MSc thesis in Geomatics

Labeling Vario-scale Maps

MSc thesis in Geomatics

Labeling Vario-scale Maps

Yan Gao

June 2025

A thesis submitted to the Delft University of Technology in
partial fulfillment of the requirements for the degree of Master
of Science in Geomatics

Yan Gao: Labeling Vario-scale Maps (2025)
©@@® This work is licensed under a Creative Commons Attribution 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

The work in this thesis was carried out in the:

GIS technology group
Delft University of Technology

Supervisors: Dr.ir. Martijn Meijers
Prof.dr.ir. Peter van Oosterom
Co-reader: Dr. Ken Arroyo Ohori

http://creativecommons.org/licenses/by/4.0/

Abstract

Map labels play an important role in helping users interpret geographic information. Tradi-
tional label placement algorithms are typically designed for static or fixed-scale maps, where
labels appear at discrete, predefined zoom levels. However, vario-scale maps change con-
tent continuously during zooming, requiring labels to also transition smoothly to maintain
readability and visual coherence.

This research explores how to place and adjust labels on vario-scale maps, ensuring legibility
and usability throughout scale transitions. Due to limited existing work in this area, a set
of requirements, both hard and soft, are defined to guide the methodology and evaluate
results.

Different strategies are applied based on geometry types. For elongated features such as
roads and rivers, label anchor points and orientations are derived from the medial axis
(skeleton). For compact geometries such as buildings, the centroid and pole of inaccessibility
are used to determine anchor points, while the minimum rotated bounding rectangle guides
label rotation.

Two polygonization methods are developed using the tGAP structure: slice-based method
extracts geometry at fixed scales and computes label positions per feature type; event-based
method reacts to changes in geometry, computing label anchors whenever a change occurs.
Label anchor points could be represented as continuous trajectories, supporting smooth in-
terpolation. During interactive visualization, label positions, orientations, and opacities are
interpolated across scales. To prevent clutter, real-time collision detection is implemented.

The methodology was applied to the TOP10NL dataset in the Delft region. Results showed
that the event-based method allows more precise responsiveness to geometry changes but
can produce occasional abrupt label movements. In contrast, the slice-based method offers
more stable transitions but may cause unnecessary label shifts even when geometries do
not change. Event-based labeling also resulted in a higher number of anchor points. While
hard requirements were generally satisfied, some soft requirements were not fully met due
to intentional trade-offs or implementation limitations.

Overall, this research introduces a novel framework for integrating dynamic labeling into
vario-scale maps using the tGAP structure and demonstrates its feasibility through an inter-
active, real-time prototype with smooth label transitions and collision handling.

Online prototype available at: https://imyangao.github.io/Vario-scaleMapLabelingDemo/.

Source code on GitHub: https://github.com/imyangao/labelingVarioScaleMaps/tree/main
and https://github.com/imyangao/addLabels2Map/tree/main.

https://imyangao.github.io/Vario-scaleMapLabelingDemo/
https://github.com/imyangao/labelingVarioScaleMaps/tree/main
https://github.com/imyangao/addLabels2Map/tree/main

Acknowledgements

Phew, here we are at the end of this thesis research.

The whole process has not been easy, there were times I felt stressed and anxious, and
times I felt truly happy about making progress. But maybe that’s what makes research so
interesting: you never know what will happen as you explore. You learn and try things, you
might succeed, you might fail, but most importantly, you realize you're not alone on this
journey.

I truly want to express my gratitude to my supervisors. Throughout the process, they have
been very supportive and helpful. Whenever I needed help, they were always there. Martijn
is very strong in technical implementation aspects, whenever I ran into coding issues, his
tips and help always guided me through. Peter has inspired me a lot with his passion for
the Geomatics field. He can always bring up creative ideas and provide insightful guidance.
I also want to thank Ken for his valuable input for my thesis.

A big thank-you to the friends around me, life would have been much harder without you.
We're all struggling with our own life challenges, yet we still find ways to support each
other. I cherish every relaxing chat, sunny walk, bubble tea afternoon, and delicious meal
together.

Huge thanks to my boyfriend. He believes in me even more than I believe in myself, and his
calm, easygoing life attitude helped to balance out my stress during this journey.

Lastly, I feel truly lucky to have all these people who stand by me, and I'm proud of myself
for keeping on, even when things got tough.

vii

Contents

1. Introduction 1
1.1. Motivation e e e e 1
1.2. Research Objectiveand Scope 2
1.3. ThesisOutline e 3

2. Related work 5
2.1. Overview of Vario-ScaleMaps 5
2.2. Label Placement Techniques, 8
2.3. Open Questions from Literature 13

3. Methodology 15
3.1. Label Placement Requirements 15
3.2. Label Placement e 17
3.3. Polygonization from topological Generalized Area Partition (tGAP) 20
3.4. Label Lines Trajectory 26
3.5. Visualization 28

4. Results and Discussion 39
4.1. Research Area and Test Dataset 39
4.2. Label Placement Results of Two Different Methods 42
4.3. Label VisualizationResult 56
4.4. Evaluation of Label Placement Requirements 59
45. Limitations L e e 60

5. Conclusion 63
5.1. Research Overview ittt ittt it 63
5.2. Contributions 64
53. Future Work 65

A. Data-Preprocessing Workflow for tGAP Generation 69
A.l. Merge thematiclayers 69
A2. Create a planar partition, 70
A3. ExportlayerstoJML 70
A4. Convert JML to PostGISdumps 70
A.5. Process topology tables inside PostGIS 71
A.6. Build minimal bounding rectangles (MBRs) for faces 72
A.7. Assemble the final dataset_name_facetable 73

B. tGAP Schema Description 75

C. Reproducibility self-assessment 77
C.1. Marks for each of the criteria 77
C.2. Self-reflection e 78

iX

Acronyms

DAG Directed Acyclic Graph
tGAP topological Generalized Area Partition
ssc Space-ScaleCube

ARO Active Range Optimziation,

Xi

1. Introduction

This opening chapter establishes the rationale and boundaries of the research. Section 1.1
explains the challenge and importance of labeling vario-scale maps. Section 1.2 then states
the overall research objective, breaks it into specific sub-questions, and defines the techni-
cal scope and simplifying assumptions adopted throughout the thesis. Finally, Section 1.3
guides the reader through the remaining chapters.

1.1. Motivation

Map labels are important identifiers for geographic features, and their effective placement
is important for the readability and usability of maps. Traditionally, label placement al-
gorithms are designed for static or fixed-scale maps, where the map is viewed at discrete
predetermined scales. However, vario-scale maps, which are maps that support a continu-
ously changing scale, introduce unique challenges for labeling.

As the user zooms in or out smoothly, the map content changes in a continuous manner
rather than in jumps, and the labels must adapt dynamically at every intermediate scale.
For example, labels may need to reposition or even resize continuously to avoid overlapping
with other labels and to prevent any label from abruptly disappearing or popping into view
in a jarring way. If labeling is not handled properly in this context, the map can quickly
become cluttered and confusing: overlapping labels or sudden label movements can distract
and frustrate the user.

In a vario-scale scenario, every slight change in scale potentially affects which features are
shown, how their geometries are represented, and consequently, which labels are displayed
and where. Labels that were suitably placed at one scale might overlap or collide as the scale
changes, or new space might become available for additional labels. Moreover, continuous
scale change means there is no obvious “switch” point as in multi-scale maps; instead,
labels should appear or disappear gradually to avoid distracting the user. Conventional
cartographic labeling techniques, although effective for static maps and fixed-scale maps,
are insufficient for vario-scale maps. They do not handle the continuous transitions of scale
and can lead to issues like labels overlapping or flickering.

These challenges underscore the importance of developing new labeling approaches specif-
ically suited for vario-scale maps. There is a need for strategies that enable labels to adjust
their placement continuously and smoothly, ensuring that as the map scale changes, label
positions and visibility update in a gradual manner.

Addressing this need is important to maintain map readability (so that text remains clear
and unobstructed) and usability (so that users can navigate the map without distraction
or confusion) throughout zooming and panning operations. And by introducing potential
methods for label placement for vario-scale situations, this study may contribute to usage of
vario-scale maps in practice.

1. Introduction

SLICES
< <
<;f>‘ SUCE4 \h—_—-\\
S:} .
SLICE3 ; -"E
gg SLICE2
D ;@" < S
SUCEL \

Figure 1.1.: Example of vario-scale maps with labeling
1.2. Research Objective and Scope

1.2.1. Research Objective

The aim of this research is to develop effective label placement strategies for vario-scale
maps that allow labels to dynamically adjust with smooth transitions across scales. Ideally,
labels on vario-scale maps should move without sudden jumps or abrupt disappearances
(Figure 1.1).

The main research question of this thesis is:

How can labels be dynamically placed and adjusted on vario-scale maps to maintain
readability, usability, and visual coherence across continuously changing scales?

Following sub-questions break down this broad question into specific components that ad-
dress various technical and design challenges:

1. Label placement requirements: what are the hard and soft requirements for optimal
vario-scale label placement?

2. Optimal placement techniques: how can the optimal positions for labels be deter-
mined for both elongated and more compact features, ensuring spatial alignment and
visual clarity?

3. Dynamic adjustments: how can labels be smoothly transitioned across scales, mini-
mizing positional shifts during scale changes, while maintaining readability and visual
continuity?

1.3. Thesis Outline

4. Data structure and retrieval: how can label-related data be structured and stored
efficiently to support dynamic rendering in vario-scale maps?

5. Dynamic display: how can label text be effectively placed on maps in a way that
integrates with the underlying geographic features and supports continuous scale
changes?

1.2.2. Research Scope

A simplifying assumption is adopted to manage the complexity of the problem. A label’s vis-
ibility is tied directly to the visibility of its corresponding map feature in the vario-scale data
structure. In practice, this means that when a geographic feature (for example, a polygon
area) disappears from the map at a certain small scale (due to the continuous generalization
process), its label is also removed as the feature disappears. The label set at any scale is
therefore a set of labels for features that are present at that level of detail. The implicit im-
portance is inherited from the vario-scale representation: larger or higher-priority features
persist longer through scale changes, and so do their labels.

Further more, it should be notes that this research also excludes certain areas to maintain a
focused approach. It excludes map rotation as a factor. All methods and evaluations will
assume a fixed map orientation to simplify the scope and focus on other core challenges.
It will not address labeling for multi-language or non-Latin scripts, limiting its scope to
English characters. Additionally, the study is confined to 2D vario-scale maps and does not
extend to 3D mapping.

Pre-existing label text data will be used, which refers to datasets where the labels (e.g., place
names, street names, and points of interest) are already associated with their corresponding
geometries in the map. This research does not focus on creating new label content (e.g., auto-
matically generating street names or missing labels) but rather on optimizing the placement
and rendering of existing labels across scales.

Furthermore, the research does not aim to develop new methods for text rendering but
rather integrate existing techniques to achieve dynamic and visually coherent label place-
ment. Curved labels that follow the shape of features (e.g., along rivers or roads) are also
excluded; every label is treated as straight text aligned to a certain orientation.

1.3. Thesis Outline

The remainder of this thesis is organised into these chapters:

Chapter 2 reviews research related to vario-scale maps and existing different labeling meth-
ods. It begins with the tGAP and Space-Scale Cube (SSC) that enable vario-scale representa-
tions, then introduces both static and dynamic label-placement algorithms, identifying the
open problems that motivate this study.

Chapter 3 introduces the hard and soft requirements that every design decision may follow,
details label anchor points extraction for elongated and compact geometries, and illustrates
two polygonization workflows (slice-based and event-based). It then explains how label
trajectories are interpolated and how real-time collision handling is performed during inter-
active visualization.

1. Introduction

Chapter 4 applies the methodology to TOP10NL dataset Delft region. It compares slice- and
event-based anchors across scales, demonstrates smooth label transitions in an interactive
viewer, and reflects on current limitations of the prototype.

Chapter 5 synthesizes the findings, highlights the thesis’ main contributions to vario-scale
maps labeling, and outlines certain aspects for future work.

2. Related work

This chapter reviews existing researches on vario-scale mapping and map labeling meth-
ods. The discussion begins with vario-scale techniques that enable smooth scale transitions,
which may provide insights for integrating labeling methods that adapt to continuous zoom-
ing and panning. Next, labeling techniques for both static and dynamic maps are explored.
This overview helps identify the main developments and gaps in the literature, providing a
foundation for subsequent research.

2.1. Overview of Vario-Scale Maps

Vario-scale maps are designed to provide seamless transitions between map scales, enabling
continuous zooming and panning without the abrupt changes characteristic of traditional
multi-scale maps. This approach contrasts with traditional multi-scale maps, which rely on
predefined levels of detail and can result in abrupt changes in map content when zoom-
ing in or out. Vario-scale maps achieve a smooth transition through data structures and
algorithms that integrate geometry, topology, and scale information. This ensures smooth
visual changes as one zooms in or out, avoiding the sudden appearance or disappearance of
features that occurs when switching between fixed scale levels.

2.1.1. tGAP

One of the key frameworks enabling vario-scale maps is the topological Generalized Area
Partition (tGAP). The tGAP is a vario-scale data structure designed to support map gener-
alization across multiple levels of detail. It typically begins with a highly detailed planar
partition of the map (at the largest scale available) and then progressively simplifies this par-
tition by merging or eliminating less significant features (van Oosterom and Meijers [2011]).
Each generalization operation (such as merging adjacent polygons or removing minor de-
tails) is recorded in a Directed Acyclic Graph (DAG), ensuring that all levels of detail are
linked and accessible. The tGAP structure integrates both geometric and topological infor-
mation, enabling efficient retrieval of representations at different scales. Figure 2.1 shows an
example of a tGAP structure.

However, the classic tGAP implementation introduces discrete transitions between scales,
which may lead to abrupt changes in the map, such as objects suddenly disappearing or
boundaries shifting. These limitations are addressed in more advanced models, such as
smooth tGAP and the space-scale cube (SSC), discussed in the following subsection.

2. Related work

(a) Original map (b) Result of (c) Result of merge (d) Result of
collapse simplify

(e) Corresponding tGAP structure

Figure 2.1.: Map fragments and corresponding tGAP structure (van Oosterom and Meijers
[2012b])

2.1.2. ssc

Space-Scale Cube (SSC) is a 3D representation of geographic information that integrates the
vertical dimension of scale into the data structure (van Oosterom and Meijers [2012b]).

In the Space-Scale Cube (SSC), 2D features from a map are extruded into a third dimension,
where the height represents scale. Polygons are represented as 3D prisms, lines as vertical
faces, and points as vertical lines (van Oosterom and Meijers [2012a]).

While the tGAP structure achieves a degree of vario-scale, its classic implementation intro-
duces many small discrete transitions between scales, leading to abrupt changes in the map,
such as objects suddenly disappearing or boundaries shifting, as shown in Figure 2.2.

To address these limitations, the smooth tGAP was introduced as an extension of the classic
model. Smooth tGAP incorporates an explicit continuous scale dimension into the data struc-
ture, allowing gradual transformations of features rather than abrupt, stepwise changes. For
example, objects shrink or grow progressively, and polygon boundaries adjust smoothly.
These transitions are captured using tilted faces in a 3D space, creating a seamless repre-
sentation of geographic features across scales. One example of a smooth tGAP structure is
shown in Figure 2.3.

Because the geometry of smooth tGAP changes continuously along the vertical axis, a small
change in the slice height (scale) causes only a small, smooth change in the resulting map
features. Unlike the classic tGAP, which creates discrete snapshots at different scales, the SSC
of smooth tGAP supports continuous representations. The comparison is shown in Figure 2.4.

Each 2D map can be derived by slicing the SSC horizontally at a specific scale, yielding a
planar partition, while non-horizontal or tilted slices can produce mixed-scale maps.

2.1. Overview of Vario-Scale Maps

V

AN
\\/X\j\/\
vV _V

A
a)
\

WA
|
%

(a) Wireframe of (b) Slices for Step 1 (c) Slices for Step 2 (d) Slices for Step 3
(classic)
space-scale cube

Figure 2.2.: SSC and map slices of the classic tGAP structure (van Oosterom and Meijers
[2012b])

(a) Wireframe of (b) Slices for Step 1 (c) Slices for Step 2 (d) Slices for Step 3
(smooth)
space-scale cube

Figure 2.3.: SSC and map slices of the smooth tGAP structure (van Oosterom and Meijers
[2012b])

2. Related work

(a) SSC fnrr-irr-ie classic tGKP structure (b) SSC for [ﬁt;smnolh tGAP structure

Figure 2.4.: Space-scale cube(SSC) representation in 3D (van Oosterom and Meijers [2012b])

In this research, only horizontal slices are considered to derive 2D maps at specific scales.
Non-horizontal or tilted slices, which produce mixed-scale maps, are excluded to simplify
the implementation of label placement algorithms. Mixed-scale maps introduce varying
levels of detail within a single view, which can complicate label positioning as features from
different scales may require different placement strategies within the same slice.

2.2. Label Placement Techniques

Effective label placement is important for map readability. This section reviews two cate-
gories of labeling techniques: static label placement (for fixed one scale maps) and dynamic
label placement (for interactive maps), which may help to achieve smooth label transitions
for vario-scale maps.

2.2.1. Static Label Placement

Static label placement techniques focus on optimizing label positions on fixed-scale maps,
adhering to cartographic rules for clarity and spatial efficiency. Given a set of features
(points, lines, areas) and their associated text labels, the goal is to place each label such that
it is clearly readable and unambiguously associated with its feature, without overlapping
other labels or symbols. While effective for static maps, these methods lack adaptability
to dynamic scales, though their structured frameworks and optimization techniques may
provide valuable insights for vario-scale labeling.

Edmondson et al. (Edmondson et al. [1996])proposed a general cartographic labeling al-
gorithm that optimizes label placement for point, line, and area features on static maps.
Their approach is structured into three key steps: candidate-position generation, position
evaluation, and position selection. By using simulated annealing to minimize overlaps and
maximize clarity, the algorithm produces visually appealing labels for dense, page-sized
maps.

Van Roessel (van Roessel [1989]) introduced an algorithm for locating candidate labeling
boxes within polygons, addressing challenges where centroid-based label placement results
in awkward or overlapping positions. The method divides a polygon into horizontal strips,
generates vertical segments within these strips, and identifies maximal candidate boxes that

2.2. Label Placement Technigues

EN
1
\#\ N
5 7 /r N
i \I\/V

Figure 2.5.: Simple polygon with strips, vertical line segments and sample box (van Roessel
[1989])

<7

Figure 2.6.: Morphological erosion to extract the most important part (Barrault [2001])

are wholly contained within the polygon (Figure 2.5), allowing flexible label placement and
repeating labels for large polygons.

Barrault (Barrault [2001]) also introduced a methodology specifically for labeling area fea-
tures, addressing challenges such as complex shapes and overlapping constraints. The pro-
cess incorporates morphological operations (erosions) (Figure 2.6) to simplify area bound-
aries, skeletonization to extract important geometric features (Figure 2.7), and a quality
function to evaluate label placements based on their perceived coverage and conformity to
the area shape.

Similarly, Dorschlag et al. (Dorschlag et al. [2003]) proposed an algorithm for placing ob-
jects, such as labels or diagrams, within map areas while maintaining cartographic quality.
The approach involves a two-step process: erosion of the area boundary to identify feasi-
ble placement regions for objects and reduction of these regions to optimal positions using

Figure 2.7.: Eroded area and its skeleton (Barrault [2001])

2. Related work

endpoints of skeleton

vertices of the skeleton
with degree > 2

centroid

edge of the skeleton

1100

edge of the area border

. [2003])

Figure 2.9.: Anchor points as candidates for the start and end points of the text’s baseline
(Pinto and Freeman [2006])

the skeleton of the eroded area (Figure 2.8). The scoring function evaluates candidate po-
sitions based on criteria like proximity to the area centroid and skeleton nodes with high
connectivity.

Pinto and Freeman (Pinto and Freeman [2006]) introduced a feedback-based method for the
automated placement of text labels within bounded regions on maps, emphasizing confor-
mity to region size and shape. The method includes a two-step feedback process: an initial
placement is generated based on anchor points within the region (Figure 2.9), and the place-
ment is iteratively refined by evaluating it against quality criteria such as length, symmetry,
clearance, and conformity. This iterative refinement allows the system to handle the complex
and varied geometries more effectively than static algorithms.

Wolff et al. (Wolff et al. [2001]) proposed a simple and efficient algorithm for labeling linear
features, such as rivers or roads, on maps. Their method creates a candidate strip along
the polyline, ensuring that labels follow cartographer Imhof’s ealier work (Imhof [1975]) for
line labeling by satisfying hard constraints (minimum distance, curvature limits, and non-
intersection) and optimizing soft constraints (proximity to the polyline, minimal inflections,
and horizontal alignment).

Barrault and Lecordix (Barrault and Lecordix [1995]) developed an automated system for
linear feature name placement that adheres to stringent cartographic quality criteria. Their
methodology involves dividing roads into sections for labeling, generating candidate po-
sitions along straight parts of the road, and evaluating these positions based on intrinsic
quality measures such as curvature, local centering, and background overlap. Simulated

10

2.2. Label Placement Technigues

7
.

.
-i- ® R I

-
I
Ta

Figure 2.11.: Polylabel (Agafonkin [2024])

annealing is used to optimize label placement locally, ensuring regular spacing along roads
while avoiding conflicts with other map features. Its focus on maintaining spatial harmony
and addressing label repetition offers valuable insight.

Van Kreveld et al. (van Kreveld et al. [1999]) proposed algorithms for point labeling using
sliding label models (Figure 2.10), which allow labels to continuously move along the edges
of a rectangle instead of being restricted to a finite set of positions.

Strijk and van Kreveld (Strijk and Kreveld [2000]) extended the sliding label model for point
labeling by introducing practical constraints such as obstacles and varying label heights.
Their algorithm efficiently ensures that labels avoid overlapping with obstacles, such as
boundaries, while maintaining proximity to the labeled point.

Inspired by the idea of pole of inaccessibility, which was first introduced by Vilhjalmur Ste-
fansson (1920) to distinguish between the North Pole and the most difficult-to-reach place in
the Arctic (Garcia-Castellanos and Lombardo [2007]), the pole of inaccessibility in a polygon
is defined as the point inside a polygon that is furthest from its edges, maximizing internal
clearance. A known practical implementation of this concept is the polylabel algorithm
developed by Mapbox!. By recursively subdividing the search space and prioritizing can-
didate cells with greater distances from the polygon boundaries, the algorithm achieves a
balance between computational speed and spatial accuracy, as shown in figure 2.11 (Aga-
fonkin [2024]).

Static label placement techniques offer structured frameworks for maximizing the number
of labels, optimizing label positions, minimizing overlaps, and ensuring cartographic clarity.
Methods such as skeletonization, candidate position generation, and simulated annealing

Thttps:/ / github.com/mapbox /polylabel

11

2. Related work

provide solid solutions for handling dense maps, complex geometries, and specific feature
types (e.g., lines, areas, and points). However, these methods also have notable limitations.
They are inherently designed for static, fixed-scale contexts and do not adapt dynamically to
user interactions like zooming. In summary, while static label placement methods offer in-
sights into optimal label placemens, their inability to handle continuous scale transitions and
user interactions highlights the need for new approaches that support vario-scale maps.

2.2.2. Dynamic Label Placement

Dynamic label placement techniques focus on the challenges of real-time labeling in inter-
active maps, ensuring smooth transitions during zooming and panning. They highlight
the importance of balancing computational efficiency with cartographic quality, providing
insights for adapting dynamic principles to vario-scale map labeling systems.

Been et al. (Been et al. [2006]) introduced a framework for dynamic map labeling, addressing
challenges of continuous zooming and panning while maintaining label consistency and
interactive performance. They proposed desiderata for dynamic label consistency:

* Monotonicity of labels: labels should not appear, disappear, and reappear unpre-
dictably as the user zooms in or out.

¢ Continuous transitions: label positions and sizes should change smoothly during pan-
ning and zooming.

* Pan consistency: labels should not unexpectedly vanish or appear during horizontal
or vertical panning.

¢ History independence: the placement and selection of labels should depend solely on
the current map state (scale and view), not the interaction path taken to reach it.

To address above challenges, the authors proposed an invariant point placement approach,
where each label is associated with a fixed point on the map, ensuring that it stays in place
relative to the feature being labeled. Labels maintain a constant screen size across scales,
ensuring readability without abrupt shifts. This placement method leads to cone-shaped
“extrusions” in a space-scale representation, where the label’s visibility at different scales
forms a continuous 3D cone, as shown in Figure 2.12. The idea of invariant point placements
and active ranges offers a possible starting point for exploring how labels can appear and
disappear in a user-friendly manner during continuous scale transitions.

The approach prioritizes computational efficiency and guarantees consistent label visibility
during interactions. However, the method restricts label positions to avoid ”sliding” along
features, which the authors consider an acceptable trade-off for performance and stability.

Building upon the earlier work, Been et al. (Been et al. [2010]) proposed the Active Range
Optimziation (ARO) framework for consistent dynamic map labeling. The ARO problem fo-
cuses on selecting the optimal scale intervals during which labels remain visible (i.e., their
“active ranges”) while maximizing label presence across scales and avoiding conflicts. Their
approach involves considering labels as geometric shapes (cones or rectangles) extruded
across the scale dimension and proposes methods to approximate optimal active ranges us-
ing dynamic programming, greedy algorithms, and divide-and-conquer optimization tech-
niques.

12

2.3. Open Questions from Literature

scale

Figure 2.12.: Dynamic placements for three labels (without and with active ranges) (Been
et al. [2006])

Schwartges (Schwartges [2015]) explored dynamic label placement for interactive maps, em-
phasizing real-time adaptability during user interactions like zooming and panning. In
Section 3.3 of his thesis, the focus is on two greedy heuristics: shrinking-cones and growing-
cones. The shrinking-cones method starts with full visibility for labels and iteratively re-
duces their active ranges to resolve conflicts, whereas the growing-cones method begins
with minimal active ranges and gradually expands them until conflicts arise, and when it
happens, the system removes labels in crowded areas to make the map easier to read (Fig-
ure 2.13). Both heuristics aim for fast computation and near-optimal solutions, balancing
performance with cartographic quality.

Both heuristics aim to maximize label presence over varying scales while maintaining com-
putational efficiency, as exact solutions are computationally expensive for real-time appli-
cations. The experiments in this section also highlight that while greedy methods may not
always yield optimal results, they produce near-optimal solutions with minimal computa-
tional overhead.

Dynamic label placement remains an active area of research, especially as interactive maps
become ubiquitous, different techniques strive to maintain the readability and usability by
managing label visibility ranges and positions continuously.

2.3. Open Questions from Literature

The literature review reveals several open questions about labeling methods for vario-scale
maps. Addressing these questions is important for further advancing label placement tech-
niques in continuous scale transitions:

* How can traditional static labeling methods be adapted to support the dynamic nature
of vario-scale maps?

* How to adjust label placement smoothly for vario-scale maps?

13

2. Related work

——————————————————— Zmax - -=--=-=-----------ZImax
(a) for each point, start with z = 0 (b) grow the cones
——————————————————— ZImax ——mmm - - — - - - - - - - - - - Zmax

(c) grow the cones until two cones touch (d) for each pair of touching cones, fix one cone

7777777777777777777 Zmax - -- - Zmax

(e) grow further; fix a cone (f) when a cone reaches zmax, we are done

Figure 2.13.: Illustration of growing-cones heuristic (Schwartges [2015])

¢ What data structures and retrieval methods can best support the efficient rendering of
dynamic labels, ensuring that labels appear at appropriate scales and positions?

These open questions underscore the necessity for novel methodologies tailored to labeling
vario-scale maps, highlighting gaps that this research aims to address.

14

3. Methodology

In this chapter, the overall methodology for vario-scale map labeling is outlined (Figure 3.1).
It starts with a statement of the hard and soft requirements that guide every design choice.
It then illustrates how anchor points are derived for geometries, how faces on maps are
polygonized across scales, and how those anchors are linked into continuous trajectories.
The chapter also provides an overview of how label positions are interpolated, how label
collisions are resolved and how labels are combined with underlying maps during visual-
ization.

Define Requirements

(Guidance for the whole methodology)

Compute Label Anchors

|

Polygonization from tGAP

|

Label Line Trajectories

|

Visualization & Rendering

Figure 3.1.: Workflow of the proposed vario-scale map labeling methodology

3.1. Label Placement Requirements

Due to the lack of established guidelines for labeling vario-scale maps, we introduce a two-
tier requirement framework (Figure 3.2) to support subsequent design decisions, grounded
in both existing literature as introduced in Section 2.2.2 and insights from thesis supervisors.
The hard requirements are non-negotiable: violating any one of them breaks the map’s basic
communicative purpose. The soft requirements, on the other hand, enhance cartographic
quality but may be relaxed or omitted without rendering the map unreadable.

15

3. Methodology

Define Requirements

Collision-free

Unambiguous

Hard

, Continuity
requirements

Deterministic

No flicker

Transparency

Soft

. Micro-adjust
requirements

Horizontal

Figure 3.2.: Definition of hard and soft requirements

By separating these tiers, we obtain a clear direction for both implementation trade-offs and
later evaluation.

3.1.1. Hard (Must-Have) Requirements

H1. Collision-free rendering: at any visible scale, no two label bounding boxes may overlap
in screen space as overlaps obscure text and reduce readability.

H2. Unambiguous feature association: a label must be visually and semantically linked to
exactly one map feature at any moment.

H3. Label continuity during continuous zoom: label anchors must move smoothly as the
view scale changes; abrupt repositioning should be forbidden.

H4. Deterministic priority model: given the same view parameters, the label selection and
placement must be consistent and repeatable.

H5. No flicker: labels should appear and disappear smoothly, without sudden flickers
during interaction.

16

3.2. Label Placement

3.1.2. Soft (Nice-to-Have) Requirements

S1. Avoid half-transparent rest state: labels should not remain partially transparent at rest,
as this can cause confusion or misinterpretation.

S2. Micro-adjust before drop: if two labels overlap by less than a certain percentage of their
areas, attempt a slight nudge before removing the lower-priority label. This may increase
label density without compromising clarity.

S3. Preserve horizontal orientation: when feasible, keep labels aligned horizontally to
enhance legibility.

3.2. Label Placement

Placing descriptive labels inside polygonal features may require methods tailored to the
characteristics of those features. In this section, we distinguish between two different types
of geometries and use different label anchor points placement strategies for each: elongated
geometries (e.g. roads or rivers, which are long and narrow) and compact geometries (e.g.
building footprints) (Figure 3.3).

Compute Label Anchors

Elongate'd — Skeletonization
geometries

Compact — Centroid / Pole of inaccessibility
geometries

Figure 3.3.: Anchor computation methods for elongated and compact geometries

3.2.1. Label Anchors for Elongated Geometries

Elongated map features like roads, rivers, and canals span large extents, often stretching
across large portions of the map. A single label placement for such features would be inad-
equate because it would fail to clearly identify the feature across its entire extent. Therefore,
it’s necessary to place multiple labels at various intervals for elongated geometries to con-
sistently remind users of the feature’s identity. To achieve distributed and visually coherent
label placements, we apply a skeletonization technique inspired by the work of Dorschlag
et al.Dorschlag et al. [2003], as discussed in Section 2.2.1.

Skeletonization refers to computing the medial-axis or “skeleton” of a polygon: a set of lines
equidistant from the polygon’s boundaries that capture its general shape and connectivity.

17

3. Methodology

By placing labels along these centerlines, we ensure the text follows the feature’s primary

orientation and tend to stay well within its boundaries.

We use Grassfire library! to generate medial-axis-based skeleton, which results in linear

representations reflecting the central axes of the elongated shapes.

The resulting skeleton lines form a graph structure where nodes represent intersections,
and edges represent line segments (Figure 3.4). Nodes connecting multiple segments(points
where three or more skeleton branches meet) - junction nodes - are identified to outline
important intersections within the geometry. Primary paths between these nodes are then
selected. As shown in Figure 3.5, small branches are ignored and main skeleton structure is

kept.

A

)\) =\

Figure 3.5.: Main skeleton extraction

Midpoints of the long segments (segments exceeding a certain threshold of the length of

Thttps:/ / github.com /bmmeijers/ grassfire

18

3.2. Label Placement

the longest segment) are selected as anchor points for placing labels along the geometry,
ensuring the label appears multiple times at readable locations (as shown in Figure 3.6).
Label orientation angles are calculated based on the rotation of the corresponding segments,
ensuring alignment along the elongated geometry.

Figure 3.6.: Points represent label anchor points

Table 3.1 summarizes key parameters for the skeletonization process and their roles. Some
parameters (e.g. length threshold fraction) could be tuned to generate label anchors for
elongated shapes:

Parameter Description

Junction degree threshold | Minimum degree for skeleton nodes to qualify as junctions. Degree
>3 indicates meeting of 3+ skeleton branches (significant branching
points).

Length threshold fraction | Fraction of longest skeleton path length used as cutoff. Segments
shorter than certain percentage of max length are ignored to avoid
labeling minor features.

Anchor point (placement) | Label anchor placed at midpoint of selected skeleton segment, center-
ing label along interior line.

Label orientation angle Text rotated to align with skeleton segment direction. Aligns label
with feature’s major axis.

Table 3.1.: Key parameters for skeleton-based label anchor points computation

3.2.2. Label Anchors for Compact Geometries

Compact geometries, such as buildings, generally occupy limited spatial extents. Unlike
elongated features, placing multiple labels on these shapes would introduce unnecessary
clutter and reduce readability. Therefore, we determine a single, clear anchor point per
feature to ensure effective labeling without overwhelming the map (Figure 3.7).

In this research, we adopt a two-stage strategy to determine the label anchor point for
compact geometries:

19

3. Methodology

* Primary approach: we use the polygon’s centroid as the label anchor. In most compact,
convex shapes, the centroid offers a stable and central position for placing a label.

* Fallback approach: if the geometry is concave and the centroid lies outside the poly-
gon, we instead use the pole of inaccessibility, which is the point within the polygon
that is farthest from any edge.

We choose the centroid as the default because it provides a consistent anchor location and
avoids instability. In contrast, the pole of inaccessibility, while optimal in terms of inte-
rior distance, can sometimes shift label anchor positions significantly with small geometric
changes. Thus, we use it only as a fallback when the centroid is not suitable.

The pole of inaccessibility is computed using the polylabel, available via the Shapely library.
The function polylabel(polygon, tolerance) approximates the pole of inaccessibility to a
specified precision.

After determining the anchor point (either the centroid or the pole of inaccessibility), we
compute the label orientation using the polygon’s minimum rotated rectangle containing
the polygon via Shapely’s polygon.minimum_rotated_rectangle. This method generates the
smallest area enclosing rectangle. From its edges, we identify the longer pair of sides and
use their direction to define the label orientation. This aligns the label with the major axis
of the shape.

Figure 3.7.: Label anchor points for buildings

3.3. Polygonization from tGAP

Polygonization from tGAP data can be achieved via two methods (Figure 3.8). In both
cases, the goal is to derive the polygonal faces present at certain map scales from a tGAP
data structure, which encodes edges and faces with the scale ranges (step_low, step_high)
over which they exist, and to compute label anchor points for each face. Information about
tGAP data schemas are described in Appendix B. In this section two methods are described
in details: a slice-based approach and an event-based approach. Both methods rely on
spatial database operations and ensure topological consistency of the polygonized faces.
Each method produces a set of face anchor points across scales.

20

3.3. Polygonization from tGAP

Polygonization from tGAP

Slice-based Event-based
Choose scales Identify events

| l

Per face per event:

Select ed
elect edges select edges

|

Polygonize

|

Compute anchors

|

Anchor count consistency

Figure 3.8.: Workflow for polygonization from tGAP

3.3.1. Slice-based Method

The slice-based method polygonizes faces at a predetermined set of map scales (discrete
“slices” of the scale range) and computes anchor points on each slice. This generates a
traditional multi-scale representation, e.g. choosing scales 1:10000, 1:20000, 1:40000, etc.,
then extracting the face geometries at each scale. By processing slices in ascending order of
scale (from most detailed to most generalized), we can track and maintain consistent anchor
points for each face. Table 3.2 summarizes its main steps.

We first decide on a base scale and a set of representative scales. For example, if the base
(most detailed) scale is 1:10000, we then select scales doubling in denominator (1:10k, 1:20k,
1:40k, 1:80k) to cover progressively coarser representations. Each scale value is converted
to the corresponding tGAP step value using the known scale-step conversion (the tGAP
uses an abstract step unit; a function step_for_scale() provides the step value for a given
scale denominator). The result is a list of step values S1, Sy, ..., S, for which faces will be
polygonized.

For each chosen step S;, we retrieve all edges from the tGAP that are active at that step,

21

3. Methodology

Step | Process Input Output

1 Select representative scales tGAP dataset; Set of step values
(slices) base scale for slices S1...5,

2 Retrieve edges at tGAP edges Subset of edges
slice S; (with step_low, step_high) active at S;

3 Polygonize edges Edges active at S; Polygons representing
to faces faces at S;

4 Attach face attributes Polygons; Faces with

tGAP face 1D, class, name

5 Compute anchor Face polygon geometry; Anchor point(s) with
point(s) feature class orientation per face

6 Enforce anchor count Current anchors; Adjusted anchor list
consistency previous anchors (if needed)

7 Store anchors in table Anchor points Cumulative anchor table

(face, step, geom, angle, etc.)

Table 3.2.: Slice-based polygonization pipeline - key inputs and outputs at each stage

ie., all edges e such that estep_low < S; < e.step_high. These edges collectively form the
boundary of all faces present at that scale. We then perform a polygonization on this edge
set to reconstruct the polygon geometries of faces. This could be done by a spatial SQL
query using ST_Polygonize on the selected edges. An example query is shown below:

SELECT
(ST_Dump(ST_Polygonize(e.geometry))).geom: :geometry(Polygon, 28992)
AS polygon_geom

FROM {dataset}_tgap_edge e

WHERE e.step_low <= {step_value} AND e.step_high > {step_value}

Each resultant polygon is associated back to its face ID and attributes by spatial containment:
since the tGAP data includes a representative point (or pip_geometry) for each face, we join
the polygon to a face record if the face’s point lies within that polygon. This generates a
collection of face polygons at step S;, each with a face identifier and feature class (indicating
road, water, building) inherited from the source data.

Next, we compute one or more anchor points for each reconstructed face polygon. The
strategy for anchor placement depends on the feature class of the face, reflecting differ-
ent geometry characteristics: for elongated or linear faces (e.g. roads, rivers) we apply a
skeleton-based approach and for more compact faces (e.g. building footprints), we use a
centroid or polylabel approach.

Each face thus generates either a single anchor or potentially multiple anchors (long lin-
ear features might get two or more anchor points if the skeleton has several distinct long
segments). Each anchor point is stored along with its face ID, the current slice step S;, the
anchor’s orientation angle, and the face’s name or label text if available.

An important aspect is ensuring that anchors evolve consistently as scale changes. In the
slice-based method, we process the slices in increasing order of scale (decreasing details). We
maintain a record of the anchors assigned to each face at the previous (more detailed) slice.
When moving to a coarser slice, if a face’s geometry simplifies such that fewer anchors are
needed, the algorithm naturally may produce the same or fewer anchor points. However, if a

22

3.3. Polygonization from tGAP

new anchor candidate appears (for instance, two road segments merge into one), we limit the
anchors to prevent the count from increasing as scale decreases. This is done by comparing
the number of anchors for the face at scale S; to the number at the last processed smaller
scale S;_1. If |anchors(S;)| > |anchors(S;_1)|, the new anchors are filtered by distance to
the old ones: only the anchors closest to the previous anchor positions are kept, ensuring
|anchors(S;)| = |anchors(S;_1)|. This rule preserves continuity (an anchor trace should not
split into multiple anchors when zooming out). The result is a set of anchor points per face
per slice, with monotonically non-increasing counts as scale becomes smaller.

3.3.2. Event-based Method

The event-based method takes a continuous view of scale and updates face reconstructions
only at moments where the geometry changes. Instead of arbitrary fixed slices, we capture
the geometry change events in the tGAP data, that is: the appearance or disappearance of an
edge in a face’s boundary, as the steps to polygonize that face. This method ensures that we
compute a face’s geometry (and anchor positions) at every scale where it changes. Figure 3.9
and Figure 3.10 illustrates how a face might evolve and be sampled at event points, and Table
3.3 outlines the steps of this event-driven pipeline.

face_id = 9884 step_low =0 step_high = 4229

step=0 step = 1542 edge32905
edge32903

edge19059

dge32896
edge19009 ecee

edge32900

edge19008

edge19008 edge19021

step=2566 step=3343

edge40681

edge40681
edge46545
edge40677

edged6552 edge46544

edge19008 edge32900

edge46553

Figure 3.9.: An example of face evolution

23

3. Methodology
step = Ofevent1) step = 1543(event2) step = 2566(event3) step = 3343(event4) step = 4229(face vanishes)
face_id = 9884
edge_id = 19009
edge_id = 19021
edge_id = 19059
edge_id = 19008
edge_id = 32896
edge_id = 32903
edge_id = 32905
edge_id = 32900
edge_id = 40677
edge_id = 40681
edge_id = 46544
edge_id = 46545
edge_id = 46552
edge_id = 46553
Figure 3.10.: An example of edges that bound one face at different steps and events
Step | Process Input Output
1 Initialize face events Face’s step_low and step_high | Initial set with face birth &
end scales
2 Retrieve bounding edges for | tGAP edges, face ID All candidate edges for
face face’s boundary
3 Compute edge-face overlap | Face scale range; edge scale | Intervals where edges
intervals ranges bound the face
4 Augment event set with | Edge intervals for the face Sorted event steps
edge start/end [S1,S2,.-.,Sn]
5 For adjacent event pair | Edge intervals; event S Edges forming face at scale
(S, T): select edges active at S
S
6 Polygonize edges to recon- | Edges active at S Face polygon at scale S
struct face
7 Compute anchor point(s) for | Face polygon; feature class Anchors with orientation
face
8 Enforce anchor count con- | Current anchors; previous | Adjusted anchor list
sistency anchors
9 Store anchors in table Anchor points Updated anchor table (face,

step, geom, angle, etc.)

Table 3.3.: Event-based polygonization pipeline - key steps for reconstructing a face at its
change events

We iterate through each face in the tGAP structure. For a given face (identified by face_id),
the tGAP stores the scale range in which it exists (face.step_low = the largest scale at which
it appears, face.step_high = the smallest scale at which it is still present). Within that range,
the face’s boundary may undergo changes as certain edges merge or vanish. We retrieve all
edges that ever bound this face using a query on the tGAP edge table, any edge whose left
or right face is this face will be relevant:

24

3.3. Polygonization from tGAP

SELECT edge_id, step_low, step_high,
FROM {dataset}_tgap_edge
WHERE
step_high > {face.step_low}
AND step_low < {face.step_high}
AND (
left_face_id_low = {face_id}
OR right_face_id_low = {face_id}
OR left_face_id_high = {face_id}
OR right_face_id_high = {face_id}
)

For each such edge, we compute the interval during which the edge actually forms part of

this face’s boundary. This is determined by overlapping the edge’s lifespan [edge.step_low, edge.step_high)
with the face’s lifespan [face.step_low, face.step_high). If there is an overlap, we record the in-

terval

(start,end) = [max(edge.step_low, face.step_low), min(edge.step_high, face.step_high))

These intervals mark when that edge is contributing to the face.

We then compile a set of event step values for the face: initialize it with the face’s own
step_low (birth scale) and step_high (end scale), and add every interval start or end value from
the edges bounding the face. This set includes:

¢ The face’s introduction scale (step_low)
e Its disappearance scale (step_high)
¢ Intermediate scales where boundary edges enter/leave

Sorting this set generates a sequence of scales:
Ei1<Ey<---<Ey

These mark events where the face’s geometry might change. Between consecutive events
Ey and Ej,q, the boundary composition remains stable (no edge changes), meaning the
geometry is preserved. Thus, we only need to polygonize the face at one representative scale
per interval. We choose the start of each interval for polygonization:

S=E; fork=12,...,m—1
e E;: Face introduction scale (first polygonization)

* E;;: Not used for polygonization (face vanishes at this scale)

For each event step S = E identified for the face, we retrieve all edges that bound the face
in the open interval [E, Ex,1). We choose edges satisfying:

start < S < end

, using the precomputed edge-face intervals. These edges at step S form a closed boundary
around the face. We then process these edges through ST_Polygonize to derive the face’s
geometry at scale S. An example of one face’s polygonization at different key scales is
shown in Figure 3.11

25

3. Methodology

step

Figure 3.11.: An example of one face polygonization at different key scales

At this point we have the face geometry at the geometry changing scale 5. We then compute
anchor point(s) for the face exactly as in the slice-based method(Section 3.3.1): using the
face’s feature class to decide between the skeleton-based method (for roads, water) or the
polylabel-based method (for buildings). Similar to before, as we move through the sequence
of events for a face, the facs simplifies with each event, we also enforce that the number
of anchors for a face does not increase at later (smaller) scales. If at a particular event Ei
the anchor algorithm produces more points than the previous event E;_; did, we prune the
anchors to maintain the previous count. This ensures a single face’s label doesn’t increase
when the map is zoomed out.

3.4. Label Lines Trajectory

The label lines trajectory is a construct that represents the path of a label across a sequence of
discrete steps (different scales). The workflow for generating these trajectories is illustrated
in Figure 3.12. The conceptual goal is to trace the same real-world feature’s label through
multiple steps and represent its evolution as a continuous trajectory in a space defined by
x, y, angle and step. Here, x and y are spatial coordinates, angle is label rotation angle and
step is an axis indicating scale level. By plotting a label’s positions and rotations against
the step axis, we obtain the label’s trajectory through the sequence (as shown in Figure 3.13
for one face). The benefit of this representation is that it captures the label’s movement or
persistence over time/scale in one continuous object, rather than as disjoint states.

26

3.4. Label Lines Trajectory

Label Line Trajectories

Match anchors across scales

|

Assign label_trace_id

}

Build trajectory in x-y-angle-step

Figure 3.12.: Workflow of label line trajectory construction

Constructing label trajectories requires identifying which label anchors across different steps
correspond to the same label. We introduce a persistent identifier label_trace_id to group
label anchors that belong to the same label across steps. For long geometries, one face may
have multiple label anchor points, the challenge is to assign the same label_trace_id to label
anchors that represent the same label at consecutive steps, despite potential shifts.

For each pair of consecutive steps, we compare the sets of label anchor points and attempt to
match each label in the earlier step with the nearest label in the later step (within the same
face geometry). We see this problem as a matching problem, where the cost of matching
two label anchors is the distance between their positions. We then solve the assignment by
finding the minimum-cost matching between anchors in step N and step N+1. This generates
a pairing that minimizes the total movement of labels.

Matching is constrained by feature identity: we only attempt to match labels that refer to the
same underlying face(for example, the same road). This ensures we are tracking the same
label rather than accidentally linking two different labels that happened to be nearby in
space. The output of this process is an assignment of a label_trace_id to each label anchor
in each step, so that all anchors with the same ID form a continuous trace across the step
changes.

27

3. Methodology

step

Figure 3.13.: Label line trajectory(a moving label over space)

Once persistent IDs are assigned, we can extract each trajectory as the sequence of labels
(with their step values) sharing a given label_trace_id. By connecting these labels in order
of increasing step, we form the label line trajectory through the (x, y, angle, step) space. These
trajectories show the label’s motion. Importantly, they provide a foundation for interpolation
and animation: since we know a label’s exact position and rotation at each discrete step, we
can interpolate intermediate positions and rotations for any fractional step in between. The
trajectory serves as a guideline along which the label can slide when transitions from one
step to another. This smooth interpolation would not be possible if labels at each step were
treated independently with no continuity.

3.5. Visualization

In this section, we integrate the previous label lines trajectory concept into an interactive
visualization system that allows users to transition through steps and see labels update
smoothly. The core is that each label is treated as a persistent object with a series of

28

3.5. Visualization

Visualization & Rendering

Interpolation (position, rotation, opacity)

|

Collision detection

|

Combining text with the underlying map

|

Animation after zooming stops

Figure 3.14.: Label visualization steps

keyframes at the known steps, the main steps are illustrated in Figure 3.14. The system
stores the label’s properties (such as position, orientation, text, etc.) at each step where it ex-
ists. During interaction, as the current step changes, the system computes the label’s visual
state at the intermediate positions using interpolation. By doing so, we avoid the jarring
effect of labels “popping” in new locations; instead they move continuously to those new
locations.

3.5.1. Interpolation of Labels

Given a label’s position at two consecutive steps, we linearly interpolate its coordinates and
rotation angle for intermediate step values(Figure 3.15).

The interpolation weight « is defined as the normalised location of the current step S within
the interval delimited by its bracketing key steps. Sy, is the largest key step satisfying S, < S
(the previous key step) and S, is the smallest key step satisfying S, > S (the next key step).
The weight is then

<a<l1 Nl
Sn_Sp’ O=es ’ (3)

N =

with the degenerate case S = S, = S, giving & = 0 (exact key step). This scalar is used in
all per-step interpolations: the label’s anchor position is evaluated as

P(S) = p(Sp) +a(p(Sn) — p(Sp)) (3.2)

29

3. Methodology

step=3(computed

rotation and angle)

step=2(interpolated
position and angle)

step=1(interpolated
rotation and angle)

step=0(computed
rotation and angle)

Figure 3.15.: Interpolation of label positions and rotation

Labels also have orientation to align with the underlying polygon, we similarly interpolate
their rotation angles (see Figure 3.15). As a result, labels that rotate between steps will
appear to turn gradually, which is visually smoother and more natural than a sudden jump
in angle.

We interpolate opacity (transparency) to fade labels in or out. Each label has a visibility
interval across steps. For example, a label might first appear on the map at step 0, have
its last defined key step at step 3, and remain valid until step 6 (Figure 3.16). Instead of
abruptly adding or removing the entire label at intermediate steps, we apply a fade.

When zooming out (i.e., as the step number increases), a label that is initially fully visible
(opacity = 1, fully opaque) begins to fade out as it nears the end of its lifetime, and reaches
opacity = 0 (fully transparent) when the face it labels disappears. Conversely, when zooming
in (i.e., as the step number decreases), the label gradually fades in, starting from opacity =
0, and becomes fully visible (opacity = 1) by the time its key step is reached.

All these interpolations (position, rotation, opacity) are done continuously as the user inter-
acts. The effect is that labels perform smooth transitions: they glide to new positions and
gently appear or vanish.

3.5.2. Label Collision Detect

Even with correct positioning, when multiple labels are displayed simultaneously, they can
overlap, leading to clutter and illegibility.

30

3.5. Visualization

step_high = 6(when the
face disappears,
opacity = 0)

step=5(interpolated
opacity)

step=4(interpolated
opacity)

step=3(opacity = 1)

Figure 3.16.: Interpolation of label opacity

Greedy strategy with priority ranking We use a greedy strategy to handle label collisions
frame-by-frame, prioritizing more important labels and hiding others as needed to prevent
overlaps:

1. ranked by a pre-computed priority P({);
2. processed in descending priority order;

3. either accepted if their axis-aligned bounding-box (AABB) does not intersect any AABB
already accepted

4. or discarded.

This ensures that high-priority labels are preserved, while allowing to drop conflicting low-
priority labels for performance and clarity.

Priority function We define the priority of a label ¢ as the lexicographic pair:
P(l) = (step_high({), — textLength(())

where step_high is the ending step of the face with which the label is attached and textLength
is the number of characters in the label. This ensures that persistent, short labels are fa-
vored(Figure 3.17).

31

3. Methodology

= o |

facel step_high = 2000 facel stays longer, thus labell is preferred
face2 step_high = 1000

facel step_high = 2000 Label2 has shorter text, when face step_high is the
face2 step_high = 2000 same, label 2 is preferred

Figure 3.17.: Example of label collision detection

Computing the AABB of rotated labels We compute an axis-aligned bounding box (AABB)
for each label, which encloses the rotated text plus padding. Given the following parameters
for a label:

Label anchor point: (x,,y,)

Width: w

Height: h
* Rotation angle: ¢
¢ Padding: p
The process to compute the AABB is as follows:

1. Compute the padded width and height:

w=w+2p, W =h+2p

2. Construct the four corner offsets from the center of the label:

(+w' /2,41 /2)

3. Rotate each corner (x,y) around the origin (the label’s center) using the 2D rotation
formulas:

x" = xcos(0) —ysin(0), 1y = xsin(6) + ycos(0)

32

® N o gk WN=

3.5. Visualization

4. Translate each rotated corner by the anchor point (x4, y,) to get screen-space positions:

" / " /
Xi =Xa+Xy, Yi =Yatl;

5. Compute the axis-aligned bounding box from the rotated corners:

minX = minx/, maxX = maxx]’ minY = miny/, maxY = maxy/
1 1 1 1

Accelerated collision detection Naively checking every label against all others requires
O(n?) pairwise AABB comparisons(is the number of candidate labels, i.e. all visible/in-
terpolated labels in the current frame). To accelerate this, we use RBush — a library for
spatial index based on a 2D R-tree”.

RBush organizes axis-aligned bounding boxes into a balanced hierarchical structure. During
rendering:

* Already-accepted label boxes are stored in the tree;

* For each new label, the tree is queried for potentially overlapping boxes using RBush. search(box),

which runs in expected O(logn) time, where 7 is the number of boxes currently stored
in the tree.

This reduces the number of comparisons per label from O(n) to O(logn), assuming a rea-
sonably balanced tree.

The revised algorithm is as follows:

Algorithm 1 Label placement algorithm

Sort L by priority descending T <— empty R-tree S < @ set of accepted labels
for / € L do
b < boundingBox(¢) hits < T.search(b) 0(log m) expected
if Vh € hits : —overlap(b, h) then
S+ SU{¢} T.nsert(b) 0(log m)

end
end
return S

A label is only accepted if its box is disjoint from all previously accepted boxes, but complete-
ness is intentionally sacrificed because a lower-priority label may be hidden. This trade-off
is acceptable in interactive rendering where real-time performance is important.

Zhttps:/ / github.com /mourner/rbush

33

3. Methodology

3.5.3. Combining Text with the Underlying Map

To display labels in harmony with a continuously zoomable and pannable map, it is impor-
tant to integrate a text rendering system that can visually align and remain synchronized
with the base map rendering. This section describes how the label layer is positioned on top
of the map canvas and how we ensure that the label rendering remains consistent with the
underlying map.

Overlaying the label layer The map is rendered in a HTML canvas element. To add text
labels without interfering with the main rendering pipeline, a second, transparent can-
vas is created and placed directly above the map canvas in the DOM. This overlay can-
vas is absolutely positioned to fully match the map viewport and styled to ignore pointer
events(pointer-events: none), ensuring that all user interactions (e.g., drag, scroll, pinch)
are directed to the map layer below.

Label canvas ignores User interactions
pointer events go to map canvas below

z-index: 1000

Label Overlay Canvas

| |
| |
| |
| |
| |
l l
| |
: (transparent, positioned absolutely) :
| |
| |
| |
| |
| |
| |

Figure 3.18.: The label overlay canvas is positioned above the map canvas using absolute
positioning and a high z-index. It is transparent and ignores pointer events, allowing user
interaction to reach the map layer underneath.

Synchronization of coordinate systems To ensure correct alignment, label positions must
be continuously synchronized with the map’s coordinate system. The map provides a trans-
formation matrix that converts world coordinates into screen coordinates. For each anima-
tion frame, the label layer applies this matrix to transform label positions and orientations
to match the current viewport.

Furthermore, the label layer listens to map events, such as viewport resizes or zoom level
changes, so that it can adjust its canvas size and internal state accordingly. The label render-
ing system shares the same step logic and view parameters as the map, allowing both layers
to remain visually consistent at all times.

34

3.5. Visualization

Rendering Framework The technical details of how label text is rendered within this over-
lay canvas, including styling, opacity animation, and collision handling, are described in the
following section on text rendering (Section 3.5.4).

3.5.4. Text Rendering

To render smoothly animated label text, we use PixiJS® — a high-performance 2D WebGL-
based renderer. Pixi]S was chosen due to its ability to handle thousands of display objects
with smooth animations and GPU acceleration, which is important for interactive maps with
frequent label updates.

Rendering hierarchy structure PixiJS uses a scene graph model, where visual elements are
organized as a tree of containers and display objects. In our implementation, each label is
rendered as a PIXI.Text object inside its own PIXI.Container, which is then added to a
shared container for all labels. This shared container is part of the PixiJS stage. The full
rendering hierarchy is illustrated in Figure 3.19.

PIXI. Application
app.stage (PIXI.Container)
label layer (this.container)
label container (per label) ... more labels ...
PIXI.Text (label)

Figure 3.19.: PixiJS scene graph structure for dynamic label rendering

Overlay setup and rendering pipeline We create a transparent canvas overlay using PIXI.Application,
which is placed directly on top of the base map canvas. This overlay is automatically resized
to match the map viewport and handles all rendering operations related to labels:

this.app = new PIXI.Application({ backgroundAlpha: @, ... });
parent.appendChild(this.app.view); // Insert after the base map canvas

All label objects are added to a shared PIXI.Container, which is in turn added to the appli-
cation stage.

Shttps:/ /pixijs.com/

35

3. Methodology

Label sprites and styling Each label is encapsulated as a PIXI.Text object and placed inside
its own PIXI.Container. This container serves as the label’s “sprite” and makes it easy to
manage transformations such as position, rotation, opacity, and visibility:

const container = new PIXI.Container();

const txt = new PIXI.Text(label.text, style);
txt.anchor.set(0.5); // Center anchoring for proper rotation
container.addChild(txt);

this.container.addChild(container);

Text styles are selected based on feature class (i.e., road, water, building), allowing for dif-
ferentiated visual representations using PIXI.TextStyle.

Updating label states Each animation frame, label sprites are updated based on interpo-
lated properties. The label state (position, rotation, opacity) is computed using the inter-
polation logic described in Section 3.5.1. World coordinates are transformed into screen
coordinates using the map’s world-viewport matrix.

Collision visibility The final visibility of each label is determined by the collision detection
system described in Section 3.5.2. Only non-overlapping labels are set to visible:

if (collisions.length > @) {
sprite.visible = false;
} else {
sprite.visible = true;

}

Rendering At the end of each frame, PixiJS renders the stage containing all visible and
transformed label sprites:

this.app.renderer.render(this.app.stage);

3.5.5. Animation After Zooming Stops

A smooth label opacity animation has been implemented as in Section 3.5.1; however, labels
might remain partially transparent when users stop zooming, impacting readability. To en-
hance the user experience, an additional animation activates once zoom interactions stop,
smoothly transitioning labels to full opacity. The approach consists of three main compo-
nents: zoom interaction detection, idle state transition, and frame-by-frame label opacity
animation.

36

3.5. Visualization

Detecting zoom activity Zoom activity is tracked using both mouse and touch events
on the map’s canvas: mouse wheel zoom is detected via the ’wheel’ event; pinch zoom
(touch) is detected by tracking the distance between two fingers during ’touchstart’ and
"touchmove’ events.

Whenever zooming is detected, the following function is called to record the current time as
the last zoom interaction (lastZoomTime) and resets the idle state:

const updateZoomTime = () => {
this.lastZoomTime = Date.now();
if (this.isZoomIdle) {
this.isZoomIdle = false;
this.labelOpacityOverrides.clear();
this.zoomIdleFrames = 0;

3

Detecting when zoom becomes idle Each frame, the code checks whether enough time has
passed since the last zoom interaction. If the time exceeds a specified threshold (zoomIdleTimeout
= 500ms), the map is considered idle:

const timeSincelLastZoom = Date.now() - this.lastZoomTime;
const isZoomIdleNow = timeSincelLastZoom > this.zoomIdleTimeout;

If the state changes from active to idle, the animation sequence begins.

Starting and updating opacity animation During each frame while zoom is idle, labels
with opacity less than 1.0 gradually fade in:

if (this.labelOpacityOverrides.has(label.id)) {
sprite.alpha = this.labelOpacityOverrides.get(label.id);

if (this.isZoomIdle && sprite.alpha < 1.0) {
const newOpacity = Math.min(1.0,
sprite.alpha + this.opacityAnimationSpeed);
this.labelOpacityOverrides.set(label.id, newOpacity);
sprite.alpha = newOpacity;

If a label is not already animating but should fade in, it is added to the 1abelOpacityOverrides
map:

if (this.isZoomIdle && interpolated.opacity < 1.0) {
this.labelOpacityOverrides.set(label.id, interpolated.opacity);
3

37

3. Methodology

The animation speed (opacityAnimationSpeed = 0.05) controls how fast the label fades in
per frame. This results in a smooth transition that finishes in approximately 20 frames (or
0.33 seconds) when the application ideally running at 60 FPS.

Resetting when zoom resumes If the user starts zooming again during the fade-in process,
the animation is cancelled:

if (!'this.isZoomIdle && this.labelOpacityOverrides.size > 0) {
this.labelOpacityOverrides.clear();
}

All labels immediately revert to their interpolated opacity for the current zoom level:
sprite.alpha = interpolated.opacity;

This ensures that no lingering animation occurs while the zoom is active, and that the label
appearance stays consistent with their logical state.

38

4. Results and Discussion

This chapter reports the results from applying the methodology on TOP10NL dataset in
Delft region. Section 4.2 applies the proposed slice-based and event-based workflows to the
dataset and makes a comparison between two methods. Section 4.3 shows the visualization
results. Section 4.4 checks the outcomes against the hard and soft requirements defined
earlier, highlighting both compliance and remaining trade-offs. Section 4.5 closes with a
look into current limitations and the opportunities they expose for future refinement.

4.1. Research Area and Test Dataset

4.1.1. Study Area: Delft, the Netherlands

Delft offers a highly mixed cartographic landscape: canal network, irregular street pattern,
residential neighborhoods, university with large footprint buildings and so on. It’s an ideal
ground for the testing of vario-scale labeling strategies.

All cartographic features were extracted from TOP10NL (figure 4.1), all layers are in EPSG:28992
(Amersfoort / RD New). Wegdeel(Road), Waterdeel(Water) and Terrein(Terrain) layers are
already in planar partition in TOP10NL dataset, while adding a Gebouw(Building) layer needs
additional data-preprocessing. Detailed scripts are provided in Appendix A. There are
12,112 faces, 25,149 edges and 15,602 nodes in total.

All cartographic features were assigned a feature_class code. During visualization, the
following ranges are used to distinguish different feature types: values between 10,000 and
10,999 represent road features, between 12,000 and 12,999 represent water features, and
between 13,000 and 13,999 represent buildings.

4.1.2. tGAP Generation Results

To prepare the data structure that underpin the slice-based and event-based labeling exper-
iments, the pre-processed TOP10NL data were used to generate tGAP.

tGAP was generated using the existing code repository: https://github.com/bmmeijers/
tgap-ng/tree/develop. Class compatibility matrix and class importance were not consid-
ered. The following parameters were used:

whether to perform line simplification on the edge geometries
do_edge_simplification = True

% # whether to show detailed progress information
% # -- shows detailed progress on which face / edge is dealt with

39

https://github.com/bmmeijers/tgap-ng/tree/develop
https://github.com/bmmeijers/tgap-ng/tree/develop

4. Results and Discussion

[roads
/(!4 [water
¥ buildings

other

Figure 4.1.: Overview of Delft region

40

4.1. Research Area and Test Dataset

% do_show_progress = False # rename to do_show_trace?

whether to use the straight skeleton code as backend to generate
new boundaries while splitting areas
do_use_grassfire = True

whether to check the edge geometries (polylines) for (self-)
intersection before and during the process
do_expensive_post_condition_check_simplify = True

merge faces that have the same feature class
do_merge_equivalent_area_patches = False

The results of the tGAP generation were stored in a spatial database, details are described in
Appendix B. There were 12,122 faces and 153,277 edges for the end result. A visualization
of the tGAP edges and nodes is provided in Figure 4.2.

Figure 4.2.: Visualization of tGAP edges and nodes

41

4. Results and Discussion

4.2. Label Placement Results of Two Different Methods

4.2.1. Slice-based Method Result

scale=1:40,000 step=11355 scale=1:80,000 step=11923

Figure 4.3.: Map slices at scales 1:10 000, 1:20 000, 1:40 000 and 1:80 000

42

4.2. Label Placement Results of Two Different Methods

Following the procedure in Section 3.3.1, the base scale was set to 1:10000 and three addi-
tional slices were created by doubling the scale denominator, i.e. at 1:20000, 1:40 000 and
1:80000 as shown in Figure 4.3.

For each slice, we generated (i) a skeleton geometry and (ii) a set of label anchor points for
the following feature types: Wegdeel (road), Waterdeel (water), and Gebouw (building).

Figure 4.4, Figure 4.5, Figure 4.6, and Figure 4.7 present the main skeleton geometries for
each slice. The corresponding label anchor points are shown in Figure 4.8, Figure 4.9, Fig-
ure 4.10, and Figure 4.11.

Every anchor point is stored in the database with attributes:

(label_id INTEGER PRIMARY KEY,
face_id INTEGER,

step_value INTEGER,
feature_class INTEGER,

name TEXT,
anchor_geom GEOMETRY(Point, 28992),
angle DOUBLE PRECISION,

label_trace_id INTEGER)

Table 4.1 summarizes the number of label anchor points across different slices. Starting
from 10,697 anchors at the base scale of 1:10,000, the number sharply declines with each
successive slice, reaching only 51 anchors at 1:40,000. This represents a cumulative reduction
of approximately —99.5%. As the map scale decreases, only the most essential features are
retained, thus the most essential labels would be remained.

Table 4.1.: Slice statistics

Slice scale step_value Anchor points Reduction vs. previous slice

1:10000 0 10697 —
1:20000 9084 2008 —81.2%
1:30000 11355 218 —89.1%
1:40 000 11923 51 —76.6%

43

4. Results and Discussion

Figure 4.4.: Skeleton of map slice at scale 1:10 000

4.2. Label Placement Results of Two Different Methods

45

\E—

v / v
P

Figure 4.5.: Skeleton of map slice at scale 1:20 000

4.2. Label Placement Results of Two Different Methods

Figure 4.7.: Skeleton of map slice at scale 1:80 000

4. Results and Discussion

Figure 4.8.: Label anchor points of map slice at scale 1:10 000

4.2. Label Placement Results of Two Different Methods

49

Figure 4.9.: Label anchor points of map slice at scale 1:20 000

4. Results and Discussion

of map slice at scale 1:40 000

4.10.: Label anchor points

Figure

4.2. Label Placement Results of Two Different Methods

Figure 4.11.: Label anchor points of map slice at scale 1:80 000

4. Results and Discussion

4.2.2. Event-based Method Result
Every time the geometry of a face changes, the event-based algorithm recomputes the cor-
responding label anchor points (Section 3.3.2).

To quantify how often this operation is executed over the complete scale transition, all
key-frame events were counted per face_id. Figure 4.12 shows 50 faces with most event
changes.

Number of Key Steps per Face ID

100
80

60

I.-I-
40 |!!|! I Iiliil | i-II-iI
20 I I I I I I IIIIIIIIIIIIIIIIIIIIIII

Key Step Count

oNNgYTOOMNOOITTTONTTATMOOTIT NLOATTITAITONOEHOLDOOMANMOONLINOOLNWLS N
DONMMOIINNNTOOOIN AT OOONIIMNONNOIOONDDINONNHTOAMMNOANOMNSNHINA
NOTOHOLOMHAHOINETTONRNENNDNLNNIOINATONHNMOON vt odN~IN onno
T AN ONMNMONNO ~ HMONNOANMTSTNOOOONNNONNOW WO MATS~NAT~NMT O oo~
— — ~ — ~
Face ID

Figure 4.12.: Number of geometry change events per face (top 50)

While geometry changes can be quite subtle on individual faces over small steps, Figure 4.13
illustrates several distinct geometry changes for face 4290. As shown, this water area pro-
gressively expands over time, as indicated by the increasing step_value.

52

4.2. Label Placement Results of Two Different Methods

"face_id" =4290)
AND "step_value" =0 face_id" = 4290
AND "step_value" = 7322
"face_id" =4290 "face_id" = 4290
AND "step_value" = 11027 AND "step_value" = 11828

Figure 4.13.: Geometry changes of face 4290

4.2.3. Comparison Between Two Methods
Anchor Displacement per Consecutive Scale Step

To quantify how smoothly labels transition during zooming, we measured the displacement
of anchor points between consecutive steps for both labeling methods.

Smoothness was quantified as the Euclidean distance a label moves between every integer
step_value in the tGAP sequence. Since key steps in both methods may be sparse, anchor
positions were densified via linear interpolation to obtain positions at every intermediate
scale step. We then computed the step-to-step displacement and summarized the results
statistically per method. Table 4.2 reports the main statistics.

Since we interpolate label positions at every integer step, the majority of steps involve little
movement in real-world coordinates. As a result, the mean displacements for both methods
are extremely low, collapsing to 2 millimeter or less.

53

4. Results and Discussion

Table 4.2.: Label anchor smoothness statistics
Method Mean p99 Max

Event-based 0.002 0.026 216.715
Slice-based 0.002 0.025 0.506

However, notable differences appear when we examine the 99 percentiles and maximum
values. In the even-based method, the 99th percentile displacement remains modest (2.6 cm),
indicating smooth transitions for the majority of labels. Nevertheless, significant outliers
exist, such as a maximum displacement of 216.715 meters. These large jumps occur when
a geometry event (such as a face merge or split) triggers a complete recomputation of the
label anchor point.

»%

"label_trace_id" = 1762 "label_trace_id" = 1762
AND "step_value" = 12034 AND "step_value" = 12048

"label_trace_id" = 1762 "label_trace_id" = 1762
AND "step_value" = 12049 AND "step_value" = 12065

Figure 4.14.: Anchor displacement due to geometry change in one face

For example, Figure 4.14 illustrates a single-step jump in which a minor difference to the

54

4.2. Label Placement Results of Two Different Methods

edges of a road face triggers a major change in the skeleton structure, and thus results in a
drastic shift in the anchor position between step 12048 and step 12049. However, although
the distance between the anchor points is 216.715 meters in the real world, this translates to
around 5.91 pixels on screen at step 12048 based on a screen resolution of 96 PPI and the
corresponding map scale at that step.

In contrast, the slice-based method has a much tighter control over per-step movement. Since
label positions are linearly interpolated between fixed key steps (i.e., predefined scale slices),
the interpolation guarantees a hard upper bound on step-to-step movement, never exceeding
0.506m in the experiment. This decreases abrupt relocations but introduces gradual drift.

This difference stems from the fundamental design of the two methods:

Event-based method recomputes anchor points only when the geometry changes. Most
of the time, labels have spatial stability; however, when a geometry event does occur, the
recalculated anchor may differ significantly, resulting in abrupt jumps.

Slice-based method anchors are defined only at discrete scale levels (e.g., 1:10,000, 1:20,000,
etc.) and interpolated linearly across intermediate steps. This ensures continuity, but the
label is forced to move gradually even if the underlying geometry remains unchanged.

Total Number of Label Anchors Generated

Beyond smoothness, an important practical consideration is the number of anchor points
each method generates, and consequently, the amount of data that must be stored across all
scales.

The slice-based method, using four discrete zoom levels, produces at most four anchor
positions per label (one per slice), assuming the label persists across all levels. In the Delft
dataset, this resulted in a total of 12,974 anchor records for all area labels. In contrast, the
event-based method generates a new anchor each time a face’s geometry changes. This
leads to a higher number of anchors per label when multiple events occur during a label’s
lifespan. As a result, the event-based method produced 49,018 anchor records in total.

This increase reflects the finer granularity of the event-based approach: anchors are updated
only when meaningful changes occur, providing high positional precision. By contrast, the
slice-based method trades off storage efficiency against positional precision, interpolating
between fewer and fixed anchor positions.

From a data storage perspective, the slice-based method is more compact and may be prefer-
able in memory-constrained environments. Meanwhile, the event-based method, though
more data-intensive, maintains a tighter alignment with geometric changes and supports
more accurate label positioning overall.

Computational Complexity

We now consider the algorithmic complexity of the two labeling methods.

The slice-based method has a relatively straightforward workflow: it computes optimal label
anchor positions at a limited number of fixed scale slices (four in this study), and then ap-
plies linear interpolation to derive positions at intermediate zoom levels. The computational

55

4. Results and Discussion

complexity grows approximately with the number of labels L and the number of slice levels
S, resulting in a total complexity of roughly O(L - S).

The event-based method is more sophisticated. It monitors the vario-scale structure for
changes and recomputes anchor positions and label rotations whenever a geometry change
event is triggered. In the worst-case scenario where every label responds to every event,
the complexity can approach O(L - E), where E is the total number of events. In practice,
however, most labels are only affected by a subset of relevant events, resulting in lower
actual workload. Still, in the Delft dataset, the event-based method involved more anchor
computations than the slice-based method, since E > S.

4.3. Label Visualization Result

4.3.1. Interpolation of position, orientation and opacity

Since dynamic media cannot be embedded in this thesis, only static screenshots are pro-
vided; the interactive demo is available online at:
https://imyangao.github.io/Vario-scaleMapLabelingDemo/.

There is only subtle difference between the slice-based and event-based methods in terms
of visualization results for this dataset. Here, we present the results using the event-based
method. Figure 4.15 to 4.18 illustrate the result of linear interpolation between key steps
for label positions. Different feature types of geometries use different font colors for their
labels.

Each frame corresponds to a different intermediate step and demonstrates how labels glide
smoothly between anchor points. Without interpolation, labels would abruptly “jump” be-
tween positions, resulting in visual discontinuities. By contrast, interpolation enables con-
tinuous transitions, improving the visual experience during zooming.

| Toggle drawer Search for a Dutch locati | X

% Po «
ST
:’\ “"f‘\i‘—a

0
5
&

o
/N
&0
R
N
W)
st
IR
““
A

‘?‘l
W

R
.
gttt
Q‘,‘g
S
TR
TR

\

5
5
5

8

w2l
T
et

i\

)
B!
it

1
i
X

"

R
=0
}‘\‘
o

I\

1:44645 [86536, 445733]
step: 11504 o
1 chunks in view - fetchina 0 =l =

Figure 4.15.: Label display at scale 1:44645

56

https://imyangao.github.io/Vario-scaleMapLabelingDemo/

4.3. Label Visualization Result

M=

[search for a Dutch locati [x

o

=
/.“..'/‘wu /,v“

10
R
N>

1:29742 [86001, 445891]
1 chunks in view - fetching 0

[Toggle drawer
step: 10743

Label display at scale 1:29742

Figure 4.16.

X

8
L
5
]
£
3
a
£
5
5
]
&

Toggle drawer

1:21139 [86125, 445965]

step: 9402

Bl=

5 chunks in view - fetching 0

21139

Figure 4.17.: Label display at scale 1

57

4. Results and Discussion

774
T

a0

2> 3 12"
35)ya! \
&/ N\

Universiteit el N2

) 2

L e
>
:

Figure 4.18.: Label display at scale 1:10097

In addition to positional smoothness, label rotation plays a role in readability, especially for
features such as curved roads and rivers, where alignment improves legibility. Smooth an-
gular transitions preserve the label orientation, avoiding abrupt changes that can distract the
reader. In contrast, building labels are displayed horizontally to ensure a clear presentation.
When zooming stops, all labels are rendered fully opaque; no partially transparent states
are displayed.

4.3.2. Label Collision and Visibility

Greedy collision detection optimized with an R-tree structure was implemented to manage
label overlaps efficiently. Figure 4.19 and Figure 4.20 compare the results of a naive ap-
proach (without any collision handling) and the optimized greedy approach. The optimized
method preserves label clarity by displaying only high-priority labels while suppressing
lower-priority ones that would otherwise overlap.

The greedy collision detection ensures that the map remains legible and uncluttered during
scale transitions, maintaining interactive performance without sacrificing real-time respon-
siveness.

58

4.4. Evaluation of Label Placement Requirements

o . . R § S—
Toggle drawer Y 3 8! Search for a Dutch locati
Tl daver S R R O NPT B s

e‘:‘.“é LA
2% el
o«“‘%\\ el

step: 5025
9 chunks in view - fetch ¥

Toggle drawer

1:12851 [85873, 445566]
step: 4778
7 chunks in view - fetching 0

Figure 4.20.: Labels with collision detection

4.4. Evaluation of Label Placement Requirements

This section evaluates the implemented label placement methodology against the previously
defined label placement requirements (see Section 3.1). The evaluation addresses both the
fulfillment of the hard requirements and explains why certain soft requirements were not
implemented.

59

4. Results and Discussion

4.4.1. Evaluation of Hard Requirements

The implemented approach fully meets four hard (must-have) requirements but failed one:

H1. Collision-free rendering: the greedy collision detection algorithm combined with R-
tree acceleration ensures no labels overlap at any visible scale. This is demonstrated in
Figure 4.20, where all labels are rendered without collisions.

H2. Unambiguous feature association: each label is explicitly linked to a single feature
through precise anchor placement methods.

H3. Label continuity during continuous zoom: the interpolation-based method provides
smooth transitions of label position, rotation, and opacity between discrete scale steps. Fig-
ures 4.15 through 4.18 illustrate the gradual movement of labels between key steps.

H4. Deterministic priority model: labels are prioritized using a deterministic rule based on
the step_high value and text length, this ensures consistent label selection under identical
input conditions.

H5. No flicker: when collision detection is performed on a per-frame basis, labels that ap-
pear in one frame may be removed in the next, leading to an undesirable flickering effect.

4.4.2. Discussion on Soft Requirements

Some soft requirements were not implemented, either intentionally or due to practical con-
straints:

S1. Avoid half-transparent rest state: to reduce confusion caused by half-transparent labels,
an animation is applied once zooming stops, ensuring that labels reach full opacity in their
final state.

S2. Micro-adjust before drop: the idea of fine-tuning label positions to prevent removal was
omitted. Although this could increase label density, it adds large computational overhead
and could negatively affect real-time performance.

S3. Preserve horizontal orientation: to improve readability, building labels are deliberately
rendered with a fixed horizontal orientation.

4.5. Limitations

Several limitations inherent to the proposed approach must be considered when applying
the methodology in practice. These limitations include both algorithmic constraints and
practical implementation challenges:

1. Quality of label anchor points: anchor points computed using skeletonization method
might not always generate optimal results. Skeletonization, particularly in geometries with
complex or irregular boundaries, can produce excessive branching or misplaced midpoints.

2. Linear interpolation only: interpolation between discrete keyframes is strictly linear,
providing smooth transitions but may be potentially less visually appealing or realistic com-
pared to non-linear interpolation methods such as easing curves. Linear interpolation may

60

4.5. Limitations

result in labels moving at uniform speed, which can sometimes feel mechanical to users
interacting with the visualization.

3. Interaction between interpolation and collision detection: although interpolation en-
sures smooth positional transitions, the collision detection mechanism may override these
smooth transitions with abrupt visibility changes. For instance, a lower-priority label may
suddenly disappear when overlapping, or a label may abruptly appear when space becomes
available. These sudden changes partially undermine the intended continuity of the zoom
interaction.

61

5. Conclusion

5.1. Research Overview

This research aimed at developing label placement methods specifically designed for vario-
scale maps, focusing on continuous label transitions and smooth adjustments across scales.
The core research question addressed how can labels be dynamically placed and adjusted
on vario-scale maps to maintain readability, usability, and visual coherence across contin-
uously changing scales.

To provide a comprehensive answer, several sub-questions guided this study:

1. Label placement requirements: what are the hard and soft requirements for optimal
vario-scale label placement?

The hard requirements, such as collision-free rendering, unambiguous feature associa-
tion, label continuity during zooming, deterministic behavior, and avoidance of flicker,
were treated as non-negotiable constraints during implementation. These were essen-
tial to maintain the map’s readability across scales.

Soft requirements, including strategies like avoidance of half-transparency state, micro-
adjustment before label removal, and preservation of horizontal orientation, were con-
sidered desirable but optional. They were implemented where feasible to improve
cartographic quality without compromising the hard constraints.

2. Optimal placement techniques: how can the optimal positions for labels be deter-
mined for both elongated and more compact features, ensuring spatial alignment
and visual clarity?

To ensure spatial alignment and visual clarity, this thesis adopts feature-specific place-
ment strategies for optimal label positioning. For elongated geometries such as rivers
or roads, skeletonization was applied to derive central paths along which multiple
labels could be placed. Label anchors were positioned at midpoints of long skeleton
segments, with orientation aligned to the segment’s main direction. This approach
ensures distributed, aligned labeling across the feature’s extent.

For compact geometries such as buildings, a single anchor point was used to avoid
clutter. The default anchor was the centroid, offering a stable and central location.
When the centroid fell outside the polygon (e.g., for concave shapes), the pole of inac-
cessibility was used as a fallback. Label orientation was derived from the major axis of
the feature’s minimum rotated bounding box to preserve visual alignment.

3. Dynamic adjustments: how can labels be smoothly transitioned across scales, min-
imizing positional shifts during scale changes, while maintaining readability and
visual continuity?

63

5. Conclusion

In this research, two polygonization strategies(slice-based and event-based) were de-
veloped and assessed for deriving polygon geometries from the tGAP structure to facil-
itate dynamic label placement. The slice-based method involved reconstructing poly-
gon geometries at predetermined, discrete scales; the event-based method captured
polygon geometries precisely at scales where geometry changes occurred.

To ensure smooth transitions across scales, label anchors were computed at discrete
steps based on two different polygonization strategies, and subsequently interpolated
to intermediate scales. Label anchors were linked into continuous trajectories through
a nearest-neighbor matching approach, minimizing positional shifts. Linear interpola-
tion was initially used between discrete scales, ensuring labels transitioned smoothly
without abrupt jumps, enhancing visual continuity and readability.

. Data structure and retrieval: how can label-related data be structured and stored

efficiently to support dynamic rendering?

Label metadata was encoded based on the tGAP structure, associating relevant geo-
graphic features on the map with label information at discrete scale steps. Specifically,
the data structure records anchor point coordinates, label orientation angles, name
text, and unique trace identifiers (trace IDs) for each feature at predefined key steps.
This encoding supports label rendering during zoom: when the view changes scale,
the system queries the corresponding scale of the vario-scale maps and displays each
label at its precomputed anchor.

. Dynamic display: how can label text be effectively placed on maps in a way that

integrates with the underlying geographic features and supports continuous scale
changes?

A dedicated overlay canvas is positioned above the base map and synchronized with
its coordinate system, allowing label positions to remain consistent during panning
and zooming. Labels are rendered using PixiJS, a framework that supports smooth
animations, hierarchical scene management, and per-label transformations.

Label placement and orientation are updated in each animation frame based on world-
to-screen transformations, ensuring alignment with map features. Interpolation tech-
niques maintain continuity during scale transitions, while collision handling ensures
labels remain non-overlapping.

In conclusion, this research developed and evaluated a methodology for dynamically placing
and managing labels on vario-scale maps. It introduced a requirement framework distin-
guishing between hard and soft constraints, applied different anchor computation strategies
for elongated and compact geometries to determine suitable label positions, and ensured
smooth transitions across scales using interpolation of anchor trajectories. Furthermore, it
structured the data to encode label information and implemented a synchronized overlay
rendering system to maintain alignment with the base map. Together, these components
support continuous and readable label placement integrated with the vario-scale maps.

5.2. Contributions

This study has provided several key contributions to the field of labeling vario-scale maps:

64

1.

5.3. Future Work

Novel integration method: new method was introduced for combining dynamic label
transitions with the vario-scale tGAP data structure, supporting label continuity and
smoothness during scale transitions.

. Anchor-based trajectory approach: the concept of persistent label trajectories derived

from anchor points was implemented, improving label continuity and visual coher-
ence.

Practical visualization approach: developed an interactive visualization solution that
demonstrated real-time smooth transitions and effective collision avoidance. The sys-
tem is integrated with the underlying vario-scale base maps, ensuring alignment dur-
ing panning and zooming. The approach was validated through application to the
TOP10NL dataset of Delft.

These contributions extend current understanding and techniques, providing a basis for
future development in labeling vario-scale maps.

5.3. Future Work

Although this study made some progress in labeling vario-scale maps, several aspects still
remain for future exploration to refine and extend the methodology:

1.

3D skeletonization: currently, skeletons are computed in 2D per scale step, which
can lead to discontinuities in anchor placement when transitioning across scales. A
possible direction is to investigate 3D skeletonization techniques that operate directly
in the space-scale cube. By treating the evolving geometry as a 3D volume (with
scale as the third dimension), a continuous 3D skeleton could be extracted, potentially
generating more stable and coherent anchor paths for dynamic label placement.

. Interpolation methods: rather than relying solely on linear interpolation, future work

could explore the use of easing functions (e.g., Bézier curves) to produce more natural
label movements across scales. These techniques may help preserve spatial continuity
better.

. Dynamic data transmission: to improve performance in web-based environments,

future systems could adopt progressive loading strategies, delivering label data incre-
mentally based on user view and zoom level. This could reduce initial load time and
support scalability to large datasets.

. Collision management: current per-frame collision checks can cause labels to flicker

due to sudden visibility toggling. Future work could reduce this effect by applying
opacity fading during appearance/disappearance or introducing some delay in the
collision logic so that a label is only removed after sustained overlap (e.g., over several
frames), rather than immediately.

. Integration into generalization processes: an interesting direction is to explore whether

label content (e.g., place names) can inform generalization decisions in the tGAP con-
struction, such as deciding which features to merge or preserve. Incorporating label
relevance or semantic weight into the generalization pipeline may improve both the
resulting map geometry and labeling quality.

65

5. Conclusion

6. Support for additional interactions and features: extending the system to support
interactive map rotation or multi-language labels would enhance its utility. For mul-
tilingual labeling, precomputing label trajectories for each language and dynamically
swapping them based on user preference could provide a seamless experience.

66

Bibliography

V. Agafonkin. polylabel: A fast algorithm for finding the pole of inaccessibility of a polygon.
https://github.com/mapbox/polylabel, 2024.

M. Barrault. A methodology for placement and evaluation of area map labels. Computers,
Environment and Urban Systems, 25(1):33-52, 2001. doi: 10.1016/s0198-9715(00)00039-9.

M. Barrault and F. Lecordix. An automated system for linear feature name placement which
complies with cartographic quality criteria. In AUTOCARTO-CONFERENCE-, pages 321-
330, 1995.

K. Been, E. Daiches, and C. Yap. Dynamic map labeling. IEEE Transactions on Visualization
and Computer Graphics, 12(5):773-780, 2006. doi: 10.1109/tvcg.2006.136.

K. Been, M. Nollenburg, S.-H. Poon, and A. Wolff. Optimizing active ranges for consis-
tent dynamic map labeling. Computational Geometry, 43(3):312-328, 2010. ISSN 0925-7721.
doi: https://doi.org/10.1016/j.comgeo.2009.03.006. URL https://www.sciencedirect.
com/science/article/pii/S0925772109000649. Special Issue on 24th Annual Symposium
on Computational Geometry (SoCG’08).

S. Biniek, G. Touya, and G. Rouffineau. Fifty shades of roboto: Text design choices and
categories in multi-scale maps. Advances in Cartography and GlScience of the ICA, 1:1-8,
2019. doi: 10.5194/ica-adv-1-2-2019.

D. Dorschlag, 1. Petzold, and L. Pliimer. Placing objects automatically in areas of maps. 01
2003.

S. Edmondson,]. Christensen, J. Marks, and S. Shieber. A general cartographic labelling
algorithm. Cartographica, 33(4):13-24, 1996. doi: 10.3138/U3N2-6363-130N-H870. URL
https://doi.org/10.3138/U3N2-6363-130N-H870.

O. Ertz, M. Laurent, D. Rappo, A. Sae-Tang, and E. Taillard. Pal-a cartographic labelling
library. 01 2008.

D. Garcia-Castellanos and U. Lombardo. Poles of inaccessibility: A calculation algorithm for
the remotest places on earth. Scottish Geographical Journal, 123(3):227-233, 2007.

C. Green. Improved alpha-tested magnification for vector textures and special effects. In
ACM SIGGRAPH 2007 Courses, SIGGRAPH ‘07, page 9-18, New York, NY, USA, 2007. As-
sociation for Computing Machinery. ISBN 9781450318235. doi: 10.1145/1281500.1281665.
URL https://doi-org.tudelft.idm.oclc.org/10.1145/1281500.1281665.

E. Imhof. Positioning names on maps. The American Cartographer, 2(2):128-144, 1975. doi:
10.1559/152304075784313304.

G. W. Klau and P. Mutzel. Optimal labeling of point features in rectangular labeling models.
Mathematical Programming, 94(2-3):435-458, 2003. doi: 10.1007/s10107-002-0327-9.

67

https://github.com/mapbox/polylabel
https://www.sciencedirect.com/science/article/pii/S0925772109000649
https://www.sciencedirect.com/science/article/pii/S0925772109000649
https://doi.org/10.3138/U3N2-6363-130N-H870
https://doi-org.tudelft.idm.oclc.org/10.1145/1281500.1281665

Bibliography

I. Pinto and H. Freeman. The feedback approach to cartographic areal text placement, volume 1121,
pages 341-350. 01 2006. ISBN 978-3-540-61577-4. doi: 10.1007 /3-540-61577-6_35.

N. Schwartges. Dynamic Label Placement in Practice. doctoralthesis, Universitit Wiirzburg,
2015.

T. Strijk and M. Kreveld. Practical extensions of point labeling in the slider model. Geolnfor-
matica, 6, 03 2000. doi: 10.1023/A:1015202410664.

M. van Kreveld, T. Strijk, and A. Wolff. Point labeling with sliding labels. Com-
putational Geometry, 13(1):21-47, 1999. ISSN 0925-7721. doi: https://doi.org/10.
1016/50925-7721(99)00005-X. URL https://www.sciencedirect.com/science/article/
pii/S092577219900005X.

P. van Oosterom and B. Meijers. Towards a true vario-scale structure supporting smooth-
zoom. In D. Burghardt and M. Sesters, editors, Proceedings of the 14th Workshop of the ICA
Commission on Generalisation and Multiple Representation the ISPRS Commission II/2 Working
Group on Multiscale Representation of Spatial Data: Geographic Information on Demand, pages
1-19, 2011.

P. van Oosterom and B. Meijers. Vario-scale data structures supporting smooth zoom and pro-
gressive transfer of 2D and 3D data, pages 21-42. Nederlandse Commissie voor Geodesie -
KNAW, 2012a. ISBN 978-90-6132-339-6.

P. van Oosterom and B. Meijers. True vario-scale maps that support smooth-zoom. In
K. de Zeeuw, editor, S.n., pages 1-9. Geospatial World Forum, 2012b. Geospatial World
Forum - Theme: Geospatial Industryt and World Economy (Amsterdam, The Netherlands)
; Conference date: 23-04-2012 Through 27-04-2012.

J. W. van Roessel. An algorithm for locating candidate labeling boxes within a polygon. 16
(3):201-209, 1989. doi: 10.1559/152304089783814034.

A. Wolff, L. Knipping, M. van Kreveld, T. Strijk, and P. Agarwal. A simple and efficient
algorithm for high-quality line labeling, volume 2001-44. Utrecht University: Information and
Computing Sciences, uu-cs edition, 2001. ISBN 0924-3275.

68

https://www.sciencedirect.com/science/article/pii/S092577219900005X
https://www.sciencedirect.com/science/article/pii/S092577219900005X

TR W N

10

12

12
I

15
16

18
19
20
21
22
23

A. Data-Preprocessing Workflow for tGAP
Generation

This appendix documents the complete preprocessing pipeline that converts the original
TOP10NL source layers into a topological data structure that can be used by the tGAP
generator. Although not directly related to the main research topic of labelling vario-scale
maps, the procedure is essential for replicability.

A.1. Merge thematic layers

After loading TOP10NL data into OpenJump, combine terrain, building, road and water
features into a single layer. A data query can be used:

The resulting layer - hereafter called dataset_name_merged - contains all four feature classes.

Listing A.1: Combined Topl0NL Dataset Query

SELECT naam,

geom,

visualisatiecode,

"terrein' AS original_layer
FROM topl1@Onl_terrein__terrein

UNION ALL
SELECT naam,
geom,

visualisatiecode,
'gebouw' AS original_layer
FROM top1@nl_gebouw__gebouw

UNION ALL
SELECT naam,
geom,

visualisatiecode,
'wegdeel' AS original_layer
FROM top1Onl_wegdeel__wegdeel

UNION ALL
SELECT naamNL AS naam,
geom,

visualisatiecode,
'waterdeel' AS original_layer
FROM topl1Onl_waterdeel__waterdeel;

69

A. Data-Preprocessing Workflow for tGAP Generation
A.2. Create a planar partition

1. Open dataset_name_merged in OpenJUMP
2. Navigate to Tools -> Edit Geometry -> Convert -> Planar Partition
3. The operation outputs three layers:
Faces — attributes: FID, ID
Edges — attributes: FID, ID, StartNode, EndNode, RightFace, LeftFace
Nodes — attributes: FID, ID

These layers encode the topology (nodes-edges-faces) required for tGAP.

A.3. Export layers to JML

Save each of the three layers plus the merged layer as JML files in the project working
directory:

1. dataset_name_merged. jml
2. dataset_name_edge.jml
3. dataset_name_face.jml

4. dataset_name_node. jml

A.4. Convert JML to PostGIS dumps

Using GDAL/OGR, convert every JML file to a PostGIS-compatible SQL dump while pre-
serving the Dutch national CRS (EPSG:28992):

Listing A.2: OGR20OGR Conversion Commands

ogr2ogr -s_srs EPSG:28992 -t_srs EPSG:28992 -f "PGDUMP" tmp_merged.sql
dataset_name_merged.jml -lco GEOMETRY_NAME=geom -1co SPATIAL_INDEX=GIST
-nln dataset_name_merged

ogr2ogr -s_srs EPSG:28992 -t_srs EPSG:28992 -f "PGDUMP" tmp_edge.sql
dataset_name_edge.jml -lco GEOMETRY_NAME=geom -1lco SPATIAL_INDEX=GIST -
nln dataset_name_edge

ogr2ogr -s_srs EPSG:28992 -t_srs EPSG:28992 -f "PGDUMP" tmp_face.sql
dataset_name_face.jml -lco GEOMETRY_NAME=geom -1lco SPATIAL_INDEX=GIST -
nln dataset_name_face

ogr2ogr -s_srs EPSG:28992 -t_srs EPSG:28992 -f "PGDUMP" tmp_node.sql
dataset_name_node.jml -1lco GEOMETRY_NAME=geom -1lco SPATIAL_INDEX=GIST -
nln dataset_name_node

Import the four tmp_*sql files with psql or pgAdmin.

70

13
14
15
16
17
18
19

41
42
43
44
45
46
47
48
49
50

A.5. Process topology tables inside PostGIS

A.5. Process topology tables inside PostGIS

Listing A.3: Topology Processing SQL Script

-- Rename attributes
DROP VIEW IF EXISTS dataset_name_edge_vw;
CREATE VIEW dataset_name_edge_vw AS

SELECT id AS edge_id,
startnode AS start_node_id,
endnode AS end_node_id,
rightface AS right_face_id,
leftface AS left_face_id,

(ST_DUMP (geom)) .geom::geometry(LineString, 28992) AS geom
FROM dataset_name_edge;

-- Generate a point-in-polygon (PIP) for faces
DROP TABLE IF EXISTS dataset_name_face_tmp;
CREATE TABLE dataset_name_face_tmp AS
SELECT id AS face_id,
ST_PointOnSurface(geom)::geometry(Point, 28992) AS geom
FROM dataset_name_face;

CREATE INDEX dataset_name_face_tmp_geom_idx
ON dataset_name_face_tmp
USING gist (geom);

-- Process nodes
DROP VIEW IF EXISTS dataset_name_node_vw;
CREATE VIEW dataset_name_node_vw AS
SELECT id AS node_id,
(ST_DUMP (geom)) .geom::geometry(Point, 28992) AS geom
FROM dataset_name_node;

-- Enrich faces with semantic attributes from the merged layer
DROP TABLE IF EXISTS dataset_name_face_enriched;
CREATE TABLE dataset_name_face_enriched AS
WITH ranked AS (
SELECT f.face_id,
m.visualisatiecode AS klass,
m.naam,
f.geom AS pip_geometry,
ROW_NUMBER () OVER (
PARTITION BY f.face_id
ORDER BY m.visualisatiecode ASC
) AS rn
FROM dataset_name_face_tmp AS f
LEFT JOIN dataset_name_merged AS m
ON m.geom && f.geom
AND ST_Contains(m.geom, f.geom)

)

SELECT face_id,
klass,
naam,

pip_geometry

71

[uity

g1 Q1
N

W N =

SIS

16

19
20
21
22
23

A. Data-Preprocessing Workflow for tGAP Generation

FROM ranked
WHERE rn = 1;

Export the two views dataset_name_edge_vw and dataset_name_node_vw to PostGIS dumps so
they can be re-imported as tables:

Listing A.4: OGR20OGR Export Commands

ogr2ogr --config PG_USE_COPY YES -f "PGDUMP" tmp_edge.sql \
PG:"dbname=tgap_test user=postgres ..." \
dataset_name_edge_vw \
-nln dataset_name_edge \
-1lco CREATE_SCHEMA=0FF -1lco SCHEMA=public -lco GEOMETRY_NAME=
geometry

ogr2ogr --config PG_USE_COPY YES -f "PGDUMP" tmp_node.sql \
PG:"dbname=tgap_test user=postgres ..." \
dataset_name_node_vw \
-nln dataset_name_node \
-1lco CREATE_SCHEMA=0FF -1lco SCHEMA=public -lco GEOMETRY_NAME=
geometry

A.6. Build minimal bounding rectangles (MBRs) for faces

Listing A.5: Minimum Bounding Rectangle (MBR) Generation

DROP TABLE IF EXISTS dataset_name_mbrs;
CREATE TABLE dataset_name_mbrs AS
SELECT face_id,
ST_SetSRID(ST_Envelope(ST_Collect(mbr_geometry))::geometry(Polygon),
28992)
::geometry(Polygon,28992) AS mbr_geometry

FROM (
SELECT left_face_id AS face_id,
ST_Envelope(ST_Collect(geometry::box2d)) AS mbr_geometry
FROM dataset_name_edge
WHERE left_face_id IS NOT NULL
AND left_face_id > 0@
GROUP BY left_face_id

UNION ALL

SELECT right_face_id AS face_id,
ST_Envelope(ST_Collect(geometry::box2d)) AS mbr_geometry
FROM dataset_name_edge
WHERE right_face_id IS NOT NULL
AND right_face_id > 0
GROUP BY right_face_id
) AS mbr
GROUP BY face_id;

72

A.7. Assemble the final dataset_name_face table

A.7. Assemble the final dataset_name_face table

Listing A.6: Final Face Table Creation

DROP TABLE IF EXISTS dataset_name_face;
CREATE TABLE dataset_name_face AS
SELECT m.face_id,

f.pip_geometry ::geometry(Point, 28992),
m.mbr_geometry ::geometry(Polygon, 28992),
f.klass AS feature_class,
f.naam AS name

FROM dataset_name_mbrs AS m

JOIN dataset_name_face_enriched AS f
ON m.face_id = f.face_id;

The resulting tables - dataset_name_node, dataset_name_edge, and dataset_name_face - con-
form to the schema expected by tGAP.

This workflow can be repeated for alternative study areas or updates to the TOP10NL dataset
by replacing file names and schemas with the desired dataset_name.

73

B. tGAP Schema Description

The following describes the schema of the two main tables used from the tGAP dataset:
dataset_tgap_face and dataset_tgap_edge. These tables store topological data, where each

face or edge has an associated validity range defined by step_low and step_high.

Only the key columns used in this thesis are described below:

Table: {dataset}_tgap_face

Column Name | Data Type | Description

face_id integer Unique identifier for each face (polygonal region).

step_low integer Lower bound of the step during which the face is
valid.

step_high integer Upper bound of the step during which the face is
valid.

area numeric Area of the face geometry.

feature_class | integer Category of the face feature(visualization code).

mbr_geometry geometry | Minimum bounding rectangle of the face geometry.

pip_geometry geometry | A point that is inside the polygon.

Table B.1.: Schema of {dataset}_tgap_face table

Table: {dataset} tgap_edge

Column Name Data Type | Description

edge_id integer Unique identifier for each edge (line segment).

step_low integer Lower bound of the step during which the edge is
valid.

step-high integer Upper bound of the step during which the edge is
valid.

left_face_id_low integer face_id of the face on the left side of the edge dur-
ing its valid period.

right_face_id_low | integer face_id of the face on the right side of the edge
during its valid period.

left_face_id_high | integer face_id on the left after a topology change.

right_face_id_high | integer face_id on the right after a topology change.

geometry geometry | Geometry of the edge as a line string.

Table B.2.: Schema of {dataset}_tgap_edge table

75

B. tGAP Schema Description

This schema supports topology by tracking which faces are adjacent to each edge over steps,
and conversely, which edges form a face during its valid step range. The validity of each
geometric feature is managed using step ranges (step_low, step_high).

76

C. Reproducibility self-assessment

C.1. Marks for each of the criteria

[0] unavailable (including available upon request) and
not ble (even if d. d or with d

\
!

Input Data | [1d d (includi data) and
|
|
\
|
|

recreatable (same or similar data can be retrieved from original source)
[2] available, but non-public licenses/no license or non-permanent websites (e.g. no DOI)

[3] available, open and permanent (with DOI)

[0] unavailable (including available on request)

[1] documented (text, pseudo code, workflow description,
versions, Dockerfile, Vagrantfile)

Criteria for Preprocessing
Reproducible

Research Methods

referring to specific example from paper)

[3] available and open (runtime image/container,

i
i
1
i
i
i
! [2] available (source code online, e.g. Github;
1
i
1
! standardised metadata, open license)

[level] Results criteria [T~~~ ~ "~ """"TTTTTTTTT OO

~—— [0] unavailable/insufficient

[1] documented (understandable, context provided), i.e.

]
|
|
I
]

Results ——+ i

esu reasonable statistical measures/summaries, textual descriptions, tables, maps
|
|
|
|
I
]

|~ [2] available, i.e. models, "output data", scripted plots/maps

‘—— [3] available, open and permanent

Figure C.1.: Reproducibility criteria to be assessed.

Table C.1 summarizes the reproducibility assessment of this thesis, based on the criteria
outlined in Figure C.1.

Category Criteria Mark
Available Open Permanent
Input data v

v
v
v
v

Preprocessing

Method, analysis, processing
Computational environment
Results

SENENENEN
SENENENEN
W W W ww

Table C.1.: Reproducibility evaluation

77

C. Reproducibility self-assessment
C.2. Self-reflection

The reproducibility of this thesis was carefully considered. For the input data, all source data
is obtained from the publicly available TOP10NL dataset. The pre-processing steps applied
to this data are well documented in the Appendix A, ensuring transparency and the ability
for others to replicate the preparation process. Regarding the methodology, the complete
source code is openly available on GitHub, and an online demo has been provided to allow
direct access and interaction with the implementation. Python 3.11 was used throughout the
project, and all required dependencies are specified, making it straightforward to reproduce
the results in a similar setup. A Node.js environment was used to set up the web interface
of the application, supporting the development of the interactive demo.

78

Colophon

This document was typeset using I£TgX, using the KOMA-Script class scrbook. The main
font is Palatino.

%
TUDelft

	Introduction
	Motivation
	Research Objective and Scope
	Thesis Outline

	Related work
	Overview of Vario-Scale Maps
	Label Placement Techniques
	Open Questions from Literature

	Methodology
	Label Placement Requirements
	Label Placement
	Polygonization from tGAP
	Label Lines Trajectory
	Visualization

	Results and Discussion
	Research Area and Test Dataset
	Label Placement Results of Two Different Methods
	Label Visualization Result
	Evaluation of Label Placement Requirements
	Limitations

	Conclusion
	Research Overview
	Contributions
	Future Work

	Data-Preprocessing Workflow for tGAP Generation
	Merge thematic layers
	Create a planar partition
	Export layers to JML
	Convert JML to PostGIS dumps
	Process topology tables inside PostGIS
	Build minimal bounding rectangles (MBRs) for faces
	Assemble the final dataset_name_face table

	tGAP Schema Description
	Reproducibility self-assessment
	Marks for each of the criteria
	Self-reflection

