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a b s t r a c t 

The problem of designing UWB pulses which meet specific spectrum requirements is usually treated by 

filtering common pulses such as Gaussian doublets, modified Hermite polynomials and wavelets. When 

there is the need to have a number of orthogonal pulses ( e.g. , in a multiuser scenario), a naive approach 

is to filter all the members of an orthogonal set, which is likely to destroy their orthogonality property. In 

this paper, we study the design of a set of pulses that simultaneously satisfy the orthogonality property 

and spectrum requirements. Our design is based on the eigenfunctions of Sturm–Liouville boundary value 

problems. Indeed, we introduce Sturm–Liouville differential equations for which the eigenfunctions meet 

the FCC mask constraints. Computer simulation results show that all such waveforms occupy almost 55% 

of the allowed spectrum (utilization efficiency). A comparison of the proposed method with some con- 

ventional techniques of orthogonal UWB pulse generation will demonstrate the advantages of the new 

proposal. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Ultra Wideband (UWB) technology is one of the well-known so-

utions for short range and low energy transmission of high data

ate signals. Historically, its traditional application used to be in

adar [1] while new applications consist of wireless communica-

ion [2] , transmission of multimedia signals [3,4] and sensor net-

orks [5,6] . 

For many years, single pulse generation has been the tradi-

ional and fundamental approach for creating UWB waveforms. By

djusting the pulse parameters, the characteristics of the energy

ithin the frequency spectrum may be defined based on some de-

ired design criteria. The parameters such as the pulse duration,

andwidth and the energy should be carefully considered. The lo-

ation where the generated energy should center is also important.

ulse shape determines the characteristics of how the energy occu-

ies the frequency domain. Since the highest spectral efficiency is

ne of the most important objectives for UWB communications, as

uch bandwidth as is practical should be used to take advantage

f the capacity made available with UWB technology [7] . 

Generally, single-pulse architectures offer relatively simple

adio designs, but provide little flexibility where spectrum
∗ Corresponding author. 
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anagement is an objective. Examples of scenarios where manag-

ng the spectrum might be desirable are matching different regu-

atory requirements in different international regions, dynamically

ensing interfering technologies and suspending usage of contend-

ng frequencies. Another area where managing the spectrum might

e desirable is in performance management. Increasing the perfor-

ance of existing designs may require a complete redesign, forgo-

ng backward compatibility with earlier implementations [2] . 

UWB transmission can be carried out by sending nanosecond

ulses which represent a single or a number of bits. The most

dopted waveforms are Gaussian monocycle and doublet [8,9] ;

owever, other waveforms such as Hermites and spheroidal pro-

ates are also considered [2,10,11] . Unlike the Gaussian pulses,

he latter classes include a number of pairwise orthogonal pulses

hich can be used either for transmission of multi-bit symbols via

rthogonal shapes or single-bit waveforms of a multi-user commu-

ication system. Hence, it is beneficial to use a number of orthog-

nal pulses rather than a single waveform. 

Since UWB pulses occupy a wide range of the available spec-

rum, it is likely that the pulses cause interference in the pre-

ssigned frequency bands. In order to alleviate this effect, a num-

er of frequency masks, such as the one by FCC [12] , are regu-

ated. These masks consist of disjoint frequency intervals for which

he transmitted pulses should be kept below a constant level.

n order to meet the mask requirements, usually the employed

https://doi.org/10.1016/j.sigpro.2019.02.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
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waveforms are passed through pulse shaping filters [13,14] . If a set

of orthogonal waveforms are subject to the filtering process, the

outputs are likely not to be orthogonal. Hence, for having orthogo-

nal pulses that meet the mask requirements, instead of shaping the

well-known orthogonal sets, one should design new pulses such as

the ones introduced in [13] . Since the limiting levels of the mask

in the adjacent frequency intervals discontinuously change and the

transmitted pulses are essentially continuous, the allowable spec-

trum could not be fully employed. To evaluate the efficiency of a

waveform with respect to a frequency mask, it is common to re-

port the used fraction of the allowable spectrum as the spectrum

utilization efficiency. 

It is shown that the common pulses introduced for UWB trans-

mission follow a second order differential equation known as

Sturm–Liouville boundary value problem [15] which posses orthog-

onal eigenfunctions with respect to a given weight-function. In

this paper, by focusing on the classes of Sturm–Liouville functions,

we will introduce new orthogonal sets of pulses which meet the

FCC mask requirements. This goal is achieved by forcing a tunable

null in the frequency spectrum of the pulses which is also useful

for avoiding interference in a narrow-band frequency interval. Al-

though we consider the FCC mask, the pulse generation algorithm

can be adapted for other frequency requirements. An interesting

property of the obtained pulses, which we observe in simulation

results, is that the utilization efficiency of different pulses are al-

most the same (about 55%) which is not the case for the pulses

introduced in [13] . This results in a fair distribution of the wave-

forms among the users for a multi-access scenario. 

The rest of the paper is organized as follows: In Section 2 we

review some preliminaries about pulse requirements and Sturm-

Liouville theory. Our approach in designing pulses that meet the

FCC requirements is explained in Section 3 . We introduce a set of

Sturm-Liouville boundary value problems in Section 4 that include

potential UWB waveforms as their eigenfunctions. In Section 5 , we

validate the theoretical results by simulations for an instance of

the proposed sets. Section 6 compares the proposed method with

some other approaches and finally Section 7 presents the conclu-

sion. 

2. Preliminaries 

Now we briefly explain the desired properties of UWB pulses

and review the basics of Sturm–Liouville theory. 

2.1. UWB pulse requirements 

The following summarizes the criteria that a single or set of

UWB pulses should satisfy: 

1. Finite energy : The most elementary pulse requirement which is

not restricted to UWB communications is that the energy of the

pulse should be finite. Although it is trivial to have such pulses,

when differential equations are the design tools, this require-

ment should be checked. This condition also implies the finite

effective duration in time; i.e., the time period that contains

99% of the pulse energy is bounded. 

2. Zero DC : The DC or low frequency components of waveforms

increases the dynamic range of the amplifiers and shifts the

operating mode of the devices towards the nonlinear regime.

Besides, in some UWB scenarios, the transmitting antenna dif-

ferentiates the waveform, which automatically removes the DC

component. Hence, the UWB pulses should contain no DC com-

ponent. 

3. Orthogonality : As mentioned, we are looking for a set of orthog-

onal pulses. Thus, pulses should be orthogonal. This condition is

the main motivation behind the choice of Sturm–Liouville func-

tions as UWB pulses. 
4. Spectrum mask : Constraints on the spectrum of the transmitting

pulse should also be considered. That is, the spectral content of

the pulses should be below a given level imposed by a regula-

tory mask. This is the main challenge in UWB pulse design. 

5. Utilization efficiency : The last requirement is to maximize the

employed fraction of the allowed spectrum measured as uti-

lization efficiency factor . To measure the efficiency a normalized

effective signal power (NESP) is defined. For a pulse y ( t ) with

upper bound mask M( ω), NESP is defined as [13] 

NESP (y ) = 

∫ | ̂  y (ω) | 2 d ω ∫ 
M(ω)d ω 

, (1)

where ˆ y (ω) represents the Fourier transform of y ( t ). Although

higher factors are desirable in a single-user communication

protocol, it is preferable that different pulses in a multi-user

UWB system have similar utilization efficiencies (fair distribu-

tion). 

.2. Sturm–Liouville theory 

In the field of ordinary differential equations (ODE), a subclass

f boundary value problems referred to as Sturm–Liouville equa-

ions, are known to be involved in many physical phenomena such

s vibration. The ODE structure 

d 

d t 
[ p(t) ̇ y (t)] + [ q (t) + λs (t)] y (t) = 0 (2)

ccompanied with boundary conditions at t l , t u of the form 

c 1 y (t l ) + c 2 ̇ y (t l ) = 0 , 

c 3 y (t u ) + c 4 ̇ y (t u ) = 0 , 
(3)

s called a Sturm-Liouville boundary value problem. We reserve the

otations ˙ y and ÿ to represent the first and second order deriva-

ives of the function y . The functions p ( · ), q ( · ), s ( · ) in (2) are

ontinuous with p ( · ) and s ( · ) differentiable and positive-valued

ithin [ t l t u ]. If y ( · ) is a nontrivial solution of (2) for some λ and

atisfies (3) , it is called an eigenfunction of the problem, and the

orresponding λ is known as an eigenvalue. Eigenvalues form a

onotonically increasing sequence of real numbers with countable

nfinite cardinality [16] : 

0 < λ1 < · · · → ∞ . (4)

One can check that if ( y n ( · ), λn ) and ( y m 

( · ), λm 

) are two eigen-

airs of the problem, we have that 

(λn − λm 

) 

∫ t 2 

t 1 

y n (t) y m 

(t) s (t)d t 

= p(t) ( ̇ y n (t) y m 

(t) − ˙ y m 

(t) y n (t) ) 

∣∣∣t 2 

t 1 

. (5)

Setting t 1 = t l and t 2 = t u in (5) and using (3) results: 

 m � = n : 

∫ t u 

t l 

y n (t) y m 

(t) s (t)d t = 0 , (6)

hich shows the orthogonality of eigenfunctions with respect

o the weight function s ( t ) over the interval determined by the

oundary conditions. 

Besides the orthogonality in the interval [ t l , t u ], we use (5) to

how that under some conditions, we can select a subset of eigen-

unctions with arbitrarily small pairwise inner products (almost or-

hogonality) over the interval [ t u , ∞ ). Since there are no boundary

onditions at t = ∞ , we need to study the asymptotic behavior of

he eigenfunctions to establish the latter property. 
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Fig. 1. The FCC mask for indoor UWB communications and the target area for pulse design. 

3

 

a  

w

 

p  

f  

f  

t  

(  

t  

t  

a  

t

 

s  

t  

k  

d  

q

o  

i  

o  

t  

s

 

r  

d  

r  

f  

p  

s  

T  

l  

f  

i  

s  

a  

t

o

 

a  

s  

t  

(  

w  

s  

t  

a∫

f  

e  

t  

I  

f  

a  

s  

t

 

p  

p  

o

1  

w  

n  

u  

q  

t  

f  

i  

a  

v  

t  

s

4

. Design approach 

In this section, we establish the link between the solutions of

 special type of Sturm–Liouville boundary value problem and the

aveforms suitable for UWB communications. 

Since the restrictions imposed by UWB regulatory bodies are

resented in frequency, we focus on designing Sturm–Liouville dif-

erential equations in the frequency domain for which the eigen-

unctions meet the UWB requirements. To distinguish between

ime and frequency, we denote the pulse in the frequency-domain

Fourier transform) by ˆ y (ω) while y ( t ) represents the pulse in the

ime-domain. Due to the Parseval’s theorem, the inner product of

he pulses are identical in both domains. In particular, the pulses

re orthogonal in one domain if and only if they are orthogonal in

he other one. 

For 100% utilization of the permitted spectra, the waveforms

hould have the same frequency content as the mask while main-

aining the orthogonality property. Fig. 1 depicts a particular mask

nown as the FCC mask. We observe that the level restrictions vary

iscontinuously at the borders of non-overlapping adjacent fre-

uency intervals. Thus, a waveform that achieves 100% utilization 

1 

f this mask should be unstable in time-domain. In other words, it

s not absolutely summable which indicates the long time-duration

f the pulse which is not feasible in practice, especially when the

ransmission rate is high and the receiver suffers from timing off-

ets. 

An alternative approach is to initially ignore the spectrum

equirements and select an orthogonal set of pulses which have

esirable time-duration. Then, it is possible to force the FCC mask

equirements by attenuating the pulses. The proper attenuation

actor depends only on the maximum frequency content of the

ulse relative to the mask. This suggests that the whole spectrum

hould be suppressed to avoid a small part surpassing the limits.

he consequence is that we obtain pulses with disappointing uti-

ization efficiency. One may think of applying various attenuation

actors in different frequency intervals. Although it usually results

n considerable improvements in the utilization efficiency, it de-

troys the orthogonality of the pulses. Furthermore, the variable

ttenuation factor in different intervals may cause discontinuity at

he borders which again translates into time instability of pulses. 
1 Here, the mask is considered up to an upper bound over the frequency axis; 

therwise, the mask-matching waveform would have infinite energy. 

 

e  

f  

f  

s  
Here, we try to employ the variable attenuation technique by

voiding its side effects. The UWB FCC mask with six distinguished

ections, each with a certain level of power spectrum, suggests

hat we partition the frequency axis into six consecutive intervals

see Fig. 1 ). We represent the borders of these intervals by { ω i } 6 i =0 
,

here ω 0 = 0 and ω 6 = ∞ . Let us first assume the existence of a

et of pulses { ̂  y n (ω) } n that are pairwise orthogonal over each of

he frequency sub-intervals [ ω i , ω i +1 ] , while each pulse vanishes

t the borders of the sub-intervals. In other words, 
 ω i +1 

ω i 

ˆ y n (ω) ̂  y m 

(ω) d ω = 0 , 0 ≤ i ≤ 5 , (7) 

or all m � = n and ˆ y n (ω i ) = 0 , 0 ≤ i ≤ 6 . Due to the vanishing prop-

rty of the pulse spectra at the borders, the variable attenua-

ion technique does not cause any discontinuity in the spectra.

n addition, because of the piecewise orthogonality of the wave-

orms, they remain orthogonal after applying the variable attenu-

tion technique as long as the attenuation factors are fixed within

ub-intervals. Thus, the main challenge is to find a set of pulses

hat satisfy the aforementioned constraints. 

For design simplicity, similar to Wu et al. [13] , we neglect the

ermitted spectra below 3.1 GHz. In other words, we try to find

airwise orthogonal pulses that have nonzero frequency content

nly for ω 
2 π > 3 . 1 GHz and are orthogonal in both intervals: 3.1–

0.6 GHz and 10.6 GHz–∞ . We also impose the constraint that the

aveforms vanish at ω 
2 π = 3.1 GHz and 

ω 
2 π = 10.6 GHz. It should be

oted that the practical way of applying piecewise constant atten-

ation in the frequency is via time domain filtering. In each fre-

uency interval, we should apply an ideal bandpass filter for which

he passband amplitude is determined by the desired attenuation

actor. Since practical filters have nonzero transition band (non-

deal), the filtering process causes distortion in the adjacent bands

nd consequently, it affects the overall orthogonality. Another ad-

antage of imposing notches at ω 
2 π = 3.1 GHz and 

ω 
2 π = 10.6 GHz is

o minimize this effect by decreasing the energy level in the tran-

ition bands. 

. Proposed pulses 

In this section, we propose a class of Sturm–Liouville differ-

ntial equations in the frequency-domain for which the eigen-

unctions have finite energy and are pairwise orthogonal over the

requency band [ ω l , ω u ]. We establish the existence of a proper

ubset of the eigenfunctions that satisfy the almost orthogonality
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property (see Definition 1 ) over the frequency band [ ω u , ∞ ). As a

special case, we can set 
ω l 
2 π = 3.1 GHz and 

ω u 
2 π = 10.6 GHz to adapt

the waveforms to the requirements of the FCC mask. However, the

procedure is transparent to the choice of ω l , ω u and can be ap-

plied to other masks. In all of our simulations, we observe that the

eigenfunctions are orthogonal rather than almost orthogonal over

the interval [ ω u , ∞ ), and there is no need to wisely select a sub-

set of them. Another advantage of the proposed pulses is that they

satisfy differential equations in both time and frequency domains. 

4.1. The proposed set of differential equations 

We consider differential equations of the form (2) , where the

functions p, q and s are polynomials. The primary benefit of this

choice is that the differential equation in the frequency-domain

corresponds to another differential equation in the time-domain;

further details are provided in Section 4.4 . The other benefit, which

is stated in Theorem 1 , is the decay property of the eigenfunc-

tions. We recall that the differential equations are considered in

the frequency-domain; hence, the references to (2) and (3) implic-

itly include replacement of t (time index) with ω (frequency in-

dex). 

Theorem 1. Let { ̂  y n (ω) } n and { λn } n be the eigenfunctions and eigen-

values of the problem (2) , respectively, with the boundary conditions

at 0 ≤ω l < ω u similar to (3) , where 

p(ω) = 

k ∑ 

i =0 

a i ω 

i , q (ω) = 

k −2 ∑ 

i =0 

b i ω 

i , s (ω) ≡ 1 (8)

such that k ≥ 4, a i , b i ≥ 0, a k , a k −1 � = 0 and 

b k −2 

a k 
> 

(
k − 1 

2 

)
2 , (9)

b k −3 

a k −1 

+ 

b k −2 

a k 
< 

(
k − 1 

2 

)
2 + 

k 2 − 4 k + 3 

4 

. (10)

Then, 

1. { ̂  y n } n are pairwise orthogonal over [ ω l , ω u ], 

2. ω 

k −1 
2 ˆ y n (ω) and ω 

k +1 
2 ˙ ˆ y n (ω) are bounded, 

3. { ̂  y n } n have finite energy, 

4. There exist { ̄θn } n and a constant c such that for all n and m 

(λn − λm 

) 

∫ ∞ 

ω u 

ˆ y n (ω) ̂  y m 

(ω)d ω = cM ˆ y n M ˆ y m sin 

(
θ̄n − θ̄m 

)
, (11)

where 

M ˆ y n = lim sup 

ω→∞ 

ω 

k −1 
2 ˆ y n (ω) . (12)

To facilitate reading of the paper, the proof of Theorem 1 is

postponed to Appendix A . 

Claim 4 of Theorem 1 focuses on the inner product of the

eigenfunctions. The ideal result would be to demonstrate orthogo-

nality. Instead, the weaker result of (11) can be applied to demon-

strate almost orthogonality. Due to the structure (3) of boundary

conditions, any multiple of an eigenfunction is again an eigenfunc-

tion. Thus, their inner products are meaningful only when normal-

ized. The quantity ∫ ∞ 

ω u 
ˆ y n (ω) ̂  y m 

(ω)d ω 

M ˆ y n M ˆ y m 

shows one possible choice. This suggests that by decreasing

sin ( ̄θn − θ̄m 

) we can decrease the normalized inner products. 

Definition 1. The set of functions { ̂  y n (ω) } n is called almost or-

thogonal if for any positive integer N and any ε > 0, one can choose
 subset ˆ y i 1 , . . . , ̂  y i N (ω) such that 

 1 ≤ j, k ≤ N, j � = k, 

∣∣∣∣∣
∫ 

ˆ y i j (ω) ̂  y i k (ω)d ω 

M ˆ y i j 
M ˆ y i k 

∣∣∣∣∣ ≤ ε. (13)

We show that the set of eigenfunctions introduced in

heorem 1 is almost orthogonal. Since λi → ∞ , it is possible to find

 subset S = { s 1 , s 2 , . . . } ⊂ N 

+ such that for all s j � = s k we have that

 λs k 
− λs j | ≥ c, where c is the same constant as in (11) . Now, for

iven N ∈ N 

+ and ε > 0, let d be the least integer greater than 

2 π
ε

nd define S̄ = { s 1 , . . . , s d(N−1)+1 } . Consider the partitioning of the

nterval [0, 2 π ) into d subintervals of length 

2 π
d 

(bins). Accord-

ng to the Pigeonhole principle, any set of d(N − 1) + 1 numbers

n the range [0, 2 π ) consists of an N -element subset all located in

he same bin. Thus, there exist i 1 , . . . , i N ∈ S̄ such that θ̄i 1 
, . . . , θ̄i N 

re all in the same bin. Hence, for j � = k in { 1 , . . . , N} , by applying

11) we conclude that ∫ ∞ 

ω u 
ˆ y i j (ω) ̂  y i k (ω)d ω 

M ˆ y i j 
M ˆ y i k 

∣∣∣∣∣ = 

∣∣∣ c 

λi j − λi k 

∣∣∣ | sin 

(
θ̄i j − θ̄i k 

)| 
≤ | sin 

(
θ̄i j − θ̄i k 

)| ≤ sin 

(2 π

d 

)
< 

2 π

d 
≤ ε. 

(14)

his establishes the existence of a suitable subset of eigenfunctions

uch as { ̂  y i k (ω) } N 
k =1 

that are pairwise orthogonal over [ ω l , ω u ] and

lmost orthogonal over [ ω u , ∞ ). It is worth mentioning that in all

f our simulations we observe that M ˆ y n 
= 0 , which in turn indi-

ates that ˆ y n s are exactly orthogonal (rather than almost orthogo-

al) up to the numerical precision. This leads us to the following

onjecture. 

onjecture 1. If { ̂  y n } n denote the eigenfunctions of the Sturm–

iouville problem specified in Theorem 1 , for positive integers n � = m

e have that 
 ∞ 

ω u 

ˆ y n (ω) ̂  y m 

(ω)d ω = 0 . 

.2. Boundary conditions 

As argued in Section 3 , due to non-ideality of analog filters, it

s preferable to decrease the energy in the transition bands of the

lters. To this end, we tune ω l and ω u of Theorem 1 to match the

ransition bands of filters and anchor them to zero. That is, we set

he boundary conditions in the form of 

ˆ 
 n (ω l ) = 

ˆ y n (ω u ) = 0 , (15)

here ω l and ω u depend on the spectrum requirements. Note that

15) is a special case of (3) obtained for c 1 = c 3 = 1 and c 2 = c 4 =
 . For the FCC mask of Fig. 1 , we choose 

ω l 
2 π = 3.1 GHz and 

ω u 
2 π =

0.6 GHz which are the main discontinuities of the spectrum. We

mplicitly assume that the band [0, ω l ] will be eventually discarded

y means of filtering. The key message is that tunability of ω l and

 u allows for adaptation of the differential equations to the spec-

rum requirements. 

.3. Mixing technique 

By properly attenuating the eigenfunctions we obtain a set of

egitimate waveforms. However, the utilization efficiency of the

ulses might not be satisfactory. Here, we aim at enhancing the

tilization efficiency by mixing various eigenfunctions. 

Assume ˆ y n (ω) and ˆ y m 

(ω) are two scaled eigenfunctions that

atisfy the mask requirement. It is not hard to check that all func-

ions of the form μ ˆ y n (ω) + j ρ ˆ y m 

(ω) , where μ and ρ are real con-

tants, satisfy the same boundary conditions as ˆ y n (ω) and ˆ y m 

(ω) .
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o  
he benefit of mixing is that the modulus of the mixture depends

n the modulus of both ˆ y n and ˆ y m 

. We can take advantage of this

act by compensating the modulus of ˆ y n with that of the ˆ y m 

in re-

ions where ˆ y n lies far below the mask threshold, and vice versa.

n other words, by properly mixing the two eigenfunctions, we can

ake the spectrum flatter in the constant regions of the mask,

hich ultimately increases the utilization efficiency. 

To introduce the mixing technique more formally, let { ̂  y n i } 2 N i =1 
e a subset of eigenfunctions for which the pairwise normalized

nner products are small (in the sense of (13) ). For arbitrary real

umbers { μi , ρ i } define 

ˆ 
 i (ω) = 

(
μi ̂  y n 2 i −1 

(| ω| ) + j ρi sgn (ω ) ̂  y n 2 i (| ω | ) )u ( | ω| − ω l ) , (16) 

here sgn( · ) and u ( · ) are the sign and Heaviside step functions,

espectively. Due to the conjugate symmetry of { ̂  Y i (ω) } N 
i =1 

, their

epresentation { Y i (t) } N 
i =1 

in time are real-valued. Furthermore, they

re almost orthogonal as follows: 
 ∞ 

−∞ 

Y n (t) Y m 

(t) = 

∫ ∞ 

−∞ 

ˆ Y n (ω) ̂  Y ∗m 

(ω)d ω 

= 2 μn μm 

∫ ∞ 

ω l 

ˆ y i 2 n −1 
(ω) ̂  y i 2 m −1 

(ω))d ω 

+ 2 ρn ρm 

∫ ∞ 

ω l 

ˆ y i 2 n (ω) ̂  y i 2 m (ω))d ω. (17) 

ince the pairs ( ̂  y i 2 n −1 
, ˆ y i 2 m −1 

) and ( ̂  y i 2 n , ˆ y i 2 m ) are almost orthogo-

al, the normalized inner products of { Y i (t) } N 
i =1 

can be made arbi-

rarily small. A similar argument is also valid for the decay rate

nd the finite energy of { ̂  Y i (ω) } N 
i =1 

. In summary, by introducing

he scalars { μi , ρ i } as in (16) , the already established properties

f the waveforms stay valid while we can enhance the utilization

fficiency. 

.4. Pulses in the time-domain 

Up to this point, we have characterized the pulses in the Fourier

omain by using differential equations. This is mainly motivated by

he requirements imposed on the spectrum of the pulses. In prac-

ice, however, we need their representation in time domain. The

nteresting point which we will show is that the introduced pulses

dmit differential equations even in time domain. This property

elps in implementing such pulses. 

The following properties of Fourier transform are essential in

ur arguments: 

F 

−1 
ω 

{ 

ω 

m ˆ f (ω) 
} 

(t) = (2 π j) −m f (m ) (t) , 

 

−1 
ω 

{ 

d 

m 

d ω 

m 

ˆ f (ω) 
} 

(t) = 

(
2 πt 

j 

)
m f (t) , (18) 

here F 

−1 
ω {·} (t) stands for the inverse Fourier operator with re-

pect to ω at point t . For the eigenfunctions we have that 

 

−1 
ω 

{ 

d 

d ω 

[
p(ω) ̇ ˆ y n (ω) 

]} 

(t) = 

2 πt 

j 

k ∑ 

i =0 

a i F 

−1 
ω 

{ 

ω 

i ˙ ˆ y n (ω) 
} 

(t) 

= −(2 π) 2 t 
k ∑ 

i =0 

a i 
(2 π j) i 

(
ty (i ) 

n (t) + iy (i −1) 
n (t) 

)
. (19) 

imilarly, 

 

−1 
ω { (q (ω) + λn ) ̂  y n (ω) } (t) = 

k −2 ∑ 

i =0 

˜ b i 
(2 π j) i 

y (i ) 
n (t) , (20) 

here ˜ b 0 = b 0 + λn and 

˜ b i = b i for 0 < i ≤ k − 2 . The differential

quation (2) in frequency domain translates into 
k −2 ∑ 

i =0 

(2 π) 2 a i t 
2 − 2 π j(i + 1) a i +1 t − ˜ b i 

(2 π j) i 
y (i ) 

n (t) 

+ 

(2 π) 2 t 2 a k −1 − 2 π j ka k t 

(2 π j) k −1 
y (k −1) 

n (t) + 

2 π2 a k t 
2 

(2 π j) k 
y (k ) 

n (t) = 0 (21) 

n time domain. This shows a k th order differential equation for

 n ( t ). The simplest case which fits in conditions of Theorem 1 is

 = 4 . For this case we have that 

˜ 
 4 y 

(4) 
n (t) + 

j ̃  a 3 t + 4 ̃

 a 4 
t 

y (3) 
n (t ) − ˜ a 2 t 

2 − 3j ̃  a 3 t − ˜ b 2 
t 2 

y (2) 
n (t ) 

− j ̃  a 1 t 
2 + 2 ̃

 a 2 t − j ̃ b 1 
t 2 

y (1) 
n (t ) + 

˜ a 0 t 
2 − j ̃  a 1 t − ˜ b 0 

t 2 
y n (t ) = 0 (22) 

here ˜ a i = 

a i 
(2 π) i 

and 

˜ b i = 

b̄ i 
(2 π) i +2 . Since the function y n ( t ) is

omplex-valued, we can assume y n (t) = r n (t) + j q n (t) , where r n ,

 n are real-valued functions. Fig. 2 depicts a block diagram for

he circuit implementation of the functions r n , q n for the case of

 = 4 . 

. Simulation results 

We study an example to show the efficiency of the proposed

ethod. Let us consider the Sturm–Liouville boundary value prob-

em formed by 

p(ω) = ω 

4 + ω 

3 + 10 

5 , q (ω) = 2 . 6 ω 

2 , s (ω) = 1 . (23) 

his example is used as a proof of concept and does not reflect

n optimized set of functions p and q . However, one can check

hat, the functions in (23) satisfy the requirements of Theorem 1 .

e obtain the eigenfunctions by using a MATLAB toolbox called

ATSLICE [17] . The toolbox provides us with the eigenvalues

 λn } n , eigenfunctions { ̂  y n (ω) } n and their derivatives { ̇ ˆ y n (ω) } n be-

ween the boundary points. For a given n , by having λn and

ˆ  n (ω) } n , ˙ ˆ y n (ω) at a particular ω, we can convert the boundary

alue problem to an ODE, and extend the evaluation of ˆ y n (ω) to

he whole real axis. 

In this example, we evaluate the first 10 eigenfunctions on

he interval ω 
2 π ∈ [3 . 1 GHz , 1 THz ] . Next, we divide the eigen-

unctions into pairs and use the mixing technique introduced in

ection 4.3 to combine the two elements of each pair. The weights

f the combinations are chosen optimally to maximize the spec-

ral utilization efficiency of the final waveform over the range

3.1 GHz, 18 GHz]. We measure the utilization efficiency in terms

f NESP [13] . As defined in (1) , NESP is the ratio of the power

ransmitted in the designated passband over the total permissible

ower. An exhaustive search over all partitions of the 10 eigenfunc-

ions into pairs reveals that, the best 4 waveforms are obtained

y the pairs (1,2), (3,6), (4,8), and (5,10) (the fifth pair is ignored

ere). In addition to mixing, we attenuate the spectrum of the fi-

al pulse by a scalar in each of the intervals [3.1 GHz, 10.6 GHz] and

10.6 GHz, ∞ ) to make sure that they satisfy the FCC mask require-

ents. 

In Figs. 3 and 4 , we depict the spectrum of the obtained pulses.

he shape of the pulses in time are also plotted in Figs. 5 and 6 .

f we base the spectral utilization efficiency of the pulses on the

nterval [3.1 GHz, 18 GHz], then, the NESP values would be 67.36%,

4.16%, 63.75% and 63.63%, respectively. However, based on the to-

al available spectrum [0 GHz, 18 GHz], the NESP values would drop

o 58.87%, 56.07%, 55.71% and 55.61%, respectively. This is due to

he fact that the range [0 GHz, 3.1 GHz] is discarded in designing

he pulses. 

The pairwise orthogonality is one of the requirements for the

et of pulses. Although our results in this paper can guarantee

nly almost orthogonality of a properly selected set of pulses, we
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Fig. 2. The analog linear time-varying circuit producing designed pulses. 

Fig. 3. FCC mask and the spectrum of the pulses obtained by optimally applying the mixing technique on eigenfunction pairs (1,2) as Pulse 1 and (3,6) as Pulse 2. 

 

 

 

 

w  

d  

w  

i  

i

 

n  

t  
observe that all the eigenfunctions of the Sturm–Liouville prob-

lem are orthogonal. To investigate this property for the generated

pulses { y i } 4 i =1 
(after mixing), we consider the angles between the

waveforms defined by 

� i, j = cos −1 

(∫ 
R 

y i (t) y j (t)d t 

‖ y i ‖ 2 · ‖ y j ‖ 2 

)
, (24)
here ‖ · ‖ 2 represents the L 2 norm of the function. Table 1

emonstrates the values of the pairwise angles very close to 90 °,
hich reflects orthogonality. The small deviation from orthogonal-

ty is caused by truncation of the spectrum and numerical round-

ng involved in derivations. 

The orthogonality of pulses is most effective in fully synchro-

ized communications. In practice, however, exact synchroniza-

ion is rarely achieved. Oftentimes, the data is extracted by de-
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Fig. 4. FCC mask and the spectrum of the pulses obtained by optimally applying the mixing technique on eigenfunction pairs (4,8) as Pulse 3 and (5,10) as Pulse 4. 

Fig. 5. Time-domain representation of pulses obtained by optimally applying the mixing technique on eigenfunction pairs (1,2) as Pulse 1 and (3,6) as Pulse 2. 

Table 1 

The angles between the pulses. 

� i,j y 1 y 2 y 3 y 4 

y 1 0 ° 90.64 ° 90.49 ° 90.39 °
y 2 90.64 ° 0 ° 90.36 ° 90.31 °
y 3 90.49 ° 90.36 ° 0 ° 90.27 °
y 4 90.39 ° 90.31 ° 90.27 ° 0 °
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o  
ecting the peaks of the correlation of the received signal with

nown pulses. Thus, it is desirable that the pulses have sharp auto-

orrelation peaks and the cross-correlations be relatively small to

hese peaks. In Figs. 7 and 8 we depict the correlation curves for

 1 and y 4 , respectively. 

. Comparison with other approaches 

There have been several optimal and sub-optimal waveform

esign methods for UWB communications in literature based on
ifferent approaches, such as multiband modulations, Gaussian

erivatives, cognitive techniques, QR decomposition, differential

quations and orthogonal functions. Here, a comparison between

he method proposed in this paper and some other new techniques

re presented. 

In reference [18] and similar papers, a method for the design

f nonlinear phase, full-band, UWB pulses that can satisfy a spec-

fied power spectrum mask has been introduced. These methods

se convex programming in each step of the iterative procedure

hat updates the phase distribution of the goal function. These ap-

roaches are based on an optimization procedure that iteratively

earches for the best solution and no direct solution to the prob-

em is derived. Our method based on Sturm–Liouville boundary

alue problem, benefits from direct solution, less complexity and

ess computational cost. 

In some other techniques, a particular mathematical functions

uch as Gaussian wave shape and its derivatives [19] or modified

ermite pulses [20] are used to design a set of optimal orthog-

nal waveforms. The waveform design is then converted into a
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Fig. 6. Time-domain representation of pulses obtained by optimally applying the mixing technique on eigenfunction pairs (4,8) as Pulse 3 and (5,10) as Pulse 4. 

Fig. 7. The auto-correlation (AC) and cross-correlation (CC) of the pulse obtained from the eigenfunction pair (1,2) with the rest of the pulses. 
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linear programming problem to be solved. Although the pulses can

be designed to be orthogonal, however, this property is limited to

the orthogonality of even and odd ordered pulses on each other.

The orthogonality of our proposed pulses is an inherent property

of the generated wave shapes and is followed from the mathemat-

ical solution of the governing differential equations. 

Another popular pulse shaping technique uses cognitive meth-

ods with physical-layer quality of service constraints. These

methods try to achieve an acceptable compromise between the

spectral emission, data rate and synchronization errors robustness.

As an example of such methods, in reference [21] a modified

version of the Parks–McClellan technique has been proposed to

fulfill these requirements. However, the rate and synchronization

constraints, which bound the optimization space, cannot be easily

handled and the resulting formulation cannot be reshaped as

a convex or a linear programming. Moreover, the pulses gener-

ated lack the orthogonality properties which is a very important
dvantage of the proposed pulses using Sturm–Liouville boundary

alue problem. The piecewise spectral efficiency of this method

s between 20% and 30%. It also needs about 6 iterations and 32

uantization levels to generate the pulses. 

In a different approach [14] , pulses are built as linear combi-

ations of known mathematical functions such as Hermite polyno-

ials. Restrictions of orthogonality and spectral efficiency are then

sed to construct a search procedure to find the best set of wave-

orms. In contrast to our method, these techniques require com-

rehensive calculations and suffer from lower spectrum utilization

fficiency between 20% and 30%. 

In a new method presented in [22,23] UWB waveform division

ultiple access (WDMA) systems employ combinations of orthog-

nal wavelet pulses. Afterwards, the weighting coefficients are op-

imized by an iterative interference alignment approach based on

aximum signal to interference plus noise ratio (Max-SINR) crite-

ion. Compared to our approach, this method suffers from a low
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Fig. 8. The auto-correlation (AC) and cross-correlation (CC) of the pulse obtained from the eigenfunction pair (5,10) with the rest of the pulses. 

Table 2 

Comparison between different approaches of orthogonal UWB pulse generation. 

Method of generation Spectrum efficiency Computational complexity Orthogonality of pulses 

Iterative search [18] Decreases rapidly with increase 

of waveform index; e.g., 40% 

drops to 2% when the index 

changes from 6 to 10. 

Needs up to 10 iterations with 

a sequence length of 11–31. 

Orthogonal with suboptimal 

sample rate 

Using Gaussian [19] or 

Hermite [20] pulses 

30%–40% when only a part of 

the spectrum is considered. 

Cannot cover the whole UWB 

frequency range. 

Requires 14 Gaussian pulses 

[19] or is limited to 1 GHz 

range [20] . 

Orthogonal only for even order 

derivatives 

Cognitive techniques 

[21] 

Piecewise spectral efficiency 

between 20%–30% 

6 iterations and 32 

quantization levels 

Orthogonality is not 

considered. 

Combination of 

Hermites [14] 

20%–30% Requires search and 

optimization. 

Time domain orthogonal 

WDMA and Max-SINR 

[22,23] 

≈ 10% Efficiency is not a design 

parameter 

Needs at least 10 iterations. Orthogonal in synchronous 

systems 

QR decomposition [24] 17%–40% Requires recursive calculations 

and matrix inversion. 

Time domain orthogonal with 

power reduction 

Convex optimization 

[25] 

Below 50% for pulse index > 10 Requires iterative calculations 

and filters of order 60. 

Time domain orthogonal 

Proposed 

Sturm–Liouville 

boundary value 

problem 

50%–67% Direct frequency or time 

domain realization 

Orthogonality in time and 

frequency (before truncation) 
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a  
pectral efficiency of about 10% and the need for iterative calcu-

ations. Moreover, its orthogonality is limited to synchronous sys-

ems. 

In [24] the design of multiple orthogonal wave shapes for

mpulse radio UWB (IR-UWB) has been investigated under the

onstraints of the FCC regulations. In this technique multiple

rthogonal pulses are generated by applying the Gram-Schmidt

olynomial and the orthogonalization via QR decomposition. The

ain drawback of this method is its low spectrum efficiency of

elow 40% and the need for higher order filters. 

The proposed design in [25] is an extension of the iterative con-

trained elliptic error minimization for a single pulse to the case of

ultiple orthogonal pulses by incorporating the orthogonality con-

itions. Iterative calculations and higher pulse index are the main

rawback of this method. Filters of order 60 are needed for the

mplementation of this method. 
c
A comparison between the above mentioned methods and

he proposed technique based on Sturm–Liouville boundary value

roblem is summarized in Table 2 . 

. Conclusion 

In this paper, we investigated the design of orthogonal UWB

ulses using Sturm–Liouville theory. The design is mainly in the

requency domain, however, due to the structure of the considered

ifferential equations, the time domain implementation is realiz-

ble. The introduced waveforms have two tunable notch frequen-

ies in their spectrum which allow us to adapt them to various

equirements. In addition, they are pairwise orthogonal in two fre-

uency intervals. It is also shown that the utilization efficiency of

ll the pulses are almost the same (55%), which makes them fair

hoices for transmission pulses in multi-user systems. 
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Appendix A. Proof of Theorem 1 

Claim 1 is readily available by referring to the known results

of Sturm–Liouville theory explained in Section 2.2 . Since s ( ω) ≡ 1,

there is no need for a weight functional and the eigenfunctions are

orthogonal in the conventional sense. 

The concept of Lyapunov stability is a common approach in

analyzing the asymptotic behavior of the solutions of differential

equations. It consists of forming a potential function in terms of a

solution and its derivatives that asymptotically converges. The con-

vergence of the potential function usually characterizes the asymp-

totic behavior of the solution. We will use the same technique to

prove the claims of Theorem 1 . 

For introducing a suitable potential function, we consider the

auxiliary function z n (ω) = ˆ y n (ω) ω 

k −1 
2 instead of ˆ y n (·) . This is mo-

tivated by the fact that claim 2 of Theorem 1 is equivalent to

lim ω→∞ 

z n (ω) = 0 . Our next step is to represent z n ( · ) as a solu-

tion of a differential equation achieved by ⎧ ⎨ 

⎩ 

ˆ y n (ω) = ω 

− k −1 
2 z n (ω) , 

˙ ˆ y n (ω) = ω 

− k +1 
2 

(
1 −k 

2 
z n (ω) + ω ̇

 z n (ω) 
)
, 

¨̂
 y n (ω) = ω 

− k +3 
2 

(
k 2 −1 

4 
z n (ω) − (k − 1) ω ̇

 z n (ω) + ω 

2 z̈ n (ω) 
)
. 

(A.1)

Thus, z n ( · ) satisfies 

z̈ n (ω) + α(ω ) ̇ z (ω ) + βn (ω) z n (ω) = 0 , (A.2)

where ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

α(ω) = 

˙ p (ω) 
p(ω) 

− k −1 
ω = 

∑ k 
i =0 (i +1 −k ) a i ω 

i ∑ k 
i =0 a i ω 

i +1 
, 

βn (ω) = 

(k 2 −1) p(ω) −2(k −1) ω ̇ p (ω)+4 ω 2 (q (ω)+ λn ) 
4 ω 2 p(ω) 

= 

γn (ω)+ ∑ k 
i =2 (4 b i −2 −(k −1)(2 i −k −1) a i ) ω 

i 

4 
∑ k 

i =0 a i ω 
i +2 

, 

γn (ω) = (k 2 − 1) a 0 + (k − 1) 2 a 1 ω + 4 λn ω 

2 . 

(A.3)

We need to study the asymptotics of α( · ) and β( · ) which play

significant roles in the asymptotics of z n ( · ). Due to admitting a ra-

tional representation as in (A.3) , the asymptotic behavior of each

function is governed by the leading terms of the associated nu-

merator and denominator. That means α(ω) ≈ 1 
ω and β(ω) ≈ β∞ 

ω 2 
,

where ≈ stands for the asymptotic equivalence and 

β∞ 

= lim 

ω→∞ 

ω 

2 βn (ω) = 

1 

4 

(
b k −2 

a k 
−

(
k − 1 

2 

)
2 
)

> 0 . (A.4)

The positive sign of β∞ 

is a consequence of condition (9) in

Theorem 1 . An interesting observation is that, due to the condi-

tion k ≥ 4 > 2, the asymptotics of α( · ) and β( · ) are independent of

λn and therefore, n . 

Next, we introduce the Lyapanov potential function as 

 n (ω) = 

˙ z 2 n (ω) 

βn (ω) 
+ z 2 n (ω) . (A.5)

Lemma 1. The function V n ( ω) converges to a finite value as ω → ∞ . 

The proof of Lemma 1 is provided in Appendix B . The key idea

in the proof is that V n ( · ) is positive and non-increasing for large

enough values of ω. 
Although Lemma 1 can be used to obtain bounds on the de-

ay rates of z n and ˙ z n , the results would depend on βn which

as a rather complicated form. Instead, we use Lemma 2 proved

n Appendix C to simplify the analysis. 

emma 2. The function 

˜ 
 n (ω) = ω 

2 ˙ z 2 n (ω) + β∞ 

z 2 n (ω) (A.6)

s convergent as ω → ∞ . 

Lemma 2 reveals that z n ( ω ) and ω ̇ z n (ω ) are bounded for large

alues of ω. Through (A.1) it is possible to interpret them as

oundedness of ω 

k −1 
2 ˆ y n (ω) and ω 

k +1 
2 ˙ ˆ y n (ω) , which proves claim 2

f Theorem 1 . 

We conclude Claim 3 from Claim 2. The boundedness of

 

k −1 
2 ˆ y n (ω) for k ≥ 4 and the fact that ˆ y n (ω) is continuous, indicate

hat ˆ y n (ω) can be absolutely upperbounded by M × max (1, ω 

1.5 ),

here M is a large enough scalar. The finite energy of the latter

unction is an upperbound for the energy of ˆ y n . 

For the last claim we start by defining 

n (ω) = tan 

−1 ω ̇

 z n (ω) √ 

β∞ 

z n (ω) 
, (A.7)

hich yields 

 ̇

 z n (ω) = 

√ 

˜ V n (ω) sin 

(
θn (ω) 

)
, 

z n (ω) = 

√ 

˜ V n (ω) 

β∞ 

cos 
(
θn (ω) 

)
. (A.8)

ote that { θn } n are functions while for Claim 4 we need scalars

 ̄θn } n . We proceed by rewriting (5) as 

(λn − λm 

) 

∫ ∞ 

ω u 

ˆ y n (ω) ̂  y m 

(ω)d ω 

= p(ω) 
(

˙ ˆ y n (ω) ̂  y m 

(ω) − ˙ ˆ y m 

(ω) ̂  y n (ω) 
)∣∣∣

∞ 

= 

p(ω) 

ω 

k 

(
ω ̇

 z n (ω) z m 

(ω) − ω ̇

 z m 

(ω) z n (ω) 
)∣∣∣

∞ 

= a k 

√ 

˜ V n (∞ ) ̃  V m 

(∞ ) 

β∞ 

sin 

(
θn (ω) − θm 

(ω) 
)∣∣∣

∞ 

, (A.9)

here ˜ V n (∞ ) represents lim ω→∞ 

˜ V n (ω) . Eq. (A.9) relates the inner

roduct of eigenfunctions to the asymptotic behavior of θn s. Simi-

ar to the argument that ˆ y n s have finite energy, we can use the de-

ay bounds to show that their inner products are also finite. This

mplies that for all n and m , we should have that 

n,m 

= lim 

ω→∞ 

θn (ω) − θm 

(ω) , (A.10)

here { θn,m 

} are scalars; i.e., the difference of θn s is asymptotically

onvergent. We define the claimed scalars { ̄θn } as 

¯
n = θn, 1 . (A.11)

t is now easy to rewrite (A.9) in the form of 

(λn − λm 

) 

∫ ∞ 

ω u 

ˆ y n (ω) ̂  y m 

(ω)d ω 

= a k 

√ 

β∞ 

√ 

˜ V n (∞ ) 

β∞ 

√ 

˜ V m 

(∞ ) 

β∞ 

sin 

(
θ̄n − θ̄m 

)
. (A.12)

To complete the proof, we establish a connection between M ˆ y n 

nd 

˜ V n (∞ ) . By recalling the definition of z n we have 

 ˆ y n = lim sup 

ω→∞ 

ω 

k −1 
2 ˆ y n (ω) = lim sup 

ω→∞ 

z n (ω) 

= 

√ 

˜ V n (∞ ) 

β∞ 

lim sup 

ω→∞ 

cos 
(
θn (ω) 

)
. (A.13)
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ur goal is to show that 

 ˆ y n = 

√ 

˜ V n (∞ ) 

β∞ 

(A.14) 

hich justifies Claim 4. We consider two cases. 

1. ˜ V n (∞ ) = 0 . This results in 

M ˆ y n = 

√ 

˜ V n (∞ ) 

β∞ ︸ ︷︷ ︸ 
0 

lim sup 

ω→∞ 

cos 
(
θn (ω) 

)
︸ ︷︷ ︸ 

≤1 

= 0 = 

√ 

˜ V n (∞ ) 

β∞ 

. (A.15) 

2. ˜ V n (∞ ) > 0 . Let �n = lim sup ω→∞ 

cos 
(
θn (ω) 

)
. In case of �n = 1

we again obtain the desired result of (A.14) . Hence, we focus on

�n < 1. In this case we have that �n < 

1+�n 
2 < 1 and 0 < δn =

1 −�n 
2(1+�n ) 

. Thus, for large enough ω values we shall have that 

{
˜ V n (ω) ≤ (1 + δn ) ̃  V n (∞ ) 

cos 2 
(
θn (ω) 

)
≤ 1+�n 

2 

⇒ β∞ 

z 2 n (ω) ≤
(

3 + �n 

4 

)
˜ V n (∞ ) . (A.16) 

By applying the definition of ˜ V n in (A.6) , the above upperbound

on z 2 n (ω) yields 

ω 

2 ˙ z 2 n (ω) ≥ ˜ V n (ω) −
(

3 + �n 

4 

)
˜ V n (∞ ) 

≥
(

1 − �n 

4 

)
˜ V n (∞ ) = κ2 

n , (A.17) 

where κn is strictly positive. For large ωs, this suggests that

either ˙ z n (ω) ≥ κn 
ω , or ˙ z n (ω) ≤ − κn 

ω . In both cases z n cannot

be bounded which is a contradiction. Therefore, �n = 1 and

(A.14) is valid. 

ppendix B. Proof of Lemma 1 

We showed in (A.4) that ω 

2 βn ( ω) converges to a positive value.

his confirms that βn ( ω) is positive for large enough values of ω.

onsequently, the potential function V n ( ω) defined in (A.5) is also

on-negative for large values of ω. We further compute that 

˙ 
 n (ω) = −

˙ βn (ω) 

β2 
n (ω) 

˙ z 2 n (ω) + 

2 ̇

 z n (ω) 

βn (ω) 

(
z̈ n (ω) + βn (ω) z n (ω) ︸ ︷︷ ︸ 

−α(ω) ̇ z n (ω) 

)

= −
(

˙ βn (ω) 

βn (ω) 
+ 2 α(ω) ︸ ︷︷ ︸ 

ν(ω) 

)
˙ z 2 n (ω) 

βn (ω) 
. (B.1) 

n Lemma 3 we prove that ν( ω) is positive for large enough val-

es of ω. Hence, we conclude that ˙ V n (ω) ≤ 0 ; i.e., V n ( ω) is asymp-

otically both non-negative and non-increasing. This implies that

 n ( ω) is convergent. �

emma 3. For large enough values of ω, we have that 

 < 

˙ βn (ω) 

βn (ω) 
+ 2 α(ω) . (B.2) 

Proof . We show that the function 

n (ω) = 

βn (ω ) p 2 (ω ) 

ω 

2 k −2 
(B.3) 
s asymptotically increasing. Recalling the definition of βn ( ω) from

A.3) , we can rewrite θn ( ω) as 

n (ω) = 

(k 2 − 1) p 2 (ω) − 2(k − 1) ˙ p (ω) p(ω) 

4 ω 

2 k 

+ 

4(q + λn ) p(ω) 

4 ω 

2 k −2 
= 

2 k ∑ 

i =0 

τi ω 

−i , (B.4) 

here the first two coefficients are given by 
 

 

 

 

 

 

 

τ0 = a 2 
k 

(
b k −2 

a k 
−

(
k −1 

2 

)
2 

)
> 0 , 

τ1 = a k a k −1 

(
b k −2 

a k 
+ 

b k −3 

a k −1 
− k 2 −3 k +2 

2 

)
< 0 . 

(B.5) 

he inequalities are due to the conditions (9) and (10) . Since

0 > 0, θn ( ω) converges to a positive value asymptotically, while

1 < 0 indicates that the convergence is from below. In other

ords, θn ( ω) and similarly, ln θn ( ω), are asymptotically strictly in-

reasing. Thus, for large values of ω we have that 

 < 

∂ 

∂ω 

ln θn (ω) = 

˙ βn (ω) 

βn (ω) 
+ 2 

(
˙ p n (ω) 

p n (ω) 
− k − 1 

ω 

)

= 

˙ βn (ω) 

βn (ω) 
+ 2 α(ω) , (B.6) 

hich proves the lemma. �

ppendix C. Proof of Lemma 2 

In fact, ˜ V n (ω) is asymptotically similar to V n ( ω), though it is not

ecessarily non-increasing: 

˜ 
 n (ω) = β∞ 

V n (ω) + 

(
1 − β∞ 

ω 

2 βn (ω) 

)
ω 

2 βn (ω) 
˙ z 2 n (ω) 

βn (ω) 
. (C.1) 

ccording to Lemma 1 , V n ( ω) is convergent. Hence, recalling (A.5) ,

e see that 
˙ z 2 n (ω) 
βn (ω) 

is bounded as ω → ∞ . Furthermore, 

lim 

ω→∞ 

ω 

2 βn (ω) = β∞ 

, 

lim 

ω→∞ 

1 − β∞ 

ω 

2 βn (ω) 
= 1 − β∞ 

β∞ 

= 0 . (C.2) 

n summary, we conclude that 

lim →∞ 

(
1 − β∞ 

ω 

2 βn (ω) 

)
︸ ︷︷ ︸ 

→ 0 

ω 

2 βn (ω) ︸ ︷︷ ︸ 
→ β∞ 

˙ z 2 n (ω) 

βn (ω) ︸ ︷︷ ︸ 
bounded 

= 0 , (C.3) 

lim →∞ 

˜ V n (ω) = β∞ 

lim 

ω→∞ 

V n (ω) < ∞ . (C.4) 
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