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SUMMARY

Additively manufacturing can bring opportunities and risk factors to the aerospace in-
dustry. On one hand, additive manufacturing allows the manufacturing of structures
with geometries that are difficult or impossible to fabricate with conventional machining
procedures. This geometry flexibility may lead to components with a greater strength-
to-weight ratio, which can enhance the aircraft’s fuel efficiency. On the other hand, pos-
sible defects in the additively manufactured parts can lead to reduced strength and in-
creased fatigue susceptibility. In addition, it is very difficult to apply traditional non-
destructive testing techniques to additively manufactured specimens with complex ge-
ometry due to limited accessibility.

Structural health monitoring can be a good alternative or addition to the traditional non-
destructive testing for additively manufactured structures due to its ability to continue
continuously and detect hidden defects. This thesis investigates the feasibility of em-
bedding fiber optic sensors via pre-defined capillaries in the additively manufactured
structure and proposes novel approaches to perform crack detection based on the strain
data measured with the embedded fiber.

Fiber embedding within the additively manufactured parts in previous research mainly
involves creating a U-shape groove in the additively manufactured substrate, pausing
the additive manufacturing process and inserting the fiber into the groove, and resum-
ing the process for encapsulation. There is also another research on creating a vacuum
sensor in additively manufactured structures with a capillary. However, there are clear
limitations to the previous research. This study combines the methodology of the two
preceding research and proposed a novel approach to embedding fiber sensors via a pre-
defined capillary in the selective laser melted (SLM) structure. The main research ques-
tion is how to use the fiber embedded via a pre-defined capillary to perform crack detec-
tion in SLM structures. The aim of this research is to develop a more effective strategy
for crack detection in additively manufactured parts and help improve their reliability in
the aerospace industry.

There are some sub-research questions. The first research question is how the possible
fiber positions and orientations variations influence strain measurement accuracy. Both
analytical and numerical models are utilized to predict strain distributions along em-
bedded fibers at different positions and with different orientations within the specimen.
Four-point bending static test is performed to verify the model. It is found that variation
of fiber orientations has negligible influence on strain measurement accuracy compared
with fiber position variations.

The second research question is how effective the strain exceedance method is for de-
tecting cracks in the SLM specimens. The analytical model is used to establish a strain
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window. Four-point bending fatigue tests were performed with embedded fiber optic
sensors measuring in situ strain. The measured strain was compared with the strain
window to determine if there was any crack in the specimen and the length of the crack
when it was first detected can be observed with the camera. Strain exceedance can be
observed which indicates the existence of the crack in the SLM specimen.

Using the strain exceedance method, the strain distribution pattern has already changed
before the crack is detected with the strain exceedance method. The last research ques-
tion is how to use machine learning to detect small cracks based on the strain distribu-
tion pattern and detect cracks that can not be detected with the simple strain exceedance
method. In order to answer the question, a carefully-designed deep neural network
(DNN) model is established and trained with the data acquired from fatigue tests and
simulation. The results of the DNN model show that the model can detect cracks be-
fore the strain exceedance method can detect any crack. In addition, it is shown that
the crack detection method based on machine learning and fiber embedding via capil-
lary can detect cracks much earlier than the vacuum sensor based method proposed in
Strantza’s study previously.



SAMENVATTING

Additief produceren kan kansen en risico’s met zich meebrengen voor de lucht- en ruim-
tevaartindustrie. Aan de ene kant maakt additief produceren het mogelijk om structu-
ren te maken met geometrieën die moeilijk of onmogelijk te maken zijn met conventio-
nele bewerkingsprocedures. Deze geometrische flexibiliteit kan leiden tot componenten
met een grotere sterkte-gewichtsverhouding, wat de brandstofefficiëntie van het vlieg-
tuig kan verbeteren. Aan de andere kant kunnen mogelijke defecten in de additief ver-
vaardigde onderdelen leiden tot verminderde sterkte en verhoogde gevoeligheid voor
vermoeiing. Bovendien is het erg moeilijk om traditionele niet-destructieve testtechnie-
ken toe te passen op op additief vervaardigde proefstukken met een complexe geometrie
vanwege de beperkte toegankelijkheid.

Structurele gezondheidsmonitoring kan een goed alternatief of aanvulling zijn op het
traditionele niet-destructieve onderzoek voor additief vervaardigde constructies van-
wege de mogelijkheid om continu door te gaan en verborgen defecten te detecteren.
Dit proefschrift onderzoekt de haalbaarheid van het inbedden van glasvezelsensoren via
vooraf gedefinieerde haarvaten in de additief vervaardigde constructie en stelt nieuwe
benaderingen voor om scheurdetectie uit te voeren op basis van de rekgegevens geme-
ten met de ingebedde vezel.

Het inbedden van vezels in de additief vervaardigde onderdelen in eerder onderzoek
omvat voornamelijk het maken van een U-vormige groef in het additief vervaardigde
substraat, het pauzeren van het additief vervaardigingsproces en het inbrengen van de
vezel in de groef, en het hervatten van het proces voor inkapseling. Er is ook onderzoek
gedaan naar het creëren van een vacuümsensor in additief vervaardigde structuren met
een capillair. Er zijn echter duidelijke beperkingen aan het eerdere onderzoek. Dit on-
derzoek combineert de methodologie van de twee voorgaande onderzoeken en stelt een
nieuwe aanpak voor om vezelsensoren in te kapselen via een vooraf gedefinieerd capil-
lair in de selectieve lasersmeltstructuur (SLM). De belangrijkste onderzoeksvraag is hoe
de vezel ingebed via een vooraf gedefinieerd capillair kan worden gebruikt om scheurde-
tectie uit te voeren in SLM-structuren. Het doel van dit onderzoek is het ontwikkelen van
een effectievere strategie voor scheurdetectie in additief vervaardigde onderdelen en het
verbeteren van hun betrouwbaarheid in de lucht- en ruimtevaartindustrie.

Er zijn een aantal subonderzoeksvragen. De eerste onderzoeksvraag is hoe de mogelijke
vezelposities en -oriëntaties de nauwkeurigheid van de rekmeting beïnvloeden. Zowel
analytische als numerieke modellen worden gebruikt om de rekverdeling te voorspellen
langs ingebedde vezels op verschillende posities en met verschillende oriëntaties bin-
nen het proefstuk. Statische vierpuntsbuigproef wordt uitgevoerd om het model te veri-
fiëren. Het blijkt dat variatie van vezeloriëntaties een verwaarloosbare invloed heeft op
de rekmeting in vergelijking met vezelpositievariaties.
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De tweede onderzoeksvraag is hoe effectief de rekgrensoverschrijdingsmethode is voor
het detecteren van scheuren in de SLM proefstukken. Het analytische model wordt ge-
bruikt om een rekvenster vast te stellen. Er werd een vierpunts buigvermoeiingstest uit-
gevoerd met ingebedde glasvezelsensoren die in situ rek meten. De gemeten spanning
werd vergeleken met het rekvenster om te bepalen of er een scheur in het proefstuk zat
en wat de lengte van de scheur was toen deze voor het eerst werd gedetecteerd. Er wer-
den overschrijdingen van de rek waargenomen die duiden op het bestaan van een scheur
in het SLM proefstuk.

Bij gebruik van de rekgrensoverschrijdingsmethode is het rekverdelingspatroon al ver-
anderd voordat de scheur gedetecteerd wordt met de rekgrensoverschrijdingsmethode.
De laatste onderzoeksvraag is hoe machine learning gebruikt kan worden om kleine
scheuren te detecteren op basis van het rekverdelingspatroon en scheuren te detecteren
die niet gedetecteerd kunnen worden met de eenvoudige rekoverspanningsmethode.
Om deze vraag te beantwoorden wordt een zorgvuldig ontworpen diep neuraal netwerk
(DNN) model opgesteld en getraind met de gegevens verkregen uit vermoeiingstesten en
simulatie. De resultaten van het DNN-model tonen aan dat het model scheuren kan de-
tecteren voordat de rekoverschrijdingsmethode een scheur kan detecteren. Daarnaast
wordt aangetoond dat de scheurdetectiemethode gebaseerd op machine learning en ve-
zelinbedding via capillair scheuren veel eerder kan detecteren dan de vacuümsensor-
gebaseerde methode die eerder werd voorgesteld in het onderzoek van Strantza.
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2 1. INTRODUCTION

1.1. BACKGROUND AND MOTIVATION

D EVELOPMENT of the aviation sector is posing challenges to the environment of our
society. The issue of Greenhouse gas emissions is one of the key impacts from

the aviation sector. The International Civil Aviation Organization (ICAO) estimates that
around 915 million tons of carbon dioxide (CO2) were released into the atmosphere in
the aviation industry worldwide in 2019, and that made for about 2% of all CO2 emis-
sions worldwide [1].

However, there is an increasingly growing demand for the aviation industry, the pas-
senger traffic was predicted to increase with an average rate of 4.55% annually in the
future [2], due to factors including rising tourism, better economic prospects, and in-
creased globalization. The demand is increasing especially fast in some of the fast-
growing emerging markets. For example, air travel has expanded due to rising economic
affluence in nations like China, India, Brazil etc. The aviation sector in emerging mar-
kets is anticipated to continue expanding quickly due to the increase of low-cost carriers
and the infrastructure for air travel. Because of the steadily increasing demand for avi-
ation demand worldwide, it is worth noting that greenhouse emissions especially CO2
emissions are a concern because they can cause global warming and climate change.

The aviation industry is making an active effort to lessen its effect on the environment
and address how it contributes to climate change. The measures that the industry is tak-
ing to mitigate its negative impact on climate change include improving fuel efficiency,
participating in carbon offsetting programs, adopting alternative technologies, etc [3].
Among them, increasing fuel efficiency is regarded as one of the most effective ways to
lessen the aviation sector’s environmental impact. The fuel efficiency is monitored by
the International Air Transport Association (IATA), which gives information on how this
has changed over time. For instance, the average fuel economy of international flights
rose by 1.8% in 2020 compared to 2019 according to IATA [4].

Weight reduction of aircraft is one of the most effective ways of improving aircraft fuel
efficiency. It is estimated that the aircraft fuel consumption can drop by 0.25% to 0.75%
when its weight can be reduced by 1% [5]. There are several techniques that are more
and more adopted to reduce aircraft weight, which include using lightweight structures,
design optimization, streamlining, systems integration, etc [6]. Among all the different
methods to reduce aircraft weight, additively manufactured lightweight structures are
increasingly used in the construction of aircraft. The engine bearings in the Rolls-Royce
Trent-XWB powering Airbus A350 XWB are made with the electron beam melting tech-
nologies [7].

Additive manufacturing, also known as 3D printing, is a process of building 3D solid ob-
jects from a digital model layer by layer. Instead of removing material from a block to
make a finished product as is the case with traditional subtractive manufacturing tech-
niques like machining or molding, additive manufacturing builds the object up layer by
layer. This makes it feasible to create detailed, complex patterns and geometries that
would be very difficult or impossible to make using traditional manufacturing process.
Different types of additive manufacturing processes include Fused Deposition Model-
ing (FDM), Stereolithography (SLA), Electron Beam Melting (EBM), SLM, and Laminated
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Object Manufacturing (LOM) [8].

Additive manufacturing has the potential to transform the manufacturing industry by
facilitating the production of parts with more design flexibility, reduced lead times, less
waste, and enhanced product performance. The aerospace engineering industry has ex-
tensively investigated the use of additive manufacturing for several decades, with a pri-
mary emphasis on the creation of lightweight components that exhibit exceptional per-
formance characteristics. The present lightweight components have been strategically
designed to enhance both strength and stiffness, so effectively minimizing the overall
weight of the aircraft while maintaining optimal performance levels.

By enabling the creation of parts with higher design freedom, shorter lead times, less
waste, and better product performance, additive manufacturing has the potential to
revolutionize the manufacturing sector. In aerospace engineering, additive manufac-
turing has been explored for several decades, and its main focus is on manufacturing
lightweight, high-performance parts. These lightweight parts are optimized for strength
and stiffness, reducing the weight of the aircraft without sacrificing performance [7].

Despite all the advantages of using additive manufacturing to manufacture lightweight
structures in aircraft, there are also limitations in the use of additive manufacturing. One
of the most significant limitations is the repair and maintenance of these additively man-
ufactured structures. Compared to conventional parts, repair, and maintenance of addi-
tively manufactured parts can be more challenging. The first reason is the complex de-
sign. Parts made by additive manufacturing sometimes have complicated and complex
geometries, which can make it hard to access the internal structure manually. There-
fore it can be more challenging to repair or change with traditional methods. Traditional
parts frequently have easier-to-work-with, simpler shapes, and patterns [9]. The sec-
ond reason is the surface finish of the additively manufactured specimens. The rough
surface finishes of as-built additively manufactured parts can make them harder to re-
pair compared with traditional parts [10]. Finally, the repairability of parts made by ad-
ditive manufacturing may be impacted by the differences in their characteristics from
standard parts. The variability of the material properties occurs in the additively manu-
factured parts, which include microstructure, residual stress, and composition variabil-
ity. Because of this variability, it may be more challenging to forecast how the part will
behave during maintenance and repair. All these limitations make it hard to perform
inspection and evaluation of the additively manufactured parts with traditional non-
destructive testing (NDT) [11].

Structural health monitoring can complement traditional Non-Destructive Testing (NDT)
methods, and has the potential to overcome the limitation of NDT on additively manu-
factured parts. The term "Structural health monitoring" which is often abbreviated as
"SHM", describes the process of using sensors and other measuring tools to continu-
ously evaluate the structural health and operation of some parts of an airplane, building,
or bridge, etc [12]. The primary aim of structural health monitoring is to identify poten-
tial anomalies or early warning signals of damage before the occurrence of catastrophic
failure, hence augmenting the safety and reliability of these critical components.

In the aerospace industry, structural health monitoring is often achieved by the integra-
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tion of various sensors, including strain gauges, accelerometers, and optical fiber sen-
sors, within the aircraft’s structure [13]. The sensors continually collect several types of
data, such as strain, stress, temperature, vibration, and others. These data are consis-
tently analyzed and processed to detect any signs of degradation or damage inside the
structure. structural health monitoring offers many advantages, including enhanced op-
erational efficiency, reduced maintenance cost, and heightened safety measures. With
aircraft equipped with the structural health monitoring system, airlines have the abil-
ity to detect early damages and take preventative action to solve the problem, such as
replacing or repairing parts before they break down [14]. That can lower the likelihood
of any catastrophe. This thesis investigates the possibility of applying structural health
monitoring on additively manufactured parts in order to utilize the ability of additive
manufacturing to create lightweight structures as well as guarantee their structural in-
tegrity.

The possibility to perform structural health monitoring on the additively manufactured
parts is investigated in a previous study [15], where a vacuum sensor is manufactured by
integrating a capillary within a part using Selective Laser Melting (SLM). As this sensor
type relies on cracks growing up to the embedded capillary in order to disrupt its vacuum
condition, the capillary needs to be placed in close proximity to fatigue hot spots in order
to be effective. This thesis builds on the concept of capillary, combines it with fiber optic
sensor used for structural health monitoring, and propose to embed fiber optic sensors
within pre-manufactured capillary for crack detection in the additively manufactured
parts. The act of embedding a sensor is highly compatible with the layer-by-layer manu-
facturing approach of AM, making embedded structural health monitoring a potentially
good fit with AM processes for damage detection. Compare to directly bonding the fiber
optic sensors on the specimen surface, embedding fiber optic sensors has some advan-
tages. The embedded fiber has improved durability compared with the surface-bonded
fiber. They are better protected and less susceptible to harm when they are integrated
into the structure [16]. In contrast to sensors that are merely glued to the surface, em-
bedding fibers can boost their toughness and dependability.

In summary, this thesis aims to investigate the feasibility of embedding fiber optic sen-
sors via pre-defined capillaries in the additively manufactured structure and proposes
novel approaches to perform crack detection based on the strain data measured with
the embedded fiber. By analyzing the new opportunities and challenges brought by dif-
ferent crack detection approaches using embedded fibers, this study seeks to develop
more effective strategies for crack detection in additively manufactured parts and im-
prove their reliability and safety in the aerospace industry.
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2.1. INTRODUCTION
This literature review aims to provide a comprehensive overview of the research on per-
forming structural health monitoring on selectively laser melted (SLM) aluminum alloy
parts. I will mainly focus on the research on the opportunities and risk factors brought by
SLM and investigate the various structural health monitoring approaches and data pro-
cessing techniques applied to the SLM structures. Research of the SLM processes and
the influence of various SLM parameters on the quality of the parts are not the focus of
the review. In addition, the review of different structural health monitoring approaches
will only focus on the first two stages of structural health monitoring, damage detection,
and localization. Synthesizing and critically assessing the existing literature, the aim of
this review is to identify gaps in the research and provide directions for this thesis.

2.2. INTRODUCTION TO THE APPLICATION OF ADDITIVE MAN-
UFACTURING IN AEROSPACE ENGINEERING

2.2.1. DEVELOPMENT OF ADDITIVE MANUFACTURING
Additive manufacturing, also called 3D printing, is a technology that allows for the cre-
ation of three-dimensional objects by stacking layers of material on top of one another.
At the beginning of the 1980s, Dr. Hideo Kodama developed the prototyping machine us-
ing the information from 3D scanning and the layering structure from 3D topographical
maps. Later in the year of 1984, Chuck Hull invented a process called stereolithogra-
phy, which used a laser to cure a liquid photopolymer into a solid object layer by layer,
and that is called SLA technology [1]. Carl Deckard and Joseph Beaman developed the
selective Laser sintering (SLS) process at the University of Texas at Austin in the mid-
1980s, and the process uses a laser to selectively fuse powdered materials, such as plas-
tics or metals, layer by layer to create a solid object, and the technology was initially
used for rapid prototyping [2]. After that, other additive manufacturing technologies
and methods were also developed. S. Scott Crump developed the fused deposition mod-
eling (FDM) process in the end of 1980s, with the process of melting a thermoplastic
filament and extruding it layer by layer to create a 3D object [3]. Building on the founda-
tion laid by SLS technology, the selective laser melting technology (SLM) was developed
in the late 1990s [4]. Both SLM and SLS selectively fuse powdered materials layer by
layer to produce 3D objects. However, they vary in how much the powdered substance is
melted. While SLS technology only partly melts the material, producing a more porous
part, SLM technology completely melts the material, producing a denser, stronger part.
Because the material is fully melted for SLM, it is also possible to use SLM with a wider
range of materials than SLS [5]. The Powder Bed Fusion (PBF) technology was similar
to the SLM technology in the aspect that it also fused powdered materials layer by layer.
However, they are also different. PBF can use different heat sources such as laser and
electron beam, and PBG also sinter or partially melt powdered materials [6]. Due to the
advantages of SLM mentioned above, it will be selected for manufacturing the speci-
mens in this study.
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2.2.2. APPLICATION OF ADDITIVE MANUFACTURING IN THE AEROSPACE IN-
DUSTRY

Additive manufacturing has been increasingly used in the field of aerospace engineer-
ing. GE Aviation uses direct metal laser melting to manufacture intricate gas nozzles for
its LEAP engine with the nickel-based alloy 718 [7]. The material is chosen because it
is resistant to high temperatures, corrosion, and oxidation. These properties make the
material ideal to be used in the harsh environment of the aero-engine [8]. Ti6Al4V has
been widely used in the creation of aircraft engine and aircraft frame components due to
its good balance of strength, fracture toughness, and corrosion resistance [9]. AlSi10Mg
is the most commonly used aluminum alloy in aerospace structures which include air-
craft engine parts such as engine blocks, pistons, and cylinder heads due to its property
of high strength-to-weight ratio, excellent thermal conductivity, and being corrosion-
resistance [10]. Both titanium and aluminum alloys are commonly used because they
have good mechanical properties. However, they all have their advantages and disadvan-
tages. Compared with aluminum alloys, titanium alloys have higher strength and fatigue
properties, however, they are more expensive and more difficult to process since they
generally have a higher melting point and lower thermal conductivity [11]. Aluminum
alloys on the other hand have lower strength-to-weight ratios compared with titanium
alloys, however, they are more cost-effective and easier to process because they have
better thermal conductivity and weldability [12]. In this study, the AlSi10Mg is selected
for the specimen in this study for its excellent combination of properties.

2.3. THE ADVANTAGES AND RISK FACTORS BROUGHT BY ADDI-
TIVE MANUFACTURING TO THE AEROSPACE INDUSTRY

2.3.1. ADVANTAGE OF APPLYING ADDITIVE MANUFACTURING IN THE AEROSPACE

INDUSTRY
Additive manufacturing has been increasingly used in aerospace engineering. One of the
biggest advantages of additive manufacturing over conventional machining techniques
is design flexibility. With additive manufacturing, designers can create complicated ge-
ometries that are difficult or impossible to fabricate with conventional machining pro-
cedures [13]. This design flexibility may lead to components with a greater strength-to-
weight ratio, which will enhance the aircraft’s fuel efficiency [14]. The MTU Aero Engines
used additive manufacturing for a variety of aero-engine components as shown in figure
2.1 to help Airbus achieve its 15% fuel consumption reduction for the A320neo [15]. In
addition, additive manufacturing technology had been utilized to manufacture various
components including brackets and hinges, seat buckles as well as flight deck monitor
arms [16] [17]. The Concept Laser company designed and manufactured cabin brack-
ets with additive manufacturing for Airbus A350 jets as shown in figure 2.2. The bionic
design is inspired by nature and can significantly reduce the bracket’ mass [18].

2.3.2. LIMITATION OF ADDITIVELY MANUFACTURED METAL PARTS
There are some limitations of additively manufactured parts compared to traditional
parts, which include porosity, residual stress, anisotropy, and poor surface finishing [21].
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Figure 2.1: Additively manufactured parts made by MTU Aero Engines company [19]

(a) Conventional   Aircraft 

bracket

(b) Bionic brackets designed 

by Concept Laser machines

Figure 2.2: Traditional aircraft brackets versus a novel aircraft bracket with topology optimized design [20]
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Figure 2.3: Comparison of fatigue performance of SLM steel 630 regardless of the building direction with
respect to the wrought counterparts

Porosity refers to the existence of cavities or pores in a material, which can be introduced
in additively manufactured parts by the presence of trapped gas or incomplete fusion of
the metal particle. Porosity can lead to reduced strength, increased fatigue susceptibil-
ity, and reduced resistance to corrosion or other environmental factors. The increasing
existence of porosity can negatively impact the yield strength and ultimate strength [22].

Due to thermal gradients and non-uniform cooling during the printing process, residual
stress is an additional issue that may occur in additively manufactured parts [23]. Resid-
ual stress can lead to distortion, fracture, and even premature failure of service parts in
an operating environment [24]. Techniques such as heat treatment, shot peening and
mechanical working can be used to relieve the residual stresses in additively manufac-
tured parts [25].

Defects in additively manufactured parts may have a harmful impact on their fatigue
lives. Figure 2.3 shows the comparison of fatigue performance of SLM steel 630 regard-
less of the building direction with respect to the wrought counterparts. It can be seen
that the fatigue performance of SLM steel 630 regardless of the building direction is
worse than their wrought counterparts.

There are challenges to applying traditional non-destructive testing (NDT) techniques
to the SLM specimens. One of the biggest challenges is limited accessibility. Internal
structures, voids, or other concealed features can often be found in SLM specimens of
complex geometries, and one example can be seen in figure 2.4. It may be very difficult
to access these features with inspection probes.
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Figure 2.4: Spider bracket to support architectural glass facade [26]

2.4. INTRODUCTION TO STRUCTURAL HEALTH MONITORING

2.4.1. THE CONCEPT OF STRUCTURAL HEALTH MONITORING
SHM is a process of integrating sensors and actuators within a structure to gather data
continuously and monitor the health of the structure [27]. The goal of structural health
monitoring is to continuously monitor structural integrity to ensure safety. Due to its
ability to monitor continuously and detect hidden defects, structural health monitoring
can be a good alternative or addition to the traditional non-destructive testing for addi-
tively manufactured structures. Figure 2.5 depicts a schematic structure of the structural
health monitoring systems. As can be seen in the figure, a structural health monitoring
system can be used to monitor the health state of the structure and its usage. Monitor-
ing of its health state is performed on 4 levels hierarchically [28]. It should be noticed
that the third and fourth level of structural health monitoring is still topic of ongoing
discussion both in the industry and academia, which are therefore not determined yet.
However, most of the study in this thesis only involves the first level of damage detec-
tion in additively manufactured structures. Therefore, only one selected definition of
the four-level structural health monitoring is given here. According to Balageas etc. [27],
the first level is damage detection which is to determine the existence of damage, the
second level is damage localization to locate the damages in the structure, the third level
is damage assessment for estimating the extent of the damage, and the fourth level is re-
maining life prediction for predicting the remaining life of the structure. Damage refers
to the changes or alterations that occur in a material or component that result in a re-
duction in its ability to perform its intended function [29]. Damage can occur due to
a variety of factors, including excessive stress, fatigue, corrosion, wear, and other types
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Sensors

Structural health monitoring

Level 1: Damage detection 

Level 2: Damage localization

Level 3: Damage assessment

Level 4: Remaining life prediction

Usage monitoring

Monitor how the structure is used such 

as the frequency & intensity of loads

Health and usage monitoring

Maintenance organization

Health management of the structure

Health management of the full system

Monitoring process

1.Data acquisition from sensors

2.Data process & analysis

▪ Sensor fusion

▪ Sensor multiplexing

▪ Feature extraction

3. Situation assessment

Figure 2.5: Principle and structure of a structural health monitoring system (adapted from the book [27])

of material degradation. There are different types of damage in engineering structures,
which include cracks or fractures in a structure, Wear of bearings, delamination of com-
posite materials, Corrosion of pipelines and other metal components due to exposure to
corrosive chemicals or environments, etc.

2.4.2. DIFFERENT TYPES OF STRUCTURAL HEALTH MONITORING TECHNOLO-
GIES

There are several commonly used structural health monitoring techniques, which in-
clude fiber optic sensing [30], vibration-based techniques [31], guided wave-based struc-
tures [32], etc. The different types of structural health monitoring technologies can be
seen in figure 2.6. Fiber optic sensing employs optical fibers to detect strain, tempera-
ture, and other physical parameters of a structure. Fiber can be bonded on the surface of
the monitored structure or embedded inside the structure [33]. In the process of piezo-
electric sensing, the piezoelectric transducer is placed on the surface of the structure
being monitored, and it is then subjected to an electrical stimulus which can cause it to
vibrate and create a mechanical wave. The wave can travel through the monitored struc-
ture, and when there are any defects such as cracks or voids, the wave can be reflected
back and detected by the piezoelectric transducer. By analyzing the detected wave, it
is possible to detect defects and determine its location [34]. For vibration-based struc-
tural health monitoring, the working principle is to monitor dynamic response of the
monitored structure and compare them to a baseline or reference state when there are
no defects [35]. Vibration-based structural health monitoring methods can generally be
classified into three categories based on the vibration parameters: modal analysis, time
domain analysis, and time-frequency domain approaches [36].

There has been a lot of research on applying different structural health monitoring tech-
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Structural health 

monitoring

Vibration-based 

SHM

Guided wave 

based SHM

Guided wave 

based SHM

Figure 2.6: Three types of structural health monitoring technologies

niques to various structures. Sanders combined the frequency-sensitive method and
internal-state-variable theory to develop a method for detecting and locating damages
in CFRP beams [37]. Grouve et al. developed a method based on natural frequency
change to detect delaminations in composite beam structures [38]. Ooijevaar et al. em-
ploy the modal strain energy damage index algorithm to determine the delamination in a
composite T-beam structure [36]. Masserey and Fromme employ the coupled Rayleigh-
like wave to detect defects remotely in stiffened plates specimen which is similar to the
structural component in the airplane [39]. Achenbach et al. investigated the interaction
between guided waves and surface cracks [40]. A crack detection method is developed
to detect fatigue cracks on the wing panel with the multisine ultrasonic waves. Guemes
et al. measured the strain distribution of CFRP structure with fiber optic sensors and
used principal component analysis to process the strain data for damage detection [30].
A hybrid structural health monitoring system was established by combining the fiber
optic sensor and piezoelectric transducer, and it was proven to succeed in detecting a
through-thickness hole with a 2mm diameter and a surface hole. Based on previous re-
search, a comparison between these different structural health monitoring techniques
are conducted, which can be seen in Table 2.1

2.4.3. STRUCTURAL HEALTH MONITORING ON ADDITIVELY MANUFACTURED

PARTS
While there are a lot of studies on applying structural health monitoring on compos-
ites, there are only a few studies on performing structural health monitoring on addi-
tively manufactured parts. It is very difficult to apply most of the current structural
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Table 2.1: Comparison of different structural health monitoring techniques

SHM techniques Pros Cons
Vibration-based
SHM

Provide information on the
dynamic behavior;

Be used for very large
structures;

Require a large number of
sensors;

Difficult to install in small
and complex components;

Guided wave based
SHM

High sensitivity and reso-
lution for detecting small
changes in the structure;

Be cost-effective;

Require a relatively large
number of sensors;

Limited spatial resolu-
tion;

Fiber optic sensor
based SHM

Easy to integrate (surface
bonding or embedding);

High spatial resolution
and accuracy;

Requires specialized equip-
ment and expertise

health monitoring techniques due to various reasons. The guided wave based struc-
tural health monitoring, for example, is often used on a thin plate, with relatively long
widths and/or lengths compared with the wavelength of the propagating wave [41]. The
vibration-based structural health monitoring technique requires a relatively large num-
ber of sensors distributed throughout the structure, and it may not be practical to install
and maintain these sensors in a small and complex part [38].

There are some studies on embedding fiber optic sensors within additively manufac-
tured parts for structural health monitoring. Most existing examples chose to embed
the sensor concurrently within the manufacturing process [42]–[44]. More precisely, the
AM process is typically interrupted, fiber is placed within the build plane, and subse-
quent layer-by-layer manufacturing is continued. However, this introduces an issue that
high temperature during the embedding process can induce coating degradation or even
thermal damage to the fiber. When embedding fiber within the Ti6Al4V part, the melt-
ing point of Ti6Al4V (around 1604 °C) is much larger than the maximum working tem-
perature of the fiber optic sensor, which risks permanently damaging the fiber [45]. The
general approach to solving this problem is to protect the fiber with metal jackets before
embedding; however, this makes the embedding process complex and carries the risk of
bonding defects between fiber and host. An example of the difficulty is highlighted by
the work of Havermann [45], which can be seen in figure 2.7. In the study, the building
process SLM is interrupted, a fiber optic sensor is inserted into the groove, and encapsu-
lation of the fiber is performed by continuing the SLM. Havermann found that bonding
imperfections remain between fibers and host material due to lack-of-fusion. Specifi-
cally looking at the fiber coating process, Li investigated the application of metal coat-
ing through electro-plating and magnetron sputtering. However, the metal coating adds
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Figure 2.7: The fiber embedding process which is concurrent with the additive manufacturing process from a
previous study [45]

more complexity and cost to the fabrication process [46]. A number of other coating and
embedding methodologies have been studied, including an electrodeless-electro nickel
plating of an optical fiber [42], vacuum brazing of nickel-coated fiber by Sandlin [43], and
ultrasonically welding metal coated FBG sensor into aluminum 6061 part by Schomer
[47]. In the end, however, the cost and complexity, combined with limited placement
freedom to a single-build plane, make the approach of embedding concurrently with
manufacturing, quite limiting for this research.

Although not technically embedding a fiber, Strantza [48] fabricated an embedded sen-
sor by integrating a capillary within a part using SLM, as can be seen in figure 2.9. Af-

Figure 2.8: (a) Overview of the fiber with metal coating; (a) cross-section of the coated fiber from [42]
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(a) (b)

Figure 2.9: (a) Schematic representation of an additively manufactured specimen with an integrated capillary,
which is also called vacuum sensor; (B) The four-point bending test setup to verify the effectiveness of the

vacuum sensor, which include the specimen, pressure sensor and check valve

ter fabrication, the capillary could be sealed, a vacuum drawn within the capillary, and
a pressure sensor attached, creating an embedded vacuum sensor as presented. The
working principle is that if a crack grows up to breach the integrated capillary, it will
result in a loss of vacuum, thus indicating the crack.

Although the integrated vacuum sensor concept is subject to limitations the crack needs
to be big enough to breach the capillary and the capillary needs to have close proxim-
ity to the hot spot, however, it can be further explored as an inspiring concept. One
possibility is to combine the printed capillary concept with traditionally employed fiber
optic sensors for structural health monitoring. To be more specific, functional parts are
printed with pre-defined capillaries in which fibers can be inserted and bonded within
the capillary using adhesive resin afterward. The embedding process is easier and doesn’t
require complex procedures, and provides the most freedom with respect to the path a
fiber can take and thus the largest design space for embedding a fiber. Therefore, the
approach will be taken in this thesis. However, due to the fact that the capillary size is
much larger than the diameter of the fiber, the fiber positions and orientations within
the capillary are unknown. That introduces the first sub-research question of this PHD
work:

‘How does the uncertainty of fiber locations and orientations within the capillary influ-
ence the measurement accuracy of the fiber optic sensor? ’

2.5. FIBER OPTIC SENSORS

2.5.1. INTRODUCTION TO THE FIBER OPTIC SENSOR
Fiber optic sensors represent a type of sensing technology that employs optical fibers
to detect changes in diverse physical properties, such as temperature [49], pressure[50],
strain[51], or chemical composition[52]. Fiber optic sensors typically consist of a central
core and a surronding cladding, with the cladding possessing a refractive index that is
lower than that of the core. The light is confined within the fiber core when injected into
the core of the fiber optic cable and then reflected off the interface between the core and
the cladding at an angle exceeding the critical angle. When any external stimulus such
as strain, temperature, or pressure is exercised on the fiber, the wavelength or intensity
from the end of the fiber changes. The change can be further analyzed to determine the
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level of the stimulus [53].

Fiber optic sensors can be classified based on different criteria. Based on the physical or
optical phenomenon they exploit, optical sensors can be categorized as intensity-based
sensors, wavelength-based sensors, polarization-based sensors, Raman scatter-based
sensors, Brillouin-based sensors, and interferometric sensors [54]. For the intensity-
based fiber optic sensor, light is launched into an optical cable at one end and moni-
tored. A photodetector detects the light at the output end and measures the light’s in-
tensity. The photodetector can produce an electrical signal that is proportional to the
intensity of the light. Temperature, strain, and pressure can cause changes in the inten-
sity of the light that is transmitted through the fiber, and therefore the electrical signal.
This signal can then be processed to obtain information about the temperature, strain
or pressure, etc [55]. For instance, changes in temperatures may have an impact on the
refractive index of an optical fiber in a temperature-sensitive intensity-based fiber optic
sensor. Consequently, this alteration in refractive index directly influences the amount
of light that is transmitted through the fiber. The temperature can be calculated by ob-
serving these variations in light intensity [56]. The working principle of Raman scatter-
based fiber optic sensors is based on the measurement of the Raman shift, which is a
measure of the change in wavelength of the scattered light that results from the interac-
tion of light with a material [57]. These variations in the Raman shift can be utilized to
learn more about the physical quantity being measured because they are proportional
to these physical parameters, such as temperature, pressure, chemical composition or
strain [58]. Stress or strain causes a fiber’s refractive index to change, and as a result, The
induced phases are different between various polarization directions. This is called the
photoelastic effect. The external parameters can be sensed by tracking the change in the
output polarization states. That is the working principle of polarization-based sensors
[59].

2.5.2. COMPARSION BETWEEN FIBER BRAGG GRATING SENSOR AND DISTRIBUTED

FIBER OPTIC SENSOR
Based on their configuration, which is how the optical fiber is arranged or configured
in the sensing system, fiber optic sensors can also be classified into fiber bragg grat-
ing sensors, distributed sensors, etc [60]. Fiber bragg grating sensors use a small sec-
tion of fiber optic cable that contains a grating structure known as a "Bragg grating.".
The grating can reflect light back toward the light source, and the changes between the
original light and reflected light can be analyzed to determine the magnitude of the ex-
ternal parameter being measured. Fiber bragg grating sensors are point sensors, which
indicate that they can only be used to measure parameters at a specific location [59].
Distributed fiber optic sensor can be used to measure the strain or temperature along
its entire length. Instruments such as an optical time-domain reflectometer (OTDR) or
optical frequency-domain reflectometer (OFDR) are used to accomplish this. It sends
brief light pulses into the fiber and detects the light that is backscattered to ascertain
changes in the fiber’s properties throughout its length [56]. Compared with distributed
fiber optic sensors, FBG has a faster response time, and this is because FBG sensors can
be made to react to changes in the physical parameters being measured very rapidly,
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with reaction times sometimes falling into the range of microseconds or even nanosec-
onds [33]. The distributed fiber optic sensor, on the other hand, operates at a lower
speed. This is because OFDR or OTDR used in distributed fiber optic sensors detects
changes in the backscattered light signal along the length of the fiber, which can be im-
pacted by many factors such as fiber attenuation, reflections, and backscatter [61]. In
addition to that, fiber Bragg grating sensors can offer higher sensitivity and accuracy in
some applications. However, there are also some advantages of distributed fiber optic
sensors over fiber Bragg grating (FBG) sensors. Distributed fiber optic sensors can of-
fer spatial resolutions as small as millimeters or even micrometers by utilizing optical
OTDR and OFDR methods, and that makes them ideal for monitoring massive struc-
tures like large aerospace structures, bridges, and tunnels because it can deliver mea-
surements with high spatial precision over long distances [62]. In addition, distributed
fiber optic sensors can provide measurements without the need for determining the lo-
cation of individual sensing points, and that is because distributed fiber optic sensors
can measure parameters along the whole length of the fiber, allowing for a distributed
measurement of the parameter [63]. In comparison, fiber bragg grating sensors require
the time-consuming and money-consuming installation of individual sensors at prede-
termined locations along the fiber. Multiple sensors might be needed in applications
where measurements are needed at several points, further adding to the installation’s
complexity and expense. After comparing the distributed fiber optic sensor and fiber
bragg grating sensors, the distributed fiber optic sensor is selected for this study because
it can be used to measure strain distribution along its full length.

2.5.3. DISTRIBUTED FIBER OPTIC SENSING
Distributed fiber optic sensing involves several common technologies: Brillouin Scatter-
ing, Rayleigh scattering and Raman Scattering. Rayleigh scattering [64] represents the
scattering of light as a result of variations in the refractive index of the fiber. By analyz-
ing the backscattered light, the strain or temperature variation can be acquired because
the strain or temperature variation can change the fiber’s refractive index. The spectral
response of Rayleigh scattering includes both the strain component and temperature
component, as can be seen in equation 2.1.

∆λ

λB
= KT∆T +Kϵ∆ϵ (2.1)

In the equation, ∆λ is the change of wavelength influenced by both the strain and tem-
perature, ∆T and ∆ϵ represent the change of temperature and strain. Kϵ and KT are the
intrinsic properties of the optical fiber, and they indicate the strain coefficient and a sum
of the thermos-optic coefficient and thermal expansion coefficient [65].

Brillouin scattering happens when light interacts with acoustic waves traveling along the
fiber [63]. The distributed fiber can measure the frequency shift of the scattered light in
order to determine the strain or temperature. Equation 2.2 represents the relationship
between frequency shift, strain, and temperature change [63].
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∆vB =CT∆T +Cϵ∆ϵ (2.2)

In the equation above, Cϵ and CT denote the strain and temperature coefficient respec-
tively. ∆vB represents the frequency change induced by the strain or temperature.

Raman scattering occurs when a pulsed light interacted with the vibrational modes of
molecules, and the frequency of light shifts [66]. Raman scattering used the Stokes-to-
anti-Stokes ratio to sense the distributed temperature, as shown in 2.3 [63].

I AS

IS
= (

λS

λAS
)4exp(−ħωm

kB T
) (2.3)

Where λAS and λS denote the wavelength of anti-stokes Raman peaks and stokes Raman
peaks respectively, I AS and IS represent the intensity of anti-stokes Raman peaks and
stokes Raman peaks respectively. kB ,ωm , and ħ denote the Boltzmann constant, the an-
gular frequency for a harmonic oscillator, and the reduced Planck constant respectively.

Both the Rayleigh scattering and Brillouin scattering technologies are often used for both
strain and temperature sensing, and therefore they are often utilized in structural health
monitoring. However, the Raman scattering is often applied for temperature sensing
[63].

2.6. STRUCTURAL HEALTH MONITORING BASED ON STRAIN DATA

MEASURED FROM FIBER OPTIC SENSOR

2.6.1. THE STRAIN THEORY
Mechanical strain refers to the deformation of a structure when subjected to an external
force or load. Normal strain and shear strain are two different forms of strain. Depend-
ing on the type and magnitude of the load, as well as the properties of the materials used
in the structure [67]. The deformation of an engineering structure often occurs in dif-
ferent phases. In engineering structures with sufficient ductility, there are typically three
major phases of deformation. The first phase is the elastic deformation phase, which
occurs when the structure’s deformation is reversible and the material returns to its orig-
inal shape when the external force is withdrawn. Elastic deformation is proportional to
the applied stress and is determined by the material’s elastic modulus. The subsequent
phase is plastic deformation, which occurs when the structure undergoes plastic defor-
mation because the applied stress surpasses the yield strength of the material [68]. If the
applied stress exceeds the ultimate strength of the material, the structure may fail, which
may take the form of fracture, buckling, or collapse.

There are different theories to define and explain the strain. The theory of infinitesimal
strain assumes that a structure’s deformation is substantially smaller than its body di-
mension. In other words, it presupposes that the structural deformation is small enough
to be deemed elastic and that the shape change is minimal. Typically, for modern engi-
neering structures, the structures are designed to work within their elastic range, mean-
ing that deformation is reversible and the material returns to its original shape when the
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external force is removed. Therefore, the theory of infinitesimal strain [69] is widely used
in many different engineering applications.

2.6.2. INFLUENCE OF DAMAGE ON THE STRAIN FIELD
Stress and strain are distributed throughout a structure when it is exposed to an exter-
nal load. However, if there is a change in geometry or material properties, such as a
crack, notch, or tiny hole, the stress, and strain may become more concentrated, result-
ing in increased levels of stress and strain in those areas [68]. That is called the strain
concentration. Due to the existence of the constitutive law correlating stress and strain,
the strain concentration can be considered equivalent to the stress concentration. The
stress concentration can be denoted by the stress concentration factor Kt . It is a di-
mensionless factor that relates the maximum stress at a stress concentration point to
the nominal stress at the same location in the absence of the stress concentration [70].
Therefore, a greater value of Kt implies a greater stress concentration. The importance
of the stress concentration factor (Kt ) depends on the material and loading conditions.
Some materials are more susceptible than others to stress concentration. For instance,
brittle materials such as ceramics and glass are more prone to stress concentrations be-
cause they are less capable of deforming and absorbing stresses than ductile materials
such as aluminum alloys. Moreover, the significance of stress concentration depends
on the nature of the load [71]. Under fatigue loads, stress concentration can act as the
stress raiser, promoting the initiation and propagation of cracks, which can lead to fa-
tigue failure. Therefore, one should consider the influence of stress concentration when
designing a structure for fatigue loading.

According to Saint-Venant’s principle [68], as the distance away from a localized stress
concentration increases, the stress distribution also becomes less dependent on the stress
concentration. In other words, as the distance from the stress concentration increases,
the stress distribution gets more uniform and finally approaches the stress distribution
that would occur if the stress concentration did not exist. Therefore, the magnitude of
the stress concentration drops as the distance from the stress concentration increases.
This principle applies to linear elastic materials and assumes homogeneous material be-
havior and that the stresses remain within the elastic limit. Figure 2.10 shows an example
[72] of how the stress distribution becomes less impacted by the stress concentration as
the distance from the stress concentration grows.

2.6.3. STATE-OF-ART OF STRAIN-BASED CRACK DETECTION METHOD

BASELINE STRAIN REFERENCE METHOD FOR CRACK DETECTION

The strain-based damage detection method relies on the redistribution of strain caused
by damage. For example, the existence of cracks can cause strain distortions due to
stress/strain concentration as mentioned before. Some researchers use the baseline
strain reference method to detect cracks. Martin [73] used distributed fiber optic sensors
to measure strain changes in a concrete beam subjected to different loading conditions.
They compared the strain values measured during normal operation of the beam with
measured strain distribution corresponding to different crack lengths. The cracks can be
identified when clear strain peaks were observed. Menendez and Guemes [74] bonded
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Figure 2.10: (a) Principal stress plot for the three load cases; (b) Stress along the upper edge as a function of
the distance from the loaded boundary. The distance is normalized by the width of the plate. [72]

the fiber optic sensors on the surface of composites and observed the strain disturba-
tions around the gratings as the composite skin and stiffeners debonded. Feng et al.
used the strain discontinuities along the strain distribution from theoretical analysis to
determine the location of cracks. In the study, the distortion effect due to the strain aver-
aging of the BOTDR-Distributed fiber optic sensors is also studied [75]. Even though the
damaged detection method based on comparing the strain when the monitored struc-
ture is at different states is proven effective in the studies mentioned above, measure-
ment noise of the strain can affect the accuracy and reliability of the method. To be
more specific, measurement noise in the fiber optic sensor can mask the strain distribu-
tion changes associated with damage or cracks in the structure. As a result, the damage
distribution may not be easily distinguishable, leading to false negatives in the damage
detection process. Xu et al. employed the stationary wavelet transform to first denoise
the strain signal measured by fiber optic sensors, and extract damage-related features,
and the method is verified with a 15m-long beam structure with simulated damages [76].

In this study, the fiber optic sensor is embedded in a capillary inside the additively manu-
factured part, the fiber locations and orientations are unknown, and therefore the strain
distribution measured by the fiber optic sensor has as a complex pattern. It may be very
difficult to distinguish the strain distributions measured at different states of the moni-
tored structure. Instead of setting the measured strain distribution when the monitored
structure is in a healthy state as the baseline strain distribution, the strain distributions
along the capillary boundaries are set as baselines. The new baselines make up a strain
window, and the measured strain distributions will be compared against the new base-
lines. Whenever the measured strain exceeds the strain window, the damage can be de-
tected. Here the second sub-research question of the PHD work is introduced:

‘How effective is the strain-exceeding based method for detecting cracks in additively man-
ufactured parts with embedded fiber optic sensors? ’
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MACHINE LEARNING BASED CRACK DETECTION METHOD

There are some limitations of the strain comparison based damage detection method.
The first limitation is the inability to detect early-stage damage. Sierra[77] used the
principal component analysis on strain distribution measured by fiber optic sensors to
perform damage detection and localization on wind turbines. In addition, the second
limitation is that the method only uses very limited information such as the damaged-
induced strain peaks for damage detection. This requires the crack to be big enough for
strain-induced disturbances to be visible with human eyes. Some researchers used more
advanced methods such as machine learning based methods for damage detection [78],
[79]. The machine learning approach can be used to learn patterns from the strain dis-
tribution measured by distributed fiber optic sensors. Song employs the artificial neural
network to extract features from the full-scale strain distributed measured by Brillouin
optical time-domain analysis (BOTDA)-based distributed fiber optic sensor [80]. Kat-
sikeros and Labeas used simulated strain data to train an artificial neural network (ANN)
model and the capabilities and limitations of this technique were investigated by apply-
ing it on an aircraft cracked lap-joint structure [81]. However, in the previous studies
using machine learning for damage detection, the fiber optics sensors were bonded to
the structure surface, and the location and orientation of the fiber are known. In this
study, due to the fact that the locations and orientations of the embedded fiber are un-
known, the fiber can be at any locations within the capillary and any orientations can
also be possible as long as it is within the fiber bending limit. That makes it very hard to
get enough strain distribution data so that all locations and orientations of the embed-
ded fibers are considered for training a machine learning model. Therefore, the third
sub-research question is introduced:

‘How can we use the deep neural network based method to detect any crack within the
monitored structure using the measured strain distribution with the embedded fiber optic
sensors? ’

MACHINE LEARNING AND DEEP NEURAL NETWORKS FOUNDATION

Machine learning, as a part of artificial intelligence (AI), is focused on the development
of models and algorithms that enable computers to acquire information autonomously
and make predictions or choices. The process encompasses the acquisition of informa-
tion from data, the detection of regularities, and the formulation of informed judgments
or predictions. The main idea underlying machine learning is the development of math-
ematical models that can learn from and make decisions based on data. Instead of being
explicitly encoded with different rules and instructions, machine learning algorithms are
intended to learn and develop automatically from experience or examples.

Machine learning can be used for both classification and regression. In regression, the
prediction result is a continuous number, and for classification, the result is discrete.
In this study, the machine learning model is used for classification because the predic-
tion result is binary (There is a crack in the monitored structure/There is no crack in the
monitored structure).

There are traditional machine learning and deep learning algorithms. the traditional
machine learning algorithm requires substantial domain knowledge to extract damage-
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Figure 2.11: The forward propagation of the DNN model, which can map the input strain distributions to the
target probability

sensitive features from the raw data. Deep learning approaches such as deep neural
networks can use the raw data as the input, and automatically extract damage-sensitive
features during the training process. Due to the advantage of the deep neural networks
(DNN) model, it will be used in this study for classification.

Deep neural networks consist of three primary constituents: the input layer, hidden lay-
ers, and output layer. The input layer is responsible for receiving raw data, which is then
subjected to transformation and processing via one or more hidden levels. The output
layer produces a prediction or classification outcome by using the input data. As shown
in figure 2.11, the proposed DNN includes one input layer, two hidden layers, and one
output layer. The input layer, first hidden layer, and second hidden layer have L, m1, and
m2 neurons respectively.

The DNN generates its output from input data through forward propagation. Calculat-
ing the weighted sum and using an activation function are the two main components of
forward propagation. Specifically, for each layer, the first step is to compute the weighted
sum of the input values and the weights associated with each neuron in the network. The
process entails the multiplication of the input vector with its matching weight vector w ,
followed by the addition of the bias vector b. The weighted sum is then fed into an acti-
vation function, introducing nonlinearity into the neuron’s output. The relu function is
used as the activation for the input layer and hidden layers. The sigmoid function g (z)
shown in equation 2.4 is chosen as the activation in output layer. The sigmoid function
can be used as an activation function because it is differentiable. Therefore in the back-
propagation algorithm, the weights can be updated easily in a neural network during
training. Additionally, the output of the sigmoid function can be interpreted as a proba-
bility, which is useful in binary classification.

s(x) = 1

1+e−x (2.4)
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During forward propagation, each neuron in the network receives input from the pre-
ceding layer and generates output, which is then transmitted to the next layer. This pro-
cedure is repeated until the final output, which represents the predicted probability that
there is a crack in the monitored structure for the given strain distribution, is produced.

In order to let the DNN learn an accurate mapping or function from the input strain
data to a probability, it is necessary to train the neural network. Through training, the
weights and biases are updated so the DNN can produce accurate outputs for inputs it
has not seen before. In this study, The free weights parameters w and bias parameters b
are updated based on the data set (x1, y1), (x2, y2), (x3, y3), ..., (xm , ym) by minimizing the
cost function L(ŷ , y).

L(ŷ , y) =− 1

m
(

m∑
i=1

(−yi log(ŷi )− (1− yi ) log(1− ŷi ))+ λ

2m

L−1∑
l=1

sl∑
i=1

sl+l∑
j=1

(w l
j i )2 (2.5)

xi is the i th strain sample, which is the extracted strain value sequence, yi is the true
target value 1 or 0 for the i th strain sample and both of them are prepared in section
5.2.1. ŷi is the output the of DNN model, which is the predicted target value for the
i th strain sample. L is the total number of layers, sl is the total number of neurons in
the l layer, and w is the weight coefficient. The optimal value of the weight w and bias
b can be estimated by minimizing the cost function L(ŷ , y). The optimization process is
implemented by the mini-batch gradient descent algorithm when taking the dataset size
into consideration.

2.7. SPECIMENS GEOMETRY AND TEST
In order to facilitate a comparison of the performance with the vacuum sensor method-
ology proposed by this study with Strantza’s study, the same beam structure and the four-
point bending test for initiating the crack are adopted. The specimen geometry and test
setup for Strantza’s study can be seen in figure 2.9. The specimen geometry for this study
can be seen in figure 2.12, where b, h, L and d denote the specimen width, height, length,
and diameter of the capillary respectively. The spacing a of the load introduction points
results in a constant internal bending moment, M = F a, along the central part of the
beam denoted by w . In this study, L = 110mm, b = 12 mm, h = 20 mm. The specimen
geometry and size to be used for analytical, numerical, and experimental analysis in this
study.
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3.1. INTRODUCTION

W HEN a fiber is embedded into a specimen using capillaries, due to the fact that the
diameter of a capillary is normally larger than that of a fiber for ease of embedding,

the fiber could not be placed at an exact position. Ideally, the fiber is placed along the
capillary center and the strain is measured along the axis of the fiber at the capillary cen-
ter, however, it could be anywhere within the capillary in reality, as shown in figure 3.1.
The fiber positions and orientations uncertainty could also lead to strain measurement
uncertainty. The measured strain distributions will be different from the strain distribu-
tions along the capillary center in an ideal situation. The differences bring up an issue of
strain measurement accuracy. This chapter aims to study the positions and orientations
variations of the fiber embedded into specimens using capillaries, how fiber positions
and orientations variations influence strain measurement accuracy for specimens, and
the range of the measured strain distribution.

As this study focuses on fiber position and orientation variations within capillaries, the
geometries of used specimens are simplified, and four-point tests are performed, as
shown in figure 3.1. There are two reasons for adopting the specimen geometry and
four-point bending tests. The first one is that the specimen geometry is the same as that
in a previous study [1] on crack detection with vacuum sensors in SLM specimens, so
the performance of the proposed crack detection approach can be easily compared with
the previous study. Secondly, the four-point bending can create a region with a constant
bending moment between the two loading pins. In the region, the influence of fiber lo-
cations and orientations can be highlighted and the influence of bending moment does
not need to be considered. Traditionally machined specimens will be used for testing, as
potential defects in additively manufactured specimens will affect strain measurement
accuracy otherwise.

More specifically, an analytical model based on Euler-Bernoulli beam theory was devel-
oped to predict strain distribution along the embedded fiber, which is assumed to be
along the capillary center shown as the ideal position of fiber in figure 3.1. The Euler-
Bernoulli beam theory assumes the beam under bending is sufficiently slender (i.e.: has
a slenderness ratio (length to thickness) greater than 10), however, the specimen in this
study has a slenderness ratio slightly less than 10. Therefore, a finite element model was
created to predict the strain distribution at the same location as in the analytical model.
In order to verify the predictive models, static four-point bending tests are performed
on the three Aluminum 6082 parts with embedded fiber optic sensors under 8kN. Af-
ter the four-point bending test, the specimen was cut to observe the real location of an
embedded fiber in a capillary, and the predicted strain distribution along the embedded
fiber was updated with the real location of the embedded fiber. For verifying the predic-
tive model, the measured strain distribution from the embedded fiber optic sensor was
compared with the predicted strain distribution at the real fiber location. An overview of
the process can be seen in figure 3.2.
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3.2. STRAIN DISTRIBUTION PREDICTION WITH A SIMPLIFIED AN-
ALYTICAL MODEL

In order to investigate the influence of fiber position and orientation on the expected
strain fiber optic sensors would observe, a simple analytical model was made. The model
focuses on the central portion of the specimen (denoted by width w in ) where the bend-
ing moment is constant. Along this section, the normal stress due to bending σz can be
described using Euler-Bernoulli beam theory which can be seen in [2]:

σz = M y

I
(3.1)

Where M is the bending moment and is given by M = F a, y is the distance from the
neutral axis, and Ixx is the moment of inertia around the neutral axis. As this section
of the specimen is under pure bending loading, there are no other stress components,
allowing the normal strain εz , to be calculated simply by dividing the stress by Young’s
Modulus E .

εx = σx

E
= M y

E I
(3.2)

The Euler-Bernoulli bending theory in the form given in equation 3.1 is only applicable
for symmetric beams that are sufficiently slender (i.e.: have a slenderness ratio greater
than 10). For the reference specimen geometry, the symmetric section requirement is
met; however, depending on the precise dimensions of the beam, the slenderness ratio
may not be met. This will be revisited later when discussing the numerical portion of the
study.

In order to apply an equation 3.2 to a fiber of arbitrary position and orientation within
a capillary, a correction for orientation must be applied. Considering a rotated coordi-
nate frame, y ′ − x ′(as illustrated in figure 3.3), the normal stresses along the y ′ and x ′
directions can be given by the plane-stress transformation equation:

σx′ = σx +σy

2
+ σx −σy

2
cos(2θ)+τx y si n(2θ) (3.3)

σy ′ = σx +σy

2
− σx −σy

2
cos(2θ)−τx y si n(2θ) (3.4)

For the four-point bending specimen, the normal stress in the y direction σy was zero.
The loading is directly applied on the substrate structure, which is the specimen. The
substrate structure and adhesive resins have different stiffness. Therefore, the shear
stress exists in the adhesive resins within the capillary. Thus, the stress transformation
of 3.3 and 3.4 can be simplified to the following equation:

σx′ = σx

2
(1+ cos(2θ)) = σx

1+ t an(θ)2 +τy x si n(2θ) (3.5)
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σy ′ = σx

2
(1− cos(2θ)) = σx t an(θ)2

1+ t an(θ)2 +τy x si n(2θ) (3.6)

Using Hooke’s law and equations above, the normal strain in the x ′ direction can be ob-
tained by:

ϵx′ = σx′ −υσy ′

E
(3.7)

σx′ −υσy ′

E
= σx (1−υt an(θ)2)

E(1+ t an(θ)2)
+ τy x si n(2θ)(1−υ)

E
(3.8)

ϵx′ = σx (1−υt an(θ)2)

E(1+ t an(θ)2)
= M y(1−υt an(θ)2)

E I (1+ t an(θ)2)
+ τy x si n(2θ)(1−υ)

E
(3.9)

Using this 3.9, the normal strain at an arbitrary position y and arbitrary orientation θ can
be calculated for a symmetric beam subjected to pure bending.

Since the capillary size is much larger than that of the fiber, the embedded fiber can be
at any location within the capillary and any orientations can also be possible as long as it
is within the fiber bending limit (bending limit of the fiber used in this study is 6mm [3]).
In addition, the curved fiber will take on an arc-like shape, depending on the degree of
bending [4]. Figure 5.4 gives an example of the arc-like shape of a bending fiber used in
this study. Therefore, the shape of the embedded fiber with curvature radius R within the
capillary can be seen in figure 3.5. To investigate the influence of fiber position and ori-
entation within the capillary, the fiber will be modeled in an arc-like shape with different
curvature radius. The variable y in this figure represents the distance from the Neutral
Axis of the beam to the nominal position of the fiber optic sensor (at the centerline of the
capillary).
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Figure 3.5: Arc-like shape of a curved fiber within the capillary
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Table 3.1: Mechanical properties of the specimen and adhesive resin

Material Elastic modulus(GPa) Yield strength(MPa) Poisson’s ratio
Aluminum 6082-T651 70 270 0.33
AW106/HV953U epoxy adhesives 1.9 [5] - -

Using this model of the fiber location, y-position (yFOS ) and tangent of fiber orientation
(θFOS ) at any position x along the capillary can be calculated by

y =
√

R2 − (x −
p

2R −1)2 −R +6 (3.10)

t anθ(x) =
p

2R −1−x√
R2 − (x −p

2R −1)2
(3.11)

si n(2θ(x)) = 2t an(θ(x))

1+ t an2(θ(x))
(3.12)

Using equations 3.9–3.12, the expected strain can be calculated along the axis of the em-
bedded fiber with different shapes. When using equation 3.9, one must be diligent in
defining a suitable flexural rigidity term, E Ixx . As the capillary will be filled with adhe-
sive in practice, the cross-section of the beam will be a bi-material system, the location
of the neutral axis requires a stiffness-weighted centroidal position to be determined. As
the aluminum alloy is significantly stiffer than the adhesive in the capillary, the contri-
bution of the adhesive to the flexural rigidity can be ignored and it can be calculated for
the rectangular beam section with a hole in the location of the capillary.

3.3. STRAIN DISTRIBUTION PREDICTION WITH A FINITE ELE-
MENT MODEL(FEM)

The specimens tested in this study have a slenderness ratio of less than 10 (defined by
the gauge section of the beam), which violates the assumption in Euler–Bernoulli bend-
ing theory used in the analytical prediction model. Therefore, a numerical model was
established using ABAQUS to investigate how much this violation may influence strain
prediction accuracy.

3.3.1. MATERIAL MODEL
The established model includes the specimens made of Aluminium 6082-T651 alloy and
adhesive resins within its capillary. The material model is linearly elastic, and the mate-
rial properties can be seen in table 3.1. There are support pins defined with discrete rigid
type, which is assembled with the part to simulate four-point bending.
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Figure 3.6: Illustration of mesh density around the interface between the adhesive resin filled capillary and
bulk beam material in the FEM model

3.3.2. FINITE ELEMENT MODEL
In order to model the bonding of adhesive resin within the capillary of the specimen, a
single part is divided into two pieces each of which is assigned a separate section and
material mentioned above. The two pieces represent the Aluminium specimen with a
capillary and the adhesive resin separately. Figure 3.6 presents mesh both inside and
outside a capillary. The mesh was designed with an increasing level of refinement from
the center of the capillary to the outer aluminium alloy. It can be seen that there is finer
mesh around the adhesive resin and Aluminium 6082-T651 alloy interface, where strain
concentration may exist due to material discontinuity. The element type is C3D8R. The
smallest element is near the interface, which has a size of 0.15mm. The biggest element
size is at the region far from the interface, which has a size of 0.5mm. The total number
of elements in the model is 78624. The element size near the interface is determined
with a convergence study and additional mesh refinement hardly affects the simulation
results.

3.3.3. LOADING AND BOUNDARY CONDITIONS
The concentrated force was exercised on the upper pin supports. For boundary condi-
tions, the lower two supports were constrained for all degrees of freedom. The upper pin
supports were under displacement/rotation constraint to limit their lateral movement
along X and Z directions. In addition, the movement of the central plan of the speci-
men along the X direction was confined. The boundary conditions can be seen in 3.7.
Surface-to-surface contact in the ABAQUS is exercised between support pins and the
model.
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Figure 3.7: Boundary conditions for the four-point bending model

Table 3.2: Number and dimensions of all the specimens

Specimen ID Specimen material Capillary diameter d [mm] Specimen length L [mm] Specimen width b [mm] Specimen hight h [mm]
01 Aluminum 6082-T651 2 110 12 20
02 Aluminum 6082-T651 2 110 12 20
03 Aluminum 6082-T651 4 110 12 20
04 Aluminum 6082-T651 4 110 12 20
05 Aluminum 6082-T651 6 110 12 20
06 Aluminum 6082-T651 6 110 12 20

3.4. VERIFICATION OF THE PREDICTIVE MODELS
In order to verify the predictive model, fiber optic sensors were embedded within spec-
imens containing capillaries to measure strain and the specimens are subjected to four-
point bending loading. Strain measurements from the fiber optic sensors were captured
during loading and post-mortem sectioning of the specimens was performed in order
to accurately characterize the location of the fiber optic sensor within the capillary at
various points along the beam length. Details of the manufacturing, testing, and post-
mortem sectioning of the specimens are described in the remainder of this section.

3.4.1. SPECIMEN FABRICATION
The Aluminium 6082-T651 specimens were fabricated using traditional subtractive ma-
chining processes. The use of subtractive manufacturing processes over additive manu-
facturing processes was chosen to avoid potential variations in the capillary and overall
specimen geometry that are known to occur in metal additive manufacturing processes.
Examples of each specimen type are provided in figure 3.8, details of all specimen con-
figurations are provided in table 3.2, and the meaning of different symbols can be seen
in figure 3.1.
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Figure 3.8: Aluminium 6082-T651 specimens with different sizes of capillaries

Table 3.3: Different test cases for the static four-point bending test.

Test case no. Specimen ID Specimen capillary diameter(mm)
1 01 2
2 02 2
3 03 4
4 04 4
5 05 6
6 06 6

After specimen fabrication, the following procedures were conducted to embed a fiber
within the capillary of each specimen. First, a commercially-available optical fiber (LBL-
1550-125, FBGS, Belgium) was placed within the specimen capillary. Second, a two-
component epoxy adhesive was prepared by mixing resin of AW 106 and hardener of HV
953U by weight ratio of 5:4. Third, the fiber optic sensor was inserted into the capillary.
This insertion process will be elaborated on later in this section. Finally, the prepared
adhesive was injected into the capillaries slowly using a syringe. All the specimens with
embedded fiber were placed into an oven for resin curing, and for Araldite 2011 this pro-
cess normally takes 16 hours under the temperature of 40◦C .

3.4.2. FOUR-POINT BENDING TEST
In order to evaluate the strain measurement accuracy of the embedded fiber optic sen-
sors, all specimens were subjected to static loading in a four-point bending setup, which
can be seen from figure 3.9. The machine used is Zwick-10kN tensile/compression ma-
chine. A static loading level of 8kN was exercised on the Aluminium 6082 specimen
quasi-statically. Different test cases can be seen in the table 3.3. During the four-point
bending test, the fiber optic sensors are interrogated by the LUNA ODISI-B system to
measure the strain distribution which will be compared with both analytical and nu-
merical results.

3.4.3. SPECIMEN SECTIONING
The fiber embedding process used in this study could not ensure an accurate fiber lo-
cation within the capillary. As a result, after testing of the specimens was completed,
they were sectioned at various positions along the length of the specimen in order to
assess the precise location of the fiber optic sensor within the capillary. Sections of the
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Figure 3.9: Experimental setup of a four-point bending test on Aluminium 6082-T651 specimens

specimens were observed with the laser microscope, which contained built-in software
that could be used to precisely measure the location of the fiber optic sensor within the
capillary.

3.5. RESULTS

3.5.1. ANALYTICAL MODEL RESULTS
Figure 3.10 and figure 3.11present strain distributions along a straight fiber within a cap-
illary when capillary diameters, fiber positions, and orientations are different, which are
predicted with the analytical model described in section 3.2. The predicted strain distri-
butions are negative due to the fact that the strain is the compressive strain. Figure 3.10
illustrates the strain distribution prediction along a straight fiber at the capillary cen-
ter when the capillary diameter varies from 2mm to 6mm. Figure 3.11 shows the strain
along the capillary upper and lower boundary which make up a strain window when
the capillary diameters are 2mm and 4mm. The size of the strain window depends on
the capillary diameters, and the strain window size increases as the capillary diameter
increases from 2mm to 4mm.

3.5.2. NUMERICAL RESULTS
Figure 3.12 presents the prediction of strain distribution over the specimen under four-
point bending from the numerical model and figure 3.13 represents strain distributions
along the capillary centers when capillary diameters are 2mm, 4mm, and 6mm respec-
tively.

3.5.3. CROSS SECTIONS OF THE CAPILLARY WITH EMBEDDED FIBER
Cross section of a 2mm-diameter capillary with straight fibers in the Aluminium 6082
specimen can be observed using Keyence Laser Scanning Confocal Microscope (DASML,
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Figure 3.10: (a) Schematic representation of an embedded fiber which is straight and at the capillary center
(b) Analytically predicted strain distribution along the capillary center when the capillary diameters are 2mm,

4mm, and 6mm respectively for Aluminium6082 under a loading of 8kN
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Figure 3.11: (a) Capillary upper boundary, capillary center, and capillary lower boundary in the specimen
under four-point bending; Analytically predicted strain distribution, which is along the straight fiber at the

capillary center, upper boundary, and lower boundary when capillary diameters are (b) 2 mm and (c) 4mm in
Aluminium 6082 specimens under a loading of 8KN.
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Figure 3.12: Numerically predicted strain distribution over the specimen under four-point bending
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Figure 3.14: (a) Cross section of specimen 01 with the embedded fiber; (b) Magnification of the region with
embedded fiber
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Figure 3.15: Strain distribution measured by fiber optic sensors embedded within Specimen 01, 03, and 05
with capillaries of diameters 2mm, 4mm, and 6mm respectively, under the 8KN loading under four-point

bending static test

Tudelft, Netherlands) , which is presented in figure 3.14. The fiber was placed along the
capillary center before injecting adhesives as described in 3.4.1, and however, it can be
seen that the embedded fiber deviates from center of the capillary after the fiber embed-
ding. The deviation of the fiber from the capillary center can be used to predict the strain
at the fiber’s real location.

3.5.4. FOUR-POINT BENDING TEST RESULTS OF AL6082-T651
Figure 3.15 presents the strain distribution measured by fiber optic sensors embedded
within Specimen 01, 03, and 05 with capillaries of diameters 2mm, 4mm, and 6mm re-
spectively, under the 8kN loading under four-point bending static test. It can be seen the
red region has a constant bending moment, which is of interest because the influence
of fiber locations and orientations can be highlighted and the influence of bending mo-
ment does not need to be considered in this region. The strain peaks in the green region
are induced by the concentrated load from the loading pins in the four-point bending
test.
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3.6. DISCUSSION

3.6.1. COMPARISON OF THE ANALYTICALLY PREDICTED STRAIN, NUMERI-
CALLY PREDICTED STRAIN AND MEASURED STRAIN

Figure 3.16 show the comparison of the analytically predicted and numerically predicted
strain distribution along the capillary center in the region with a constant bending mo-
ment for specimens under the loading of 8kN. Figure 3.17 compares strain measurement
along with fiber embedded in the region marked red, and analytical strain predictions at
the real fiber location when capillary diameters of Al6082 specimens are 2mm, 4mm,
and 6mm. It can be seen that the updated strain prediction with the real location of the
fiber is very close to the measured strain. The difference between them is similar to the
intrinsic measurement noise. The measurement noise is determined by analyzing the
measured strain distribution when there is not any load on the specimen, and the mea-
surement noise is between ±10µϵ in the ambient environment of DASML at Tudelft. In
the analytical model, the capillary with embedded fiber is directly modeled as an empty
hole with zero stiffness, and the capillary in the numerical model is modeled as a capil-
lary with adhesive resins. Due to the stiffness of the adhesive resins being much smaller
than the substrate alloy and close to 0, therefore two models are very similar in terms
of modeling the capillary. In addition to that the three basic assumptions of the euler-
bernoulli beam theory are met. All of that can explain the small differences between the
results from the analytical model and the numerical model.

Comparison of the analytical, numerical, and test results show that violation of the an-
alytical model assumption doesn’t have an influence on the prediction accuracy of the
analytical model. Therefore its results will be further utilized to investigate the influence
of fiber orientation and positions on strain distributions. Since it is much easier to plot
the axial strain along fiber length when the fiber is wavy with the analytical model com-
pared with the numerical model, the analytical model is necessary for investigating the
influence of fiber orientations on measured strain distributions. In addition, the results
of the numerical model will also be used in establishing the analytical model as shown
in the subsequent section.

3.6.2. INFLUENCE OF FIBER POSITION AND ORIENTATION VARIATIONS ON

STRAIN MEASURE ACCURACY
When an optical fiber is embedded within a specimen using capillaries, fiber positions
with respect to the specimen centroid and fiber orientations may vary along the fiber.
It is interesting to know whether both factors influence strain measurement, and how
much their influences are. Analytical strain distribution along the fiber can be predicted
using equation 3.9. The right side of the equation indicates the influence of fiber orien-
tation on strain measurement. When an optical fiber is embedded in curved fiber with
different arc-like shapes, the strain distributions as the function of fiber positions alone,
and both fiber positions and orientations are compared in 3.18. It can be seen when the
fiber is curved to its limit of 6mm radius, the fiber orientations have an impact on the
strain distribution. The maximum difference of strain distribution when considering the
fiber position relative neutral axis y and fiber orientation θ due to fiber bending is 90µϵ
under 4KN and 140µϵ under 6KN. That is much greater than the measurement noise of
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Figure 3.16: Comparison of the analytically predicted and numerically predicted strain distribution along the
capillary center in the region with a constant bending moment under the loading of 8KN
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Figure 3.17: (a) Part of the capillary where bending moment is constant and is marked in red; Comparison of
strain measurement along with fiber embedded in the region marked red, and analytical strain predictions at

the real fiber location when capillary diameters of Al6082 specimens are (b) 2mm, (c) 4mm and (d) 6mm
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Figure 3.18: Comparison of analytically predicted strain along curved fiber when only fiber orientation θ and
fiber position relative to neutral axis y are considered and θ alone are considered for curved fibers with a
curvature radius of (a) 6mm, (b) 30mm, and (c) 40mm respectively as shown in the left

around 20µϵ. However, it is very rare to achieve this kind of waviness when embedding
a fiber. As the fiber gets less wavy, the difference decreases significantly. For example,
when the fiber is in the arc-like shape with 30mm, the maximum difference drops to
17µϵ, which is very close to the measurement noise. Therefore, when embedding a fiber,
in general, the fiber position relative to the neutral axis y has a much larger influence
than the fiber orientation. The fiber orientation’s influence will not be considered when
using the measured strain for crack detection.

3.6.3. RELATIVE MEASUREMENT ERROR ASSOCIATED WITH CAPILLARY
When assuming the nominal strain distribution is the strain along the capillary center,
variations of fiber positions within the capillary lead to deviations of the measured strain
from the nominal strain. The deviation can be quantified by relative measurement errors
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Figure 3.19: Measurement error of fibers embedded in capillaries of different diameters

(RME) which can is defined by the following equation.

RME = |ϵupper −ϵl ower |
2ϵcenter

, (3.13)

Where the ϵupper , ϵlower , and ϵcenter represent the strain value along the capillary up-
per boundary, lower boundary, and center. The strain measurements of a straight fiber
deviate most from nominal strain when the fibers are at capillary boundaries, and cor-
responding RME are the highest. Therefore, the capillary diameter has an influence on
the relative measurement error of the embedded fiber. Figure 3.19 represents the rel-
ative measurement error for specimen capillaries, and it can be seen that as the capil-
lary diameter increases, the fiber measurement error increases. That indicates that fiber
measurement accuracy decreases as capillary diameter grows. Theoretically, the cap-
illary diameter should be as small as possible in order to reduce relative measurement
error. However, reducing capillary diameter also increases the difficulty of embedding
fiber into the capillary because the adhesive resin should be injected into the capillary.
Therefore, one should be careful when choosing the capillary size and balance the ease
of embedding with measurement accuracy. In this study, the specimen with a capillary
of 2mm will be used for experiments in the next chapter.

3.7. CONCLUSION
When an optical fiber is embedded within a specimen using capillaries, both fiber po-
sitions and orientations may vary along the fiber. An analytical model is established to
investigate the influence of fiber positions and variation change on strain distribution.
The model is also verified by the four-point bending static test. Based on the results of
the analytical model and static four-point bending test, the following conclusions can be
made.
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1. When an optical fiber is embedded within a specimen using capillaries, both fiber
positions and orientations may vary along the fiber. Variation of fiber orientations
has negligible influence on strain measurement compared with fiber position vari-
ations. Therefore, fiber position uncertainty is the main factor influencing strain
measurement accuracy.

2. The positional uncertainties of the embedded fiber within capillaries can cause
strain measurement uncertainties, and the measured strain distributions lie within
the strain windows defined by the strain distribution along the capillary boundary
when there is no crack in the specimen. Therefore it is possible to perform crack
detection using the strain window.
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Figure 4.1: (a) The constant bending moment region of the specimen; (b) The strain window consists of strain
distribution prediction along capillary boundaries under 8KN, with the measured strain lying within the

strain window

4.1. INTRODUCTION

T HE previous chapter details the fiber embedding process and studies the positional
accuracy of embedded fiber optic sensors and the influence on strain measurement

accuracies. When a fiber optic sensor embedded within a specimen capillary is under
constant loading, there is uncertainty of fiber positions within the capillary due to the
fact that the diameter of the capillary (2mm) is much larger than that of an optical fiber
(195µm [1]). A strain window can be defined with the strain distribution along the capil-
lary boundary, as shown in figure 4.1. When there is no crack in the specimen as shown in
the figure, the strain distribution measured with the fiber optic sensor could lie anywhere
within the strain window, due to the uncertainty of fiber position within the capillary.
The strain distribution uncertainty leads to a challenge in crack detection with the mea-
sured strain distribution under constant loading. However, when there is a crack initiat-
ing and propagating within the specimen, measured strain distribution could grow and
possibly exceed the strain window. As a result, the crack could be detected by monitor-
ing any strain exceedance. The crack detection method is named the strain exceedance
method in this study. This chapter aims to answer the following question: how effec-
tive is the strain exceedance method for detecting cracks in the selectively laser melted
(SLM) specimens? In order to answer the question, this chapter has been organized in
the following way. First, the analytical model established in section 3.2 was modified to
predict the strain distributions along the capillary edges using the Euler-Bernoulli beam
theory. Second, four-point bending fatigue tests were performed on the SLM specimens,
with embedded fiber optic sensors measuring in situ strain. The measured strain was
compared with the strain window to determine if there was any crack in the specimen.
Length of the crack when there is any strain exceedance can be determined with a cam-
era.

4.2. STRUCTURAL CASE STUDY: FOUR-POINT BENDING FATIGUE

TEST
When using the strain exceedance method to perform crack detection, even though the
strain distribution may change due to crack propagation, there is a risk that the mea-
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Figure 4.2: (a) Schematic test setup of a four-point bending fatigue test on specimens; (b) Real test setup of a
four-point bending fatigue test on specimens

sured strain distribution fails to exceed the pre-set strain window before the final failure
of the specimens. In order to evaluate the effectiveness of the strain exceedance crite-
ria for crack detection, four-point bending fatigue tests were performed on the speci-
mens containing embedded fiber optic sensors. The initiation and growth of a fatigue
crack from a predefined notch were monitored with an optical camera to provide a vi-
sual indication of the presence and length of the fatigue crack. The strain distributions
corresponding to different observed crack lengths could be measured with the embed-
ded fiber optic sensor and then be compared with the strain window along the capillary
boundaries to determine when the measured strain distributions exceed the strain win-
dow.

4.2.1. TEST SETUP
Figure 4.2 represents schematic representations of the four-point bending fatigue test
setup and the real test setup. As can be seen in the figure, the four-point bending fa-
tigue test setup includes an MTS servo-hydraulic test frame, Luna ODISI-B interrogator
(LUNAINC, VA 24011), and VIC3D camara.

4.2.2. NOMINAL SPECIMEN GEOMETRY
The nominal geometry of the SLM specimen can be seen in 4.3. To ensure a reliable
and fair comparison of the proposed method with the vacuum sensor based method for
crack detection in SLM specimen prposed by Strantza [2], the specimen in this study has
the same nominal geometry as Strantza’s study. However, there may be geometry and
size inaccuracy due to reasons such as imperfect scanning strategy and thermal gradi-
ents in the SLM specimens [3]. The designed length, width, and height of SLM specimens
are bigger than nominal geometries, then the SLM specimens are machined to the nom-
inal geometries. One exception is the capillary. The capillary in the SLM specimen is
kept in its as-built state to take advantage of the most freedom with respect to the path a
capillary can take by means of additive manufacturing. In addition, leaving the capillary
in its as-built state in this study help to understand how the additively manufactured
capillary would influence performance of the strain exceedance based crack detection
method.
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Figure 4.3: Norminal geometry of specimens used in four-point bending fatigue test

Besides the SLM specimens, the four-point bending fatigue test will also be performed
on traditional specimens.

4.2.3. SPECIMEN MANUFACTURING

TRADITIONALLY MACHINED SPECIMEN

The traditionally machined specimens are specimens made of Aluminium 6082-T651
material. They were fabricated using the same traditional subtractive machining pro-
cesses as in chapter 3 to the nominal geometries shown in figure 4.3. A v-shape notch
is created on the bottom of every specimen with electric discharge machining with a
Funac wire EDM machine for crack initiation. There are totally 4 traditionally machined
specimens, which are named tm1, tm2, tm3, and tm4

ADDITIVELY MANUFACTURED SPECIMEN

In addition to the traditionally machined specimen, there are also SLM AlSi10Mg spec-
imens. The SLM specimens were made by K3D B.V. (Eindhoven, Netherlands) with a
layer thickness of 0.33mm and laser spot size of 0.11mm. The SLM specimens later went
through surface treatment to reduce residual stress and pores. As mentioned before the
SLM specimens have design geometries larger than nominal geometries in 4.2.2, and
then they were machined to the nominal geometries except for the capillary. There are 4
additively manufactured specimens named am1, am2, am3, and am4.

As mentioned above, the capillaries of SLM specimens are in their as-built state. How-
ever, the capillary size may not be exactly the same as the nominal geometry. In order to
observe the real shape of the capillary in specimens, both the additively manufactured
and traditionally machined specimens are cut after the fatigue test. The cross-sections
of the specimens are observed with the Keyence Laser Scanning Confocal Microscope.
which can be seen in 4.5.

4.2.4. EXPERIMENT PROCESS
There are 4 specimens manufactured from the additive manufacturing process and 4
specimens made from the traditional machining process. For both the traditionally ma-
chined and additively manufactured parts, fiber optic sensors were be embedded within
the specimens after manufacturing with the method described in section 3.4.1.

In order to measure the strain distribution as the crack propagates within a specimen,
four-point bending fatigue tests were performed on MTS servo-hydraulic test frame in



4.2. STRUCTURAL CASE STUDY: FOUR-POINT BENDING FATIGUE TEST

4

59

AM as-built
AM after 
machining

Machined

Machining

AM as-built AM after 
machining

Machined

2
2

115 18

2
0

110 12

⌀2

Capillary

⌀2

Capillary

2
0

110 12

⌀2

Capillary

Figure 4.4: The traditionally machined Aluminium 6082-T651 specimens and additively manufactures
AlSi10Mg specimens

2mm 2.14mm

(a) (b)
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Figure 4.6: Change of loading with time during the four-point bending test

DASML (Delft, Netherlands) equipped with a 10KN load cell, as shown in figure 4.2. A
camera car was set up near the fatigue machine to capture the initiation and propagation
of the crack. The camera car received signals from the MTS fatigue machine and took
an image every 500s. As the crack growed, strain distribution was also measured with
the LUNA system every 500s. Before determining loading levels, crack growth curves
were established to predict the estimated cycles needed for the crack to grow to a certain
crack length under different loading levels. The prediction can provide a reference of the
employed load for the fatigue test and kept the fatigue test from lasting too much time.

Based on the predicted fatigue growth curve under different loading levels, a maximum
force of 8KN and a stress ratio of 0.1 is used for the fatigue test with a loading frequency of
8HZ. Two loading levels of 6kN and 2kN are used for measuring the strain distributions.
The two loading levels are used to highlight differences of measured strain distributions
measured under high and low loading levels. A schematic representation of the load-
ing profile change can be seen in 4.6, which includes repeated sinusoidal loading block,
loading and unloading ramps, and constant loading. During the constant loading, the
strain will be measured with the distributed fiber optic sensors.

As shown in figure 4.7, there is the pre-manufactured notch on the specimen bottom to
accelerate crack initiation and crack length is regarded as the total length of the notch
and crack initiating around the notch tip. Therefore the initial crack length is 2mm.

4.3. STRAIN EXCEEDANCE METHOD FOR CRACK DETECTION WITH

ANALYTICAL MODEL
The strain exceedance method for crack detection requires comparing the strain distri-
bution measured by the embedded fiber optic sensors with the strain window, which are
predicted strain distributions along the capillary edges. The model created in section
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Figure 4.7: The pre-manufactured notched before fatigue test, the crack initiated from the notch during the
test, and the total length of both crack and notch

Table 4.1: 8 test case for the four-point bending fatigue test

Specimen ID Specimen manufacturing process Test case no. Load(KN) when measuring strain
tm1 subtractive manufacturing 01 2 & 6
tm2 subtractive manufacturing 02 2 & 6
tm3 subtractive manufacturing 03 2 & 6
tm4 subtractive manufacturing 04 2 & 6
am1 selective laser melting 05 2 & 6
am2 selective laser melting 06 2 & 6
am3 selective laser melting 07 2 & 6
am4 selective laser melting 08 2 & 6



4

62
4. INVESTIGATING THE STRAIN EXCEEDANCE METHOD FOR CRACK DETECTION WITH

EMBEDDED FIBER OPTIC SENSOR

3.2 can be used to predict the strain window. The normal stress due to bending can be
described using the Euler-Bernoulli beam theory.

σz = M y

Ixx
(4.1)

Where M is the bending moment, y is the distance from the neutral axis, and Ixx is the
moment of inertia around the neutral axis. As this section of the specimen is under pure
bending loading, there are no other stress components, allowing the normal strain, to be
calculated simply by dividing the stress by the Young’s Modulus, E :

εz = σz

E
= M y

E Ixx
(4.2)

The main deviation is the change of capillary shape in additive manufactured parts. As
can be seen in the figure 4.5, the cross-section of capillary in the SLM specimen am1 was
different from its original design due to its rough surface finish. The change in capillary
cross-section can influence the moment of inertia needed for the analytical model. In
the ideal case when the capillary has a circular cross-section of diameter d , the moment
of inertia around the neutral axis Ixx can be shown in the equation 4.3

I = bh3

12
− πd 4

64
(4.3)

In considering the application of this model to an SLM specimen, it could be important
to take into account the real geometry of the capillary. The real capillary diameter d may
not be the same as the nominal capillary diameter.

When an optical fiber is embedded within a specimen using capillaries, both fiber posi-
tions and orientations may vary along the fiber. Based on the investigations completed
in chapter 3, it was found that the orientation of the fiber within a capillary had a neg-
ligible influence on the strain measurement relative to its absolute position. Therefore,
only the fiber position’s influence on strain distribution is considered.

4.4. FINITE ELEMENT MODELLING
To address the issues identified in chapter 3 regarding the suitability of Euler-Bernoulli
equation to the beam specimen which has a slenderness ratio of less than 10 in this
study, several crack lengths were simulated with the same FEM model as in the one es-
tablished section 3.3. The only exceptions are the inclusion of a crack in the FEM model.
An initial crack is simulated by introducing a discontinuity in the geometry. The mesh
density is an important issue that can influence the accuracy of an FEM model, and at
the same time, it also determines the FEM model’s complexity level. As can be seen
in 4.8, the model uses dense mesh in the area around the crack, and relatively sparse
mesh around the crack, and therefore the accuracy of the model can be improved with-
out significantly increasing model complexity. The mesh size is determined with a mesh
sensitivity study.
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Figure 4.8: The dense mesh close to the crack and relatively sparse mesh in the other area of the FEM model

4.5. RESULTS

4.5.1. STRAIN READING FROM FATIGUE TESTS
With a strain measurement frequency of 10HZ, 100 measured strain distributions are
performed in the duration of 10s under a load of 2KN and 6KN, which can be seen in
figure 4.6, and there are 100 measured strain distributions every 500s. Therefore for ev-
ery observed crack length, there are 50 independent strain distribution measurements
under the load of both 2KN and 6KN.

There is intrinsic measurement noise of the fiber optic sensor. In order to remove the
measurement noise, all the strain measurements are averaged. Figure 4.9 represents a
single strain distribution measurement with the embedded fiber optic sensor in a spec-
imen tm1 when the crack length is 5mm and loading is 2KN in the left, and 50 strain
distribution measurements within a period of 5s and the average of all the strain distri-
bution measurements in the left figure.

It can be seen that calculating the average of 50 independent strain measurements can
effectively remove the measurement noise. Therefore, the strain distribution correspond-
ing to every combination of crack length and load will be denoised in the same way.

Figure 4.10 represent the strain distributions measured by embedded fiber optic sensor
as the crack propagates in a traditionally machined specimen tm1 and SLM specimen
am1 under 2kN and 6kN. When the loading is 2kN for specimen am1, the maximum
strain near the crack increases as the crack length grows from 2mm to 5mm and in-
creases to -207µε as the crack length grows to 7mm. As the crack length grows to 10mm,
the strain increases significantly to around -310µε. Then the specimen breaks. When
the loading is 6kN, a similar strain increase can be observed as the crack grows from
2mm and 10mm, and the maximum strain near the crack is about -750µε. After that the
specimen breaks.

When the loading is 2kN for specimen am1, it can be seen that the maximum strain
grows as the crack length increases from 2mm to 9mm, and the maximum strain near
the crack is around -265µε. After that, the specimen breaks. As the crack grows from
9mm to 12mm, the maximum strain decreases from -314µε to -260µε. When the loading
is 6KN, it can be seen that the maximum strain increases as crack length increases from
2mm to 9mm, after that the maximum strain decreases from around -714µε to around
-690µε as the crack grows from 9mm to 12mm, and after that the specimen breaks. The
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Figure 4.9: (a) The constant bending moment region where the measured strain distribution is plotted; (b) A
single strain distribution measured with the embedded fiber optic sensor, when the crack length is 5mm and

loading is 2KN from experiment case 01 in table 4.1; (c) 50 raw strain distribution measurements within a
period of 5s when the crack length is 5mm and loading is 2KN from experiment case 01 and the denoised

strain distribution after averaging all the strain distribution measurements

reason for the strain decrease is that as the crack grows, the neutral axis is also shifting
toward the embedded fiber and the strain decrease due to the smaller distance between
the neutral axis and embedded fiber is more significant than the strain increase induced
by the crack growth.

4.5.2. STRAIN WINDOW
Figure 4.11 represents the strain window consisting of analytical strain prediction along
capillary boundaries in the traditional specimen tm1 and SLM specimen am1 under 2KN
and 6KN. Because the capillary size of the SLM specimen am1 is slightly larger than that
of the traditional specimen am1 as shown in figure 4.5, the strain window for the SLM
specimen am1 is also larger than that of the traditional specimen tm1. Under 2KN, the
strain window for traditional specimen tm1 includes an upper boundary of -116µε and
a lower boundary of -218.9µε. The strain window for SLM specimen am1 consists of
an upper boundary of -110µε and a lower boundary of -243µε. Under 6KN, the strain
window for traditional specimen tm1 includes an upper boundary of -410µε and a lower
boundary of -656µε. The strain window for SLM specimen am1 consists of an upper
boundary of -393µε and a lower boundary of -684µε.

4.6. DISCUSSION
This study aims to study the feasibility of detecting fatigue cracks using the strain ex-
ceedance method. The rationale behind the method is that the measured strain lies
within a strain window defined by nominal strain distributions along capillary edges



4.6. DISCUSSION

4

65

30 40 50 60 70
Position(mm)

-800

-600

-400

-200

0

M
ic
ro
st
ra
in
(
)

2mm,2KN
4mm,2KN

7mm,2KN

10mm,2KN
2mm,6KN

10mm,6KN

7mm,6KN

4mm,6KN

30 40 50 60 70
Position(mm)

-800

-600

-400

-200

0

M
ic
ro
st
ra
in
(
)

12mm,2KN

12mm,6KN

2mm,2KN

9mm,2KN

5mm,2KN

2mm,6KN 5mm,6KN

9mm,6KN

（a）

（b）

Figure 4.10: (a) Measured strain distribution under four-point bending fatigue test as crack length increases
under 2KN and 6KN for the traditionally machined specimen in test case 01; (b) Measured strain distribution

under four-point bending fatigue test as crack length increases under 2KN and 6KN for the selected laser
melted specimen in test case 05
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Figure 4.11: (a) the capillary boundaries in the constant bending moment region (b) the strain window
consisting of analytical strain prediction along capillary boundaries in the specimen tm1 and am1 under 2KN;

(c) the strain window consisting of analytical strain prediction along capillary boundaries in the specimen
tm1 and am1 under 2KN
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when there are not any cracks, and any strain exceedance of the strain window other-
wise indicates the existence of cracks.

4.6.1. EFFECTIVENESS OF THE STRAIN EXCEEDANCE BASED METHOD FOR

CRACK DETECTION

DATA PROCESSING

As mentioned in the section 4.5.1, there is noise in the measured strain distribution with
embedded fiber optic sensors. The measurement noise can be misleading when com-
paring the measurement with the strain window. Therefore, the strain measurement
is denoised by averaging the 50 independent strain measurements for every observed
crack length.

CONFIDENCE INTERVALS (CI)
In order to get rid of the influence of measurement noise, the 50 measured strain dis-
tributions are averaged, and a 95% confidence interval (CI) of the real strain is created
using Bootstrap [4]. A CI estimates a range within which the true strain value is likely to
fall based on a sample of strain data. The CI can represent the level of inherent measure-
ment noise of the embedded fiber optic sensors.

As the crack grows, the strain distribution changes. In figure 4.12, the average strain mea-
surement corresponding to different crack length are compared with the strain windows
when the traditional specimen tm1 is under 2KN loading. The 95% CI is established for
the strain near the crack tip as shown in part (a) of the figure. 95% CI fall within the
two boundaries when crack lengths are 2mm and 4mm, and the CI is very close to the
strain window when the crack length is 7mm. When the crack length is 10mm, the CI
totally lies out of the boundaries. Figure 4.13 represents the comparison of strain mea-
surements with the strain window under 6KN load in traditional specimen tm1. Similar
to figure 4.12, the CI near the maximum strain is very close to the strain window when
the crack length is 7mm, and it lies out of the strain window when the crack length grows
to 10mm.

In figure 4.14, the average measured strain distribution for the SLM specimen am1 under
2KN is compared with the strain window. A 95% CI of the strain is also created where
there is a crack. Similar to the traditional specimen tm1, the CI lie within the boundaries
when the crack length is relatively small and it lies out of the boundary when the crack
length is around 9mm.

In figure 4.15, the averaged measured strain distribution for an additively manufactured
specimen under 6KN is compared with the strain window. A 95% CI of the strain is also
created in the position closest to the crack tip. As the crack grows from 2mm to 9mm,
the maximum strain also increases to around -730µε. The average strain and 95% CI lie
within the strain window when the crack length is 9mm. However, as the crack grows to
12mm, the strain distribution decreases

DECREASE OF STRAIN VALUE AS CRACK GROWS

As the crack grows, it can be seen that there are crack-induced strain peaks in the strain
distribution measured by the embedded fiber optic sensor. It is easy to understand the
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Embedded fiber

The point where the CI is created for the strain

Crack

（a）

（b） （c）

（d） （e）

Figure 4.12: (a) The point where the confidence interval for the measured strain is measured; Comparison of
average strain measurement, 95% confidence interval of the strain near the crack tip, strain window in the
traditional specimen of test case 01 as the crack grows from (b) 2mm to (c) 4mm, (d) 7mm, and (e) 10mm

under 2KN load

(a) (b)

(c) (d)

Figure 4.13: Comparison of average strain measurement, 95% confidence interval of the strain near the crack
tip, strain window in the traditional specimen of test case 01 as the crack grows from (a) 2mm to (b) 4mm, (c)

7mm, and (d) 10mm under 6KN load
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(a) （b）

(c) (d)

Figure 4.14: Comparison of average strain measurement, 95% confidence interval of the strain near the crack
tip, strain window in the SLM specimen of test case 05 as the crack grows from (a) 2mm to (b) 5mm, (c) 9mm,

and (d) 12mm under 2KN load

(a) (b)

(c) (d)

Figure 4.15: Comparison of average strain measurement, 95% confidence interval of the strain near the crack
tip, strain window in the SLM specimen of test case 05 as the crack grows from (a) 2mm to (b) 5mm, (c) 9mm,

and (d) 12mm under 6KN load
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Figure 4.16: Decrease of strain as the crack grows from 9mm to 12mm in the SLM specimen am01 in test case
05
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Figure 4.17: Change of the measured strain distribution as the crack grows

strain peak value increases as the crack length increases. First, as the crack grows, the
effective cross-section near the crack region, therefore the effective stiffness is reduced
and the resulting strain will increase. Second, as the crack grows, the crack tip gets closer
to the embedded fiber. The influence of stress concentration also increases. However, as
shown in figure 4.16, as the crack grows from 9mm to 12mm, the crack-induced strain
peaks value decreases. The propagation of the crack introduces interruption to the struc-
tural integrity and the shape of the effective cross-section near the crack changes. The
neutral axis may shift upwards, and the distance between the embedded fiber and the
neutral axis decreases. As a result, the measured strain also decreases.

4.6.2. VARIATION OF STRAIN DISTRIBUTION SHAPE AS CRACK GROWS
The strain exceedance method for crack detection compares the predicted strain win-
dow with the measured strain distribution. Technically, it compares the maximum strain
around the crack with the strain value. Therefore, only very limited information is used
in the method. However, as can be seen in 4.17, before the crack is detected when the
corresponding maximum strain exceeds the strain window, the strain distribution pat-
tern has already changed gradually as the crack grows from 2mm. To be more specific,
when the crack length is small relative to the size of the structure, the strain peaks will
be highly localized and concentrated near the crack tip. As the crack length increases,
the strain peaks will spread over a larger region, leading to a more diffuse strain dis-
tribution. This extra information may be further utilized for other crack detection ap-
proaches, which will be investigated in the next Chapter.
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Figure 4.18: (a) possible shape of capillary, (b) the corresponding strain window and (c) strain window width
under the loading of 6KN

4.6.3. INFLUENCE OF CAPILLARY SHAPE UNCERTAINTY ON STRAIN WINDOW

IN ADDITIVELY MANUFACTURED SPECIMENS
As can be seen in section 4.2.3, although the capillary is designed to be a circle, the ac-
tual shape of additively manufactured parts may be different. The shape and dimension
inaccuracy associated with additive manufacturing such as laser powder bed fusion and
selective laser melting can cause the actual shape of the printed capillary to be different
from the designed capillary, and that can create uncertainty associated with the strain
window. As can be seen in figure 4.18, the different shapes of capillary, such as circle and
ellipse, can lead to different strain window widths, and different strain window widths
can create uncertainty for crack detection. Under the loading of 6KN, the strain window
increase from around 140µε to 450µε from one shape of the capillary to another shape
of the capillary. This kind of uncertainty can undermine the effectiveness of the strain
exceedance method.

4.7. CONCLUSION
This study proposes a new and simple method to perform crack detection with embed-
ded fiber optic sensors by monitoring when the measured strain distribution exceeds the
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strain window based on the possible positional variation of the fiber, and the following
conclusions can be reached.

1. Under four-point bending, the simple strain exceedance method can be used to
detect cracks in both the traditional specimens and SLM specimens. However,
only when the crack grows to a certain length, the crack-induced strain peaks can
exceed the pre-defined strain window. It is important to determine the detectable
crack length before applying this method.

2. Shape of the strain distribution changes before the strain distribution exceeds the
strain window, and therefore information on the strain distribution shape can be
extracted and possibly used to detect cracks earlier than the strain exceedance
method.
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5.1. INTRODUCTION

I N the previous chapter, the strain exceedance approach for crack detection is stud-
ied. To be more specific, the four-point bending fatigue test was performed on the

specimen with embedded fiber optic sensors. The strain distribution was measured in
situ with the fiber optic sensor as the crack initiated and propagated, and the measured
strain distribution was compared against the pre-defined strain window. When there
was not any crack in the specimen, the measured strain distribution lied within the strain
window. Any exceedance of the measured strain distribution beyond the pre-defined
boundary indicates the existence of the crack. Figure 5.1 represents a change of the
measured strain distribution as a crack initiated from the pre-manufactured 2mm-long
notch and grew in the SLM specimen am1 of the test. The strain distribution along the
capillary boundary in the specimen formed a strain window represented by the gray area
in the figure. In the strain exceedance approach for crack detection studied in chapter
4, the measured strain distribution as the crack grows was constantly compared against
the strain window to determine if there was any crack. The strain distributions shown in
the figure were measured during the four-point bending fatigue test under the loading
of 2KN and 6KN, as shown in the section 4.2.4. The strain peak induced by the crack can
be clearly seen even when the crack is relatively small, and before the maximum strain
of the strain peak exceeds the strain window. Therefore, the strain peak can possibly
be used to detect the crack that can not be detected by the strain exceedance method.
However, one should be careful when associating the strain peaks with the crack because
some other factors such as concentrated load and fiber curvature can also induce strain
peaks.

Machine learning has been used in structural health monitoring for crack detection due
to its ability to analyze the collected data and identify patterns from data that are associ-
ated with cracks. There is limited research on using machine learning to perform crack
detection based on the strain measured by distributed fiber optic sensing [1] [2]. Among
these examples, fiber optic sensors are bonded straight on the structure surface near
the damage hotspot to continuously measure the strain distribution. The existence of a
crack can cause strain peaks which can significantly change the strain distribution pat-
tern, and the machine learning model can identify the difference in the strain distribu-
tions. The approach has been proven to be successful even when the crack is small and
the induced strain peaks are submerged in the measurement noise [1]. The main advan-
tage of the machine learning based method over the simple strain exceedance method
in the previous chapter is that the machine learning model can extract more crack-
sensitive features from the measured strain distribution for crack detection. The strain
exceedance method only compares the maximum strain distribution against the preset
baseline for crack detection. That explains why the machine learning based method has
great potential to detect cracks that are too small to be detected by the simple strain
exceedance approach.

However, unlike the fiber in the previous study, the fiber optic sensors are embedded
within a capillary inside an additively manufactured structure and the fiber diameters
(195µm,) are much smaller compared to that of the capillary (2mm) in this study. There-
fore, the fiber can be at any location within the capillary and any orientations can also
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Figure 5.1: Strain distribution measured during test case 05 shown in the table 4.1 under loading of 2KN and
6KN under four-point bending as the crack initiated from the 2mm-long notch and kept growing and the gray
area representing the strain window consisting of strain distribution prediction along the capillary boundary

Capillary

R6mm

(a) (b)

Figure 5.2: (a) Schematic representations of beam specimen with capillary; (b) Different possible shape of the
embedded fibers within the capillary;

be possible as long as it is within the fiber bending limit (bending limit of the fiber used
in this study is 6mm [3]), as can be seen in figure 5.2. Possible fiber curvature within
the capillary can also cause strain peaks. In addition to the fiber curvature, the concen-
trated load from the loading pins can also cause strain peaks. When a concentrated load
is applied to the specimen during four-point bending, its influence on the strain field
is greatest at the point of contact and decreases as the distance from the contact point
increases, and that can potentially induce peaks in the strain distributions. The strain
peaks induced by crack, fiber curvature, and concentrated load can appear very simi-
lar from the human’s eye under certain loading such as four-point bending, as shown in
figure 5.3.

The curved fiber will take on an arc-like shape, depending on the degree of bending [4].
The arc-like shape of a curved fiber can also be seen in figure 5.4, where a fiber used in
this study is bent purposely for observing the bending fiber shape. The arc-like shape of
a bending fiber influences shape of the strain peak induced by a bending fiber.

The strain distribution induced by a crack is influenced by different factors such as the
loading level and proximity of the crack to the fiber optic sensors or the crack length.
When the crack length is small relative to the size of the structure, the strain peaks will
be highly localized and concentrated near the crack tip. As the crack length increases, the
strain peaks will spread over a larger region, leading to a more diffuse strain distribution.
Similarly, the shape of the fiber curvature induced strain distribution depends on how
much the fiber is curved.

The possible curvature of fiber might impact the ability of machine learning to detect
cracks. In this study, both the crack and curvature of the embedded fiber within the
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Figure 5.3: (a) The negative strain distribution including fiber curvature induced strain peaks from simulation
and the concentrated load induced strain peaks from the four-point bending fatigue test; (b) The positive

strain samples including the crack-induced strain peaks from the four-point bending fatigue test 06 shown in
the table 4.1;

Curved fiber

Figure 5.4: Arc-like shape of a curved fiber
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capillary can induce similar strain peaks. Measuring strain distribution with embedded
fiber might increases the difficulty of using machine learning to detect cracks due to the
uncertainty of the shape of the embedded fiber. This difficulty may become particularly
pronounced when attempting to detect cracks that are too small to be identified using
the strain exceedance based approach. Therefore, in this chapter, the following research
question will be answered.

‘How can we use machine learning to detect cracks which can not be detected with the
simple strain exceedance method, using the fiber optic sensors embedded within the SLM
specimen? ’

As mentioned above, various studies have used traditional machine learning algorithms
to perform damage detection. However, traditional machine learning algorithms require
substantial domain knowledge to extract damage-sensitive features from the raw data.
Deep learning approaches such as deep neural networks and autoencoders can use the
raw data as input, and extract damage-sensitive features during the training process.
The deep learning approach has been used in a few structural health monitoring appli-
cations. Song et al. trained a five-layer deep neural network (DNN) model with strain
distribution measured by Brillouin optical time-domain analysis (BOTDA) technology
and detected micro cracks with very high accuracy [5]. Cristiani et al. developed a
convolutional neural network to predict delamination in carbon fiber reinforced plas-
tics (CFRP) specimens [2]. Sbarufatti established a three-layer artificial neural networks
(ANN) model for the diagnosis of fatigue damage on an aeronautical structure [6].

Due to its successful application in extracting noise-robust features and detecting small
cracks with high accuracy, the DNN algorithm is utilized to create a classification model
in this study in order to detect those small cracks which can not be detected by the sim-
ple strain exceedance method. The strain distribution is measured by fiber optic sensors,
and an algorithm is developed to extract all the local strain peaks. The strain peak is a
strain subsequence with a certain length, which is a localized region of high strain rela-
tive to the surrounding strains. The strain subsequence can basically be classified with
the DNN model into two categories. The first category is the crack strain subsequence
(CS) when the strain peak is induced by cracks and the second one is the normal strain
subsequence (NS) when the strain peak is induced by fiber curvature or other non-crack
factors. The middle layers of the DNN model can be used to extract useful crack-sensitive
features from the strain peak, and extracted feature representation will be passed into
the final layer to decide if the input strain sequence is CS or NS. The CS/NS binary clas-
sification result can be used as the crack detection result. Extracted strain peak rather
than the whole strain distribution along the embedded fiber is used for crack detection,
and that is because the embedded fiber can be at any location within the capillary and
any orientations can also be possible as long as it is within the fiber bending limit (bend-
ing limit of the fiber used in this study is 6mm [3]). It is easier to collect enough data that
represents all the strain peaks induced fiber curvature and crack lengths because there
is a limit to the fiber bending curvature and crack length.

As this chapter investigates if machine learning can be used to detect small cracks given
the fiber is embedded and can possibly curve, the proposed method will be verified with
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Figure 5.5: An overview of the machine learning based method which includes three stages: extracting the
strain peaks from the raw strain distribution, extracting the crack-sensitive features from the strain data

input, and Crack/Nocrack classification

data collected from the simulation and the four-point bending fatigue test performed
previously, which is shown in the section 4.2. There are possibly numerous shapes of
embedded fiber within the capillary, and therefore it is very demanding in terms of time
and money to collect enough strain distribution data representing all cases for the fiber
with different shapes, which is important to build and train a reliable machine learning
model. Therefore the simulation is performed to help collect enough strain distribution
data at an acceptable cost.

5.2. METHODOLOGY
The crack detection process involves three stages, as shown in figure 5.5. The first stage
is the data extraction step. The purpose of this step is to extract strain peaks possibly
induced by crack or fiber curvature along the full strain distribution measured by dis-
tributed fiber optic sensors. The second stage is to input the extracted strain peaks into
the carefully-designed DNN model for extracting noise-robust and crack-sensitive fea-
tures. The last stage is the CS/NS classification stage. The feature representation ex-
tracted from the second stage is fed into an output layer of the DNN model. The output
layer is a sigmoid classifier used for binary classification, and the results of the last stage
are two probabilities, P (Cr ack\Xstr ai n) and P (Nocr ack\Xstr ai n). The P (Cr ack\Xstr ai n)
represents the probability that the extracted strain peaks are induced by a crack, and
P (Nocr ack\Xstr ai n) is the probability that the extracted strain peaks are induced by a
non-crack factor such as fiber curvature. The results of crack detection are based on
whichever of the two probabilities has a greater value. There may be a couple of strain
peaks extracted from the whole strain distribution, and if any one of the strain peaks is
predicted to be induced a crack, it can be concluded that there is a crack in the moni-
tored structure.
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5.2.1. DATA PROCESSING
In order to use the designed DNN model to perform binary classification, the model
needs to be trained with the strain data. The required dataset for training a machine
learning model should be prepared first. As can be seen in figure 5.3, there are the strain
distributions peaks induced by the fiber curvature and the concentrated load of the up-
per loading pins, these strain distributions are assigned into a category known as the
negative strain samples. There are strain distribution peaks induced by the crack, and
they are assigned a category known as the positive strain samples. All the strain samples
have a specified length. The length should not be too big, for example, a strain sample
contains two strain peaks. Because it is hard to localize the exact position of each possi-
ble crack when crack localization is needed. The length should also not be too small, for
example, the strain sample length is much smaller than the length of the crack-induced
strain peak. Because it will be difficult to extract enough crack-sensitive features from
the strain distribution.

The following steps can be implemented to extract all the strain peaks induced by three
factors including cracks, fiber curvature, and concentrated load. First, denoising the raw
strain distribution. That is because measured strain distribution contains low-frequency
measurement noise, and the existence of noise makes it hard to precisely localize all
strain peaks induced by the crack and fiber curvature. The denoising process effectively
eliminates high-frequency components that correspond to measurement noise, while
preserving low-frequency components that reflect the strain peaks resulting from the
crack or fiber bending. Second, calculating the derivatives of strain distribution for all
the positions, and determining the location of all the strain peaks where the derivatives
are zero or very close to zero. Finally, extracting the strain sequences from the raw strain
distribution of a specific length, which is centered on the determined location.

To represent the categorical information in a format that can be easily processed by a
machine learning algorithm, each of the two classes of "Positive strain samples" and
"Negative strain samples" is labeled with a numeric value. In this case, the "Positive
strain samples" and "Negative strain samples" are labeled with 1 and 0 respectively.

5.2.2. THE DEEP NEURAL NETWORK MODEL AND ITS TRAINING PROCESS
The DNN is the main body of the proposed methodology in figure 5.5. The DNN model
mainly includes four layers. The first layer is the input layers which receive the extracted
strain peaks as input, the second and third layers are the hidden layers used to extract
feature representations from the raw input, and the fourth layer is the output layer, a
decision layer outputting the probabilities that there is a crack or no crack in the mon-
itored structure. More details and the theoretical foundations of deep neural networks
are introduced below.

Deep neural networks consist of three primary constituents: the input layer, hidden lay-
ers, and output layer. The input layer is responsible for receiving raw data, which is then
subjected to transformation and processing via one or more hidden levels. The output
layer produces a prediction or classification outcome using the input data. As shown in
figure 5.6, the proposed DNN includes one input layer, two hidden layers, and one out-
put layer. The input layer, first hidden layer, and second hidden layer have L, m1, and
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Figure 5.6: The forward propagation of the DNN model, which can map the input strain distributions to the
target probability

m2 neurons respectively.

The DNN generates its output from input data through forward propagation. Calculating
the weighted sum and using an activation function are the two main components of for-
ward propagation. Specifically, for each layer, the first step is to compute the weighted
sum of the input values and the weights associated with each neuron in the network.
This involves multiplying the input vector by its corresponding weight vector w and
adding the bias vector b. The weighted sum is then processed via an activation func-
tion, introducing nonlinearity into the neuron’s output. The Relu function is used as the
activation for the input layer and hidden layers. The Relu function is used because it can
introduce the non-linearity into the DNN model and avoid the vanishing gradient prob-
lem [7]. The sigmoid function g (z) shown in equation 5.1 is chosen as the activation in
the output layer. The sigmoid function can be used as an activation function in the out-
put layer because its output can be interpreted as probabilities and it squashes its input
into the [0,1] range [8]. That is important for making decisions based on classification
probabilities.

s(x) = 1

1+e−x (5.1)

During forward propagation, each neuron in the network receives input from the pre-
ceding layer and generates output, which is then transmitted to the next layer. This pro-
cedure is repeated until the final output, which is the probability that there is a crack in
the monitored structure for the given strain distribution, is produced.

In order to let the DNN learn an accurate mapping or function from the input strain
data to a probability, it is necessary to train the neural network. Through training, the
weights and biases are updated so the DNN can produce accurate outputs for inputs it
has not seen before. In this study, The free weights parameters w and bias parameters b
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are updated based on the data set (x1, y1), (x2, y2), (x3, y3), ..., (xm , ym) by minimizing the
cost function L(ŷ , y).

L(ŷ , y) =− 1

m
(

m∑
i=1

(−yi log(ŷi )− (1− yi ) log(1− ŷi ))+ λ

2m

L−1∑
l=1

sl∑
i=1

sl+l∑
j=1

(w l
j i )2 (5.2)

xi is the i th strain sample, which is the extracted strain value sequence, yi is the true
target value 1 or 0 for the i th strain sample, and both of them are prepared in section
5.2.1. ŷi is the output the of DNN model, which is the predicted target value for the
i th strain sample. L is the total number of layers, sl is the total number of neurons in
the l layer, and w is the weight coefficient. The optimal value of the weight w and bias
b can be estimated by minimizing the cost function L(ŷ , y). The optimization process is
implemented by the mini-batch gradient descent algorithm when taking the dataset size
into consideration.

5.2.3. AN OVERVIEW OF THE DNN MODEL DEVELOPMENT PROCESS
Figure 5.7 shows the process of developing a DNN model to detect any crack within the
monitored structure using the strain distribution. There are mainly three stages for de-
veloping the model.

Stage 1. Data preparation. After the strain distributions are measured by the distributed
fiber optic sensors. The strain peaks induced by various factors including fiber curva-
ture, concentrated load, and crack are extracted. These strain peaks are strain value se-
quences that fall into two categories of positive strain samples and negative strain sam-
ples. The strain peaks belonging to the two categories are assigned a target value of 1 and
0 respectively. The strain peak values and its corresponding target value make up a data
sample. All the data samples are divided into a training, validation, and test dataset.

Stage 2. Model building & training. In this stage, a DNN model is initiated with the Ten-
sorFlow 2 framework [9]. The number of layers and the number of neurons in the hidden
layers are usually small so that the model can be quickly tested and evaluated. The num-
ber of neurons in the input layer is the same as the length of the input strain sequence.
There is only one neuron in the output layer which represents the probability that ex-
tracted strain peak is induced by a crack. After the model is created, it is trained in a
supervised way with the training dataset prepared in stage 1. Model training is a repet-
itive process. After the model is trained, the hyper-parameters are carefully tuned to
optimize the model. The training will be performed again. This cyclic process of model
training and hyperparameters tuning is repeated until the desired model performance is
achieved.

Stage 3. Well-trained model assessing. The well-trained model needs to be evaluated for
its performance. Different evaluation metrics can be used to evaluate the classification
model’s performance, such as accuracy. The testing dataset is used to assess the trained
model in order to provide an unbiased evaluation. As mentioned above, if the model per-
formance is not desired, the model hyperparameters will be tuned and the new model
will be trained again.
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Figure 5.7: The process of developing a DNN model to detect the crack within the monitored structure using
the strain distribution

5.3. VERIFICATION OF THE PROPOSED METHODOLOGY WITH FOUR-
POINT BENDING FATIGUE TEST AND FEM

5.3.1. STRAIN DATA COLLECTION
In order to validate the proposed methodology, it is necessary to collect strain distribu-
tions containing strain peaks induced by various factors such as cracks and fiber cur-
vature. The strain peaks induced by cracks can be collected via the four-point bending
fatigue test introduced in section 4.2. In the test, a crack was initiated and propagated in
each of the 2 SLM specimens. The distributed fiber optic sensors are embedded within
the pre-manufactured capillary within each specimen, providing a real-time and in-situ
strain measurement. The results in experiment cases 05 and 06 as shown in table 4.1 will
be processed and used for training the model.

In order to collect the strain distribution induced by the fiber of different curvature ra-
dius, the same FEM model established in section 3.3 is employed to simulate the strain
distributions along the curved fiber. One exception is that an arc-like path rather than
the straight path is defined. The strain values along the arc-like path with a curvature
radius up to the fiber’s curvature radius limit of 6mm, as shown in 5.8, are collected. The
strain values at different positions along the path are multiplied with the corresponding
coefficients to account for the change in the fiber orientations along a curved fiber. In-
creasing the curvature radius of the curved region from 6mm to 200 mm with a step size
of 0.5 can generate around 388 shapes of fiber optic sensors with decreasing degrees of
bending. These strain peaks induced by these different shapes of curved fiber and cracks
with lengths ranging from 2mm to 10mm are also collected. In total, there are 3880 sim-
ulated strain distributions from FEM. The measured strain distribution when there is not
any loading is regarded as the measurement noise. The measurement noise is added to
all the simulated strain distributions.
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Figure 5.8: Three states of the embedded fiber within the capillary: straight and bending with an arc-like
region with a curvature radius of 6mm and 30mm

Table 5.1: Source of strain data used for training and its size

Source of strain data Number of strain samples
Fatigue test 05 shown in section 4.2 2500
Fatigue test 06 shown in section 4.2 2500
FEM 9700

In fatigue tests 05 and 06 as shown in table 4.1, the strain distributions are measured
under the loading of 2KN and 6KN as the crack grows from 2mm till the specimens break.
As shown in figure 4.7, there is the pre-manufactured notch on the specimen bottom
where the crack will initiate, and crack length is regarded as the total length of the notch
and crack initiated around its end. Therefore the initial crack length is 2mm.

For each of the two SLM AlSi10Mg specimens, there are 1000 strain distributions col-
lected under the loading of 2KN and 6KN respectively. Each strain measurement con-
tains 168 sampling points distributed along the embedded fiber and represents a strain
sequence. In total, 5000 such strain sequences were collected during fatigue tests for
both specimens. The data used for training a classification model can be seen in table
5.1.

5.3.2. STRAIN DATA PROCESSING
In figure 5.9, some of the raw strain distributions collected under the loading of 6KN
for an SLM specimen are displayed. To extract the strain peaks induced by various fac-
tors such as a crack or concentrated load, the following method is implemented. First,
the moving average filter was applied to the raw strain. The moving average filter took
the average of a sliding window of data points and substituted the average value for the
center point. By employing an appropriate window size, it was possible to remove high-
frequency noise from a signal while maintaining its low-frequency components. The
window size was mainly determined by the trial-and-error approach until all strain peaks
induced by various factors such as crack and fiber curvature can be extracted. Then, the
first derivative was computed for the smoothed strain distribution, and the zero value of
the first derivative indicated the positions of the local maximum and minimum values
of the strain distribution, which was induced by the crack, fiber curvature, and concen-
trated load. Figure 5.10 shows the strain peaks extraction process of two examples corre-
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Figure 5.9: The raw strain distribution measured by fiber optic sensor during the fatigue test 06 shown in table
4.1 when the crack lengths increased from 2mm for an SLM specimen under the loading of 6KN

sponding to the 4mm crack and 7mm crack in figure 5.9. The strain peaks position in the
figure corresponds to the local maxima and minima of the strain distribution. The strain
sequences centered on these local maxima and minima are extracted, which include 16
strain values. These strain sequences are marked by boxes in the figure.

The FEM simulates the strain distributions along a curved fiber with different curvature
radius. In addition, When there is any crack near the curved fiber, the strain peaks in-
duced by the crack and curved fiber overlap, which can be seen in figure 5.11. The strain
peaks containing 16 strain values along the curved fiber are extracted from the strain
distribution and fed into the DNN model.

As introduced in 5.2.1, the strain peak induced by a crack and concentrated load shown
in figure 5.10 is categorized into "positive strain samples" and "negative strain samples",
and the strain peaks induced by fiber curvature in figure 5.11 are categorized into "neg-
ative strain samples". The label value of 1 is allocated to the "positive strain samples,"
while the label value of 0 is applied to the "negative strain samples.". In total there are
11380 strain samples including 5000 positive strain samples and 6380 negative strain
samples, it is divided based on the ratio of 6:2:2 into the training, validation, and testing
dataset. The training dataset is used to learn the model weights and biases, the validation
dataset is used for model optimization and the testing dataset can provide an unbiased
evaluation of the model performance.

5.3.3. MACHINE LEARNING MODEL EVALUATION METRICS
The evaluation metrics can provide a quantitative measure of the performance of a ma-
chine learning model, and it is mainly determined by comparing the model-predicted
label and the true label of the input strain sequences. F P (False Positives), T P (True
Positives), F N (False Negatives), and T N (True Negatives) are commonly used evalua-
tion metrics in machine learning for binary classification problems. These metrics can
be used to calculate the accuracy acc of the well-trained machine learning model, as
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Figure 5.10: The raw strain distribution measured by fiber optic sensor during fatigue test 06 shown in table
4.1 when the crack lengths are 4mm (a) and 7mm (b) respectively under 6KN loading, the denoised strain
distributions with moving average filter, the strain peaks positions where the gradients of denoised strain

distributions are zero, the strain peaks contained in a rectangle box, which will be fed into the DNN model.
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Figure 5.11: (a) The simulated strain distribution along a curved fiber with curvature radius ranging from
6mm to 30mm; (b) The simulated strain distribution when the strain peaks induced by curved fiber with

different curvature radius and a 6mm-long crack
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Figure 5.12: The cross-entropy loss as a function of epochs

shown in equation 5.3

acc = T P +T N

T P +T N +F P +F N
∗100% (5.3)

5.4. RESULTS AND DISCUSSIONS

5.4.1. EVALUATION OF THE PROPOSED METHOD AND COMPARISON WITH

TRADITIONAL ALGORITHMS
There are model parameters and model hyperparameters that need to be determined.
Model parameters define a model’s behavior and can be learned from the training dataset.
Model hyperparameters are parameters set prior to training, including the number of
layers and neurons in each layer. The structure of the DNN is chosen to be 15-40-20-2,
and the structure is determined through the trial-and-error approach. When determin-
ing the model structure, different factors including model’s ability to generate right out-
come for input strain data, model’s complexity, and the required computational source
etc. need to be considered.

When using the mini-batch gradient descent algorithm to train the DNN model, the
maximum epoch is set to be 500. The early stop approach is adopted for the training.
As can be seen in figure 5.12, both the training and validation loss decrease abruptly
until 100 epochs, and the loss stabilizes after 400 epochs.

There are samples in the testing data, and there are positive strain samples and negative
strain samples. The evaluation results of the well-trained model are shown in table 5.2.

As can be seen in table 5.2, the performance of the proposed model is compared with the
performance of traditional algorithms including random forest classifier and support
vector machine classifier. The support vector machine classifier uses the linear kernel
and the random forest classifier uses 200 estimators and a maximum tree depth of 6.
Both the random forest and support vector machine classifier are built and optimized
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Table 5.2: Evaluation results of the well-trained DNN model

Model False positives (FP) False negatives (FN) Accuracy(%)
Proposed method 15 17 98.6
Random forest classifier 133 86 90.4
Support vector machine classifier 81 162 89.2

Figure 5.13: Layerwise visualization of the feature representations extracted from different layers of the
proposed model

with the sklearn 1.1.2 package [10]. All three models in the table are trained and tested
with the same testing dataset. With the proposed model, there are totally 38 prediction
errors, including 17 false positives and 21 false negatives, and the classification accuracy
calculated with equation 5.3 is 98.6%. The classification accuracy for the random forest
and support vector machine classifier are 90.4% and 89.2% respectively. Therefore, the
proposed model has been improved compared with the traditional algorithms.

5.4.2. LAYERWISE VISUALIZATION OF EXTRACTED FEATURE REPRESENTATION
In order to more intuitively understand how the input data is transformed and provide
a visual representation of the discriminability change of the extracted features, the t-
SNE is applied to different layers of the proposed DNN model. The t-SNE algorithm can
represent high-dimensional data points as points in a low-dimensional space, such as
two or three dimensions while preserving the pairwise similarities between the high-
dimensional points as much as possible. The algorithm achieves this by minimizing a
cost function called Kullback–Leibler divergence that measures the difference between
the pairwise similarity distributions of the high-dimensional and low-dimensional data
points. By minimizing the cost function, the data samples within the same class get
closer, and data samples from different classes move farther apart.

Figure 5.13 represents the layerwise visualization of the feature representations extracted
from different layers of the proposed model. The points are the two-dimensional rep-
resentations of the multi-dimensional strain sequences, and the two-dimensional fea-
tures are acquired by performing T-SNE dimension reductions on the multi-dimensional
strain sequences. The blue and red patch represents the positive and negative strain
samples, the strain peaks induced by a crack, and other factors including fiber curva-
ture. It can be seen in the figure that the discriminability of the features belonging to two
different classes is increasing steadily as the data passes through different layers of the
proposed DNN model.
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Figure 5.14: Radiographic image of the crack being detected by the vacuum sensors in an SLM specimen
during a four-point bending test from the study [11]

5.5. COMPARISON OF THE PROPOSED CRACK DETECTION METHOD

WITH THE METHOD IN THE PREVIOUS STUDY
Figure 5.14 shows a radiographic image of the crack being detected by the vacuum sen-
sors in an SLM specimen during a four-point bending test, which is proposed by Strantza
[11]. It can be seen that the crack needs to be big enough to break the vacuum state, the
pressure change can be detected, and then the crack can also be detected. The crack
detection result of the proposed method in this study can be further compared against
that of Strantza’s study [11]. The comparison result can be seen in figure 5.15. The vac-
uum sensor based method requires the crack tip to grow to the capillary to be detected,
the strain exceedance method requires the crack to be close to the capillary (4-6mm)
away to be detected in this study, and the machine learning can even detect a crack
when it is much farther away from the capillary compared with the other two meth-
ods. Therefore, the machine learning based crack detection method can detect much
smaller cracks compared with the method. That makes it applicable to more situations,
especially for those cracks which are too small to be detected by other two methods.

5.6. CONCLUSION AND LIMITATION OF THE PROPOSED METHOD
A deep neural network model is proposed to detect the small cracks that can not be de-
tected with the strain exceedance approach. The proposed deep neural network (DNN)
is a four-layer neural network model which can take the strain peak in the form of a strain
sequence, extract crack-sensitive features, and output a probability that the strain peak
is induced by a crack. The dataset for training the model is collected by the four-point
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(a) (b) (c)

Figure 5.15: Comparison of the detectable crack length of (a) the vacuum sensor methodology proposed by
Strantza [11], (b) the strain exceedance based method in chapter 4, and (c) the machine learning based

method in this study in chapter 5

bending fatigue test and FEM simulation. The four-point bending fatigue test measures
the strain distribution as the crack initiated and propagated in an SLM beam structure.
The strain peaks are extracted from the full strain distributions measured along the full
fiber. Because it is very difficult if not impossible to collect the strain distribution along
curved fiber with various curvature radius when the fiber is embedded within the cap-
illary during four-point bending test, FEM is employed to simulate the strain distribu-
tions along curved fiber. The proposed model is verified with strain distributions mea-
sured with embedded fiber optic sensors during the four-point bending test. The results
showed that 98.6% cracks with lengths over 2mm can be successfully detected. There-
fore the proposed model demonstrates the ability to detect cracks which are too small to
be detected by the simple strain exceedance method describe in the previous chapter.

It should also be noted that the proposed DNN-based crack detection approach is de-
pendent on the data that is used to train the model. That may cause the proposed model
may have insufficient generalizability, especially for new structures or situations that can
generate data that is significantly different from the training data. More work can be
done to overcome the limitation of the proposed method. One approach is data aug-
mentation, and more data generated from different structures and loading types can
be used to augment the training dataset. That can facilitate the established machine
learning model to recognize patterns that are more generalizable across various struc-
tures and situations. The second way is transfer learning. Transfer learning is a machine
learning technique that utilizes a previously trained model as a beginning point for a new
machine learning model. A pre-trained model can be fine-tuned on a smaller dataset of
strain distribution data from a new structure or loading type so that the new model can
be more adaptable to various loading types and structures.
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6
CONCLUSIONS AND

RECOMMENDATIONS

6.1. CONCLUSIONS FROM THE RESEARCH QUESTIONS
The study investigated the feasibility of performing crack detection with the embedded
fiber in the additively manufactured specimen. Firstly, this study proposed a novel ap-
proach to embedding fiber sensors via a predefined capillary in the Selective laser melted
(SLM) structure. The strain measurement accuracy of the embedded fiber via a capillary
in the additively manufactured specimen was investigated. An analytical model based
on the Euler-Bernoulli beam theory and finite element model was established. The static
four-point bending test was utilized to verify the model. Then the strain window concept
was proposed for crack detection. The strain window based method for crack detection
was evaluated with the four-point bending fatigue test. Finally, after examining the lim-
itation of the strain exceedance method, a machine learning model was further devel-
oped, which was aimed at detecting smaller cracks. The two crack detection method
proposed in this study was compared with the previous vacuum sensor based method
for crack detection in the additively manufactured structure. The following are the con-
clusions from the proposed research questions.

Question 1: ‘How do the fiber locations and orientations within the capillary uncertainty
influence the measurement accuracy of the fiber optic sensor? ’

Answer When an optical fiber is embedded within a specimen using capillaries, both
fiber positions and orientations may vary along the fiber. Variation of fiber orientations
has negligible influence on strain measurement accuracy compared with fiber position
variations. Therefore, fiber position uncertainty is the main factor influencing strain
measurement accuracy. Even the positional uncertainties of the embedded fiber within
capillaries can cause strain measurement uncertainties, the measured strain distribu-
tions lie within a pre-defined strain window. The strain window is defined by the strain
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distribution along the capillary boundary when there is not any crack in the specimen.
Therefore it is possible to perform crack detection using the strain window.

Question 2: ‘How effective is the strain-exceeding based method for detecting cracks in
additively manufactured parts with embedded fiber optic sensors? ’

Answer Under four-point bending, the simple strain exceedance method can be used to
detect cracks in both the traditional specimen and the SLM specimens. In this study, the
crack can be detected when its length is 9-11mm (its tip is 4-6mm away from the embed-
ded fiber optic sensor) in both specimens. The shape of the strain distribution changes
before the strain distribution exceeds the strain window, and therefore the shape of the
strain distribution may be used to detect cracks earlier than the strain exceeding method.

Question 2: ‘How can we use the machine learning based method to detect any crack
within the monitored structure using the measured strain distribution with the embedded
fiber optic sensors? ’

The results from the developed deep neural network model showed that 98.6% cracks
with lengths equal to or larger than 2mm can be successfully detected. Therefore the
proposed model demonstrates an ability to detect cracks that are too small to be de-
tected by the simple strain exceedance method.

Both the strain exceedance based method and machine learning based method for crack
detection, as well as the vacuum sensor based method proposed by Strantza [1] exhibit
different crack detection capabilities, each with its own detectable crack length range
(DCLR). In the study, the machine learning based method can detect the smallest crack
compared with the other two and thus has the largest DCLR due to its ability to extract
more information from the strain distribution. The strain exceedance based crack de-
tection method ranks second, and the vacuum sensor based method has the smallest
DCLR because it requires the crack break the vacuum sensor for crack detection. There-
fore, the selection of the crack detection method in different situations should be based
on the DCLR requirement.

6.2. RECOMMENDATIONS FOR FUTURE WORK
The proposed deep neural network based crack detection method in this study is depen-
dent on the data that is used to train the model. That may cause the proposed model may
have insufficient generalizability, especially for new structures or situations that can gen-
erate data that is significantly different from the training data. More work can be done to
overcome the limitation of the proposed method. One approach is data augmentation,
and more data generated from different structures and loading types can be used to aug-
ment the training dataset. That can facilitate the established machine learning model to
recognize patterns that are more generalizable across various structures and situations.
The second way is transfer learning. Transfer learning is a machine learning technique
that utilizes a previously trained model as a beginning point for a new machine learning
model. A pre-trained model can be fine-tuned on a smaller dataset of strain distribution
data from a new structure or loading type so that the new model can be more adaptable
to various loading types and structures.
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