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Cheap commercial off-the-shelf (COTS) First-Person View (FPV) drones have become widely available

for consumers in recent years. Unfortunately, they also provide low-cost attack opportunities to malicious

users. Thus, effective methods to detect the presence of unknown and non-cooperating drones within a re-

stricted area are highly demanded. Approaches based on detection of drones based on emitted video stream

have been proposed, but were not yet shown to work against other similar benign traffic, such as that gen-

erated by wireless security cameras. Most importantly, these approaches were not studied in the context of

detecting new unprofiled drone types. In this work, we propose a novel drone detection framework, which

leverages specific patterns in video traffic transmitted by drones. The patterns consist of repetitive synchro-

nization packets (we call pivots), which we use as features for a machine learning classifier. We show that

our framework can achieve up to 99% in detection accuracy over an encrypted WiFi channel using only

170 packets originated from the drone within 820ms time period. Our framework is able to identify drone

transmissions even among very similar WiFi transmissions (such as video streams originated from security

cameras) as well as in noisy scenarios with background traffic. Furthermore, the design of our pivot features

enables the classifier to detect unprofiled drones in which the classifier has never trained on and is refined us-

ing a novel feature selection strategy that selects the features that have the discriminative power of detecting

new unprofiled drones.

CCS Concepts: • Security and privacy → Mobile and wireless security; Intrusion detection systems; •

Computing methodologies→ Feature selection;
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1 INTRODUCTION

The widespread availability of commercial drones (also known as Unmanned Aerial Vehicles,
or UAV for short) and their use in a myriad of applications, pose serious security and privacy
concerns. For instance, unauthorized drones may operate in restricted or crowded areas such as
airports and stadiums, where they can collide with airplanes or land/crash on people. Moreover,
most Commercial-off-the-Shelf (COTS) drones are equipped with cameras to enable a First-

Person View (FPV), which allows real-time video transmission from the drone’s camera back to
the controller (or any separate viewing device). Intuitively, this capability can easily lead to pri-
vacy violations. In response of such issues, the Federal Aviation Administration (FAA – the
civil aviation regulatory body of the U.S. government) has released the final set of policies on the
15th of January, 2021, that governs the identification requirements for drones which is known
as Remote ID [16]. These policies require any drone that operates in the National Air Space

(NAS) to continuously broadcast identifying information such as a unique identifier, a timestamp,
drone velocity, latitude, longitude, and altitude of both the drone and its controller. The Remote
ID compliance date for drone manufacturers is September 16, 2022 and for drone pilots is Septem-
ber 16, 2023. However, it is difficult to enforce the compliance of such policies on the myriad of
commercial drones that are pushed to the market everyday and therefore a detection solution of
non-compliant drones is still needed. Many drone detection solutions exist [14, 28], but mostly
remain prohibitively expensive for the majority of citizens and some of the solutions target only
specific drone models [14]. These issues motivated a surge of research efforts whose objective is to
provide cost-effective solutions for detecting unauthorized drones entering restricted airspace or
private areas. Toward this goal, many recent contributions (e.g., [9, 21]) attempt to detect drones
by analyzing their network traffic patterns.

The majority of COTS drones employ WiFi chips that allow the drone to act as a WiFi Access

Point (AP). The user can install an app in a smartphone/tablet to connect to the AP and establish
a bidirectional data stream to receive the live-streaming FPV video and to control the drone. Most
prior work on drone detection uses the FPV video stream and analyzes traffic patterns from a
statistical perspective. For instance, in [21] the authors presented a framework to detect drones’
FPV streams based on channel use. That approach proved challenging as video bit rates can widely
vary in response to the changing scenery that is captured by the drone’s camera which triggers the
video compression algorithm to add/remove video frames from the stream [12, 21]. The authors
in [7] use the Received Signal Strength Indicator (RSSI) as a feature to discern moving vs.
stationary devices. However, this approach may fail to differentiate drones from other moving
radio sources. In [9], the authors presented a framework that use features extracted from WiFi
frames exchanged between the drone and its controllers. Similar to the previously mentioned paper,
the approach is not tested with changing bit rates emitted over the FPV channel and may be
unable to differentiate drones’ FPV streams from other WiFi video streams such as IoT cameras [12].
Furthermore, the framework requires both the drone and its controller to be within the detection
range. In [4], the authors trained a machine learning model to detect drones with high accuracy
using a training set composed of drone and controller traffic. Despite using controller traffic in the
dataset, the authors left the problem of the “recognition of new UAV types” and “modified video
patterns” as open problems.

In this work, we propose a novel and cost-effective drone detection framework (using a WiFi
adapter and a laptop/desktop) that solves the problem of detecting new drone types among other
similar streaming devices based solely on the drone’s FPV highly-dynamic video stream. The frame-
work accomplishes the detection task by leveraging specific packets we identified in the encrypted
FPV stream sent by drones over the WiFi channel. We refer to these specific packets, which appear
in video streams at periodic intervals for synchronization purposes, as “pivots”.
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Fig. 1. Components of the drone detection framework.

The new framework consists of two components: the Pivot Extraction Algorithm and the Clas-
sification Model (Figure 1). The Pivot Extraction Algorithm identifies the pivot packets for each
encountered WiFi device based on FPV video traffic patterns, while the Classification Model ex-
tracts machine learning features based on the pivot packets and trains a drone classifier.

The framework produces high drone detection accuracy under challenging settings, including
(i) the scene being captured by the drone’s camera is highly dynamic which produces varying
bit-rates, (ii) only the drone is within the packet capture range while its controller is out of capture
range, (iii) the network traffic of the drone is completely encrypted, (iv) there are other IoT devices
in the environment actively emitting video streams that exhibit an FPV packet pattern similar to
those generated by drones, and (v) the classifier encounters and detects drones that were not used
during the training phase of the classifier.

1.1 Contributions

Under the aforementioned challenges, we summarize our contributions as follows:

• We introduce the concept of Pivot; a special packet found in video streams (which is used as
an anchor for designing drone features) that is not affected by video parameters such as the
bitrate. Furthermore, we introduce the notion of Pivot Fingerprint; a series of packets that
most likely contains a pivot packet, and an approach for locating such fingerprints within a
stream of packets.
• We design a novel feature selection strategy that is executed in two phases. The first phase

is model-independent and based on the Jaccard Similarity Index (also known as Intersection

over Union, or IoU for short) which selects the drone features that have high discrimina-
tive power to detect new unprofiled drones regardless of the machine learning model used or
any unique drone behaviors that exist in a training set. The second phase is model-dependent

and based on the Recursive Feature Elimination (RFE) algorithm that evaluates the sen-
sitivity of the remaining features toward detecting unprofiled drones and selects the set of
features that work best for the underlying machine learning model used in the detection
framework.
• We provide an implementation and evaluation of the detection framework based on a Ran-

dom Forest algorithm using features created from pivot packets that can detect drones with
accuracy up to 99% even when the drones coexist with other video streaming devices such
as IoT cameras and VoIP applications. We also compare our pivot features with the state-of-
the-art machine learning-based drone detection features proposed by [4].

The rest of the article is structured as follows: in Section 2 we highlight the related work on
the field of drone detection. Section 3 will go over a brief overview on the main components
of a general drone defense system and outline how a drone detection framework fits within an
inclusive drone detection system. In Section 4, we discuss the attacker and defender model, then
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we provide a brief background on the characteristics of the uplink and downlink channels between
the drone and its controller. In Section 5 we introduce our drone detection framework and its two
components, then we discuss in details the characteristics of the pivot packets and the design of
the first component; the Pivot Extraction Algorithm. We also assess the algorithm’s behavior when
encountered with benign video traffic such as IoT cameras. Section 6 shifts the discussion towards
the framework’s second components; the Classification Model, where we describe our novel pivot
features creation and selection strategies, as well as our FPV drone classifier. In Section 7, we
outline the implementation design of the framework in terms of hardware and software, then
we describe our data collection, processing, and sampling procedures. The evaluation and results
analysis of the proposed framework is reported in Section 8, while Section 9 concludes the article.

2 RELATED WORK

Drones detection is a research topic which is capturing considerable attention from the research
community. Mainly, drone detection techniques fall under four different categories: (i) Radar-Based
Detection [27]: based on active radars that send electromagnetic pulses toward the area to be mon-
itored to detect the electromagnetic energy reflected by any flying objects. (ii) Vision-Based De-
tection: based on computer vision devices (such as regular or Thermal cameras) to detect flying
objects [17, 23]. (iii) Acoustic Detection: that detects the high-pitched sound frequency generated
by the rotating propellers of the drone [10, 11]. Lastly (iv) RF/WiFi Detection techniques that mon-
itor the wireless communication links between the drone and its controller (the Ground Control

Station, or GCS) [21, 22]. Since our article proposes a new WiFi detection technique, we focus
on related works on RF/WiFi detection of drones. We also summarize some previous results on
detection of WiFi cameras due to the similarities between the streams transmitted by the drones
and those transmitted by fixed WiFi cameras.

Detection of Drone Traffic. The authors of [21] propose to detect drones by their FPV streams.
The bit rate of an FPV stream emitted by a drone is compared with the bit rate of a well known
and previously recorded FPV data stream. However, the more the scene changes, the higher the
bit rate is, and a drone recording a highly dynamic scene might not always match a specific set of
FPV bit rates. The authors also argue that since the drones move, the RSSI of their FPV channels
is different from those of other WiFi video streaming services. However, they did not take into
account video streaming devices that might be moving such as VoIP applications on smartphones.

In [9], drones are detected by monitoring their FPV stream sent over WiFi and applying Machine
Learning models. They extracted features from WiFi frames exchanged between the drone and its
controllers. As in [21], the authors do not consider either the problem of detecting drone FPV
streams with changing bit rates or that of differentiating between drone FPV streams and other
WiFi video streams. The same authors, in [8], took the previous work a step further by improving
the robustness of the algorithm. Precisely, they aim to detect a drone flying in stealth mode (i.e., a
drone that is not transmitting video).

In [19], a framework is proposed to fingerprint drone WiFi communications for the identification
of specific drone models. Firstly, drones are discerned by other devices via their speed (exploiting
the signal strength information used to calculate the acceleration). Once a WiFi session is associ-
ated with a drone, it is further classified using different features (i.e., pattern of probe messages
and information in a Frame Header). However, this detection is based on the assumption that other
devices cannot move at the same speed as the drone. In some scenarios, a device could be inside a
vehicle (i.e., a phone inside a car) that moves at comparable or higher speeds than that of a drone.

In [24, 25], standard classification algorithms are used on eavesdropped traffic exchanged be-
tween a drone and its remote controller to analyze extracted features such as packets’ inter-arrival
times and sizes. The main aim is to detect a drone and its status, i.e., flying vs. resting.
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In [4], Alipour-Fanid et al. use classical features such as those used in [24, 25] for differentiat-
ing FPV drones from other devices, and hence for detecting drones. The authors show that their
framework detects with high accuracy drones using features extracted from packet samples of at
least 50 packets exchanged between the drone and controller. The authors left the problems of
“recognition of new UAV types” and “modified video patterns” as open problems. Our work aims
to improve the results in [4] and to close the problem of recognizing new UAV types.

Detection of WiFi Cameras. In [12], the authors detect hidden wireless cameras using smart-
phones. Their system, DeWiCam, automatically analyzes wireless traffic to recognize camera trans-
missions, specifically relying on physical and MAC layer features. Importantly, camera traffic
streams have relatively stable volume and packet size pattern. Besides, wireless cameras can work
continuously without interruptions in the stream.

In [20], the main objective is to identify hidden WiFi cameras by altering the ambient light
captured by the cameras to induce variations in the camera’s packet flow (caused by the video
compression algorithm) which can be identified by statistical techniques. Both papers exploit the
compression mechanism that cameras use for video transmissions, discussed below in Section 4.
In our work, we are also interested in investigating characteristics of video transmissions, with
the different objective of detecting drones in challenging scenarios.

3 BACKGROUND ON DRONE DEFENSE SYSTEMS

A general drone defense system can be realized by deploying three independent components: drone
detection, drone authentication, and drone prevention. Each component is an independent system
that is designed to address a specific problem. In essence, the function of each component com-
plements each other, but at the same time, the system design of each of them is mostly indepen-
dent. For example, drone detection complements drone authentication in the sense that it would
be meaningless to have a system for verifying the authenticity of flying drones without having
the means of detecting the presence of unauthenticated drones in the first place, but whether the
detection system is radar-based or network-based, it will not influence the accuracy of the au-
thentication system in verifying the identity of the detected drones. Similarly, the capability of a
prevention system to capture and/or destroy an unauthorized drone is not influenced by how the
authorization decision was actually made but such prevention system cannot decide which drone
to neutralize on its own and therefore an authorization system complements a prevention system.
More specific details of each component are discussed next.

3.1 Drone Detection

The purpose of the drone detection system is the detection of the physical presence of a drone
within a predefined area, typically referred to as “restricted airspace”. There are different ap-
proaches for addressing the detection problem. These approaches (as previously discussed) can
be categorized as radar-based, vision-based, acoustic-based, and network-based detection. The se-
lected approach (or group of approaches) is based on the threat model. For instance, the safety
concerns surrounding a popular sporting event might include the risk of having spectators using
FPV drones to watch and record the match, which would result in the risk of drones crashing onto
the event attendees. Based on the threat model, a network-based drone detection system might be
deployed to exploit the wireless traffic generated by the FPV drone for the detection process. On the
other hand, the threat model for a military installation might include risks posed by a more capable
malicious adversary such as autonomous drones that do not generate any wireless traffic. Such a
highly sophisticated thread model might require the deployment of multiple highly reliable drone
detection systems such as radar-based and vision-based drone detection systems. Once a drone is

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 2, Article 12. Publication date: April 2023.



12:6 A. Alsoliman et al.

detected, the authentication, authorization, and neutralization/countermeasurement systems are
designed and implemented based on their own threat models as well.

While the objective of the drone detection component is to detect the presence of drones, the
task of tracking and pinpointing the exact physical location of the detected drone or its pilot for
intervention falls under the Drone Prevention component. It is crucial to differentiate between
detection and tracking since some threat models do not require a physical intervention with the
invasive drones and therefore a tracking system might not be needed for the prevention component
of the drone defense system. For example, AeroScope [14] is a drone detection system developed
by DJI - a leading drone manufacturer - which can detect the presence of DJI drones. Every DJI
drone is manufactured to continuously broadcast information about the drone’s flight mission
and the pilot’s information. Once AeroScope detects a DJI drone via its broadcast, the AeroScope
operator simply attempts to contact the drone pilot based on the information obtained from the
DJI registration database. Since AeroScope is intended to be used in a civilian setting, this simple
prevention strategy (contacting the pilot) might be adequate for DJI’s threat model.

3.2 Drone Authentication

The authentication of drones in-flight can take different forms. For instance, it can be in the form
of a broadcast message transmitted by the drone, which includes digitally signed identifying infor-
mation [6]. Other forms of authentication systems propose the use of the safety flashing probes
mounted on the drone frame to send visual identifying cues in the form of light pulses [5]. One of
the main objectives of an authentication system is to identify the drone’s identity for accountability.
Another objective is to allow authorized drones to fly over a restricted airspace. For example, the
FAA strictly prohibits any drone activity over national airports. However, the airspace surround-
ing the airport is also classified as a restricted airspace, but drone pilots are allowed to operate
their drones under the exception that drone pilots obtain a flight authorization from the air traffic
controller (airport control tower).

In an attempt to unify the authorization framework, the FAA and NASA have jointly developed
a national identification system for drones called Remote ID [16] which enforced all drone man-
ufacturers to equip their drones with a Remote ID module by September 16, 2022. This module
continuously broadcasts identifying information regarding the drone identity and its flight status
such as speed and direction. However as one can notice from such identification design is that
only the complying drones can be detected by their transmitted broadcast while non-compliant
drones (such as custom-made drones) are not. Therefore, a drone authentication system should be
complemented by a drone detection system. Furthermore, once an unauthorized drone is detected,
the authorization policy should be enforced by a drone prevention component.

3.3 Drone Prevention

Similar to the previous components, the design of a particular drone prevention system is based
on the threat model. For example, Tokyo Municipal Police Office [31] proposed a guardian drone
system that consists of a specialized drone equipped with a large net for capturing rogue or
suspicious drones flying into restricted airspace such as near government buildings. In a more
critical setting, the Israeli Ministry of Defense claimed to have designed a drone prevention system
– code-named Iron Beam – which consists of a high-powered laser system that can burn attack
drones in-flight with a concentrated beam of light [18]. In a more relaxed threat model such as in a
civilian setting, home owners might have concerns related to a spying FPV drone. The prevention
strategy in this scenario might be less invasive where a simple FPV detection system would alert
the home owner to close the window blinds for example to preserve the privacy of the household
members.
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A notable remark about the prevention component is that if a physical intervention with drones
is desired, a drone prevention system might require the drone’s current physical location to acquire
a lock on the target drone. Recall that (and as discussed in Section 3.1) the objective of the drone
detection component is to only detect the presence of drones within the restricted airspace while
tracking the detected drones for intervention is performed by the drone prevention component.
This separation of duties between detection and tracking is usually desired because a drone detec-
tion system is typically designed to be always-on while a drone prevention system is only activated
once a drone is detected. Therefore, it would be more cost-effective to invoke costly targeting oper-
ations only when needed. For example, consider a guardian drone equipped with a radar imaging
and tracking system that can scan the sky at a narrow angle (similar to [31]). It would be imprac-
tical to continuously operate the guardian drone over the restricted airspace while monitoring all
airspace angles simultaneously, given the average operating time of quad and hexacopters on a
fully charged battery to be around 30 minutes. An alternative and more practical solution is to
have a drone detection system in place that detects the presence of invasive drones. Then only
a general direction of the drone location (for example by using multiple FPV detection stations)
is provided. Therefore, only then the guardian drone can be dispatched to track and capture the
invasive drone in the detected area. In a more malicious environment such as in a military set-
ting, the threat model might require immediate and accurate location of the detected drone for
a quick intervention. Therefore, the prevention system might depend on more accurate localiza-
tion information by using radar-based or vision-based detection systems for example. Then based
on the drone’s estimated coordinates, the drone could be intercepted by a heat-seeker tracking
prevention system for example.

4 DRONE’S THREAT & NETWORK MODEL

In this section, we first discuss the attacker and defender model and its underlying assumptions.
Then we provide a brief background on the characteristics of the communication channels between
the drone and its controller. Specifically, Section 4.2 describes the control channel (uplink) and its
components, while Section 4.3 discusses the FPV channel (downlink) and how a video compression
algorithm affects the behavior of a network traffic pattern.

4.1 Attacker and Defender Model

As discussed in Section 3, a complete drone defense system is generally comprised of three dif-
ferent components; (i) drone detection (detects the presence of drones), (ii) drone authentication
(verifies the authenticity of drones’ identities), and (iii) drone prevention (stops and/or neutralizes
drones’ access to the restricted airspace). Since the scope of this article is focused on drone detec-
tion, the defender model described below is formulated from a drone detection perspective only.
We would like to remark that our drone detection framework is designed to be independent; can
either be used as a stand-alone drone detection system or be easily integrated into other drone
defense systems (e.g., authentication or prevention) without having any presumptions or specific
requirements on how to operate these systems.

In our defender model (Figure 2), we consider a restricted airspace protected by a monitoring
station. The station’s objective is to detect unauthorized drone’s access. The unauthorized drone is
defined as an unknown FPV drone (in terms of type, model, or brand) that violates the access policy
of the restricted airspace. This unknown drone will be denoted as “unprofiled drone” throughout
this article. The monitoring station is comprised of COTS hardware; a general purpose computer
such as a laptop or a desktop, and a WiFi adapter that captures all WiFi packets that are sent
within its vicinity. For each stream of packets, the station analyzes the stream and labels it as either
’drone’ or ’non-drone’ based on drone FPV signatures. We also assume the existence of other video
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Fig. 2. Attacker and defender model.

streaming devices that can possibly generate false-alarms within the station’s receiving range such
as IoT cameras.

In the attacker model, we consider an unauthorized FPV drone attempting to access the re-
stricted airspace. When the drone operates, a bi-directional connection is established between the
drone and its controller. The downlink channel is a video stream sent by the drone to the con-
troller, while the uplink channel carries control commands sent from the controller to the drone.
We assume that both channels are encrypted and the drone’s controller is out of the monitoring
station’s detection range.

4.2 Control Channel

The control channel carries flight commands from the controller to the drone. Overall, the con-
trol channel comprises of two different network flows, periodic control packets and heartbeats
packets. In case of controllers that receive a video stream over TCP, a flow of acknowledgments

(ACKs) will be sent out back to the drone as well. Note that even if ACKs are encrypted, they can
be easily identified by the packet size (20 bytes TCP header without options + 20 bytes IP header
without payload). Some control applications embed heartbeat messages within the stream of peri-
odic control packets. Both streams (heartbeats and control packets) have rather unique sizes and
inter-arrival times. Therefore, a simple detection scheme can easily differentiate between the con-
troller’s traffic and other background traffic. In our framework, we reflect a more realistic –as well
as more challenging– scenario where we assume that controllers are not always present within
the range of the detection system and their traffic cannot be captured and classified (Figure 2).

4.3 FPV Channel & Video Encoding

Since the wireless channel is assumed to be encrypted, the detection framework cannot identify
drone FPV channels by simply inspecting the content of the intercepted packets. Therefore, the
traffic profile of an FPV transmission must be identified based on understanding how video encod-
ing and compression algorithms affect the network traffic pattern of a video streaming application.

A drone’s FPV channel is considered a channel of a video streaming application that transports
compressed video frames from the drone to the controller. A video is a stream or a sequence of
still pictures. In order to decrease the portion of channel capacity used to transport the video over
wireless channels, almost all video encoders include a video compression algorithm.

Typically, compression algorithms exploit the – possibly high – correlation along the spatial
and temporal dimensions within Group of Pictures (GoP). In brief, while JPEG compression is
used in the spatial domain, the core idea to harness temporal correlation is to encode differences
compared to reference frames within each GoP. We, then, have three frame types: Intra-Coded
Frames (I-Frames), Predicted Frames (P-Frames), and Bi-directional Frames (B-Frames). I-Frames
are Intra-coded frames that exploit spatial redundancy (correlation among the pixels in the frame)

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 2, Article 12. Publication date: April 2023.



Intrusion Detection Framework for Invasive FPV Drones 12:9

Fig. 3. A single video frame is sent over multiple packets while pivots are contained in a single packet.

to achieve compression at individual frame-level. P-Frames and B-Frames are Inter-coded frames
that exploit temporal redundancy prediction. The difference between P- and B-Frames is that P-
Frames only encode pixels that are changed compared to the last reference frame, while B-Frame
considers both previous and future reference frames. These frames are grouped into a single GoP,
which starts and ends with an I-Frame (Figure 3(a)). Typically, video streaming applications rely
on well-known video codecs such as H.264 to compress raw images captured by some camera and
turn them into compressed frames for faster transmission. In general, B-Frames (which includes
futures changes in the frame) are used in prerecorded videos (such as YouTube) but are not used
in real-time streaming applications (such as FPV video streaming) to minimize the video delay, on
the expense of lowering the video quality or increasing the occupied bandwidth.

Intuitively, scene characteristics and the motion of the drone heavily influence the compression
rate achieved by the scheme described above, as well as the temporal structure of the data stream.
In other words, if the captured scene is dynamic, then the encoding scheme will either (i) gener-
ate I-Frames more frequently, which in turn results in shorter GoPs or larger P-/B-Frames, or (ii)
generate larger differential frames. In both cases, the resulting compression gain is reduced.

The keynote of a video stream transmitted over a WiFi network is that the size of these frames
is larger than a WiFi MTU (Maximum Transmission Unit) which is 2304 bytes. Network in-
terfaces translate all packets sent and received from the operating system into Ethernet, which
has an MTU of 1500 bytes. Therefore, each individual video frame that is larger than the MTU is
fragmented into a series of packets of a size equal to the maximum Ethernet MTU size, except for
the last packet, which contains the residual bytes of the frame.

FPV video streams also include other messages such as synchronization information for main-
taining the state of the channel. Typically, these messages are small and fit a single WiFi packet and
are sent periodically at predicted intervals. Packets from the compressed video stream are emitted
more frequently compared to sync packets (the packets that contain the synchronization informa-
tion), which then have a higher probability to be buffered right after the last less-than-MTU sized
frame packet (Figure 3(b)). A key observation is that the size of these sync packets is fixed for the
entire duration of the video stream.

The resulting pattern contains rather unique packet sequences. The fixed-size of the sync pack-
ets make them suitable to act as pivots which can be used to build FPV drone features for a
detection model. The characteristics of pivot packets will be discussed in Section 5.1.

4.4 Discussion

Literature generally treats the traffic profiling of a device connected to an encrypted network,
by leveraging the packet sizes and their inter-arrivals [13, 29] (i.e., without the need to look at
the content of the encrypted packets). In the specific case of traffic profiles of video streaming
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applications, the uplink traffic generated by the control channel is quite unique: short periodic
packets (Section 4.2). Although this approach can lead to robust detectors [8, 9, 15, 24], the source of
those packets is the controller, which might be out of the range of the monitoring station (Figure 2).
On the other hand, the downlink traffic generated by the FPV channel can be profiled by the unique
pattern of packet sizes generated by the underlying video compression algorithm (specifically, by
looking at the timing and size of I- and P-Frames [12, 21]) as shown in Figure 3(b). However, the
FPV channel is susceptible to the frame variations in the captured scene which would change the
shape of the traffic profile for a given device depending on the scene dynamics. This change in
the FPV traffic would make it difficult to build a video profile for a video streaming device, and
even more difficult for FPV drones that are similar in their traffic profiles to other benign video
streaming devices such as IoT cameras. In an attempt to differentiate between drone video and all
other non-drone video profiles, we will discuss next the potential of using the sync packets (which
we denote as pivot packets) to build machine learning features for a drone detection classifier
that correctly classify drones even when other similar traffic to drone FPV exists in the detection
range.

5 DRONE DETECTION FRAMEWORK

In this section we describe our Drone Detection Framework (Figure 1), which is based on the con-
cept of a pivot; a special packet found in the drone’s FPV traffic which will be utilized as an anchor
for building drone features. The Drone Detection Framework is the composition of two main com-
ponents: a Pivot Extraction Algorithm (Section 5.3) and a Classification Model (Section 6). In short,
the Pivot Extraction Algorithm takes a sequence of encrypted packets as an input, tracks the pack-
ets that belong to video frames based on the video compression analysis described in Section 4.3,
extracts pivot fingerprints, and estimates the size of the pivot packet for each encountered WiFi
device. The engine of the Classification Model uses the pivot size to construct a set of FPV features
and feeds it to a binary classifier which outputs “YES” if the packets belong to an FPV drone and
“NO” otherwise.

This section mainly focuses on the first component of the framework, Pivot Extraction Algo-
rithm, while the second component will be discussed later in Section 6. In this section, Section 5.1
will discuss what does a pivot packet look like via network traffic analysis. Section 5.2 describes
how pivot packets appear with respect to other normal packets. In Section 5.3 we show how to
locate and extract pivot packets from a network trace using our Pivot Extraction Algorithm via
tracking video frames that form pivot fingerprints, while Section 5.4 illustrates how the algorithm
differentiates between FPV video streams and other benign streams such as IoT cameras.

5.1 Pivot Definition via FPV Traffic Analysis

To define pivot packets, we analyze data collected from three FPV drones from three different
brands: EACHINE E58 WiFi FPV Quadcopter, Spacekey DC 014 FPV WiFi Drone, and Ryze Tello
Quadcopter Drone. In the following, the three drones are referred to (according to their painted
color) as Black (BLK), Red (RED), and White (WHT) drone, respectively (Figure 4(a)).

Each drone has a built-in camera with a First-Person-View (FPV) capability. Upon powering
up, the drone creates an Access Point (AP) and the user connects his/her smartphone/tablet to
that AP. Each drone has its own app that can be downloaded from Google Play or Apple’s App
Store. When the user connects to the drone’s AP, a video stream can be initiated and viewed on
the smartphone through the drone’s designated app.

For every one of the three drones, we capture decrypted network traffic (for easier initial anal-
ysis) of the drone’s FPV using an external WiFi adapter set into Monitor Mode from five meters
away for 30 seconds. We consider two different video states: the first state corresponds to the
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Fig. 4. The FPV drones and IoT cameras used in the pivot analysis.

drone’s camera capturing a stable scene (STB), while the second state corresponds to a highly
unstable (shaking) drone flight (SHK) where the camera rapidly points at different directions.
The latter state induces fast changes in the captured video stream which would potentially affect
the frame-rate of the video compression algorithm and ultimately the video bit-rate as explained
earlier in Section 4.3.

Analyzing the BLK drone’s traffic, we observe that before transmitting a series of full-sized
packets (which we assume is a video frame), the drone transmits a 46-bytes packet. This packet
includes an ASCII-readable command called lewei_cmd, which appears to be responsible for trans-
ferring media files from the drone to its associated app on the controlling smartphone [30]. The
app associated with the BLK drone also sends some lewei_cmd packets to the drone, but only a
few of them (once every second). The RED drone, instead, sends 4-bytes packets (with identical
payloads) to its RED-app right before sending a video frame. The RED-app sends the same 4-bytes
packet to the drone, but only four times in the entire 30 seconds network trace. Finally, the WHT
drone sends an identical 35-bytes packet (except for the last 2 bytes in the payload) to its WHT-app
between some video frames. These 35-bytes packets are sent at uniform intervals (every 0.1 of a
second), which is independent of the varying FPV frames transmission times. For all of the three
drones, traffic patterns were observed for both SHK and STB video states.

From these observations we conclude that each drone periodically sends special packets that are
repetitive and identical in length, and are not part of a video frame payload. In our drone detection
framework, we will leverage these packets and we name them the pivot packets that will be used
to create features enabling drone detection.

5.2 Patterns & Behavior of Pivot Packets

We now study the occurrence and patterns of pivot packets in relation to the two different video
states: SHK and STB. In both states of each drone, we compute the average bit-rate and the pivot
appearance rate (pivot per second). The results are reported in Table 1. It can be observed that when
the video state shifts from STB to SHK, the FPV bit-rate of the BLK drone on average increases
by 444 kbps (25%), while the number of pivots observed per second increases by 2 (25%). In the
RED drone, instead, the FPV bit-rate increases only by 15 kbps (0.8%), while the number of pivots
observed per second increases by 2 (12%). In the WHT drone, although the FPV bit-rate increases
by 334 kbps (13%), the number of observed pivots remains almost constant.

Although the collected data from the BLK drone seems to indicate a dependence of the number
of pivots on the FPV bit-rate (both increased by almost the same percentage), the patterns observed
in the RED and WHT drones streams instead supports the hypothesis that the pivots are not
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Table 1. Pivot Frequency & Bit-rate Change

Drone FPV Bit-Rate Pivot/Second Δ FPV Bit-Rate Δ Pivot/Second

BLK-SHK 2.244 Mbps 9.2 ≈ 444 kbps ≈ 2
BLK-STB 1.800 Mbps 7.6

RED-SHK 1.817 Mbps 18.6 ≈ 15 kbps ≈ 2
RED-STB 1.802 Mbps 16.6

WHT-SHK 3.054 Mbps 8.0 ≈ 334 kbps ≈ 0
WHT-STB 2.720 Mbps 8.0

necessarily tied to the bit-rate (especially for the WHT drone since the inter-arrivals of the pivot
packets are constant) and the number of pivot packets are almost the same for both the video states,
that is, pivots are independent of the bit-rate increase. The deviation in the number of pivots in the
other two drones might be due to (i) the nonuniform inter-arrivals of pivots and (ii) the inherent
packet loss in the wireless environment for packets captured via WiFi Monitor Mode, which can
affect the small number of transmitted pivots. To this end, we can safely assume that the pivots are
not necessarily tied to the bit-rate (i.e., number of video frames) of the FPV stream and, as such,
pivots can be used to create robust features for drone detection regardless of the video’s motion
state.

5.3 Pivot Extraction Algorithm

The Pivot Extraction Algorithm is the first component of the Drone Detection Framework, and
its objective is to extract the size of the pivot packet for a given device. Assuming encrypted FPV
streams, a fundamental problem is the identification the pivot packets. Herein, we take an approach
based on their size. As different drones may have different formats for the pivot packets, the chal-
lenge is then to estimate the size of pivots from a network trace for each device we encounter
during monitoring.

As discussed in Section 4.3, video frames are packetized by the Network Interface Card (NIC)

and each packet’s payload is capped at the Maximum Transmission Unit (MTU) of the trans-
mitting NIC. Typically, the WiFi protocol has an MTU of 2304 bytes whereas Ethernet has an MTU
of 1500 bytes. Since operating systems translate all sent and received packets to and from the WiFi
card into Ethernet, all packets have to adhere to the Ethernet’s MTU which is 1500 bytes. Therefore,
video frames that are larger than 1500 bytes are packetized into a series of 1500 bytes packets where
the last packet contains the residual of the video frame and its size is typically less than 1500 bytes.

Besides packetized video frames, the NIC also receives pivot packets from the drone application
which, we recall, are synchronization packets sent periodically with large inter-arrivals between
them (30 ms to 100 ms). On the other hand, each processed video frame is packetized and buffered
at the NIC’s transmission queue where each packet is sent out as soon as the wireless channel is
cleared (inter-arrivals of packets belong to the same video frame ≈ 0.01 ms). Therefore, there is
a high probability that pivot packets are buffered between two packetized video frames. In other
words, since each packetized video frame ends with a less-than-MTU packet and begins with an
MTU packet, a pivot is most likely to appear after a less-than-MTU packet and before an MTU
packet (recall Figure 3(b)). From this observation, we established that a group of less-than-MTU
packets between two MTU packets might include a pivot packet where the last packet is most likely
the pivot. It is also observed that a pivot packet might appear after two less-than-MTU packets or
slip individually between two MTUs.

During the pivot analysis, we also observed that a pivot packet has another attribute; it is sent
more frequently compared to all other packet types. Based on this observation, we computed

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 2, Article 12. Publication date: April 2023.



Intrusion Detection Framework for Invasive FPV Drones 12:13

Fig. 5. Cumulative distribution function of time and packets needed to acquire the pivot packet.

the occurrence frequency of all packet sizes within drones’ traces. We observed that the highest
occurring packet size is the MTU size for all of the drones we considered. Then, we observed
that the second-highest occurring packet size for all three drones (BLK, RED, and WHT) is the
size of the pivot packet in both motion states (STB and SHK). Knowing these characteristics,
we set a new objective to determine how much time and how many packets are required to
collect and have enough occurrence frequency in order to find the correct pivot packet size. To
approach this objective, we calculate the distribution of the time and number of packets needed to
correctly identify the size of the second highest occurring packet for every drone trace file. First,
we extract the pivot size manually beforehand as the ground truth for each drone by distributing
the occurrence frequency of packet sizes of the entire network trace of each drone. Then, we
designate each packet in the trace as the starting point for accumulating all subsequent packets
until the pivot size matches the ground truth of the trace file. Now for each starting point, we have
the time and number of packets needed to correctly identify the pivot size. Finally, we calculate
the Cumulative Distribution Function (CDF) over the detection time (Figure 5(a)) and number
of packets (Figure 5(b)) for all drone traces. From the CDF, we can observe that we need at least
820 milliseconds and at least 170 packets to acquire the correct pivot size with probability of
0.95. Therefore, we set the sample size to be at least 170 packets with a time window of at least
820 millisecond.

Based on these observations, we develop a Pivot Extraction Algorithm that is executed in
two phases, Video Frames Fingerprinting and Pivot Size Estimation (see Figure 1). During the Video
Frames Fingerprinting phase, the algorithm moves a sliding window across a network traffic
stream that can fit at least 170 packets sent within least a 820 millisecond window and records
any packets sequence that (i) starts and ends with a packet of size exactly MTU, (ii) has fewer than
six consecutive packets, (iii) and the size of all packets (except the first and last packet) is less-than-
MTU. Each recorded sequence of packets are denoted as a Pivot Fingerprint which might include
a pivot packet (Figure 6). In the Pivot Size Estimation phase, the recorded Pivot Fingerprints are
evaluated against three types of fingerprints: type 1 contains three packets, type 2 contains four
packets, and type 3 contains five packets (Figure 6). For each fingerprint, the before-the-last packet
in the fingerprint is marked as a candidate pivot. Then on a separate process, the occurrence fre-
quency of all packet sizes in the sliding window is computed. Finally, the candidate pivot size that
matches the second-highest occurring packet size is declared as the size of the pivot packet.

It remains now to explain how to efficiently estimate the MTU packet size for a given sample
of packets. The algorithm declares the size of the first packet in the sample as the MTU size then
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Fig. 6. Candidate pivot packets.

proceeds to find the next MTU packet. Whenever a packet size that is higher than MTU is de-
tected, the Pivot Extraction Algorithm declares the new packet as the MTU and resumes the pivot
estimation process.

Our Pivot Extraction Algorithm has correctly identified up to 99% of pivot packets within a
packet trace inO (n) time wheren is the number of packets in the sample. Thus, the Pivot Extraction
Algorithm can – with high probability – identify the pivot size.

5.4 Pivot Patterns in Other Real-time Video Streaming Devices

One can readily observe that the Video Frames Fingerprinting process is influenced by the video
stream emitted by a device and therefore the ability of the Pivot Fingerprints in differentiating
between FPV drones and other video streaming devices is questionable. We, then, analyze video
streams emitted by IoT cameras in order to compare them with those emitted by FPV drones in
terms of pivot patterns.

Real-time video streaming devices, such as IoT cameras, generate streams of packets that have
a strong similarity with FPV drones’ video streams. Analogously to FPV drones, video streams
emitted by IoT cameras are unidirectional. That is, an IoT camera forwards a video stream to its
designated app while the app maintains the video connectivity with the camera via heartbeats and
keepalive messages. Conversely the video streams generated by VoIP applications (e.g., Skype) are
bidirectional. Therefore, we incline toward using IoT cameras in the analysis of our pivot extraction
approach since they are the most similar applications to FPV drones. However, we still included
VoIP traces for the final evaluation in Section 7.1.2. In order to assess whether or not our pivot
approach can distinguish IoT cameras from FPV drones, we collect video traces produced by three
different IoT camera brands: Wyze Cam, EZVIZ C1C, and Lefun MIPC (Figure 4(b)). Just like the
drones, we collect traces for each camera in a stable (STB) and dynamic motion (SHK) state, re-
sulting in a total of six camera traces. We then calculate how many pivots are recorded per second
under each pivot type, i.e., in which type of fingerprint a pivot is found.

In Figure 7, for each device (drone and camera), we compute the average number of pivot finger-
print types found per second. From the results, we can see that fingerprint type 3 rarely appears
in drone videos. On the other hand, each drone has at least four type 2 fingerprints per second.
In Wyze Cam and Lefun MIPC cameras, we could detect some fingerprints of type 2 and 3 (≈ 2.5
pivots), but almost no fingerprints of type 1 are detected in their packet traces. Instead, the EZVIZ
camera in SHK state has on average about 20 fingerprints of type 1, but almost no fingerprints of
type 2 and 3 in its packet trace. From the results, we conclude that other network devices that have
traffic patterns similar to drones would have different pivot patterns. Thus, a pivot-based approach
can discriminate the two classes of applications.

5.5 Discussion

Pivot packets show a potential in differentiating between FPV drone traffic and other video traffic.
Since the network traffic is assumed to be encrypted, pivot packets cannot be identified among the
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Fig. 7. Average number of Fingerprint types per second for Drones (7(a)) and Cameras (7(b)).

stream of the intercepted packets by simply looking at the packets payload. However, the size of
the pivot packet is fixed for each video stream (e.g., the size of the pivot packet for the RED drone
is always 4 bytes). As discussed in Section 4.3, the video compression algorithm influences the size
of non-pivot packets (packets that carry the captured video frames) and therefore it continuously
alters the traffic profile. Based on the video traffic profiles, three packet patterns (denoted as pivot
fingerprints which are visualized in Figure 6) are identified. These fingerprints are expected to con-
tain the pivot packet, and the size of this packet is estimated using the Pivot Extraction Algorithm.
The accuracy of the algorithm is 95% when at least 170 are captured from a given device within at
least 820ms.

6 CLASSIFICATION MODEL & FEATURES DESIGN

In this section, we shift our discussion to the second component of the framework, the Classifi-

cation Model (recall Figure 1). The classification model we adopt for the FPV Drone Classifier of
our framework is the Random Forest (RF) algorithm. This is motivated by its low complexity
and good performance in many settings. Moreover, RF is widely used in the literature to address
similar problems.

We combine the RF algorithm with Grid Search; a technique where different hyperparameters
are tested for a fine-tuning process. The hyperparameters that we used are: the maximum depth of
the tree, the minimum number of samples required to split an internal node, the minimum number
of samples required to be at a leaf node, and the number of trees in the forest. The basic idea is
that the RF is repeated multiple times, with different hyperparameters, and the combinations of
those hyperparameters that give the best results in the validation set inside the Grid Search, are
used for the final test using the test set.

For the rest of this section, we discuss the process of utilizing pivot packets as an anchor for
creating machine learning features for detecting unprofiled drones. Recall that one of the main
contributions of this work is detecting drones that the FPV Drone Classifier has never trained
on. In Section 6.1, we provide the list of features used by the classifier. Then in Section 6.2, we
introduce two novel feature selection strategy that pick the best features for unprofiled drone
detection in two phases. The first phase is based on Jaccard Similarity Index and is independent of
the underlying classification model that is used in the framework, while the second phase is based
on the Recursive Feature Elimination (RFE) technique and it involves the classification model
during the selection process, meaning that its performance depends on the type of the machine
learning algorithm used.
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Table 2. Pivot Features

Pivot Features Description
is_large_MTU 1 if MTU is greater than 1400 bytes and 0 otherwise
fingerprint_1 Number of fingerprint type 1 in the sample
fingerprint_2 Number of fingerprint type 2 in the sample
window_time Total packets inter-arrivals of the sample
total_packets Total number of packets in the sample
total_size Sum of packet sizes in the sample
pivot_size/MTU_size The ratio of the pivot size to the MTU size
MTU_size/total_length The ratio of MTU size to the sample size
pivot_size/total_length The ratio of pivot size to the sample size
MTU_count Total number of MTU packets in the sample
pivot_count Total number of pivot packets in the sample
MTU_count/total_packets Ratio of MTU count to packet count in the sample
pivot_count/total_packets Ratio of pivot count to packet count in the sample

6.1 Feature Creation

As discussed in Section 5, pivot packets have the potential to differentiate between FPV drones
and other network devices, including video streaming devices that exhibit similar traffic patterns
to FPV drones such as IoT cameras. This differentiating potential creates an opportunity for con-
structing machine learning features that have the discriminative power to classify network devices
into either drones or non-drones based only on the traffic observed from a WiFi network. In par-
ticular, the features are expected to correctly classify (with high probability) drone devices among
all other non-drone devices even if the machine learning model does not have a prior profile of
the drone being classified. The set of features are organized into the following three groups:

6.1.1 Pivot Features. Pivot features are features composed from the output of the Pivot Extrac-
tion Algorithm. Recall that the algorithm outputs a sequence of packets that contains at least 170
packets which are sent within at least 820ms time window. Within this sequence, the algorithm
also tags the pivot fingerprints; the location of pivot packets with respect to the MTU and less-
than-MTU video frame packets that envelop the estimated pivots (see Figure 6).

The set of pivot features and their definitions are reported in Table 2 and is comprised of 13
features. A brief description of two pivot features is provided next:

MTU Size Feature: During the drone’s pivot fingerprint analysis in Section 5.1, we observed that
FPV drones tend to fill their MTU packets to the maximum (1500 bytes in RED and BLK) or near
maximum (1454 bytes in WHT) payload allowable by Ethernet protocol. From this observation,
we created is_MTU _Larдe feature which is set to 1 if the Pivot Extraction Algorithm declares a
device’s MTU is more than some threshold – heuristically set to 1400 bytes – and 0 otherwise.

Fig. 8. Scatter plot of fingerprint type 1 & 2 for

drones and cameras.

Pivot Fingerprint Features: We plotted the

number of pivot fingerprint type 1 and 2 in a
scatter plot for FPV drones and IoT cameras in
Figure 8. From the plot, the difference in finger-
print appearance behavior between drones and
cameras can be observed and therefore it has the
potential of having the number of fingerprints
as a feature for each device. Note that the scatter
plot is derived from Figure 7. Because of the in-
significant number of appearances of fingerprint
type 3, it has not been considered as a feature.
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Table 3. Statistical Measurements for Computing Statistical Features

Measurements Description

Standard Deviation
√

1
N−1

∑N
i=1 (xi −mean(x ))2

Variance σ = 1
N−1

∑N
i=1 (xi −mean(x ))2

Root Mean Square
√

1
N

∑N
i=1 (xi )2

Mean Square 1
N

∑N
i=1 (xi )2

Pearson Skewness 3(mean(x ) −median(x ))/σ
Kurtosys 1

N

∑N
i=1 ((xi −mean(x ))/σ )4

Skewness 1
N

∑N
i=1 ((xi −mean(x ))/σ )3

Minimum (Min(xi ) |i=1, ...,N )
Maximum (Max (xi ) |i=1, ...,N )
Mean 1

N

∑N
i=1 (xi )

Median �N+1
2 � |(Sorti=1, ...,N )

Mean Absolute Deviation 1
N

∑N
i=1 ( |xi −mean(x ) |)

Median Absolute Deviation median( |xi −median(x ) |)

6.1.2 Statistical Features. The State-of-the-Art in machine learning-based drone detection
framework that exploits wireless network traffic for drone detection [4] uses 12 statistical mea-
surements for feature generation. These features will be denoted as statistical features and their
statistical measurements are reported in Table 3 with the addition of the “Variance” feature which
was not used by [4]. Just like our framework, the drone detection framework proposed by Alipour-
Fanid et al. [4] uses only packet sizes and their inter-arrival measurements for feature generation.
Since both sets of features (pivot and statistical) are based on the same packet measurements, we
extend our pivot-based feature set and include these statistical features to our own set as well. In-
cluding such features to our feature set is a crucial step toward performing a comparative analysis
between our pivot features and the statistical features. The analysis will be conducted in Section 8.1
and it will provide an insight on the performance of our pivot features compared to the latest drone
detection features proposed in the literature.

Recall that our framework assumes an encrypted network traffic and the Pivot Extraction Algo-
rithm only extracts the size of WiFi packets and their inter-arrivals. Therefore, each statistical mea-
surement is computed twice, once over the packet sizes and another over their inter-arrivals which
results in a total of 26 statistical features (13 statistical features × 2 different packet measurements).

6.1.3 Statistical Pivot Features. The statistical pivot features combine the statistical measure-
ments with our pivot measurements to create Statistical Pivot Features. From every sequence of
packets received from the Pivot Extraction Algorithm, we extract three additional measurements,
the inter-arrival time between pivot packets (pivot time-distance), the number of normal packets
between pivot packets (pivot packet-distance), and the total number of bytes between pivot packets
(pivot length-distance). For each one of the three values, we compute the statistical measurements
on each group which resulted in 39 statistical pivot features (3 different pivot measurements × 13
statistical measurements). Combined with the rest of the two previously discussed feature subsets,
the total feature set considered for our framework is 78 features.

6.2 Feature Selection

In a classification problem, conventional supervised feature selection techniques such as Recur-

sive Feature Elimination (RFE) and Permutation Feature Importance aim at selecting features
that better distinguish a class label for every class that exist in a dataset.
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In the context of unprofiled drone detection, the feature selection process would select the fea-
tures that work best in detecting profiled drones; the drones that were used in the training phase
of the machine learning algorithm. In the testing phase however, the algorithm would correctly de-
tect profiled drones while failing to detect unprofiled drones that were never seen by the algorithm
during the training phase. This problem is known as overfitting, and it occurs –in the context of
unprofiled drone detection– because the samples that are extracted from the same drone are cor-
related. To illustrate, consider two samples that are extracted from the same drone, sample SPA

and SPB . Then consider some feature x . If we compare the value of feature x between samples
SPA and SPB , we find that the value of xA from sample SPA will be statistically similar –with high
probability– to the value of xB from sample SPB (i.e., SPAx

≈ SPBx
). In other words, because the

feature values of different samples extracted from the same device are statistically similar, these
samples are correlated. Consequently, if correlated samples (samples that are extracted from the
same device) appear in the training set and in the testing set, it would create an undesired strong
correlation between certain features and a specific device, which in turn would cause overfitting.
It is a natural behavior for data points to be statistically similar to each other if extracted from the
same drone because the network traffic generated by the drone is fairly unique for that drone. For
example, the pivot size of WHT drone is 35-bytes. Therefore, 95% of samples extracted from WHT
drone would have the “Pivot Size” feature equal to 35 (Recall that the Pivot Extraction Algorithm
can find the correct pivot size with a probability of 0.95). This would cause the classifier to declare
any WiFi device that has a pivot size of 46 bytes (BLK), 4 bytes (RED), or 35 bytes (WHT) as drone

and any other pivot sizes as non-drone devices. This is an unwanted behavior because the model
associates the unique pivot dimension with a class label, ignoring the other features. This problem
will persist regardless of the dataset size; the number of packets collected from drones since all
drone-labeled samples are representing (in our case) three distinct drones and their three pivot
sizes are uniquely consistent with every drone sample.

Of course this would not be a problem if we implement our model under the assumption that
every drone type in the market must be profiled prior to the detection process. However, this is
not a realistic assumption for creating a practical drone detection framework. To the best of our
knowledge, no prior efforts that adopt a machine learning-based approach for drone detection has
addressed this issue.

To this end, we next propose our novel feature selection technique that overcomes the overfitting
problem via a two-phase process. The first phase computes a Feature Similarity Score based on
Jaccard Similarity Index (model-independent feature selection), while the second phase applies
a modified RFE for unprofiled drones (model-dependent feature selection). The objective of our
feature selection technique is to select features which describe a generalized drone behavior rather
than features that describe a behavior of a specific networked device. In other words, the selected
features are expected to detect unprofiled drones; drones that the framework has never seen before
and the classifier has never trained on.

The main motivation of applying Jaccard Similarity Index (JSI) testing before using an RFE-
based feature selection, is that the computation of JSI scores is much faster than running an RFE-
based algorithm which helps us weed out the weak features before passing them to the RFE process.
For a comparison, it took our computer (a laptop with Intel i7) around 20 seconds to calculate the
JSI scores for 78 features while it took the same computer around four hours to compute the RFE
scores of the remaining features selected by JSI (which is 37 as we will see next). For the second
phase, we opt for using a feature elimination-based technique (such as RFE) rather than a feature
extraction-based technique because feature extraction techniques such as Principal Component

Analysis (PCA) would compress and retain the overfitting features into lower dimensions rather
than discarding them.
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Fig. 9. Feature (a) uniquely describes each drone individually while feature (b) generalizes an FPV drone

behavior.

6.2.1 Phase I – Feature Similarity Score. As we have seen in Section 6.2, some features might
describe a drone as a unique device rather than an FPV drone. For this reason, we need to identify
the features that capture a generalized drone behavior and not a specific drone type. Our first
step toward accomplishing this task is computing a Feature Similarity Score; a score that describes
how a certain feature can capture the behavior of all the three drones we have in our experiment.
Note that this feature selection approach is independent from the classification model used in the
framework. In other words, Feature Similarity Score pre-processes the features without involving
the adopted machine learning algorithm and therefore Feature Similarity Score results are always
consistent regardless of the used classification algorithm.

We first start by plotting the distribution of each feature as a histogram across all drones and
measure the similarity of their distributions. For example, Figure 9(a) represents the distributions of
pivot_packet_distance_mean_root_square feature for all three drones while Figure 9(b) represents
the distribution forpivot_packet_distance_total_size feature for the same drones. From the Figure
we can see that the first feature represents each drone individually while the second feature shows
some shared characteristics among the drones. The main intuition is that if a feature shares similar
distributions among different drones then this feature will most likely generalize a drone behavior
while other features with distinctive distributions can help identify the specific device it represents.
An extremely distinctive distribution such as the pivot size could overfit the data.

There are different techniques in the literature for testing the similarity between data distri-
butions such as Pearson’s chi-squared test and Kolmogorov–Smirnov test. We chose the Jaccard
Similarity Index method because it is easier to interpret and provides greater flexibility in setting
the appropriate similarity threshold that fits our desired application.

Pre-processing: Before testing the similarity of a feature between drones, we need to prepare

the data points of that feature to be plotted as a histogram. First we remove the anomalies of each
feature; the data points that are scattered (very few) and are either extremely large or extremely
small compared to the majority of the data points. Since we don’t have a prohibitively large number
of features, we removed the anomalies for each feature manually by setting the histogram range
for each feature to be within the range that capture most of the data points while leaving out the
very few data points that are extremely out of range. Then we perform ’data binning’; a process
of dividing the range into same-length intervals, each interval (a histogram bar) is referred to as
a ’bin’. A data point that falls within the range of a certain bin will increase the value of that bin
by one. If anomalies are not removed, it would collapse the bins together and severely change the
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shape of the histogram’s distribution since the histogram range will be proportionally large for
the majority of the data points. After removing the anomalies, we set the number of bins to 100
for all features as a unified bin interval.

Jaccard Similarity Index Measurement: After creating the histograms, we measure the size of the

intersection area between the three drones’ distributions. Then, we measure the occupation ratio
of the intersection area to the total distribution area using a Jaccard index. For each bin position
Bi , we record the minimum bin value among the three drones bins. The intersection area is then
computed as

∑n
i=1min(Bi1. . .m ) where n is the number of bins and m is the number of histograms.

Note that since we have three histograms (one for each drone), thenm = 3. Similarly, the total area
of the three histogram is

∑n
i=1max (Bi1. . .m ). Finally, the Jaccard Similarity Index JSI is computed as:

JSI =

∑n
i=1min(Bi1. . .m ))∑n
i=1max (Bi1. . .m )

(1)

The resulted JSI gives us the ratio of how much of the intersected region occupies from the total
sum of histograms areas.

Feature Selection Based On Jaccard Similarity Index: We computed the Jaccard Similarity Index

for all of the 78 features based on equation 1. The results are sorted in ascended order and reported
in Figure 10. Note that the Jaccard indices are ratios (≤1) and in the Figure they are multiplied by
100 for clarity. From the Figure, we notice that there are high variations between the top eight fea-
tures where the index difference between features f ti and f ti+1 (ΔJSI = f ti− f ti+1) can reach up to
13 points between two consecutive features for the top eight indices. Then the ΔJSI started to sta-
bilize to be ≈ 1 until it reaches to the 30th feature which has JSI = 12.71 and ΔJSI = 2.64. In other
words, the number of useful features started to drop by ΔJSI = 2.64 points after JSI < 12 and there-
fore we select the acceptance threshold to be 12, that is, the intersection region must occupy at least
12% of the total histogram areas. With this threshold, we reduce our features set from 78 features
to 30 features. Additionally, we add another threshold that accepts a feature if it has JSI > 70 of in-
tersection area between any two drones. The intuition of this additional threshold is that, a certain
feature might be a strong candidate for detecting FPV drones but one of the three drones we used
during testing might have a unique and outlying distribution towards that particular feature and
therefore would inject an anomaly in the JSI testing which would potentially lower the JSI score of
rather a strong feature. Therefore, we re-computed JSI score for each feature thrice, once between
each two drones. In other words, for each feature we computed JSI for drones combinations BLK-
WHT, WHT-RED, and BLK-RED. Then, we set a heuristically high threshold in which we set to
JSI > 70 and selected the features that has JSI > 70 in at least one of the three drones combinations.
The new threshold gave us additional seven more features which resulted in a total of 37 features.

6.2.2 Phase II – Recursive Feature Elimination for Unprofiled Drones. The features selected in
Section 6.2.1 were selected independently from the underlying classification model used in the
detection framework. Now we need to test the sensitivity of the remaining features and further
select the features that are most sensitive toward our Random Forest classifier in detecting new
unseen drones. For this task, we implement a modified version of the Recursive Feature Elimination
(RFE) technique that involves our FPV Drone Classifier which influences the RFE process to select
features that have the discriminative power to detect unprofiled drones (Algorithm 1).

Since RFE involves the classification model in the selection process, the model would eventually
influence the RFE to select the features that would cause overfitting for the reasons discussed in
the beginning of Section 6.2. To overcome this issue, we modify the basic RFE technique and inject
a Cross-Validation test in the step that invokes the classifier (line 9 to 13 in Algorithm 1). Since we
have three drones, we apply a 3-folds cross-validation strategy, where we divide the dataset into
three distinct sets or folds (line 6).
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ALGORITHM 1: Modified Recursive Feature Elimination
1 iteration_results.initialize();

2 while feature_set.count > 1 do
3 features_scores.initialize();

4 for ft in feature_set do
5 feat_set_no_ft = feature_set - {ft};

6 drone_subsets = k_fold_cross_validation(dataset);

7 ft_scores.initialize();

8 for drone_set in drone_subsets do
9 validation_set = drone_set;

10 train_set = drone_subsets - drone_set;

11 model = RandomForest(train_set, feat_set_no_ft);

12 accuracy = model(validation_set);

13 ft_scores.add(accuracy);

14 features_scores.add(ft, ft_scores.mean());

15 feature_set.remove_weakest_feature(features_scores);

16 iteration_results.record(feature_set);

17 final_feature_set = iteration_results.best_feature_set();

However, the samples are not distributed equally among the folds as in a conventional cross-
validation. Instead, each fold contains samples from a single drone plus non-drone samples selected
randomly. Then the RFE trains on two folds and validates on the third fold. This process is re-
peated once for each drone/fold as the validation set. In other words, the RFE trains on two drones
and validates on new unseen drone then shuffles between the drones and trains and validates
again.

Fig. 10. Jaccard Scores × 100. Each score defines the

threshold of accepted features.

The accuracy for each fold is accumulated
out of 300% (# of drones × 100 at line 13) then
the mean of the accuracy is computed (line
14) after the cross-validation is performed
on all drones. At the end of each iteration
(line 15), the feature that yields the maximum
accuracy when removed (i.e., weakest feature)
is eliminated. Next, a new and smaller set of
features and their respective scores are then
recorded (line 16) and the final feature set
is selected at the end of the algorithm (line
17) based on the highest detection accuracy
yielded by the best feature set. Our modified
RFE process has further decreased the number
of features from 37 to 12. It is worth noting that our features that are built from pivot packets
are among the remaining features, and out of 28 statistical features, only three of them are kept
including our ‘Variance’ feature in the final set. In summary, the selected features are: 3 from the
Pivot Features group (is_MTU_Large, fingerprint_1, and fingerprint_2), 6 from the Pivot Statistical
Features group (2 Pivot Time Distance features, 1 Pivot Packet Distance feature, and 3 Pivot
Length Distance features), and 3 from the Statistical Features group (2 from Alipour-Fanid et al. [4]
and our ‘Variance’ feature). We refer to the final set of selected features as Pivot-Based Features.

7 IMPLEMENTATION

In this section, we provide an overview of our experimental setup, the devices and applications
that are used to generate network traffic, and the data collection strategy used to generate our
datasets.
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7.1 Data Collection

This subsection provides a quick overview on the hardware and software setup used to collect the
network traces to generate the framework datasets, as well as the devices and applications that
generated such traces.

7.1.1 Hardware & Software Setup. To collect the traffic emitted by WiFi devices, we used an
Acer Aspire F5-573G-759N laptop with Intel Dual-Core i7 CPU and Alfa AWUS036ACH WiFi
adapter. We used Kali Linux 64-Bit version 2020.1, which was installed as a virtual machine us-
ing Oracle VirtualBox version 6.0.14. The WiFi adapter was set to Monitor Mode and tuned to
the operating frequency of the drone’s AP being monitored. We used the Android app “WiFi An-
alyzer” [2] to find the correct operating frequency of the AP. The network traces were collected
using Wireshark [3] and parsed using Scapy [1].

7.1.2 Network Traffic Generation. The network traffic traces are generated from various devices
and applications in different conditions and scenarios. All traces are collected using the WiFi Mon-
itor Mode (rather than on-device traffic capture) to include packet loss and other distortion effects
that characterize real-world environments. The WiFi packets were captured from an encrypted
WiFi network configured with a WPA2 security standard. WPA2 establishes a secure channel for
each device using the CCMP protocol that uses the AES encryption algorithm to encrypt the pack-
ets payload. To maintain the state of the secure channel, CCMP attaches an 8-bytes header and an
8-bytes Message Integrity Code (MIC) to each packet. From each captured packet, we remove
the CCMP header and its MIC which leaves us with only the WiFi header and the encrypted pay-
load. The encrypted network traces are collected from the following devices and network services:

VoIP Apps: To test the performance of our framework, we ensure that our datasets include sam-
ples extracted from network devices that have traffic patterns similar to FPV drones’. In addition
to the IoT camera traces collected for the pivot analysis in Section 5.4, we also collect traces of
video traffic originated from Skype, Google Duo, and Discord VoIP apps while making video calls
for five minutes. In Figure 11, we can clearly see that bit-rates of FPV drones, IoT cameras, and
VoIP applications have similar traffic patterns.

Non-Drone Background Devices: To ensure the completeness of our dataset, we collect six
different traces of network traffic originated from network services for three minutes each. These
traces were collected during (1) file downloading, (2) non real-time video streaming (YouTube),
(3) live internet video streaming (Twitch), (4) Internet browsing, and social media browsing: (5)
Twitter and (6) Facebook. The bit-rate of each application is plotted in Figure 11(b). Furthermore,
we included traces from publicly available WiFi packet traces [26]. Similar to all of the network
traffic traces collected by us, these traces were collected in WiFi Monitor Mode which make them
subject to the uncertainties of wireless networks.

Drones & IoT Cameras: The traces from drones and IoT cameras that are collected for the pivot
analysis in Sections 5.2 and 5.4, respectively, are collected under two different extreme cases; a
completely stable video scene (STB) and a highly dynamic video scene (SHK). To include network
traffic generated from a more realistic video pattern, we place all of the three drones and all of the
three cameras in front of a screen playing a five minutes documentary video that contains slow,
moderate, and fast-moving scenes. From each device, we capture the emitted video traffic which
resulted in an additional six network traffic traces.

Flying Drones: To further ensure that our dataset includes realistic samples, we recorded the FPV
video of our drones during flight. First, we performed an experiment to determine the maximum
distance from the monitoring station at which a drone can be detected. We set up a laptop as a
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Fig. 11. Data-rate for drones, background devices, cameras and VoIP applications over 30 seconds.

monitoring station in the center of a university football field. Then we set up seven waypoints
in a straight line starting 10 meters from the monitoring station. The distance between each two
consecutive waypoints is 10 meters. We then flew each drone starting from the monitoring station
in a straight line to the first waypoint while collecting the packets sent by the drone. Then, we flew
the drone from the first waypoint to the second, up to the seventh while collecting the transmitted
packets at each step. The drones we used are considered “micro-drones”, and move at a relatively
low speed with a rather small tilting of the drone body during motion.

We notice that the RSSI severely drops after 40 meters at waypoint 4 and the received power level
at the monitoring station’s antenna is below −80 dBm. This is expected, as these drones are low-
power devices with limited battery capacity. The packet loss between waypoint 3 and waypoint
4 was excessively high (around 70%). Therefore, we conclude that in the considered hardware
configuration, the effective detection distance for the micro-drones is 30 meters.

From our monitoring station in the center of the football field, we flew each drone for three
minutes inside a detection area of radius equal to 30 meters while the drone occasionally exits
and re-enters the area to simulate a more realistic scenario of invasive drones. For each drone, we
collected the emitted video traffic which resulted in three new network traffic traces.

7.2 Data Preprocessing

For each captured WiFi packet Pi transmitted by deviceD j , we extract from the WiFi packet header
the transmitter’s MAC address, fragment number, sequence number, header flags, payload size Si, j ,
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and packet’s arrival time Ii, j . We also extract the RSSI from the radiotap header that is added by the
WiFi card upon receiving the packet. In case of fragmented packets, we use the sequence number,
fragment number, and the “more fragments” flag in the header to put fragmented WiFi packets back
into a complete packet. This approach is needed as WiFi adapters set into Monitor Mode do not
reconstruct fragmented packets, and pass them individually to the operating system. We use the
sequence number to identify retransmitted packets that were already captured. Note that we could
not rely on the “retry” flag to capture duplicates because is not guaranteed that the original packet
transmission has already been captured. Also a simple check of consecutive duplicate sequence
numbers would not work either, since some retransmissions might arrive out of order, and thus
the last captured packet is not always followed by its retransmitted duplicate. As an alternative
solution for identifying duplicates, we simply keep track of the last eight captured packets for each
D j and whenever a new packet is received, we check if the packet is already in this window.

For each captured stream of n WiFi packets, we reconstruct the fragmented, drop the dupli-
cates, then group them as a list of packets based on the transmitter’s MAC address such as
D j = {P1, j , . . . , Pn, j }. For each packet i , we only save 1) the packet size Si and 2) its arrival time Ii .
Therefore, each device’s packet list can be interpreted as D j = {(S1, j , I1, j ), . . . , (Sn, j , In, j )} where
Pi, j = (Si, j , Ii, j ). Then, we add each device list D j to our Packet Dataset DSp = {D1, . . . ,Dm }.

7.3 Data Sampling

After preparing DSp , the packets are grouped into batches called samples (SP ). Each SP consists of
at least 170 packets that are sent within at least 820ms interval (The reason for sampling packets
in batches with a minimum of 170 packets and a minimum of 820ms in inter-arrival window is
discussed in Section 5.3). This process transforms DSp into a Samples Dataset DSsp . To illustrate,
to generate the first sample SP1, j for a given device D j ∈ DSp , a sliding-window strategy is used;
the sliding-window is filled with 170 Pi, j packets for device D j . Then if I170, j − I1, j < 820ms , the
sliding-window is filled with additional n packets until I170+n, j − I1, j ≥ 820ms . Finally, the current
packets in the sliding-window is recorded as SP1, j and added under device D j . For the next sample,
the sliding-window shifts by 30 packets to create the second sample SP2, j = {P31, j , . . . , P201, j } and
add additional n packets until I201+n, j − I31, j ≥ 820ms is satisfied. This sampling process continues
until all packets forD j are batched intom samples such thatD j = {SP1, j , . . . , SPm, j }where typically
n > m since each two consecutive samples (with at least 170 packets) have 30 interleaving packets
offset. The reason for this offset choice is because during the pivot analysis, we observed that two
pivot packets are separated by a maximum of 30 normal non-pivot packets. In other words, 30-
packets is the maximum offset that includes all possible pivots combinations among consecutive
samples.

The final dataset contains the following number of samples: Drones: {WHT Drone: 6,041 sam-
ples, RED drone: 3,194 samples, BLK drone: 4,626 samples}, Non-Drone Devices: {IoT cameras:
11,449 samples, Internet activity: 4,523 samples, VoIP apps: 1,463 samples, public traces [26]: 474
samples}. 70% of the samples of each class will be used in our RFE feature selection process (Sec-
tion 6.2.2), while the remaining 30% of the samples will be retained to evaluate the performance
of the model (Section 8).

7.4 Features Extraction

The last step in creating our datasets is extracting features from the samples. Since the samples
are already processed, features are easily computed from each sample SPi, j producing a machine
learning record Ri, j that contains a set of k features Ft where Ri, j = {Fti, j1 , . . . , Fti, jk

}. The feature
design is already discussed in detail in Section 6.1 and reported in Tables 2 and 3 while the feature
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selection strategy is discussed in Section 6.2. Since the framework follows a supervised machine
learning paradigm, each record is labeled 1 if it belongs to a drone, and 0 otherwise.

7.5 Scalability

As discussed in Section 5.3, the proposed Pivot Extraction Algorithm runs linearly inO (n) of time
complexity. When tested on our hardware and software (Acer laptop with 2-cores i7 CPU run-
ning Python 3.8), the algorithm traversed 100,000 WiFi packets within 758ms in a single Python
process. When running the algorithm through 200,000 WiFi packets using two Python processes
running in parallel (each process traverses 100,000 packets), the execution time for each process
was around 896ms. Processing 400,000 WiFi packets using four Python processes (each process
traverses 100,000 packets), the execution time for each process was around 960ms. On average,
the packet generation time of a drone is 200 packets per second. Therefore, without any code or
hardware optimizations, our algorithm can process wireless traffic of 2,000 devices simultaneously
using only four parallel Python processes running on a 2-cores machine (assuming every device
generates 200 packets per second).

8 EVALUATION

In this section, we evaluate the detection performance of our proposed framework using the fea-
tures created and selected in Section 6 and the dataset generated in Section 7. During the feature
selection process, we used only 70% of the dataset and kept the remaining 30% for the final evalu-
ation. With the remaining 30%, we employ a 3-folds cross-validation technique. In a conventional
cross-validation, the dataset is split into training and testing sets by specific ratios (such as 80/20).
However, to test the framework’s ability in detecting unprofiled drones, we split the remaining
30% into training and testing sets by drone type. In particular, the training set is designated to con-
tain samples of two different drones plus randomly selected non-drone samples drawn from the
designated 30% pool, while the testing set contains samples from the third drone plus randomly
selected non-drone samples drawn from the designated 30% pool as well. To balance the datasets,
the non-drone samples are added to each set (training and testing) in a 50/50 drone to non-drone
ratio. To create the second train/test set pair, we move the test set drone samples to the training
set while moving one of the training set drones into the testing set. Then we redistribute the non-
drone samples to 50/50 drone to non-drone ratio. The third train/test set pair follows the same
process; designate the test set for the last drone then redistribute the non-drone samples. This 3-
folds cross-validation setup covers all possible combinations of having two drones in the training
set and the third drone in the testing set. Finally, to assert that the initial traffic analysis of the three
drones used in Sections 5.1 and 6.2 did not influence or interfere with the results of the evaluation
of our experiments, we collected additional samples from a fourth drone as a baseline; a 3DR Solo
drone (Figure 12). The Solo drone was never used in any shape or form in neither the analysis of
the pivot behavior nor the feature selection process. The samples of the new drone were collected
in the same manner as in Section 7.1 and is comprised of 398 samples. Similar to the previous three
train/test set pairs, we use the Solo drone to create a fourth train/test set pair where we designate
the samples of the Solo drone to be part of the test set.

The evaluation of the framework is divided into two sets of experiments, each set is executed
under four different experiment settings. In the first set, we apply the features that were selected
by our feature selection strategy proposed in Section 6.2 which is comprised of our pivot-based
features. In the second set, we apply the statistical features only (Table 3) which was proposed
by [4]. Recall that one of the main motivations of the proposed framework is detecting unprofiled
drones that the framework has never seen before. To test the framework’s performance in
detecting unprofiled drones, we designate a drone to the testing set that was never used in the
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Table 4. Final Results

# of samples per device
in training set

# of samples per device
in testing set

Pivot Features Statistical Features

Accuracy Precision Recall Accuracy Precision Recall

Experiment 1
Red Drone = 959 samples
Black Drone = 1388 samples
Noise Samples = 2347 samples

White Drone = 1812 samples
Noise Samples = 1812 samples

97% 98% 97% 49% 0% 0%

Experiment 2
Red Drone = 959 samples
White Drone = 1812 samples
Noise Samples = 2771 samples

Black Drone = 1388 samples
Noise Samples = 1388 samples

93% 98% 87% 69% 99% 39%

Experiment 3
White Drone = 1812 samples
Black Drone = 1388 samples
Noise Samples = 3200 samples

Red Drone = 959 samples
Noise Samples = 959 samples

99% 98% 99% 89% 99% 79%

Experiment 4

Red Drone = 959 samples
Black Drone = 1388 samples
White Drone = 1812 samples
Noise Samples = 4159 samples

Solo Drone = 398 samples
Noise Samples = 398 samples

98% 97% 99% 50% 0% 0%

training set. In particular, the setup of the four experiments are the following; for each experiment,
the classifier is (1) trained on RED and BLK and tested on WHT, (2) trained on WHT and RED and
tested on BLK, (3) trained on BLK and WHT and tested on RED, and (4) trained on RED, BLK, and
WHT and tested on Solo. As mentioned before, to balance the datasets (training and testing) for
each experiment, we include non-drone samples in a 50/50 drone to non-drone ratio. Note that
in each experiment, we construct a new Random Forest algorithm and fit it with its designated
training set to make sure the new drone used in the testing set is unprofiled and never seen by
the classifier. The setup and results for each experiment is reported in Table 4.

8.1 Results Analysis

Fig. 12. 3DR solo drone that was used as part of the

final test set.

The results reported in Table 4 demonstrate
that pivot-based features can detect unpro-
filed drones with accuracy of at least 93%.
On the other hand, statistical features – such
as those used in state-of-the-art machine
learning-based drone detection – struggle at
detecting unprofiled drones, especially when
detecting WHT and Solo drone; statistical fea-
tures failed to detect even a single WHT or
Solo drone sample. Recall that the network
traffic originated by the Solo drone is com-
pletely new and unknown to the framework
and were never used neither during the anal-
ysis of FPV drone behavior (Section 5.1) nor
during the RFE feature selection process (Section 6.2.2). To understand the drawbacks of the statis-
tical features, we apply a permutation feature importance technique to score the importance index
for the statistical features only (Figure 13(a)). From the Figure, we observe that the one and only
important feature is the median; the middle value of a sorted list of values. As discussed in Sec-
tion 4.3, a video stream is comprised mostly of MTU packets and therefore the median of a series of
170 packets is almost always the MTU size; maximum packet size in the sample. The second most
important feature is the packet with the maximum payload (i.e., MTU) which essentially reflects
the same value of the median feature. Then we plot the distribution of the MTU for each device
in Figure 13(b). As we can observe, there is almost no variance in the distribution of the MTU. In
other words, every device has a unique MTU size that is tied to its network interface card (NIC) and
is represented as a single bar in Figure 13(b). This explains why the classification model privileges
this single feature in the detection decision. In fact, the model can associate MTUs of 1500 bytes
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Fig. 13. Fixed-valued features such as MTU force the classifier to heavily rely on a single feature.

(RED and BLK drones) and 1482 bytes (WHT drone) to drone devices and any other MTU sizes to
a non-drone device. This also explains why the detection accuracy drops to 55% when WHT drone
is removed from the training set (since RED and BLK have the same MTU size).

On the other hand, our feature selection strategy ensures the removal of features that have a
single or very few distinct values across samples drawn from the same device such as MTU or
pivot size which have the potential to uniquely identify a device rather than a group of devices
that share the same characteristics (i.e., FPV drones). Furthermore, the selected features are mostly
influenced by the behavior of pivot packets that indeed capture a generalized drone behavior rather
than a single unique device behavior.

9 CONCLUSIONS

In this article, we proposed a COTS Drone Detection Framework that can detect invasive FPV
drones flying into a restricted area without the need of having a prior profile of the invasive drone
or requiring the drone’s controller to be within the detection range. The framework relies on
synchronization packets that are interleaved with the video stream emitted by drones. These pack-
ets are denoted as “pivots” and unlike prior work, pivot packets are not affected by the varying
bit-rate of the drone’s video stream which can be used as a guideline to construct features for a
machine learning-based system built from a Random Forest classifier. We also proposed a Pivot

Extraction Algorithm algorithm that quickly searches a sample of packets for pivots in linear time.
Furthermore, we proposed a two-phase feature selection strategy that selects drone features which
have the discriminative power to detect unprofiled drones. The first phase is a model-independent
feature selection process which is based on Jaccard Similarity Index, while the second phase is
model-dependent and based on the RFE selection process.

Our experiments demonstrated that pivot-based features can detect unprofiled FPV drones even
when other video streaming devices such as IoT cameras are within the detection environment. The
detection accuracy using our pivot-based features is at least 93% using at least 170 captured packets
that are transmitted within at least 820ms, while the detection accuracy of using the state-of-the-
art drone features [4] is at least 49% using the same number of packets and detection window.
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