2 bits), on the other hand, samples belonging to unvoiced20
speech have a rather flat distribution requiring more bits to encode (roughly 6 bits). This is also visible21
in figure 4.13 where the probability distribution for the sample values in unvoiced speech segments22
is stretched more than that for voiced speech segments. Moreover, since unvoiced segments occur23
less frequently than voiced segments in speech the average entropy rate is lower. The rate also varies24
with the pitch cycle as repetitive peaks are observed in the instantaneous rate that align with the pitch25
frequency of the waveform.26
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Figure 4.14: Top: Generated speech waveform. Bottom: Instantaneous information computed in terms of the average
entropy rate given by equation 4.3 (Blue) and the upper bound on the rate given by equation 4.4 (Orange).

Network Weight distributions1
The distribution of the learned parameters or the weights of the network are examined in this segment.2
Figure 4.15 shows the histogram of the weights at different layers of the WaveRNN. These histograms3
are plotted on the log scale along the vertical axis so that the elements with a lower occurrence in the4
weight matrix are also visible clearly. It is observed that the distribution of these learned weights are5
super-gaussian in nature. Studies have proved that speech is distributed as a super-gaussian [63] and6
the network has learned such a distribution on its own. In contrast to the classical methods that are7
designed based on the assumption of a gaussian distribution of speech, this method learns the true8
nature or distribution of speech.

Figure 4.15: Histogram of the weights at different layers of the WaveRNN model

9

Another noticeable aspect is that the histogram for the weight matrices at all the layers peak at 010
which indicates that a lot of weights are either 0 or very close to 0. This means that these weights11
are sparse in nature. Thus the size of the weight matrices can be compressed by a method known12
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as pruning [64]. Pruning methods are not a part of this thesis and can be considered as future work.1
It is important to reduce the size of the architecture and the number of parameters so that a neural2
network can be used on smaller and mobile hardware. Such analysis gives insights into possibilities of3
such measures.4

Upsampling Network Kernels5
As described in 4.1, the up-sampling network provides the input features to the WaveRNN synthesizer at6
the sampling frequency of audio. It does so by stretching the features along the time dimension, i.e., by7
repeating the time segments 𝑁 times as indicated on the layers of the up-sampling network in the block8
diagram of the system in figure 4.2. Thereafter, a convolution operation is applied on these stretched9
features where learnable kernels of length 2×𝑁+1 are convolved with the Mel features along the time10
dimension. Every layer of the up-sampling network applies the stretching and convolution operation11
on the Mel features which are then provided to the WaveRNN synthesizer. An analysis is performed on12
the up-sampling network’s convolutional kernels in order to understand it’s role in the system.13

The kernel weights are initialized uniformly and after training is complete the learned kernels take14
the shape as shown in figure 4.16. The figure displays weights of the learned kernels at every layer of15
the up-sampling network along with their magnitude and phase responses in the frequency domain.16
The magnitude response of the kernel weights in all the layers indicate that the kernels act as low pass17
filters where they smooth out the stretched Mel features along the time axis. The phase response of18
all the kernels are linear which indicates that the filter simply induces a group delay without any phase19
distortions.

Figure 4.16: Magnitude and Frequency responses of the learnable kernels from the Up-sampling network

20

The up-sampling network causes delay in providing context to the synthesizer due to the convolution21
operation. At the moment, the up-sampling network needs to be provided with at least 3 time segments22
which is equivalent to 80 ms of speech as per the experiment configurations described in Appendix C23
table C.4. Thus, in order to provide the WaveRNN synthesizer with Mel features at the sampling rate,24
the up-sampling network needs future information. Note that, this does not mean that the WaveRNN25
needs future information for generating speech since it only depends on the context provided at the26
current time step and previously predicted sample. As a result, due to the up-sampling network, it27
is not yet possible to implement this system for real-time scenarios. One of the ways to reduce this28
delay would be to decrease the hop length, i.e., the amount of overlap between two short time frames29
for analyzing speech. Moreover, this analysis of kernel weights can help in designing FIR filters with30
similar magnitude and phase responses such that the delay in providing context to the synthesizer at31
the sampling frequency is reduced.32

Concluding Remarks33
The WaveRNN model, a neural network based speech synthesizer was introduced and explained in34
detail. This chapter discussed its training and generation procedures, experiments and analysis con-35
ducted. This section summarizes the key takeaways from these topics. Conclusions from this chapter36
form the baseline for the subsequent chapters. The system has certain noteworthy advantages and37
also has some shortcomings which are presented here.38



4.6. Analysis 41

The following inferences are drawn from this chapter:1

• WaveRNN is a fully generative network that models audio as a conditional probability distribution2
depending on the previous audio samples and the context provided to it.3

• As far as the context is clean, the quality and intelligibility of generated speech is extremely4
high. It is almost indistinguishable from the reference speech. This is irrespective of the type of5
features used as context.6

• The presence of noise in the context does not affect the quality of the synthesized speech as it7
sounds very natural. However, the generated speech lacks intelligibility due to mumbled words8
and difficulty in reproducing consonant sounds.9

• Simply tuning network hyper-parameters is not the key to improve the model performance and10
may not alleviate the problem when noisy context is provided. A good understanding of input11
features is required.12

• Separately denoising or enhancing the features before they are provided to the WaveRNN syn-13
thesizer seems to be a more practical solution. Moreover, instead of training the synthesizer14
ground up on denoised features as context, it would be beneficial to fine-tune the WaveRNN that15
is pre-trained on clean context. This is inspired from a principle called ’Transfer Learning’.16

• Hidden state in the Gated Recurrent Unit is capable of capturing the voice identity of a speaker17
since repetitive patterns that are synchronous with the pitch frequency of the speaker are ob-18
served.19

• The weights of the network follow a super Gaussian distribution which is similar to the distri-20
bution of speech. Hence, the network learns the natural distribution of speech unlike classical21
approaches that rely on a Gaussian assumption to analytically derive their models.22

The advantages of the WaveRNN synthesizer are as follows:23

• Auto-regressive model that is capable of processing streaming audio instead of processing blocks24
of samples.25

• For the superior quality of generated speech (from clean context), the size of this model and the26
number of computations involved is extremely small as compared to other neural network based27
speech synthesis models such as WaveNet [19] and SampleRNN [41].28

• So far no analytically derived or statistical model can synthesize speech from Mel features. This29
neural network model learns the transformation from the Mel domain to speech samples.30

The disadvantages of the WaveRNN model are as follows:31

• Generated speech can contain artifacts sometimes due to instability in GRU layer. The occurrence32
of such artifacts is unpredictable.33

• At the moment, the audio generation time is slow. It is 10 times lesser than the sampling34
frequency of audio. This can be improved by pruning the network weights which in turn reduces35
the processing time, but it is not within the scope of this research and can be pursued in the36
future.37
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Denoising Features2

This chapter outlines the process of denoising the noisy features before they are provided to the3
WaveRNN for synthesizing the waveform. From chapter 4, it was inferred that noisy features in general4
do not provide informative context for generation of clean speech. Speech corrupted by different types5
of noises makes the spectral structure in speech disordered hence rendering features ineffectual. It is6
difficult for the WaveRNN architecture to learn the manifold of speech when the context provided itself7
is corrupted with noise of varied characteristics. As a result there is a need to first remove the noise8
from these features before they can be synthesized to a waveform.9

The organization of this chapter is as follows, where, first the design of two denoising architectures,10
namely, the U-Net and Variance Constrained Auto-Encoder are described in section 5.1.1 and 5.1.211
respectively. This is followed by the training and feature denoising processes in sections 5.2 and 5.312
respectively. The configuration and hyper-parameter definitions of both architectures are highlighted13
in section 5.4. Later, experiments performed with different architectural changes and results obtained14
are discussed in section 5.5. Thereafter, an analysis reported in section 5.6 contains a study on the15
network’s performance with respect to objective metrics. It also contains visualizations of intermediate16
feature representations which provide an understanding about the network’s operations. In the end,17
concluding remarks are mentioned to elucidate the key findings in this chapter.18

5.1. System Design19
For the denoising task two different architectures are proposed. The following subsections describe20
the architecture design in detail and the motivation behind those choices. It will also throw light on21
reasoning out the usage of specific components while designing the system.22

5.1.1. U-Net23
The first choice for the denoising architecture was inspired from a U-net [65]. Originally, the U-net24
architecture was proposed for solving the biomedical image segmentation problem. Later, this U-net25
architecture was also adopted in the Generator module of the Speech Enhancement GAN with some26
modifications [12]. The main characteristics of the U-Net architecture that makes it attractive are the27
Encoder and Decoder modules which maps the input to an intermediate space and then back again to28
the original space. This intermediate space is compressed in terms of resolution of the spatial dimen-29
sions but may not be an overall compressed representation. This is achieved with a fully convolutional30
neural network as decribed in chapter A segment A.2.5. The network also consists of skip connec-31
tions from the encoder layers to the decoder layers. This prevents deep networks from the vanishing32
gradients problem by providing an alternate path for the gradients to flow during backpropagation.33
However, the use of skip connections is also arguable as the hidden units can also tend to get pruned34
because of the enforced linearity due to an identity mapping. The proposed architecture captures these35
key aspects from the U-Net along with some modifications described in the following paragraph.36

The proposed U-Net architecture illustrated in the left half of figure 5.1 consists of a fully con-37
volutional encoder-decoder structure with skip connections. The encoder is created by seqeuntially38

42
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Figure 5.1: Denoising Architecture based on the U-Net design

stacking the sub-module named ’Down Conv Unit’ that consists of a 2D convolutional layer and a batch1
normalization layer followed by a leaky ReLU non-linearity as shown in the top right of figure 5.1. Since,2
the input to the denoising architecture are Mel features, the learnable kernel in the convolutional layers3
are designed in such a manner that they span more samples along the Mel direction and less along the4
time dimension. Furthermore, by tweaking hyper-parameters such as the stride, padding and kernel5
size, the convolution operation and downsampling of the output size can be controlled. Similar to the6
encoder structure, the decoder is also designed by sequentially stacking the sub-module named ’Up7
conv unit’ that consist of a 2D transposed convolutional layer and a batch normalization layer followed8
by a leaky ReLU non-linearity as shown in the bottom right of figure 5.1. As the name suggests, this9
sub-module is responsible for upsampling the input features to a higher resolution space. Skip connec-10
tions are drawn from the input to the encoder and from every ’Down Conv Unit’ (except the last unit)11
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in the encoder to every ’Up Conv Unit’ in the decoder as shown in the left half of figure 5.1. Because of1
this, the hyper-parameter settings such as stride, padding and kernel size of the transposed convolution2
in the decoding stage have to be the same as that of the convolution in the encoding stage. As a result3
of which the output size of the ’Up Conv Unit’ is the same as the output size of the ’Down Conv Unit’4
but their inputs have different dimensions. In the ’Down Conv Unit’, these skip connections are added5
to the upsampled features (like in ResNets) instead of being concatenated as depicted in SE-GAN [12]6
and U-Net [65]. The presence of batch normalization layers in both sub-modules makes the network7
training stable as it normalizes the output features at every layer. Additionally, they provide regular-8
ization effects preventing overfitting, ReLU type non-linearities are used because they are known to9
perform well for speech processing [66] as compared to other non-linearities. Moreover, Leaky ReLU10
is preferred over ReLU as it also allows the flow of negative values unlike ReLU which could pose a11
hindrance for regression problems.12

5.1.2. Variance Constrained Auto-Encoder13
The idea behind the second choice for the denoising architecture is inspired from Auto-encoders. Auto-14
encoder are widely used for denoising applications [67]. The main difference between the U-Net and15
Auto-Encoder architectures is that Auto-Encoders have a bottleneck structure at the end of the encoder,16
i.e., they squeeze the input space to a compressed representation and the decoder maps it back to the17
original space. Since the last few years, a lot of research was conducted on Variational Auto-Encoders18
(VAE) [17]. They have also been applied for the task of speech enhancement in the frequency domain19
[68, 69] . VAE’s seem to be a natural choice because of its encoder-decoder structure that maps the20
noisy input features of speech to a latent space which is then used to generate clean speech. However,21
recent study has also shown that VAE does not necessarily learn a meaningful latent representation22
[61, 70] , i.e., the input features are independent of the latent representation. This is because, the23
output of a VAE is obtained by sampling from a Gaussian distribution whose parameters are governed24
by the latent space. This distribution is of a fixed shape and not completely representative of the input25
and hence, it may fail to correctly capture the speech manifold of the input to the desired output. This26
in turn, means that the desired speech content cannot be controlled. To counter this, the Variance27
Constrained Auto-Encoder (VCAE) was proposed because this network does not enforce a pre-defined28
prior on the distribution over latent encoding thus allowing the structure of the latent features to29
represent data better.30

The architecture of this network is simple and similar to the U-Net in many aspects as shown31
in the left half of figure 5.2. For instance, the sub-module’s in the encoder and decoder structures32
are quite similar to that in the U-Net architecture (except the skip connections) and depicted in the33
right half of figure 5.2. The encoder and decoder for the Variance constrained Auto-Encoder are also34
structured alike, i.e., by sequentially stacking their respective sub-modules. However, there are some35
stark differences as well that must be kept in mind. To start with, the existence of skip connections in36
auto-encoders is contradictory to the fundamental principle of using a bottleneck, so skip connections37
are omitted here. The bottleneck structure can be created by either using dense fully connected layers38
or using convolutional layers (by limiting the number of channels). The total number of nodes in the39
bottleneck layer are lesser than the input nodes whereas this is not the case with the U-Net model.40
This ensures that the encoder network captures the manifold of speech related features in the latent41
space and projects them further to the output with the decoder network.42

The encoder maps the input to a latent representation, 𝑧, which ideally should be a manifold of43
the features corresponding to speech. This representation is discrete in nature and in order to make44
it smooth, noise is added to it as illustrated in figure 5.2. This is an attempt to make the manifold a45
bit more continuous and introduce a stochastic nature. Samples from a Gaussian distribution with 046
mean and a desired standard deviation 𝜎 are added to the compressed latent space, 𝑧1. The overall47
variance of 𝑧 would then at least be its own variance added with the variance of the noise, 𝜎, times48
the dimensionality of 𝑧 (assuming noise is independent from the latent representation, however this49
may not be completely true). In a Variance Constrained Auto-Encoder, the variance of this latent50
representation is bounded by defining a penalty function in the objective function. Unlike, VAE where51
1Samples from any type of user-defined distribution with a fixed variance can be added to the latent space . Here, a Gaussian
distribution is used not only because it is independent and identically distributed but also fairly simple to implement.
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Figure 5.2: Denoising Architecture based on the Variance Constrained Auto-Encoder

samples are drawn from a latent space of a prior fixed shape, in VCAE, the shape of the latent space1
that is derived from the input features is constrained to have a fixed variance.2

It is known that batch normalization encourages training stability and acts as a regularizer, how-3
ever, it is also hypothesized that the constraint on the variance of the latent space is introduced to4
serve the same purpose. Batch normalization layers could co-exist while still applying the variance5
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constraint regularization as depicted in figure 5.2. However, to verify this hypothesis, an experiment1
was conducted by removing the batch normalization layers. The use of leaky ReLU is preferred over2
other non-linearities as they are better suited for regression based problems as described in segment3
5.1.1.4

5.2. Training5
The denoising system is a regression problem where the network tries to map the noisy features to6
the clean features. Before delving into the training process for both approaches, it is better to describe7
the data loading procedure as it is the same for both. A collate function gathers the noisy and clean8
Mel features from the training dataset and selects a random frame of arbitrary length along the time9
dimension with all Mel bands. The noisy features are fed into the network and the desired output are10
the clean features as shown in figures 5.1 and 5.2. After, the data is loaded in batches and presented11
to the network the training begins.12

U-Net13
The U-Net architecture is trained by minimizing the 𝐿 distance, also called, the mean absolute er-
ror between the network output and the desired clean Mel features. The objective function can be
expressed as follows: ,

minimize𝜃 𝔼 ∼ [||𝑋 − 𝑓 (𝑋)|| ] (5.1a)

where, 𝑋 is a random variable that stands for clean Mel features and 𝑋 is a random variable represent-14
ing the noisy Mel features, i.e., the input to the network, 𝑓 where, 𝜃 are the trainable parameters.15
The clean features 𝑋 follow the data distribution denoted by 𝑃 . Thus, the feature enhancement prob-16
lem can be formulated as learning a mapping to features 𝑋 given the noisy features 𝑋 and network17
parameters 𝜃.18

Many regression based speech enhancement solutions rely on the 𝐿 criterion [2, 8–10]. The Wiener19
filter is also designed to be optimal in the 𝐿 sense. For a Gaussian assumption, minimizing the 𝐿 error20
is equivalent to maximizing the log likelihood of the output data. However, speech and its features are21
super-gaussian distributed or, in other words, follow a factored Laplace distribution and so maximizing22
the log likelihood would be similar to minimizing an 𝐿 criterion. Moreover, selecting the 𝐿 criterion as23
the objective function over the 𝐿 norm is advantageous because the 𝐿 severely penalizes the higher24
energy samples and ends up fitting them correctly, seldom catering to map the lower energy samples.25
This leads to artifacts and distortions. The 𝐿 on the other hand leads to a rather smoother mapping26
in that regard. The network parameter, 𝜃, that include the convolution kernel and batch normalization27
parameters are updated by backpropagating the weights through the network. The ADAM optimizer28
is used to minimize the loss function [59]. The hyper-parameters for this network are discussed in29
section 5.4 table 5.1.30

Variance Constrained Auto-Encoder31
The Variance Constrained Auto-Encoder network was originally proposed as a generative model, where32
the output of the decoder, i.e., the enhanced speech, was provided to a discriminative network that33
minimized the Wasserstein distance between the distribution of the enhanced speech and that of the34
clean speech [22, 61]. However, there was no control over the content of generated speech signals35
by minimizing this Wasserstein distance alone [22]. Consequently, an additional 𝐿 error between36
the output of the decoder and the desired reference speech was also minimized thus rendering the37
approach as not fully generative.38

In this implementation, the VCAE architecture is not generative and only the 𝐿 criterion between
the decoder output and reference clean features is minimized. Additionally, a constraint on the variance
of the latent space is added as a penalty to the 𝐿 loss. The overall objecive function is expressed as:
,

minimize𝜃, 𝜙 𝔼 ∼ 𝔼 ∼ |̃ ; [||𝑋 − 𝑓 (𝑧)|| ] − 𝜆||𝔼 ∼ ; [||𝑧 − 𝔼 ∼ ; [𝑧]|| ] − 𝑣|| (5.2a)
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where, 𝑋 and 𝑋 are the random variables representing the clean and noisy Mel features. The network1
𝑓 consists of encoder and decoder structures with parameters 𝜃 and 𝜙 respectively. The Encoder,2
𝑓 , maps the input 𝑋 to a latent representation 𝑧 which follows a distribution 𝑄 | ̃; . Thereafter, the3
decoder, 𝑓 , maps the latent space to the clean Mel features 𝑋 which follows the data distribution4
denoted by 𝑃 . The first term of the objective function represents the 𝐿 criterion between the decoder5
network output and the reference. The second term is the penalty function that bounds the variance of6
the latent space with a desired total variance 𝑣 (summed across each dimension in the latent space).7
The hyper-parameter 𝜆 controls the trade-off between enforcing the constraint and minimizing the 𝐿8
loss. The distribution of the latent space, 𝑄 ; , also includes the Gaussian noise 𝒩(0, 𝜎 ) added to9
it. This constraint on the variance controls the information flow of the noisy speech features, 𝑋, in10
the latent space, 𝑧, which in turn controls the content of speech in the output features, 𝑋. Thus, the11
feature enhancement problem can be formulated as learning a mapping to clean features 𝑋 from a12
compressed state 𝑧 that is derived from noisy features 𝑋 given the network parameters 𝜃 and 𝜙.13

The network parameters, 𝜃 and 𝜙, that include the convolution kernels for the encoder and de-14
coder networks and batch normalization parameters in every layer are updated by backpropagating15
the weights through the network. The ADAM optimizer is used to minimize the objective function [59].16
The hyper-parameters for this network are discussed in section 5.4 table 5.2.17

5.3. Estimating Denoised Features18
Once, the networks are trained for the denoising task, the testing or denoised feature estimation19
process is exactly the same for both the U-Net and VCAE network designs. The noisy Mel features20
from the test dataset or extracted from any noisy audio file are presented to the model. The trained21
weight files are loaded into the model and applied to the noisy features to obtain the denoised Mel22
features. After denoising, these features can be used as context for the WaveRNN synthesizer which23
is described in chapter 6.24

5.4. Setup25
Network hyper-parameter definitions and configurations for both the U-Net based design and VCAE26
system is mentioned in this section. The following tables 5.1 and 5.2 enlist the parameters used in the27
network, their setup and some remarks for the U-net and VCAE methods respectively.28

Table 5.1: Setup for the U-Net based Denoising Architecture

Parameter
name Format Remarks

Network Hyper-parameters
Convolution
Kernel size [𝑘 , 𝑘 ] First element indicates size along the Frequency axis

and second element is the size along the Time axis

Encoder
Channels [𝐶 , 𝐶 , ..., 𝐶 ]

The first element indicates the number of input channels to the encoder.
Rest indicate the output channels for every layer in the encoder.
Number of layers in the Encoder in this case is 𝑛 − 1.

Decoder
Channels [𝐶 , 𝐶 , ..., 𝐶 ]

The decoder channels may or may not be the exact reverse of the
encoder channels.
The first element indicates the number of input channels to the decoder.
Rest indicate the output channels for every layer in the encoder.
Number of layers in the Decoder in this case is also 𝑛 − 1 and may or may
not be equal to number of layers in the Encoder.

Stride [𝑠 , 𝑠 ] First element indicates slide along the Frequency axis
and second element is the slide along the Time axis

Padding [𝑝 , 𝑝 ] First element indicates padding along the Frequency axis
and second element is the padding along the Time axis

Batch size b Batch size of data loaded into the model
Epochs e Training cycles
Learning rate lr Learning rate for the optimizer

Feature configurations
Feature Type of feature, Mel Spectrograms, MFCC, Spectral Delta
Mel bands M Number of Mel frequency bands in the feature
Mel Window w Number of time segments in the feature
Sampling frequency sr
Window length Number of samples in a short time frame of audio.
Hop length Number of overlapping samples. 50% overlap considered.
FFT size N N-point DFT is computed on every short time frame.
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Table 5.2: Setup for the VCAE based Denoising Architecture

Parameter
name Format Remarks

Network Hyper-parameters
Convolution
Kernel size [𝑘 , 𝑘 ] First element indicates size along the Frequency axis

and second element is the size along the Time axis

Encoder
Channels [𝐶 , 𝐶 , ..., 𝐶 ]

The first element indicates the number of input channels to the encoder.
Rest indicate the output channels for every layer in the encoder.
Number of layers in the Encoder in this case is 𝑛 − 1.

Decoder
Channels [𝐶 , 𝐶 , ..., 𝐶 ]

The decoder channels may or may not be the exact reverse of the
encoder channels.
The first element indicates the number of input channels to the decoder.
Rest indicate the output channels for every layer in the encoder.
Number of layers in the Decoder in this case is also 𝑛 − 1 and may or may
not be equal to number of layers in the Encoder.

Stride [𝑠 , 𝑠 ] First element indicates slide along the Frequency axis
and second element is the slide along the Time axis

Padding [𝑝 , 𝑝 ] First element indicates padding along the Frequency axis
and second element is the padding along the Time axis

Type of
Bottleneck

Two types of bottleneck structures namely dense and conv that stand for
fully connected network and convolutional network respectively.

Dense Bottleneck
layers [𝑛 , ..., 𝑛 , ..., 𝑛1]

First element is the product of the size of the output of the encoder.
It is the flattened representation of the output features.
It is calculated as follows: (𝑀/(𝑠 ∗ (𝑛 − 1))) ∗ 𝑤 ∗ 𝐶
Middle element 𝑛 represents the number of nodes in the bottleneck layer,
i.e., the latent space
First element and the last element should always be the same.

Variance constraint 𝑣 Constraint on the variance of the latent space
Standard deviation
of noise 𝜎 Noise added to the bottleneck layer is Gaussian noise with 0 mean

and sigma standard deviation
Batch size b Batch size of data loaded into the model
Epochs e Training cycles
Learning rate lr Learning rate for the optimizer

Feature configurations
Feature Type of feature, Mel Spectrograms, MFCC, Spectral Delta
Mel bands M Number of Mel frequency bands in the feature
Mel Window w Number of time segments in the feature
Sampling frequency sr
Window length Number of samples in a short time frame of audio.
Hop length Number of overlapping samples. 50% overlap considered.
FFT size N N-point DFT is computed on every short time frame.

5.5. Experiments & Results1
Experiments were performed by tweaking certain configurations described in section 5.4. The moti-2
vation and aim for each experiment is stated in their respective segments. Results obtained from the3
respective experiments are also exhibited. The general architecture displayed in figures 5.1 and 5.24
remains the same while certain network hyper-parameters and feature configurations were changed.5
The feature estimation and training procedure remains the same for both the networks as described6
in sections 5.3 and 5.2 respectively. Note that, all denoising experiments were performed on features7
extracted from 8kHz speech samples because the denoised features were further used for fine-tuning8
the synthesizer that was pre-trained for 8kHz speech and features. Also, the network architectures9
mentioned in sections 5.1.1 and 5.1.2 are capable of denoising all Mel features, i.e., Mel spectrograms,10
MFCCs and Delta features, however, these experiments only discuss Mel spectrograms. In this section,11
only a few experiments that align well with the narrative in this chapter are mentioned. However, some12
extra experiments that also led to important findings are mentioned in Appendix B.13

5.5.1. U-Net with 2D strided convolutions14
A few experiments had to be conducted before the architecture described in this segment was proposed.15
These are highlighted in appendix B.2.1 and B.2.2. In those previous experiments, the fundamental16
properties of an encoder and decoder structure were not fully utilized. This is because the features17
obtained at the last layer of the encoder, i.e., the intermediate representation had not been correctly18
compressed in the spatial domain. Hence, they could not precisely capture the true essence or the19
manifold of speech related information. To achieve the reduction in spatial resolution, the use of strided20
convolutions with zero padding is proposed here. Now, instead of the kernel shifting by one sample, it21
shifts by the amount of stride specified for every layer. The stride is applied only along the frequency22
dimension in order to capture the spectral information along bands. This leads to a compression along23
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the frequency dimension and the number of time segments are preserved. Note that, the intermediate1
space obtained at the last layer of the encoder is not an overall compressed representation because2
the number of channels is large. Figure 5.3 depicts the information flow through the network.

Figure 5.3: Information flow in the U-Net architecture

3
Additionally, through previous experimentation in B.2.1 and B.2.2, it was observed that the network4

faced problems in mapping especially the high frequency contents. Most high frequency information5
has relatively lower energy, as a result, they get heavily suppressed by the addition of noise. Moreover,6
since regression type losses such as 𝐿 norm end up mapping high energy content more precisely7
(since they induce higher loss if not correctly mapped) as compared to low energy samples, the higher8
frequency information remains under estimated. Hence, it is difficult to retrieve this information. To9
solve this problem, the clean and noisy speech files were pre-emphasized (as described in chapter 310
section 3.2) before extracting the Mel spectrogram features. It is hypothesized that because of pre-11
emphasized clean speech features the high frequency information will also be effectively retrieved. The12
normalization technique was also changed where instead of the traditional min-max normalization, the13
sigmoidal normalization was applied as explained in chapter 3 section 3.7. The configuration for this14
experiment is mentioned in table C.8.15

After training the U-Net model, Mel spectrograms extracted from the noisy speech in the test set16
are provided to this system. The U-Net model estimates the denoised features as described in section17
5.3. The results obtained are illustrated in figure 5.4, where the Mel spectrograms of the clean and18
noisy speech along with their estimated denoised version are shown. Both male and female speaker19
examples and their contamination with two different types of noises at the most extreme noise level in20
the test dataset are analyzed. The following observations were made:21

1. The estimated denoised Mel spectrogram appears to be free from noise characteristics. However,22
there are some difficulties in removing Cafe noise as some speech-like harmonics do appear in23
the denoised Mel spectrogram during no speech activity.24

2. On comparing with clean Mel spectrogram, the power in denoised Mel spectrogram during non25
speech activity does not go as low.26

3. The use of 2D kernels in the convolution operation leads to smoother transitions especially along27
the time dimension.28

4. Speech harmonics in the higher frequency regions are retrieved fairly well. However, in extreme29
noise cases, the harmonics are blurred as the power is averaged out across neighbouring bands.30

Based on these observations, certain inferences were made. Since, the U-Net architecture consists31
of skip connections and the overall dimension of the intermediate space is more than the input, it is32
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Figure 5.4: Top Left: Mel spectrogram of clean speech for a male talker. Top Middle: Mel spectrogram for speech corrupted
with Living noise at . dB SNR. Top right: Denoised Mel spectrogram of the example (output of the network). Bottom Left:
Mel spectrogram of clean speech for female talker. Bottom Middle: Mel spectrogram for speech corrupted by Cafe noise at
. dB SNR. Bottom right: Denoised Mel spectrogram of the example (output of the network).

capable of preserving some minor details. The presence of Cafe noise during non speech activity could1
occur because Cafe noise has certain speech like characteristics which could have been transferred to2
the output. There could be two possible reasons for the power level during non speech activity in the3
denoised Mel spectrogram to not go as low as that in clean Mel spectrogram. First is due to the 𝐿4
regression loss which fails to map low energy values precisely as they do not incur heavy penalties5
while training. Moreover, some clean speech examples in the dataset have breathing sounds during6
non speech activity which have relatively higher power than silence. For example, this can be seen7
in the bottom left image of figure 5.4. Because the network attempts to generalize to the features,8
the noise power in the input noisy features during non speech activity is mapped to the power level9
of breathing sounds. The occurrence of speech harmonics in the high frequency bands is because10
of pre-emphasizing the waveform before extracting features. However, in extreme noisy cases, this11
structure is lost and becomes very difficult to retrieve. Hence, the best possible estimate is to smooth12
out the power across the frequency bands.13

The model performance and results are analyzed further in section 5.6. The computational and14
memory resources required by this model are estimated in segment 5.6.1. With the help of evaluation15
metrics, a comparison of the results with that of other methods is drawn in segment 5.6.2.16

5.5.2. VCAE: Effect of using a Dense Bottleneck17
After some considerable improvement in results with the U-Net architecture, it was time to test the18
network with an actual bottleneck. The U-Net does not compress the input features to a condensed19
space like that seen in auto-encoders. The Variance constrained Auto-Encoder was implemented for20
denoising noisy Mel spectrograms as described in section 5.2. An extra bottleneck network structure is21
inserted in between the encoder and the decoder which compresses the encoder features to a latent22
space. This bottleneck structure is constructed using a dense fully connected network. Hence, the goal23
of this experiment it to study the performance of a Variance constrained Auto-encoder with a dense24
bottleneck for the task of feature denoising. The encoder and decoder structure remains similar to25
that of the U-Net. The output at the encoder is flattened and the number of nodes in this flattened26
representation equals the number of channels times the number of time segments times the number27
of bands along the frequency dimension. This flattened layer is mapped to a latent space with lesser28
number of nodes constituting the bottleneck. Gaussian noise with a small variance of 𝜎 = 0.02 is added29
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in order to make this space continuous. The variance of noise is user defined and its purpose is to1
smooth the latent space. The network then transforms this space back to the same dimensions as the2
output of the encoder and provides it to the decoder. The operations in this network are depicted in3
figure 5.5 and the configurations are mentioned in table C.9.

Figure 5.5: Information flow in the VCAE architecture with Dense bottleneck

4
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Figure 5.6: Top Left: Mel spectrogram of clean speech for a male talker. Top Middle: Mel spectrogram for speech corrupted
with Living noise at . dB SNR. Top right: Denoised Mel spectrogram of the example (output of the network). Bottom Left:
Mel spectrogram of clean speech for female talker. Bottom Middle: Mel spectrogram for speech corrupted by Cafe noise at
. dB SNR. Bottom right: Denoised Mel spectrogram of the example (output of the network).

After training the VCAE model for denoising, mel spectrograms extracted from the noisy speech in5
the test set are provided to this system. The VCAE model estimates the denoised features as described6
in section 5.3. The results obtained are illustrated in figure 5.6, where the Mel spectrograms of the7
clean and noisy speech along with their estimated denoised version are shown. Both male and female8
speaker cases and contamination with two different types of noises at the same noise power level are9
analyzed. The following observations were made:10

1. The estimated denoised Mel spectrogram appears to be free from noise characteristics even in11
the case of Cafe noise.12

2. The power in the denoised Mel spectrogram during non speech activity does not go as low when13
compared with the power during non speech activity in the reference Mel spectrogram.14
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3. The harmonics in speech in the mid and especially higher frequency regions are lost and the1
power is averaged out with the surrounding frequency bands.2

Most of the observations made here are similar to that in experiment 5.5.1. The reasons for such3
observed behaviour are sought and some observations are made. Since, the VCAE architecture has4
no skip connections and on top of that it consists of a fully connected bottleneck network structure, it5
allows sufficient information to pass through but many details are missing. As a result, the harmonic6
structure in speech also looks blurred in the denoised Mel spectrograms shown in figure 5.6 especially7
in the mid and high frequency bands despite of using pre-emphasized features. The reasons for a8
relatively higher power in the denoised Mel spectrogram during non speech activity as compared to9
the reference clean Mel spectrogram is due to the use of 𝐿 criterion while training. Moreover, it10
is suspected that the generalization capability of the network to map silence zones to the power of11
breathing sounds (present in clean Mel spectrograms) can also cause this.12

The model performance and results are analyzed further in section 5.6. The computational and13
memory resources required by this model are estimated in segment 5.6.1. With the help of evaluation14
metrics, a comparison of the results with that of other methods is drawn in segment 5.6.2.15

5.5.3. VCAE: Effect of using a Fully convolutional structure16
One of the issues with the experiment described in segment 5.5.2 is that while estimating the clean17
features, the input noisy features have to be divided into blocks of fixed dimension due to the dense18
bottleneck layer. Moreover, due to a dense fully connected network, the number of parameters increase19
drastically. According to the observations in segment 5.5.2 and evaluation metrics described in segment20
5.6.2, there was no noticeable improvement observed in the performance of the VCAE with a dense21
bottleneck. Moreover, it came at a great computational cost, as shown in segment 5.6.1, which does22
not make the dense bottleneck a very practical choice. Hence, in this implementation, instead of23
the dense bottleneck, the latent space is constructed by using convolutional layers. This is achieved24
by reducing the number of channels in the latent space and also decreasing the number of bands25
along the frequency dimension with strided convolutions. Additionally, to verify if the constraint on the26
overall variance of the latent space enforces network stability, the batch normalization layers in the27
’Down Conv Unit’ and ’Up Conv Unit’ of the encoder and decoder networks are removed. Thus, the28
aim of this experiment is to study the performance of using a fully convolutional architecture for the29
Variance constrained Auto-Encoder to denoise noisy features. The configurations for this experiment30
are mentioned in table C.10 and figure 5.7 depicts the operations in the network.

Figure 5.7: Information flow in the fully convolutional VCAE architecture

31
After training of this model is complete, Mel spectrograms extracted from the noisy speech in the32

test set are provided to this system. The U-Net model estimates the denoised features as described33
in section 5.3. The results obtained are illustrated in figure 5.8, where the Mel spectrograms of the34
clean and noisy speech along with their estimated denoised version are shown. Both male and female35
speaker cases and contamination with two different types of noises at the same noise power level are36
analyzed. The following observations were made:37

1. The estimated denoised Mel spectrogram appears to be free from noise characteristics even in38
the case of Cafe noise.39
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Figure 5.8: Top Left: Mel spectrogram of clean speech for a male talker. Top Middle: Mel spectrogram for speech corrupted
with Living noise at . dB SNR. Top right: Denoised Mel spectrogram of the example (output of the network). Bottom Left:
Mel spectrogram of clean speech for female talker. Bottom Middle: Mel spectrogram for speech corrupted by Cafe noise at
. dB SNR. Bottom right: Denoised Mel spectrogram of the example (output of the network).

2. The power during non-speech activity in the denoised Mel spectrograms is mapped to a relatively1
higher value as compared to that in the clean Mel spectrograms.2

3. The harmonic structure in speech in the higher frequency regions are again not reconstructed3
well.4

4. Eliminating the batch normalization layers posed no issue while training as the loss curve con-5
verged. However, while testing, the power at some locations exceeded the numerical limit which6
resulted in 𝑁𝑎𝑁 values in the decibel scale. Thus, while plotting the results in figure 5.8, the7
𝑁𝑎𝑁 values were clipped to 30 dB.8

These observations are also quite similar to those in the previous experiments 5.5.1 and 5.5.2 and9
so, the reasons behind such behaviour also remain the same. In this case, the VCAE architecture10
consists of a bottleneck structure that is even smaller than the one made with dense connections. It11
allows sufficient information to pass through but many details go missing. As a result, the harmonic12
structure in speech looks blurred especially in the mid and high frequency bands despite of using13
pre-emphasized features. The reasons for a relatively higher power during non-speech activity in the14
denoised Mel spectrogram as compared to the reference clean Mel spectrogram remains the same as15
described in segments 5.5.1 and 5.5.2. The 𝑁𝑎𝑁 values occur in the decibel scale because of the16
sigmoidal denormalization function as described in chapter 3 section 3.7. If the extremities of the input17
range exceed the bounds by a small value, then its mapping to the decibel scale varies exponentially.18
Hence, the range of the values estimated by the network on the normalized scale must be constrained19
which is done effectively by the batch normalization layer. Hence, there should be at least one batch20
normalization layer (preferably at the last layer).21

The model performance and results are analyzed further in section 5.6. The computational and22
memory resources required by this model are estimated in segment 5.6.1. With the help of evaluation23
metrics, a comparison of the results with that of other methods is drawn in segment 5.6.2.24

5.6. Analysis25
A network analysis is conducted to get some insights into the functioning and performance of both26
proposed denoising systems. This section is divided into three segments namely, computational analy-27
sis, comparative analysis of network performance and visualizations. In the first segment, the amount28
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of computations and memory resources required for the operations involved in denoising the spectral1
features are estimated. Secondly, the performance of the different denoising architectures under con-2
sideration is evaluated during training and testing with the help of regression based evaluation metrics.3
Lastly, the layer components and states within the network are visualized to gain an insight into their4
functionality.5

5.6.1. Computational Analysis6
In this segment, the calculations involved in obtaining the total number of floating point operations for7
a convolutional neural network is mentioned. These operations are expressed in terms of the variables8
used in chapter A segment A.2.5. The number of operations involved in the denoising process are de-9
termined by the depth of the network, i.e., the number of layers, and number of convolution operations10
within a layer, i.e., the number of channels. In a convolutional neural network, the learnable kernel is11
applied on the input features at every layer with a convolution operation. The convolution operation12
is also expressed as a flip-multiply-add-shift operations in loop. Out of these, the multiplication and13
addition operations require higher computations than the rest and hence flops are calculated mainly14
based on these two operations.15

The total number of parameters 𝑛 in a layer can be calculated as the product of the number of16
input channels and the kernel size and expressed as 𝑛 = 𝐶 × 𝐾 × 𝑘 . Hence, the total number17
of multiplications and additions for a single convolution instance, i.e., flops per instance, 𝑓 , is given18
by 𝑓 = 2 × 𝑛 − 1. As mentioned in chapter A section A.2.5, the size of the features can vary at19
every layer in a convolutional neural network depending on the padding and stride parameters as20
expressed by equation A.18. The total number of instances 𝐼 of applying a convolution is given by21
the product of the size of the features at the output of that layer and the number of output channels,22
i.e., 𝐼 = 𝐶 × 𝐻 × 𝑊 . Thus, the total number of flops is given by the number of instances 𝐼23
times the flops per instance 𝑓 and expressed as 𝐼 × 𝑓 . This is repeated for every layer in the network.24
The procedure remains the same for both the encoder and decoder structures in the networks. In this25
calculation, operations such as bias parameter addition, batch normalization and activation functions26
have not been considered as they do not contribute as strongly as the convolution operation.27

The procedure for calculating flops for the U-Net and fully convolutional VCAE architectures remains28
the same as described above. The skip connections in the U-Net architectures have not been considered29
for the calculation of flops as the number of addition operations is not significantly large. In the VCAE30
with dense bottleneck architecture, the flops for the dense layers constitute of the matrix-vector dot31
product between the dense layer weights and the nodes. The flops in a fully connected mapping from32
𝐼 input nodes to 𝐽 output nodes, is given by (2𝐼 − 1) × 𝐽. Table 5.3 shows the number of floating point33
operations for the denoising architectures discussed in this chapter. The U-Net architecture seems to be34
the approximately 3.5 times more computationally expensive as compared to the VCAE architectures.35
There was not much difference in terms of computation between the fully convolutional VCAE and the36
VCAE with dense bottleneck. Using more convolutional layers and large number of channels increase37
the computational complexity by a sufficiently large amount.38

Table 5.3: Computational and memory resource requirements for the denoising architectures

Architecture Flops # parameters Memory
U-Net 1.91 Gflops 0.97M 3.88 MB

VCAE dense bottleneck 0.56 Gflops 32.97M 131.88 MB
VCAE fully convolutional 0.58 Gflops 0.37M 1.48 MB

Along with the number of computations, the memory requirements for the network weights is also39
an important factor. This depends on the number of learnable parameters 𝑛 in the network which40
varies for different architectures and their configurations. Table 5.3 shows the number of parameters41
(in million) for the U-Net and both VCAE architectures. Since, each element is a 32−bit floating point42
number, then the size the weight file is 4×𝑛. The VCAE with dense bottleneck has a significantly large43
number of parameters and hence consumes a lot of memory as compared to the fully convolutional44
VCAE and U-Net architectures. Thus, due to the sharing of parameters, convolutional neural networks45
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require less memory as compared to dense networks but require more computations. The significance1
of the numbers in table 5.3 with respect to different hardware considerations is described in chapter 7.2

5.6.2. Comparative Analysis of Network Performance3
A comparative analysis of the training loss curves and the results obtained after fully training a network4
are conducted here. Figures 5.9 and 5.10 display the loss curves while training the denoising archi-5
tectures with Mel spectrograms and Delta features respectively. From the loss curves, it is observed6
that the VCAE architectures converge at a point that is higher than that of the U-Net architecture. It is7
suspected that the bottleneck structure in the VCAE model causes such a behaviour since they restrict8
the flow of information.

Figure 5.9: Training loss curves for different denoising architectures trained on Mel spectrograms

9

Figure 5.10: Training loss curves for the architectures trained on Spectra Delta features

Two metrics are used to evaluate and compare the results of the different denoising methods. Since,10
the features are enhanced using regression based methods, the mean square error metric was used11
to evaluate the performance of this network. The metric is calculated as follows:12

𝐷 = √
1
𝑆 ∑

∈ ,
(𝐿 (𝑓(𝑁 (𝑀( )))) − 𝑀( )) (5.3)

where, 𝐷 is the error metric expressed in decibels as the noisy and clean reference Mel spectrograms,13
𝑀 and 𝑀 respectively, are expressed in the same scale. The operations 𝑁 and 𝐿 denote the14
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sigmoidal normalization and its inverse transform. 𝑓 stands for the neural network architecture. 𝑆1
denotes the size of the features, i.e., the product of the number of Mel bands and time segments2
in the features. Table 5.4 shows the root mean square error (RMSE) of the noisy and denoised Mel3
spectrograms calculated with respect to the clean reference Mel spectrogram for different noise types4
and signal-to-noise ratios.

Table 5.4: Root mean square error (RMSE) metric for the Noisy and Enhanced Mel spectrograms with respect to reference Mel
spectrograms

Noise Power Noisy Type Noisy U-Net
VCAE
dense

bottleneck

Fully
convolutional

VCAE
2.5 dB Cafe 21.62 dB 13.58 dB 13.93 dB 14.22 dB
2.5 dB Bus 8.29 dB 4.85 dB 5.98 dB 5.53 dB
7.5 dB Bus 6.38 dB 4.10 dB 5.26 dB 5.08 dB
7.5 dB Living 15.59 dB 7.31 dB 10.99 dB 10.37 dB
12.5 dB Cafe 13.38 dB 6.26 dB 7.45 dB 7.04 dB
12.5 dB Public Square 20.57 dB 10.96 dB 9.52 dB 9.34 dB
17.5 dB Public Square 17.05 dB 8.93 dB 9.80 dB 8.36 dB
17.5 dB Living 13.18 dB 5.45 dB 7.00 dB 5.53 dB

5

Lower the value of the root mean square error means that the average power in the enhanced6
features is closer to that in the reference features. On comparing the results of the VCAE with a7
dense bottleneck and the U-Net architecture for their respective configurations, it is found that there8
is no noticeable improvement in the results despite a dramatic increase in the number of parameters9
due to the fully connected layers. Thus, using a dense bottleneck consumes more resources than10
necessary for the task. On the other hand, the fully convolutional VCAE network consumes lesser11
parameters and delivers a performance very close to or better than the U-Net architecture in case12
of ’Public Square’ noise irrespective of noise power. On an average over different SNRS and noise13
types, Mel spectrograms enhanced by the U-Net model have the least root mean square error with the14
reference Mel spectrograms. Note that, this metric does not indicate how precisely are noisy features15
mapped to clean features but rather provides a rough estimate of the difference in their mean power.16
For example, the features enhanced by the fully convolutional VCAE do not capture the details of the17
harmonics in the mid and higher frequency bands very well as the power level across those bands18
is almost the same. Whereas, the U-Net architecture can produce outputs that can encapsulate the19
speech harmonic details to a certain extent.20

An alternative metric called the Pearson correlation coefficient was used to evaluate the output of21
the denoising networks. Recall that this metric was also used in chapter 3 section 3.9 to determine the22
effect of noise in different feature representations. The diagonal elements of the Pearson correlation23
coefficients between the denoised Mel spectrograms and its corresponding clean Mel spectrogram24
indicate the strength and the direction of the linear relationship between the bands of the two entities.25
Since, the features are 2 dimensional, the correlation coefficient is computed by keeping the Mel axis26
as the variables and the time axis as observations. The correlation coefficient matrix is calculated as27
follows:28

𝐶(𝑀 ,𝑀 ) = cov(M ,M )
cov(M ).cov(M ) ,

cov(x, y) = 𝔼((x − x̄)(𝑦 − �̄�)), & cov(x) = 𝔼((x − x̄) ),
(5.4)

where, 𝐶 stands for the Pearson correlation coefficient between the test Mel spectrogram 𝑀 and29
clean Mel spectrogram 𝑀 . The test Mel spectrogram can be either the noisy or enhanced by the30
U-Net or VCAE models. Thus, the diagonal elements of the matrix of correlation coefficients represent31
the relationship between the power levels at a particular Mel band in the features and the power32
levels at the same Mel band in the clean features. Figure 5.11 displays the diagonal elements of the33
Pearson correlation coefficient for the clean and noisy features pair and clean and denoised features34
pair obtained from all the denoising methods discussed above.35
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Figure 5.11: Diagonal elements of the Pearson Correlation Coefficient between the Noisy and Denoised Mel Spectrograms
obtained from experiments 5.5.1, 5.5.2 and 5.5.3 with respect to the Clean reference Mel spectrograms.

Figure 5.11 shows that the output obtained from the denoising architectures is indeed better than1
the noisy features as the correlation between bands of the enhanced features with that of the clean2
features is stronger. For the example with ’Cafe’ noise at 2.5 dB SNR, the improvement is not very3
drastic and is also indicated by the RMSE error. Since, ’Cafe’ noise consists of human babble sounds,4
it is difficult for the network to reduce its effect. The bands in the lower frequencies of the enhanced5
features are highly correlated with the reference features but the correlation drops for higher bands6
indicating that the network cannot map the power in higher frequencies precisely despite of using7
pre-emphasized features. Based on this metric, it is difficult to decide between the performance of the8
U-Net and the VCAE networks. It is preferable to subjectively evaluate the outputs after fine-tuning9
the synthesizer with the enhanced features obtained from the denoising architectures.10

5.6.3. Visualizations11
In order to gain some perspective about how the network functions and what are the purpose of12
different layers, certain components of the network were visualized.13

Latent Space14
Both the U-Net and fully convolutional VCAE architectures first transform, or rather, encode the input15
noisy Mel features to a latent feature space. This section depicts these latent representations visually16
so as to gain an understanding of the information processed by these networks. The main difference17
between the two different latent representations are that the space derived from the encoder of a U-18
Net are only compressed spatially but not in volume, whereas, the VCAE network fully compresses the19
input feature volume as shown in figures 5.12 and 5.13 respectively. As a result of this, the information20
encapsulated by these feature spaces are very distinct from each other.21

The latent space of the U-Net architecture is shown in figure 5.12 is obtained after the network is22
fully trained. It consists of 128 channels which equal to the number of square boxes in the figure. Each23
box has a dimension of 20 bands along the vertical direction and 𝑇 time segments along the horizontal24
direction, where 𝑇 stands for the number of time-segments in the Mel features. As mentioned in25
experiment 5.5.1, the convolution units in the encoder preserve the dimension along the time axis and26
compresses the number of bands along the frequency axis. However, the volume of the latent space27
here is larger than the volume of the input due to the large number of channels in the space (as per28
the current setup, the latent space volume is 32 times the input volume).29

The latent space encapsulates large amounts of details as seen in multiple channels in figure 5.12.30
To illustrate, channel 17 activates during speech activity in the input features and captures that infor-31
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U-Net Latent Space, Channels=128, bands=20

17

46

117

65

50

Figure 5.12: Output of the encoder, i.e., the latent feature representation for the U-Net architecture.

mation. On the other hand channel 46 captures only the silence parts in the input features. Channel1
117 activates for speech on-sets. This activation also depends on the amount of noise present in the2
input. For a high SNR text example, this channel activates on every on-set where-as for a low SNR3
example, it may miss some since this information is difficult to capture under influence of high noise.4
Channel 50 captures the high and mid frequency information whereas channel 65 contains low fre-5
quency information. The latent space visualization shown here is for one test example from the test6
dataset, but the characteristics captured by the channels remain similar for all examples. This depicts7
the generalization of neural networks for different types of input features, the channel interpretation8
remains the same.9

The latent space of the fully convolutional VCAE architecture is shown in figure 5.13 is obtained after10
the network is fully trained. It consists of 4 channels which equal to the number of rectangular boxes11
in the figure. Each box has a dimension of 5 bands along the vertical direction and 𝑇 time segments12
along the horizontal direction, where 𝑇 stands for the number of time-segments in the Mel features. As13
mentioned in experiment 5.5.3, the convolution units in the encoder preserve the dimension along the14
time axis and compresses the number of bands along the frequency axis. Additionally, the volume of15
the latent space for a VCAE network is lesser than the volume of the input features which constitutes16
a bottleneck (as per the current setup, the latent space is compressed to 4 fold of the input volume).

VCAE Latent Space, Channels=4, bands=5

1

3

2

4

Figure 5.13: Output of the encoder, i.e., the latent feature representation for the fully convolutional VCAE architecture.

17

Due to a compression in the latent space of the VCAE network, it is difficult to interpret the the18
latent feature representation as compared to the U-Net latent space. The VCAE encapsulates most19
of the information that a U-Net does in fewer dimensions, however, it is believed that the amount of20
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details captured here are lesser than what a U-Net latent space contains. This is reflected in the output1
of the VCAE where mid to high frequency information if smooth and the speech harmonic structure is2
not captured. Channels 1, 3 and 4 capture the onset of speech and speech activity in different bands.3
Channel 2 only activates at one band and the rest of space contains values very close to 0. Not much4
can be inferred from this latent space visualization due to the heavy compression. This visualization5
shown is for the same test example as the , but the characteristics captured by the channels remain6
similar for all examples. This depicts the generalization of neural networks for different types of input7
features, the channel interpretation remains the same.8

Concluding Remarks9
This chapter introduced two different architecture designs namely the U-Net and the Variance Con-10
strained Auto-Encoder. Their setup, training and testing procedures were discussed along with ex-11
perimentation and analysis of their components. This section summarizes the key findings mentioned12
in the various topics covered in the chapter. These conclusions then form the baseline for the up-13
coming chapter that involve combining the architectures discussed in this chapter with the WaveRNN14
synthesizer.15

The following conclusions are drawn from this chapter:16

• Both the proposed network designs, i.e., the U-Net and VCAE architectures perform significantly17
well at removing the noise from Mel features.18

• Observations indicate that features denoised by the U-Net architecture tend to capture the har-19
monic structure in speech very well and even at the higher frequency bands. This is attributed20
to the large amounts of details captured by the latent space of the U-Net.21

• On the other hand, both VCAE architectures tend to level the speech power in the higher fre-22
quencies and are unable to effectively encapsulate the harmonic structure in speech. Visualizing23
the compressed latent space in the VCAE architecture is difficult to interpret.24

• From the two different structures proposed for the VCAE network, the fully convolutional structure25
seems to be a more practical choice to continue with. Not only does it perform better than the the26
structure with a dense bottleneck but also is more efficient in terms of memory and computational27
resources. Moreover, the size of input features can also be chosen arbitrarily and does not depend28
on the architecture.29

• It is difficult to make a choice between the U-Net and the fully convolutional VCAE architectures30
based on the evaluation metrics since their performances are quite competitive.31

• Computational analysis for the U-Net and fully convolutional VCAE networks indicate that the32
latter requires lesser memory resources. As far as these differences are not orders of magnitude33
apart this is not a strong distinguishing factor between the two architectures.34
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Fine-tuning the Synthesizer2

From chapter 4, it was observed that when conditioning Mel features provided to the WaveRNN syn-3
thesizer are clean, then the synthesized speech sounds very similar to the reference. Whereas, when4
the context is noisy, it cannot produce understandable speech at all. Thus, it is crucial to remove noise5
from these features before they are provided to the WaveRNN for synthesis as described in chapter 5.6
The idea behind synthesizing clean sounding speech from noisy features is inspired by a phenomenon7
known as Transfer Learning [71, 72]. Thus, instead of training the synthesizer with a random initial-8
ization on the context provided by enhanced features, the synthesizer can first be trained on clean9
features, and then this pre-trained model can be fine-tuned by training with enhanced features. The10
enhanced features are obtained from the denoising architectures described in chapter 5. This allows11
the synthesizer to learn the transformation from clean features to speech in advance, which can be12
beneficial in terms of faster convergence.13

This chapter is organized as follows; first, an overview of literature on transfer learning is provided in14
section 6.1. This is followed by section 6.2 which contains a description on the complete system formed15
by integrating the denoising architectures with the WaveRNN synthesizer. Later, the training process16
for the combination of the denoising and synthesizer networks is highlighted in section 6.3. Section 6.617
showcases the experiments performed by combining the pre-trained U-Net and VCAE networks with18
the synthesizer and results obtained from both these configurations are discussed. Results from both19
these experiments reveal that the for the selected model configurations, the U-Net outperformed the20
VCAE in denoising features. Hence, the final system was constructed with a U-Net and described in21
experiment 6.6.3. Thereafter, an analysis is reported in section 6.7 on the MUSHRA subjective listening22
test [73] conducted and also on an objective intelligibility measure known as the Word Error Rate23
(WER) [74]. In the end, concluding remarks from this are summarized to elucidate the findings in this24
chapter.25

6.1. Background on Transfer Learning26
Transfer learning is a phenomenon used in machine learning that is said to be inspired by human27
behaviour of applying knowledge gained from previously learnt domains to newer tasks. GoodFellow28
et al. refer to transfer learning in the context of generalization where some aspects learnt in one29
particular setting can be exploited to improve generalization in another setting [75]. This means that30
instead of learning a task ground up, it can be better to re-use the learnt knowledge for solving problems31
in other domains. For instance, the initial layers of convolutional networks trained on images capture32
simple features such as edges or blobs and the last layers are responsible for the task specific features.33
Thus, one could re-use features from the initial layers of the pre-trained network off-the-shelf to train34
it for a different task.35

A mathematical definition for the transfer learning problem can be utilized to understand different36
strategies for applying them [71]. Consider a domain, 𝒟 = (𝜒, 𝑃(𝑋)), that consists of a feature space37
𝜒 and a marginal probability distribution of the features 𝑃(𝑋), where 𝑋 = [𝑥 , ..., 𝑥 ] ∀ 𝑥 ∈ 𝜒. For the38
given domain 𝒟, a task 𝑇 = (𝛾, 𝜂) is defined by two components, namely, the label space, 𝛾, and39
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the objective function, 𝜂. The objective function can also be expressed as a conditional probability1
distribution denoted as 𝑃(𝑌|𝑋), where 𝑌 = [𝑦 , ..., 𝑦 ] ∀ 𝑦 ∈ 𝛾. With these representations, transfer2
learning is defined as, given a source domain, 𝒟 , a corresponding source task, 𝑇 , as well as a target3
domain, 𝒟 and a target task, 𝑇 , the objective of transfer learning is to enable the target conditional4
probability distribution 𝑃(𝑌 |𝑋 ) in 𝒟 be learned with the information gained from 𝒟 and 𝑇 , where5
𝒟 ≠ 𝒟 and/or 𝑇 ≠ 𝑇 . Based on these definitions, transfer learning can be applied for the following6
scenarios:7

1. 𝜒 ≠ 𝜒 , the feature space of the source and target domains are different.8
2. 𝑃(𝑋 ) ≠ 𝑃(𝑋 ), the marginal probability distributions of source and target domains are different.9
3. 𝑦 ≠ 𝑦 , the label spaces between two tasks are different.10
4. 𝑃(𝑌 |𝑋 ) ≠ 𝑃(𝑌 |𝑋 ), the conditional probability distributions of the source and target tasks are11
different.12

It is crucial to categorize the problem at hand and then apply appropriate strategies for transfer learning.13
To realize this, the following classes help to decide so:14

• Homogeneous Transfer - If the feature space and label space between the source and target15
domains for the task are similar, i.e., 𝜒 = 𝜒 and 𝑦 = 𝑦 , but the data distributions between16
them are different, 𝑃(𝑋 ) ≠ 𝑃(𝑋 ) and 𝑃(𝑌 |𝑋 ) ≠ 𝑃(𝑌 |𝑋 ), then the problem is classified as a17
Homogeneous transfer learning problem.18

• Heterogeneous Transfer - If the feature space and/or label space between the source and19
target domains for the task are not the same, i.e., 𝜒 ≠ 𝜒 and/or 𝑦 ≠ 𝑦 , then the problem20
is classified as a Heterogeneous transfer learning problem. Solutions in this case attempt at21
bridging the gap between feature spaces to reduce the problem to a Homogeneous transfer22
learning problem.23

For the speech synthesis problem, clean feature space, denoted by 𝜒 , and the noisy feature space,24
denoted by 𝜒 , are not the same at all. This is a case of Heterogeneous transfer learning problem.25
Hence, before synthesizing clean sounding speech the gap between the clean and noisy features must26
be reduced. This feature transformation is known as domain adaptation [76]. Hence, the denoising27
architectures introduced in chapter 5 are used for transforming or rather enhancing the noisy feature28
space to the clean feature space. To be more specific to this application, the transform is termed as29
an asymmetric feature transform since they have the same target label space, i.e., the reference clean30
speech that can be denoted by 𝑦 or 𝑦𝑇 [76].31

In addition to domain adaptation, the WaveRNN synthesizer should also be well trained on the32
clean feature space or the source domain, 𝜒 so as to learn well-defined s structure. Since, the task33
of synthesizing speech from features is related for both source and target domains, the structure of34
the transformation can also be transferred to the target model. This category of transfer learning is35
called Parameter-based transfer learning since the parameters of the networks are shared for both36
source and target domain tasks. The initialization of weights for the target task are the same as the37
previously trained weights for the source task and is known as hard weight sharing [77]. This reduces38
convergence time for fine-tuning the network for the target task. Moreover, fine-tuning the network39
parameters along with a transfer of features can improve generalization of networks [78].40

6.2. System Workflow41
Combining the WaveRNN synthesizer with the denoising network architecture can allow generation of42
clean sounding speech given noisy features. One way to achieve this is to directly train the WaveRNN43
synthesizer with the denoised features obtained from the denoising architecture. Instead of randomly44
initializing the WaveRNN model weights, it would be beneficial to train the network from a point where45
it already possesses some knowledge about the transformation from the feature space to the waveform46
as described in section 6.1. Therefore, the WaveRNN synthesizer is pre-trained on clean features and47
later fine-tuned by training with noisy features that are pre-processed by a denoising architecture.48
Thus, the transfer learning technique is a combination of domain adaptation and parameter sharing.49
Figure 6.1 shows the entire workflow of the system where it is divided into three phases, namely50
Training and Fine-tuning described in section 6.3 and Generation described in section 6.4.51
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Figure 6.1: Using Transfer Learning to improve the synthesis process

6.3. Initial Training & Fine-tuning1
In order to share parameters of the source task with the target task, the pre-trained weights of the2
model for the source task must be available. In this case, a pre-trained model was not readily available3
to be used since the authors of the WaveRNN system [21] have not made it public. Hence, the training4
phase shown in the leftmost part of figure 6.1 illustrates the training of a WaveRNN synthesizer on clean5
speech and clean Mel features. This training procedure was already mentioned in chapter 4 section6
4.3 with the configurations from experiment 4.5.2. Alongside, the denoising network is also trained7
to map the noisy Mel features to clean Mel features. The training process for domain adaptation was8
mentioned in chapter 5 section 5.2 for all denoising architectures with their respective configurations.9
Once these models are trained, the initial training phase is completed, i.e., the pre-trained models are10
ready and the fine-tuning phase begins.11

During the fine-tuning phase, only the parameters of the WaveRNN model are updated and the12
weights of the denoising model are frozen as shown in the middle part of figure 6.1. The pre-trained13
WaveRNN network weights trained for the source task, i.e., synthesizing clean speech from clean14
features, are loaded and act as an initial point for the fine-tuning to begin. The batch of noisy Mel15
features are first provided to the pre-trained denoising model in order to obtain the enhanced features.16
Thereafter, a batch of clean speech segments of sequence length along with the denoised features17
(context) of the corresponding example are presented to the WaveRNN synthesizer. The remainder of18
the training process for the WaveRNN remains the same as described in chapter 4 section 4.3. The19
weights of the WaveRNN model are updated for each batch on every iteration in every training cycle.20
The convergence of the loss function is an indication of correct training and once this model is fine-21
tuned, it can be used to generate clean sounding speech when noisy features are provided as context22
to the system.23
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6.4. Generating Speech1
The generation process for synthesis using the WaveRNN model remains the same as described in2
chapter 4 section 4.2. The only difference is that instead of providing noisy context directly to the3
synthesizer, they are processed by the denoising architecture before they are supplied to the WaveRNN4
model as shown in the rightmost part of figure 6.1. Both synthesis and denoising models are in the5
evaluation mode where no gradients are backpropagated and thus no parameter update takes place.6
By fine-tuning the WaveRNN synthesizer, it has learned the transformation from denoised Mel features7
to clean speech.8

Even though the synthesizer generates speech samples in an auto-regressive fashion as described in9
chapter 4 section 4.2, the provision of context to the synthesizer is not auto-regressive in nature. This10
means that the context has to be provided to the synthesizer as whole and not one time segment at a11
time. Because, the denoising architecture is a convolutional neuranl network, the minimum number of12
time segments that can be provided to the synthesizer is limited by the size of the kernel along the time13
axis (which is greater than 1.1) Hence, if the complete system were to be implemented in an auto-14
regressive fashion, it would lead to large tracking delays. With the current setup, the delays can be15
greater than twice the window length of the frame under analysis if implemented in an auto-regressive16
fashion.17

6.5. Setup18
The network setup for all networks remains the same as described in tables 4.1, 5.1 and 5.2 during the19
initial training phase. While fine-tuning the synthesizer, the number of time-segments for the noisy Mel20
features are selected according to the sequence length of the clean speech provided to the WaveRNN21
model.22

6.6. Experiments & Results23
The experiments performed in this chapter are a continuation of the one described in chapter 4, i.e.,24
training WaveRNN synthesizer on clean features 4.5.2. As concluded in chapter 5, denoised features25
obtained with the U-Net, 5.5.1, and fully convolutional VCAE, 5.5.3 (from now on will be referred to26
as VCAE), architectures are used here. All these models act as pre-trained models and constitute27
the initial training part in figure 6.1. Here, they were combined with the synthesizer to generate28
speech by fine-tuning the WaveRNN synthesizer on denoised features. The aim for each experiment is29
stated in their respective segments. Results obtained from the respective experiments are also shown.30
There were no changes made in the network architecture and neither in network hyper-parameters31
nor feature configurations. The generation of speech and training procedure for the combined network32
is described in sections 6.3 and 6.4 respectively. Also note that the experiments in segments 6.6.133
and 6.6.2 were initially conducted on features extracted from speech sampled at 8kHz for time and34
complexity reasons.2 Once the results with the best combination were identified, the final system was35
trained and tested again for 16kHz speech as shown in segment 6.6.3.36

6.6.1. Combining U-Net with WaveRNN37
The aim of this experiment was to evaluate the performance of the system when the WaveRNN is fine-38
tuned with Mel features denoised by the U-Net architecture. In this configuration, the U-Net was set to39
evaluation mode and its weights were frozen, whereas the weights of the WaveRNN synthesizer were40
updated on every training cycle. Freezing the weights mean that the gradients are not backpropagated41
to update the parameters of the U-Net. The configuration for the synthesizer remains the same as42
described in table C.4. Experiments were conducted with both Mel spectrograms and Delta features.43
First, the results obtained from Mel spectrograms are described after which the results for Delta features44
are reported.45

After training was complete, Mel spectrograms extracted from the noisy speech present in the test46
set were first provided to the U-net architecture of the fine-tuned system for denoising. These enhanced47
features were provided to the WaveRNN synthesizer where they act as context for generation of clean48
1For more details, check the network configurations for the experiments in Appendix C
2Refer to Appendix B.1.3 for more details
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speech as described in section 6.4. The results obtained are illustrated in figures 6.2 and 6.3 where1
the waveform of the clean, noisy and generated speech along with their respective spectrograms are2
shown for the same examples as in the experiments of chapter 4. On listening to the audio files, the3
following observations were made:4

1. No distortions or artifacts during speech activity. However, there are some instances during5
generation when the network becomes unstable and some segments of speech become corrupted6
as discussed in chapter 4 experiment 4.5.2.7

2. The voice of the speaker is correctly reproduced with some minor quavering. The intonation of8
the speaker is also fairly captured but it varies in case of extreme noise scenarios.9

3. Some information is missing or mumbled especially for low SNR samples. There is a drastic10
improvement in intelligibility as compared to the case when noisy context was directly provided11
to the synthesizer. And there is scope for further enhancement.12

4. Consonant sounds and some phonemes such as ’f’, ’p’, ’b’, ’d’, etc. are not produced correctly in13
case of extreme noise and this leads to misidentifying the correct word.14

Clean 

Noisy 

Generated 

Female Talker, 2.5db Noise

Figure 6.2: Top: Clean speech waveform and its spectrogram for a female talker. Middle: Cafe noise added at . dB SNR to
form noisy speech waveform and its spectrogram. Bottom: Speech waveform generated from denoised Mel spectrogram as
context, and its spectrogram.

On comparing the spectrogram obtained from the generated speech with that of the clean speech, it15
is observed that in most cases there are no abrupt discontinuities that represent distortions. However,16
sometimes there are a few examples that exhibit an unusual behaviour similar to the description in17
chapter 4 experiment 4.5.2. Consider, for instance, in figure 6.3, where in the beginning of the wave-18
form, there is an artifact. Such occurrences have been attributed to instability in the GRU layer as19
discussed in chapter 4 section 4.6.3.1. This instability in the GRU layer can be either due to insufficient20
training or over-training with a large learning rate [60]. Also note that, the existence of such artifacts is21
very random and does not occur always. If the same example is generated once again with the same22
conditions, the waveform may or may not contain such artifacts.23

The pitch of the speaker is effectively reproduced as shown in both examples. The difference24
in the speech harmonics indicates the pitch frequency and this difference remains approximately the25
same as seen in the spectrograms of clean and generated speech. However, the intonation is slightly26
different from the clean reference which can be understood by observing the gradients in the harmonic27
peaks or the formants along the time axis. The quavering in voice can be spotted in the spectrogram28
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Clean 

Noisy 

Generated 

Male Talker, 7.5db Noise

Figure 6.3: Top: Clean speech waveform and its spectrogram for a male talker. Middle: Public square noise added at . dB
SNR to form noisy speech waveform and its spectrogram. Bottom: Speech waveform generated from denoised Mel spectrogram
as context, and its spectrogram.

of generated speech in figure 6.3 in between time segments 2900 − 3100 ms. This occurs due to1
extra peaks occurring in between the speech harmonic peaks. Mumbled speech may occur due to the2
existence of harmonics where they are not supposed to be present. For instance, on comparing the3
last few time segments of the spectrogram for generated speech with that of the clean speech in figure4
6.2 shows the presence of speech harmonics in the former whereas they are not present in the latter.5

Figure 6.4 displays the reference (clean) Mel spectrograms, denoised Mel spectrograms (output of6
the pre-trained U-Net model and input to the WaveRNN) and the Mel spectrograms obtained from gen-7
erated speech for the same examples as shown in figures 6.2 and 6.3. The denoised Mel spectrograms8
for the less noisy case, i.e., the top part of figure 6.4, is able to fairly capture the onsets of speech9
at the appropriate bands. However, when the input features are noisier, for instance, the lower part10
of figure 6.4, the denoised Mel spectrogram can rarely capture these onsets correctly at the higher11
frequency bands. As a result, the consonants and unvoiced speech segments do not sound very clear12
for generated speech in most examples. If the input features cannot provide appropriate context for13
generation, the synthesizer network cannot produce speech with correct sounding words.14

To solve the problem of capturing consonant sounds, the use of Delta features described in chapter15
3 section 3.6 was considered. The aim of this experiment is to examine the effect of fine-tuning the16
synthesizer with Delta features that are denoised by the U-Net. The proposed delta features not only17
include information about the harmonics in speech but also relatively amplify the power on speech18
onsets. After training the synthesizer with clean Delta features as described in chapter 4 experiment19
4.5.2 and enhancing the noisy ones with the U-Net architecture, the WaveRNN is fine-tuned with20
these denoised Delta features. On testing this system, there was a considerable improvement in21
producing consonant sounds for most examples which in turn increased the intelligibility. There also22
exist cases with extreme noise conditions where the use of Delta features did not seem to alleviate the23
problem as expected, however, there was noticeable enhancement as compared to the results with Mel24
spectrograms. Figures 6.5 and 6.6 show the clean, noisy and generated speech waveforms along with25
their respective spectrograms.26

Figures 6.7 and 6.8 displays the reference (clean) Delta features, noisy Delta features (input to27
the U-Net model) and denoised Delta features (output of the U-Net model and input to the WaveRNN28
synthesizer) and the Delta features obtained from generated speech for the same examples. The29
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Female Talker, 2.5db Noise

Male Talker, 7.5db Noise

Clean 

Clean Denoised Generated

Denoised Generated

Figure 6.4: Top Left: Mel spectrogram of clean speech for a male talker. Top Middle: Denoised Mel spectrogram obtained
from the U-Net model when fed with noisy features from speech corrupted with public square noise at . dB SNR. Top right:
Mel spectrogram of the generated speech for the example.Bottom Left: Mel spectrogram of clean speech for female talker.
BottomMiddle: Denoised Mel spectrogram obtained from the U-Net model when fed with noisy features from speech corrupted
with cafe noise at . dB SNR. Bottom right: Mel spectrogram of the generated speech for the example
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Female Talker, 2.5db Noise

Figure 6.5: Top: Clean speech waveform and its spectrogram for a female talker. Middle: Cafe noise added at . dB SNR
to form noisy speech waveform and its spectrogram. Bottom: Speech waveform generated from denoised Delta features as
context, and its spectrogram.

denoised Delta features can encapsulate the speech onsets correctly irrespective of the noise power1
level. However, in case of extreme noise as shown in figure 6.7, the power is not correctly distributed2
across bands. For instance, observe the speech onset at the 2000 ms time segments and compare the3
denoised and reference Delta features. Power in the higher bands has not been captured correctly and4
this causes the consonant sound to be different from the reference. In the Delta features obtained from5
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Male Talker, 7.5db Noise

Figure 6.6: Top: Clean speech waveform and its spectrogram for a male talker. Middle: Public square noise added at . dB
SNR to form noisy speech waveform and its spectrogram. Bottom: Speech waveform generated from denoised Delta features
as context, and its spectrogram.

generated speech, it is seen that the synthesizer does not compensate for such missing characteristics.1
This indicates that the WaveRNN simply produces speech based on what input it receives and does not2
try to rectify for such loss in information. On the other hand, there are no noticeable missing traits in3
the Denoised delta features and delta features from the generated speech for the example with less4
noise power as shown in figure 6.8.5

Female Talker, 2.5db Noise

Noisy 

Denoised Generated

Clean 

Figure 6.7: Top Left: Delta Features of clean speech for a female talker. Top Right: Delta features from speech corrupted
with cafe noise at . dB SNR. Bottom Left: Denoised Delta features obtained from the U-Net model. Bottom right: Delta
features of the generated speech for the example.
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Male Talker, 7.5db Noise

Noisy Clean 

Denoised Generated

Figure 6.8: Top Left: Delta Features from clean speech for a male talker. Top Right: Delta features from speech corrupted
with public square noise at . dB SNR. Bottom Left: Denoised Delta features obtained from the U-Net model. Bottom right:
Delta features of the generated speech for the example.

6.6.2. Combining VCAE with WaveRNN1
This experiment was performed to evaluate the performance of the system when the WaveRNN is2
fine-tuned with features denoised by the VCAE network. In this configuration, the VCAE network is set3
to evaluation mode and its weights are frozen, whereas the weights of the WaveRNN synthesizer are4
updated on every training cycle. Freezing the weights mean that the gradients are not backpropagated5
to update the VCAE network parameters. The configuration for the synthesizer remains the same as6
described in table C.4. While implementing, experiments were conducted for both Mel spectrograms7
and Delta features but speech synthesized from Delta features sound clear and better in terms of8
quality. Hence, this experiment directly showcases results obtained from training and fine-tuning the9
system with Delta features.10

After training was complete, Delta features extracted from the noisy speech present in the test11
set are provided to the VCAE network of the fine-tuned system for denoising. These denoised Delta12
features are then presented to the WaveRNN synthesizer where they act as context for generation of13
clean speech as described in section 6.4. The results obtained are illustrated in figures 6.9 and 6.1014
where, the waveform of the clean, noisy and generated speech along with their respective spectrograms15
for the same examples are shown. On listening to the audio files, the following observations were made:16

1. No distortions or artifacts during speech activity. However, there are some instances during gen-17
eration when the network becomes unstable and some segments of speech become corrupted.18

2. The pitch seems to be reproduced well enough but quavering in the speakers voice is more19
prominent than the U-Net trained with Delta features in experiment 6.6.1. The intonation also20
varies in some cases. For extreme noisy scenarios, the speaker voice seems to differ a bit from21
the original reference.22

3. Some information is missing or mumbled up especially for low SNR samples. There is a noticeable23
improvement in intelligibility as compared to the case when noisy context was directly provided24
to the synthesizer. And there is scope for further enhancement.25

4. Consonant sounds are produced correctly even for moderately high noise power cases but there26
is some missing clarity as compared to experiment 6.6.1 for using Delta features. There exist27
extreme noise scenarios where some phonemes are not produced correctly which causes misiden-28
tifying some words.29
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On comparing the spectrogram obtained from the generated speech with that of the clean speech, it1
is observed that in most cases there are no abrupt discontinuities that lead to distortions. Though, not2
visible in the figures present here, there exist other examples that exhibit artifacts in generated speech3
similar to the ones described in experiment 6.6.1. The reason for such unusual behaviour seems to4
be due to instability in the GRU layer either due to insufficient training or over-training with a large5
learning rate. The quavering voice of the speaker can be observed in the spectrogram of the generated6
speech in figure 6.10 between time segments 1800 − 2000 ms and 2600 − 3000 ms. The region in7
between peaks of the speech harmonics have relatively similar power and existence of false peaks. The8
presence of harmonics where they are not supposed to be present leads to mumbled speech which9
makes it difficult to understand. For instance, on comparing the the last few time segments of the10
spectrogram for generated speech with that of clean speech in figure 6.9 shows the presence of extra11
harmonics in the former whereas they are not present in the latter.

Clean 

Noisy 

Generated 

Female Talker, 2.5db Noise

Figure 6.9: Top: Clean speech waveform and its spectrogram for a female talker. Middle: Cafe noise added at . dB SNR
to form noisy speech waveform and its spectrogram. Bottom: Speech waveform generated from denoised Delta features as
context, and its spectrogram.

12

Figures 6.11 and 6.12 displays the reference (clean) Delta features, noisy Delta features (input to13
the U-Net model) and denoised Delta features (output of the U-Net model and input to the WaveRNN14
synthesizer) and the Delta features obtained from generated speech for the same examples. The15
denoised Delta features can encapsulate the speech onsets correctly irrespective of the noise power16
level. However, in case of extreme noise as shown in figure 6.11, the power is not correctly distributed17
across bands. For instance, observe the speech onset at the 2000 ms time segments and compare the18
denoised and reference Delta features. Power in the higher bands has not been captured correctly and19
this causes the consonant sound to be different from the reference. In the Delta features obtained from20
generated speech, it is seen that the synthesizer does not compensate for such missing characteristics.21
This indicates that the WaveRNN simply produces speech based on what input it receives and does not22
try to rectify for such loss in information. On the other hand, there are no noticeable missing traits in23
the Denoised delta features and delta features from the generated speech for the example with less24
noise power as shown in figure 6.12. On top of this, due to the compression of the latent space in the25
VCAE, the power in the higher frequency bands of voiced speech segments appears to be at the same26
level. The harmonics structure in speech is not effectively captured.27

Based on intuition gathered from listening to multiple generated speech files obtained from both ex-28
periments 6.6.1 and 6.6.2, it was concluded that generated audio from the former experiment sounded29
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Figure 6.10: Top: Clean speech waveform and its spectrogram for a male talker. Middle: Public square noise added at . dB
SNR to form noisy speech waveform and its spectrogram. Bottom: Speech waveform generated from denoised Delta features
as context, and its spectrogram.

Female Talker, 2.5db Noise
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Figure 6.11: Top Left: Delta Features of clean speech for a female talker. Top Right: Delta features from speech corrupted
with cafe noise at . dB SNR. Bottom Left: Denoised Delta features obtained from the VCAE model. Bottom right: Delta
features of the generated speech for the example.

better than the latter not only in terms of quality but also intelligibility. Note, that no objective met-1
rics were used to determine the quality or intelligibility of generated speech. Observations from both2
experiments also indicate that the combination of the WaveRNN synthesizer with U-Net was able to3
capture more details in the synthesized speech. Whereas, speech generated by the WaveRNN model4
when combined with the VCAE network lacked clarity. Moreover, for instances with higher noise power5
in the input the system could not reproduce the speaker voice correctly. Hence, the final system com-6
prises of the U-Net architecture with the WaveRNN synthesizer trained with Delta features. For the7
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Male Talker, 7.5db Noise
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Figure 6.12: Top Left: Delta Features of clean speech for a male talker. Top Right: Delta features from speech corrupted
with public square noise at . dB SNR. Bottom Left: Denoised Delta features obtained from the VCAE model. Bottom right:
Delta features of the generated speech for the example.

final system, the sampling rate of audio is 16kHz.1

6.6.3. The Final System2
Based on the results obtained, observations and inferences made from both experiments 6.6.1 and3
6.6.2, the U-Net architecture seems to be the most preferred choice. Though the number of parameters4
and computation in the U-Net is greater than that for the given configuration of the VCAE architecture,5
the WaveRNN is able to encapsulate more details from features that are denoised by the the U-Net6
as compared to the VCAE. Thus, for the final experiment, the combination of the WaveRNN with7
U-Net seems to be a good fit.3 Apart from the denoising architecture, it is also crucial to choose8
appropriate features, as inferred from previous experiments in this chapter. Intuition based on listening9
and observations indicate that speech synthesized using denoised Delta features sound better in terms10
of quality and are more understandable than speech synthesized using denoised Mel spectrograms.11
As a result, Delta features have been selected for the final system. This experiment is conducted12
to evaluate the performance of the selected features and denoising architecture with the WaveRNN13
synthesizer for 16kHz speech.14

The setup for this system is described in table C.11. Some synthesizer hyper-parameters and15
feature configurations were changed for this experiment as compared to the setup for experiment16
4.5.2 in chapter 4. As a result, some hyper-parameters for the initial pre-training of the WaveRNN17
with clean Delta features also had to be changed. Firstly, the number of Mel bands in the features18
were increased to 128. The synthesizer network was trained for 8000 epochs (1.6million iterations).19
In order to alleviate the problem of GRU instability, after 4000 epochs the learning rate was reduced20
by a factor of 2. Simultaneously, the U-Net was also trained to remove noise from the Delta features21
obtained from noisy speech. After training both the synthesizer and denoising models, the denoising22
model is used to fine-tune the synthesizer parameters. The synthesizer is fine-tuned for 12000 epochs23
(2.4million iterations) and the learning rate was reduced by a factor of 2 after fine-tuning for 800024
epochs. After fine-tuning the synthesizer was complete, results obtained are illustrated in figures 6.225
and 6.3 where, the waveform of the clean, noisy and generated speech along with their respective26
spectrograms are shown. On listening to the audio files, the following observations were made:27
3It is unfair to claim that the U-Net model outperforms the VCAE network in general solely based on the results obtained from
experiments 6.6.1 and 6.6.2, since the hyper-parameter configurations set during experimentation are not the most optimal
ones for the respective networks.
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1. No distortions or artifacts heard in generated speech.1

2. Voice of the speaker is correctly reproduced. Minor quavering in voice exists in case of extreme2
noise. The intonation of the speaker is also fairly reproduced but it can vary from the reference3
when speech is generated from context contaminated with extreme noise.4

3. Most of the words are recognizable but some words are still difficult to understand due to mumbled5
speech especially for certain regions in low SNR samples. There is a drastic improvement in6
intelligibility as compared to the case when noisy context was directly provided to the synthesizer.7
However, there is scope for more enhancement.8

4. Consonant sounds and some phonemes such as ’f’, ’p’, ’b’, ’d’, etc. are fairly reproduced but in9
case of extreme noise it leads to misidentifying the correct word.10
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Figure 6.13: Top: Clean speech waveform and its spectrogram for a female talker. Middle: Cafe noise added at . dB SNR
to form noisy speech waveform and its spectrogram. Bottom: Speech waveform generated from denoised Delta features as
context, and its spectrogram.

Training the synthesizer for a longer time with a reduced learning rate after convergence can improve11
stability in the GRU layer. After, convergence, the loss values of the network still keep varying around12
the true minimum if the learning rate is high. Stopping training at this point could either lead to a13
sub-optimal or even an inadequate solution. If the learning rate is reduced, then the network still14
converges towards the minimum and the variance in the loss values is reduced. Hence, decreasing15
the learning rate caused the GRU layer parameters to be finely updated. As a result, there were no16
abrupt variations in the hidden state of the GRU layer while generating speech. Hence, there were17
no observable artifacts present in generated speech as seen before. This solution for preserving the18
GRU stability during generation does not seem to be very reliable. Later,the cause for GRU instability19
in previous examples was analyzed and some unusual patterns were observed in the hidden state as20
discussed in chapter 4 segment 4.6.3. Thus, an alternative solution was suggested for solving this21
problem.22

The correct production of pitch and intonation can be seen in most segments of the spectrogram23
obtained from generated speech when compared with the clean speech spectrogram. Mumbling of24
words and production of incorrect consonant sounds is a bit less than before but it still exists as seen25
in the last few segments of the spectrogram of generated speech in figure 6.13. Here, the sound of26
consonant in the end of the word is not produced correctly. Figures 6.15 and 6.16 display the reference27
(clean) Delta features, noisy Delta features (input to the U-Net model) and denoised Delta features28
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Figure 6.14: Top: Clean speech waveform and its spectrogram for a male talker. Middle: Public square noise added at . dB
SNR to form noisy speech waveform and its spectrogram. Bottom: Speech waveform generated from denoised Delta features
as context, and its spectrogram.

(output of the U-Net model and input to the WaveRNN synthesizer) and the Delta features obtained1
from generated speech. The observations made for these figures are not different from the ones made2
in experiment 6.6.1. Neither were any signs of noticeable improvement in the denoised delta features3
or delta features obtained from generated speech.4

Female Talker, 2.5db Noise
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Figure 6.15: Top Left: Delta Features of clean speech for a female talker. Top Right: Delta features from speech corrupted
with cafe noise at . dB SNR. Bottom Left: Denoised Delta features obtained from the U-Net model. Bottom right: Delta
features of the generated speech for the example.
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Male Talker, 7.5db Noise
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Figure 6.16: Top Left: Delta Features from clean speech for a male talker. Top Right: Delta features from speech corrupted
with public square noise at . dB SNR. Bottom Left: Denoised Delta features obtained from the U-Net model. Bottom right:
Delta features of the generated speech for the example.

6.7. Analysis1
In this segment, an analysis conducted on the the final system described in experiment 6.6.3 is re-2
ported. This section is divided into two segments namely, training performance and evaluation of3
synthesized speech. In the first segment 6.7.1, the training performance of the proposed system is de-4
scribed. Later, the speech synthesized by this configuration was evaluated with a MUSHRA subjective5
listening test as described in 6.7.2.1 and an objective intelligibility measure called the Word Error Rate6
(WER) as shown in segment 6.7.2.2.7

6.7.1. Network Training Performance8
The performance of the network while training is determined by the negative log likelihood (NLL) loss9
function (described in chapter A section A.2.2.2) with respect to the clean reference audio sample.10
Figure 6.17 depicts the training loss curve with the loss expressed in bits on the vertical axis and the11
number of training cycles or epochs on the horizontal axis. This curve has been obtained for initial12
pre-training phase with clean features and the fine-tuning phase with noisy features. It is observed13
that both curves converge close to the same point, i.e., roughly around 2.5 bits. This means that a14
generated sample can be represented by 2.5 bits/sample on an average. When, the fine-tuning phase15
begins, the loss curve tends to increase a bit but later stabilizes and starts converging towards 2.5 bits16
again. This indicates that while fine-tuning, the pre-trained weights do not differ by large margins.17
This further indicates that the domain adaptation performed by the U-Net architecture is successful.18
There is a strong overlap between the feature spaces of the clean and enhanced Delta features.19

6.7.2. Evaluation of Synthesized Speech20
Speech generated by the proposed system in experiment 6.6.3 were evaluated for quality using subjec-21
tive listening tests. The quality of generated speech could not be evaluated using objective measures22
since they compare the sample alignment with the reference speech. Even though generated speech23
may sound similar to the reference, their waveforms do not have the same sample alignment as a24
result such metrics render futile. The intelligibility was also evaluated using a metric generally used for25
speech recognition, i.e., the Word Error rate. Objective intelligibility metrics for speech enhancement26
also compare test examples with the reference based on sample alignment.27
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Figure 6.17: Loss curves for the proposed Speech Enhancement and Synthesis System

MUSHRA Test1
Speech synthesized by the final system described in experiment 6.6.3 was subjectively evaluated with2
a MUSHRA listening test. MUSHRA stands for ’MUltiple Stimuli with Hidden Reference and Anchor’ and3
it is a methodology for conducting a listening test to evaluate the perceived quality of speech processed4
by either enhancement or compression algorithms. It is defined by ITU-R recommendation BS.1534-15
[73]. The main advantage of using MUSHRA over MOS (Mean Opinion Score) are as follows:6

1. MUSHRA requires fewer participants to obtain statistically significant results (20 participants are7
sufficient).8

2. The scale of 0 − 100 used by MUSHRA makes it possible to rate very small differences.9

In a MUSHRA test, the listener is presented with the reference and a certain number of test samples10
which include a hidden version of the refernce and one or more anchors. The purpose of using anchors11
is to calibrate the scale so that minor artifacts are not unduly penalized. Ideally, MUSHRA tests call for12
trained experienced listeners who know what typical artifacts sound like [73].13

Procedure14
Speech files generated from the proposed enhancement system were tested against speech files ob-15
tained from several state-of-the-art speech enhancement methods namely SE-GAN [12], SE-VCAE [22]16
and SE-WaveNet [13]. A web client interface developed using HTML5 and Javascript known as MushraJS17
[79] was utilized. This web client, mushrajs, is hosted on a virtual compute engine launched on Amazon18
Web Services (AWS). 20 utterances from the test dataset were randomly selected such that all 4 differ-19
ent Signal-to-Noise Ratio examples exist equally. Moreover, the number of male and female speaker20
examples were the same. A total of 10 listeners appeared for the test and the ratio of experienced21
listeners to untrained listeners were 1 ∶ 1. During the test, the identity of the files was not revealed to22
the listeners and their order was shuffled randomly. The following instructions were provided to the23
listeners before taking the test:24

1. Use high quality studio headphones and a good sound-card!25
2. Listen through all test files and test sets before you do any ratings to get used to the material.26
3. Rate the quality of the test items only compared to the reference on top.27
4. There are in total 7 files to be graded and they consist of 1 hidden reference, 1 noisy speech file,28
1 anchor file and 4 test examples.29

5. Try to rate the overall impression of a test item and don’t concentrate on single aspects.30

http://3.93.248.208/
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6. Grade according to naturalness of speech sound, good clarity and less noise, distortions and1
artifacts.2

Results3
It was a difficult task to assess and analyze the results of the subjective test since many listeners had a4
different mindset while rating the test files. This was realized by personally interviewing the candidates5
to know their experience, rating criterion, etc.4 Only five listeners graded based on an overall impression6
and the remaining five listeners focused more on how understandable the test speech examples were.7
Thus, they weighed intelligibility more over quality while scoring the test files. During the interview,8
candidates revealed that they found it difficult to grade the test files because the noise and distortions9
present in the noisy examples did not affect their perception and understanding of speech. Although10
there were some test files that sounded clean, they did not give a high score because they found it11
difficult to understand certain words.12

Table 6.1 displays the average scores with confidence intervals calculated over all SNR’s and noise13
types. Results from the MUSHRA test were obtained by taking an average of the five listeners who14
graded based on an overall impression. The table shows that all methods were graded higher than noisy15
speech on an average. Though the generated speech files from proposed WaveRNN method sound16
better than the noisy speech, it is graded lower than other state-of-the-art enhancement methods. The17
reason for such a performance is that the presence of distortions in the speech files obtained from other18
techniques were not perceived as unpleasant by the listeners. On the contrary, speech files generated19
by WaveRNN sounded free from artifacts but contained some examples with missing content or unclear20
words which was not appealing to the listeners.21

Table 6.2 shows the average scores with confidence intervals calculated over different SNR’s. For22
lower SNRs ,i.e., 2.5 dB and 7.5 dB, the proposed WaveRNNmethod performs at par with other enhance-23
ment techniques and outperforms the SE-WaveNet method. For higher SNRs, i.e., 12.5 dB and 17.5 dB,24
other methods outperform the proposed WaveRNN. VCAE consistently outperforms other enhancement25
methods at lower SNRs and WaveNet performs best at high SNRs. At lower SNRs, distortions present in26
the enhanced speech estimated from other methods are more prominent and sounds unpleasant to the27
listeners. Whereas the proposed method sounds free from distortions but misses out on information.28
Table 6.3 shows the average scores with confidence intervals calculated over different noise types. For29
noise types ’Living’ and ’Public Square’ the proposed technique scores almost similar to other methods.30
However, for noise types ’Cafe’ and ’Bus’, the proposed method does not perform very well. VCAE31
performs best for ’Living’ and ’Cafe’ sounds whereas WaveNet performs best for ’Public Square’ and32
’Bus’.33

Table 6.1: Average scores with confidence intervals (across all SNR and noise type) obtained from MUSHRA listening test.

Noisy SEGAN VCAE Wavenet WaveRNN
45.81 ± 7.17 58.48 ± 12.95 60.83 ± 13.50 58.66 ± 17.43 53.19 ± 9.06

Table 6.2: Average scores with confidence intervals (split by SNR) obtained from MUSHRA listening test.

SNR (dB) Noisy SEGAN VCAE Wavenet WaveRNN
2.5 38.48 ± 4.18 46.04 ± 11.40 49.64 ± 14.26 40.88 ± 10.28 40.52 ± 5.61
7.5 43.56 ± 4.42 56.36 ± 9.72 57.44 ±7.40 53.12±13.79 56.16±4.40
12.5 52.48±7.13 68.00±10.80 70.08±10.53 64.56±12.41 58.52±6.91
17.5 48.72±4.06 63.52±10.55 66.16±13.54 76.08±11.70 57.56±4.55

Figure 6.18 shows the count of the ranks received by a particular technique where 1 stands for the34
highest rank and 5 is the lowest rank. The Speech enhancement VCAE outperforms all other methods35
where out of 20 test examples, 11 examples received the highest rank. The proposed WaveRNN36
technique stands 4 overall and has three examples that ranked first among other techniques. This37
shows that at the moment partially generative methods outperform the existing regressive methods.38
4The identity of candidates is not revealed due to privacy concerns.
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Table 6.3: Average scores with confidence intervals (split by noise type) obtained from MUSHRA listening test.

Noise type Noisy SEGAN VCAE Wavenet WaveRNN
Living 42.75±4.07 55.90±10.55 59.25±13.54 49.95±11.70 52.00±4.54

Public square 42.80±5.60 52.50±10.25 54.73±8.97 55.30±17.24 51.28±10.79
Cafe 48.63±7.43 66.43±13.38 67.10±12.34 63.87±15.28 54.87±6.50
Bus 55.50±6.36 63.70±0.42 69.6±8.20 73.90±3.25 58.20±8.49

Figure 6.18: Rank count for the considered speech enhancement methods obtained from the MUSHRA listening test.

There is quite a large scope of improvement for fully generative speech enhancement models especially1
in terms of intelligibility.2

Word Error Rate3
Word error rate (WER) is a common metric of performance mainly for speech recognition systems.4
There exist several intelligibility metrics for speech such as Speech intelligibility index (SII), Short Time5
Objective Intelligibility (STOI) [80], etc. However, these metrics also compare the test waveform with6
a reference waveform. Speech that is generated by the WaveRNN synthesizer has an infinitesimal7
chance of having the same sample alignment in its waveform as the reference even if both sound8
very similar. Thus, any objective metric that directly compares waveforms will not give reliable results9
for speech obtained from fully generative models. Hence, WER was used as a metric to measure10
intelligibility. Speech-to-text models are readily available on Google Cloud Services where audio files11
can be uploaded and text files are returned. The VCTK dataset described in chapter 3 section 3.112
also provides text files for their speech and they can be used as a reference to compare with. Thus,13
the clean, noisy and generated speech files obtained from the proposed system that were used for14
the MUSHRA analysis were converted to text with Google’s Speech-to-text engine. This was followed15
by some text pre-processing after which the WER was calculated. The pre-processing steps include16
removing punctuation symbols, making all letters lowercase and extracting the words from the string17
to a list.18

The calculation of WER is derived from a widely used metric in information theory for linguistics19
called the Levenshtein’s distance [81]. This metric is used for measuring the difference between two20
string sequences. The Levenshtein’s distance between two sentences is the minimum number of21
word edits (insertions, deletions or substitutions) required to change one sentence into another. The22
Levenshtein’s distance between two strings 𝑎 and 𝑏 (of length |𝑎| and |𝑏| respectively) is given,23

lev , (𝑖, 𝑗) =
⎧⎪
⎨⎪⎩

max(𝑖, 𝑗) if min(𝑖, 𝑗) = 0,

min{
lev , (𝑖 − 1, 𝑗) + 1
lev , (𝑖, 𝑗 − 1) + 1
lev , (𝑖 − 1, 𝑗 − 1) + 1( )

otherwise,
(6.1)
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where, lev , (𝑖, 𝑗) stands for the Levenshtein’s distance between the words 𝑖 and 𝑗 present in strings 𝑎1
and 𝑏 respectively. The first element of the minimum corresponds to deletion, the second represents2
insertion and the third stands for match or mismatch. 1( ) is the indicator function which equals to3
0 when 𝑎 = 𝑏 and equals to 1 otherwise. Thereafter, the word error rate is calculated as:4

WER(a, b) = lev , (𝑎, 𝑏)
|𝑎| , (6.2)

where, WER(a, b) stands for the word error rate between two strings 𝑎 and 𝑏. Assuming, 𝑎 as the5
reference string, the Levenshtein’s distance metric between the strings is divided by the length of the6
reference string.7

The percent average WER calculated over all the same examples used for the MUSHRA test are8
showcased in tables 6.4. The table shows an average increase by approximately 7% in the Word Error9
Rate from noise speech to generated speech. This indicates an overall improvement in intelligibility,10
but, the increase is minute. There is an error of 13.3% between the text response of the clean speech11
and the reference text provided by the dataset. This shows that the speech-to-text engine is also prone12
to errors. The speech-to-text engines may also perform some enhancement on the input signal before13
recognizing the text as many noisy examples have a fairly decent word prediction and the error rate is14
not very high as expected.

Table 6.4: Percent Average Word Error Rate (across all SNRs and noise types) obtained from the text response of the clean,
noisy and generated speech.

Reference
vs.
Clean

Reference
vs.
Noisy

Reference
vs.

Generated

Clean
vs.
Noisy

Clean
vs.

Generated
13.3 35.11 28.19 30.16 26.46

15

Table 6.5: Percent Average Word Error Rate (split by SNR) obtained from the text response of the clean, noisy and generated
speech.

Signal-to-Noise
Ratio (dB)

Reference
vs.
Clean

Reference
vs.
Noisy

Reference
vs.

Generated

Clean
vs.
Noisy

Clean
vs.

Generated
2.5 5.71 32.86 22.86 30 25.71
7.5 15 45 27.5 50 27.5
12.5 20.83 31.25 31.25 18.37 24.49
17.5 16.67 33.33 36.67 23.33 30

Table 6.6: Percent Average Word Error Rate (split by noise type) obtained from the text response of the clean, noisy and
generated speech.

Noise Type
Reference

vs.
Clean

Reference
vs.
Noisy

Reference
vs.

Generated

Clean
vs.
Noisy

Clean
vs.

Generated
Living 18.75 46.88 21.88 33.33 21.21

Public Square 10.13 36.71 27.85 37.18 30.77
Cafe 22 40 42 30 32
Bus 0 13.33 20 13.33 20

On analyzing the WER for different SNR’s as shown in table 6.5, there is an improvement in intel-16
ligibility for low SNRs, i.e., 2.5 dB and 7.5 dB since the error reduces. However, when noise power is17
low, i.e., 12.5 dB and 17.5 dB, then there is either no observed change in the WER metric or a decrease18
in intelligibility. This indicates that the proposed system is robust to noise as there is a noticeable19
improvement in case of low SNR signals. On analyzing different noise types as shown in table 6.6,20
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there is an improvement in intelligibility for ’Living’ and ’Public Square’ noise types. It is difficult to1
conclude for noise types ’Cafe’ since the scores are almost at par. For the noise type ’Bus’, the intelli-2
gibility decreases in generated speech. This is an unusual phenomenon since, the noisy features were3
least affected by this noise type as indicated in chapter 3 section 3.9 and yet the system reduces the4
intelligibility in such examples. This indicates that when the synthesizer becomes robust to noise, it5
deteriorates the intelligibility in speech that is either almost clean or least affected by noise.6

The detailed results are displayed in Appendix B table B.1 where certain striking examples contam-7
inated with 4 different noise types at 4 SNRs are considered. The reference text file that is provided8
within the dataset and the text files for clean, noisy and generated speech obtained from the speech-9
to-text engine are also shown so as to justify the numbers obtained for the WER. Words in the text10
files of clean, noisy and generated speech that are different from the reference have been highlighted.11
The last column named ’comments’ contains inferences and remarks for all the examples. There are12
some examples with differences between the text response for the clean speech (predicted by the13
Speech-to-text engine) and the reference text provided by the dataset. Objectively, the system shows14
a minor increase in intelligibility from noisy speech to generated speech. However, on subjectively eval-15
uating the text responses, shown in table B.1, by considering the semantics of the sentences, speech16
generated by the proposed system can sound confusing as reflected in the MUSHRA listening tests.17

Concluding Remarks18
The proposed speech enhancement model is a combination of the WaveRNN speech synthesizer de-19
scribed in chapter 4 and the U-Net architecture described in chapter 5. The U-Net is responsible for20
enhancing noisy Delta features by removing the noise and the WaveRNN generates speech from the21
context provided by denoised Delta features. This chapter discussed the training, fine-tuning and22
speech generation procedures. Experiments and analysis conducted with the system led to important23
findings. This section summarizes the key takeaways from the topics discussed in this chapter.24

The following inferences have been drawn from this chapter:25

• A fully generative neural network model for producing clean and natural sounding speech from26
context provided by noisy features was successfully implemented.27

• Using Delta features over Mel spectrograms yield better sounding speech since Delta features28
present the network with information regarding consonants and unvoiced speech sounds much29
more explicitly. Thus, the WaveRNN synthesizer can capture those sounds effectively.30

• Speech generated from features enhanced by the U-Net architecture sound better than the speech31
generated from features enhanced by the VCAE network. This is because the U-Net can encapsu-32
late more details as compared to the VCAE network yielding more enhanced features. Hence, the33
proposed method for speech enhancement involves the combination of the U-Net architecture34
with the WaveRNN synthesizer.35

• Speech generated by the proposed method described in experiment 6.6.3 is clean and natural36
sounding and does not contain any noise characteristics, distortions or artifacts. However, it37
suffers in terms of intelligibility due to missing clarity in some words. It must be noted that, there38
is considerable improvement in intelligibility as compared to providing noisy features directly to39
the synthesizer (described in chapter 4).40

• Results from the MUSHRA subjective evaluation reveal that the proposed system does produce41
speech that is preferred over listening to noisy speech. However, other state-of-the-art speech42
enhancement methods outperform the system proposed. Reasons for this are attributed to the43
lack of enhancement in terms of intelligibility.44

• Intelligibility in generated speech was also evaluated objectively with the Word Error Rate (WER)45
measure. The metric shows an improvement over noisy speech on an average. However, if46
semantics in the text responses are also taken into consideration then it can be difficult to under-47
stand the generated speech which is also reflected in the MUSHRA test. Analysis indicates that48
the system is robust to noise but deteriorates for less noise in input.49

• There is a need to develop an objective metric to evaluate the quality of the speech produced50
by generative models. The existing metrics are not so helpful since they compare the sample51
alignment of test examples with the reference.52



71
Conclusion & Discussions2

This chapter summarizes the important outcomes of this study and throws light on future advance-3
ments in this field of research. It is organized as follows where first a discussion section reflects upon4
the proposed speech enhancement method in segment 7.1.1. This is followed by another discussion in5
segment 7.1.2 where the applicability of this technique on a hearing aid system is highlighted. There-6
after, a synopsis of the most salient concluding points are provided in section 7.2. Finally, the future7
prospects and possibilities for further improvements are mentioned in section 7.3.8

7.1. Discussions9
This section is divided into two categories where first the research goals of this thesis that were men-10
tioned in chapter 1 section 1.2 are reflected upon. This segment answers the research questions that11
were the driving force behind this study. The following segment enlists the obstacles of implementing12
the proposed speech enhancement method on a hearing aid system in terms of the speech information13
they process and hardware constraints.14

7.1.1. Proposed Speech Enhancement technique15
This segment aims to address the research questions that were stated in the introductory chapter of16
this thesis. This discussion helps evaluate the extent to which the goals of this thesis are met.17

How can clean sounding and intelligible speech be generated when the context pro-18
vided to a generative model is noisy19

The generative model chosen for the task of speech enhancement is called WaveRNN and the20
reasons for selecting this network were mentioned in the concluding remarks from chapter 2. From21
the experiments conducted in chapter 4, it was concluded that when noisy context is directly provided22
to the WaveRNN synthesizer it can produce clean sounding speech but this speech is not meaningful23
at all. Moreover, the model could not identify the correct speaker voice as it kept varying for different24
segments within the same utterance. This occurred because of the presence of noise in the context25
which interfered with the speech information. Furthermore, the synthesizer was not trained to neglect26
or rather remove noise from the context. As a result, the noisy features had to be enhanced before being27
presented to the WaveRNN synthesizer. This enhancement of features was performed separately for28
which two different architectures namely the U-Net and the Variance Constrained Auto-Encoder (VCAE)29
were proposed in chapter 5. With a series of experimentation, it was unveiled that the U-Net model30
outperformed the VCAE network for the selected set of configurations. Hence, the pre-trained U-Net31
model was deployed to fine-tune the parameters of the WaveRNN synthesizer. For faster convergence of32
the model, the synthesizer was initially pre-trained with clean context so as to learn the transformation33
from context to speech. Thus, by using the principles of transfer learning, the WaveRNN also learned to34
generate clean and natural sounding speech from denoised features as described in chapter 6. Thus,35
this combination of the WaveRNN synthesizer with the U-Net model could now successfully accept36
noisy context to produce desired speech. This led to a drastic improvement as compared to the results37
obtained from directly synthesizing speech from noisy features not only in terms of intelligibility but38

80
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also in artificially producing speech with the same voice and intonation of the speaker. However,1
speech generated from denoised features was still not perfect as there were some segments within a2
few examples that lacked clarity and led to misunderstanding the correct words. In order to further3
improve the intelligibility in these systems, some recommended changes are summarized in section4
7.3.5

hat are the functionalities of the key components used in the proposed generative6
model7

The analysis sections in chapters 4 and 5 investigate the role of the components in the proposed8
system by visualizing their outputs. For instance, the most important component of the WaveRNN is9
the Gated Recurrent Unit (GRU) layer. The hidden state of the GRU layer was visualized by stacking it10
along the temporal axis. Repetitive patterns in this state were observed and the frequency of repetition11
of these patterns aligned with the pitch frequency of the speaker. Thus, one of the most important12
aspects of the GRU layer is to encapsulate the speaker identity. The GRU layer also exhibits the presence13
and absence of speech in its hidden state. Moreover, the instability in the GRU layer while generating14
a waveform is also reflected within its hidden state. A large change in the variance of the values is15
observed in case of instability.16

The output of the WaveRNN synthesizer was also visualized which displayed the probability distri-17
bution of the sample value. When the probability distribution is stacked along the temporal axis, it18
shows a hazy resemblance with the speech waveform. Moreover, the WaveRNN was highly confident19
about samples belonging to voiced speech segments since the distribution was very narrow whereas20
for unvoiced speech segments or consonants, the distribution was very wide. Thus, the uncertainty21
in predicting an unvoiced speech sample is much higher than that for a voiced speech sample. The22
average entropy rate is calculated to be approximately 2.5 bits/sample or 40 kbits/second for all audio23
files.24

The weights of the WaveRNN synthesizer are distributed as a super-Gaussian or a factored Laplacian.25
This indicates two properties of the network, first being that the network learned the distribution of26
speech by itself, and secondly, the weights of the network are sparse. Hence, pruning can be applied27
in order to reduce the number of computational resources even further and hence reduce the time in28
operations. The convolution kernels in the up-sampling network were also visualized. The kernels apply29
a low pass filter on the Mel features and the stretching operation increases the temporal resolution of30
the Mel features thus providing the features to the WaveRNN at the sampling frequency of audio. Due31
to the use of a convoltuional operation, the up-sampling network makes the generation process of the32
overall system slower. At the moment, the system needs information up to 3 time segments of Mel33
feature vectors in order to generate speech samples. Please note, that the WaveRNN on its own does34
not need future information since it only needs the upsampled Mel feature vector at the current index35
and the previous speech samples.36

The latent space of the denoising architectures were also visualized in order to understand the37
role of U-Net and VCAE architectures. The latent space of the U-Net is much larger than the input to38
the network. On the other hand, the latent space of the VCAE is compressed. The latent space of39
the U-Net is able to encapsulate detailed information from the input such as speech activity, silence40
regions, information at different frequency ranges and speech onset all in different channels. This is41
also reflected in the output of the U-Net, where the denoised Mel features can preserve speech related42
details. The latent space of the VCAE is difficult to understand since there are no distinct patterns43
observed in the channels. Activation at different time-band bins align with the speech activity in the44
input features but apart from that no other details were interpretive. The features enhanced by the45
VCAE network level the power in the speech regions especially in the mid and high frequency bands.46
Thus, it is not able to capture all details effectively in such a small space.47

7.1.2. How far is this technology from a hearing aid system?48
Chapters 4 and 5 mentions the amount of computations and memory requirement along with the time49
needed for training and execution of this system. Recall from chapter 4 section 4.6.1, the WaveRNN50
synthesizer requires 2.61 MFlops to compute one sample of speech. Thus, to produce 1 second of51
speech at a sampling rate of 16 kHz, the processor must be capable of carrying out approximately52
41.76 GFlops/second. Additionally, the denoising architecture requires 1.91 GFlops to denoise a frame53
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of noisy Mel features extracted from 540 ms of speech. Thus, to denoise a frame of 1 second of1
speech, the process requires approximately 3.54 GFlops/second. With the given configurations, it is2
possible to execute the proposed system on a Samsung Galaxy Note 8 or Google Pixel 2 XL that use3
the Snapdragon 835 cpu as they are capable of conducting the required number of flops/second using4
all 8 cores [82, 83].1 Pruning the weights of the network can considerably reduce the computations5
to using at most 2 cores on the CPU [21]. A hearing aid device uses a Digital Signal Processor (DSP)6
and the resources available are not capable of carrying out such a large number of computations.7
However, a mobile phone is also a part of hearing aid systems now-a-days and the proposed speech8
enhancement system can be implemented on a mobile that can communicate with a hearing aid. Apart9
from computational power, another worrisome factor is the delay in hearing due to the latency of the10
system.11

Perceptual studies indicate that the tolerable delay at which listeners report being annoyed or both-12
ered by the change in sound quality is as low as 10 ms. This delay depends on the frequency of the13
sound and the speaker. For speech from other speakers, the tolerable delay is reported to be 24 − 3014
ms when it is constant across frequency and about 15 ms when it is variable [84]. For a person’s own15
voice, the tolerable delays are 9 − 10 ms [84]. With the current configuration settings mentioned in16
table C.11, the proposed system, requires at most 80 ms of noisy speech to start processing it. This17
delay can be reduced by decreasing the frame length and hop length of the window under considera-18
tion. On top of that, the processing time of the system on a GPU is approximately 0.625 ms/sample as19
mentioned in chapter 4 segment 4.6.1. This means that with the current setup, the synthesizer needs20
10 seconds to generate 1 second of speech. The generation time can be considerably reduced by21
pruning the weights of the network to generate speech at the desired sampling frequency [21, 53, 85].22
Assuming, if the system were to be implemented on a mobile phone after pruning the network weights23
and reducing the frame and hop lengths, there will still be an additional lag due to communication24
between the devices which increases the overall latency.25

In order to reduce the delay in synthesis, if the frame length is reduced to 10ms or lower, then the26
features extracted from such a short segment are very different from the features that were used to27
train the proposed system. It will be difficult for the network to learn the pitch information from these28
wide-band spectral features. Hence, it will have to be estimated separately from the correlation of the29
signal. Other features such as the cepstrum, or delta cepstrum will have to be extracted separately30
and appended with the pitch before waveform synthesis. This will also bring a change in the system31
design.32

7.2. Conclusion33
Every chapter in this thesis includes concluding remarks at its end and these remarks have formed a34
foundation for the subsequent chapters. This section gives a synopsis of the most cardinal outcomes35
of this study. Chapter 4 introduced the WaveRNN synthesizer, a fully generative network that models36
audio as a conditional probability distribution depending on the previous audio samples and the context37
provided to it. As far as the context is clean, the quality and intelligibility of generated speech is38
extremely high and sounds almost indistinguishable from the reference speech. This is irrespective of39
the type of features used as context. Hidden state in the Gated Recurrent Unit is capable of capturing40
the voice identity of a speaker since repetitive patterns synchronous with the pitch frequency of the41
speaker are observed. The weights of the network follow a super Gaussian distribution which is similar42
to the distribution of speech. Hence, the network learns the natural distribution of speech unlike43
classical approaches that rely on a Gaussian assumption to analytically derive their models.44

The presence of noise in the context does not affect the quality of the synthesized speech as45
it sounds very natural. However, generated speech lacks intelligibility due to mumbled words and46
difficulty in reproducing consonant sounds. Simply tuning network hyper-parameters is not the key47
to improve the model performance and can not alleviate the problem when noisy context is provided.48
A good understanding of input features is required. As a result, denoising or enhancing the features49
separately before they are provided to the WaveRNN synthesizer seems to be a more practical solution.50
Moreover, instead of training the synthesizer ground up on denoised features as context, it is beneficial51
1No tests have been conducted to verify this and it is a ballpark estimate.
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to fine-tune the WaveRNN that is pre-trained on clean context. This is inspired from a principle called1
Transfer Learning. In this way, the entire system remains generative in nature as there is no comparison2
of waveforms.3

Two architectures for denoising the features were introduced in chapter 5. It was difficult to make4
a choice between the architectures based on their denoising performance. Later, after fine-tuning5
the synthesizer with features obtained from both architectures indicated that speech generated from6
features enhanced by the U-Net architecture sound better than the speech generated from features7
enhanced by the VCAE network (for the given configuration). This is because the U-Net can encapsulate8
more details as compared to the VCAE network yielding more enhanced features. Hence, the proposed9
method for speech enhancement involves the combination of the U-Net architecture with the WaveRNN10
synthesizer as shown in chapter 6.11

Speech generated by the proposed method described in experiment 6.6.3 is clean and natural12
sounding and does not contain any noise characteristics, distortions or artifacts. However, it suffers in13
terms of intelligibility due to missing clarity in some words. It must be noted that, there is considerable14
improvement in intelligibility as compared to providing noisy features directly to the synthesizer (de-15
scribed in chapter 4). Results from the MUSHRA subjective evaluation reveal that the proposed system16
does produce speech that is preferred over listening to noisy speech. However, other state-of-the-art17
speech enhancement methods outperform the system proposed. Reasons for this are attributed to the18
lack of enhancement in terms of intelligibility. Intelligibility in generated speech was also evaluated19
objectively with the Word Error Rate (WER) measure. There is a noticeable improvement in intelligibil-20
ity over noisy speech with low SNR but the intelligibility drops for high SNR signals. The metric shows21
a slight improvement over noisy speech on an average over all SNRs and noise types. However, if22
semantics in the text responses are also taken into consideration then it can be difficult to understand23
the generated speech which is also reflected in the MUSHRA test.24

In chapter 3, a modification was proposed while calculating the Delta features. A new parameter25
is introduced to control the difference between the successive bands. This not only amplifies the26
power during speech onsets or unvoiced speech segments but also preserves the harmonics in voiced27
speech segments. Sigmoidal normalization technique was introduced to avoid the clipping problem that28
arises with the min-max normalization. An analysis conducted to study the effect of noise on different29
features in the Mel domain revealed that the Mel Frequency Cepstral Coefficients are most affected30
by the introduction of noise irrespective of the noise type and its power. The analysis did not show a31
vast difference between Mel spectrograms and the proposed Delta features. In chapter 6, using Delta32
features over Mel spectrograms yield better sounding speech since Delta features present the network33
with information regarding consonants and unvoiced speech sounds much more explicitly.34

7.3. Future Work35
There are a lot of possible directions of advancements from this point forward. Some of these are36
mentioned in this section.37

Improve Generation Stability in WaveRNN38
In chapter 4, there were some cases when the generated audio suffered from the presence of artifacts.39
These artifacts occurred randomly and their existence was attributed to the instability in the GRU layer40
while generating audio. It was suspected that such situations can occur if the WaveRNN is not trained41
sufficiently or trained longer with a large learning rate despite convergence. This problem was solved by42
reducing the learning rate of the model after convergence during training. Thereafter, the production43
of speech with artifacts seldom occurred. However, it is believed that this problem has only been44
solved partially by tweaking the hyper-parameter. Later, on analyzing the samples with artifacts, it was45
observed that the hidden state of the GRU layer had eccentric patterns that were different from the46
ones indicating speech presence. The variance in the hidden state of that particular time slice was47
observed to be larger than usual. Hence, a solution is inspired from the VCAE network to enforce a48
bound on the variance of the hidden state while training. It is believed that with such a constraint,49
this instability would be curbed and not occur again. It would be interesting to attempt training the50
WaveRNN synthesizer with this penalty function alongside the objective function.51
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Add an Intelligibility Metric to the Objective1
The MUSHRA listening tests in chapter 6 indicated that the speech generated by the proposed speech2
enhancement system did not perform as well as other state-of-the-art speech enhancement models.3
The reason for such a performance was due to lower intelligibility of generated speech as compared to4
other methods. Thus, one of the ways to improve intelligibility would be to add a penalty function that5
encourages intelligibility to the objective minimization. Some existing objective intelligibility metrics6
compare the features of the generated speech with that of the clean reference speech. One of the7
ways of doing so would be to design an additional network that either maps the output or the latent8
space of the denoising architecture to a space of 1/3 octave bands. Thereafter, the STOI metric9
[80] can be maximized to improve the correlation between the 1/3 octave bands. This can also help10
in retrieving the high frequency information that was lost while predicting the enhanced features in11
chapter 5. The suggestion of this penalty function has not been mathematically verified to check if the12
function is differentiable. However, it would be an interesting topic of research since no cost function13
has been proposed to improve speech intelligibility.14

A Neural Network based Objective Speech Quality Metric15
One of the major problems with generative speech synthesizers is to be not able to measure their quality16
with objective metrics. The existing objective metrics such as Segmental SNR, Percptual Evaluation of17
Sound Quality (PESQ), etc. render futile because they compare the test example with the reference18
and most of them check for sample alignment. Since, generated speech despite having the same19
context as the reference speech does not have a similar waveform or sample alignment, such metrics20
give a low score. One of the ways of developing an objective metric for evaluating quality can be21
done by designing a discriminative neural network that compares a feature encoding derived from22
clean reference speech and test examples using a triplet loss [86]. Inspired by the DeepFace [87]23
research on face verification, a similar Siamese network architecture can be redesigned for speech24
quality evaluation. A subjective Mean Opinion Score metric [88] can be used for labeling the data.25

Generate Speech from Deep Features26
Chapter 3 section 3.8 discussed the possibility of using self-derived features by a neural network in-27
stead of providing manually extracted features. This allows the network to learn its own meaningful28
representations from raw wave inputs. An auto-encoder architecture, for instance, the VCAE could be29
used to map the input waveform to a compressed latent space. This latent space can then be provided30
to the WaveRNN synthesizer to generate speech as illustrated in figure 7.1. Perhaps, the idea proposed31
in segment 7.3 can also be combined with this proposition.

Figure 7.1: Learning to generate speech from a Latent Space

32
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Towards Faster Implementation on Devices with Hardware Constraints1
The computational analysis in chapter 4 showed that the network requires a significantly large number2
of computations to predict a sample. Despite, it being able to run on a mobile CPU, the generation3
speed of speech samples does not match the sampling frequency of audio. In order to generate speech4
at that rate, the number of computations must be reduced and this can be achieved by pruning the5
weights of the synthesizer model. The distribution of the synthesizer network weights show that the6
matrix is sparse in nature and many weight values can be pruned in order to reduce the model size7
further. Pruning the weights of the WaveRNN model has already been implemented in [21], however,8
the challenge here is to do so when noisy or enhanced features are an input to the synthesizer such9
that there is minimum loss in generated speech quality. An advancement in research towards this10
direction would probably make neural networks fit on a hearing aid system in the near future.11
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A1
Background Study2

This appendix mentions some fundamentals of general Digital Signal Processing and Deep learning3
methods. A brief explanation of several modeling and analysis techniques will be provided. The goal4
of this appendix is to highlight the evolution from processing and predicting signals using heuristic5
mathematical models to data driven approaches like Machine learning and Deep learning. Some fun-6
damentals about Digital Signal Processing techniques related to speech processing are described in7
A.1. Basics of Deep learning methods are described in section A.2.8

A.1. Digital Signal Processing9
Before the era of Machine learning and Deep learning, scientists created mathematical models for10
synthesizing, analyzing and modifying signals of various types such as time-series financial data, bio-11
signals, audio, images, etc. Some of the classical approaches for analyzing speech such as the Discrete12
Fourier Transform A.1.1 and spectral analysis A.1.2 are enlisted here. Thereafter, the Wiener filter13
approach for noise reduction has been described in segment A.1.3.14

A.1.1. Signal Decomposition15
When a signal is decomposed into a its components or mapped to a different domain, it can be easier16
to understand and analyze it from a different perspective. Hence, it is an important analysis and design17
tool that provides insights into the solution of many problems. Some of the widely used signal decom-18
position and analysis techniques are the Fourier transform, z-transform and the Wavelet transform.19
Here, the Fourier transform will be discussed in more detail since it has been used for analyzing the20
speech signals as described in chapter 3.21

The Fourier Transform is known to decompose a time signal into its constituent frequencies also22
known as a spectrum. Thus, the representation of a signal in the frequency domain conveys the23
contribution of different frequencies that would form the same signal in the time domain. It is an24
invertible transform and the time domain signal can be recreated from its frequency domain repre-25
sentation. Since, computation happens digitally, the analysis of discrete signals is performed with26
a Discrete Fourier Transform (DFT) and this representation is amenable for finite length sequences.27
The transformation is very efficient and has low complexity and yields almost uncorrelated spectral28
coefficients. Analysis of speech signals is performed on short-time frames. The reason is based on29
the principle of stationarity which assumes that the audio signal does not change much (statistically).30
Thus, an ideal frame length is 20−40ms. If the frame is much shorter we don’t have enough samples31
to get a reliable spectral estimate, if it is longer the signal changes too much throughout the frame.32
Thus, the DFT applied to a single short-time frame of speech is expressed as:33

𝑆(𝑘) = ∑ 𝑤(𝑛)𝑠(𝑛) exp (−𝑗2𝜋𝑘𝑛𝑁 ), (A.1)
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where, 𝑆(𝑘) represents the spectrum of a short-time frame of the signal 𝑠(𝑛) with a frame length of1
𝑁 samples. 𝑛 stands for the time index in the signal and 𝑘 is the frequency bin in the spectrum. 𝑤 is2
a window function and their purpose is to reduce the spectral leaks. This transform is carried out for3
every short-time frame in the speech utterance. After, analyzing the signal in the frequency domain,4
different types of filters can be applied so as to process the signal. After doing so, the processed5
spectrum can be synthesized back to the waveform with the help of an inverse of this transform that6
is expressed as:7

𝑠(𝑘) = 1
𝑁 ∑ 𝑤(𝑘)𝑆(𝑘) exp (−𝑗2𝜋𝑘𝑛𝑁 ). (A.2)

A.1.2. Spectral Analysis8
Spectral analysis involves estimating the power spectrum of signals which is called a periodogram.9
This estimate should ideally be as close as possible to the true power spectrum so as to accurately10
design filters such as the Wiener filters described in segment A.1.3. Since, analysis of speech involves11
restricting the length of the time frame due to the stationarity assumption, it is challenging to estimate12
the true power spectrum due to limited data. Moreover, the data is often corrupted by noise which13
makes it even more difficult. Although computing a periodogram is easy, it is limited in its ability to14
produce an accurate estimate of the power spectrum particularly for short data records. By definition,15
the periodogram is proportional to the squared magnitude of the DFT of a signal 𝑠(𝑛) which is expressed16
as:17

�̂� (𝑘) = 1
𝑁|𝑆(𝑘)| , (A.3)

where, 𝑃 (𝑘) represents the periodogram or power spectral estimate of the signal and 𝑆(𝑘) stands18
for the spectrum of the signal as shown in equation A.1. Since, while calculating the DFT, the signal19
was multiplied with a window function, the power spectrum 𝑃 can also be termed as a modified20
periodogram. The periodogram is said to be a biased estimate of the power spectrum but in order21
to reduce this bias, Welch [89] proposed to average these modified periodograms by overlapping the22
frames. As a result, the periodogram estimate by Welch’s method is given by:23

�̂� (𝑘) = 1
𝐾𝐿 ∑ |∑𝑤(𝑛)𝑠(𝑛 + 𝑖𝐷) exp (−𝑗2𝜋𝑘𝑛𝑁 )| , (A.4)

where, 𝑃 (𝑘) represents the periodogram or power spectral estimate of the signal obtained by Welch’s24
method. The data length 𝑁 can be expressed in terms of 𝐾 sequences of short-time frames of length25
𝐿 with an overlap of 𝐷 samples as 𝑁 = 𝐿 + 𝐷(𝐾 − 1). By allowing the sequences to overlap it is26
possible to increase the number of sequences and reduce its length so as to decrease the variance27
of the periodogram even further thus giving smooth estimates. This idea of overlapping frames to28
calculate the power spectrum has been borrowed by spectrograms as dexcribed in chapter 3 section29
3.3. The difference between a spectrogram and a periodogram is that instead of averaging the short-30
time frames, these frames are stacked along the temporal axis to give a time-frequency visualization31
of speech.32

A.1.3. Wiener Filtering33
The Wiener filter is extensively used in speech processing for the problem of noise reduction. The noise34
reduction problem is defined as follows, given the observation of a noise corrupted version of a speech35
signal 𝑥(𝑛) = 𝑠(𝑛)+𝑣(𝑛), the goal is to estimate the desired speech signal 𝑠(𝑛). The Wiener filter has36
been designed to produce the minimum mean square error estimate of the speech signal 𝑠(𝑛). Thus,37
the Wiener filter is said to be the most optimal in the least squares sense. After minimizing the mean38
square error between the desired speech signal 𝑠(𝑛) and the filtered output of the observed speech39
signal 𝑥(𝑛) in the frequency domain 1, for the most optimal filter coefficients, the Wiener filter can be40
1The Wiener filter coefficients can also be calculated in the time domain using cross-correlations and auto-correlations between
the desired and observed noisy speech signals. however, it is preferred to express it in the frequency domain due to the ease
in designing and analyzing filters.
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expressed as:1

𝐻(𝑘) = 𝑃 (𝑘)
𝑃 (𝑘) =

𝑃 (𝑘)
𝑃 (𝑘) + 𝑃 (𝑘) = 1 −

𝑃 (𝑘)
𝑃 (𝑘) , (A.5)

where, 𝐻(𝑘) represents the Wiener filter coefficients and 𝑃 (𝑘) and 𝑃 (𝑘) stand for the power spectral2
densities of the desired speech signal 𝑠(𝑛) and the noise corrupted speech signal 𝑥(𝑛) at the frequency3
bin 𝑘. 𝑃 (𝑘) is the power spectral density of the noise signal. This expression has been derived after4
considering the following assumptions that only additive noise is added to speech, speech and noise5
DFT coefficients are uncorrelated and they are assumed to be wide-sense stationary. The Wiener filter6
can also be expressed in terms of the signal-to-noise ratio (SNR) as:7

𝐻(𝑘) = 𝑃 (𝑘)/𝑃 (𝑘)
𝑃 (𝑘)/𝑃 (𝑘) + 1 =

𝜁(𝑘)
𝜁(𝑘) + 1 , (A.6)

where, 𝜁(𝑘) is the Signal-to-noise ratio at the 𝑘th frequency bin. Thus, it can also be inferred that the8
Wiener filter suppresses spectral regions with low SNR while it does not modify spectral regions with9
high SNR.10

After defining the most optimal filter coefficients for noise reduction, the main problem is to correctly11
estimate the power spectral densities of speech and noise. These variables are unknown because12
the signal under observation is 𝑥(𝑛). Hence, the power spectrum estimation techniques described13
in segment A.1.2 comes into role. Using, Welch’s method for power spectral density estimation, the14
power spectrum of the noisy signal can be estimated. The power spectrum of noise can be estimated15
assuming that the first few milliseconds of an utterance only contains noise. With the following set of16
assumptions, the Wiener filter coefficients can be calculated. But, these assumptions are very ideal17
and many techniques have been developed to effectively estimate the signal-to-noise ratios, speech18
and noise power spectral densities, etc. that are discussed in chapter 2 section 2.1.19

A.2. Deep learning20
The introduction of Deep learning not only enabled scientists and researchers to tackle signal processing21
problems from a different perspective but also opened possibilities for implementing several ideas22
which could not have been feasible with traditional approaches. In this section, some deep learning23
fundamentals about non-linear functions A.2.1, objective functions A.2.2 and regularization functions24
A.2.3 are explained. Moreover, a theoretical description about neural network architectures such as25
Fully connected networks A.2.4, Convolutional neural networks A.2.5, Recurrent Neural networks A.2.626
that are used during implementation is provided. Thereafter, the concept of generative modeling with27
neural networks is described in segment A.2.7.28

A.2.1. Non-Linear Units29
These functions are responsible for making neural networks non-linear. After, augmenting the input30
data with the trainable parameters of the network; blocks called ’Activation functions’ are applied for31
inducing an element of non-linearity. If non-linear functions are not used then the depth of a network32
i.e. dividing it into several layers would not play an important role as it could all be represented by33
one big linear linear operation. Because of applying non-linear units after every layer, it is possible to34
map the input space to a complex representation which makes neural networks so fascinating. Some35
widely used non-linear activation functions have been enlisted in this segment.36

Tanh & Sigmoid37
Tanh stands for the hyperbolic tangent function and calculated as shown in equation A.7 and illustrated38
in figure A.1a. The sigmoid function also called the logistic function is calculated as described in39
equation A.8 and displayed in figure A.1b. Tanh squashes the input values to the range [−1, 1] thus40
preserving the sign of the input. Thus, it is used very often for tasks involving regression. Sigmoid41
squashes its input to the range [0, 1]. It can be interpreted as a gating function to control the amount42
of information flow.43

𝑓(𝑥) = tanh(𝑥) = 𝑒 − 𝑒
𝑒 + 𝑒 , 𝑥 ∈ ℝ (A.7)

𝑓(𝑥) = 1
1 + 𝑒 , 𝑥 ∈ ℝ (A.8)



A.2. Deep learning 95

(a) Tanh function (b) Sigmoid function

Figure A.1: Tanh & Sigmoid non-linearities

Both these functions encourage high non-linearity at every input value which favours the main1
purpose of a neural network. Secondly, even though it gets close to flat at the extremities, it isn’t2
completely flat anywhere thus reflecting changes in the input. However, the derivative of the function3
gets infinitesimally small as the input values approach the extremes and so it is difficult to update4
weights with the optimizers. This problem is named as the ’vanishing’ gradient problem. It is also5
computationally expensive because it involves calculating the exponential. Fortunately, the gradients6
of both Tanh and Sigmoid depend on their values and hence, it is saved in memory during the forward7
pass so that it can be recomputed easily instead of calculating the exponential again.8

ReLU9
ReLU is the abbreviation for a Rectified Linear Unit and was introduced by G. Hinton et al. [90]. It’s10
function is analogous to a half wave rectifier, so it returns 0 if it receives a non-positive input and11
returns the same for any positive value. It is mainly used for regression purpose and hence mainly12
in the hidden layers of the network. It can be represented by the equation A.9 and it is graphically13
displayed in figure A.2a. If, this function is differentiated it has two distinct slope values i.e. 1 for14
positive inputs and 0 for non-positive inputs. It can be seen that it is more like a piecewise linear15
function instead of a strict non-linearity but it still performs significantly well. But, being so limited in16
the extent of non-linearity it offers, how is it able to achieve it? The answer is two-fold. Firstly, most17
models include a bias parameter (along with the weight) for each node which controls the movement18
of the input to the function about 0. And, secondly, every layer has multiple nodes with different19
bias values for each input. So, the resulting function changes slopes in many places thus making it20
non-linear in the feature space encouraging better interaction amongst features.21

𝑓(𝑥) = max(0, 𝑥), 𝑥 ∈ ℝ (A.9)

There are also different types of ReLUs such as the Leaky ReLU (LReLU) and the Parametric Relu22
(PReLU) which are represented by equations A.10 and A.11 and graphically displayed in A.2b and A.2c23
respectively. These functions have a theoretical advantage that by being influenced by the input value,24
it may consider more complete representations of the information contained in the input. However,25
depending on the type of the network being used, it is likely to suffer from the exploding gradients26
problem. They are known to improve the performance of neural network based acoustic systems [66].27

𝑓(𝑥) = max(0, 𝑥) + 0.1 ∗min(0, 𝑥), 𝑥 ∈ ℝ (A.10)

𝑓(𝑥) = max(0, 𝑥) + 𝑎 ∗min(0, 𝑥), 𝑥 ∈ ℝ (A.11)

Besides being computationally simple, one main advantage of all types of ReLUs is that they do28
not suffer from the ’vanishing’ gradient problem. When training on a reasonable batch size, there will29
be some points giving positive values to the nodes and some negative values and thus, the average30
derivative is rarely close to 0 which allows the optimizer to keep progressing.31

Softmax32
A softmax function can be viewed as a normalized exponential function since it normalizes the input33
vector into a probability distribution. After applying softmax, each component in the input vector34
are mapped to the interval (0, 1) and the components add up to 1 (difference between sigmoid and35
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(a) ReLU function (b) Leaky ReLU function (c) Parametric ReLU function

Figure A.2: Different types of ReLU non-linearities

softmax). The larger input components correspond to larger probabilities. Softmax is often used in1
neural networks, to map the non-normalized output of a network to a probability distribution over2
predicted output classes. It is based on the equation A.12 and is illustrated in figure A.3a3

𝑓(𝑥 ) = 𝑒
∑ 𝑒

, ∀𝑖 = 0, 1, ..., 𝐾 & 𝑥 ∈ ℝ (A.12)

A log-softmax function can also be used instead of a softmax. Ideally, both serve the same pur-4
pose but log softmax has some advantages over a softmax function. Besides practical reasons like5
improved numerical performance and gradient optimization that improve training performance, log6
softmax function is known for heavily penalizing the model when it fails to predict the correct sample7
value. Moreover, using a log softmax over a softmax function means yielding log probabilities over8
probabilities thus leading to nice information theoretic interpretations. Equation A.13 and figure A.3b9
represent the log-softmax operation.10

𝑓(𝑥 ) = 𝑥 − log∑𝑒 , ∀𝑖 = 0, 1, ..., 𝐾 & 𝑥 ∈ ℝ (A.13)

(a) Softmax function (b) Log Softmax function (c) Output response of Softmax and
Log Softmax functions

Figure A.3: Softmax & Log Softmax non-linearities

11
Figure A.3c shows the output of both the softmax function and the log-softmax function to a random12

input. The softmax squashes the input to a range between (0, 1) whereas the log softmax being linear13
just shifts the same input by a bias as shown in equation A.13. Thus, if the network has a large depth,14
it would be beneficial to use the log-softmax to prevent the vanishing gradient problem.15

A.2.2. Objective functions16
An objective function, also named cost function, is a method of determining how well does a neural17
network model the data during training. In other words, it is a measure of the deviation of the model18
prediction from the actual data. Thus, the cost function learns to reduce the error or loss in prediction19
with the help of an optimization process by tuning the model parameters. A list of some objective20
functions used during the course of this project is provided as follows:21
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𝐿 & 𝐿 Norm1
These are the most commonly used loss functions for regression based problems. The 𝐿 norm stands2
for the mean absolute error and 𝐿 loss is the mean square error between the predicted signal and the3
target signal. These loss functions are expressed as follows:4

𝐿 (�̂�, 𝑥) = 1
𝑁 ∑|�̂� − 𝑥 |,

𝐿 (�̂�, 𝑥) = 1
𝑁 ∑(�̂� − 𝑥 ) ,

(A.14)

where, �̂� and 𝑥 represent the predicated values and target variables respectively. 𝑁 is the dimension5
of the vectors. The choice between these two regression metrics depends on the application. 𝐿 loss6
is more sensitive to the presence of outliers in the dataset and tends to fit the model closer to these7
outliers. Due to the use of a squared distance, this objective incurs a large loss if outliers are not8
mapped correctly. In contrast, an 𝐿 objective is more robust to the existence of outliers in the dataset9
since it relies on the absolute distance between two points. Hence, the 𝐿 can effectively map the data10
despite the presence of outliers.11

Cross Entropy or Negative Log Likelihood Loss12
Cross entropy loss is most commonly used for binary or multi-class classification problems. For clas-13
sification problems, the last layer of the network is mapped to a probability distribution which is used14
for the cross entropy loss minimization. This objective is expressed as:15

𝐿(𝑦, 𝑝) = −∑𝑦 log(𝑝 ), (A.15)

where, 𝐿 represents the cross entropy loss which is a function of the class label 𝑦 and the probability16
distribution at the output of the network denoted by 𝑝. 𝐶 denotes the number of classes. The loss in17
equation A.15 is expressed in a unit called ’nats’. If the log is expressed to the base 2, then the loss is18
expressed in ’bits’. This loss is also known as the negative log likelihood loss.19

A.2.3. Regularization20
One of the problems that deep learning suffers from is ’overfitting’ to the training dataset. This problem21
occurs more frequently in complicated networks with large number of learnable parameters. Regular-22
ization can be seen as a way of imposing a constraint on the model such that it does not overfit to23
training data and generalizes well to unseen inputs. There are multiple ways of regularizing a neural24
network and some of them have been highlighted as follows:25

Penalty on Cost functions26
Many regularization approaches are based on limiting the capacity of models by adding a penalty on27
the norm of the parameters or a constraint to the model’s objective function described in segment28
A.2.2. Thus, the modified objective function is expressed as:29

𝐿(𝜃, 𝛼; 𝑋, 𝑦) = 𝐽(𝜃; 𝑋, 𝑦) + 𝛼(Ω(𝜃) − 𝑘), (A.16)

where, 𝐿 represents the regularized loss that is a function of the learnable parameters 𝜃, hyper-30
parameter 𝛼, input features 𝑋 and output labels 𝑦. The term 𝐽(𝜃, 𝑋, 𝑦) is the objective function as31
described in segment A.2.2 and Ω(𝜃) is the regularization function that acts as a penalty on the ob-32
jective function and 𝑘 is a desired constant. Commonly used regularization functions are the 𝐿 or33
𝐿 norm of the network parameters 𝜃 which constrain these weights to lie in the region limited by34
these functions. The 𝐿 norm on the weights encourages sparsity in the learned weights whereas the35
𝐿 norm shrinks the weights towards 0, hence, also termed as weight decay [91]. Penalties can also36
be added to constrain the intermediate feature space at the hidden layers of the networks. When37
the training algorithm minimizes the regularized loss function, it decreases both the original objective38
on the training data as well as the constrained measure on the network parameters or intermediate39
features.40
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Data Augmentation1
The best way to enforce generalization in machine learning models is by training it with more data2
[75]. In practice, the amount of data available is limited and a way around this it to artificially create3
fake data and add it to the training set. A general practice is to either scale, translate or rotate in case4
of images or inject random noise with a carefully tuned magnitude in case of speech. Adding noise to5
hidden layers in the network leads to dataset augmentation at multiple levels of abstraction. Although,6
such transformations must be applied carefully ensuring not to change the correct class.7

Normalization8
Applying normalization layers after every hidden layer can also lead to regularization effects. For in-9
stance, the most commonly used batch normalization [92] technique normalizes the input features with10
the mean and standard deviation computed per dimension over the mini-batches. Batch normalization11
is said to be analogous to noise injection in the sense that it multiplies each hidden unit by a random12
value at each step. In this case, the random value is the inverse of the standard deviation because dif-13
ferent examples are randomly chosen for inclusion in the mini-batch at each step hence, the standard14
deviation fluctuates randomly. Batch normalization also subtracts a random value, i.e., the mean of the15
mini-batch from each hidden unit. Both of these sources of noise at every layer causes the network16
to learn to be robust to a lot of variation in its input. A similar interpretation can be applied for group17
normalization [93] where normalization is applied over a group of channels in a convolutional layer as18
well as for instance normalization [94] where normalization is applied to separately for each object in19
a mini-batch.20

A.2.4. Fully-connected Neural Networks21
Fully-connected neural networks also called Multilayer Perceptrons (MLPs) belong to the class of deep22
feed forward networks. These are the most quintessential deep learning models. Before getting into23
the depth of fully-connected networks, the fundamentals of feed forward networks should be explained.24
The goal of a feed forward networks are to approximate a function 𝑓 that maps an input 𝑥 to a category25
𝑦. A feedforward network defines a mapping 𝑦 = 𝑓(𝑥; 𝜃) and learns the value of the parameters 𝜃 that26
result in the best function approximation. These models are called feed forward because information27
flows from the input 𝑥 through the intermediate computations used to define the function 𝑓 to the28
output 𝑦. There are no feedback connections from the output to the input. The class of feed forward29
neural networks also includes convolutional neural networks that are described in detail segment A.2.5.30
When feed forward networks include feedback connections, they are called recurrent neural networks31
as presented in segment A.2.6.32

Feed forward neural networks are typically composed of many different functions that are connected33
in the form of a chain. For instance, 𝑓(𝑥) = 𝑓( )(𝑓( )(𝑓( )(𝑥))). The subscript on the top indicates the34
layer number and the overall length of the chain determines the depth of the network. During a neural35
network training, 𝑓(𝑥) is driven so as the match the most optimal function denoted by 𝑓∗(𝑥). Each36
example 𝑥 in the training set is accompanied with a label 𝑦 ≈ 𝑓∗(𝑥) in case of a supervised learning37
problem. Training examples specify the role of the output layer at each point 𝑥 ,i.e., to produce a value38
that is as close as possible to 𝑦. The behaviour of intermediate layers, also called hidden layers, is39
learned by training the network so as to best implement an approximation of 𝑓∗. The dimensionality40
of each hidden layer determines the width of the model. Each unit in the layer is termed as a neuron41
since it receives input from many other such units and computes its own activation value using the42
non-linear transforms denoted by 𝜙 as described in segment A.2.1.43

In fully-connected networks, each neuron in one layer is linked to every neuron in the subsequent44
layer. This link from one neuron to another is determined by the weight of the connection which is a45
learnable network parameter. Thus, the connection strengths from a vector of neurons in one hidden46
layer to another hidden layer is represented by a weight matrix𝑊 , where 𝑙 stands for the layer number.47
This weight matrix is dot multiplied with the input feature vector 𝑥. As described earlier that every48
neuron consists of an activation function 𝜙 and the linear combination of the weights and features49
evaluates the activations of all neurons in that layer. Thus, a fully-connected network consists of a50
chain of such operations where repeated matrix-vector multiplications are interwoven with activation51
functions. These operations are expressed as:52

𝑓 (𝑥) = 𝜙(𝑊 × .𝑥 + 𝑏 ), (A.17)
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where, 𝑓 (𝑥) is the 𝑚-dimensional output vector of a layer with an 𝑛-dimensional input feature vector1
denoted by 𝑥. 𝑊 × represents the weights of the layer 𝑙 that have a dimension of 𝑚 × 𝑛. An 𝑚-2
dimensional bias vector 𝑏 is also added to the matrix-vector product of the weights and the features.3
The weights 𝑊 and bias 𝑏 form the learnable parameters of the layer and are a part of the network4
parameters denoted by 𝜃. The activation function is represented by 𝜙.

Figure A.4: A layer fully connected network consisting of an input layer with nodes, two hidden layers with nodes and
nodes respectively and an output layer with nodes.

5

Figure A.4 shows a fully-connected neural network that consists of 5 nodes in the input layer where6
a feature vector of length 5 is dot multiplied with the weight matrix represented by the links in the7
figure. Red links represent positive weight values whereas the blue ones are the negative values and8
their opacity suggests the strength of the weight values. Thus, the input is propagated through the9
two hidden layers where non-linear activation functions are applied. The final layer, also called the10
output layer, consists of 3 nodes for the output values which represent the predicted label 𝑦. The11
output layer is supplied to an objective function described in segment A.2.2. Thereafter, gradients are12
calculated with respect to the learnable parameters and they are backpropagated through every layer13
in the network so as to update the parameters till the objective function has converged to a minimum.14

A.2.5. Convolutional Neural Networks15
Convolutional Neural Networks, also known as, ConvNets or CNNs, belong to the class of feed-forward16
networks as described in segment A.2.4. Convolutional networks also consist of neurons that are17
controlled by learnable weights and biases. Each neuron receives inputs either from raw data or from18
previous layers, performs a dot product with the network weights followed by a non-linear unit. The19
whole network is expressed as a single differentiable score derived from the raw pixels of an image.20
They also have loss functions that compare the output of the last layer of the network with a set of pre-21
defined labels in the training set. Moreover, the methods mentioned above for loss functions (A.2.2)22
and regularization (A.2.3)) all apply to convolutional networks as well. So what makes them different23
from fully-connnected networks? Firstly, ConvNet architectures explicitly assume that the inputs are24
images which allows them to encode certain properties into the architecture. This makes the forward25
function more efficient with a vast reduction in the number of network parameters. Regular neural26
networks do not scale very well to images and hence the advent of convolutional networks has been27
a boon. It is also impractical to connect neurons to all the neurons in an image volume when only28
neurons surrounding a particular neuron are most relevant.29

Convolutional Neural Networks take advantage of the fact that the input consists of images and their30
architecture is constrained accordingly. Unlike, fully connected networks, every layer of a convolutional31
network have neurons arranged in 3 dimensions i.e. width, height and depth. Here, height and width32
define the resolution of the image and depth stands for the number of channels. ConvNets mainly33
constitute of convolutional layers, pooling layers and optionally fully connected layers as well. In this34
section, the convolutional layer, which form the core building block of ConvNets, is described in more35
detail. The parameters of this layer consists of a set of learnable filters also called kernels. Every36
kernel is small spatially but extends through the full dimensions of the input volume. During the37
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forward pass, each filter is slid or rather, more precisely, convolved across the width and height of the1
input and computes a dot product between the entities of the filter and the small local regions in the2
input. Eventually, a 2D activation map is created which captures the response of that filter at every3
spatial position in the input. Intuitively, the network learns filters that activate when they see some4
visual feature such as an edge of some orientation or a blob of some colour or some distinct patterns.5
An entire set of such filters are stacked along different channels at every layer and each of them after6
convolution produce a separate 2D activation map. This operation can be mathematically expressed7
as:8

𝑂 (𝐶 ) = ∑ 𝑊 (𝐶 , 𝑘) ⊛ 𝐼(𝑘) + 𝑏 (𝐶 ), (A.18)

where, 𝑂 stands for the output activation map at the 𝑙th layer with 𝐶 channels. The input features, 𝐼,9
at the 𝑘th input channel are convoluted with the network weights,𝑊 , and summed across the number10
of input channels, 𝐶 . The bias parameters 𝑏 are also added at every output channel.

Figure A.5: An illustration of equation A.18 showing the convolution operation in a layer.

11

The structure of the network and the convolution operation are controlled by a set of hyper-12
parameters. The receptive field (kernel size), denoted by 𝐾, controls the spatial extent of the con-13
nectivity of a neuron along the entire depth of the input volume of size expressed as (𝐶 , 𝐻 ,𝑊 ).14
Hyper-parameters such as number of channels, padding and stride define the output volume of the15
neurons. The output volume denoted by (𝐶 , 𝐻 ,𝑊 ) corresponds to the number of filters or out-16
put channels and its spatial extent. Sometimes, it is convenient to pad the input volume size with zeros17
around the border. The size of zero-padding, denoted by 𝑃, allows to control the size of the output18
volume. It is most commonly used to preserve the spatial size of the input so that the width and height19
of the input and output are the same. Specifying the stride 𝑆 allows to control the amount which with20
a filter slides across the input spatial size. A stride larger than 1 produces a smaller output volume21
spatially. So far the filters have been assumed to be contiguous in space, however, the introduction of22
the dilation 𝐷 hyper-parameter allows the filter to have spaces between each cell. The use of dilation23
can increase the effective receptive field size. Figure A.6a depicts the effect of these hyper-parameters24
visually. The size of the output volume can also be calculated based on the formula given in equation25
A.19.26
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𝐻 = ⌊𝐻 + 2 × 𝑃[0] − 𝐷[0] × (𝐾[0] − 1) − 1
𝑆[0] + 1⌋,

𝑊 = ⌊𝑊 + 2 × 𝑃[1] − 𝐷[1] × (𝐾[1] − 1) − 1
𝑆[1] + 1⌋.

(A.19)

(a) Effect in the shape of the output when the
hyper-parameters controlling the convolution operation

are changed.

(b) Different types of Pooling operations

1
The convolution operation discussed earlier either preserves or reduces the spatial resolution, but,2

what if, there is a need for the transformation to be applied in the reverse sense while maintaining the3
connectivity patterns compatible with the said convolution. For instance, such a transformation could4
be useful in decoding layers of an auto-encoder or to project feature maps to a higher dimensional5
space. Thus, the need for a transposed convolutions or fractionally strided convolutions, arises 2. The6
hyper-parameters in this case also remain the same as defined for the convolution operation. The7
dimensions of the output volume can be expressed as:8

𝐻 = (𝐻 − 1) × 𝑆[0] − 2 × 𝑃[0] + 𝐷[0] × (𝐾[0] − 1) + 1,
𝑊 = (𝑊 − 1) × 𝑆[1] − 2 × 𝑃[1] + 𝐷[1] × (𝐾[1] − 1) + 1. (A.20)

9

Sometimes pooling layers are also inserted in between two successive convolutional layers. A10
pooling layer reduces the spatial size of the input feature representation to reduce the amount of11
parameters and computation in the network. A pooling layer operates on every depth slice or channel12
of the input volume and resizes it spatially preserving the number of channels in the output volume.13
Pooling also works by sliding a window across the spatial content and applies a pooling function. There14
are different types of pooling operations such as max pooling, average pooling or 𝐿 norm pooling.15
Figure A.6b displays different types of pooling operations. Research has shown that these layers do16
not exhibit any added advantage and in some cases also ruins the performance of the network [95].17
On the other hand, using strided convolutions instead of pooling turns out to be more beneficial.18

Other variants of ConvNets have also been introduced such as highway networks and residual neural19
networks. These networks introduce skip connections that traverse from the input of the layer to its20
2Note that, in a decoder setting, the transposed convolution does not guarantee to recover the input as it is not defined as the
inverse of a convolution, but rather just returns a feature map that has same spatial dimension as the input
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output, thus providing an additional path for the data and gradients to flow. This is in stark contrast to1
the traditional strictly sequential pipeline. In highway networks, these skip connections are controlled2
by learnable gating functions [96]. Whereas, in residual networks the skip connection is equivalent to3
applying an identity transform from the input to the output [97]. A study claims that these short-cut4
connections are advantageous because they solve the vanishing gradients problem in deep networks5
[97]. Thus, skip connections can facilitate in designing deeper networks with large number of layers.6

A.2.6. Recurrent Neural Networks7
In contrast to the Feed-Forward Networks, Recurrent Networks receive not just the input at the current8
time step but also what they have perceived previously in time. It can be claimed that Recurrent9
Networks gain inspiration from how humans think and base their understandings from previous context10
as well. Traditional Neural networks fail to do so and Recurrent networks address this issue. Hence,11
they are neural networks with loops within them allowing information to persist and passed from one12
time step to the next. This loop in Recurrent Networks can be unfolded into a chain of multiple copies13
of the same network up to a pre-defined sequence length such that each network passes information14
from one to the successive network as shown in figure A.7. Unfolding leads to ’parameter sharing’15
which is better than using different parameters at different time-steps and helps in generalizing better.16
Such a structure makes recurrent neural networks appropriate for modeling sequential data such as17
language, speech and time-series data. Recurrent Networks can be formulated as:18

ℎ = tanh(𝑊 ∗ [ℎ , 𝑥 ] + 𝑏), (A.21)

where ℎ is the current hidden state which is a non-linear function of the hidden state at the previous19
time-step ℎ , the current context 𝑥 and network parameters i.e. weights and biases represented as20
𝑊 and 𝑏 respectively. The network learns to use a kind of a summary of the past sequence of inputs21
as expressed in the hidden state vector.22

Figure A.7: The unfolding of an RNN layer and internal operations within an RNN block

For updating the network weights, the gradients are backpropagated through time which is obtained23
by applying the chain rule of derivatives on an unfolded representation of the network. However, as24
the sequence length i.e. the number of unfoldings increases, the gradients become smaller and smaller25
in magnitude and are unable to sufficiently update the network parameters. This problem is known26
as the vanishing gradient problem. Thus, these networks are good at capturing short-term dependen-27
cies as compared to long-term dependencies in sequential data. In theory, Recurrent Networks are28
absolutely capable of capturing long term dependencies, but due to the vanishing gradient problem,29
their performance is limited. This gave rise to Long Short Term Memory (LSTM) networks and Gated30
Recurrent Units (GRUs).31

LSTM’s [36] are special kinds of recurrent networks that are designed in a way that makes them32
capable of learning long-term dependencies. They have been widely used on a large variety of sequence33
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Figure A.8: The unfolding of an LSTM layer and internal operations within an LSTM block

modeling problems and have led to an improvement in performance as compared to the traditional1
recurrent networks. LSTM’s are also expressed in a chain of repeating modules but their internal2
structure is different as illustrated in figure A.8. An LSTM network can be formulated as:3

𝑓 = 𝜎(𝑊 .[ℎ , 𝑥 ] + 𝑏 ),
𝑖 = 𝜎(𝑊.[ℎ , 𝑥 ] + 𝑏 ),
𝐶 = tanh(𝑊 .[ℎ , 𝑥 ] + 𝑏 ),
𝐶 = 𝑓 ∘ 𝐶 + 𝑖 ∘ 𝐶 ,
𝑜 = 𝜎(𝑊 .[ℎ , 𝑥 ] + 𝑏 ),
ℎ = 𝑜 ∘ tanh(𝐶 ),

(A.22)

where, in addition to the hidden state ℎ, a new variable known as the cell state 𝐶 is also introduced.4
This cell state makes LSTMs capable of regulating the flow of information with the help of gating units5
𝜎. The sigmoid layers output values within the range [0, 1] which are applied point-wise to determine6
the amount of input 𝑥 and/or previous content ℎ to be let through. Thus, the term 𝑓 represents7
the ’forget gate’ which decides the amount of information to be neglected while updating the cell8
state. The gate 𝑖 represents the ’input gate’ that decides the amount of new information to be stored9
within the cell state. This new information is a vector of new candidate values 𝐶 that are obtained by10
applying a 𝑡𝑎𝑛ℎ operation on the current input 𝑥 and the previous hidden state ℎ . After deciding11
what content has to be stored and neglected, the current cell state 𝐶 is updated by discarding some12
portion of the previous cell state 𝐶 controlled by 𝑓 and adding new information 𝐶 controlled by 𝑖 .13
Finally, the output i.e. the updated hidden state ℎ is controlled by the ’output gate’ 𝑜 that permits14
only the decided information to be supplied to the layer at the next time-step. This cycle continues till15
the amount of unfolding of the LSTM netowrk. The network parameters i.e. the weights and biases16
at different gates are represented by symbols 𝑊 and 𝑏 with their respective subscripts indicating the17
gate operations. While backpropagating through time, the updates of these network parameters are18
also decided by the respective gating functions.19

Another variant of gated recurrent units are GRU’s [37]. There are two major differences between20
LSTM and GRU networks; first is that the hidden state and the cell state are combined. Thus, the forget21
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Figure A.9: The unfolding of a GRU layer and internal operations within a GRU block

and input gate layers in LSTM that were responsible to update the cell state now control the hidden1
state directly using the update gate and reset gate layers. These changes enable GRUs to control the2
information flow from the previous activation when computing the new, candidate activation. Second, is3
the absence of the output gate which allows a particular unit to expose its full content to the subsequent4
units within the layer without any control. The chain structure representation and internal operations5
within a GRU network are illustrated in figure A.9. A GRU network can be expressed as:6

𝑧 = 𝜎(𝑊 .[ℎ , 𝑥 ] + 𝑏 ),
𝑟 = 𝜎(𝑊 .[ℎ , 𝑥 ] + 𝑏 ),
ℎ̃ = tanh(𝑊.[𝑟 ∘ ℎ , 𝑥 ] + 𝑏),
ℎ = (1 − 𝑧 ) ∘ ℎ + 𝑧 ∘ ℎ̃ ,

(A.23)

where, ℎ is the hidden state that represents the summary of the outputs from the current and past time-7
steps. The information flow within the hidden state in GRUs is regulated with the help of gating units8
𝜎. The sigmoid layers output values within the range [0, 1] which are applied point-wise to determine9
the amount of input 𝑥 and/or previous content ℎ to be let through. The ’reset gate’, 𝑟 , controls10
the amount of past information to be neglected. The hidden state from previous time-steps ℎ is11
altered by the reset gate such that it only keeps the relevant information. The current memory content12
ℎ̃ is calculated by applying a 𝑡𝑎𝑛ℎ operation on the altered hidden state and the current input. The13
’update gate’, 𝑧 , regulates the amount of past information to be retained and current information to14
be incorporated. This cycle continues till the amount of unfolding of the GRU netowrk. The network15
parameters i.e. the weights and biases at different gates are represented by symbols 𝑊 and 𝑏 with16
their respective subscripts indicating the gate operations. While backpropagating through time, the17
updates of these network parameters are also decided by the respective gating functions.18

The training procedure for a Recurrent Neural network is also similar to that of Feed forward and19
Convolutional networks where an appropriate objective function (described in section A.2.2) suitable20
for the task is selected and minimized using a relevant optimizer. Training gated recurrent networks21
such as LSTM’s and GRU’s is more stable than the originally proposed RNNs because they suffer from22
the vanishing and in rare cases exploding gradient problems. Thus, gated recurrent networks are being23
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widely used now-a-days for sequence modeling problems. Choosing between LSTM’s and GRU’s is a1
tough choice. However, empirical results indicate that GRU’s perform slightly better than LSTM’s in2
most cases and also require lesser computations [98].3

A.2.7. Generative Modeling with Neural Networks4
In generative modeling, a joint conditional probability distribution is modelled using different types of5
neural network architectures as described in segments A.2.4, A.2.5 and A.2.6. The joint probability of6
a data sample can be factorized as a product of conditional probabilities as follows:7

𝑝(𝑥) =∏𝑝(𝑥 |𝑥 , 𝑥 , ..., 𝑥 , 𝐶), (A.24)

where, the input data is denoted by 𝑥 which can be either an image, audio waveform or embodiment of8
text information. 𝐶 stands for the additional context input which acts as a conditioning input variable.9
For instance, while modeling audio, the speaker identity can be fed as an extra input to produce10
speech with the selected speakers voice. Similarly, for text-to-speech, extra information about text11
can be provided. The ideal approach to modeling conditional distributions 𝑝(𝑥 |𝑥 , 𝑥 , ..., 𝑥 ) over12
the individual samples would be to use mixture models such as Gaussian mixture models or mixture13
density networks [99]. However, recall that in segment A.2.1, the softmax transform is used mainly for14
mapping a feature vector to a probability distribution. The softmax distribution tends to perform better15
even when the data is implicitly continuous (as in the case of image pixel intensities or audio sample16
values) [19] [20]. The categorical distribution obtained from a softmax is more flexible and can more17
easily model arbitrary distributions because it makes no assumptions about their shape. After training18
such a network architecture to learn the distribution of data, samples can be generated by randomly19
sampling from the distribution.20

Another way of generative modelling was introduced by Goodfellow, et al. known as Generative21
Adversarial Networks (GANs). The GAN architecture involves two sub-modules namely, a generator22
model that generates new examples and a discriminator model that classifies whether the example23
presented to it comes from the training data domain (real) or generated by the generator (fake).24
The concept of GANs comes from a game theoretic scenario in which the generator competes against25
anadversary. The generator network produces samples 𝑥 = 𝑔(𝑧; 𝜃( )), where 𝑧 is the latent random26
variable. Whereas the discriminator emits a probability value given by 𝑑(𝑥, 𝜃( )) indicating the proba-27
bility that x is a real training example rather than a fake sample drawn from the generator model. The28
objective function of a GAN is formulated as:29

min
( )
max
( )
𝔼 ∼ log(𝑑(𝑥)) + 𝔼 ∼ log(1 − 𝑑(𝑔(𝑧))) (A.25)

This drives the discriminator to learn to correctly classify samples as real or fake. Simultaneously, the30
generator attempts to foolthe classifier into believing its samples are real. At convergence, the samples31
generated by the generator model are indistinguishable from the real data. The discriminator may then32
be discarded. Training GANs can be very difficult in practice. Though there exist many solutions for33
stabilization of GAN learning, it still remains an open problem. It is also possible to train conditional34
GANs where the generator receives input not only from the latent space 𝑧 but an additional known35
vector ℎ.36



B1
Extra Experiments & Analysis2

Most relevant experiments and their results have been discussed in chapters 4, 5 and 6. In this3
Appendix, some extra experiments, their outcomes and inferences have been discussed.4

B.1. Experiments for Speech Synthesis5
Here, the experiments and results associated with the WaveRNN synthesizer will be mentioned.6

B.1.1. Train with Noisy MFCC context7
The aim of this experiment was to verify if noisy MFCC features can provide suitable context for gen-8
eration of clean speech. From chapter 3, it was concluded that MFCC features are not very robust to9
addition of noise and should be refrained from use. However, as per the time-line of the project, this10
experiment was conducted before the analysis revealed otherwise. Rather, it went the other way round11
during implementation, where the results obtained from this and a few other experiments led to an in12
depth analysis of different possible features. The reason to begin experimenting with MFCC features13
was inspired from literature in speech recognition that mention MFCC features to contain linguistic14
information in speech []. On this basis, it was believed that MFCC features would provide appropriate15
context. The configuration for this experiment has been mentioned in table C.1.16

After training was complete, the MFCC features extracted from the noisy speech present in the17
test set are provided as context to the fully trained WaveRNN synthesizer. Based on this context,18
the synthesizer generates audio samples in an auto-regressive fashion as described in section 4.2.19
The results obtained are illustrated in figures B.1 and B.2 where, the waveforms of the clean, noisy20
and generated speech along with their respective spectrograms have been displayed. The generated21
speech waveform looks completely different from that of clean speech as expected from a generative22
model. Since, most objective evaluation metrics rely on waveform comparison, these metrics can fail23
to evaluate the quality of generated speech. Hence, only subjective evaluation can be provided in24
this case. On listening to the generated audio file from context provided by noisy MFCC features, the25
following observations were made:26

1. Free from noise in most cases, irrespective of SNR as no noise characteristics were heard27

2. In some segments, it blabbers and minces with the information being conveyed28

3. The intonation (tone) and pitch keeps changing frequently within the same speech file, as a29
result, the voice jumps from male to female sounding talkers and vice versa30

4. Unvoiced speech is slightly unclear31

5. Some glitches and artifacts present during no speech activity or onsets/offsets but no distortions32
heard during speech activity33

Some of these observations are also visible in the spectrogram of generated speech. For generated34
spectrograms in both figures B.1 and B.2, some sudden transitions from high energy to low energy and35
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Clean 

Noisy 

Generated 

Female Talker, 2.5db Noise

Figure B.1: Top: Clean speech waveform and its spectrogram for a female talker. Middle: Cafe noise added at . dB SNR to
form noisy speech waveform and its spectrogram. Bottom: Generated speech waveform and its spectrogram.

Clean 

Noisy 

Generated 

Male Talker, 7.5db Noise

Figure B.2: Top: Clean speech waveform and its spectrogram for a male talker. Middle: Public Square noise added at . dB
SNR to form noisy speech waveform and its spectrogram. Bottom: Generated speech waveform and its spectrogram.

vice versa are observed along the time segments. These discontinuities correspond to sudden glitches1
and artifacts that are heard in generated speech. Additionally, the frequent voice change from male2
to female talkers is also visible in the spectrogram. For example, in figure B.2, for the spectrogram3
obtained from generated speech, it is clearly seen that the spacing between harmonics present in4
between time segments from 600ms and 1000ms is lesser than those between time segments from5
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1200ms to 1700ms. This represents a change from a male voice to a female voice. On comparing1
this with the spectrogram obtained from clean speech, the spacing between harmonics remains similar2
throughout the entire speech segment. Change in intonation is also visible, for example, in figure B.13
within the time segment from 600ms to 1000ms, the shape of the bands in the generated spectrogram4
is different from that in the clean spectrogram. Thus, the formants are located differently as a result5
the gradient changes over time and this indicates the change in tone.6

The quality of generated speech sounds clean during speech activity but intelligibility in speech is7
totally lacking. The reasons attributed to such behaviour could be due to a smaller look back period8
i.e. the sequence length. Currently, the look back period is 1000 samples as mentioned in table C.19
which is roughly equal to 63ms. If the sequence length would be longer, it could capture more long10
term dependencies in speech and maybe reproduce more intelligible speech. Additionally, due to the11
presence of noise, perhaps, the network cannot capture the pitch information. Thus, the effect of noise12
must be reduced so that the network can capture more speech characteristics.13

B.1.2. Increase Sequence Length and Reduce number of Mel Bands14
This experiment is in continuation with noisy MFCC features. Based on the observations from the15
previous experiments, it was suspected that perhaps, the sequence length was not long enough to16
capture the long term dependencies in audio. On comparing with other methods such as the Speech17
Enhancement WaveNet [13] that has a receptive field of 4096 samples i.e. 256ms or the Speech18
Enhancement GAN [12] that takes 16384 samples i.e. more than 1 second of speech as input to its19
generator network, the look back period for the experiment in section B.1.1 seems rather too short.20
However, it has to be kept in mind that the sequence length cannot be as large as the the other21
techniques because the training time and complexity also increase with it. Hence, the aim of this22
experiment is to observe the effect of increasing the sequence length of the Gated Recurrent Unit23
(GRU) layer.24

Additionally, there was another conjecture about the number of Mel bands in the Mel filter bank25
being large. It is because, if there are more number of bands in the filter bank, then the bandwidth of26
each band becomes less. When the Mel filter bank is applied on the spectrogram as described in chapter27
3 section 3.4, a filter takes a weighted average over the spectral samples that fall within the bandwidth.28
Given the fact, that these filters are being applied on noisy features, a weighted average applied on29
these noisy features would tend to reduce the noise by a certain amount and hence the uncertainty30
in the input. If the bandwidth of a filter is small then the weighted average is calculated over a small31
number of samples and hence, the suppression in noise would be less. Thus, it is hypothesized that a32
smaller number of Mel bands in the filter bank would lead to certain improvement in quality. Hence,33
an experiment will also be conducted to prove this hypothesis. The configuration for this experiment34
as stated in table C.2 shows that the sequence length has now been changed to 1920 samples which35
is 120ms and the number of Mel bands is 40.36

After training was complete, the MFCC features extracted from the noisy speech present in the37
test set are provided as context to the fully trained WaveRNN synthesizer. Based on this context, the38
synthesizer generates audio samples in an auto-regressive fashion as described in section 4.2. The39
results obtained are illustrated in figure B.3, where the spectrograms obtained from clean, noisy and40
generated speech for both male and female talker cases are shown. On listening to the audio files,41
certain observations were made as follows:42

1. Completely free from noise, irrespective of SNR as no noise characteristics were heard43

2. Abrupt discontinuities are no more present and the generated speech sounds free from artifacts44
and distortions45

3. No improvement in intelligibility as generated speech still sounds mumbled and consonants are46
not reproduced correctly47

4. The pitch and intonation of the speaker are different from the original clean speech example but48
the change in pitch and intonation has reduced considerably49

These characteristics described are also observed in the spectrograms of generated speech shown in50
figure B.3. There are no more abrupt discontinuities observed in the spectrograms of generated speech51
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Female Talker, 2.5db Noise

Male Talker, 7.5db Noise

Clean 

Clean Noisy Generated

Noisy Generated

Figure B.3: Top Left: Spectrogram of clean speech for male talker. Top Middle: Spectrogram for speech corrupted with
Public square noise at . db SNR. Top Right: Spectrogram for generated speech of the example. Bottom Left: Spectrogram
of clean speech for female talker. Bottom Middle: Spectrogram for speech corrupted by Cafe noise at . db SNR. Bottom
Right: Spectrogram for generated speech of the example.

for both examples. On comparing the spectrogram of clean and generated speech, the harmonics are1
spaced differently which show that the pitch of generated speech is different from the original. Change2
in voice still occurs but it is less frequent now. The tone of the speaker is also different from the3
reference clean speech and this is visible in the spectrogram from the location of the formants. The4
reason for such behaviour could be because the noise in the context is interfering with the speech5
information and hence the network cannot capture and learn those characteristics. Perhaps, MFCC6
features are severely affected by the presence of noise and this was confirmed by the studies in the7
domain of speech recognition where MFCC features are used abundantly []. Hence, there is a need to8
find features that are not as severely affected by noise as MFCC features.9

B.1.3. Reduce sampling frequency of audio10
The main purpose of conducting this experiment was mainly to reduce the training time of the network.11
As mentioned in experiment 4.5.2, the network was trained for approximately one week. Within the12
time span of this project, it did not seem feasible to wait one week for new results. Moreover, taking13
this step would allow to conduct more experiments and at a faster rate. Hence, the sampling rate of14
audio was reduced from 16kHz to 8kHz. It was speculated that by taking this measure, the training15
time would be a quadruple of the training time for experiment 4.5.2. Thus, the goal of this experiment16
was to solely reduce the training time. The configuration for this experiment is mentioned in table C.5.17
When the sampling rate is halved, the sequence length and the frequency range in the spectrogram18
are also halved. But while calculating the Mel spectrograms, the number of Mel bands was left the19
same. As a result, the training time was only halved and not quadrupled.20

Ideally, since the frequency range is halved using fewer Mel bands would have sufficed. In figure21
B.4, different points are used to represent. Point 𝐵 shows that when the sampling frequency is halved,22
using 60 Mel bands is enough to cover the frequency range from 0 − 4 kHz, but still 80 Mel bands23
were used while training as depicted by point 𝐶. The usage of 80 Mel bands in the input context for24
speech sampled at 8 kHz led to sufficiently high quality speech generation. Hence, the curve can be25
extrapolated to point 𝐷 for the case of speech with 16 kHz sampling rate. Hence, the number of bands26
used must be at least 105 bands. Thus, for new experiments with 16 kHz samping rate, 128 Mel bands27
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Figure B.4: Variation in center frequencies of Mel filter banks with number of filters

were used.1

B.2. Experiments for Denoising Features2
Here, the experiments and results associated with the denoising methods will be mentioned.3

B.2.1. U-Net: Effect of using a 1-D kernel and no padding for spatial reduc-4
tion5

This experiment was conducted as a first attempt to setup a U-Net based design for the purpose of6
denoising the noisy Mel spectrogram features. As described in segment 5.1.1, the U-Net design is a fully7
convolutional architecture. In this configuration, as enlisted in table C.6, it is illustrated that this network8
incorporates an encoder and a decoder structure that consists of three ’Down Conv Unit’ and ’Up Conv9
Unit’ sub-modules each respectively. The convolution and transposed convolution operations share10
the same hyper-parameter value assignment to match the dimensionality of the input to the output of11
this network. In this case, the convolution kernel is applied only along the frequency dimension. The12
reason behind such a choice is motivated by the usage of spectral features that contain most meaningful13
information along the frequency dimension. Hence, the kernel should also learn to capture the essence14
of denoising by operating in the frequency domain. Additionally, to reduce the spatial dimensionality15
of the Mel spectrogram, no zero padding has been applied to the input or intermediate features. As a16
result, the application of convolution decreases the size of the features along the frequency dimension17
and the number of time segments are preserved due to the shape of the kernel. Note that, despite18
there being a reduction in spatial resolution of the features, it cannot be constituted as a bottleneck19
because the number of feature channels at the end of the encoder is large. This has been depicted in20
figure B.5.21

B.2.2. U-Net: Effect of using a 2-D kernel and no spatial reduction22
Inferences from the results of the previous experiment B.2.1, the use of a 1-D kernel did lead to signif-23
icant noise reduction in the frequency bands, however, there were quite some observed discontinuities24
and abrupt changes along the time dimension. These could lead to unwanted artifacts. Thus, in order25
to make the transitions a bit more smooth along the time segments, the usage of a 2-D kernel is pro-26
posed. Moreover, it was realized that the reduction in spatial resolution is just because the boundary27
elements of the features were neglected due to the convolution operation in the network when zero28
padding is not applied. Hence, the true essence of the features may not be captured in the reduced29
space because the learnable filters would not traverse along the entire feature space despite the large30
number of channels. As a result, zero padding was applied in this experiment. Thus, there was no31
reduction in the spatial resolution at the output of any layer. The aim of this experiment was to un-32
derstand the effect of using a 2-D kernel and no spatial reduction. The configuration used for training33
has been mentioned in table C.7. This has been depicted in figure B.6.34
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Figure B.5: Information flow in the U-Net architecture

Figure B.6: Information flow in the U-Net architecture

B.3. Word Error Rate - Proposed System1
This section shows the details of calculating the WER on the text responses from the clean, noisy and2
generated speech.3
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Table B.1: Speech Intelligibility based on Word Error Rate for selected examples from the test dataset with types of noises
added at different SNRs.

Noise Level
(dB) Noise Type Example Speech-to-text

Response

Word Error Rate
(WER) Comments

wrt
Reference

wrt
Clean

2.5 Public
Square p232_023

Reference

if the red of the second bow falls upon the green
of the first the result is to give a bow with an
abnormally wide yellow band since red and green
light when mixed form yellow

The error in the text response
for generated speech is more as
compared to that for noisy
speech. This shows a decrease
in intelligibility.Clean

if the red of a second bow falls upon the
green at the first the result is to give a bow
with an abnormally wide yellow band since red
and green light when mixed form yellow

2/36

Noisy

if the right of a second phone calls upon
the green at the first the result is to give a
bow with an abnormally wide yellow band since
red and green light when mixed from yellow

6/36 4/36

WaveRNN

if that is the second photo falls
upon the green of the first the result is to give a
bull with an abnormally wide yelp and its
red and green light when next one yellow

10/36 12/36

2.5 Living p257_054

Reference we were surprised to see the photograph The error in the text response
for generated speech is less as
compared to that for noisy
speech. This shows a slight
increase in intelligibility
though the semantics have
changed totally.

Clean
i was surprised to see the photograph

2/7

Noisy
whats the price of ticket prices

7/7 7/7

WaveRNN
what a surprise to see the question

4/7 4/7

7.5 Public
Square p232_103

Reference
we recognize the important role of golf in
attracting visitors There is a minor improvement

in the error for generated
speech as compared to that for
noisy speech. This shows in
improvement in intelligibility
but the meaning of the sentence
has changed.

Clean
we recognize the important role of golf in
attracting visitors 0/10

Noisy
recognize seeing both control of golf in
attracting visit 5/10 5/10

WaveRNN
recognize the important role of contracting
visitors 4/10 4/10

7.5 Living p232_013

Reference
some have accepted it as a miracle without
physical explanation The generated speech has no

error when compared with the
clean and reference text
responses, thus showing an
improvement in intelligibility.

Clean
some have accepted it as a miracle without
physical explanation 0/10

Noisy
somehow accepted it as a miracle without
physical 3/10 3/10

WaveRNN
some have accepted it as a miracle without
physical explanation 0/10 0/10

7.5 Public
Square p257_101

Reference
however the intensive care unit at the southern
general hospital was full The WER does not show any

improvement here. In fact the
error rates for all clean, noisy
and generated speech are the
same. Hence, a valid
comparison cannot be made.

Clean
i was at the intensive care unit the southern
general hospital was full 4/12

Noisy
however the intensive care unit 7th general
hospital is full 4/12 6/13

WaveRNN
however the intensive care unit the southern
general hospitals home 4/12 6/13

12.5 Cafe p257_369

Reference there is a solution she believes The metric shows a slight
improvement in the error rate
of generated speech as
compared to noisy speech.

Clean theres a solution she believes 2/6
Noisy theres a solution tree please 4/6 2/5

WaveRNN
theres a solution she please

3/6 1/5

12.5 Living p232_054

Reference
several other pupils and staff were seriously
injured in the accident The WER for the noisy and

the clean speech wrt the
reference text are the same
since their text response is
also the same. However, the text
response of the generated
speech is slightly closer to the
reference and further away
from the clean. Hence, a minor
improvement is observed.

Clean
several of the pupils and staff was
seriously injured in the accident 3/11

Noisy
several of the pupils and staff was
seriously injured in the accident 3/11 0/12

WaveRNN
several other peoples and staff was
seriously injured in the accident 2/11 3/12

17.5 Cafe p232_029

Reference
their courage and their honesty should be
respected There is no improvement in

intelligibility as suggested by
the metric.Clean

their courage and their honesty should be
respected 0/8

Noisy acreage and their honesty should be respected 2/8 2/8
WaveRNN acreage and their honesty should be respected 2/8 2/8

17.5 Cafe p257_127

Reference
his son has been travelling with the tartan army
for years The error rate for text obtained

from clean speech wrt to the
reference is significant. The
metric shows an overall
decrease in intelligibility for
generated speech.

Clean
his son has been traveling with the top nami
for use 4/11

Noisy
hey son its been traveling with the
top money for you 6/11 4/11

WaveRNN
your son has been traveling with
a todd lonely on for he is 8/11 7/11



C1
Experiment Configurations2

This appendix contains configurations for the conducted experiments.3

C.1. Configurations for Synthesizer experiments4
The configurations for the experiments conducted with the WaveRNN synthesizer are mentioned here.5

C.1.1. WaveRNN with noisy MFCC as context6

Table C.1: Configuration for training WaveRNN synthesizer with noisy MFCC as context

Parameter Name Format Value
Network Hyper-parameters

GRU units R 512
Fully Connected layer 1 units F 512
Fully Connected layer 2 units P 256
Upsample factors [𝑈 , 𝑈1, ..., 𝑈𝑛] [5, 5, 8]
Sequence Length 𝑆 1000
Batch size b 64
Epochs e 2000
Learning rate lr 1e-4

Feature configurations
Feature Noisy MFCC
Mel bands M 80
MFCC bands mf 40
Mel window w 9
Sampling Frequency sr 16000
Window Length 400
Hop Length h 200
FFT size N 512
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C.1.2. Increase sequence length of WaveRNN input1

Table C.2: Configuration for training WaveRNN synthesizer for an increased sequence length and reduced Mel bands

Parameter Name Format Value
Network Hyper-parameters

GRU units R 512
Fully Connected layer 1 units F 512
Fully Connected layer 2 units P 256
Upsample factors [𝑈 , 𝑈1, ..., 𝑈𝑛] [5, 8, 8]
Sequence Length 𝑆 1920
Batch size b 64
Epochs e 2000
Learning rate lr 1e-4

Feature configurations
Feature Noisy MFCC
Mel bands M 40
MFCC bands mf 40
Mel window w 10
Sampling Frequency sr 16000
Window Length 640
Hop Length h 320
FFT size N 1024

C.1.3. WaveRNN with noisy Mel spectrogram as context2

Table C.3: Configuration for training WaveRNN synthesizer with noisy Mel spectrogram

Parameter Name Format Value
Network Hyper-parameters

GRU units R 512
Fully Connected layer 1 units F 512
Fully Connected layer 2 units P 256
Upsample factors [𝑈 , 𝑈1, ..., 𝑈𝑛] [5, 8, 8]
Sequence Length 𝑆 1920
Batch size b 64
Epochs e 2000
Learning rate lr 1e-4

Feature configurations
Feature Noisy Mel Spectrogram
Mel bands M 40
Mel window w 10
Sampling Frequency sr 16000
Window Length 640
Hop Length h 320
FFT size N 1024
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C.1.4. WaveRNN with clean Mel spectrogram as context1

Table C.4: Configuration for training WaveRNN synthesizer with clean Mel spectrogram

Parameter Name Format Value
Network Hyper-parameters

GRU units R 512
Fully Connected layer 1 units F 512
Fully Connected layer 2 units P 256
Upsample factors [𝑈 , 𝑈1, ..., 𝑈𝑛] [5, 8, 8]
Sequence Length 𝑆 1920
Batch size b 64
Epochs e 6000
Learning rate lr 1e-4

Feature configurations
Feature Clean Mel Spectrogram & Delta Features
Mel bands M 80
Mel window w 10
Sampling Frequency sr 16000
Window Length 640
Hop Length h 320
FFT size N 1024

C.1.5. Reduce sampling frequency2

Table C.5: Configuration for training WaveRNN synthesizer for 8kHz speech

Parameter Name Format Value
Network Hyper-parameters

GRU units R 512
Fully Connected layer 1 units F 512
Fully Connected layer 2 units P 256
Upsample factors [𝑈 , 𝑈1, ..., 𝑈𝑛] [5, 8, 8]
Sequence Length 𝑆 960
Batch size b 64
Epochs e 2000
Learning rate lr 1e-4

Feature configurations
Feature Clean Mel Spectrogram & Delta Features
Mel bands M 80
Mel window w 10
Sampling Frequency sr 8000
Window Length 320
Hop Length h 160
FFT size N 512
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C.2. Configurations for Denoising experiments1
The configurations for the experiments conducted with the Denoising architcetures are mentioned here.2

C.2.1. U-Net architecture with 1-D kernels and spatial reduction3

Table C.6: Setup and Configuration for the U-Net architecture with 1-D kernels and spatial reduction

Parameter Name Format Values
Network Hyper-parameters

Convolution
Kernel size [𝑘 , 𝑘 ] [17, 1]

Encoder
Channels [𝐶 , 𝐶 , ..., 𝐶 ] [1, 16, 32, 64]

Decoder
Channels [𝐶 , 𝐶 , ..., 𝐶 ] [64, 32, 16, 1]

Stride [𝑠 , 𝑠 ] [1, 1]
Padding [𝑝 , 𝑝 ] [0, 0]
Batch size b 64
Epochs e 2000
Learning rate lr 1e-4

Feature configurations
Feature Noisy Mel Spectrogram
Mel bands M 80
Mel Window w 26
Sampling frequency sr 8000
Window length 320
Hop length 160
FFT size N 512

C.2.2. U-Net architecture with 2-D kernels and no spatial reduction4

Table C.7: Setup and Configuration for the U-Net architecture with 2-D kernels and no spatial reduction

Parameter Name Format Values
Network Hyper-parameters

Convolution
Kernel size [𝑘 , 𝑘 ] [15, 3]

Encoder
Channels [𝐶 , 𝐶 , ..., 𝐶 ] [1, 16, 32, 64]

Decoder
Channels [𝐶 , 𝐶 , ..., 𝐶 ] [64, 32, 16, 1]

Stride [𝑠 , 𝑠 ] [1, 1]
Padding [𝑝 , 𝑝 ] [7, 1]
Batch size b 64
Epochs e 2000
Learning rate lr 1e-4

Feature configurations
Feature Noisy Mel Spectrogram & Delta Features
Mel bands M 80
Mel Window w 26
Sampling frequency sr 8000
Window length 320
Hop length 160
FFT size N 512
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C.2.3. U-Net architecture with 2-D kernels and strided convolutions1

Table C.8: Setup and Configuration for the U-Net architecture with strided convolutions

Parameter Name Format Values
Network Hyper-parameters

Convolution
Kernel size [𝑘 , 𝑘 ] [15, 3]

Encoder
Channels [𝐶 , 𝐶 , ..., 𝐶 ] [1, 16, 32, 64, 128]

Decoder
Channels [𝐶 , 𝐶 , ..., 𝐶 ] [128, 64, 32, 16, 1]

Stride [𝑠 , 𝑠 ] [2, 1] for alternate channels
Padding [𝑝 , 𝑝 ] [7, 1]
Batch size b 64
Epochs e 4000
Learning rate lr 1e-4

Feature configurations
Feature Noisy Mel Spectrogram & Delta Features
Mel bands M 80
Mel Window w 26
Sampling frequency sr 8000
Window length 320
Hop length 160
FFT size N 512

C.2.4. VCAE with Dense Bottleneck2

Table C.9: Configuration for the VCAE architecture with Dense Bottleneck

Parameter Name Format Values
Network Hyper-parameters

Convolution
Kernel size [𝑘 , 𝑘 ] [15, 3]

Encoder
Channels [𝐶 , 𝐶 , ..., 𝐶 ] [1, 16, 32, 32, 64]

Decoder
Channels [𝐶 , 𝐶 , ..., 𝐶 ] [64, 32, 32, 16, 1]

Stride [𝑠 , 𝑠 ] [2, 1] for all channels
Padding [𝑝 , 𝑝 ] [7, 1]
Type of
Bottleneck Dense

Dense Bottleneck
layers [𝑛 , ..., 𝑛 , ..., 𝑛1] [16640, 1024, 16640]

Variance constraint 𝑣 1024
Standard deviation
of noise 𝜎 0.02

Batch size b 64
Epochs e 4000
Learning rate lr 1e-4

Feature configurations
Feature Noisy Mel Spectrogram & Delta Features
Mel bands M 80
Mel Window w 26
Sampling frequency sr 8000
Window length 320
Hop length 160
FFT size N 512
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C.2.5. Fully convolutional VCAE1

Table C.10: Setup and Configuration for the fully convolutional VCAE architecture

Parameter Name Format Values
Network Hyper-parameters

Convolution
Kernel size [𝑘 , 𝑘 ] [15, 3]

Encoder
Channels [𝐶 , 𝐶 , ..., 𝐶 ] [1, 16, 32, 64, 16, 4]

Decoder
Channels [𝐶 , 𝐶 , ..., 𝐶 ] [4, 16, 64, 32, 16, 1]

Stride [𝑠 , 𝑠 ] [2, 1] for all channnels
Padding [𝑝 , 𝑝 ] [7, 1]
Type of
Bottleneck Convolutional

Dense Bottleneck
layers [𝑛 , ..., 𝑛 , ..., 𝑛1] -

Variance constraint 𝑣 520
Standard deviation
of noise 𝜎 0.02

Batch size b 64
Epochs e 4000
Learning rate lr 1e-4

Feature configurations
Feature Mel Spectrogram & Delta Features
Mel bands M 80
Mel Window w 26
Sampling frequency sr 8000
Window length 320
Hop length 160
FFT size N 512

C.2.6. Final System2

Table C.11: Setup and Configuration for the final speech enhancement system.

Parameter Name Format Value
Network Hyper-parameters
WaveRNN GRU units R 512

Fully Connected layer 1 units F 512
Fully Connected layer 2 units P 256
Upsample factors [𝑈 , 𝑈1, ..., 𝑈𝑛] [5, 8, 8]
Sequence Length 𝑆 1920

U-Net Encoder Channels [𝐶 , 𝐶2, ..., 𝐶𝑛] [1, 16, 32, 64, 128]
Decoder Channels [𝐶 , 𝐶𝑛 − 1, ..., 𝐶1] [128, 64, 32, 16, 1]
Convolution Kernel size [𝑘 , 𝑘 ] [15, 3]
Stride [𝑠 , 𝑠 ] [2, 1] for all channels
Padding [𝑝 , 𝑝 ] [7, 1]
Batch size b 64

Epochs e
6000 (pre-training)
12000 (fine-tuning)

Learning rate lr

1e-4 (pre-training, first 4000 epochs)
5e-5 (pre-training, after 4000 epochs)
1e-4 (fine-tuning, first 8000 epochs)
5e-5(fine-tuning, after 8000 epochs)

Feature configurations
Feature Noisy Delta Features
Mel bands M 128
Mel window w 10
Sampling Frequency sr 16000
Window Length 640
Hop Length h 320
FFT size N 1024



D1
Hardware Specifications2

This chapter includes specifications of the hardware used for training and testing the proposed systems.3

Table D.1: GPU Specifications used for training and testing.

GPU Model NVIDIA GeForce RTX 2080 Ti
CUDA Cores 4352
Clock Frequency 1635 MHz
Memory Interface 352-bit
Memory Capacity 11 GB
Memory Bandwidth 616 GB/s
Power 250 W
FP16 (half) performance 26.90 TFLOPS
FP32 (float) performance 420.2 GFLOPS
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