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Abstract

We introduce a principled method for the signed clustering problem, where the goal is to partition a
weighted undirected graph whose edge weights take both positive and negative values, such that edges
within the same cluster are mostly positive, while edges spanning across clusters are mostly negative.
Our method relies on a graph-based diffuse interface model formulation utilizing the Ginzburg–Landau
functional, based on an adaptation of the classic numerical Merriman–Bence–Osher (MBO) scheme
for minimizing such graph-based functionals. The proposed objective function aims to minimize
the total weight of inter-cluster positively-weighted edges, while maximizing the total weight of the
inter-cluster negatively-weighted edges. Our method scales to large sparse networks, and can be
easily adjusted to incorporate labelled data information, as is often the case in the context of semi-
supervised learning. We tested our method on a number of both synthetic stochastic block models
and real-world data sets (including financial correlation matrices), and obtained promising results
that compare favourably against a number of state-of-the-art approaches from the recent literature.
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1 Introduction
Clustering is one of the most widely used techniques in data analysis, and aims to identify groups of
nodes in a network that have similar behaviour or features. It is arguably one of the first tools one uses
when facing the task of understanding the structure of a network.

Spectral clustering methods have become a fundamental tool with a broad range of applications in
applied mathematics and computer science, and tremendous impact on areas including scientific comput-
ing, network science, computer vision, machine learning and data mining, such as ranking and web search
algorithms. On the theoretical side, understanding the properties of the spectrum (both eigenvalues and
eigenvectors) of the adjacency matrix and its various corresponding Laplacians, is crucial for the devel-
opment of efficient algorithms with performance guarantees, and leads to a very mathematically rich set
of open problems.

Variational methods have a long history in mathematics and physics. In a variational model, the
aim is to find minimizers of a given functional (which is often called an ‘energy’ in recognition of the
field’s origins, which are rooted in physics, even in situations where this terminology is not physically
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justified). When formulated in a continuum setting, such models are closely related to partial differential
equations (PDEs) which arise as the Euler–Lagrange equations or gradient flow equations in the model.
These equations are often nonlinear and can have other interesting properties, such as nonlocality. In
recent years it has been recognized that such properties can be useful for clustering problems as well
[1, 2]. When attempting a hard clustering problem, i.e. a clustering problem in which each node is to
be assigned to exactly one cluster, the approach is usually to relax the exact combinatorial problem. For
example, in the case of spectral relaxations, one typically leverages the spectrum of certain graph-based
matrix operators, in particular their eigenvalues and especially eigenvectors. This introduces the question
of how to translate the real-valued outcomes of the relaxed problem into a discrete cluster label. To this
end, non-linearities can prove useful as they can be used to drive the real-valued approximate solution
away from the decision boundaries. Moreover, what is non-local in a continuum setting, can be made
local in a graph setting, by adding edges between nodes that are located far away in continuum space.
Furthermore, since the equations which result from graph-based variational methods tend to resemble
discretized PDEs, the large existing literature on numerical methods for solving PDEs often provides fast
algorithms for solving such equations. Considerations of similar nature have led to a growing interest in
the use of variational methods in a graph setting [3, 4, 5, 6].

In certain applications, negative weights can be used to denote dissimilarity or distance between a
pair of nodes in a network. The analysis of such signed networks has become an increasingly important
research topic in the past decade, and examples include social networks that contain both friend and foe
links, shopping bipartite networks that encode like and dislike relationships between users and products
[7], and online news and review websites such as Epinions [8] and Slashdot [9] that allow users to approve
or denounce others [10]. Such networks may be regarded as signed graphs, where a positive edge weight
captures the degree of trust or similarity, while a negative edge weight captures the degree of distrust or
dissimilarity. Further efforts for the analysis of signed graphs have lead to a wide range of applications
including edge prediction [11, 10], node classification [12, 13], node embeddings [14, 15, 16, 17], and node
ranking [18, 19]. We refer the reader to [20] for a recent survey on the topic.

Finally, another main motivation for our proposed line of work arises in the area of time series anal-
ysis, where clustering time series data is a task of particular importance [21]. It arises in a number of
applications in a diverse set of fields ranging from biology (analysis of gene expression data [22]), to
economics (time series that capture macroeconomic variables [23]). A particularly widely used applica-
tion originates from finance, where one aims to cluster the large number of time series corresponding
to financial instruments in the stock market [24, 25]. In all the above application scenarios, a popular
approach in the literature is to consider the similarity measure given by the Pearson correlation coeffi-
cient (and related distances), that measures the linear dependence between pairs of variables and takes
values in [−1, 1]. Furthermore, the resulting empirical correlation matrix can be construed as a weighted
network, where the signed edge weights capture pairwise correlations, which reduces the task of cluster-
ing the multivariate time series to that of clustering the underlying signed network. For scalability and
robustness reasons, one can further consider thresholding on the p-value associated to each individual
sample correlation entry [26], following tests of statistical significance, which renders the network sparse,
and thus amenable to larger scale computations. We refer the reader to the seminal work of Smith et
al. [27] for a detailed survey and comparison of various methodologies for casting time series data into
networks, in the context of fMRI time series. Their overall conclusion that correlation-based approaches
are typically quite successful at estimating the connectivity of brain networks from fMRI time series
data, provides sound motivation for the development of algorithms for analysis of signed networks and
correlation clustering.

Contribution. Our main contribution is to extend the Ginzburg–Landau functional to the setting
of clustering signed networks, and show the applicability of the MBO scheme in this context, for different
types of constraints that arise in the semi-supervised setting. As a side contribution, we provide a more
computationally efficient way to determine node-cluster membership (as an alternative to the traditional
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projection/thresholding step). In addition, we show extensive numerical experiments on both synthetic
and real data, showcasing the competitivity of our approach when compared to state-of-the-art methods,
across various noise and sparsity regimes.

Paper outline. The remainder of this paper is organized as follows. Section 2 is a summary of re-
lated work from the signed clustering literature. Section 3 gives a brief overview of the Ginzburg–Landau
functional. Section 4 extends the Ginzburg–Landau framework to the setting of signed graphs, by ex-
plicitly handling negative weights and modifying the MBO algorithm accordingly. Section 5 pertains to
the semi-supervised learning setting, and incorporates various types of a priori information available to
the user. Section 6 summarizes the structure of the algorithm we propose. Section 7 contains numerical
experiments under a signed stochastic block model, and includes various scenarios in the semi-supervised
setting. Section 8 details the outcome of numerical experiments under the Barabási–Albert model. Sec-
tion 9 considers an application to image segmentation, Section 10 to clustering correlation matrices
arising from financial time-series data, and Section 11 to computational social science using a network
resulting from migration patterns between US counties. Section 12 summarizes our findings and details
future research directions. Finally, we defer to the Appendix the technical details that pertain to the
projection/thresholding step.

Notation. We summarize our notation in Table 1.

2 Related literature
The problem of clustering signed graphs traces its roots to the work of Cartwright and Harary from the
1950s from social balance theory [28, 29]. Consider, for example, three mutually connected nodes from a
signed graph, and define the relationship between two nodes to be positive if the edge in-between is +1
(they are “friends”), and negative if the edge in-between is −1 (they are “enemies”). We say that such
a triad is balanced if the product of its signs is positive, and that the signed graph is balanced if all of
its cycles are positive [29], i.e., each cycle contains an even number of negative edges. Cartwright and
Harary proved the so-called structure theorem that if a signed graph G = (V,E) is balanced, then the set
of vertices, V can be partitioned into two subsets, called plus-sets, such that all of the positive edges are
between vertices within a plus-set and all negative edges are between vertices in different plus-sets.

Davis [30] proposed a weaker notion of balance, weak balance theory, which relaxed the balanced
relationship by allowing an enemy of one’s enemy to also be an enemy, and showed that a network with
both positive and negative edges is k-weakly balanced if and only if its nodes can be clustered into k
groups such that edges within groups are positive and edges between groups are negative. For a k-
balanced network, the problem of finding the partition of the node set can be viewed as an optimization
problem: find the k-partition C which minimizes Pα : Φ→ R given by

Pα(C) := α
∑

n
+ (1− α)

∑
p
, (1)

over Φ, the set of all possible k-partitions. Here
∑
p is the number of positive arcs between plus-sets,

∑
n

is the number of negative arcs within plus-sets, and α ∈ (0, 1) is a weighting constant [31]. If the graph
is k-balanced the set of minimizers of P will not change when α varies; if the graph is not k-balanced,
the parameter α allows control over which kind of error is penalized more strongly, positive ties between
groups or negative ties within groups.

Motivated by this characterization, the k-way clustering problem in signed networks amounts to
finding a partition into k clusters such that most edges within clusters are positive and most edges across
clusters are negative. As an alternative formulation, one may seek a partition such that the number of
violations is minimized, i.e., negative edges within the cluster and positive edges across clusters. In
order to avoid partitions where clusters contain only a few nodes, one often prefers to incentivize clusters

4



Symbol Description
α percentage of known information
A affinity matrix of the signed case
A+ positive part of A
A− negative part of A
B time evolution matrix in the MBO

scheme with affinity matrix N
B̄ time evolution matrix in the MBO

scheme with affinity matrix A
ci size of clusters of the Signed Stochastic

Block Model
dτ time discretization parameter
D degree matrix of N
D̄ degree matrix of A
e element of the vertices of the probabil-

ity simplex
e± element of the vertices of Σ±K
ε parameter of the GL functional
Fε GL functional
F̄ε signed GL functional
IV Identity matrix with size V
K number of clusters
Λ eigenvalue matrix
L Laplacian of N
L+ Laplacian of A+

Lrw random walk Laplacian of N
Lsym symmetric Laplacian of N
L̄ signed Laplacian
L̄rw signed random walk Laplacian
L̄sym signed symmetric Laplacian
λ sparsity probability
λ+,
λ−

trade-off parameters for must- and
cannot-links, respectively

m number of eigenvector considered in the
expansion of B̄

n step number in the MBO algorithm
N affinity matrix of the positive edges case
Nτ number of repetitions of the diffusion

step
N+ natural numbers excluding 0.
η noise probability

Symbol Description
Q− signless Laplacian
ρ system density for one-dimensional con-

tinuous version of the GL functional
ρ vertex set values of the discrete bi-

dimensional case
Rfi,
Rav

weight matrix for the fidelity and avoid-
ance contributions, respectively

R real numbers
R+ positive real numbers excluding 0
R+0 positive real numbers including 0
S ground truth affinity matrix for the

Stochastic Signed Block Model
σ component of the probability simplex
σ± component of the Σ±K simplex
ΣK probability simplex
Σ±K ‘2−K’ simplex (see Equation (45))
t time variable
u column vector carrying the weight of a

node on various clusters
u± column vector carrying the weight of a

node on various clusters in the signed
case

U node-cluster association matrix
U± node-cluster association matrix in the

signed case
V number of nodes
x space coordinate
X eigenvectors matrix
0K column vector of length K whose ele-

ments are all 0
0V×K matrix with V rows and K columns

whose elements are all 0
1V column vector of length V whose ele-

ments are all 1
1V square matrix of size V whose elements

are all 1
◦ Hadamard product
|·| absolute value
‖·‖1 taxicab metric
‖·‖2 Euclidean distance

Table 1: Summary of frequently used symbols in the paper from Section 3 onwards.
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of similar large size or volume, leading to balancing factors such as the denominators xTc xc in (5) or
xTc D̄xc in (6), discussed further below.

Weak balance theory has motivated the development of algorithms for clustering signed networks.
Doreian and Mrvar [32] proposed a local search approach in the spirit of the Kernighan–Lin algorithm
[33]. Yang et al. [34] introduced an agent-based approach by considering a certain random walk on the
graph. Anchuri et al. [35] proposed a spectral approach to optimize modularity and other objective
functions in signed networks, and demonstrated its effectiveness in detecting communities from real
world networks. In a different line of work, known as correlation clustering, Bansal et al. [36] considered
the problem of clustering signed complete graphs, proved that it is NP-complete, and proposed two
approximation algorithms with theoretical guarantees on their performance. On a related note, Demaine
and Immorlica [37] studied the same problem but for arbitrary weighted graphs, and proposed an O(log n)
approximation algorithm based on linear programming. For correlation clustering, in contrast to k-way
clustering, the number of clusters is not given in advance, and there is no normalization with respect to
size or volume.

Kunegis et al. [38] proposed new spectral tools for clustering, link prediction, and visualization of
signed graphs, by solving a signed version of the 2-way ratio-cut problem via the signed graph Laplacian
[39]

L̄ := D̄ −A, (2)

where D̄ is the diagonal matrix with D̄ii =
∑n
i=1 |dij |. The authors proposed a unified approach to

handle graphs with both positive and negative edge weights, motivated by a number of tools and applica-
tions, including random walks, graph clustering, graph visualization and electrical networks. The signed
extensions of the combinatorial Laplacian also exist for the random-walk normalized Laplacian and the
symmetric graph Laplacian

L̄rw := I − D̄−1A, (3)

L̄sym := I − D̄−1/2AD̄−1/2, (4)

the latter of which is particularly suitable for skewed degree distributions. Here I denotes the identity
matrix. Recent work, by a subset of the authors in our present paper, provided the first theoretical
guarantees, under a signed stochastic block model, for the above Signed Laplacian L̄ [40].

In related work, Dhillon et al. [41] proposed a formulation based on the Balanced Ratio Cut objective

min{x1,...,xk}∈Ik

(
k∑
c=1

xTc (D+ −A)xc
xTc xc

)
, (5)

and the closely related Balanced Normalized Cut (BNC) objective for which the balance factors xTc xc in
the denominators are replaced by xTc D̄xc,

min{x1,...,xk}∈Ik

(
k∑
c=1

xTc (D+ −A)xc
xTc D̄xc

)
. (6)

Here Ik denotes the collection of all sets containing the indicator vectors of a k-partition of the node set
V , i.e. if {x1, . . . , xk} ∈ Ik, then each of the k vectors has entries

xt(i) :=

{
1, if node i ∈ Ct,
0, otherwise , (7)

for a collection of disjoint clusters Ct which partitions the node set V . The same authors claimed that
the approach of Kunegis et al. [38] via the Signed Laplacian faces a fundamental weakness when directly
extending it to k-way clustering, and obtained better results on several real data sets via their proposed
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algorithm which optimizes the BNC objective function. On the other hand, [40] reported good numerical
performance of the Signed Laplacian even for higher values of k, aside from providing a robustness analysis
of it for k = 2.

A rather different approach for signed graph clustering has been investigated by Hsieh et al. [42], who
proposed a low-rank model, based on the observation that the problem of clustering a signed network can
be interpreted as recovering the missing structure of the network. The missing relationships are recovered
via state-of-the-art matrix completion algorithms (MC-SVP), which first complete the network and then
recover the clusterings via the k-means algorithm using the top k eigenvectors of the completed matrix.
An alternative method (MC-MF), scalable to very large signed networks, is based on a low-rank matrix
factorization approach, which first completes the network using matrix factorization and derives the two
low-rank factors U,H ∈ Rn×k, runs k-means on both U and V , and selects the clustering which achieves
a lower BNC objective function (6).

Both strong and weak balance are defined in terms of local structure at the level of triangles. As
observed early in the social balance theory literature, local patterns between the nodes of a signed graph
induce certain global characteristics. Chiang et al. [43] exploited both local and global aspects of social
balance theory, and proposed algorithms for sign prediction and clustering of signed networks. They
defined more general measures of social imbalance based on cycles in the graph, and showed that the
classic Katz measure, ubiquitous for unsigned link prediction, also has a balance theoretic interpretation
in the context of signed networks. The global structure of balanced networks leads to a low-rank matrix
completion approach via convex relaxation, which scales well to very large problems. This approach is
made possible by the fact that the adjacency matrix of a complete k-weakly balanced network has rank
1 if k ≤ 2, and rank k for all k > 2 [43].

The recent work of Mercado et al. [44] presented an extended spectral method based on the geometric
mean of Laplacians. In another recent work, a subset of the authors showed in [45] that, for k = 2,
signed clustering can be formulated as an instance of the group synchronization problem over Z2, for
which spectral, semidefinite programming relaxations, and message passing algorithms have been studied;
extensions to the multiplex setting and incorporation of constraints have also been considered. Finally,
we refer the reader to [46, 47] for recent surveys on clustering signed and unsigned graphs.

3 Ginzburg–Landau functional
The Ginzburg–Landau functional (GLF) was originally introduced in the materials science literature to
study phase separation, and has since also found many uses in image processing and image analysis due
to its connections with the total variation functional [48, 49]. In this section, we briefly review the main
idea behind the GLF together with a description of the (local) minimizer(s) of the functional in terms of
solutions of the Allen–Cahn equation (ACE). Then, we will show how this approach can be adapted to
the discrete case of clustering over signed graphs.

3.1 GLF as potential energy
In this introductory presentation, which is based on [50, 51], we restrict to the one dimensional case for
simplicity. Consider the function ρ in the Sobolev space W 1,2 ([0, 1]). The GLF Fε : W 1,2 ([0, 1]) 7→ [0,∞)
is defined as

Fε [ρ] :=
ε

2

∫ 1

0

(
dρ

ds

)2

ds+
1

4ε

∫ 1

0

(
1− ρ2

)2
ds, (8)

for some ε > 0. The second term has the shape of a double-well and is often labelledW (ρ) :=
(
1− ρ2

)2 ∈
R+. The GLF is interpreted as the potential energy for the physical observable ρ. At this stage, ρ is also
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Figure 1: Plot of the stationary solution (13) of the ACE (11) for two parameter values ε2 (blue curve)
and ε1 (cyan curve) with ε2 > ε1. We can see that bigger values of ε reduce sharpness of the curve ρ∗ε (x).
Moreover, ρ∗ε1 (ε1) = ρ∗ε2 (ε2) = tanh

(
1√
2

)
≈ 0.609.

understood as time dependent and we want to find solutions of

dρ

dt
(t, x) = −δFε

δρ
[ρ] (t) , (9)

where δF
δρ is the functional derivative of F , which lead in their time evolution to the local minima of the

GLF. A common choice for the boundary values of the problem (9) is the von Neumann condition

dρ

dx
(t, 1) =

dρ

dx
(t, 0) = 0 for t > 0. (10)

In this way, calculating the functional derivative of the right-hand side in (9) gives rise to the ACE

dρ

dt
(t, x) = ε

d2ρ

dx2
(t, x)− 1

ε
ρ (t, x)

(
ρ2 (t, x)− 1

)
, (11)

where the last term is often called W ′ (ρ) := ρ
(
ρ2 − 1

)
∈ R. Moreover, it is possible to verify by direct

calculation that the GLF is decreasing in time on the solution of the ACE, that is

dFε [ρ]

dt
(t) = −

∫ 1

0

(
dρ

dt
(t, s)

)2

ds < 0, (12)

as is expected for the evolution of a physical observable along its energy potential. The meaning of the
coefficient ε can be understood as follows. A stationary solution for the ACE, such that dρ

dt (t, x) = 0∀t ∈
R+ in (11), is given by

ρ∗ε (x) := tanh

(
x

ε
√

2

)
. (13)

By taking the first derivative with respect to the spatial coordinate, we can see that the parameter ε is
responsible for the sharpness of the solution (see Figure 1). Thus, given the values of the function ρ∗ε at
the boundary of its domain, the ACE can be understood as the evolution of the layer profile connecting
the two boundary values of the system.

8



3.2 GLF and clustering
Using tools from nonlocal calculus, see Section 2.3 in [1], it is possible to write a version of the GLF where
the density function is defined on a network. To fix the notation, we denote as G (V,E,N) a positive-
weighted undirected graph with vertex set V , edge set E and affinity matrix N which is a symmetric
matrix whose entries Nij are zero if i = j or i 6∼ j1 and nonnegative otherwise. From the affinity matrix,
ones defines the diagonal degree matrix as

Dij :=

{ ∑V
k=1Nik ∈ R+0

0

if i = j
if i 6= j

, (14)

where V is the cardinality of the vertex set. When the entries of the affinity matrix are positive, the
associated network is often called an unsigned graph. In the same way, the discrete equivalent of the
density function is now a column vector on the vertex set, that is ρ : N× [0, T ] 7→ RV , written as

ρ (t) := {ρ0(t), ρ1(t), . . . , ρV (t)} . (15)

Following [3], it turns out that the network version of (8) for unsigned graphs, also called graph GLF
(GGLF), is given by

Fε(ρ) :=
ε

2
〈ρ, Lρ〉+

1

4ε

V∑
i=1

(ρ2
i − 1)2, (16)

where L := D − N ∈ RV×V is the (combinatorial) graph Laplacian, and 〈·, ·〉 denotes the usual inner
product on RV . It is important to notice that the following expression holds true

〈ρ, Lρ〉 =

V∑
i=1

Nij(ρi − ρj)2 ≥ 0. (17)

The inequality in (17) shows that L is positive semidefinite (i.e., L has non-negative, real-valued eigen-
values, including 0) and this assures the non-negativity of the GGLF (16). Again, the minimization of
the GGLF can shed light on the interpretation of the terms composing the potential. The second term
in Fε will force minimizers ρ ∈ RV to have entries which are close to −1 or 1 in order to keep (ρ2

i − 1)2

small. The first term in Fε penalizes the assignment to different clusters of nodes that are connected by
highly weighted edges. This means that minimizers of Fε are approximate indicator vectors of clusters
that have few highly weighted edges between them. In the end, we interpret nodes having different sign
as belonging to different clusters.

As before, minimizing the GGLF using the method of the gradient descent, we obtain the ACE for
networks which we write component-wise as

dρi
dt

(t) = −ε [Lρ]i (t)− 1

ε
ρi (t)

(
ρ2
i (t)− 1

)
, (18)

where [Lρ]i indicates the i-th component of the vector Lρ. Instead of the combinatorial graph Laplacian
L, it is possible to use the random walk Laplacian Lrw := I −D−1N (which is positive semidefinite), or
the symmetric graph Laplacian Lsym := I − D−1/2ND−1/2 (symmetric positive semidefinite). In fact,
[52] argues for the use of Lsym, but no rigorous results are known that confirm this is necessarily the best
choice for each application.

1The symbol i ∼ j, respectively i 6∼ j, denotes that nodes i and j are connected, respectively not connected, by an edge.

9



3.3 Numerical solution of the ACE
Various methods have been employed to numerically compute (approximate) minimizers of Fε. In [52]
a gradient flow approach is used and (18), interpreted as a system of ordinary differential equations
(ODEs), is solved. The hope is that the gradient flow dynamics will converge to a local minimizer of Fε.
Under some assumptions [53], this hope is theoretically justified [54], but numerically the nonconvexity
of Fε can cause some issues. In [52] such issues were tackled with a convex splitting scheme.

Another strategy which has been developed to approximately solve the ACE for networks consists
in using a variation of the Merriman–Bence–Osher (MBO) scheme (also known as threshold dynamics).
This was first introduced in [55, 56] in a continuum setting as a proposed algorithm to approximate flow
by mean curvature. Following [1], we first neglect the terms W ′ (ρi) and discretize (18) in the following
way

ρn+ 1
2 − ρn

dτ
= −εLρn+ 1

2 , (19)

where dτ ∈ R+ is the length of a small time interval to be tuned and the superscript n indicates the step
of the iterative procedure (n + 1

2 simply specifies an intermediate step between the n-th step and the
subsequent one which will be labelled as n+ 1). The above leads to the MBO equation (MBOE)

ρn+ 1
2 = (IV + εdτL)

−1
ρn, (20)

where IV ∈ {0, 1}V×V is the identity matrix. After performing the eigendecomposition of the Laplacian,
(20) becomes

ρn+ 1
2 =

[
X (IV + dτεΛ)XT

]−1
ρn, (21)

where X is a matrix whose columns are the normalized eigenvectors of L and Λ is the relevant eigenvalue
diagonal matrix. Since the double-well potential pushes the components of ρ to be either +1 or −1, its
role can be approximated via a thresholding step, in the following way

ρn+1
i = T

(
ρ
n+ 1

2
i

)
:=

{
+1 if ρn+ 1

2
i > 0

−1 if ρn+ 1
2

i < 0
. (22)

This procedure can be iterated until a convergence criterion is met. In practice, the diffusion step (20)
is repeated Nτ ∈ N+ times before the thresholding step (22). This corresponds to multiplying ρn in (20)

by
[
X
(
IV + dτ

Nτ
εΛ
)
XT
]−Nτ

(note the division of dτ by Nτ ).
The graph version of MBO has been used successfully in recent years in various applications, both

applied to Fε [1], its multi-class extension [57], and its signless Laplacian variant [58]. In general, we
notice that the choice of ε also poses a problem. Smaller values of ε are expected to lead to minimizers
ρ that are closer to being indicator vectors, however the discrete length scales of the problem impose a
lower bound on the ε values that can be resolved. The MBO scheme avoids this problem since theW ′ (ρi)
are substituted with a thresholding step. In this way, we can fix ε = 1. Using the MBO scheme instead
of the gradient flow does not solve all problems: It eliminates the terms in the ODEs that originated
with the non-convex term in Fε and it removes ε from consideration, but instead a value for dτ has to
be chosen. The discrete length scales in the problem disallow values that are too small, yet dτ has to be
small enough to prevent oversmoothing by the diffusion term [Lρ]i.

3.4 Generalization to multiple clusters
The Ginzburg–Landau method has been adapted to allow for clustering or classification into K > 2
clusters [59, 60, 61, 62]. We briefly review this line of work here, since our proposed approach for clustering
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signed graphs is for general K as well. This construction relies upon an assignment or characteristic
matrix whose entries correspond to the weight for a node i to belong to a cluster k. More precisely,
consider the simplex

ΣK :=

{(
σ1, σ2, . . . , σK

)
∈ [0, 1]

K
:

K∑
k=1

σk = 1

}
, (23)

which corresponds to row vectors whose components sum up to 1. Then, we can associate to each node
a characteristic vector2, written as a column vector

ui :=
(
ui1, ui2, . . . , uiK

)T ∈ ΣK , (24)

which specifies the weight for the node i to belong to each of the clusters in the network. So, the
characteristic matrix of all the nodes in the system is defined as

U :=
(
u1, u2, . . . , uV

)T ∈ (ΣK)
V
. (25)

In the end, as explained in [61], the generalization of the GLF reads as

Fε(U) :=
ε

2
〈U,LU〉+

1

2ε

V∑
i=1

(
K∏
k=1

1

4
‖ui − ek‖

2
1

)
, (26)

where ‖·‖1 is the taxicab metric, 〈U,LU〉 = Tr
(
UTLU

)
and ek correspond to the canonical basis vector

defined as
ek :=

(
e1, e2, . . . , eK

)T ∈ {0, 1}K , (27)

whose components satisfy ei=k = 1 and ei 6=k = 0. In this context, the MBO scheme for the characteristic
matrix reads as

Un+ 1
2 = BUn, where B :=

[
X

(
IV +

dτ

Nτ
Λ

)
XT

]−Nτ
∈ RV×V (28)

where we have fixed ε = 1, as explained at the end of Section 3.3, and we have included the contribution
from the diffusion iteration directly in B as explained below equation (22). Then, following [61], we
project each row of Un+ 1

2 on the simplex ΣK . We call the corresponding vector

vi := argmin
y∈ΣK

∥∥∥un+ 1
2

i − y
∥∥∥

2
∈ [0, 1]

K
. (29)

It is important to notice that in the intermediate step u
n+ 1

2
i ∈ RK . The thresholding step consists in

determining the closest vertex to vi of ΣK , that is3

un+1
i = ek with k = argmin

j=1,...,K

∥∥vi − ej∥∥2
. (30)

In the end, we have Un+1 =
(
un+1

1 , un+1
2 , . . . , un+1

V

)T . In Section 4.2, we will use a simplified
version of the MBO scheme which reduces the projection (29) and thresholding (30) to a single step (the
equivalence of these two versions will be proved in the Appendix A.1).

2We generally refer to the vector whose entries are the “intensity" of belongingness to a cluster as characteristic vector
also if these coefficients are not only 0 or 1.

3When vi has the same distance to multiple vertices, one of those is picked at random with uniform probability.
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4 Ginzburg–Landau functional on signed graphs
In this section, we define a new affinity matrix that also incorporates negative weights, and investigate
how the degree and Laplacian matrices can be suitably modified. In this way, we also show how negative
weights can be interpreted in the context of the GL functional. Moreover, we discuss how the standard
MBO algorithm can be simplified.

4.1 Signed Laplacians
In the following, we will consider connected weighted undirected simple graphs (hence with symmetric
affinity matrices and no self-loops). The corresponding affinity matrix A is a symmetric matrix whose
entries Aij are zero if i = j or i 6∼ j and nonzero real otherwise. This can be decomposed in two matrices
A+ ∈ RV×V+0 and A− ∈ RV×V+0 whose components are defined as

A+
ij := max {Aij , 0} ∈ R+0 and A−ij := −min {Aij , 0} ∈ R+0, (31)

respectively, so that
A = A+ −A− ∈ RV×V . (32)

In this decomposition, note that A+, respectively A−, takes into account the affinity, respectively antipa-
thy, between nodes. Along the same lines as [38], we define the signed degree matrix as

D̄ij :=

{ ∑V
k=1 |Aik| ∈ R+0

0

if i = j
if i 6= j

, (33)

where |Aik| is the absolute value of Aik. As for the affinity matrix, D̄ can be decomposed intoD+ ∈ RV×V+0

and D− ∈ RV×V+0 , with components

D+
ij :=

V∑
k=1

A+
ik ∈ R+0 and D−ij :=

V∑
k=1

A−ik ∈ R+0, (34)

so that
D̄ = D+ +D− ∈ RV×V+0 . (35)

Following [38], the signed Laplacian is defined as

L̄ := D̄ −A ∈ RV×V , (36)

together with its variants
L̄rw := D̄−1L̄ = IV − D̄−1A ∈ RV×V (37)

and
L̄sym := D̄−

1
2 L̄D̄−

1
2 = D̄

1
2 L̄rwD̄

− 1
2 = IV − D̄−

1
2AD̄−

1
2 ∈ RV×V . (38)

Kunegis et al. [38] showed that the signed Laplacian L̄ is positive semidefinite, and furthermore, unlike
the ordinary Laplacian L, the signed Laplacian L̄ is strictly positive-definite for certain graphs, including
most real-world networks. It is known that (see for instance [63, 64]) if a matrix Y1 is positive semidefinite
then Y2 := XY1X

T is also positive semidefinite provided that X is invertible. We can apply this to show
from the definition (38) that L̄sym is also positive semidefinite since D̄ is diagonal with rank V . Positive
semidefiniteness of L̄rw follows from the second equality in (38) since it shows that L̄rw and L̄sym are
similar matrices.
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In particular, for (36) we can see that a natural decomposition stemming from (32) and (35) occurs,

L̄ = D̄ −A =
(
D+ −A+

)
+
(
D− +A−

)
=: L+ +Q−, (39)

where we stress that L+ ∈ RV×V and Q− ∈ RV×V+0 . The latter is known in the literature as signless
Laplacian [65] and, to the best of our knowledge, first appeared, although without this nomenclature, in
[66].

To understand the meaning of the different terms contributing to the signed Laplacian, first consider
the following quadratic form

xTQ−x = xTD−x+ xTA−x. (40)

for some x ∈ RV . Using the definition of D− together with the fact that A− is symmetric with null
diagonal, we have for the first term4

xTD−x =

V∑
i=1

D−iix
2
i =

V∑
i=1

 V∑
j=1

A−ij

x2
i =

V∑
i=1

A−ii +
∑
j 6=i

A−ij

x2
i =

V∑
i=1

∑
j<i

A−ij +
∑
j>i

A−ij

x2
i

=

V∑
i=1

∑
j<i

A−ijx
2
i +

V∑
i=1

∑
j>i

A−ijx
2
i =

V∑
i=1

∑
j<i

A−jix
2
i +

V∑
i=1

∑
j>i

A−ijx
2
i

=

V∑
i=1

∑
j>i

A−ijx
2
j +

V∑
i=1

∑
j>i

A−ijx
2
i , (41)

and for the second

xTA−x =

V∑
i=1

A−iix
2
i +

V∑
i=1

∑
j>i

A−ijxixj +

V∑
i=1

∑
j<i

A−ijxixj = 2

V∑
i=1

∑
j>i

A−ijxixj . (42)

Putting all the contributions together gives

xTQ−x =

V∑
i=1

∑
j>i

A−ijx
2
i +

V∑
i=1

∑
j>i

A−ijx
2
j + 2

V∑
i=1

∑
j>i

A−ijxixj =

V∑
i=1

∑
j>i

A−ij (xi + xj)
2 > 0. (43)

The minimum of (43) is achieved when xi = −xj . In the simplified case in which the node vector is
limited to dichotomic values such as x ∈ {−1, 1}V , one can envision the system to be made up of K = 2
clusters and the value of xi (being only +1 or −1) specifies the node-cluster association. In addition,
with this particular choice, (43) counts the number of times, weighted for A−ij , two nodes were placed
incorrectly in the same cluster (which we want to minimize). We note that choosing as dichotomic values
{0, 1} would reach a different conclusion since the result of the minimization would be xi = xj = 0, that
is, the nodes would belong to the same cluster. In regard to L+ (being the Laplacian of the affinity
matrix A+), using either {−1, 1} or {0, 1} leads to the same interpretation as for (17). A more rigorous
point of view based on the TV measure can be found in [58] and references therein.

The elements of the canonical basis, which correspond to pure node-cluster associations, can be
suitably transformed to take values {−1, 1}, via the following expression

e±k := 2ek − 1K ∈ {−1; 1}K . (44)

4Here, we use the following shorthand notation
∑
j<i ≡

∑V
j=1
j<i

, together with
∑
j>i ≡

∑V
j=1
j>i

and
∑
j 6=i ≡

∑
j<i +

∑
j>i.
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where the associated simplex is

Σ±K :=

{(
σ±1 , σ±2 , . . . , σ±K

)
∈ [−1; 1]

K
:

K∑
k=1

σ±k = 2−K

}
. (45)

In addition, since each row of U from (25) is a linear combination of ek whose coefficients sum up to 1,
the characteristic matrix in the new representation can be obtained as

U± := 2U − 1V ∈
(
Σ±K
)V

. (46)

In the end, by plugging L̄ in place of L in (26), we have that the signed GL functional is given by

F̄ε(U
±) :=

ε

8
〈U±, L̄U±〉+

1

2ε

V∑
i=1

(
K∏
k=1

1

16

∥∥u±i − e±k ∥∥2

1

)
(47)

=
ε

8
〈U±, L+U±〉+

ε

8
〈U±, Q−U±〉+

1

2ε

V∑
i=1

(
K∏
k=1

1

16

∥∥u±i − e±k ∥∥2

1

)
, (48)

where the different normalization of the terms comes from (44) and (46). In other words, through the
signed GL functional we want to minimize the presence of positive links between clusters as well as
negative links within each one. We can verify that the following equality holds

F̄ε(U
±)− ε

8
〈U±, Q−U±〉 = Fε(U), (49)

where, on the right-hand side, the Laplacian of the GL functional is L+, and we used the fact that
L+1V = 0 together with known properties of the trace of the product of two matrices.

4.2 MBO scheme for signed graphs
The MBO scheme arising from the signed GL has the same structure as in (28), that is

(
U±
)n+ 1

2 = B̄
(
U±
)n where B̄ :=

[
1

4
X̄

(
IV +

dτ

Nτ
Λ̄

)−1

X̄T

]Nτ
∈ RV×V , (50)

together with X̄ and Λ̄ which are the eigenvector and eigenvalue matrices of L̄, respectively5. As explained
in the Appendix A.1, the succession of projection (which in [61] is performed using the algorithm developed
in [67]) and thresholding steps can be reduced to determine the entry of the largest component of each
row of (U±)

n+ 1
2 , so that6 (

u±i
)n+1

= e±k with k = argmax
j=1,...,K

{(
u±ij
)n+ 1

2

}
. (51)

5Here we have used another definition for B̄ which is different from the definition of B in (28). In fact, since L̄ is real

and symmetric its eigenvector matrix is orthogonal, that is X̄T = X̄−1. So, we have that
[
X̄
(
IV + dτ

Nτ
Λ̄
)
X̄T

]−Nτ
=[(

IV + dτ
Nτ

Λ̄
)
X̄T

]−Nτ
X̄−Nτ =

(
X̄T

)−Nτ (IV + dτ
Nτ

Λ̄
)−Nτ

X̄−Nτ =

[
X̄
(
IV + dτ

Nτ
Λ̄
)−1

X̄T

]Nτ
.

6As before, when
(
u±i

)n+1
has the same distance to multiple vertices, one of those is picked at random with uniform

probability.
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However, we note that the calculation of the argmax in (51) is independent of the representation chosen
for the characteristic matrix. In fact, using (46) we can see that(

U±
)n+ 1

2 = 2B̄Un − B̄1V . (52)

Since B̄1V has constant rows, the location of the largest entry in a row of (U±)
n+ 1

2 is the same as in
B̄Un, that is from (51)

k = argmax
j=1,...,K

{
2

V∑
h=1

b̄ihu
n
hj −

V∑
h=1

b̄ih

}
= argmax
j=1,...,K

{
2

V∑
h=1

b̄ihu
n
hj

}
. (53)

since
∑V
h=1 b̄ih is independent of j by definition. The factor 2 can also be neglected since it does not

change the actual node-cluster association. We indicate this equivalence with the symbol(
U±
)n+ 1

2 ≈ B̄Un. (54)

In other words, after applying B̄, the position of the largest entry of
(
u±i
)n+1, resulting from the argmax

in (51), is the same as the one of (ui)
n+1. In this way, we can keep using a sparse node-cluster association

matrix by picking U instead of U±.

5 GLF with constraints
Now, we extend the GLF to three possible types of constraints. Here, we distinguish between two different
types of constraints: soft, when the final result of the algorithm does not necessarily satisfy the original
constraint, and hard, when the output matches the constraint.

5.1 Must-link and cannot-link
In practice, the affinity matrix usually results from measurements of a system’s properties (see Section 9
for example). However, in the same spirit as in [68], additional information in the form of both positive
(must-link) and negative (cannot-link) edge weights, can also be known and could have a different relative
strength with respect to measurements. In quantitative terms, we will embed must-links in A+ and
cannot-links in A− and generate the new degree matrices D+ and D− accordingly. To this end, we define

A+ := A+ + λ+M ∈ RV×V+0 , (55)

where M ∈ RV×V+0 is the must-link matrix, and λ+ ∈ R+ is a trade-off parameter. The role of M consists
in adding links to nodes which should be belong to the same cluster or to increase the weight of a link
to reinforce node-cluster associations. In general, it is a symmetric sparse matrix with positive weights
(whose values can also be different among each couple of nodes). We indicate the resulting degree matrix
for A+, defined in the same fashion as in (33), with D+ ∈ RV×V+0 . Similarly

A− := A− + λ−C ∈ RV×V+0 , (56)

where C ∈ RV×V+0 is the cannot-link matrix, and λ− ∈ R+ the trade-off parameter. In the same fashion as
M , the matrix C can include links to nodes which should not belong to the same cluster or to decrease
even more the weight of a link pushing node couples to belong to different clusters. In this case as well, C
is a symmetric sparse matrix with positive weights, where the greater the weight the more the two nodes
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are incentivised to belong to different clusters. Also here we have D− ∈ RV×V+0 as the degree matrix of
A−. In the end, we have that the GLF in the presence of must- and cannot-links is given as

F̄ε(U±) =
ε

8
〈U±,L+U±〉+

ε

8
〈U±,Q−U±〉+

1

2ε

V∑
i=1

(
K∏
k=1

1

16

∥∥u±i − e±k ∥∥2

1

)
, (57)

where L+ := D+ −A+, Q− := D− +A− so that L := L+ +Q−. As in (50), we now need to determine
the matrix B̄ resulting from the eigendecomposition of L.

5.2 Fidelity and avoidance terms
Soft constraints can also be implemented at the level of the characteristic matrix mainly in two ways.
First, as a fidelity term (see for instance [61]) which attracts the dynamics of the ACE towards a particular
characteristic matrix Û . At the level of the GLF this translates into a term which increases the overall
energy when the node-cluster association in Û is not matched. Second, as an avoidance term which pushes
the ACE dynamics to avoid particular node-cluster combinations expressed in a characteristic matrix Ũ .
Again, for the GLF this means an energy increase when the wrong node-cluster association is met. We
notice that while the first constraint points the system to a particular combination and increasing the
energy every time this condition is not met, the second does the opposite, that is only one combination
increases the energy and leaves all the others as equally possible. The GLF for an affinity matrix with
positive edges only reads as

GRε (U, Û , Ũ) := Fε(U) +
1

2

V∑
i=1

Rfiii ‖ui − ûi‖
2
2 +

V∑
i=1

Ravii ‖ui ◦ ũi‖1 (58)

where ◦ is the Hadamard product and Rfi (and Rav) is a diagonal matrix whose element Rfiii (Ravii ) is
positive if and only if there exists a j ∈ {1, . . . , V } such that Ûij 6= 0 (Ũij 6= 0) and is zero otherwise. At
the level of the MBOE, following [61] the first step in the procedure is given by

Un+ 1
2 = B

[
Un − dτRfi

(
Un − Û

)
− dτRavŨ

]
. (59)

We can obtain an equivalent expression for the signed GLF using (46). The result is

ḠRε (U±, Û±, Ũ±) := F̄ ε(U
±) +

1

8

V∑
i=1

Rfiii
∥∥u±i − û±i ∥∥2

2
+

1

4

V∑
i=1

Ravii
∥∥u±i ◦ ũ±i + u±i + ũ±i + 1V

∥∥
1
. (60)

Now the MBOE (50) becomes(
U±
)n+ 1

2 = B̄

{(
U±
)n − dτ

4

[
Rfi

((
U±
)n − Û±)+Rav

(
Ũ± + 1V

)]}
, (61)

and after the transformation (46) becomes(
U±
)n+ 1

2 = 2

{
B̄Un − 1

2
B̄1V −

dτ

4
B̄
[
Rfi

(
Un − Û

)
+RavŨ

]}
, (62)

The factor 1
4 can be embedded in the definitions of Rfi and Rav. As explained in Section 4.2, since 1V

has constant rows, the term B̄1V does not modify the result of the argmax problem. Moreover, since the
global factor is positive, the presence of the coefficient 2 in front of the brackets in (62) does not affect
which entry is the largest and it can be neglected. So, we can consider only the following terms(

U±
)n+ 1

2 ≈ B̄
{
Un − dτ

[
Rfi

(
Un − Û

)
+RavŨ

]}
. (63)
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5.3 Anchors
In general, anchors correspond to a subset of the network nodes whose values are fixed once and for all.
For example, in the context of sensor network localization (that aims to find coordinates of sensors in Rd
from given pairwise distance measurements; typically d = {2, 3}), anchors are sensors that are aware of
their location, and anchor-based algorithms make use of their existence when computing the coordinates
of the remaining sensors [69]. In the context of the molecule problem from structural biology applications
[70] (motivated by NMR), there are molecular fragments (i.e., embeddings of certain subgraphs) whose
local configuration is known in advance up to an element of the special Euclidean group SE(3), rather than
the Euclidean group E(3). In other words, in the terminology of signed clustering for k = 2, there exists
a subset of nodes (anchors) whose corresponding ground truth assigned value {−1, 1} ∈ Z2 (i.e., cluster
membership) is known a priori, and can be leveraged to find the values of the remaining non-anchor
nodes.

In the context of multiple clusters, anchors are understood as those nodes whose cluster membership
is known. From the point of view of the MBO, we can consider anchors as fixed points in the dynamics,
that is from (19)7

u
n+ 1

2
i − uni
dτ

= 0. (64)

Anchors are implemented in the following way. Suppose we know that node z always belongs to cluster
k, that is

Un =
(
un1 , un2 , . . . , unz−1, ek, unz+1, . . . , unV

)T for all n, (65)

including n = 0 and the intermediate steps n + 1
2 . To include this a priori information in the MBO

scheme, it is sufficient to use at the level of (28) an evolution matrix (to be used in place of the original
B) which leaves the anchor node unaffected by the dynamics. The latter can be defined as

Baij :=

 Bij if i 6= z
0 if i = z and j 6= z
1 if i = j = z

. (66)

In general, to take into account the presence of a second anchor node it is sufficient to modify all the
relevant entries of Baij in the same fashion as in equation (66). This procedure can be repeated for all
the anchor nodes.

6 The algorithm
This section is devoted to describing the general structure of the MBO scheme. First, we will show
the basic implementation and then we will explain how to modify the relevant structures to incorporate
different types of constraints.

7For this presentation we use the notation for the unsigned case, but the arguments apply to L̄ as well.
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Require
V , K, dτ , Nτ , m, L̄, ε;

Initialize
B̄m ← X̄m

(
Im + dτ Λ̄m

)−1
X̄T
m;

U0 = 0V×K ;
for i← 1 to V do

k = randperm(K, 1);
u0
ik = 1;

end

MBO Scheme
n← 0;
while Stop criterion not satisfied do

for s← 1 to Nτ do
Un+ 1

2 ← B̄mU
n;

Un ← Un+ 1
2 ;

end
for i← 1 to V do

un+1
i = 0K ;

k = arg maxj=1,...,K

{
u
n+ 1

2
ij

}
;

un+1
ik = 1;

end
Un ← Un+1

end

Output v∗ ∈ {1; . . . ;K}V
for i← 1 to V do

v∗i = arg maxj=1,...,K

{
unij
}
;

end

Algorithm 1: Structure of the MBO scheme for signed Laplacians in the absence of constraints.
The algorithm requires values specifying the affinity matrix and some parameters for best code-tuning
which are explained in the main text of the present section. The output of the code is a vector v∗ which
indicates the cluster (numbered from 1 to K) each node belongs to. The command randperm(K, 1)
generates a vector of length K whose entries are natural numbers uniformly distributed in the interval
[1,K], i.e., it associates to each node a random cluster membership.

The MBO scheme for signed Laplacians we propose is given in Algorithm 1. In addition to the graph
variables (i.e., the number of nodes, clusters and the signed Laplacian), we also need to specify

• dτ ∈ R+ which is the length of the interval of the time discretization procedure as in (19),
• Nτ ∈ N which is the number of times we repeat the diffusion step in (20),
• m ∈ N which is the number of eigenvectors and eigenvalues considered in the eigendecomposition

of B̄ in (50) (we refer the reader to the next paragraph for a theoretical motivation of this choice).

The corresponding eigenvector and eigenvalue matrices (thus having m eigenvectors and eigenvalues)
are indicated as X̄m and Λ̄m, respectively. The parameter ε is defined later in (67). In regard to dτ , in
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Section 7.1 we show, empirically on a synthetic data set, that the outcomes of algorithm 1 are independent
of the chosen value as long as it remains small. In [61], it is reported that the optimal value for the number
of diffusion step iterations is Nτ = 3. Finally, the number of eigenvectors considered is chosen to be equal
to the number of clusters set a priori since, at a heuristic level, the eigenvalues empirically exhibit a big
jump after the K-th term (although this may not always hold true, see [71]). On a related note, we refer
the reader to the celebrated result of Lee, Gharan, and Trevisan on higher-order Cheeger inequalities
for undirected graphs with k ≥ 2 clusters [72], which motivates the use of the top k eigenvectors and
generalizes initial results on k = 2 [73]. Moreover, the version of the algorithm we propose does takes
into account the projection/thresholding step in a different fashion, as explained in Section 4.2, which
allows us to shorten the running time. To include various constraints, it suffices to modify only a few
relevant parts of the code in algorithm 1. In particular, we consider

• Must-link and cannot-link soft constraints - here, we just need to use B in place of B̄ in (54),

• Fidelity and avoidance terms - the evolution equation given by B̄ now includes the additional
terms as in (59),

• Anchor nodes - the matrix B̄ is modified, as explained in Section 5.3, to include the fixed nodes
in the MBO dynamics.

In all cases, as a stop criterion we use, as in [61],

maxi
∥∥un+1

i − uni
∥∥2

2

maxi
∥∥un+1

i

∥∥2

2

< ε ∈ R+. (67)

All the constraints can also be combined together since they act at different levels in the scheme. However,
we notice that including anchors automatically rules out possible soft constraints acting on the same node.

7 Numerical experiments for a signed stochastic block model
This section is devoted to present the performance of the MBO scheme for signed Laplacians on synthetic
data sets. This approach is useful since it allows a direct comparison of the results with the ground truth.
Here, we consider a signed stochastic block model (SSBM) followed by the definition of the cost function
used to compare the output of the MBO algorithm with the ground truth.

Given a set of numbers {c1, c2, . . . , cK} ∈ N representing the size of K clusters of V nodes, the
corresponding affinity matrix for the fully connected case is given in block form as

S :=


1c1 −1c1×c2 . . . −1c1×cK

−1c2×c1 1c2 . . . −1c2×cK
...

...
. . .

...
−1cK×c1 −1cK×c2 . . . 1cK

 (68)

where 1ci is a square matrix of size ci whose entries are all 1 and −1ci×cj ∈ {−1}ci×cj is a matrix with
ci rows and cj columns whose elements are all −1 (for consistency, we have that

∑K
k=1 ck = V ). Here,

we see that all the nodes belonging to the same (respectively different) cluster have a +1 (respectively
−1) link. The corresponding output vector (see Algorithm 1) for the ground truth is given as

s =
(
c11Tc1 , c21Tc2 , . . . , cK1TcK

)T ∈ {1, . . . ,K}V , (69)
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where each entry corresponds to a node and its value to the cluster (indexed from 1 to K) the node
belongs to, and its characteristic matrix is

Us =


1c1 0 . . . 0
0 1c2 . . . 0
...

...
. . .

...
0 0 . . . 1cK

 ∈ {0, 1}V×K . (70)

An instance of the SSBM is obtained from (68) by introducing sparsity (understood as null entries)
and noise (which corresponds to a change of the sign of the elements Sij) with probabilities λ and η,
respectively. More specifically, an edge is present independently with probability λ, while the sign of an
existing edge is flipped with probability η. In quantitative terms, an SSBM matrix A, which we fix to be
symmetric and null-diagonal, is generated from S via the following probabilistic mixture model. Consider
a row index i = 1, . . . , V and a column index j = i, . . . , V (the j index starts from i so to consider only
the upper triangular part in the definition of the elements of A), we define the affinity matrix as

Aij =


Sij if i < j, with probability (1− η)λ
−Sij if i < j, with probability ηλ

0 if i < j, with probability 1− λ
0 if i = j, with probability 1

with Aji = Aij . (71)

Then, the corresponding Laplacian can be computed as detailed in Section 4.1.
As explained in Section 6, the output of the MBO algorithm is a vector v∗ which holds the in-

formation related to the node-cluster association in the same spirit as (69). Therefore, it is sensible
to compare v∗ with s to measure the ability of MBO to retrieve the ground truth clustering. To
quantify success in terms of robustness to noise and sampling sparsity, we use the popular adjusted
rand index (ARI) defined as follows [74]. Consider the vector v∗ and its associated nodes partition
P (v∗) = {P1 (v∗) ,P2 (v∗) , . . . ,PK (v∗)} into K clusters, where Pi (v∗) is a set whose elements are
those nodes belonging to cluster i. Also for the ground truth vector, it is possible to construct a partition
P (s) which is in general different from P (v∗). Then, the ARI is defined as

ARI (v∗, s) :=

∑
ij

(
pij
2

)
−
[∑

i

(
ai
2

)∑
j

(
bj
2

)]
/
(
V
2

)
1
2

[∑
i

(
ai
2

)
+
∑
j

(
bj
2

)]
−
[∑

i

(
ai
2

)∑
j

(
bj
2

)]
/
(
V
2

) ∈ R, (72)

where ai, bj and pij are extracted from the contingency table

v∗�s P1 (s) P2 (s) . . . Pj (s) . . . PK (s)
∑K
j=1 pij

P1 (v∗) p11 p12 . . . p1j . . . p1K a1

P2 (v∗) p21 p22 . . . p2j . . . p2K a2

...
...

...
. . .

...
. . .

...
...

Pi (v∗) pi1 pi2 . . . pij . . . piK ai
...

...
...

. . .
...

. . .
...

...
PK (v∗) pK1 pK2 . . . pKj . . . pKK aK∑K
i=1 pij b1 b2 . . . bj . . . bK

, (73)

given
pij := |Pi (v∗) ∩Pj (s)| ∈ N (74)

the number of nodes in common between Pi (v∗) and Pj (s).
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For the numerical tests, the different types of constraints described in Section 5 can be included by
extracting, at random, information from the ground truth. More specifically, M and C can be obtained
from S for the must/cannot-link case, and Û and Ũ from Us for the fidelity/avoidance term etc. We
indicate the percentage of information overlapping with the ground truth using the parameter α ∈ [0, 1].
Since we are incorporating constraints using ground truth information, it is clear that the results will be
closer to the ground truth for increasing α. The purpose of this set of experiments is simply to provide
a proof of concept for our approach.

In summary, the numerical experiments we consider are generated using the following set of parameters
summarized in Table 2, some of which are also explained in Section 6.

Parameter Value
Nodes V = 1200
Clusters K = 2, 3, 4, 5, 8, 10
Size Equal clusters size V/K
dτ 0.1
Nτ 3
m Equal to no. of clusters K
ε 10−7

No. Experiments 100
Sparsity λ ∈ [0.02, 0.1]
Noise η ∈ [0.05, 0.45]
Known Information α ∈ [0.05, 0.9]

Table 2: Parameter values used to test the MBO scheme in the SSBM experiments.

Unless stated otherwise, the initial condition we use is the clustering induced by a segmentation based
on a bottom eigenvector, that is an eigenvector associated with the smallest nonzero positive eigenvalue8,
of the Laplacian matrix (each experiment is specified by a different Laplacian matrix which will be used
for its initial condition as well as the MBO evolution). In particular, we consider the interval given by the
smallest and largest entries in the aforementioned eigenvector, and create K equally-sized bins spanning
this interval. Finally, each node will be allocated in its corresponding bin according to its value in the
eigenvector. The resulting characteristic matrix is used as the initial condition.

7.1 Best practice for MBO
As explained in Section 4.1, one may use different versions of the Laplacians given by (36), (37) and
(38). In particular, in the context of spectral clustering of (unsigned) graphs, Lrw and Lsym typically
provide better results compared to L, especially in the context of skewed degree distributions [71, 75].
We observe a similar behaviour for their respective signed counterparts L̄rw, L̄sym and L, as can be seen
in Figure 2. We remark that in subsequent experiments, we will only use L̄sym as it achieves the highest
accuracy. Moreover, we have tested the additional degree of freedom resulting from the time discretization
procedure by running MBO with different orders of magnitude for the parameter dτ . Results are detailed
in Figure 3, and the overlapping curves illustrate that the results are not sensitive to the choice of the
parameter dτ .

8Since the (signed) Laplacians we use are all positive semidefinite (and not identically zero) [38], a nonzero positive
eigenvalue can always be found. When the geometric multiplicity of this eigenvalue is greater than one, we pick at random
one of the elements of its eigenspace.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2: These plots show the capability of MBO to recover the ground truth node-cluster associ-
ation using the Laplacians (36), (37) and (38) at different regimes of noise, sparsity and number of
clusters. As explained in the main text in Section 7, the algorithms are initialized by a partition into
K sets based on an eigenvector associated with the smallest positive eigenvalue. For this reason, we
have included the ARI value of the initial condition to see how MBO improves on its starting point.
The first row shows results for K = 2. As we can see, MBO gives better results than the initial
condition for L̄, while L̄rw and L̄sym do not improve over their eigenvectors but they give better
results than L̄. For K = 5 and K = 10, MBO always gives better results than the initial condition
for all values of λ and η.

7.2 Comparison to other methods
The performance of our MBO algorithm is compared to that of the Balanced Normalized Cut (BNC)
[41], and with the results achieved by standard Kmeans++ clustering [76, 77]. In this respect, as can be
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(a) (b) (c)

Figure 3: The plots show different instances of MBO performed using different choices for the time
discretization but with the same Laplacian Lsym. Here we can see that there is no difference in the
choice of dτ in the whole range of values considered in Table 2.

seen in Figure 4, MBO always provides better performance than Kmeans++, and improves upon BNC
when sparsity and noise are high.

(a) (b) (c)

(d) (e) (f)

Figure 4: We have compared the node-cluster association recovery ability of MBO for signed Lapla-
cians with two popular methods from the literature, Kmeans++ [76] and BNC [41]. From the plots,
it is possible to see that Kmeans++ always performs worse than the other methods. MBO delivers
better results than BNC for high noise level in the sparsity regime considered.
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7.3 Must-link and cannot-link
In this section, we detail how MBO can be applied in the context of constrained clustering. We have run
the MBO algorithm for L = L+, corresponding to the must-link scenario, and L = L̄+Q−, corresponding
to the case in which only cannot-links are included as additional information in the definition of the
Laplacian. In practice, we have considered the symmetric version of L in the same fashion as in (38). In
the plots shown in Figure 5, we see that, for high sparsity and noise, the constrained clustering improves
upon the standard signed Laplacian in both cases. In addition, the two approaches can be combined to
obtain better results. In this case, we have included the known information up to α = 0.1 to not modify
considerably the sparsity of the affinity matrix.

(a) (b) (c)

(d) (e) (f)

Figure 5: We compare MBO run over an instance of the affinity matrix generated from (71), against
the same matrix where additional information extracted from the ground truth has been included in
the form of must-links and cannot-links. This corresponds to adding soft constraints to the system
in the form of edge weights. The parameter α is the fraction of links of the ground truth used to
define the must- and cannot-link matrices. In this case, we have considered α up to 0.1 to avoid large
variations in the sparsity of the matrix compared to the original one. For each Laplacian, we have
considered its symmetric version (38). The algorithms are initialized using different eigenvectors
since they are specified by different Laplacians. At any value of α, adding must-links and cannot-
links significantly improves the recovery of the regular MBO for most sparsity and noise levels.

7.4 Fidelity and avoidance terms
The second soft constraint we include in the MBO scheme is at the level of the characteristic matrix. The
fidelity term pushes the characteristic matrix to be similar to Û and increases the energy for every row
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U which is different from Û . Instead, for the avoidance term the energy of the GL functional is increased
only when there is an exact match between two rows of U and Ũ . This means that, in general, the effect
of the avoidance term will be less influential since it provides an energy increase fewer times. This can
be seen in Figure 6, where the black curve is always below the red one. We add that, in order to make
the effect of the fidelity and avoidance terms more evident, we fix the nonzero diagonal elements of the
matrices R and Q in (59) equal to 30.

(a) (b) (c)

(d) (e) (f)

Figure 6: We consider two soft constraints at the level of the characteristic matrix U as expressed
in (59). The fidelity/avoidance constraints are extracted at random from the ground truth for each
experiment. For the fidelity/avoidance case, the relevant entries of the initial characteristic matrix
are modified to be consistent with the constraints. As observed, adding the two constraints improves
the results compared to those of the regular MBO procedure for all values of α. We remind that the
matrices R and Q in (59) are multiplied by a coefficient equal to 30 in order to magnify the effect
of the constraint (without varying the relative order of position of the three curves).

7.5 Anchors
In this setting, we are introducing in the MBO scheme a hard constraint, as we need to a priori modify
the matrix responsible for the evolution of U , as detailed in Section 5.3. As shown in Figure 7, anchors
always improve upon the unconstrained signed Laplacian, as expected.
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(a) (b) (c)

(d) (e) (f)

Figure 7: The plots show the behaviour of the MBO scheme in the presence of hard constraints in the
form of anchors as specified in Section 5.3. The anchors are extracted at random from the ground
truth for each experiment. For the anchor case, the relevant entries of the initial characteristic
matrix are modified to be consistent with the constraints. As expected, for any value of α, adding
fixed points in the dynamics improves the recovery of the regular MBO for most sparsity and noise
levels.

8 Numerical experiments for the Barabási–Albert model
In this section, we apply the MBO scheme to signed networks for which the underlying measurement
graph (indicating the presence or absence of an edge) is generated from the Barabási–Albert (BA) model
[78]. In a nutshell, the algorithm to generate the BA network begins with a connected network with V0

nodes. At each time step, a new node is added to the graph and is connected to ν 6 V0 pre-existing
nodes. The probability that a link from the new node connects to a generic node i is given by

pi =
Dii∑
j Djj

(75)

where the sum indexed by j runs over all pre-existing nodes. We call H ∈ {0, 1}V×V the resulting BA
network which can be used to build the relevant signed affinity matrix in the following way. As before,
consider a row index i = 1, . . . , V and a column index j = i, . . . , V (the j index starts from i so to consider
only the upper triangular part in the definition of the elements of A), we define the signed BA network
as

Aij =

 SijHij if i < j, with probability (1− η)
−SijHij if i < j, with probability η

0 if i = j, with probability 1
with Aji = Aij , (76)
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where the sparsity of the BA network is included via Hij (the noise probability η is understood as in
(71)) and Sij are the elements of S in equation (68). We compared the numerical performance of MBO
with that of BNC and Kmeans++, in the same spirit as in Section 7.1. The results are given in Figure
8, and are consistent with those obtained for the SSBM model.

(a) (b) (c)

(d) (e) (f)

Figure 8: These plots compare the ground truth retrieval capabilities of different algorithms using as
affinity matrix a signed version of the Barabási–Albert model, as explained in (76). As we can see,
MBO dominates in the high noise regime for every sparsity level and number of clustersK ∈ {2, 3, 4}
we consider. In addition, we observe that for larger number of clusters, MBO performs better than
the BNC.

9 Image segmentation
This section considers a proof-of-concept application of the Ginzburg–Landau functional under different
types of constraints, as introduced in Section 5, in the context of image segmentation. As an example,
we consider a picture of Cape Circeo in Sabaudia (LT, Italy) [79], Figure 9 (a), in which it is possible to
distinguish four main clusters which are the sand, sea, mountain, and sky.

The network associated to the picture has been obtained in the following way. First, each pixel has a
one-to-one correspondence with a node in the resulting graph. Second, each pixel is linked in the network
only to a subset of its nearest-neighbouring pixels (in particular, we have considered each pixel to be
connected to all the others which are present within a radius of 5, as specified in the MATLAB Package
The graph analysis toolbox: Image processing on arbitrary graphs, see [80, 81]). Third, the weights of
the affinity matrix corresponding to the picture can be obtained by considering the weight of the link
between two pixels as a function of their color difference. In fact, considering the colors red, green, and
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blue (RGB) as the basis of a 3-dimensional vector space, each color can be described in terms of its RGB
components in the same way as a vector can be characterized as the vector sum of the canonical basis
elements weighted by some coefficients. In this way, we can naturally define the distance of two colors as
a function of the Euclidean distance of their vectors in the RGB space. We used the distance function

d (i, j) :=

{
e−b‖col(i)−col(j)‖2 ∈ (0, 1] i 6= j

0 i = j
, (77)

where b is an external parameter (which we fix to b = 14) and col (i) is the corresponding color vector of
pixel i (note that the norm in (77) is not squared). The set of all the differences ‖col (i)− col (j)‖ in a
picture is normalized according to their z-score using the MATLAB command normalize [82]. The MBO
schemes used for this image segmentation problem run using K = 4 clusters as an input parameter. For
constrained clustering, we have considered both must-links and cannot-links, as highlighted in Figure
9. One iteration (multiple iterations do not change the result) of the MBO scheme yields the clustering
highlighted in Figure 10 (a). Afterwards, the resulting U has been used as the initial condition for two
different constrained clustering optimizations, whose results are shown in Figure 10 (b) and (c) for the
must-links and cannot-links, respectively. It can be inferred that the cluster recovery works well, except
for a small area in the middle of the picture; however, we remark that even in the original picture (that
is Figure 9 (a) without blue and red square) it is difficult to the naked eye to understand whether that
patch (that is the bit of sea to the bottom right of the mountain) corresponds to sea or mountain, just
by looking at its color.

(a) Known information (b) Must-links (c) Cannot-links

Figure 9: From a picture of Cape Circeo in Sabaudia (LT, Italy) (a) With the same color we
highlight the patches in the image which we would like to belong to the same cluster as a result of
the MBO scheme. In terms of must-links, this means that all the nodes corresponding to pixels in
the blue squares should be pairwise positively connected, and so should those corresponding to the
red squares. For example, the top left blue patch in (a) corresponds to the top left blue patch in
(b); the other blue patch in (a) corresponds to the bottom right patch in (b); the remaining blue
patches in (b) pertain to the cross interactions between the pixels in the blue patches in (a). Similar
correspondences hold for the red patches. This can be seen in the affinity matrix in picture (b) where
we have used the same color scheme as in (a). Instead, each blue/red node pair should be negatively
connected since they belong to different clusters, as shown in figure (c). For the present case, we
have weighted both must- and cannot-links with a prefactor of 2. The reason why squares in (b)
are not fully filled with color as in (a) is because, to reduce computational time when calculating
eigenvectors, we have removed half of the must-link edges at random and half of the cannot-link
edges at random (white color corresponds to missing edges).
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(a) No constraints (b) Must-links (c) Cannot-links

Figure 10: Segmentation results of the MBO scheme for the setting of (a) no constraints, (b) must-
links, and (c) cannot-links, as chosen in Figure 9.

In Figure 11, we have taken into account fidelity and avoidance terms as highlighted in plot (a). The
same information has been used for both the fidelity and the avoidance parts. For the former, the rows of
the matrix Û associated to the nodes in the colored patches have entries equal to 1 at the corresponding
cluster column (we have picked column 1 for red, 2 for blue, 3 for cyan, and 4 for green). All the
remaining entries of Û are equal to 0. For the latter, we have considered an energy increase every time
nodes are attributed to clusters to which they should not belong. This results in a constraint of the form
Ũ = Û (1K − IK). Starting from a random configuration of U , a single application of the MBO scheme
using Û yields the segmentation shown in Figure 11 (b) and a separate run of the algorithm using Ũ yields
to (c). We note that the node-cluster association recovery results agree with the expected boundaries
present within the image, with a minor uncertainty in the central area (which is a feature present also in
the constrained clustering case).

(a) Known information (b) Fidelity (c) Avoidance

Figure 11: In plot (a), we color those pixels whose cluster membership is considered to be known a
priori, with each color corresponding to a different cluster. Contrary to the constrained clustering
case, the cluster assignment of these pixels is chosen a priori since it results from inserting the known
information directly at the level of the characteristic matrix.

We have also considered the clusters highlighted in Figure 11 (a) as anchors, and the results are
identical to those shown in Figure 11 (b).
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10 Time series correlation clustering
This section details the outcomes of our numerical experiments on two time series data sets. Since ground
truth data is not available, we compare the output of the algorithms by plotting the network adjacency
matrix sorted by cluster membership.

10.1 S&P 1500 Index
We use time series daily prices for n = 1500 financial instruments, constituents of the S&P 1500 Composite
Index, during 2003-2015, containing approximately nd = 3000 trading days [83]. We consider daily log
returns of the prices,

Ri,t = log
Pi,t
Pi,t−1

, (78)

where Pi,t denotes the market close price of instrument i on day t. In order to promote both positive
and negative weights in the final correlation matrix we aim to cluster, we also compute the daily market
excess return for each instrument,

R̃i,t = Ri,t −RSPY,t,∀i = 1, . . . , n, t = 1, . . . , nd, (79)

where RSPY,t denotes the daily log return of SPY, the S&P 500 index ETF which is used as a proxy
(weighted average) for the market. Next, we calculate the Pearson correlation between historical returns
for each pair of instruments (i, j), which ultimately provides the edge weight Aij in our signed graph.
Figure 12 shows a segmentation of the US market into K ∈ {10, 30} clusters. The cluster structure is
more obvious to the naked eye for the BNC and MBO methods, as opposed to the plain Kmeans++
clustering. The large cluster recovered by MBO could potentially correspond to the 1000 instruments
which are within the S&P 1500 Index and outside of the S&P 500, but we defer this investigation to
future work.

10.2 Foreign exchange
This experiment pertains to clustering a foreign exchange FX currency correlation matrix, based on daily
special drawing rights (SDR) exchange value rates [84]. As shown in Figure 13, only BNC and MBO are
able to recover four clusters, associated respectively to the EURO e, US Dollar $, UK Pound Sterling £,
and Japanese Yen Y. These are precisely the four currencies that, in certain percentage weights, define
the value of the SDR reserve. To the naked eye, the adjacency matrix (sorted by cluster membership)
recovered by MBO exhibits sharper transitions between clusters, when compared to BNC and especially
Kmeans++.

11 US migration
The final real world data set we consider is a migration network based on the 2000 US Census report,
which captures migration patterns between all pairs of counties in the US during the 1995-2000 time
frame [85, 86]. The network has V = 3107 nodes, where each node corresponds to a county in mainland
US. The adjacency matrix of the given network is asymmetric, with Mij 6= Mji, 1 ≤ i, j ≤ V . Similar
to the approach in [87], we first symmetrize the input matrix, and let M̃ij = Mij +Mji denote the total
number of people that migrated between county i and county j (thus M̃ij = M̃ji) during the five-year
period. Finally, we turn the network into a signed one by approximately centering the distribution of edge
weights at 0. More specifically, from each nonzero entry we remove the median value m̃ of the distribution
of nonzero edge weights in M̃ , and denote the resulting symmetric matrix by A, with Aij = M̃ij − m̃.
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(a) Kmeans++ ; K = 10 (b) BNC ; K = 10 (c) MBO ; K = 10

(d) Kmeans++ ; K = 30 (e) BNC ; K = 30 (f) MBO ; K = 30

Figure 12: The adjacency (correlation) matrix of the S&P 1500 time series data set, sorted by cluster
membership, for K ∈ {10, 30} clusters.

(a) Kmeans++ (b) BNC (c) MBO

Figure 13: The adjacency (correlation) matrix of the Foreign Exchange time series data set, sorted
by cluster membership, for K = 4 clusters. We remark that MBO exhibits sharper transitions
between the four clusters (as highlighted by the green submatrices on the diagonal blocks), when
compared to BNC and especially Kmeans++.

In Figure 14, we compare the outputs of plain Kmeans++, BNC, and our MBO approach, for a varying
number of clusters K ∈ {5, 10, 15, 20, 30, 40, 50}. It can be seen that the plain Kmeans++ approach is
not able to return any meaningful results across all values of k, and a similar statement holds true for
BNC for low values of K ∈ {5, 10, 15, 20}: in both cases, a single cluster captures almost all the nodes
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in the network. BNC returns meaningful results —in the sense that there are no clusters which contain
only a few nodes— for larger numbers of clusters K ∈ {30, 40, 50}, aligning well with state boundaries.
On the other hand, our proposed MBO algorithm returns meaningful results across all values of K, and
the clusters align well with the true boundaries between the states, as previously observed in [87].

12 Summary and future directions
We introduced graph-based diffuse interface models utilizing the Ginzburg–Landau functionals, using an
adaptation of the classic numerical Merriman–Bence–Osher (MBO) scheme for minimizing such graph-
based functionals. Our approach has the advantage that it can easily incorporate various types of labelled
data available to the user, in the context of semi-supervised clustering.

We have provided extensive numerical experiments that demonstrate the robustness to noise and
sampling sparsity of the MBO scheme, under a signed stochastic block model. In particular, for sparse
graphs and larger number of clusters, we often obtain more accurate results compared to state-of-the-art
methods such as the BNC and the signed Laplacian.

Our work opens up a number of interesting directions for future investigation. It would be insightful to
investigate the performance of the MBO scheme in the setting of very sparse graphs in the stochastic block
model with p = Θ( 1

n ), thus below the connectivity threshold, and potentially incorporate regularization
terms considered in the recent literature [88, 89].

As a by-product of our research, we expect that the low-dimensional embeddings of signed networks
(e.g., correlation matrices or related similarity/dissimilarity measures) arising from high-dimensional
time series data obtained via the MBO scheme, could be of independent interest in the context of
robust dimensionality reduction in multivariate time series analysis. Such embeddings could be used
to learn nonlinear mappings from multivariate time series data, which has broad applications ranging
from financial data analysis to biomedical research. Such mappings could prove useful for exploiting weak
temporal correlations inherent in sequential data, and can be subsequently augmented with a regression
or classification step, with the end goal of improving out-of-sample prediction. In a financial setting,
this corresponds to building nonlinear risk/factor models for financial instruments, a task of paramount
importance when it comes to understanding the risks that govern a financial system [90, 91].

An interesting potential future direction is the development of an MBO scheme for detecting struc-
tures in directed graphs. The vast majority of methods for structural analysis of graphs, for tasks such
as clustering and community detection, have been developed for undirected graphs, and a number of
challenges arise when considering directed graphs, complicating the immediate extension of existing al-
gorithms for the undirected case. Various directed extensions typically consider a symmetrized version
of the adjacency matrix [92, 93, 94, 95]. In ongoing work by a subset of the authors [96], we consider the
problem of clustering directed graphs, where the clustering structure arises due to the existence of certain
pairs of imbalanced cuts in the graph. More specifically, an imbalanced cut between two sets of vertices
X and Y is one where the majority of the edges are directed from X to Y, with few edges being directed
in the opposite direction from Y to X. The goal is to find k clusters such that the sum of all (or many
of) the

(
k
2

)
pairwise imbalanced cuts is maximized, while also penalizing the existence of small clusters

in order to obtain a more balanced partition. In [96], we consider a Hermitian matrix derived directly
from the skew-symmetric adjacency matrix, and recover an embedding from the spectrum of its corre-
sponding (Hermitian) graph connection Laplacian, potentially after normalization [69, 97]. Extending
the Ginzburg–Landau functional and the MBO scheme to the setting of directed graphs and Hermitian
Laplacians is an appealing future research direction.
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Figure 14: Clusterings computed by Kmeans++, BNC, and MBO for the signed US Migration network,
for varying number of clusters k. Each color, extracted from a continuous color map, corresponds to a
different cluster.
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Appendix

A.1 Projection and Thresholding on ΣK and Σ±K

Let K ∈ N+. In this section, we show that computation of the projection on ΣK (or Σ±K) followed by the
thresholding step in the MBO scheme in (29)–(30) is equivalent to determining a maximal component
of every vector un+ 1

2
i . To fix notation, the vertices of ΣK are the elements of the canonical basis in RK

(for instance, for K = 3 we have e1 = (1, 0, 0)
T , e2 = (0, 1, 0)

T and e3 = (0, 0, 1)
T ), while those of Σ±K

are defined as e±k := 2ek − 1K ∈ {−1; 1}V (that is, for the K = 3 case, we have e±1 = (1,−1,−1)
T ,

e±2 = (−1, 1,−1)
T and e±3 = (−1,−1, 1)

T ).
We first remind the reader of a useful equality for vectors a, b ∈ RK :

‖a− b‖22 − ‖a− c‖22 = ‖a‖22 + ‖b‖22 − 2〈a, b〉2 − ‖a‖22 − ‖c‖22 + 2〈a, c〉2 = ‖b‖22 − ‖c‖22 + 2〈a, c− b〉2, (80)

where we have used the standard inner product in RK : 〈a, b〉2 :=
∑K
k=1 akbk. The following lemma lists

three direct consequences of (80).

Lemma 1. 1. Given a, b ∈ RK and i, j ∈ {1, . . . ,K}, define b∗ ∈ RK by

b∗k :=


bk, if i 6= k 6= j,

bj , if k = i,

bi, if k = j.

(81)

Then
‖a− b∗‖22 = ‖a− b‖22 + 2(ai − aj)(bi − bj). (82)

2. Let x ∈ RK and let ei, ej ∈ RK be two vertices of the simplex ΣK . Then ‖x− ei‖2 >
∥∥x− ej∥∥2

iff
xj > xi, with equality between the norms iff xi = xj.

3. Let x ∈ RK and let e±i , e
±
j ∈ RK be two vertices of the simplex Σ±K . Then

∥∥x− e±i ∥∥2
>
∥∥x− e±j ∥∥2

iff xj > xi, with equality between the norms iff xi = xj.

Proof. 1. We apply (80) with c = b∗. Since ‖b‖2 = ‖b∗‖2 and

〈a, c− b〉2 = ai(bj − bi) + aj(bi − bj) = (ai − aj)(bj − bi), (83)

the result follows.
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2. We apply (80) with a = x, b = ei, and c = ej . Since ‖ei‖2 = 1 = ‖ej‖2 and 〈x, ej − ei〉2 = xj − xi,
it follows that

‖x− ei‖22 − ‖x− ej‖22 = 2(xj − xi), (84)

and thus the result follows.

3. This follows from a proof completely analogous to the previous one, once we note that ‖e±i ‖2 =√
K = ‖e±j ‖2 and 〈x, e±j − e

±
i 〉2 = 2(xj − xi) where x ∈ RK .

Lemma 2. Let x ∈ RK and
x⊥ := argmin

y∈ΣK

‖x− y‖2 (85)

be its projection on ΣK
9. Given two components xj and xi of x, if xj > xi then x⊥j > x⊥i . The analogous

result holds for the projection of x on Σ±K .

Proof. We will prove the result for the projection on ΣK . A completely analogous proof gives the result
for Σ±K .

First note that the result is trivially true if i = j, hence we assume that i 6= j. For a proof by
contradiction, assume that xj ≥ xi and x⊥j < x⊥i . Define x⊥∗ by

x⊥∗k :=


x⊥k , if i 6= k 6= j,

x⊥j , if k = i,

x⊥i , if k = j.

(86)

Then, by the first result of Lemma 1 (with a = x and b = x⊥), we have that

‖x− x⊥∗‖22 − ‖x− x⊥‖22 = 2(xi − xj)(x⊥i − x⊥j ) ≤ 0, (87)

The inequality follows from our assumptions on xi, xj , x⊥i , and x⊥j . Since x⊥ ∈ ΣK , we have
∑K
k=1 x

⊥∗
k =∑K

k=1 x
⊥
k = 1, hence x⊥∗ ∈ ΣK . Thus, per definition (85), we have ‖x − x⊥∗‖22 − ‖x − x⊥‖22 ≥ 0. It

follows that ‖x− x⊥∗‖2 = ‖x− x⊥‖2. By uniqueness of the minimizer in (85) we deduce that x⊥∗ = x⊥.
In particular that means that x⊥j = x⊥∗j = x⊥i , which is a contradiction.

Applying Lemma 1 (result 2) to the thresholding step in (30), we find that k in (30) is such that the
kth entry of vi is not smaller than all its other entries. Furthermore, Lemma 2 applied to (29) tells us
that vi and

(
u
n+ 1

2
i

)
have their largest entries at the same positions. Thus (29) and (30) are equivalent

to un+1
i = ek, where k is such that the kth entry of

(
u
n+ 1

2
i

)
is not smaller than all its other entries.
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