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PREFACE

"Time flies when you are having fun", is what people usually say. This applies also
to the four years of my PhD research project. It was an enjoyable time with numer-
ous scientific and personal challenges. Since I am close to finish my PhD-project
now, it is a good moment to look back. Let’s go back ten years in time!

It was 28 January 1999 when I graduated as "natuurkundig ingenieur" at the
University of Groningen. For several personal reasons I decided to search for a job
as applied scientist at a research institute, instead of finding a PhD position at a
university. Within a few months I found a job as "wetenschappelijk medewerker"
at TNO (Netherlands Organisation for Applied Scientific Research) in The Hague,
and I started to do contract research in the field of (electro)magnetics, mainly re-
lated to Defence Research. During my TNO-years, I learned a lot from my close col-
leagues, who made TNO a valuable work experience for me (in particular thanks to
Frank, Rik, Arnold, Guus and Eugène: I enjoyed a lot working with you for almost
seven years). In 2005, after the second reorganization that had hit me personally,
I started to feel more and more uncomfortable at TNO. For this reason, I forced
myself to think deeply and concretely about what I really wanted in my life. Af-
ter a thorough orientation during my summer holidays of 2005, I decided to find a
challenging PhD-position in nano-electronics. It felt like making an old wish come
true!

The Kavli Institute of NanoScience of the Delft University of Technology at-
tracted me the most, so I decided to write an application letter to the group "Molec-
ular Electronics and Devices" (MED), led by Herre van der Zant, Alberto Morpurgo
and Peter Hadley. After sending this letter, things started to accelerate. First I met
Herre and Alberto to talk about my motivation to start a PhD in nano-electronics
(on my 30th age!). Within a few days, Alberto offered me a PhD-position on "Quan-
tum transport in graphene". He told me that graphene was just discovered and that
he wanted to start working on it as soon as possible. I immediately decided to do it,
because after reading the key-papers of that time I realized that graphene is a fasci-
nating material. I left my permanent position at TNO in The Hague and started on
1 February 2006 as a "PhD-student" in Delft. Alberto, in the first place I am grateful
to you for giving me the opportunity to work with you on graphene. I experience
you as a hard-working and determined scientist. I am impressed of your scientific
knowledge and the numerous creative scientific ideas you often have. Thanks for
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viii PREFACE

being my promoter and daily supervisor. Alberto, I wish you the luck and happi-
ness in Geneva that you deserve. In the second place, I would like to thank Huub
Salemink for being my promoter in Delft. In the first two years we hardly had any
contact, but since I decided to continue my PhD in Alberto’s new group in Geneva,
you showed that you felt responsible for me and we had good contact on a more
regular basis (thanks Huub).

During my first weeks in Delft, Peter Hadley took care of me and introduced me
very well within the university (Peter, thanks for this). When I started, there was
almost no time to refresh my mind in the field of condensed matter physics and
mesoscopic physics, because the "graphene-team", which I had joined, needed
to score scientifically as quickly as possible. Therefore, I experienced my start in
Delft as jumping on a very fast train. The graphene-team was successful, because
after six months we could submit our first paper to Nature. I would like to thank
the graphene-team (Lieven, Pablo and Hubert of QT and Alberto of MED) for the
discussions at the weekly graphene-meetings during which I learned "everything"
I needed to know about graphene. In particular, I am grateful to Hubert and Pablo,
who learned me the nanofabrication and cryogenic measurement techniques. In
June 2006, Pablo and I visited Kostya Novoselov at the University of Manchester,
who is one of the inventors of the "scotch-tape technique" to obtain graphene by
peeling graphite: Kostya and co-workers, thanks for showing us the "tricks".

After the summer of 2006, I started to work more independently on graphene
and I needed to build up my own dipstick measurement setup for graphene re-
search. I would like to thank my (former) MED-colleagues for technical support,
in particular Edgar, Kevin, Mascha and Jan. Furthermore, I would like to thank
all@MED for having fun, for instance during the movie nights, the Christmas din-
ners and other enjoyable group activities (for instance the "groepsuitjes" in No-
ordwijk and Scheveningen): thanks to Anna, Helena, Iulean, Hangxing, Ignacio,
Pietro, Monica, Jae, Piet, Edgar, Menno, Samir, Kevin, Jos (thanks for providing the
TeX-template for my thesis), Benoit, Anne, Andreas, Bo, Murat, Warner, Gijs, Chris-
tian, Ferry, Hidde, Alexander, Mascha, Jan, Herre, Irma, Maria and Monique.

Till 2008, the graphene research remained a good collaboration between Lieven
(QT) and Alberto (MED). For this reason, it was always possible to use the cryo-
genic measurement setups of QT without any problem (thanks to the QT-group,
in particular Leo, Lieven, Ivo and Katja). After Pablo and Hubert left, new peo-
ple joined the graphene-team: Lan, who started as a PhD of Lieven, and Saverio
& Monica, who became postdocs of Alberto (Lan, good luck with finishing your
work on graphene quantum dots; Saverio & Monica, I enjoyed our collaboration
and I hope you both will have a promising future at the University of Exeter). I
am also grateful to my MSc-students: Dominique and Samira. Due to our good
collaboration we had nice results on the nanoribbons and AB-rings (Dominique,



PREFACE ix

thanks for improving the "scotch-tape technique" and the cleaning procedure;
with your chemistry background and creativity you helped us a lot). Furthermore, I
would like to thank Yaroslav Blanter from the Theory Group for joining the weekly
graphene-meetings and for having good discussions. You showed that it is use-
ful to have a theoretician at the table when experimentalists try to interpret their
measurement data. Doing experimental work is almost impossible without good
support of experienced technicians, therefore I am very grateful to Jan & Mascha
(MED), Ron (PD), Remco, Bram & Peter (providing helium and evaporator QT),
Jaap (evaporator MB), Raymond & Jack (developing and making the best electron-
ics!), Roel, Patrick, Marco, Marc, Arnold & Anja (DIMES cleanroom).

In September 2008, Alberto moved to Geneva to become professor of his new
"Quantum Electronics" (QE) group. Quite some time before, Alberto had asked me
whether I would like to join his new group. Since I preferred to continue working
with Alberto (and I liked the challenge to live abroad for some years), I decided
to join Alberto’s new group at the University of Geneva, while remaining formally
a PhD-student in Delft. I was not the only one, also Hangxing and Ignacio (Na-
cho) decided to move to Geneva. Together we formed the "Three Musketeers" who
helped Alberto to move his equipment from Delft to Geneva and to build up the
new lab. Unfortunately, the movement gave rise to huge conflicts within the TU
Delft which made it an extremely unpleasant period for all people involved, in-
cluding the Three Musketeers (Hangxing and Nacho, I am happy that the Three
Musketeers will show up again in Delft during my defence: both of you as my
"paranimfen" and me as the defender).

After our movement to Geneva, Alberto’s new group started to grow fast: Niko
(the Swissie), Masaki (the mighty Jappie postdoc) and Shimpei (Jappie, the Japan
promoter) joined Ignacio (the Mexie) and Hangxing (the Chinie; good luck in your
new job at Polymer Vision!) to work on organic crystals; Benjamin (the Frenchie)
and Nuno (the Portie) started to work with me (the Dutchie) on graphene. To build
up the new labs in Geneva, it took us a lot of time and energy, but we managed to do
it with technical support of our new technician Alexander (and a few weeks help
from our old technician Jan Toth from Delft). Besides building up a lab, we also
needed to build up a new life in Geneva. QE-members, thanks for the enjoyable
time during social activities, for instance, skiing in the Alpes, enjoying music at
Jazz Festival Montreux, Rock Festival Paleo in Nyon and the concerts of "Pony Pony
Run Run" and "Summer Went Too Soon", partying at Fête de Genève, Wii-party at
Nacho’s house, karting, visiting CERN and all the frequent social (drinking) events
with all of you ("Let’s eat BB at Les Brasseurs!"). In particular, I want to thank Shim-
pei for giving me the opportunity to visit Japan (for instance, Jun Takeya’s lab at
Osaka University, Yoshi Iwasa’s lab at Tohoku University and the RIKEN workshop
in Tokyo). Finally, I would like to thank all the secretaries: Irma, Maria, Monique
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(MED) and Marja (PD) in Delft and Mélanie, Esther, Denise in Geneva for kindly
helping me for whatever needed to be arranged.

While reading this preface, you may wonder whether I don’t have a life outside
the university, but I surely have and I am proud of that. When I moved to Geneva,
I needed to leave my friends and family in The Netherlands. We kept in touch
by modern communication (internet rules the world). For me, it turned out that
Skype (and Gmail Videochat and Voipbuster) are media which almost compensate
real physical visits to friends and familiy: Gerhart & Elvira, als goede vrienden voor
het leven hebben we regelmatig en intensief skype-contact, waardoor we niet het
gevoel hebben dat we verre vrienden zijn; Michiel & Marja, ik heb genoten van
de "virtuele biertjes" die we regelmatig op zondagen gedronken hebben (Proost...
en niet morsen op het toetsenbord!); alle anderen natuurlijk ook bedankt voor de
gezellige skype-sessies! Furthermore, I really enjoyed the weekends when fam-
ily and/or friends came to Geneva to visit me: dat jullie de moeite namen om te
komen betekent veel voor mij; hiervoor bedankt allemaal! Besides physics, Scout-
ing is an essential part of my life. When I was a young child I lost my heart at
the scouting associations "de Bevers" in Lettelbert and later, when I was grown-
up, "de Chauken" in Groningen. When I am at Scouting, I always feel home im-
mediately: Bevers en Chauken, bedankt voor alle mooie belevenissen; een leven
zonder scouting kan ik me niet voorstellen en ik verlang daarom naar de volgende
scoutiviteiten!

Last but not least, I proudly thank my family for all their love and support in my
life and for being a good example for me. Marjan & Addy (en de kleine Flo), Edwin
& Annemieke (en de jongste Oostinga: Lola), ik kijk uit naar alle mooie momenten
die we in de toekomst gezamenlijk zullen hebben. Pap & mam, het laatste woord
wil ik tot jullie richten. Jullie staan altijd voor me klaar, welke keuzes ik ook neem in
mijn leven. Deze onvoorwaardelijke steun is echt en voelt goed. Jullie betekenen
daarom erg veel voor mij. Zonder jullie had ik nooit bereikt wat ik nu heb bereikt!

Jeroen Oostinga
Genève, 13 March 2010
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1
INTRODUCTION

Carbon is one of the most important building blocks of life on earth. It is even
believed that life would not be possible without carbon. Carbon, which is the sixth
element of the periodic table, is therefore one of the most fascinating elements. In
nature, a large variety of carbon-based molecules exists, from CO2, alcohol and oil
to proteins, vitamins and DNA. Most of them are called organic molecules.

Since the twentieth century, organic molecules are extensively studied by sci-
entists. New organic materials and molecules have been developed and their syn-
thesis has given rise to a huge chemical industry in the world. Since several decades,
numerous organic materials are also studied because of their interesting electronic
properties. As a consequence, organic electronics has become nowadays a grow-
ing field of interest for science and industry.

1.1 CARBON ALLOTROPES
A special family of organic materials consists of the so-called carbon allotropes
(figure 1.1). Carbon allotropes are well-defined structures which only consist of
carbon atoms. The most well known among them are diamond and graphite, which
are used by mankind since ancient times. Diamond is famous for its use in jewelry,
but nowadays, it is also often used in industry, for example, to scratch or cut other
materials, because it is one of the hardest materials on earth. Natural graphite was
discovered more than 400 years ago for its use in pencils for writing and drawing.
Since the twentieth century, it is also used for several industrial purposes, because,
for instance, it is a good electrical conductor, it is cheap to produce and has a light
weight. Graphite and diamond are both three-dimensional crystals.

1



2 1. INTRODUCTION

FIGURE 1.1: Structures of different allotropes of carbon. From left to right: three-dimensional diamond
and graphite; two-dimensional graphene, one-dimensional nanotubes; zero-dimensional fullerenes
(adapted from [2]).

More recently, new carbon allotropes of smaller dimensionality have been syn-
thesized in laboratories. First, in the 1980s the fullerenes have been discovered,
which are molecules in which the carbon atoms form closed structures (figure 1.1).
The most famous fullerene is the buckyball which consists of a sphere of 60 car-
bon atoms (C60). The fullerenes have interesting electronic properties, because
they behave effectively as zero-dimensional systems. In the 1990s, another carbon
allotrope has been discovered, namely the carbon nanotube (figure 1.1). Carbon
nanotubes are cylindrical structures entirely made of carbon, and are effectively
one-dimensional systems. Depending on the precise way in which the cylinder is
made, carbon nanotubes have metallic or semiconducting/insulating properties.
The discovery of fullerenes and carbon nanotubes opened the new field of carbon
electronics [1].

The family of carbon allotropes seemed to be almost complete, only the two-
dimensional allotrope was missing [3]. Since statistical mechanics predicts that
two-dimensional crystals are thermodynamically unstable [4], it was believed that
a two-dimensional crystal of carbon atoms could not exist in nature. However,
this two-dimensional carbon allotrope, which is called graphene, had already been
studied theoretically since the 1940s, when people started to investigate the elec-
tronic properties of graphite [5]. Basically, graphite is a stack of many graphene
layers and its electronic properties can be analyzed starting from the bandstruc-
ture of graphene. Later, when the fullerenes and the carbon nanotubes were dis-
covered, the bandstructure of graphene was studied in greater detail, because the
fullerenes can be considered as graphene wrapped up into spheres and nanotubes
as graphene rolled up into cylinders. Thus, some of the electronic properties of
graphene were known, long before its experimental discovery.

In 2004, the scientific community was highly surprised when Andre Geim, Kost-
ya Novoselov and co-workers at the University of Manchester discovered that, con-
trary to the theoretical predictions, graphene exists in nature [6,7]. They succeeded
to isolate one single layer of graphite, which was the first experimental realization
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FIGURE 1.2: The honeycomb lattice structure of graphene, consisting of two interpenetrating triangular
sublattices A and B (adapted from [8]).

of graphene. From this moment, all eyes were focussed on graphene for a number
of reasons that we will discuss more in detail below. Not only the scientific com-
munity was attracted by graphene, also industrial research labs were interested in
this new promising material.

1.2 DIRAC FERMIONS IN GRAPHENE
Most fascination for graphene comes from its peculiar electronic properties, which
differ from those of usual materials. In conventional materials, the electron dy-
namics is well described by the Schrödinger equation. For low-energy electrons in
graphene, however, the Schrödinger equation transforms into an equation which
is formally identical to the Dirac equation (well-known from the theory of quan-
tum electrodynamic). Usually, only relativistic particles, like neutrino’s, are de-
scribed by this relativistic version of the Schrödinger equation. Although the elec-
trons in graphene are not relativistic, they are effectively described by the Dirac
equation and, consequently, behave as Dirac fermions. Since two important the-
ories, quantum electrodynamics and condensed matter physics, meet each other
in graphene, scientists are intrigued by graphene’s electronic properties [2,3,8].

In graphene’s ultra-relativistic regime, the Fermi velocity of the electrons plays
the role of the speed of light (vF ≈ c/300 ≈ 106 m/s). Most interestingly, the Fermi
velocity does not depend on energy in the low energy limit. As a consequence, the
electron dynamics in graphene is described by a linear dispersion relation. Fur-
thermore, the electrons have a pseudospin (in addition to the normal spin). This
pseudospin is related to the honeycomb lattice structure of graphene, which con-
sists of two sublattices (figure 1.2). The electron states have an amplitude on both
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FIGURE 1.3: An optical picture of a graphene device on a silicon substrate. A graphene flake, obtained
by mechanical exfoliation using adhesive tape, is contacted by metals to enable electronic transport
measurements. This device also contains back- and sidegates for electrostatic control of the charge
density.

sublattices and are therefore described by a two-component wavefunction (which
is equivalent to a spinor). Due to this pseudospin, the electrons in graphene be-
have as chiral electrons. To understand electronic transport in graphene, we will
consider in chapter 2 the properties of graphene’s Dirac fermions in more detail.

1.3 GRAPHENE-BASED ELECTRONICS
People are intrigued by graphene, not only because it enables the study of Dirac
fermions in solid state devices, but also because it is a promising new material
for nano-electronics [3]. Graphene has strong interatomic bonds preventing the
presence of structural defects and, therefore, consists of an almost perfect crys-
tal quality. Since also extrinsic disorder in graphene is small, the charge carri-
ers exhibit large mean free paths. Recently, room temperature mobilities higher
than ∼100,000 cm2/Vs have been reported [9]. This excellent electronic behaviour
makes graphene a good candidate for electronic devices (figure 1.3).

Graphene is a zero-gap semiconductor, which enables electron and hole trans-
port, without the need of chemical doping. By tuning the Fermi-level, by elec-
trostatic gating of a graphene device, the carrier density can be controlled up to
values higher than ∼1013 cm−2. At the crossing-point between valence and con-
duction band, which is called the Dirac point, the density of states vanishes, but
the conduction remains non-zero (σmin ∼ 4e2/h). This property prevents switch-
ing off the conduction and, therefore, creates an obstacle for the development of
graphene field-effect transistors. Fortunately, strategies can be found to switch off
conduction in graphene-based devices, as we will show in this thesis.

Furthermore, since the phase coherence length of electrons in graphene is large
(∼ 3− 5μm at 260 mK [10]), graphene is an interesting material for investigating
quantum transport. In addition, electrons in graphene have a long spin relax-
ation length (∼ 2μm at room temperature [11]), which makes graphene also a good
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candidate for spin transport. In this thesis, we will study quantum transport in
graphene devices to shine light on its phase coherent transport properties.

1.4 OUTLINE OF THIS THESIS
This thesis focusses on electronic transport in graphene devices on the sub-micron
scale. Therefore, in chapter 2 several electronic properties of graphene will be dis-
cussed from a theoretical point of view. First, the bandstructure of graphene will
be described, which shows why electrons in graphene behave as Dirac fermions.
Additionally, the electronic properties of bilayer graphene, trilayer graphene and
graphene nanoribbons will be considered. Subsequently, the electronic transport
properties of graphene will be discussed. Also some essential concepts known
from mesoscopic physics will be explained, like quantum interference phenom-
ena and Josephson supercurrents. After these theoretical considerations, our ex-
perimental results will be presented in the following chapters.

In chapter 3, transport measurements on bilayer graphene devices will be dis-
cussed. Bilayer graphene is, like single-layer graphene, a zero-gap semiconduc-
tor and, consequently, exhibits metallic behaviour, irrespective of the charge den-
sity. However, in bilayer graphene an energy-gap between valence and conduction
band opens when a perpendicular electric field is applied. We will show that in a
bilayer graphene device, the conduction can be turned from metallic to insulating,
simply by applying two gate-voltages, which enable the control of a perpendicular
electric field as well as the Fermi energy in the bilayer.

Chapter 4 focusses on the transport properties of trilayer graphene. Trilayer
graphene is a semi-metal with a small band-overlap. We have investigated the
transport properties of double-gated trilayer graphene devices. We will show that
the band-overlap increases by applying a perpendicular electric field, which man-
ifests itself as an increase of the conduction at the charge neutrality point. Thus,
next to bilayer graphene, trilayer graphene is a second material in which the band-
structure can be manipulated by applying control voltages in a double-gated de-
vice.

To investigate phase coherent transport properties of graphene, we have stud-
ied Josephson supercurrents and weak localization as well as the Aharonov-Bohm
effect in graphene devices. In chapter 5, we will show that the occurence of bipo-
lar supercurrent in graphene is a very robust phenomenon, while weak localiza-
tion, which like supercurrent relies on the presence of time reversal symmetry and
phase coherence, exhibits an uncommon dependence on the device under inves-
tigation. In particular, the observation of dissipationless supercurrents, even at
the Dirac point, proofs that electronic transport in graphene is phase coherent. In
chapter 6, we will consider the observation of the Aharonov-Bohm effect in ring-
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shaped structures of graphene, which is another manifestation of phase coherent
transport.

Finally, we will consider the electronic transport properties of graphene nanorib-
bons in chapter 7. Graphene nanoribbons are (quasi-)one-dimensional structures
etched out of graphene. We will show that the conduction of graphene nano-
ribbons vanishes at low charge density. This observation can be well explained
by strong localization of electronic states due to disorder in the ribbon. The oc-
currence of strong localization in graphene nanoribbons is in sharp contrast with
normal graphene devices, in which localization effects are often suppressed.

This thesis will be concluded with a summary of the experimental work that
has been performed within this PhD research project.
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2
THEORY

In this chapter, we consider electronic transport in graphene from a theoretical
point of view. In §2.1 we derive the bandstructure of single-layer graphene by using
a tight-binding model. Subsequently, the bandstructures of bilayer and trilayer
graphene are discussed in §2.2. In §2.3 we consider the bandstructure of graphene
nanoribbons with zigzag as well as armchair edges. The peculiar bandstructure
of graphene gives rise to interesting transport properties, which will be discussed
in §2.4. In §2.5 and §2.6, we focus on quantum interference phenomena and the
Josephson effect in graphene. This chapter ends with §2.7 about the preparation
and identification of graphene.

2.1 ELECTRONIC BANDSTRUCTURE OF GRAPHENE
Graphene is a conjugated sheet of carbon atoms arranged in a hexagonal lattice
structure (figure 2.1) [1]. Since carbon is the sixth element of the periodic table,
each atom has six electrons. The two inner electrons are core electrons (1s2 or-
bitals) and the four outer electrons are valence electrons (2s22p2 orbitals). The core
electrons are strongly bound to the nucleus and do not interact with neighbouring
atoms. The valence electrons, on the other hand, interact with the surrounding
carbon atoms. The chemical and electronic properties of graphene are therefore
determined by the valence electrons.

The valence electrons of a carbon atom form 2s, 2px , 2py and 2pz orbitals.
These orbitals give rise to the covalent bonds between neighbouring atoms in a
molecule or a lattice. In order to create these bonds, the 2s orbital hybridizes
with 2p orbitals to form spn orbitals (n = 1,2,3). Three hybridization processes

7
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a) b)

FIGURE 2.1: (a) The hexagonal lattice structure of graphene. The Bravais lattice contains two carbon
atoms (A, B) per unit cell. The lattice vectors are a1 and a2. Three nearest neighbour vectors from
sublattice B to A are shown (δi for i = 1,2,3). (b) The reciprocal lattice spanned by the vectors b1 and
b2. The first Brillouin zone has a hexagonal shape giving rise to high symmetry points (Γ, M , K and K ′)
(adapted from [5]).

are possible: sp1 hybridization as in acetylene (HC≡CH); sp2 hybridization as in
graphite, carbon nanotubes, fullerenes and graphene; sp3 hybridization as in di-
amond. These hybridization processes yield high binding energies resulting in
strong covalent bonds.

2.1.1 TIGHT BINDING MODEL OF GRAPHENE

Here, we will focus on sp2 hybridization in graphene and the consequences for
the electronic properties. For each carbon atom in graphene, the 2px and 2py

orbitals hybridize with the 2s orbital to form three sp2 bonds with neighbouring
atoms. These so-called σ-bonds are in-plane of the graphene sheet (xy-plane).
The remaining 2pz orbital is perpendicular to the graphene sheet. The pz orbitals
of neighbouring atoms overlap resulting in the π and π∗-bands. These electrons
are weakly bound to the atoms and, therefore, are considered as free electrons or
conduction electrons. The dispersion relation for the π and π∗ bands of graphene
can be calculated by using a tight binding model [1-5].

The Bravais lattice of graphene consists of a unit cell with a basis of two carbon
atoms (figure 2.1) with lattice vectors:

a1 = a

2
(3,

�
3) (2.1)

a2 = a

2
(3,−�3) (2.2)

where a is the interatomic distance (C-C = 1.42 Å). The reciprocal lattice vectors of



2.1. ELECTRONIC BANDSTRUCTURE OF GRAPHENE 9

this Bravais lattice are

b1 = 2π

3a
(1,

�
3) (2.3)

b2 = 2π

3a
(1,−�3) (2.4)

In figure 2.1 the first Brillouin zone of graphene is shown, including the high sym-
metry points in momentum space: Γ = (0,0), M = ( 2π

3a ,0), K = ( 2π
3a , 2π

3
�

3a
) and K ′ =

( 2π
3a ,− 2π

3
�

3a
).

The electronic states |ψ〉 and the corresponding energy values Ek are obtained
by solving the Schrödinger equation

H |ψ〉 = Ek |ψ〉 (2.5)

where H is the tight-binding Hamiltonian. The electronic wavefunctions should
satisfy the Bloch condition, which means that, under translation of the crystal lat-
tice vectors, they need to satisfy the relation

ψ(r+R) = eik·Rψ(r) (2.6)

for R ∈G where G denotes the set of all lattice vectors (R = na1+ma2 with n and m
are integers). Since graphene has two atoms per unit cell (A and B), the wavefunc-
tions can be written as

ψ(k,r) = 1�
N

(
cA

N∑
RA

eik·RAϕA(r−RA)+cB

N∑
RB

eik·RB ϕB (r−RB )

)
(2.7)

where N is the number of unit cells in the crystal lattice, RA (RB ) are the lattice
vectors of sublattice A (B), ϕA (ϕB ) are the atomic wavefunctions at the sites cor-
responding to sublattice A (B), and cA (cB ) is the amplitude of ψ on sublattice A
(B). The energy dispersion can be calculated by using the following relations for
the wavefunctions on both sublattices:

〈ϕA |H |ψ〉 = Ek〈ϕA |ψ〉 (2.8)

〈ϕB |H |ψ〉 = Ek〈ϕB |ψ〉 (2.9)

In a first approximation, only the nearest neighbour interactions need to be con-
sidered in the tight-binding model, because the interaction terms corresponding
to atoms at larger distances are relatively small. If we use the expression of the
wavefunction of eq. (2.7), then eq. (2.8) can be rewritten as:
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cA〈ϕA |H |ϕA〉+cB 〈ϕA |H |ϕB 〉(1+e−ik·a1 +e−ik·a2 ) =

Ek

(
cA〈ϕA|ϕA〉+cB 〈ϕA |ϕB 〉(1+e−ik·a1 +e−ik·a2 )

)
(2.10)

and eq. (2.9) becomes

cB 〈ϕB |H |ϕB 〉+cA〈ϕB |H |ϕA〉(1+eik·a1 +eik·a2 ) =

Ek

(
cB 〈ϕB |ϕB 〉+cA〈ϕB |ϕA〉(1+eik·a1 +eik·a2 )

)
(2.11)

In these equations, 〈ϕA |ϕA〉 = 〈ϕB |ϕB 〉 = 1 and the on-site energy is defined as ε0 =
〈ϕA |H |ϕA〉 = 〈ϕB |H |ϕB 〉 ≡ 0. Furthermore, the transfer integral matrix between
nearest neighbours is γ0 = 〈ϕA |H |ϕB 〉 = 〈ϕB |H |ϕA〉 ≈ 2.8 eV [5] and the overlap
integral matrix between nearest neighbours is β0 = 〈ϕA |ϕB 〉 = 〈ϕB |ϕA〉 = 0. As
a result, the Schrödinger equation can be approximated by the following matrix
equation:

(
0 (1+eik·a1 +eik·a2 )γ0

(1+e−ik·a1 +e−ik·a2 )γ0 0

)(
cA

cB

)
= Ek

(
cA

cB

)
(2.12)

The corresponding dispersion relation is

E (kx ,ky ) =±γ0

√√√√1+4cos

(
3akx

2

)
cos

(�
3aky

2

)
+4cos2

(�
3aky

2

)
(2.13)

Two bands are distinguished: the π band at E < 0 and the π∗ at E > 0 (figure 2.2).
Both bands touch at the high symmetry K points, which are the corners of the
first Brillouin zone. Although there are six of these points, only two of them are
independent: the K and the K ′ points (figure 2.2). Since there are two free electrons
per unit cell, the π band, which is the valence band, is completely filled and the
π∗ band, which is the conduction band, is completely empty. Consequently, the
Fermi energy is exactly at these K and K ′ points (at E = 0).
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FIGURE 2.2: The bandstructure of graphene, which shows the valence band (or the π-band at E < 0)
and the conduction band (or the π∗-band at E > 0). The Fermi energy is exactly at the K and K ′ points,
where the valence and conduction bands touch (at E = 0). The states near the K and K ′ points form
independent valleys in momentum space.

2.1.2 ELECTRONIC STATES IN THE LOW-ENERGY LIMIT

The electronic states close to the Fermi level (E = 0) determine the electronic trans-
port properties of conduction electrons in graphene. Therefore, we consider the
electronic states close to the K and K ′ points in the low-energy limit [2,4-8]. Since
the electronic states in both valleys are not coupled, the electronic states in each
valley can be studied separately by using an effective Hamiltonian for each valley.
If k = K+κ (and k = K′ +κ) with κ � K,K′, then the tight-binding Hamiltonian
(which is the 2x2 matrix in eq.(2.12)) can be approximated by

HK =
(

0 3γ0a
2

(
κx − iκy

)
3γ0a

2

(
κx + iκy

)
0

)
=ħvF

(
0 κx − iκy

κx + iκy 0

)
(2.14)

at the K point, and

HK ′ =
(

0 3γ0a
2

(
κx + iκy

)
3γ0a

2

(
κx − iκy

)
0

)
=ħvF

(
0 κx + iκy

κx − iκy 0

)
(2.15)

at the K ′ point. Both effective Hamiltonians operate on a two-component wave-
function (ϕA ,ϕB )T , where ϕA and ϕB are the components of the wavefunction ψ
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on sublattices A and B, respectively. These effective Hamiltonians yield a linear
dispersion relation:

εκ =±
(

3γ0a

2

)
|κ| = ±ħvF |κ| (2.16)

As a consequence, the value of the Fermi velocity is constant: vF = 3γ0a
2ħ ≈ 106 m/s

(notice that the direction of vF =ħ−1∇κE is equal to the direction of κ). This gives
rise to a conically shaped bandstructure at the K and K ′ points (figure 2.3).

An essential electronic property of graphene is revealed by inspection of the
electronic wavefunctions. The effective Hamiltonians give rise to two-component
wavefunctions for each valley:

ψ±,K (κ) = 1�
2

(
e−iθκ/2

±eiθκ/2

)
(2.17)

ψ±,K ′ (κ) = 1�
2

(
eiθκ/2

±e−iθκ/2

)
(2.18)

with θκ = arctan(κx /κy ) the angle of the wavevector κ in momentum space. The
states with ± signs correspond to the energies εκ =±ħvF |κ|. The two-component
wavefunction (ϕA ,ϕB )T has spinor-like properties and is therefore called a pseu-
dospinor. For instance, a rotation of θκ = 2π around a K point leads to a π phase
shift of the wavefunction. This π phase shift is in general known as a Berry’s phase.
Basically, this phase shift is identical to the phase that a spin 1/2 particle acquires
when it makes an adiabatic rotation of 2π in a magnetic field (although one should
realize that the pseudospin in graphene has nothing to do with the real electron
spin).

An important property of the pseudospin is found after rewriting the effective
Hamiltonian in the low-energy limit as:

HK =ħvFσ ·κ=−iħvFσ ·∇ (2.19)

where σ= σx x̂ +σy ŷ and σx and σy are the Pauli matrices. In quantum mechan-

ics, the helicity operator is defined as ĥ ≡ 1
2σ · κ

|κ| [5], which is the projection of
the pseudospin direction along the momentum direction. Since HK |ψ±〉 = εκ|ψ±〉
with εκ = ±ħvF |κ|, we obtain σ · κ

|κ| = ±1. Consequently, at the K point, the pseu-
dospin direction σ is parallel to κ for states with εκ > 0 and antiparallel for states
with εκ < 0 (figure 2.3). In other words, the helicity is positive if εκ > 0 and negative
if εκ < 0 (note that the helicity is reversed at the K ′ point).

One of the most striking results is that the effective Hamiltonian of graphene is
equivalent to the Dirac equation, which is the relativistic version of the Schrödinger
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FIGURE 2.3: Both valleys at the Fermi energy have a conically shaped bandstructure. The dispersion
is linear: εκ = ħvF |κ|. Electron (hole) states in the conduction (valence) band at the K points possess
a pseudospin whose direction is parallel (anti-parallel) to the momentum vector (κ). Note that the
pseudospin directions are reversed at the K ′ points.

equation, known from quantum electrodynamics [9]. Consequently, the low-energy
electrons in graphene behave as massless chiral charge carriers with similar prop-
erties as massless spin 1/2 relativistic particles†. However, in graphene the Fermi
velocity and the pseudospin play the role of the speed of light and the real spin.
Graphene is identified as the first material which supports Dirac fermions in two
dimensions, and is therefore considered as an interesting playground for solid
state physicists. Mesoscopic phenomena may manifest themselves differently in
graphene than in ’conventional’ materials [5,9]. Several electronic transport prop-
erties of graphene will be discussed in §2.4−2.6.

2.2 BANDSTRUCTURE OF BI- AND TRILAYER GRAPHENE
The electronic bandstructures of bilayer and trilayer graphene are different from
single layer graphene. In the tight binding model of bilayer and trilayer graphene,
not only the interaction between in-plane nearest neighbours, but also interac-
tions between neighbours in different layers need to be included. The interactions
between the layers highly depend on the layer stacking. Here we will consider
Bernal stacking, which is the stacking order most often found in natural graphite.
Bernal stacking is also called AB-stacking, because the A atoms in one layer are

† In relativistic dynamics, particles with a linear dispersion relation are massless, which is why electrons
in graphene are referred to as "massless Dirac electrons". Note that in a periodic potential the effective

mass is a tensor defined by the relation m−1
μν = 1

ħ2
d 2E

dkμdkν
with μ and ν Cartesian coordinates. For

particles with a linear dispersion relation, the tensor d 2E
dkμdkν

is not invertible (i.e. the determinant is

zero) and therefore the effective mass cannot be defined, as it should be expected.
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FIGURE 2.4: The lattice structure of Bernal stacked bilayer graphene (with sublattices A2 and B1 on top
of each other). In a first approximation, only the tight binding parameters γ0 and γ1 are considered to
obtain an effective Hamiltonian in the low-energy limit.

on top of the B atoms of an adjacent layer (as shown in figure 2.4 and figure 2.7
for bilayer and trilayer graphene, respectively). The interlayer distance for Bernal
stacking is t = 3.35 Å.

2.2.1 BILAYER GRAPHENE
In figure 2.4, a Bernal stacking of bilayer graphene is shown. A unit cell consists of a
basis of four atoms (i.e. A1, B1, A2 and B2). In the simplest tight binding calculation
of bilayer graphene, which will be sufficient here, the following interaction terms
are included [5,10,11]:

• The in-plane nearest neighbour coupling, which is similar to the one in sin-
gle layer graphene, gives γA1B1 = γA2B2 ≡ γ0 ≈ 2.8 eV.

• The interlayer coupling between the A2 and B1 atoms, which are on top of
each other in Bernal stacked bilayer graphene. This interaction gives rise to
γA2B1 ≡ γ1 ≈ 0.39 eV.

Similar to single-layer graphene, bilayer graphene has two valleys which are
not coupled. To determine the electronic states in both valleys, McCann et al. have
calculated effective Hamiltonians in the low-energy limit for both valleys (which
we will not derive here) [10,11]:

H = ξ

⎛
⎜⎜⎝

Δ 0 0 ħv(κx − iκy )
0 −Δ ħv(κx + iκy ) 0
0 ħv(κx − iκy ) −Δ ξγ1

ħv(κx + iκy ) 0 ξγ1 Δ

⎞
⎟⎟⎠ (2.20)
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FIGURE 2.5: The low-energy bandstructure of bilayer graphene near a valley (K or K ′). Bilayer graphene
has four bands: two valence and two conduction bands. The two valence bands are completely filled,
while the two conduction bands are empty. The highest valence and lowest conduction bands touch at
the K and K ′ points, where the Fermi level is located.

This effective Hamiltonian acts on ψ= (ψA1,ψB2,ψA2,ψB1)T at the K point (ξ= 1)
and on ψ = (ψB2,ψA1, ψB1,ψA2)T at the K ′ point (ξ = −1). The diagonal terms
represent the on-site energies: Δ at sublattices A1 and B1, and −Δ at sublattices A2
and B2.

When the on-site energy terms of both layers are identical (Δ = 0), then the
energy dispersion close to the K points can be approximated by [10,12]

εκ =±γ1

2
±

√
γ2

1

4
+ (ħvκ)2 (2.21)

with v = 3γ0a
2ħ . This relation shows that bilayer graphene has four electronic bands,

which are plotted in figure 2.5. Both valence bands are completely filled and both
conduction bands are empty. Since the higher valence and the lowest conduction
bands touch at the K and the K ′ points in momentum space, the Fermi level is
exactly at these points (E = 0).

In the low-energy limit, we only need to consider the electronic states corre-
sponding to the lowest valence and highest conduction bands. In a first approxi-
mation, the effective Hamiltonians for these bands become [9,10]

HK =− ħ2

2m

(
0 (κx − iκy )2

(κx + iκy )2 0

)
(2.22)
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and

HK ′ = − ħ2

2m

(
0 (κx + iκy )2

(κx − iκy )2 0

)
(2.23)

which operate on the two-component wavefunction (ϕA1,ϕB2)T . Notice that, con-
trary to single layer graphene, the components of this wavefunction are related to
sublattices A1 and B2, which are in different layers. The effective Hamiltonian
yields a parabolic dispersion relation:

εκ =±ħ2κ2

2m
(2.24)

and the electrons and holes have a non-zero effective mass: m = γ1/v2.
The two-component wavefunctions of the effective Hamiltonian are

ψ±,K (κ) = 1�
2

(
e−iθκ

±eiθκ

)
(2.25)

and

ψ±,K ′ (κ) = 1�
2

(
eiθκ

±e−iθκ

)
(2.26)

Like in single layer graphene, these electron states possess chirality [5,10,12]. While
the electrons in single layer graphene behave as massless chiral particles, the elec-
trons in bilayer graphene behave as massive chiral particles. Another difference
between both graphene types is the Berry’s phase. The two-component wavefunc-
tions of the bilayer show that a rotation of κ around the K point (i.e. θκ = 2π)
results in a 2π phase shift of the wave function. Thus, the Berry’s phase in bilayer
graphene is 2π, while the Berry’s phase in single layer graphene is π.

So far, we assumed that the diagonal terms of the Hamiltonian are zero (Δ= 0
in eq. (2.20)). However, the diagonal terms of the Hamiltonian become non-zero
when both layers have different on-site energies (Δ for the atoms A1 and B1, and
−Δ for the atoms A2 and B2) or, in other words, when the symmetry between both
layers is broken [11]. If the layer symmetry is broken, the effective Hamiltonian in
the low energy-limit can be approximated by

HK =
(

Δ − ħ2

2m (κx − iκy )2

− ħ2

2m (κx + iκy )2 −Δ

)
(2.27)
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FIGURE 2.6: In the symmetric case (Δ = 0), the lowest conduction and the highest valence band touch
(black). In the asymmetric case (Δ �= 0), both bands are pushed away to higher energies and a bandgap
opens (gray; here Δ= 0.01 eV)

The asymmetry between sublattices A1 and B2 yields the following dispersion re-
lation for the highest valence and lowest conduction bands (if Δ� γ1)

εκ =±
√
Δ2 +

(ħ2κ2

2m

)2

(2.28)

Most strikingly, a non-zero Δ gives rise to a bandgap at the K and K ′ points: Eg ap =
2Δ. While the highest valence and lowest conduction bands touch at the K points
in the symmetric case, they are pushed away to higher energies when the symme-
try is broken (figure 2.6). As a consequence, a bandgap opens and bilayer graphene
can be turned from a metal into an insulator by just breaking the symmetry be-
tween both layers.

2.2.2 TRILAYER GRAPHENE
In figure 2.7, a Bernal stacking of trilayer graphene is shown (B1-A2-B3 atoms stacked
on top of each other). To be capable of describing the low-energy electronic prop-
erties of trilayer graphene properly, the complete set of tight binding parameters
of graphite needs to be used in the bandstructure calculation, which are γi for
i = 0, ..,5 (γ0 and γ1 are identical to bilayer graphene) [5,13].
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FIGURE 2.7: Bernal stacked trilayer graphene (with sublattices B1, A2, B3 on top of each other). The
tight binding model is described by the same set of parameters as for graphite: γ0, γ1, γ2, γ3, γ4 and γ5
(adapted from [14]).

• γ2 is a coupling between the outer layers of trilayer graphene (between A1
and A3 atoms). This interaction yields γA1A3 ≡ γ2 ≈−0.020 eV.

• The interlayer coupling between the atoms A1−B2 and B2− A3 gives rise to
γA1B2 = γB2A3 ≡ γ3 ≈ 0.315 eV.

• The interlayer coupling between the atoms A1− A2, B1−B2, A2− A3 and
B2−B3 yields γA1A2 = γB1B2 = γA2A3 = γB2B3 ≡ γ4 ≈ 0.044 eV.

• γ5 is a coupling between the outer layers of trilayer graphene (between B1
and B3 atoms). This interaction gives rise to γB1B3 ≡ γ5 ≈ 0.038 eV.

Koshino et al. have derived an effective tight-binding Hamiltonian in the low-
energy limit for each valley (which we will not derive here) [14]. They showed that
the effective Hamiltonian of trilayer graphene has blocks which are similar to the
effective Hamiltonians of single-layer and bilayer graphene. In a first approxima-
tion (by setting all parameters zero, except γ0 and γ1), the effective Hamiltonian of
trilayer graphene gives rise to four low-energy bands, which appear around the K
and K ′ points: two linear and two parabolic bands, which meet at the Fermi level,
E = 0 (figure 2.8a).

Moreover, Koshino et al. showed that the linear and parabolic bands hybridize
when the interlayer symmetry of trilayer graphene is broken. As a result, the lin-
ear bands are pushed away from the Fermi level and the parabolic bands start to
overlap (figure 2.8b). Consequently, only the overlapping parabolic bands give rise
to a density of states at the Fermi level. More interestingly, the band-overlap and
the corresponding density of states increase if the asymmetry becomes larger. This
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FIGURE 2.8: First approximation of the low-energy bandstructure of trilayer graphene, near a K point
(the energy in dimensionless units [ε/γ1] versus momentum in dimensionless units [vp/γ1 ]). (a) If the
interlayer symmetry is not broken, then two linear and two parabolic bands are present at the Fermi
level. (b) If the interlayer symmetry is broken, only both parabolic bands remain at the Fermi level and
both linear bands are shifted to higher energies. The overlap between the parabolic bands depends on
the interlayer asymmetry (adapted from [14]).

result is in stark contrast with bilayer graphene, where symmetry breaking induces
a bandgap in the bandstructure.

2.3 BANDSTRUCTURE OF GRAPHENE NANORIBBONS

Graphene is a two-dimensional crystal. However, narrow channels can be cut
out of a sheet to create (quasi-)one-dimensional graphene. Electrons will be lat-
erally confined in narrow graphene ribbons, similar to constrictions in conven-
tional 2DEGs. The narrow width yields the quantization of the wavevector in lat-
eral direction: ky W ∼ nπ (for n ≥ 1) where a square-well potential equal to the
ribbon width (W ) is presumed [15]. For two-dimensional graphene, the disper-

sion relation at the Fermi level is: E2D = ħvF

√
k2

x +k2
y . Using the quantization

of ky , the dispersion relation of one-dimensional graphene is obtained: E1D =
ħvF

√
k2

x + (nπ/W )2 =
√

E 2
x +E 2

n with En ≡ nħvFπ/W . This simple calculation re-
sults in a bandgap at the Fermi level (EF = 0), since the density of states vanishes
at energies below the minimum value of the lowest subband, |E | < E1(kx = 0) =
ħvFπ/W ≈ (2eV ·nm)/W [16]. However, this first approximation is not very ac-
curate, because the specific properties of armchair and zigzag edges are not taken
into account. When these boundary conditions are included in the calculations
[17-19], a different result is obtained, as we will show below.
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FIGURE 2.9: An armchair ribbon (left) and a zigzag ribbon (right). The number of carbon rows (N ) in
lateral direction characterize the ribbon width (adapted from [17]).

FIGURE 2.10: The defined unit cell for graphene nanoribbons (left) and the corresponding reciprocal
lattice with the first Brillouin zone (right) compared with normal graphene (adapted from [17]).

2.3.1 RIBBONS WITH ARMCHAIR EDGES
In graphene ribbons, two different types of edges are distinguished: zigzag and
armchair edges (figure 2.9). Both types have 30 degrees difference in cutting direc-
tion from a sheet of graphene. Intermediate cutting directions will result in mixed
edges. Nakada et al. have calculated the tight binding model of ribbons with zigzag
as well as armchair edges [17]. They considered a rectangular unit cell with a basis
of four atoms. In figure 2.10, the vectors a and z are the translational vectors of
the unit cell with a (z) parallel to an armchair (zigzag) edge. The reciprocal lattice
spanned by the translational vectors a∗ and z∗ gives rise to a rectangular Brillouin
zone which is half the size of the hexagonal Brillouin zone of a normal sheet of
graphene (figure 2.10). Nakada et al. used a zone-folding technique to calculate the
bandstructure [1,17]. With this technique, the bandstructure of two-dimensional
graphene is projected on the corresponding axis of the ribbon, which is a∗ for arm-
chair ribbons and z∗ for zigzag ribbons. As a result, the projected K-points appear
at k = 0 for armchair ribbons and at k =±2π/3

�
3a for zigzag ribbons (figure 2.10,

2.11).
The bandstructures of armchair ribbons with three differents widths are shown

in figure 2.12a-c. Two of these ribbons have a bandgap at the Fermi level (N = 4
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a) b)

FIGURE 2.11: The bandstructures of (a) a N = 30 armchair and (b) a N = 30 zigzag ribbon (with k in
units of (

�
3a)−1 ; adapted from [17]).

and N = 6), while the third ribbon is gapless (N = 5). In general, Nakada et al.
showed that ribbons are gapless when N = 3p+2, where p is a positive integer, and
gapped otherwise (see for example figure 2.11a, which shows the bandstructure
of an armchair ribbon of N = 30). Thus, an armchair nanoribbon is metallic or
insulating, dependent on its widths (figure 2.13a; note that the bandgap decreases
if N increases).

The bandstructure of armchair ribbons is slightly different when the difference
between edge and bulk atoms is included in the calculations [19]. For instance,
the carbon atoms at the edges have dangling bonds which are terminated by ’for-
eign’ atoms or molecules (e.g. hydrogen). Consequently, the σ bonds between
edge atoms will not be similar to the bonds between bulk atoms and, therefore, the
interatomic distance will be different at the edges. This will lead to different val-

ues of the transfer integrals and on-site energies (γed g e
0 �= γbulk

0 and ε
ed g e
0 �= εbulk

0 ).
Son et al. included such edge effects in their bandstructure calculations [19] and,
surprisingly, found out that all armchair ribbons, irrespective of the width, have a
bandgap (figure 2.13b).

2.3.2 RIBBONS WITH ZIGZAG EDGES

The bandstructure of zigzag ribbons is remarkably different from armchair ribbons
[17,20]. Figure 2.12d-f show the bandstructures of zigzag ribbons with different
widths. Surprisingly, in the region between the projected K point and the edge
of the Brillouin zone, |k| ∈ π�

3a
[ 2

3 ,1], the highest valence and lowest conduction

bands are almost flat. The band flatness increases with the ribbon width (see for
example figure 2.11b, which shows the bandstructure of a zigzag ribbon of N =
30). Independent of the width, both bands are degenerate at |k| = π/

�
3a and,

consequently, there is no bandgap in zigzag ribbons. Nakada et al. examined the
charge density distribution of a zigzag ribbon and found that the states in the flat
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a) b) c)

d) e) f)

FIGURE 2.12: The bandstructures of armchair (a-c) and zigzag nanoribbons (d-f) for different widths
(N = 4,5,6). Zigzag ribbons are gapless and armchair ribbons are, dependent on their width, either
gapped (N = 4,6) or ungapped (N = 5) (with k in units of (

�
3a)−1 ; adapted from [17]).

a) b)

FIGURE 2.13: (a) Bandgap calculations of armchair ribbons as a function of the width wa (according to
the model of Nakada et al. [17]). (b) Bandgap calculations by including the deviation of tight binding
parameters at the edges (model of Son et al.). According to this model, all armchair ribbons are gapped,
irrespective of the width (adapted from [19]).
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FIGURE 2.14: (a) The spatial distribution of the charge difference between both magnetic polarizations
(light and dark gray denote the opposite polarizations α and β). (b) The bandstructure of a N = 12
zigzag nanoribbon (with k in units of d−1

z = (
�

3a)−1 showing the direct bandgaps Δ0
z and Δ1

z at k =
2π

3
�

3a
and k = π�

3a
, respectively. (c)The direct bandgaps Δ0

z and Δ1
z as a function of width wz (adapted

from [19]).

bands correspond to electronic states localized at the zigzag edges [17,20]. The
density of states at the edges gives rise to metallic behaviour of zigzag ribbons,
irrespective of the width.

The bandstructure of zigzag ribbons is slightly different when magnetic order-
ing of spins is included in the calculations [19,20]. Son et al. showed that magnetic
ordering gives rise to a ground state, in which the atoms of both sublattices are
spin polarized with opposite spin orientations (i.e. an antiferromagnetic order-
ing with respect to sublattices A and B). Since both edges correspond to different
sublattices and the edge states decay exponentially towards the center of the rib-
bon, both edges are effectively polarized with opposite magnetization. Due to this
magnetic ordering, the sublattice symmetry is broken and gives rise to a bandgap
in zigzag nanoribbons (figure 2.14). However, we should note that Son et al. also
showed that zigzag ribbons can be turned into half-metals (supporting spin po-
larized currents) when opposite electrostatic potentials are applied to both edges
[21]).

2.4 ELECTRONIC TRANSPORT IN GRAPHENE
The electronic transport properties of graphene are determined by the electronic
states around the Fermi energy. In undoped graphene, the Fermi level is exactly
at the K and K ′ points. Around these points, the electronic states are described
by a linear dispersion relation. The sublattice symmetry gives rise to a pseudospin
and a chirality. As a consequence, graphene has some unique transport proper-
ties, like an anomalous quantum Hall effect and a minimum conductivity at the
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FIGURE 2.15: Schematic picture of the Hall conductivity σx y as a function of carrier concentration for
usual materials (a), single-layer graphene (b) and bilayer graphene (c). Additionally, the sequence of
Landau levels as a function of carrier concentration is shown (adapted from [12]).

charge neutrality point. Furthermore, graphene exhibits very high electron and
hole mobilities, exceeding ∼ 105 cm2/Vs at room temperature.

2.4.1 QUANTUM HALL EFFECT
If a magnetic field is applied perpendicular to a two-dimensional conductor, the
electrons experience a Lorentz force and move along circular trajectories. In the
quantum regime, these closed cyclotron orbits give rise to discrete energy levels:
Landau levels. For usual conductors, the energies of these Landau levels equal
EN = ±ħωc (N + 1/2) for electrons (+) and holes (−), with ωc = eB/m being the
cyclotron frequency and N the quantum number which refers to the N th Landau
level [15,22]. Electrons and holes can only occupy these discrete energy levels and
the density of states vanishes between the Landau levels. At each Landau level, the
density of states is n = gs gv eB/h (with gs and gv the spin and valley degeneracies).
Since the lowest Landau level is at E = 1

2ħωc , a magnetic field induces an energy-
gap at E = 0. Note that the level spacing between the Landau levels, ΔE = ħeB/m,
is independent of N .

Due to the presence of Landau levels, the electronic states at the edges have
unique properties. If the Fermi level is between two Landau levels, there are no
bulk states in the conductor which can contribute to the conductivity. Electronic
transport through the conductor only occurs via edge states, which form one-
dimensional conducting channels at the physical edges of the device. Electrons
at one edge propagate in one direction (k states), while electrons at the other edge
propagate in opposite direction (−k states). Since each edge consists of only k
or −k states (depending on the sign of the magnetic field), backscattering in the
conducting edge channels is prevented and, consequently, the longitudinal resis-
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tance (measured in a four-terminal configuration) vanishes. At the same time, the
Hall conductance becomes quantized: Gx y = ±gs gv Ne2/h with N the number of
edge channels. This phenomenon is called the integer quantum Hall effect (figure
2.15a) [15,22].

In single-layer graphene, the quantization of the Hall conductivity is remark-
ably different [23,24]. The chirality of the electrons gives rise to a Berry’s phase
of π and, consequently, the Landau levels appear at different energy values: EN =
±vF

�
2eħB N (notice that the level spacing ΔEN depends on N ). Most surprisingly,

a Landau level is present at E = 0, irrespective of the magnetic field. A unique prop-
erty of this zeroth Landau level is that it consists of electron and hole states. At
this Landau level, the degeneracy per charge carrier type is two times smaller than
at higher order Landau levels. Therefore, the density of the electron (hole) states
at the zeroth Landau level is only n = 2eB/h, while the density at the higher or-
der Landau levels equals n = 4eB/h (figure 2.15b). As a consequence, single-layer
graphene exhibits a different sequence of quantization levels of the Hall conduc-
tance: Gx y =±4e2/h(N +1/2) (the factor 4 arises from the double spin and double
valley degeneracies). This new quantization sequence is called the half-integer
quantum Hall effect to make a distinction with the integer quantum Hall effect in
usual conductors (figure 2.15).

In bilayer graphene, the electrons also have a chirality, but here with a Berry’s
phase of 2π [12]. Therefore, the Landau levels of bilayer graphene appear at values
which are different from single-layer graphene (and also different from usual con-
ductors): EN =±ħωc

�
N (N +1) with ωc = eB/m. Similar to single-layer graphene,

a Landau level is present at E = 0, where electron and hole states co-exist. How-
ever, in bilayer graphene, the degeneracy at the zeroth Landau level is equal to the
degeneracy at the higher order Landau levels, giving a density of n = 4eB/h per
Landau level for each charge carrier type (figure 2.15c). Consequently, the quan-
tization sequence of the Hall conductance of bilayer graphene is: Gx y = ±4Ne2/h
for N ≥ 1 (figure 2.15c). The double step in the quantization sequence, which ap-
pears at E = 0, is a unique property of bilayer graphene, and allows the bilayers and
single-layers to be discriminated experimentally.

2.4.2 MINIMUM CONDUCTIVITY
Another fascinating transport property of graphene, is its minimum conductiv-
ity at the Dirac point (figure 2.16). When the Fermi level goes from conduction
band, where electrons carry the current, to the valence band, where holes carry
the current, the Fermi level needs to cross the Dirac point. Although the carrier
density vanishes at the Dirac point, the conductivity remains finite at a value of
∼ 4e2/h. This surprising result is not completely understood and has stimulated
many groups to reveal its physical origin.
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FIGURE 2.16: The conductivity σ as a function of the gate voltage Vg for a typical graphene device (note
that the charge density n depends linearly on Vg ). The conductivity reaches a minimum value at the

charge neutrality point (i.e. Dirac point), which is σmin ≈ 4e2/h. At high electron and hole density, the
conductivity depends linearly on Vg or n (adapted from [5]).

A minimum conductivity has been theoretically predicted for chiral electrons
in graphene in the ballistic regime [25,26]. Calculations have shown that, when the
Fermi level is at the Dirac point, electron transport may still occur due to the pres-
ence of evanescent waves. Such evanescent waves should give rise to a minimum

conductivity of σmin = 4e2

πh . This predicted minimum value is only observed exper-
imentally in very short graphene devices, where the assumption of ballistic trans-
port is more closely matched [27,28]. Most often, however, values of σmin ≳ 4e2/h
are measured in larger devices [9,29,30].

This higher experimental value of σmin can be explained by charge inhomo-
geneities that can play a dominant role when the Fermi energy is small. In this
regime, close to the Dirac point, potential fluctuations yield charge density fluc-
tuations and, as a result, puddles of electrons and holes are formed [31]. Pud-
dle formation can be understood by considering potential fluctuations due to the
presence of charged impurities close to the graphene sheet [32-34]. Alternatively,
the presence of ripples in the graphene sheet may give rise to these potential fluc-
tuations [35]. Although the physical origin of charge inhomogeneities is still not
fully understood, it is widely believed that they dominate the transport properties
close to the charge neutrality point in large devices and, consequently, affect the
value of the minimum conductivity [9,29,30,34].
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2.4.3 HIGH MOBILITY
Most transport measurements reported so far are done on graphene sheets placed
on a SiO2 substrate. Mobility values exceeding 10,000 cm2/Vs are measured for
electrons and holes, even up to room temperature [9]. The scattering mechanism
that limits the mobility is not revealed yet. Measurements have shown that phonon
scattering is very weak in graphene, because the mobility shows almost no tem-
perature dependence. Furthermore, it is not believed that atomic defects limit
the mobility in graphene, since graphene’s lattice structure is of very high qual-
ity. Therefore, it is expected that other scattering mechanisms limit the mobility in
graphene [29,30,35].

It is currently believed that in graphene on a SiO2 substrate, the conductivity
is mainly limited by long-range scattering mechanisms, resulting in a conductivity
that depends linearly on the charge density, σ ∝ n (figure 2.16) [29,30,32,33,35].
Possibly, charged impurities close to the graphene sheet are responsible for this
long-range scattering. Such charged impurities may be adatoms on the surface of
graphene, atoms between graphene and the substrate or charges in the substrate.
However, this has not been proven yet and, therefore, the origin of long-range scat-
tering is still under debate [30,33,36].

In addition to long-range scattering, also short-range scattering may occur in
graphene (for example due to point defects and edge disorder). Theory predicts
that short-range scattering gives rise to a conductivity which is independent of the
charge density. If short-range scattering occurs in combination with long-range
scattering, the conductivity will exhibit a sublinear dependence on the charge den-
sity. Such a sublinear dependence has been observed in several experiments, in
particular on high-mobility graphene devices [29,30,33,35].

Recently, the first experimental results on transport in annealed suspended
graphene devices have been reported [37-39]. By suspending graphene, scatter-
ers from the SiO2 substrate are eliminated (not only charged impurities which
may be present in SiO2, but also phonons which remotely interact with charges
in graphene at high temperatures [40,41]). Furthermore, by annealing graphene
devices, it is ensured that the amount of adatoms on the surface (e.g. charged
impurities) is reduced. This results in ’cleaner’ graphene devices, which exhibit a
strong enhancement of the mobility of electrons and holes: μ≳ 100,000 cm2/Vs,
even up to room temperature (which is higher than ever reported before for a semi-
conducting material) [38].

2.5 QUANTUM INTERFERENCE
At room temperature, most electrical properties of macroscopic systems are well
described by considering the electrons as classical particles. However, at low tem-
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peratures, the quantum mechanical wave properties of electrons come into play.
Quantum interference of electronic waves gives rise to phenomena like weak local-
ization, strong localization and the Aharonov-Bohm effect, which will be described
in this section. Electronic transport in graphene is different than in usual materi-
als, because graphene’s conduction electrons have a chirality. This chirality can
give rise to unique manifestations of these quantum interference phenomena, as
will be explained in the final part of this section.

The quantum interference of electronic waves, that we consider here, occurs
when electrons travel phase coherently through a diffusive conductor. In a diffu-
sive medium, electrons experience many scattering events, which can be elastic
or inelastic processes. Inelastic scatterers affect the energy of electrons and ran-
domize their phase, while elastic scatterers only randomize the direction of mo-
tion. The mean free path of an electron, lm , is defined as the average distance
between elastic scatterers. This means that in the diffusive regime, the mean free
path is smaller than the length of the conductor (lm < L). Additionally, the phase
coherence length, lϕ, is defined as the characteristic length scale on which the
phase is conserved. For quantum interference effects to occur, the phase coher-
ence length should be larger, or at least of the same order as the length of the con-
ductor (L ≲ lϕ). If, on the other hand, a conductor is much larger than the phase
coherence length, the phase of the electrons is completely randomized and most
phase coherent effects are suppressed.

2.5.1 WEAK LOCALIZATION
In the quantum diffusive regime (lm < L ≲ lϕ), electrons have a higher probabil-
ity of backscattering than in the classical diffusive regime (lm , lϕ � L). The en-
hanced backscattering is well understood by considering the interference of an
electron with itself when it follows different trajectories (so-called Feynman paths)
[15,22,42]. Figure 2.17a illustrates the presence of different trajectories between
two points (r1 and r2) in a diffusive medium. If there are j possible trajectories,
the probability to find an electron at point r2 is the sum of the probability ampli-
tudes associated to the different Feynman paths. For each path we write down the
probability amplitude as ψ j = t j eiϕ j . Hence, the total probability of an electron to
move from point r1 to point r2 in a time interval t is

P (r1,r2, t) = |ψ|2 = |∑
j
ψ j |2 = |∑

j
t j eiϕ j |2 =∑

j
t 2

j +
∑
k �= j

t j tk ei(ϕ j −ϕk ) (2.29)

The first term is simply the sum of the probabilities of the individual Feynman
paths. The second term accounts for quantum interference between different paths.
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a) b)

r1 r2 r1

FIGURE 2.17: Schematic picture of uncorrelated trajectories contributing to forward scattering from r1
to r2 (a) and time reversed trajectories contributing to backward scattering (b).

In most cases, the Feynman paths are uncorrelated and the second term effectively
averages out. Thus, for forward scattering from r1 to r2 we can write: P f wd =∑

j t 2
j .

However, if we consider the special case of backscattering (r1 = r2), the sec-
ond term of eq. (2.29) does not completely average out. Figure 2.17b illustrates
that for each trajectory j , there exists a trajectory j ′ which is the time reversed
trajectory of j . Such pairs are called time reversal symmetric (TRS) trajectories
and are fully correlated, because both trajectories correspond to exactly the same
path, undergoing exactly the same scattering events (only the propagation direc-
tions are opposite). As a consequence, the partial wavefunctions of both Feynman
paths are equal: ψ j =ψ j ′ (yielding t j = t j ′ and ϕ j =ϕ j ′). For the total probability
of backscattering we can write

P (r1,r1, t) = |ψ|2 =∑
j

t 2
j +

∑
j , j ′

t j t j ′e
i(ϕ j −ϕ j ′ ) + ∑

k �= j , j ′
t j tk ei(ϕ j −ϕk ) (2.30)

The difference between forward and backward scattering, is the second term con-
taining the set of TRS trajectories. This term does not average out and equals

∑
j t 2

j .

Consequently, the probability of backscattering is enhanced: Pback = 2
∑

j t 2
j (note

that Pback is twice as large as P f wd ). This quantum phenomenon of enhanced
backscattering is called weak localization, because it is responsible for the fact that
electrons tend to localize in a diffusive medium.

Time reversal symmetry can easily been broken by a magnetic field B. When an
electron travels through a magnetic vector potential field A (defined by B =∇×A),
the electron acquires a phase:

Δϕ= m

ħ
∫r 2

r 1
v ·dr− e

ħ
∫r 2

r 1
A ·dr (2.31)

The first term is the usual phase evolution of an electron wave propagating from
r1 to r2. The second term is an additional phase originating from the presence of a
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magnetic vector potential. If we compare two trajectories of length L, that are time
reversed in the absence of the magnetic field, the acquired phase is

Δϕ j = kF L − e

ħ
∮

L
A ·dr j (2.32)

for one of them, and

Δϕ j ′ = kF L − e

ħ
∮

L
A ·dr j ′ = kF L + e

ħ
∮

L
A ·dr j (2.33)

for its time reversed partner (since dr j ′ = −dr j ). This gives a phase difference be-
tween both trajectories equal to

|Δϕ j −Δϕ j ′ | =
2e

ħ
∮

L
A ·dr j = 2e

ħ
�

S
(∇×A)dS = 2e

ħ
�

S
BdS = 2e

ħ Φ (2.34)

where Φ = BS is the magnetic flux corresponding to the magnetic field penetrat-
ing the area S enclosed by the trajectories. This phase difference breaks the sym-
metry between the TRS trajectories. The large variation of areas S enclosed by
the different time reversed pairs, results in a large variation of phase differences.
Consequently, the second term in eq. (2.30), which accounts for an enhanced
backscattering at zero magnetic field, averages out at high magnetic fields (i.e.
Pback = P f wd at high field).

A signature of weak localization of electrons is a negative magnetoresistance.
The enhanced backscattering at zero magnetic field results in a suppressed con-
ductance (or an enhanced resistance). However, when a magnetic field is applied,
the probability of backscattering decreases giving rise to an increase of the con-
ductance. Weak localization is completely suppressed for typical magnetic fields
B ≳ h/(el 2

ϕ) [42]. The suppression of the conductance due to weak localization de-
pends on the dimensionality of the system. The weak localization correction to the
conductance is δG ∼ (e2/h)(W /L) in a two-dimensional system (lϕ <W ) [15].

2.5.2 QUANTUM INTERFERENCE IN A RING
Applying a magnetic field to a diffusive conductor does not only result in sup-
pression of weak localization, it also gives rise to sample specific magnetoconduc-
tance fluctuations [15,22]. These fluctuations appear because of the interference
of many different Feynman paths. Each path picks up a phase, dependent on the
path length L and the vector potential A. Since the paths are random, the super-
position of all paths varies randomly as a function of magnetic field, yielding ape-
riodic magnetoconductance fluctuations (δG ∼ e2/h).
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a) b)

FIGURE 2.18: Schematic picture of different trajectories contributing to the AB-effect (a) and the AAS-
effect (b).

These magnetoconductance oscillations become periodic, when the conduc-
tor has a ring-shaped structure [15,22,42]. Consider a ring with two leads (Figure
2.18a) and electrons traveling from the left to the right lead. The Feynman paths in
the upper arm of the ring can be distinguished from the paths in the lower arm of
the ring. In case of zero magnetic field (Φ= 0), eq. (2.29) can be used to determine
the probability to find an electron at the right lead. This probability changes if a
magnetic field is applied (Φ �= 0), because the phase of each Feynman path is af-
fected by the vector potential A. If the width of the arms of the ring is much smaller
than the diameter of the ring, we can assume that all trajectories in the upper or
lower arm acquire the same phase due to vector potential A. For trajectories in the
upper arm of the ring (with length L1), this accumulated phase is

Δϕ1 = e

ħ
∫

L1
A ·d l1 (2.35)

while in the lower arm of the ring (with length L2), it is

Δϕ2 = e

ħ
∫

L2
A ·d l2 (2.36)

Effectively, this gives a phase difference between trajectories propagating in differ-
ent arms

Δϕ1 −Δϕ2 = e

ħ
∮

L1+L2
A ·d l = e

ħΦ (2.37)

This result shows that the phase difference increases as a function of increasing
magnetic field. As a consequence, the conductance oscillates as a function of Φ
(or B) with a periodicity ΔΦ= h/e (or ΔB = h

eS with S the area inside the ring). One
often refers to these periodic conductance oscillations as to Aharonov-Bohm (AB)
oscillations. We should note that also higher harmonic AB-oscillations can occur
(e.g. the harmonic oscillations with periodicity ΔΦ = h/2e due to interference of
trajectories encircling the complete ring).
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A second effect that gives rise to periodic conductance oscillations in a ring,
is the Altshuler-Aronov-Spivak (AAS) effect [15,22,42]. The AAS-effect is directly
related to weak localization. To understand the AAS-effect, we need to consider
time reversal symmetric trajectories which encircle the complete ring in opposite
directions (Figure 2.18b). According to eq. (2.30), the probability of backscatter-
ing P (r1,r1, t) is enhanced when no magnetic field is penetrating the ring (Φ= 0).
However, when a magnetic field is present (Φ �= 0), each pair of time reversed pairs
acquires a phase difference, which is

Δϕ= 2e

ħ
∮

L
A ·d l = 2e

ħ Φ (2.38)

Therefore, the conductance oscillates as a function of Φ (or B) with a periodicity
of ΔΦ = h/2e (or ΔB = h

2eS ). This is called the AAS-effect and occurs besides the
AB-effect. Notice that the periodicity of the AAS-effect is equal to the periodicity of
an harmonic of the AB-effect.

2.5.3 STRONG LOCALIZATION
In the weak localization regime, the backscattering of electrons is enhanced due
to constructive interference of time reversal symmetric paths. In this regime, the
electrons are not completely localized, but are still propagating diffusively. The
electrons scatter inelastically to other states before they get localized. On the other
hand, electrons can be completely localized in a strong disordered conductor. In
this so-called strong localization regime, the electrons are locally confined and,
effectively, the conductor becomes an insulator [43-45].

The length scale on which electrons are localized (i.e. the spatial distribution
of the localized wave packets), is called the localization length ξ. In the weak local-
ization regime, the electrons are not effectively localized, because the localization
length is larger than the phase coherence length (lm < lϕ < ξ,L). For strong local-
ization to occur, the localization length should be smaller than the phase coher-
ence length and the length of the conductor (lm ≲ ξ < lϕ,L). The crossover from
weak to strong localization results in a metal to insulator transition. In the weak
localization regime, the resistance depends linearly on the length of the conductor
(R ∝ L), but it depends exponentially on the length in the strong localized regime
(R ∝ exp(L/ξ)) [22,45], at least in the zero temperature limit.

Although strongly localized electrons are locally confined, they can still con-
tribute to the conduction. At finite temperatures, localized electrons are thermally
activated to hop from one localized state to another [45]. If electrons hop to neigh-
bouring sites, the transport mechanism is referred to as nearest neighbour hop-
ping. In this transport regime, the temperature dependence of the resistance is
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thermally activated

R ∝ exp(Δξ/kT ) (2.39)

with Δξ of the order of the level spacing between energy states in a localized do-
main. When Δξ is large, it may be energetically more favourable for electrons to
hop a larger distance to states with a closer energy level [45]. This is the variable
range hopping regime, where the temperature dependence of the resistance is

R ∝ exp(T0/T )1/(d+1) (2.40)

with d the dimensionality of the system (d = 1,2,3) and T0 a characteristic tem-
perature related to the hopping energy (we should note that the exponent is 1/2 if
the Coulomb interactions between electrons at different sites are non-negligible,
irrespective of the dimensionality of the system) [45].

In the strong localization regime, the electrons have an enhanced probability of
backscattering due to time reversal symmetry. When this time reversal symmetry
is broken by a magnetic field, the probability of backscattering decreases. Conse-
quently, the localization length will increase (i.e. a larger distribution of the wave
packet). The crossover to broken time reversal symmetry occurs at B ≳ h/(eξ2).
Contrary to the weak localization regime, there is no universal correction value
(δG) of the conductance in the strong localization regime [46].

2.5.4 ANOMALOUS LOCALIZATION EFFECTS IN GRAPHENE
In graphene, the chiral nature of electrons gives rise to an additional phase: the
Berry’s phase (see §2.1). Electrons in conventional materials have no Berry’s phase,
but electrons in single layer graphene have a Berry’s phase of π, which means that
an electron wavefunction acquires a phase of π after a rotation of 2π in momen-
tum space around a K -point (or a closed trajectory in real space, during which
no intervalley scattering takes place). This additional phase can manifest itself in
interference phenomena.

Since the band structure of graphene consists of two valleys, two different types
of elastic scattering processes are possible: intervalley and intravalley scattering
[47-51]. Intervalley scattering is scattering from a state in one valley to a state in
the other valley (with a characteristic time τinter ). This type of elastic scattering
destroys the chirality, therefore the Berry’s phase does not play a role if strong inter-
valley scattering is present. However, the chirality of electrons is conserved by in-
travalley scattering. Intravalley scattering is an elastic scattering process between
states in a single valley (with a characteristic time τintr a ). If intravalley scattering is
the dominant scattering mechanism (τintr a � τinter ), transport can be described
effectively by only considering the single-valley Hamiltonian (eq. (2.14-2.15)).
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FIGURE 2.19: (a) If τint r a � τint er , then intravalley scattering gives rise to backscattering trajectories
(i.e. trajectories corresponding to states in a single valley). This picture shows that pairs of trajecto-
ries can be identified which are symmetric: the k and −k states around the K point (or K ′ point) are
effectively time reversal symmetric (note that the real time reversal symmetry is between the K and
−K states). This type of backscattering results in weak anti-localization in single-layer graphene. (b)
If τint er � τint r a , then intervalley scattering gives rise to backscattering trajectories (i.e. trajectories
corresponding to states in both valleys). This picture shows that pairs of trajectories can be identified
which are time reversal symmetric: the K and K ′ states are the real time reversal symmetric pairs. This
type of backscattering gives rise to weak localization in single-layer graphene.

An interesting property of single-valley transport, is that the probability of back-
scattering is not enhanced as in usual materials, but is suppressed to zero [51].
This is a direct consequence of the single-valley Hamiltonian which has a sym-
metry (between k and −k) which is analogue to time reversal symmetry, but is
not the real time reversal symmetry (which is between K and −K ). Consequently,
pairs of trajectories can be identified which are effectively time reversal symmetric
(figure 2.19a). Since effective time reversal symmetric trajectories accumulate op-
posite Berry phases, the phase difference between each symmetric pair is π. Con-
sequently, the reversed paths interfere destructively, resulting in a zero probability
of backscattering (because the first two terms of eq. (2.30) cancel each other). The
absence of backscattering leads to a suppression of resistance, which is called weak
anti-localization.

If a magnetic field is present, the Aharonov-Bohm phases caused by the mag-
netic flux randomize the amplitudes of all trajectories, and the resistance is not
suppressed anymore. This phenomenon gives rise to a positive magnetoresis-
tance. Contrary to real time reversal symmetry, which can only be broken by a
magnetic field, the effective time reversal symmetry can also be broken by long-
range distortions of the lattice (e.g. dislocations), curvature of the graphene sheet
(e.g. ripples), slowly varying random electric potentials (e.g. charged impurities
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close to the surface) and trigonal warping [50]. Such properties give rise to an
effective gauge-field in the single-valley Hamiltonian, and therefore, similar to a
magnetic field, break the effective time reversal symmetry. If the symmetry is al-
ready broken at zero field, a magnetic field will have no effect anymore, resulting
in the absence of any (positive or negative) magnetoresistance effect.

On the other hand, weak localization is regularly observed in graphene. Weak
localization occurs if intervalley scattering becomes stronger than intravalley scat-
tering (τinter << τintr a ). Short-range potentials, like point defects and edge disor-
der, are the origin of intervalley scattering. When electrons scatter from one valley
to the other, their chirality is destroyed and, consequently, the Berry’s phase does
not play a role in intervalley scattering processes. In this regime, the double-valley
Hamiltonian needs to be considered in order to understand the electronic trans-
port properties. In the double-valley Hamiltonian the K and K ′ states are the real
time reversal symmetric pairs (figure 2.19b). Their symmetry is robust and can
only be broken by a magnetic field. As in conventional materials, backscattering is
enhanced at zero magnetic field, but is suppressed at high magnetic fields, which
gives rise to a negative magnetoresistance in the regime of intervalley scattering.

When intervalley scattering becomes very strong, weak localization can turn
into strong localization. Strong localization is theoretically predicted in disordered
graphene nanoribbons [52-56]. The presence of strong disorder in these quasi-
one-dimensional systems yields a high intervalley scattering rate and, therefore, a
smaller mean free path lm than in two-dimensional graphene. Close to the charge
neutrality point, it is expected that the localization length is of the same order as
the mean free path [52]. Consequently, at low charge density, the regime of strong
localization will be accessible if lm ≲ ξ < lϕ,L. A crossover from weak to strong
localization will give rise to a transition from diffusive to hopping transport [56].

In this section, we only discussed localization effects in single-layer graphene,
but a similar discussion can be done for bilayer graphene, because bilayer graphene
also has two valleys and supports chiral electrons. However, an important differ-
ence is that chiral electrons in bilayer graphene have a Berry’s phase of 2π. In the
single-valley transport regime (τintr a << τinter ), a Berry’s phase of 2π gives rise
to an enhanced backscattering. As a consequence, intravalley scattering results
in weak localization (contrary to weak anti-localization in single-layer graphene).
So, differently from single layers, weak anti-localization is not expected to occur in
bilayers [51].

2.6 ANDREEV REFLECTION AND SUPERCURRENT
Many metals turn into superconductors below a critical temperature Tc , which is
material dependent [57,58]. Below Tc , the electrons close to EF form Cooper pairs,
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which consist of electrons of opposite momentum and spin. These Cooper pairs
are condensed into a collective state ψ(r ) = |ψ(r )|eiφ(r ) at EF (with φ(r ) the phase
of the superconducting state). As a consequence, the normal density of states van-
ishes in the range [EF −Δ,EF +Δ] and an energy gap appears at EF . Remarkably,
the electric current, carried by the Cooper pairs, is dissipationless. Therefore, the
resistance of a superconductor drops to zero below its critical temperature.

In this section, we will consider metals which are contacted to a superconduc-
tor. We will show that a special type of electron reflection occurs at a superconductor-
metal interface, the so-called Andreev reflection. If a metal is sandwiched between
two closely spaced superconducting contacts, the current though the metal can
also be dissipationless due to the Josephson effect. Finally, we will consider elec-
tronic transport in superconductor-graphene-superconductor junctions.

2.6.1 ANDREEV REFLECTION
In a metal-superconductor junction, electron transport occurs in a unique way. A
metal has a continuous density of states at the Fermi level, while a superconduc-
tor has an energy gap at EF . If an electron with energy EF + ε travels through a
metal and arrives at the interface, it will meet the superconducting gap if ε < Δ

(figure 2.20). To enter the superconductor, it needs to form a Cooper pair with an-
other electron. Therefore, a second electron is extracted from the metal, which has
opposite momentum and spin. Since charge needs to be conserved, this process
leaves a hole in the metal. The process of an incoming electron which is reflected
as a hole in the metal, is called Andreev reflection [42,58].

The initial electron with wavevector k(1)
e forms a Cooper pair with a second

electron which has an opposite wavevector, k(2)
e =−k(1)

e . Since the second electron
leaves a hole in the metal, the wavevector of the hole is kh =−k(2)

e = k(1)
e . Although

the wavevectors of the initial electron and the reflected hole are identical, their
velocities are opposite, because the velocity and wavevector are parallel (antipar-
allel) for electrons (holes). Consequently, the reflected hole retraces the path of the
initial electron. This is called retroreflection.

However, we should realize that kh �= k(1)
e if ε �= 0. This can be understood by

considering the energy states of the particles involved in the process. Before and
after Andreev reflection, the values of the total energy are Eini ti al = E (1)

e +E (2)
e +Eh =

EF + ε+ 2Eh and E f inal = 2E
(Cooper )
e +Eh = 2EF +Eh . Since energy needs to be

conserved, the energy of the hole is Eh = EF − ε, and consequently, kh < k(1)
e if

ε > 0. This difference in momentum, that is absorbed by the Cooper pair, gives
rise to a phase difference between the trajectories of the incoming electron and
the retroreflected hole. They lose their coherence if the phase difference becomes
Δϕ ≳ π. Therefore, by considering all possible Andreev reflection processes (0 <
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FIGURE 2.20: The process of Andreev reflection at a metal-superconductor interface. Since a Cooper
pair is formed in the superconductor, the incident electron is reflected as a hole.

ε <Δ), the superconducting phase coherence length can be determined, which is
ξ0 = ħvF

πΔ in a ballistic metal and ξ=√
ξ0lm in a diffusive metal [59].

2.6.2 JOSEPHSON SUPERCURRENT
If a normal metal is contacted by two closely spaced superconducting electrodes,
forming a so-called Josephson junction, the metal can support dissipationless cur-
rents [42,58]. These proximity induced supercurrents occur in the absence of a
driving voltage. This phenomenon is called the Josephson effect. If the current is
smaller than a critical current Ic , there is no energy disipation (i.e. V = 0). On the
other hand, if I > Ic , a dissipating current flows through the metal (V �= 0). The
occurrence of supercurrents for I < Ic can be understood by considering multiple
coherent Andreev reflections at both metal-superconductor interfaces.

Suppose an electron with energy EF + ε (and ε < Δ) is travelling in the metal
towards the right superconductor (figure 2.21). At the interface, the electron will
enter the superconductor and a hole is Andreev reflected (with an energy EF −ε).
When this hole arrives at the interface with the left superconductor, it will enter
the superconductor and return an Andreev reflected electron. This electron has
the same state as the original electron (EF + ε) and, therefore, both will interfere.
Effectively, this process of multiple Andreev reflections transfers Cooper pair from
one superconductor to the other. Moreover, this process gives rise to quantized
bound states in the metal and no energy dissipation occurs. This results in a su-
percurrent Is , which depends on the phase difference Δϕ between both super-
conductors: Is = Ic sinΔϕ [42,58]. If the spacing between the superconductors is
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Superconductor Normal metal Superconductor

FIGURE 2.21: Schematic picture of the mechanism of the Josephson effect, which gives rise to dissi-
pationless supercurrent. Multiple Andreev reflections yield bound states in the metal, through which
Cooper pairs are transferred from the left to the right superconductor.

smaller than the superconducting phase coherence length (L < ξ), the critical cur-
rent is Ic = NeΔ/ħ (with N the number of superconducting channels, including
the degeneracies) [59].

While multiple Andreev reflections (MAR) give rise to bound states for I < Ic ,
they result in subgap features if I > Ic [58]. If I > Ic , a dissipative current flows
through the normal metal. This results in a voltage drop over the metal (V > 0).
If V > 2Δ/e, two different kind of paths contribute to the electric current through
the metal: paths without AR and paths with single AR (figure 2.22a). However,
if V < 2Δ/e, paths without AR cannot occur anymore and paths with double AR
arise (figure 2.22b). As a consequence, the transmission through the metal changes
yielding a feature in the I -V characteristic at V = 2Δ/e. More of these features
appear at Vn = 2Δ/ne where paths with (n+1)-fold AR appear and paths with (n−
1)-fold AR disappear (note that V → 0 if I → Ic , because V = 0 if I < Ic ).

2.6.3 ANDREEV REFLECTION AND SUPERCURRENT IN GRAPHENE
As we have shown in previous sections, Andreev reflections are intraband pro-
cesses: the electron and its Andreev reflected hole are both in the conduction
band. Interband Andreev reflections cannot occur in usual metals. However, in
graphene intraband as well as interband Andreev reflections can occur, depen-
dent on the position of the Fermi level. As a consequence two different regimes
are distinguished in graphene [60].
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FIGURE 2.22: Multiple Andreev reflections which contribute to the normal current through the metal
(I > Ic ). (a) If V > 2Δ/e, then transmissions without (n = 0) and with a single Andreev reflection (n = 1)
contribute to the current. If Δ/e < V < 2Δ/e, then transmissions without Andreev reflection disappear
and transmissions with two-fold Andreev reflection appear (n = 2).

FIGURE 2.23: Andreev reflection gives rise to coupling of both valleys in graphene. The incident elec-
tron in one valley is related to the Andreev reflected hole in the other valley [60].
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Consider an electron with wavevector k which travels in a graphene sheet to-
wards a superconductor. When it arrives at the interface, it enters the supercon-
ductor and forms a Cooper pair with a second electron with wavevector −k. Since
both electrons have opposite wavevectors, they come from two different valleys of
graphene, K and K ′ (figure 2.23). As a consequence, Andreev reflection processes
connect both valleys of graphene. If the intial electron is in the conduction band
with energy EF +ε and ε < EF , then the Andreev reflected hole with energy EF −ε

will also be in the conduction band (figure 2.24a). The original electron moves to-
wards the interface, while the hole moves away from the interface, therefore vx

should change sign. Furthermore, ky should be conserved after reflection. Figure

2.24a shows that under these conditions, vx as well as vy change sign (i.e. vh
x =−ve

x

and vh
y = −ve

y ). Consequently, the reflected hole retraces the path of the original
electron . This result shows that intraband Andreev reflection in graphene leads to
retroreflection (as in usual metals).

A different reflection process occurs if the initial electron has an energy EF +ε

with EF < ε (and both EF and ε smaller than Δ). In this case, the reflected hole with
energy EF −ε will be in the valence band (figure 2.24b). For Andreev reflection to
occur, vx needs to change sign and ky needs to be conserved. Since the velocity
of a valence band electron is parallel to its wavevector, the velocity parallel to the
interface does not change sign (vh

x = −ve
x and vh

y = ve
y ). Thus, interband Andreev

reflection leads to specular reflection, which is a unique property of graphene [60].

Not only Andreev reflection is different close to the Dirac point, but also Joseph-
son supercurrents exhibit differences with respect to usual materials. In short bal-
listic graphene Josephson junctions (L < ξ), the critical current is Ic

∼= eΔ
ħ W /λF if

λF < L (which is the high doping regime, EF > ħvF /L). On the other hand, the
critical current is Ic

∼= eΔ
ħ W /L if λF > L (which is in the vicinity of the Dirac point,

EF < ħvF /L) [60,61]. This result shows that the critical current is length indepen-
dent at high densities, but is length dependent close to the Dirac point. The length
dependence close to the Dirac point is remarkably different from usual materials,
in which the critical current is length independent if L < ξ.

2.7 PREPARATION AND IDENTIFICATION OF GRAPHENE
In this section, we will discuss graphene from a more practical point of view. In
the first part, the most widely used preparation techniques of graphene will be
discussed: from mechanical exfoliation to growing graphene. Then, in the sec-
ond part, several methods for graphene identification are described, because after
graphene preparation, the number of layers needs to be determined: from single-
layer to n-layer graphene.
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FIGURE 2.24: Andreev retroreflection (a) and specular Andreev reflection (b) in graphene (adapted
from [60]). Additionally, kx and ky of the incident electron and the reflected hole are shown for both
reflection processes.

2.7.1 HOW TO PREPARE GRAPHENE

Until recently, it was widely believed that two-dimensional crystals, like a single
atomic layer of graphite, cannot exist. However, Andre Geim and Kostya Novoselov
from Manchester University strongly believed that it should be possible to remove
a single layer of graphite from a larger three-dimensional crystal. They used nor-
mal adhesive tape to peel graphitic layers from a piece of graphite. Subsequently,
they transferred the graphitic flakes to a Si/SiO2 substrate (simply by pressing the
tape with peeled graphite flakes on the SiO2 side of the substrate). Most suspris-
ingly, they succeeded in transferring single atomic layers of graphite [62,63]. Their
experimental discovery of graphene in 2004 opened a new branch of physics [9].

After this great discovery, many research groups, like our group in Delft, started
to mechanically exfoliate graphite to prepare graphene flakes on a Si/SiO2 sub-
strate. After graphene flakes were found on a substrate, electronic graphene de-
vices could be made by contacting the flakes with metal electrodes (figure 2.25;
see appendix for technical details). For preparing graphene flakes, different types
of graphite are available, ranging from natural graphite from different parts of the
world (e.g. North Korea, United States, China, Madagascar, Sri Lanka, India) to
synthetic graphite produced at companies (i.e. HOPG: highly ordered pyrolytic
graphite). Dependent on the type of graphite that was used, different electron
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FIGURE 2.25: Optical pictures of (a) graphite, (b) graphene and (c) a typical graphene device.

mobilities were measured in graphene devices, indicating a variation of the qual-
ity of graphene flakes (possibly due to a different amount and type of disorder).
However, a systematic quantitative study of the different qualities of graphene has
never been done yet.

Although mechanical exfoliation of graphite by using adhesive tape is a suit-
able technique for preparing high-quality graphene flakes in research labs, this
technique is not satisfying the requirements for massive production of graphene
in industrial environments. Therefore, there is a need for a production technique
which enables control of the size and quality of graphene crystals. Already before
the experimental discovery of graphene in 2004, researchers were able to grow thin
graphite layers on top of a substrate [9,64]. More recently, many researchers suc-
ceeded in growing single-layer graphene epitaxially on several substrates, and even
to transfer these graphene layers to different substrates [65]. The most promising
growing techniques so far are thermal decomposition of silicon-carbide [64] and
chemical vapour deposition of graphene on nickel or other transition metal sub-
strates [66].

2.7.2 HOW TO IDENTIFY GRAPHENE
Immediately after the discovery of graphene, there were not many reliable tech-
niques to distinghuish single-layer graphene from multi-layers. In case the flakes
were contacted by metal electrodes, the quantum Hall effect was often used for
identification, because single-layer graphene exhibits a unique sequence of quan-
tum Hall conductance steps (see figure 2.15) [9]. Although this method was suc-
cessfully used to identify single-layer graphene, there was a need for alternative
techniques which are less time-consuming.

Usually, an AFM (atomic force microscope) is used to determine atomic scale
step heights of materials. Also, the step height from single-layer to n-layer graphene
can be determined accurately by an AFM [67]. AFM-measurements have shown
that the step height between different layers is a multiple of ∼ 0.35 nm, which cor-
responds to the interlayer distance in graphite. However, the thickness of a single-
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FIGURE 2.26: The Raman spectrum of graphite and graphene, showing the G-peak and the D ′-peak as
the most prominent features, which can be used to identify single-layer graphene [68].

layer of graphene with respect to the underlying substrate appeared to be larger
(instead of a thickness of∼ 0.35 nm, values varying between 0.5 and 1 nm were reg-
ularly obtained for graphene on SiO2). Different explanations are given for this de-
viation (for instance, the attraction force between the AFM-tip and graphene may
differ from the force between tip and substrate, or there may be water or something
else between graphene and the substrate). As a consequence, AFM is not a good
technique to determine the thickness of single-layer and few-layer graphenes.

A reliable technique, which is often used to identify single-layer graphene, is
Raman spectroscopy [67-69]. The Raman spectrum appears to be sensitive to the
number of graphene layers. The most prominent features of the Raman spectra
of graphene and graphite are the G-peak, around 1580 cm−1, and the D ′-peak,
around 2700 cm−1 (figure 2.26). Since the intensities and positions of these peaks
are related to the electronic structure, these peaks depend on the number of gra-
phene layers. With respect to the Raman spectrum of graphite, the G peak of
single-layer graphene is shifted upwards from ∼ 1582 to ∼ 1587 cm−1 [67], the in-
tensity of the G-peak is decreased while the intensity of the D ′-peak remains al-
most constant [67,69] and the FWHM-value (full width at half maximum) of the D ′
peak of single-layer graphene is changed from ∼ 60 to ∼ 30 cm−1 [69]. Because of
these features, Raman spectroscopy is a useful technique to identify single-layer
graphene (and even n-layer graphene, for n ≲ 5) [67-69].

A good alternative for identification of graphene, is to make use of its visibility
in an optical microscope. Graphene is visible on a Si/SiO2 substrate, because the



44 2. THEORY

FIGURE 2.27: The relative green shift (RGS) of single-layer, bilayer and trilayer graphene with respect to
a silicon substrate with 285 nm SiO2 [72]. The flake counter shows for how many flakes the RGS-value
is determined (each point in the figure represents the RGS-value of a flake).

intensity of reflected light from this substrate changes slightly if a graphene flake
is present [70]. The optical wavelengths at which the difference in reflectivity be-
tween the flake and the substrate is maximum, depends on the thickness of the
SiO2 layer. For example, graphene on a 285 nm SiO2 layer has a maximum visibil-
ity at wavelengths in the green spectrum (λ∼ 550 nm). To quantify the visibility of
graphene, the intensities of the reflected green light from the graphene flake as well
as the surrounding substrate need to be determined. This can be done by extract-
ing the green component of the RGB-value from a digital color picture of the flake
(G f ) and the substrate (Gs) [71,72]. Subsequently, the so-called relative green shift
(RGS) can be calculated, RGS = (Gs −G f )/Gs , which is a measure of the contrast.
Figure 2.27 shows the determined RGS-values of a large number of single-layer, bi-
layer and trilayer graphene flakes on a substrate with 285 nm SiO2 [72]. This figure
clearly indicates that this optical contrast method is a reliable technique to identify
the thickness of graphene flakes (up to at least three layers).
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3
GATE-TUNABLE BANDGAP IN

BILAYER GRAPHENE

The potential of graphene-based materials consisting of one or a few layers of gra-
phite for integrated electronics originates from the large room-temperature carrier
mobility in these systems (∼10,000 cm2/Vs). However, the realization of electronic
devices such as field-effect transistors will require controlling and even switching off
the electrical conductivity by means of gate electrodes, which is made difficult by the
absence of a bandgap in the intrinsic material. Here, we demonstrate the controlled
induction of an insulating state −with large suppression of the conductivity − in bi-
layer graphene, by using a double-gate device configuration that enables an electric
field to be applied perpendicular to the plane. The dependence of the resistance on
temperature and electric field, and the absence of any effect in a single-layer device,
strongly suggest that the gate-induced insulating state originates from the recently
predicted opening of a bandgap between valence and conduction bands.

The contents of this chapter have been published in Nature Materials:
J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo, L. M. K. Vandersypen, Gate-induced insulating
state in bilayer graphene devices. Nature Materials 7 (2), 151-157 (2008).
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3.1 INTRODUCTION
Graphene systems, consisting of one or a few crystalline monolayers of carbon
atoms, stand out because of their unusual electronic properties and their poten-
tial for applications in nano-electronics [1-5]. Carrier mobility values as high as
10,000 cm2/Vs at room temperature − ten times higher than in silicon − are rou-
tinely obtained in these materials, without the need for sophisticated preparation
techniques [1]. Both the high mobility and the possibility of low-cost mass pro-
duction provide a strong drive to explore the use of graphene for future high-speed
integrated electronic circuits. To develop such ’graphene-based electronics’, how-
ever, several problems need to be overcome. Perhaps the most important obstacle
is the absence of an energy gap separating the valence and conduction bands of
graphene − graphene is a zero-gap semiconductor [6]. As a consequence, electri-
cal conduction cannot be switched off using control voltages [7], which is essential
for the operation of conventional transistors. It was recently shown that conduc-
tion can be switched off by patterning single-layer graphene into narrow ribbons
[8]. Here, we demonstrate that we can produce an insulating state and switch off
electrical conduction in a bilayer graphene device, simply by applying control volt-
ages to two on-chip gate electrodes.

3.2 THE LOW-ENERGY BANDSTRUCTURE OF SINGLE- AND

BILAYER GRAPHENE
Our strategy is motivated by recent theoretical work that discusses how a band-
gap can be opened in single- and bilayer graphene [9,10]. To understand the phys-
ical mechanisms underlying these predictions, we consider the basic electronic
properties of graphene-based materials in some detail. Monolayer graphene has
a honeycomb lattice structure with a unit cell consisting of two atoms − normally
referred to as A and B atoms (Fig. 3.1a). The Hamiltonian that describes the elec-
tronic properties of graphene near the Fermi level can be approximated as [6,11]

H =
(

Δ ħvF (kx − i ky )
ħvF (kx + i ky ) −Δ

)
, (3.1)

where k is the momentum and vF is the Fermi velocity. This operator acts on
spinors ψ = (ϕA ,ϕB )T , where ϕA and ϕB are the amplitudes of the wavefunction
on sublattices A and B, and Δ is the on-site energy difference between the two
sublattices. Normally Δ = 0 and this Hamiltonian results in the Dirac-like linear
dispersion relation E = ±ħvF |k| (Fig. 3.1a). The positive and negative solutions,
which correspond to conduction and valence bands respectively, meet at k = 0,
implying the absence of a bandgap. To open a gap, the inversion symmetry in
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the graphene plane must be broken by making Δ �= 0. In this case, the low-energy

Hamiltonian (3.1) leads to a gapped dispersion relation E (k) = ±
√
Δ2 + (ħvF k)2

[2]. This inversion symmetry breaking can in principle be implemented exper-
imentally. For instance, we can imagine placing graphene onto a boron nitride
(BN) substrate that has the same honeycomb lattice structure and comparable lat-
tice spacing, so that the A and B atoms experience different on-site energies [9]. In
practice, however, the technological challenges that need to be met to implement
such a strategy are highly non-trivial.

In bilayer graphene, in contrast, a conceptually similar strategy is within tech-
nological reach. Bilayer graphene consists of two monolayers stacked as in natural
graphite (Fig. 3.1b). This so-called Bernal stacking yields a unit cell of four atoms
(one atom of each of the sublattices A1, B1, A2 and B2) resulting in four electronic
bands. Only two of these bands are relevant at low energy; they can be described
by the effective Hamiltonian [12]

H =
(

Δ − ħ2

2m (kx − i ky )2

− ħ2

2m (kx + i ky )2 −Δ

)
. (3.2)

This operator has a structure similar to that of equation 3.1 and, as for the mono-
layer, it also leads to a spectrum with zero gap between valence and conduction
bands when Δ = 0, but now with a quadratic dispersion relation (E = ±ħ2k2/2m;
Fig. 3.1b). Furthermore, and essential for our purposes, the operator (3.2) acts
on spinors ψ = (ϕA1,ϕB2)T , which contain the amplitude of the wavefunction on
atoms A1 and B2 that are located in the two different layers. This makes it pos-
sible to control the difference between the on-site energy of A1 and B2 electro-
statically, simply by applying a sufficiently strong electric field E perpendicular
to the carbon atom planes. In the presence of such an electric field, a gap of
size 2Δ opens between conduction and valence bands [10,12,13] (Fig. 3.1c). In-
deed, a bandgap originating from this mechanism has recently been observed in
angle-resolved photoemission spectroscopy experiments on a chemically doped
graphene bilayer, in which the electric field is associated with the charge trans-
fer from the dopants to the carbon atoms [14] (see also ref. [15]). Here, we use a
double-gate device configuration to impose a perpendicular electric field onto a
graphene bilayer, which enables us to demonstrate the controlled transition from
a zero-gap semiconductor to an insulator, by simply adjusting the voltages applied
to the two gate electrodes.

3.3 FABRICATION OF DOUBLE-GATED GRAPHENE DEVICES
Figure 3.1d shows the device configuration that we investigate. It consists of sin-
gle or double graphene layers sandwiched between two gate electrodes, and con-
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FIGURE 3.1: Bandgap in graphene devices. a,b, Schematic diagrams of the lattice structure of mono-
layer (a) and bilayer (b) graphene. The green and red coloured lattice sites indicate the A (A1/A2) and
B (B1/B2) atoms of monolayer (bilayer) graphene, respectively. The diagrams represent the calculated
energy dispersion relations in the low-energy regime, and show that monolayer and bilayer graphene
are zero-gap semiconductors (for bilayer graphene, a pair of higher-energy bands is also present, not
shown in the diagram). c, When an electric field (E⊥) is applied perpendicular to the bilayer, a bandgap
is opened in bilayer graphene, whose size (2Δ) is tunable by the electric field. d, Schematic diagram
of a double-gated graphene device as used in our investigations. Both the Fermi level in the graphene
(bi)layer and the perpendicular electric field are controllable by means of the voltages applied to the
back-gate, Vbg , and to the top-gate, Vt g . We study the resistivity of the graphene (bi)layer as a func-
tion of both gate voltages by applying a current bias (I ) and measuring the resulting voltage across the
device, V . Note the different SiO2 thicknesses of the dielectric layers for the top- and back-gates.



3.4. CHARACTERIZATION OF SINGLE-LAYER AND BILAYER GRAPHENE DEVICES 53

nected to metallic leads. These double-gated structures enable simultaneous and
independent control of the charge density in the system (that is, the position of
the Fermi level) and of the electric field perpendicular to the graphene layer. In
a single layer, the presence of a perpendicular field is not expected to affect the
transport properties: the conductivity of the device should never become smaller
than a minimum value of the order of 4e2/h, irrespective of the applied gate volt-
ages [2]. In a bilayer, on the contrary, a large applied field results in a different
electrostatic potential in the two layers, which, according to theory, should cause
a bandgap to open. If the Fermi level is maintained in the gap (that is, the device
is operated near the charge-neutrality point), this should result in an insulating
temperature dependence of the conductivity, dropping to well below 4e2/h at low
temperature. A unique signature of this effect is that the decrease in conductivity
with lowering temperature becomes more pronounced for larger applied electric
field values. This possibility to controllably induce an insulating state, which is
crucial for switching devices, was missing in earlier experiments on graphene bi-
layers [14,15] where the gap and the carrier density could not be gate-controlled
independently.

The fabrication of double-gated graphene devices is similar to what has been
described elsewhere [1], and relies on micromechanical cleaving of natural graphite.
The flakes used in the experiments were selected under an optical microscope and
identified as single- and double-layer graphene, respectively, on the basis of their
optical contrast (see §2.7; a similar method is used as previously demonstrated in
refs [16,17]). Contact to the flakes was made by means of electron-beam lithogra-
phy, electron-beam evaporation of a Ti/Au bilayer (10/50 nm) and lift-off. The top-
gate insulating layer and electrodes were defined subsequently, by electron-beam
deposition of a SiO2 layer (15 nm) followed by deposition of a Ti/Au bilayer (6.5/40
nm), without breaking the vacuum. The comparison between single- and double-
layer graphene devices is useful not only to illustrate the profound difference be-
tween them and to identify the mechanism responsible for the gate-induced in-
sulating state, but also to rule out possible spurious effects originating from the
device fabrication (for example, damage to the graphene layers or disorder intro-
duced by the deposition of the SiO2 gate dielectric).

3.4 CHARACTERIZATION OF SINGLE-LAYER AND BILAYER

GRAPHENE DEVICES
We now proceed to discuss the systematic transport measurements that we have
carried out, starting with the single-layer device shown in Fig. 3.2a. Figure 3.2b,c
shows the resistance measured as a function of the voltage applied to one of the
gates, with the other gate at a constant potential as indicated (we extract a car-
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FIGURE 3.2: Gate voltage and temperature dependence of transport through monolayer graphene.
a, Optical microscope images of a single-layer flake (left) and of the double-gated device fabricated on
this flake (right). The yellow lines indicate metal contacts to the flake, and the blue line corresponds
to the top-gate. The schematic diagram of the four-probe device configuration is also shown. b, Re-
sistance versus back-gate voltage measured for different fixed values of the top-gate voltage showing
an approximately gate voltage independent height of the charge-neutrality peak (the right axis gives
an estimation of the square resistance, neglecting the contributions from the region without the top-
gate and any p-n junctions to the measured resistance). The aperiodic fluctuations present near the
charge-neutrality peak are reproducible and are due to quantum interference. The smaller extra peak
(indicated by the arrow) is the charge-neutrality peak originating from the part of the flake that is not
covered by the top-gate. c, Resistance versus top-gate voltage measured for different fixed values of
back-gate voltage. Again, the height of the charge-neutrality peak is nearly gate voltage independent.
The difference in the magnitude of the voltage applied to top- and back-gates (b,c) originates from the
different SiO2 thicknesses separating the two gates from the graphene flake. d, Temperature depen-
dence of the resistance versus top-gate voltage, measured for two different back-gate voltages. Irre-
spective of the gate voltage configuration, the height of the charge-neutrality peak is independent of
temperature in the range 4.7-52 K.
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rier mobility of ∼3,000 cm2/Vs, similar to the mobility of an ungated device on
the same flake). Irrespective of which gate voltage is kept constant, we always ob-
serve a peak in resistance characteristic of the behaviour of few-layer graphene
and hereafter referred to as the ’charge-neutrality peak’ (to be precise, we are mea-
suring a device comprising regions of different carrier density, n1-n2-n1; at the
resistance maximum, n2 = 0 only). The position of the charge-neutrality peak
when sweeping one gate shifts linearly with the voltage applied to the other gate.
Irrespective of the gate configuration, the height of the resistance peak remains
approximately constant. From the top-gate dimensions, we can estimate a min-
imum conductivity value close to 4e2/h (the part of the flake that is not covered
by the top-gate also contributes to the resistance, but given the dimensions, this
increases the conductivity estimate by at most a factor of 1.4). This is typical of
graphene at the charge-neutrality point, which indicates that the device fabrica-
tion and the deposition of the top-gate dielectric have not resulted in substantial
damage to the material. Note also that depending on the values of the voltages ap-
plied to both gates, p-n junctions are formed near the interfaces between the re-
gion covered by the top-gate and both uncovered regions [18]. Such p-n junctions
may be the origin of the weak asymmetry seen in many of the gate sweeps in Fig.
3.2b,c. However, near the charge-neutrality point, we expect p-n junctions to give
only a small contribution to the measured resistance. Finally, Fig. 3.2d shows that
the gate voltage dependence of the resistance is not affected by varying the tem-
perature between 4 and 50 K, apart from reproducible conductance fluctuations
that increase in magnitude as the temperature is lowered. These observations are
consistent with the expected behaviour of electrical transport through graphene
monolayers [2,18-20].

The behaviour of the double-gated graphene bilayer device (Fig. 3.3a) is strik-
ingly different. Figure 3.3b,c shows the (square) resistance of bilayer graphene as
a function of the back-gate and top-gate voltages (the carrier mobility is ∼1,000
cm2/Vs, again similar to an ungated device on the same flake). Similarly to the
monolayer, the position of the charge-neutrality peak shifts linearly with the re-
spective gate voltages. Contrary to the monolayer, the charge-neutrality peaks are
nearly perfectly symmetric, ruling out the possibility that the formation of p-n
junctions gives a dominant contribution to the measured resistance. More impor-
tantly, the maximum resistance value now depends on the configuration of gate
voltages. Specifically, when the voltage applied to both gates is close to 0 V, the
height of the charge-neutrality peak corresponds to a conductivity of the order of
4e2/h, which is typical for zero-gap bilayers [5] (again we rely on the fact that near
the charge-neutrality peak the region under the top-gate gives the largest contri-
bution to the resistance). However, as the top- and back-gates are biased with op-
posite voltages of increasing magnitude, the height of the charge-neutrality peak
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FIGURE 3.3: Gate voltage and temperature-dependent transport through bilayer graphene. a, Opti-
cal microscope images of a double-layer flake (left) and of the double-gated device fabricated on this
flake (right). The yellow lines represent metal contacts and the blue line represents the top-gate elec-
trode. The two-probe measurement configuration is shown in the schematic diagram (the measured re-
sistance thus includes the contact resistance, which is smaller than ∼ 250Ω). b, Resistance versus back-
gate voltage measured for different fixed values of the top-gate voltage (the right axis gives the square
resistance, again assuming that the region under the top-gate dominates the measured resistance; this
assumption is valid near the charge-neutrality peak where the resistance of the region with top-gate
is relatively large). The height of the charge-neutrality peak systematically increases when both gates
are biased with increasingly large opposite voltages. c, Resistance versus top-gate voltage measured
for different fixed back-gate voltages showing a similar gate voltage dependence of the height of the
charge-neutrality peak. d, Temperature dependence of the resistance versus top-gate voltage measured
for two different values of back-gate voltage. When the voltage difference between both gates is small,
the height of the charge-neutrality peak is not affected by temperature in the range 4.2-55 K. However,
a clear temperature dependence is observed in this same range when both gates are biased with large
opposite voltages.
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exhibits a pronounced rise. In addition, the temperature dependence observed in
the bilayer device is markedly different from that measured in the single-layer de-
vice (Fig. 3.3d). For small gate voltages, the resistance near the charge-neutrality
peak is essentially temperature independent, characteristic of a zero-gap semicon-
ductor. When the difference in top-gate and back-gate voltage is increased, how-
ever, the maximum resistance value also increases as the temperature is lowered.
The observation of a conductivity much smaller than 4e2/h exhibiting an insu-
lating temperature dependence for oppositely biased gate electrodes is what we
would expect qualitatively in a bilayer graphene device.

3.5 TRANSPORT IN THE INSULATING REGIME
To confirm that in the double-gated bilayer device large differences in voltage be-
tween the top- and back-gate do lead to an insulating state, we have carried out
measurements in a dilution refrigerator, in the temperature range between 50 mK
and 1.2 K, where the increase in resistance with lowering temperature should be
more pronounced. Indeed, Fig. 3.4a (note the logarithmic scale) shows that when
the top- and back-gates are biased asymmetrically, a very strong temperature de-
pendence of the square resistance is observed near the charge-neutrality peak,
reaching values between 10 and 100 MΩ at 55 mK. This is in stark contrast to the
case of small gate voltages (Fig. 3.4a, inset), for which a temperature indepen-
dent resistance near the charge-neutrality peak − corresponding to a conductivity
of approximately 4e2/h − persists down to the lowest temperature. The full de-
pendence of the square resistance measured at 50 mK as function of the voltage
applied to both gate electrodes is shown in Fig. 3.4b,c, from which the very fast
increase in resistance near the charge-neutrality peak with increasing the electric
field applied perpendicular to the layer is apparent. According to the expectations,
the region of high resistance scales linearly with both top- and back-gate voltage
(see the white dotted line in Fig. 3.4c) as it is required to maintain charge neutrality
in the graphene bilayer. In addition, we have also measured the I -V characteris-
tics of the device for different top- and back-gate voltage configurations (Fig. 3.4d)
and observed that they evolve from exhibiting a linear ohmic behaviour far from
the charge-neutrality peak, to a pronounced nonlinear behaviour near the charge-
neutrality peak.

Finally, we discuss more quantitatively the insulating temperature dependence
of the resistance that we observe for large oppositely biased gates. In an ideal
defect-free insulator, thermally activated transport is expected, whereby the max-
imum resistance, R, varies with temperature as R(T ) ∝ exp(Ea/kT ), where k is
Boltzmann’s constant and Ea is the activation energy, corresponding to half the
bandgap. Our data, however, do not exhibit such a simple thermal activation be-
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FIGURE 3.5: Thermally activated hopping transport in biased bilayer graphene. a, Logarithm of the
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data (solid lines) show that, at the highest fields, the data are well described by R(T ) ∝ exp(T0/T )1/3.
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haviour (Fig. 3.5a). Below approximately T = 5 K, and at the highest applied elec-
tric fields, they are much better described by R(T ) ∝ exp(T0/T )1/3, as seen in Fig.
3.5b, with fitted values of T0 of ∼0.5-0.8 K (note that between 5 and 55 K the resis-
tance drops more rapidly with increasing temperature, but the range is too small
to deduce an accurate value for the activation energy). Qualitatively, an n = 1/3
exponent is expected for transport in two dimensions of non-interacting carriers
via variable-range hopping in insulating materials where transport is mediated by
localized impurity sites that are present inside a gap [21,22]. Such localized states
have been predicted theoretically in the case of disordered bilayer graphene [23],
but drawing quantitative conclusions as to the properties of these states, for ex-
ample, their density of states, spatial extension, and so on, is not straightforward
from our measurements and goes beyond the scope of this article. For smaller ap-
plied perpendicular electric fields, the fitted exponent becomes smaller than 1/3
and decreases towards zero (see inset of Fig. 3.5b), and the fitted value of T0 also
decreases. This indicates clearly that the insulating temperature dependence of
the resistance that we measure becomes stronger when the applied perpendicular
electric field is higher.
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3.6 CONCLUSIONS AND DISCUSSION

We conclude that the data unambiguously show the occurrence of an insulating
state in bilayer graphene in the presence of a perpendicular electric field, which
has not been reported earlier. Our observation that the insulating state occurs
only in bilayers and not in monolayers, and that the increase in resistance with
lowering temperature is more pronounced for larger values of the electric field ap-
plied perpendicular to the material, is in agreement with the predicted controlled
opening of a bandgap. In contrast, these two very specific observations cannot be
accounted for simply by an increase in the amount of disorder, for instance caused
by the presence of the top-gate. Furthermore, as pointed out earlier, carrier mobil-
ities were comparable in devices with and without top-gates, actually suggesting
equal amounts of disorder. Although we cannot rule out that mechanisms other
than the formation of a bandgap could lead to the same striking observations, we
believe this explanation is the most plausible.

It is clear from the experiments that a possible gap induced in the bilayer de-
vice is rather small. This is consistent with recent theoretical calculations [10,13],
which, for zero carrier density and for electric field values of the order of those
achieved in our experiments, predict a gap size below approximately 10 meV de-
pending on, for instance, the way in which screening effects in the bilayer are mod-
elled (note that in refs [14,15], measurements were done at very high charge den-
sity, where much larger gap sizes were expected and observed). In comparison, the
energy scale of disorder can be estimated to be of the order of a few milli-electron
volts from measurements of the spin splitting in the quantum Hall regime [24],
and larger from scanning single-electron transistor experiments [25]. Altogether,
it seems that a gap of below 10 meV in conjunction with the presence of subgap
states originating from disorder can account for the observed exp(T −1/3) depen-
dence of the resistance in the temperature range between 50 mK and 4.2 K. How-
ever, this does not well explain the steep dependence on electric field at 55 K and
on temperature above 4.2 K. It is possible that the gap is in fact larger than pre-
dicted, or alternatively there may be other mechanisms also contributing to the
observed resistance increase in this n1-n2-n1 device.

The possibility to use double-gated structures to suppress the conductivity of
bilayer graphene to values much lower than 4e2/h represents an important proof-
of-principle for the feasibility of future graphene-based electronic devices. Obvi-
ously the development of practical devices will require further innovations, which
are needed to switch off electrical conduction at room temperature. Nevertheless,
the operation of devices at cryogenic temperatures that we have demonstrated
here will already enable new fundamental studies of quantum transport in bilayer
graphene, through the fabrication of structures such as quantum point contacts



3.7. REFERENCES 61

based on split gates and electrostatically tunable quantum dots.
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4
GATE-INDUCED BAND OVERLAP

IN TRILAYER GRAPHENE

Graphene-based materials are promising candidates for nano-electronic devices [1-
14] because very high carrier mobilities can be achieved without the use of sophisti-
cated material preparation techniques [1]. However, the carrier mobilities reported
for single-layer and bilayer graphene are still less than those reported for graphite
crystals at low temperatures, and the optimum number of graphene layers for any
given application is currently unclear, because the charge transport properties of
samples containing three or more graphene layers have not yet been investigated
systematically [1]. Here, we study charge transport through trilayer graphene as a
function of carrier density, temperature, and perpendicular electric field. We find
that trilayer graphene is a semimetal with a resistivity that decreases with increas-
ing electric field, a behaviour that is markedly different from that of single-layer and
bilayer graphene. We show that the phenomenon originates from an overlap be-
tween the conduction and valence bands that can be controlled by an electric field,
a property that had never previously been observed in any other semimetal. We also
determine the effective mass of the charge carriers, and show that it accounts for
a large part of the variation in the carrier mobility as the number of layers in the
sample is varied.

The contents of this chapter have been published in Nature Nanotechnology:
M. F. Craciun, S. Russo, M. Yamamoto, J. B. Oostinga, A. F. Morpurgo, S. Tarucha, Trilayer graphene is a
semimetal with gate-tunable band overlap. Nature Nanotechnology 4 (6), 383-388 (2009).
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4.1 INTRODUCTION

Electron and hole mobilities as high as 1 · 104 cm2/Vs are routinely observed in
single and bilayer graphene on substrates [2-7,9-12], and values as high as 2 ·105

cm2/Vs have been reported for suspended graphene [15]. However, carrier mo-
bilities in excess of 1 ·106 cm2/Vs have been measured in graphite at low temper-
ature [16-18], and it is natural to ask if the carrier mobility can be increased by
simply increasing the number of graphene layers in the material. It is also impor-
tant to understand how the general electronic properties of graphene-based ma-
terials evolve from those of graphene to those of graphite as the number of layers
is increased. Note that the low-energy electronic properties of samples containing
three or more graphene layers depend on a large number of parameters, and the-
orists have been unable to agree about the details of the electronic structure (see,
for example, refs. [19-23]). Here, as a first step to address these issues, we investi-
gate charge transport through trilayer graphene, which is the thinnest graphene-
based system with a tight-binding Hamiltonian that includes all the transfer inte-
grals that are needed to describe the band structure of graphite [19-23].

4.2 DEVICE FABRICATION

The fabrication of trilayer-based nano-electronic devices relies on micromechan-
ical cleaving of graphite crystals (see ref. [1] and the footnote † for details), which
enables the deposition of few-layer graphene on top of an oxidized silicon sub-
strate. The layer thickness was identified by analysing the shift in green intensity
under an optical microscope [10] (see §2.7). Care was taken to select flakes formed
by regions of different thickness, and to fabricate devices on each region (Fig. 4.1a),
only a few micrometres apart. The spatial proximity of devices fabricated on the
same flake ensures that the disorder induced by the substrate has comparable
magnitude, which facilitates a direct comparison of the electrical properties of
single-layer, bilayer and trilayer graphene.

† Few-layer graphene was obtained by means of mechanical exfoliation of bulk graphite and trans-
ferred onto the surface of a highly doped silicon substrate covered by a 285 nm thick layer of thermally
grown SiO2. The highly doped silicon substrate was used as the back-gate, and the top-gate was de-
fined by means of electron-beam lithography and lift-off of electron-beam evaporated SiO2 and of a
titanium/gold bilayer (the thicknesses of the SiO2, titanium, and gold were 15, 10 and 100 nm, respec-
tively). To maximize the contribution of the gated regions to the total resistance measured in a two-
probe configuration, two ohmic contacts (made of titanium and gold, of thicknesses 10 and 100 nm)
were fabricated (again by electron-beam evaporation and lift-off) within 50 nm from the edge of the 1
μm wide top-gate. Less than 5 % of the overall resistivity was therefore due to the non-gated region.
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FIGURE 4.1: Characterization of trilayer graphene. a, Optical microscope images of an exfoliated
graphite flake (top) containing single-layer graphene (SG), bilayer graphene (BG) and trilayer graphene
(TG), and of the devices (bottom) fabricated on the bilayer and trilayer parts of the same flake. b,
Schematic of a double-gated device. The position of the Fermi level in trilayer graphene and the ap-
plied perpendicular electric field are controlled by the voltages applied to the back-gate (Vbg ) and the
top-gate (Vt g ). We study the resistance of the layers as a function of these gate voltages by applying
an a.c. ( f = 13 Hz) current bias I and measuring the resulting voltage V across the device with a lock-
in amplifier. c, Square resistance as a function of Vbg at 50 mK. The inset shows the crystal structure
of a trilayer graphene. The parameters γ0 to γ5 label the tight-binding transfer integrals between the
different pairs of atoms. d, Measured Hall coefficient as a function of Vbg (open circles) for a fixed per-
pendicular magnetic field of 9 T at 50 mK. The red curve is a fit (see the footnote ‡). The three insets
schematically depict the position of the Fermi level (EF ) at different values of Vbg .
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4.3 ELECTRIC FIELD-EFFECT IN TRILAYER GRAPHENE
The field-effect behaviour in trilayer graphene devices manifests itself in the de-
pendence of the square resistance (R�) and the Hall coefficient (RH ) on the voltage
Vbg applied to the silicon back-gate (these measurements were carried out in de-
vices without a top-gate, in a four-probe configuration, using a Hall-bar geometry).
Specifically, R� shows a peak (see Fig. 4.1c and inset of Fig. 4.5a) that is broader
and less pronounced than the peaks for single-layer and bilayer graphene. RH dis-
plays a non-monotonous behaviour as a function of Vbg , with a characteristic sign
reversal at the position of the maximum resistance, V max

bg (see Fig. 4.1d). In tri-

layer graphene the range of Vbg over which RH decreases and changes sign is much
wider (ΔVbg ≈ 8 V) than in single-layer and bilayer graphene, which are zero-gap
semiconductors (ΔVbg ≈ 1 V for single-layer and bilayer graphene present on the
same flake of the trilayer). Such a large ΔVbg , as well as the broader and shallower
peak in resistivity, should be expected if trilayer graphene is a semimetal, due to
the finite overlap (δε) of the conduction and valence bands. Indeed, under the as-
sumption that trilayer graphenes are semimetals, we can satisfactorily fit RH over
the whole range of Vbg with a δε≈ 28 mV (see the footnote ‡ for details).

Our experiments on trilayer graphene heavily rely on the application of a tun-
able, static electric field perpendicular to the layer, which provides a unique tool
to investigate the electronic properties of graphene-based materials [10-12,24,25].
To generate such a perpendicular field we use double-gated devices (see Fig. 4.1b)
that also provide independent control of the carrier density in the material (that is,
the position of the Fermi level). Figure 4.2a,b shows R� for a double-gated trilayer
graphene device measured at T = 50 mK as a function of the voltage applied to one
of the gates, while the other gate is kept at a constant potential. These measure-
ments on double-gated devices were mainly carried out in a two-terminal con-

‡ The dependence of the Hall coefficient RH on the back-gate voltage Vbg indicates the semimetallic
nature of trilayer graphene, and can be used to extract an estimate of the band overlap. To fit the data in
Fig. 4.1d we used the fact that, when the Fermi level is located deep in the conduction or valence bands
(so that only electrons or holes are present, Vbg � 6 V and Vbg � -2 V), RH = 1/ene,h , with ne,h being
the electron/hole carrier concentration. In the mixed charge carrier regime, when both electrons and
holes are present simultaneously, RH is a function of both carrier charge densities and mobility μe,h :

RH = (nhμ
2
h −neμ

2
e )/e(neμe +nhμh )2. Using these formulae, we can fit RH (Vbg ) over the entire Vbg

range. In doing this, the total charge density of carriers is calculated from the known capacitance to the
gate (n = ε0εVbg /dbg e) and μe,h are taken to be constant (that is, Vbg -independent) and equal to the
values obtained from the gate voltage dependence of the conductivity at high Vbg values (that is, far
outside the mixed charge carrier regime). The only fitting parameter is the band overlap δε, which is
related to the Vbg width of the mixed state through the density of states of the quadratically dispersing
electron and hole bands. Note that the Hall effect measurements were carried out on samples with
back-gate only (that is, no top-gate) and so only the value of δε at zero perpendicular electric field can
be obtained in this way.
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FIGURE 4.2: Transport in the presence of a perpendicular electric field. a, Square resistance of a tri-
layer device versus back-gate voltage Vbg for different values of the top-gate voltage Vt g at 50 mK. Vbg
is an order of magnitude larger than Vt g because the bottom-gate insulator is an order of magnitude
thicker than the top-gate insulator. The value of Rmax

� systematically decreases when the perpendicu-
lar electric field applied is increased. b, Square resistance of a trilayer device versus Vt g for different val-
ues of Vbg at 50 mK. Again, the value of Rmax

� systematically decreases as the electric field is increased.
c,d, Colour plots of the square resistance of trilayer graphene at 50 mK (c) and bilayer graphene at 300
mK (d) as a function of both Vbg and Vt g . Whereas the applied electric field enhances the overlap be-
tween valence and conduction bands in trilayer graphene (leading to an increase in conductance), it
opens up a gap in bilayer graphene (leading to an increase in resistance).
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figuration, which allowed the fabrication and comparison of a larger number of
devices on flakes containing layers of different thickness. Measurements in a four-
terminal configuration were also performed on several devices to ensure that the
effect of the contact resistance − present in two-terminal measurements − did not
influence significantly the results (see ref. [26] and the footnote § for details).

Irrespective of which gate voltage is being swept, we always observe a maxi-
mum in the resistance Rmax

� , which is attained at the charge neutrality point where
the electron and hole density in the system are the same. As expected, the position
of Rmax

� that is observed when sweeping one gate shifts as a function of the volt-
age applied to the other gate, reflecting the change in charge density induced by
the two gates. More importantly, we observe that the maximum resistance value
at the charge neutrality point depends on the configuration of the gate voltages,
(Fig. 4.2a,b). In particular, the height of Rmax

� decreases as the top- and back-gates
are biased with voltages of opposite polarity and of increasing magnitude (that is,
Rmax
� decreases when the applied perpendicular electric field increases).

The electric field response of Rmax
� measured at 50 mK for trilayer graphene is

summarized in the colour plot of Rmax
� in Fig. 4.2c. The systematic decrease of

Rmax
� as a function of electric field, which is observed in all the measured devices,

is different from the behaviour of other few-layer graphenes studied in the past
and appears to be unique to trilayer graphene. Specifically, it has been shown that
a perpendicular electric field applied on single-layer graphene does not affect the
value of the resistance maximum Rmax

� , and that on double-gated bilayer graphene
Rmax
� increases when increasing the electric field, consistent with the opening of a

gap in the density of states [10-12,24,25] (see also Fig. 4.2d). We therefore conclude
that the observed decrease of Rmax

� with external electric field is a characteristic

§ Longitudinal and transverse magnetoresistance were measured in a Hall-bar geometry, in devices
containing only a back-gate and no top-gate. In this case measurements could be performed in a four-
terminal configuration, where the contact resistance between metal electrodes and trilayer graphene
plays no role. On the contrary, in double-gated devices, the introduction of voltage probes under the
top-gate proved to be technically very difficult (due to the failure of the SiO2 layer insulating the trilayer
graphene from the top-gate). Therefore, although we also investigated devices where measurements
were carried out in a four-terminal configuration, we opted to investigate the dependence of R� on the
perpendicular electric field mostly by means of two-terminal measurements. In such a two-terminal
geometry the influence of the contact resistance needs to be considered. We have successfully mea-
sured the contact resistance in different ways (by comparing the results of two terminal measurements
performed on devices fabricated on the same flake, by comparing two- and four-terminal measure-
ments and by scaling experiments as a function of the contact separation). We found that the contact
resistance is always weakly gate-voltage dependent and in all cases less than 20 % than the total re-
sistance measured at high gate voltage. Close to the charge neutrality point, where R� is larger, the
relative effect of the contact resistance is even smaller (typically less than 10 %). We conclude that the
presence of a contact resistance does not significantly affect our results and their interpretation. Note,
finally, that in the samples where we performed four-terminal measurements, the results for δε were
fully consistent with those obtained from two-terminal measurements.
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FIGURE 4.3: Temperature-dependent transport through trilayer graphene. a, Maximum square resis-
tance Rmax

� versus top-gate voltage Vt g at different temperatures. For each value of Vt g , the back-gate
voltage Vbg is chosen so that the device is at the charge neutrality point; different values of Vbg cor-
respond to different values of the applied electric field Eext . The inset shows a schematic view of the
density of states of the quadratic bands that are responsible for the semimetallic behaviour of trilayer
graphene. At the charge neutrality point, where the resistance reaches its maximum, the Fermi level EF
lies between the bottom of conduction band Ec and the top of the valence band Ev . b, Temperature
dependence of the carrier concentration n in the mixed state determined from the value of Rmax

� mea-
sured at different values of Vt g (or Eext ). The solid curves represent the fitted dependence using the

expression n(T )/n(4.2K ) = (T /4.2)ln(1+eδε/2kB T )/ln(1+eδε/2kB 4.2), from which we extract the band
overlap δε.



70 4. GATE-INDUCED BAND OVERLAP IN TRILAYER GRAPHENE

fingerprint of trilayer graphene. Note that, for trilayer graphene, the same electric
field dependence of Rmax

� is preserved over the entire experimentally investigated
temperature range (up to 200 K). This is clearly summarized in Fig. 4.3a, which
shows Rmax

� measured as a function of Vt g (with Vbg chosen correspondingly at
each point, to maintain the device charge neutral), for different temperatures. The
temperature-dependent measurements also show that Rmax

� decreases when rais-
ing the temperature.

4.4 DETERMINATION OF THE BAND OVERLAP
As we will now show, all our experimental observations can be consistently inter-
preted quantitatively in terms of the semimetallic behaviour of trilayer graphene,
if the overlap between the valence and conduction bands progressively increases
with increasing applied perpendicular electric field. To understand the details of
our analysis, it is important to recall the basic aspects of the electronic structure
of trilayer graphene. At low energy, Bernal-stacked trilayer graphene (see inset of
Fig. 4.1c), which is the thermodynamically stable form, has two valence and two
conduction bands. Within a tight-binding scheme analogous to the Slonczewski-
Weiss-McClure model used to describe graphite [27,28], the precise details of these
bands depend on the values of all the transfer integrals introduced. However, if
in a first approximation these details are disregarded, for both valence and con-
duction bands, one band disperses linearly and the other quadratically. Because
the density of states of linearly dispersing bands goes to zero at zero energy, the
bands that are relevant to understand the low-energy transport properties are the
ones dispersing quadratically, which give the dominant contribution to the total
density of states. In interpreting our data, therefore, we will consider only the low-
energy valence and conduction bands with quadratic dispersion relation, and we
will assume the presence of a finite band overlap δε �. In addition, as is predicted
theoretically by the simplest tight-binding models for trilayer graphene [30], we
will take the effective mass in the valence and conduction (quadratically dispers-
ing) bands to be equal (m∗

e = m∗
h = m∗).

� In our analysis we have assumed that the low energy trilayer bandstructure is described by two
quadratic bands wich have an overlap δε. This approximation disregards the detailed low energy tri-
layer bandstructure, and it will be important to check if an analysis of the data in terms of the precise
band structure of trilayer graphene (i.e., not relying on the two parabolic bands only) is consistent with
our observations. Theoretical results based on tight binding model -containing the detailed low energy
electronic properties- appear to confirm that also when the fully detailed low energy trilayer graphene
band structure is taken into account, good agreement with our experimental results is obtained [29].
These calculations also shed light on the origin of the band overlap, which is due to the non-zero value
of the transfer integrals γ2 and γ5, rationalizing why a sizable band overlap appears in trilayers, but not
in single- and bi-layers.
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FIGURE 4.4: Electric field dependence of the band overlap in trilayer graphene. a, Band overlap δε
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experimental data; see main text) versus Eext . c, The scattering time τ extracted from the measured
conductivity and effective electron mass using the Drude formula together with the experimentally de-
termined m∗.
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We first analyse the temperature dependence of Rmax
� , which allows the direct

determination of the band overlap δε for all values of the applied perpendicular
electric field. Within the scenario introduced above (and along the lines of the dis-
cussion of Ref. [1]), Rmax

� is related to the total carrier density (that is, electron plus
hole density) in the mixed state through the relation n = 2/[e(μe +μh )Rmax

� ] (note
that ne = nh = n/2). The decrease in Rmax

� with increasing temperature originates
from the increase in the number of thermally excited carriers around the Fermi
energy, which, for a semimetal, can be written as n(T ) = (16πm∗/h2c)kB T ln[1+
eδε/2kB T ] (with c equal to twice the layer spacing) [31]. By normalizing n(T ) to
the value at T = 4.2 K, n(T )/n(4.2K ) = (T /4.2) ln(1+eδε/2kB T )/ ln(1+eδε/2kB 4.2), the
band overlap δε can be directly obtained through a one-parameter fit to the exper-
imental data. Figure 4.3b shows that an excellent quality of the fit is obtained for
all values of the applied perpendicular electric field Eext (Eext = (Vt g −V m

bg )/(dt g +
dbg ), where V m

bg is the value of Vbg for which the resistance is maximum and dbg ,t g

are the thicknesses of the dielectrics for the back- and top-gates). The values of
the band overlap obtained in this way are plotted in Fig. 4.4a as a function of field:
it is apparent that the band overlap changes as a function of the external electric
field, and δε increases with increasing Eext from ∼30 to 60 meV, independent of
the electric field polarity.

The band overlap and its electric field dependence can also be extracted by
looking only at the low-temperature (50 mK) measurements. In fact, at such a low
temperature, δε = n/D, with D = 2m∗/πħ2 the total low-energy two-dimensional
density of states. Becauseδε and n = 2/[e(μe+μh)Rmax

� ] are experimentally known,
we can use this relation to extract the effective mass of the charge carriers: m∗ =
πħ2/[e(μe +μh )Rmax

� δε]. We find that at Eext = 0 the estimated effective mass is
m∗ = (0.054±0.005)m0 , and that m∗ remains constant when Eext is increased (see
Fig. 4.4b; m0 is the free electron mass). This value of the effective mass is consis-
tent with theoretical predictions based on tight-binding calculations, which give
m∗ = (2

�
2/3)ħ2γ1/(a2γ2

0) = 0.052m0 (ref. [30]) (a = 0.246 nm, the monolayer lat-
tice constant, γ0 = 3.16 eV (ref. [17]), γ1 = 0.44 eV (ref. [32])). Having determined
the effective mass, and with the carrier density and the conductivity known, we can
use the Drude formula for conductivity to extract the scattering time τ. As shown
in Fig. 4.4c, we find that τ decreases with increasing applied electric field. These
observations confirm that the overall electric field dependence of the resistance
with increasing electric field is due to a relative shift of valence and conduction
band, leading to an increase in band overlap, and not to changes in effective mass
(which are negligible) or in scattering time (which would tend to increase, rather
than to decrease, the resistance; see Fig. 4.4c). This electric field tunable band
overlap is a unique property of trilayer graphene, which has never been previously
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FIGURE 4.5: Comparison of carrier mobility in few-layer graphene. a, Statistics of mobility values
in single-layer, bilayer and trilayer graphene, estimated from the dependence of the conductivity σ
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the average mobility in bilayer and trilayer graphene is approximately consistent with the ratio of the
effective mass of the charge carriers in the two materials. The inset shows the conductivity versus Vbg :
the finite band overlap in trilayer graphene results in a lower minimum conductivity compared with
bilayer and trilayer graphene. b, Mobility versus applied electric field Eext , also showing a different
behaviour for different layer thickness. In particular, the decrease in the mobility with increasing Eext
becomes less pronounced as the number of layers increases.

found in other semimetallic systems.
An alternative − but fully equivalent − way to look at our data, which bet-

ter illustrates the comparison between experiment and theory as a function of
perpendicular electric field, is to take the theoretical value for the effective mass
m∗ = 0.052m0 and plot together the values obtained for δε in the two different
ways (that is, by looking at the temperature dependence of the maximum resis-
tance, or by simply looking at its value at 50 mK). The result of this comparison as
a function of Eext is presented in Fig. 4.4a, which shows a remarkable agreement
throughout the entire Eext range. Note that, at Eext = 0 we obtain δε = 32 meV
from the temperature dependence and δε = 34 meV from the data at 50 mK, close
to the value δε≈ 28 meV already obtained earlier by analysing the gate voltage de-
pendence of the Hall resistance (Fig. 4.1d; the error on the values for δε obtained
with the different methods is between 10 and 20 %).

4.5 CONCLUSIONS AND DISCUSSION
Finding that three different methods used to estimate the band overlap result in
values that are in quantitative agreement with each other provides a clear indica-
tion of the validity of our analysis, and confirms that the experiments are probing
the intrinsic electronic properties of trilayer graphene. This conclusively demon-
strates that the low-energy band structure of trilayer graphene can be tuned by a
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large amount through the application of an external perpendicular electric field,
achieving a 100 % change in band overlap. A similar electric field tunable δε was
experimentally observed in all devices investigated, albeit with a spread (about 30
%) in the value of external field needed to induce a same shift of the band over-
lap in different devices. We attribute these differences in the precise electric field
value to screening due to unwanted adsorbed layers present at the SiO2/graphene
interfaces (for example, water or hydrocarbons).

Having established that the band structure of trilayer graphene differs signif-
icantly from that of single and double layers due to the presence of an overlap
between valence and conduction band, it is also interesting to look at the evolu-
tion of the carrier mobility in these materials. A comparison of the mobility val-
ues measured in graphene layers of different thickness is shown in Fig. 4.5a. It
is apparent that trilayer graphene systematically exhibits lower mobility (typically
∼800 cm2/Vs at 4.2 K) than single-layer and bilayer graphene. The trend originates
in large part from the difference in the effective mass in the different materials,
which increases with increasing layer thickness (m∗

SG = 0, m∗
BG = 0.037m0, and

m∗
TG = 0.052m0) (ref. [30]). The observation of this trend, together with the differ-

ent response to a perpendicular electric field and the differences in the low-energy
band structure discussed above, show that every individual graphene multilayer
sequence is a new material in its own right. Regarding the low-energy electronic
properties it is unclear whether a ’smooth’ evolution from graphene to graphite
can be expected as the number of layers is increased. Our results suggest that for
systems consisting of only a few layers, this evolution with thickness may be dom-
inated by unique aspects specific to each layer thickness. In trilayer graphene, one
such unique property is the possibility to tune the band overlap electrostatically,
over a large range.
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5
BIPOLAR SUPERCURRENT IN

GRAPHENE

Graphene − a recently discovered form of graphite only one atomic layer thick [1] −
constitutes a new model system in condensed matter physics, because it is the first
material in which charge carriers behave as massless chiral relativistic particles. The
anomalous quantization of the Hall conductance [2,3], which is now understood
theoretically [4,5], is one of the experimental signatures of the peculiar transport
properties of relativistic electrons in graphene. Other unusual phenomena, like the
finite conductivity of order 4e2/h (where e is the electron charge and h is Planck’s
constant) at the charge neutrality (or Dirac) point [2], have come as a surprise and
remain to be explained [5-13]. Here we experimentally study the Josephson effect
[14] in mesoscopic junctions consisting of a graphene layer contacted by two closely
spaced superconducting electrodes [15]. The charge density in the graphene layer
can be controlled by means of a gate electrode. We observe a supercurrent that, de-
pending on the gate voltage, is carried by either electrons in the conduction band or
by holes in the valence band. More importantly, we find that not only the normal
state conductance of graphene is finite, but also a finite supercurrent can flow at
zero charge density. Our observations shed light on the special role of time reversal
symmetry in graphene, and demonstrate phase coherent electronic transport at the
Dirac point.

The contents of this chapter have been published in Nature
H. B. Heersche, P. Jarillo-Herrero, J. B. Oostinga, L. M. K. Vandersypen, A. F. Morpurgo, Bipolar super-
current in graphene. Nature 446 (7131), 56-59 (2007).
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5.1 INTRODUCTION
Owing to the Josephson effect [14,16], a supercurrent can flow through a normal
conductor placed between two closely spaced superconducting electrodes. For
this to happen, transport in the normal conductor must be phase coherent and
time reversal symmetry (TRS) must be present. In graphene, the Josephson effect
can be investigated in the ’relativistic’ regime [15], where the supercurrent is car-
ried by Dirac electrons. However, it is not clear a priori that graphene can support
supercurrents, because other quantum interference phenomena that require both
phase coherence and TRS were found to be absent or strongly suppressed in pre-
vious experiments [17]. Below we show experimentally that the Josephson effect
in graphene is a robust phenomenon, and argue that its robustness is intimately
linked to graphene’s unique electronic structure.

5.2 DEVICE FABRICATION AND CHARACTERIZATION
Single- and few-layer graphene Josephson junctions are fabricated on oxidized
Si substrates by mechanical exfoliation of bulk graphite [1], followed by optical
microscope inspection to locate the thinnest graphitic flakes, and electron beam
lithography to define electrical contacts. Figure 5.1a shows an atomic force mi-
croscope image of a typical device. We use as superconducting contacts a Ti/Al
bilayer (10/70 nm). Titanium ensures good electrical contact to graphene, and
Al establishes a sufficiently high critical temperature to enable the observation of
supercurrents in a dilution refrigeration set-up [18]. Before discussing their super-
conducting properties, we first characterize the devices with the superconduct-
ing electrodes in the normal state. Figure 5.1c shows the two-terminal resistance,
R, versus gate voltage, VG , for one of our samples. The strong VG -dependence
of R provides a first indication that the device consists of at most a few layers of
graphene [1], since, owing to screening, VG affects the carrier density only in the
bottom one or two layers. For single layers, the position of the resistance maximum
corresponds to the gate voltage at which the Fermi energy is located at the Dirac
point, VD , and we typically find that |VD | < 20 V. We unambiguously determine the
single layer character of a device by quantum Hall effect (QHE) measurements. Be-
cause the superconducting proximity effect requires two closely spaced electrodes,
we can only perform magnetoconductance measurements in a two terminal con-
figuration. In general, the conductance, G, measured in this way is a mixture of
longitudinal and Hall signals, but at high fields G ≈ |GHall | (this approximation is
exact at the Hall plateaus [19]). Indeed, the measurement of G versus VG at B = 10
T shows clearly identifiable Hall plateaus at half-integer multiples of 4e2/h (Fig.
5.1d), characteristic of the QHE in single layer graphene [2,3]. This demonstrates
that, even in mesoscopic samples, the QHE can be used to identify single layer
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FIGURE 5.1: Sample characterization. a, Atomic force microscope image of a single layer graphene de-
vice between two superconducting electrodes. We have fabricated devices with electrode separations in
the range 100-500 nm. b, Schematic representation of graphene between superconducting electrodes.
The two electrons in a Cooper pair entering graphene go into different K -valleys, represented by the
red and blue cones (see text). c, Two-terminal resistance versus gate voltage, VG , at T = 30 mK and a
small magnetic field, B = 35 mT, to drive the electrodes into the normal state. The aperiodic conduc-
tance fluctuations are due to random quantum interference of electron waves (see also Fig. 5.5). d, Two
terminal conductance, G, versus VG at high magnetic field, B = 10 T, and T = 100 mK, showing a series
of steps at half-integer values of 4e2/h, characteristic of the anomalous QHE in single layer graphene.
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devices.

5.3 OBSERVATION OF INDUCED SUPERCONDUCTIVITY
Cooling down the devices below the critical temperature of the electrodes (Tc ≈ 1.3
K) leads to proximity-induced superconductivity in the graphene layer. A direct
proof of induced superconductivity is the observation of a Josephson supercurrent
[20]. Figure 5.2a shows the current-voltage (I -V ) characteristics of a single layer
device. The current flows without resistance (no voltage drop at finite current) be-
low the critical current, Ic (what we actually measure is the switching current; the
intrinsic Ic may be higher [20,21]). In our devices, Ic ranged from ∼10 nA to more
than 800 nA (at high VG ). Remarkably, we have measured proximity-induced su-
percurrents in all the devices that we tested (17 flakes in total, with several devices
on some flakes), including four flakes that were unambiguously identified as sin-
gle layer graphene via QHE (the rest being probably two to four layers thick). This
clear observation demonstrates the robustness of the Josephson effect in graphene
junctions. (The data shown are representative of the general behaviour observed;
the measurements shown in Figs 5.1, 5.2a,c,d and 5.4 have been taken on the same
device, whereas those in Figs 5.2b and 5.5 correspond to a different single layer
device, shown in Fig. 5.1a.)

To investigate further the superconducting properties of our devices, we mea-
sured the dependence of Ic on magnetic field (Fig. 5.2b). The critical current
exhibits an oscillatory Fraunhofer-like pattern, with at least six visible side lobes,
which is indicative of a uniform supercurrent density distribution [22]. The peri-
odicity of the oscillations is in the ideal case expected to be equal to a flux quantum
Φ0 divided by the junction area. The area that corresponds to the 2.5 ± 0.5 mT pe-
riod is 0.8 ± 0.2 μm2, which is in good agreement with the measured device area
(0.7 ± 0.2 μm2) determined from the atomic force microscope image. Applying a
radio-frequency field to the sample results in the observation of quantized voltage
steps, known as Shapiro steps, in the I -V characteristics [20]. The voltage steps,
of amplitude ħω/2e (ω is the microwave frequency), are a manifestation of the a.c.
Josephson effect, and are evident in Fig. 5.2d.

The induced superconductivity manifests itself also at finite bias in the form of
subgap structure in the differential resistance due to multiple Andreev reflections
[23], as shown in Fig. 5.2c. This subgap structure consists of a series of minima
at source-drain voltages V = 2Δ/en (n = 1,2...), which enables us to determine the
superconducting gap, Δ. We find Δ = 125 meV, as expected for our Ti/Al bilayers
[18]. Figure 5.3 shows that the position of the minima is essentially independent
of the gate voltage. The sharpness of the features associated to multiple Andreev
reflection, on the contrary, does depend on gate voltage. Although we have not
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at values of V = 2Δ/en, where n is an integer number. d, a.c. Josephson effect. The Shapiro steps in the
I -V characteristics appear when the sample is irradiated with microwaves. In the example, we applied
4.5 GHz microwaves, resulting in 9.3 mV voltage steps. Inset, colour-scale plot showing the character-
istic microwave amplitude (P 1/2; a.u., arbitrary units) dependence of the a.c. Josephson effect (orange
and red correspond respectively to zero and finite dV /d I ).
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FIGURE 5.3: Subgap structure. The differential resistance, dV /d I , versus the voltage bias measured
at different gate voltages (the charge neutrality point is around Vg = -10 V). The traces show multiple
Andreev reflection dips at voltages below twice the superconducting gap (T = 30 mK).

performed a fully quantitative analysis, it appears that these features are sharper
when the gate voltage is close to the charge neutrality point, in qualitative agree-
ment with recent theoretical calculations [24]. For V > 2Δ/e, the differential resis-
tance returns to the normal state value. From the suppression of the differential
resistance observed while changing the bias from above to below the gap, we can
estimate that the average transparency of the superconductor−graphene interface
is ∼0.7-0.8.

5.4 BIPOLAR SUPERCURRENT
Having established the existence of the Josephson effect in graphene, we analyse
the gate voltage dependence of the critical current. Figure 5.2a shows several I -
V traces taken at different VG , where it can already be seen that varying the gate
voltage has a strong effect on the maximum supercurrent flowing through the de-
vice. This behaviour can be more readily seen in Fig. 5.4a, where the differential
resistance is plotted as a function of current bias and gate voltage. By changing
VG we can continuously shift the Fermi energy from the valence band (VG < VD )
to the conduction band (VG > VD ): irrespective of the sign of VG , we find a finite
supercurrent. This demonstrates that the devices operate as bipolar supercurrent
transistors: the supercurrent is carried by hole Cooper pairs when the Fermi level
is in the valence band and by electron Cooper pairs when it is in the conduction
band. Note that in going from valence to conduction band, we sweep the posi-
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dV /d I increases via orange to dark red. The current is swept from negative to positive values, and is
asymmetric owing to the hysteresis associated with an underdamped junction (see also Fig. 5.2a inset).
The top axis shows the electron density, n, as obtained from geometrical considerations [1]. For large
negative (positive) VG the supercurrent is carried by hole (electron) Cooper pairs. The supercurrent at
the Dirac point (VD ) is finite. Note that the critical current is not symmetric with respect to VD . The
origin of this asymmetry is not known, but a similar asymmetry is seen in the normal state conductance
(blue curve). b, Product of the critical current times the normal state resistance versus VG . The normal
state resistance is measured at zero source-drain bias, at T = 30 mK and with a small magnetic field to
drive the electrodes into the normal state. The Ic Rn product exhibits a dip around the Dirac point (see
main text).

tion of the Fermi level through the Dirac point. Strikingly, even then the supercur-
rent remains finite, despite the fact that for perfect graphene theory predicts [25]
a vanishing density of states at VG = VD . This behaviour has been observed in all
samples, and demonstrates that electronic transport in graphene is phase coher-
ent irrespective of the gate voltage, including when the Fermi level is located at the
Dirac point.

In conventional Josephson junctions, the critical current correlates with the
normal state conductance, Gn (ref. [26]). In graphene this correlation can be ob-
served directly, as shown in Fig. 5.4a, because both Ic and Gn depend on VG . To
analyse this correlation, we plot the product of the measured critical current and
the normal state resistance (Rn = 1/Gn ), or Ic Rn product (see Fig. 5.4b). We find
that at high gate voltage Ic Rn ≈Δ/e, and that Ic Rn is suppressed by a factor of 2-3
around the Dirac point. The observed Ic Rn product is thus close to the theoreti-
cal value of ∼ 2.5Δ/e for a model system of graphene in the ballistic regime [15].
The remaining discrepancy may be accounted for by the difference between the
measured critical current (or switching current) and the intrinsic critical current
[20,21]. This difference is in general hard to quantify and depends on the electro-
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FIGURE 5.5: Magnetoconductance measurements. a, Conductance versus magnetic field at T ≈ 1.5
K for a single layer device at VG = VD . The gray and black traces are two subsequent measurements,
showing reproducible conductance fluctuations, whose root mean square amplitude is e2/h. b, Low
field magnetoconductance measured at T ≈ 1.5 K (electrodes in the normal state) for two different sin-
gle layer devices (the gray trace corresponds to the device measured in (a), showing that the amplitude
of the weak localization effect is sample dependent and suppressed as compared to the expected value,
∼ e2/h. Each curve results from an ensemble average of 66 individual magnetoresistance measure-
ments taken at different gate voltages near the Dirac point.

magnetic environment of the sample, but it is expected to be more pronounced
when Ic itself is smaller (that is, at low VG ), and could thus well explain the ob-
served VG dependence of Ic Rn .

5.5 PHASE COHERENCE AND TIME REVERSAL SYMMETRY
An interesting aspect of supercurrent in graphene is the special role of time reversal
symmetry in the Josephson effect compared to that in phase coherent transport
in the normal state. At low energy, the band structure of graphene consists of two
identical, independent valleys centred on the so-called K and K ′ points [25], which
transform into each other under time reversal. As Cooper pairs are made out of
time reversed electron states, the two electrons in Cooper pairs that are injected
from the superconducting electrodes into graphene go to opposite K -points [15]
(see Fig. 5.1b). In this way, the presence of a superconducting electrode provides
an intrinsic mechanism that couples phase coherently electronic states belonging
to opposite valleys. The dynamics of electrons is then described by the full (two-
valley) Hamiltonian of graphene that is time reversal symmetric.

The situation is very different for normal-state transport where the dynamics of
the electrons is determined by a ’one-valley’ Hamiltonian. This has important con-
sequences not only for the QHE [4,5], but also for quantum interference. When the
two valleys are fully decoupled, interference originating from coherent propaga-
tion of electrons along time reversed trajectories cannot occur, as these trajectories
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involve quantum states from opposite K -points. As a consequence, quantum cor-
rections to the conductivity, like weak localization, would be absent (note that for
the single-valley Hamiltonian there exists an effective TRS in the long wavelength
limit, but in real samples this symmetry is easily broken [27-29]). The contribu-
tion of time-reversed trajectories to quantum interference can be restored only
up to the extent that there exists a coupling mechanism between the two valleys,
such as short-range scattering at impurities or at the graphene edges [27-29]. This
makes the occurrence of weak localization dependent on extrinsic defects, which
explains why both in our own samples (see Fig. 5.5b) and other recent measure-
ments [17,30] weak localization is found to exhibit a surprising sample dependent
behaviour and is often suppressed (while, at the same time, we observe a supercur-
rent in all samples investigated). This interpretation, which illustrates the unique
electronic properties of graphene, is consistent with the observation of aperiodic
conductance fluctuations [31] of amplitude e2/h (see Fig. 5.5a), whose occurrence
requires phase coherence but not time reversal symmetry.

Figure 5.6 shows the magnetoresistance of one of our devices for different val-
ues of gate voltage in the range (-5 V, -7 V), which corresponds to sweeping the
Fermi level across the Dirac point. The presence of aperiodic conductance fluctu-
ations is apparent. The characteristic correlation field is approximately 5-10 mT,
that compares well to the expected value of h/eS (where S is the area of the de-
vice). At this temperature (T = 1.3 K), the root mean square amplitude of these
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fluctuations is smaller than e2/h, but we also observed that the amplitude of the
aperiodic conductance fluctuations increases with lowering T (at T = 20 mK, we
measured aperiodic conductance fluctuations by applying a magnetic field larger
than the critical field of the superconducting electrodes), resulting in root mean
square values ≈ e2/h at T = 20 mK. Similar measurements performed in a few
different samples gave comparable, consistent results. Although a more system-
atic study as a function of gate voltage and temperature remains to be done, the
results of our experiments allow us to conclude that aperiodic conductance fluc-
tuations are indeed present in graphene even when the Fermi level is at or near
the Dirac point, and that their magnitude is close to what one would expect for
conventional mesoscopic conductors. The comparative study of Josephson super-
current, weak localization, and aperiodic conductance fluctuations consistently
point to the fact that transport in graphene is phase coherent irrespective of the
position of the Fermi level, i.e. whether the Fermi level is near or far away from the
Dirac point.
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6
AHARONOV-BOHM EFFECT IN

GRAPHENE

We investigate experimentally transport through ring-shaped devices etched in gra-
phene and observe clear Aharonov-Bohm conductance oscillations. The tempera-
ture dependence of the oscillation amplitude indicates that below 1 K, the phase
coherence length is comparable to or larger than the size of the ring. An increase
in the amplitude is observed at high magnetic field, when the cyclotron diameter
becomes comparable to the width of the arms of the ring. By measuring the depen-
dence on gate voltage, we find that the Aharonov-Bohm effect vanishes at the charge
neutrality point, and we observe an unexpected linear dependence of the oscillation
amplitude on the ring conductance.

The contents of this chapter have been published in Physical Review B:
S. Russo, J. B. Oostinga, D. Wehenkel, H. B. Heersche, S. Shams Sobhani, L. M. K. Vandersypen, A. F.
Morpurgo, Observation of Aharonov-Bohm conductance oscillations in a graphene ring. Physical Review
B 77 (8), 085413 (2008).
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6.1 INTRODUCTION
The investigation of transport phenomena originating from quantum interference
of electronic waves has proven to be a very effective probe of the electronic prop-
erties of conducting materials. Recent work has shown that this is also the case
for graphene, a novel material consisting of an individual layer of carbon atoms, in
which the electron dynamics is governed by the Dirac equation [1]. The anomalous
behavior of the weak-localization correction to the conductivity that is observed in
the experiments [2], for instance, is directly related to the presence of two indepen-
dent valleys in the band structure of graphene [3,4] and can be used to extract the
intervalley scattering time [5]. Another example is provided by the observation of a
Josephson supercurrent in graphene superconducting junctions, which permits to
conclude that transport through graphene is phase coherent even when the mate-
rial is biased at the charge neutrality point (i.e., where nominally no charge carriers
are present) [6].

Possibly, the phenomenon that most directly illustrates electronic interference
in solid-state devices is the occurrence of periodic oscillations in the conductance
of ring-shaped devices, measured as a function of magnetic field [7]. This phe-
nomenon, which is a direct consequence of the Aharonov-Bohm (AB) effect, has
been investigated extensively in the past in rings made with metallic films or with
semiconducting heterostructures, and its study has contributed significantly to
our understanding of mesoscopic physics. For example, the analysis of h/e and
h/2e AB conductance oscillations has clarified the difference between sample-
specific and ensemble-averaged phenomena [7]. The investigation of the tem-
perature and magnetic field dependences of the oscillation amplitudes has been
used to investigate processes leading to decoherence of electron waves, such as
electron-electron interaction [7,8], or the interaction with magnetic impurities [9].
In graphene, however, no experimental observation of AB conductance oscilla-
tions has been reported so far, although there is an emerging interest in the prob-
lem from the theoretical side [10,11]. In the course of recent experiments, we have
observed AB conductance oscillations experimentally in several rings fabricated
on few-layer graphene. In this paper, we report on systematic measurements that
we have performed on a device made on single-layer graphene as a function of
temperature, density of charge carriers, and magnetic field.

6.2 DEVICE FABRICATION
The devices used in our experiments were fabricated following a by now estab-
lished procedure [12]. Thin graphite flakes were exfoliated from natural graphite
using an adhesive tape and transferred onto a highly doped Si substrate (acting as
a gate) covered by a 300 nm thick SiO2 layer. The flakes were imaged under an op-
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FIGURE 6.1: (a) The main panel shows the two-probe measurement of the ring resistance versus back-
gate voltage at T = 150 mK. The charge neutrality point is at +4 V. Left inset: temperature dependence
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ments. (b) Magnetoconductance of the graphene ring measured at T = 150 mK and VG =+30 V. On top
of the aperiodic conductance fluctuations, periodic oscillations are clearly visible as also highlighted in
the inset.
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tical microscope and their position was registered with respect to markers already
present on the substrates. Single layer flakes were identified by looking at the shift
of the light intensity in the green channel of the red-green-blue scale relative to
the adjacent substrate (see §2.7 and Ref. [13]). In subsequent nanofabrication
steps, the devices were patterned using electron-beam lithography to define pairs
of metallic electrodes (Ti/Au) and to etch the rings in an argon plasma. The rings
have inner and outer radii of 350 and 500 nm, respectively; the inset of Fig. 6.1a
shows a scanning electron micrograph of a typical device.

Measurements were performed in a dilution refrigerator in the temperature
range between 150 and 800 mK. The conductance of the ring was measured using a
lock-in amplifier in a current-biased two-terminal configuration. For the different
measurements, the excitation current was varied to ensure that resulting voltage
was smaller than the temperature to prevent heating of the electrons and the oc-
currence of nonequilibrium effects.

6.3 CHARACTERIZATION OF THE GRAPHENE RING
Figure 6.1a shows the resistance of the ring measured at T = 150 mK as a function
of gate voltage. A clear peak, centered at approximately VG = +4 V, is observed as
it is typical for graphene. The large peak resistance value may be expected since
the rings are made of fairly narrow ribbons (∼150 nm). It may originate either
from the opening of a small gap due to lateral size quantization (as recently pro-
posed [14]) or from the fact that, close to the charge neutrality point, disorder at
the edges is not screened effectively, resulting in enhanced scattering with valley
mixing and localization of electron states. To estimate the mobility μ of charge
carriers, we use the value of the conductance per square measured at high gate
voltage. With the density of charge carriers being determined from the known ca-
pacitance to the gate (i.e., G� = neμ = ε0εr eμVG /d), we obtain μ = 6000 cm2/Vs,
essentially independent of VG for VG > 10 V and VG < -10 V. The diffusion constant
is estimated from the Einstein relation σ= νe2D, where σ is the measured conduc-
tivity and ν the density of states at the Fermi level, which for graphene is given by
ν(εF ) = gv gs2π|εF |/(h2v2

F ) [15]. Here, gv = 2 and gs = 2 account for the valley and
spin degeneracies, vF = 106 m/s is the Fermi velocity, and the value of εF is deter-
mined by equating the expression for the charge density n(εF ) = gv gsπε

2
F /(h2v2

F )
to the value determined by the gate voltage. We obtain D = 0.06 m2/s, not far from
the value of diffusion constant that is estimated assuming diffusive scattering at
the ribbon edges (D = W vF = 0.15 m2/s, with W the width of the ribbon). With
this value of the diffusion constant, we obtain a Thouless energy for the ring of
ET h = ħD/L2 = 10 μeV (L is the ring circumference), which is slightly smaller than
the lowest temperature (T = 150 mK) at which the measurements have been per-
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formed.

6.4 AB-EFFECT AT LOW MAGNETIC FIELD
The low-field magnetoresistance measured at VG = 30 V and T = 150 mK is shown
in Fig. 6.1b. The presence of periodic oscillations is clearly visible. The period in
field is approximately B = 7 mT and the corresponding Fourier spectrum is shown
in Fig. 6.2b. In the spectrum, a peak is present, whose position and width corre-
spond well to what is expected for h/e oscillations given the values of the inner and
outer radii in our device. Figure 6.2a shows the evolution of the AB conductance
oscillations (with the background removed by subtracting the magnetoresistance
averaged over one period of the oscillations) measured at different temperatures.
It is apparent that their amplitude decreases with increasing temperature. This de-
crease is quantified in the inset of Fig. 6.2b, where we plot the root mean squared
value of the amplitude as a function of T in a double logarithmic scale. We find
that the oscillation amplitude is proportional to T −1/2. This dependence, which is
commonly observed in metal rings, is due to thermal averaging of the h/e oscilla-
tions (δG AB ∝ (ET h/kB T )1/2 exp(−πr /Lϕ(T )), where r is the radius of the ring) [7].
It is expected for temperature values larger than the Thouless energy (which is the
case here), if the phase coherence Lϕ = (Dτϕ)1/2 length is longer than the arms of
the ring. Indeed, with the value of diffusion constant given above and taking for
the phase coherence time values estimated in the literature (away from the charge
neutrality region τϕ ∼ 0.1 ns at T = 1 K, increasing roughly linearly with decreasing
T ) [16]†, we find that in our ring also this condition is satisfied. A similar T −1/2 de-
pendence was observed for all gate voltages at which the AB oscillation amplitude
was sufficiently large to be accurately measured.

The detailed dependence of the amplitude of the AB conductance oscillations
on gate voltage is particularly interesting. It is apparent from Figs. 6.3a and 6.3b
that at the charge neutrality point, essentially no AB oscillations are observed and
that the amplitude of the oscillations becomes larger as the charge density in the
sample is increased. This finding is summarized in Fig. 6.3c, in which the depen-
dence of rms amplitude on VG is shown to anticorrelate with the gate-voltage de-
pendence of the total sample resistance. Indeed, if we plot the amplitude of the AB
oscillations as a function of the device conductance (Fig. 6.3d), we observe that a
linear relation is surprisingly well obeyed. Such a relation is predicted theoretically

† Note that in the experiments reported by Tikhonenko et al. [16], the phase coherence length becomes
larger than the sample size below approximately 2.5 K. The value that we have used in our estimates is
obtained by extrapolating the linear dependence observed at T > 2.5 K to the subkelvin regime relevant
for our work. The numbers that we obtain are consistent with independent estimates of τφ reported in
F. Miao, S. Wijeratne, Y. Zhang, U. C. Coskun, W. Bao, and C. N. Lau, Science 317, 1530 (2007).
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for rings containing tunnel barriers [17] and it has not been observed previously
in metallic rings. It is also not usually observed in rings formed in semiconduct-
ing heterostructures. Only recently, a similar dependence has been observed in
experiments performed on rings fabricated using GaAs-based heterostructures in
which the carrier density was changing by controlled illumination of the devices
[18]. Both in these GaAs-based devices and in our graphene rings, the origin of
this relation between conductance and AB oscillation amplitude is unknown.

6.5 AB-EFFECT AT HIGH MAGNETIC FIELD
All measurements discussed so far have been performed at magnetic fields smaller
than 0.5 T, for which the maximum observed amplitude of the AB conductance os-
cillations is only 0.02e2/h. In Fig. 6.4c, we now plot the AB conductance oscilla-
tions measured in a larger magnetic field range (up to 9 T): the data clearly show
that the rms amplitude of the oscillations is significantly larger at higher fields than
around B=0 T (see also Figs. 6.4a and 6.4b). We have performed a quantitative anal-
ysis of the evolution of the h/e oscillations by determining their rms amplitude in
a 350 mT interval (approximately 50 periods) as a function of magnetic field. Fig-
ure 6.5a shows that, irrespective of the temperature at which the measurement
is performed, the oscillation amplitude increases and saturates starting from ap-
proximately 3 T. The relative increase is also comparable in magnitude (roughly
four times) at the two different temperatures. Owing to the large amplitude, in the
high field regime, the second harmonic in the Fourier spectrum of the AB oscilla-
tions becomes visible (see Fig. 6.4d, obtained from the measurement of magne-
toresistance between 4 and 5 T). The temperature dependence of the amplitude of
both the h/e and h/2e components measured at high field still scales linearly with
T −1/2, similar to what is seen in the low field regime.

An increase in the amplitude of the AB conductance oscillations with increas-
ing magnetic field is unusual. In metallic rings, a known mechanism causing such
an increase is scattering off magnetic impurities [7,9]. At low field, the spin of
these impurities can flip without any energy cost, causing dephasing of the elec-
tron waves. At higher field, the finite Zeeman energy prevents the spins to flip,
leading to a decrease in dephasing and a corresponding increase in AB oscilla-
tion amplitude. Despite the fact that magnetic impurities have been predicted to
form at defects in graphene or could be present at the edges [19,20], in our device,
the presence of magnetic impurities cannot account for the experimental obser-
vations. In fact, if the effect observed was due to spin, one should observe that
the magnetic field required for the enhancement of the oscillation amplitude in-
creases with temperature (since the Zeeman energy has to be larger than kB T ),
which is not what we see. An indication as to the origin of the anomalous in-
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crease observed in our graphene ring comes from the estimate of the diameter
of the cyclotron orbit. At VG = 30 V and 3 T − the field at which the amplitude
starts saturating − the cyclotron diameter is approximately 140 nm, comparable to
the width of the ribbons forming the AB ring. This suggests that the effect of the
field is of orbital nature. Indeed, Fig. 6.5b shows the amplitude of the AB conduc-
tance oscillations as a function of field measured at VG = 20 V, where the increase
occurs for a slightly smaller magnetic field, as it is expected since the cyclotron
diameter (ħkF /πeB) is smaller at lower carrier density. The precise nature of the
orbital mechanism leading to larger oscillation amplitude at higher magnetic field
remains to be determined, but we suspect that the phenomenon originates from
an asymmetry present in the arms of the ring caused by defects or inhomogeneity
in graphene ‡.

Interestingly, the linear relation between the amplitude of AB oscillations and
the device conductance persists also at high field. Although less data are available
− we have only performed high field measurements at VG = +4, +20, and +30 V −
when plotted as a function of conductance, the points still fall on one single line
(see Fig. 6.5d). As mentioned above, such a linear relation is predicted theoretically
for rings containing tunnel barriers in their arms [17].

6.6 CONCLUSIONS AND DISCUSSION
The linear relation between the amplitude of AB oscillations and the conductance
of the ring, observed at high and low magnetic field, may indicate that, consistent
with the scenario that we propose to explain the observed magnetic field depen-
dence ‡, the graphene ring is rather strongly inhomogeneous and contains small,
highly resistive regions acting as weak links or tunnel barriers. Whereas the pres-
ence of such highly resistive regions would not be surprising in the low density
regime, it is less obvious that it should be expected when the density of charge
carriers is of the order of (2−5) ·1012 cm−2 (corresponding to the high VG values
in our experiments). A theoretical analysis of the relation between AB oscillation
amplitude and ring conductance in graphene devices is called for, and it is likely
that it will prove insightful to understand the nature of transport through narrow

‡ We envision the possibility that a defect - e.g., a constriction - is present in one of the arms of the ring.
For such an asymmetric configuration, the AB oscillation amplitude is smaller than for a symmetric
ring, which may explain why at low field δG AB ∼ 0.02e2/h only. By squeezing the size of the cyclotron
orbit, a large magnetic field can increase the transmission through the constriction and tends to equal-
ize the transmission through the two arms. As a consequence, the oscillation amplitude increases.
Note that one would then also expect an increase in conductance whose magnitude depends on the
magnitude of the asymmetry between the two arms in the ring. Indeed, albeit small, an increase in the
conductance is observed (see inset of Fig. 6.4d) to occur for the same fields that lead to the increase in
the AB oscillation amplitude.
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graphene ribbons.
In conclusion, we have reported the first observation and systematic study of

Aharonov-Bohm conductance oscillations through a graphene ring. We find that
in rings with a diameter of approximately 1 μm, the phase coherence length of
electrons is comparable to or longer than the device size for temperatures below
1 K. As a result, the oscillation amplitude increases as T −1/2 with decreasing tem-
perature, owing to thermal averaging on an energy scale larger than the Thouless
energy. We also observe an increase of the AB oscillation amplitude at high mag-
netic field, originating from an orbital effect of the magnetic field. Surprisingly,
measurements as a function of gate voltage show that the amplitude of the con-
ductance oscillations scales linearly with the total conductance of the device, a
phenomenon whose microscopic origin remains to be understood in detail.
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7
STRONG LOCALIZATION IN

GRAPHENE NANORIBBONS

In this chapter, we study the conductance in the transport gap of graphene nanorib-
bon devices. At low charge densities, we observe Coulomb blockade effects indicating
that Coulomb islands are formed. We determine the magnetic field and tempera-
ture dependence of the average conductance in the gap. The average conductance
increases with magnetic field (for B ≲ 3 T) and saturates at higher fields. These ob-
servations can be explained by the presence of strongly localized electron states with
a localization length (ξ ≈ 37 nm) that is of the same order as the mean free path
(lm ∼ 10 nm). Moreover, these measurements indicate that the localization length
increases by an applied magnetic field due to time reversal symmetry breaking. The
temperature dependence of the average conductance in the gap is best described by
a variable range hopping mechanism. The corresponding hopping energy at high
magnetic field is lower than at low field. This observation indicates a larger localiza-
tion length at high field, and is therefore qualitatively consistent with the magnetic
field dependent measurements.

Parts of this chapter have been submitted for publication:
J. B. Oostinga, B. Sacépé, M. F. Craciun, A. F. Morpurgo, Magnetotransport through graphene nanorib-
bons. Submitted to Physical Review Letters (2010).
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7.1 INTRODUCTION
Graphene is a promising material for future use in high-speed integrated nano-
electronic circuits [1]. It has an almost perfect crystal quality and it is rather easy
to produce. The electrons have a long mean free path and room temperature mo-
bilities up to 104 - 105 cm2/Vs have been measured (ten times higher, or more,
than in silicon). However, since graphene has no bandgap, electric currents can-
not be switched off in graphene devices. This is one of the most serious obstacles
that needs to be overcome before graphene field effect transistors will be within
technological reach.

Although graphene is intrinsically gapless, an energy gap has been predicted
in graphene nanoribbons [2-4]. These ribbons are (quasi-)one-dimensional struc-
tures cut out of a two-dimensional sheet of graphene. The presence of a transport
gap has been confirmed by transport measurements on graphene nanoribbons [5-
11]. However, the physical origin of the observed gap is still under debate. In this
chapter, we will argue that strong localization of interacting electrons can explain
the transport gap observed in our graphene nanoribbons.

7.2 THE TRANSPORT GAP
Bandstructure calculations have shown that a bandgap arises in narrow graphene
nanoribbons due to lateral confinement of electronic states and interaction effects
[2-4]. The value of this bandgap highly depends on the boundary conditions, de-
termined by the edge structure and the ribbon width. The predictions of a bandgap
stimulated experimental groups to perform transport measurements on graphene
nanoribbons [5-11]. In practice, narrow ribbons are etched out of large graphene
flakes, and the edge structure cannot be controlled microscopically. Consequently,
much disorder is introduced at the edges. The first experiments showed a trans-
port gap in all ribbons with typical width W ≲ 100 nm [5]. However, it is unclear if
this transport gap originates from a bandgap.

More recent experiments have shown that, in the transport gap, the current
is limited by Coulomb blockade effects [7-10]. These observations indicate that
Coulomb islands are formed in the ribbon. Sols et al. [12] suggested that the varia-
tion of the ribbon width may give rise to the formation of a series of quantum dots
in the ribbon, which could explain the observed quantum dot behaviour. Another
suggested explanation is the presence of a bandgap in conjunction with a disor-
der potential [7-10]. This disorder potential may be induced by the presence of
charged impurities at the surface of the ribbon [7,10], and may give rise to a dis-
tribution of isolated puddles of electrons and holes in the ribbons. The observed
Coulomb blockade effects may be attributed to these puddles which act as quan-
tum dots. However, a convincing experimental proof for this mechanism is still
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missing.
Alternatively, it is predicted that electrons in graphene nanoribbons can be

strongly localized at low charge densities [13-17]. Since graphene nanoribbons are
highly disordered, intervalley scattering will not be suppressed as in usual graphene.
Edge and bulk disorder yield strong scattering, and consequently the tendency to
localization will affect electronic transport much more effectively. Strong localiza-
tion will give rise to an insulating state, even when a bandgap is absent. Addition-
ally, a Coulomb gap will appear at the Fermi level when Coulomb interactions are
relevant in the strong localization regime [18]. This may be an alternative explana-
tion of the observed transport gap and the Coulomb blockade effects in graphene
nanoribbons [17,19]. Recently, transport measurements have shown that the insu-
lating properties are indeed consistent with localization of electronic states [11].

In this chapter, we study the properties of the transport gap as a function of
charge density, magnetic field and temperature. Our experimental findings pro-
vide a better understanding of the nature of the transport gap in graphene nanorib-
bons.

7.3 GRAPHENE NANORIBBON DEVICES
We fabricated many electronic devices consisting of graphene nanoribbons by the
following procedure. After mechanical exfoliation of natural graphite, we obtained
graphene flakes on a Si/SiO2 substrate. The highly p-doped Si was used as back-
gate with the SiO2 as gate dielectric. We identified single-layer graphene flakes by
determining their contrast with respect to the substrate in an optical microscope
[20]. By conventional ebeam lithography techniques, the electrical contacts were
patterned on graphene, followed by evaporation of 10 nm Ti and 40 nm Au. Sub-
sequently, an etching mask was patterned during a second lithography step. The
narrow ribbons were etched out of the flakes by using an Ar plasma. Different rib-
bons of various lengths (L ≈ 500−1000 nm) and widths (W ≈ 50−100 nm) were
obtained. A typical device is schematically shown in the inset of figure 7.1a.

By applying backgate voltages we could control the charge density electrostat-
ically: n = (εr ε0/te)Vbg , where t = 285 nm is the thickness of the SiO2 layer and
ε0 and εr = 3.9 are the electric permittivity of vacuum and SiO2, respectively. To
study the transport properties, two-probe measurements were performed at cryo-
genic temperatures (T = 2−60 K) and magnetic fields up to 8 T. Since the ribbons
were highly resistive, the contact resistances could be ignored (the metal elec-
trodes were contacted at a wide part of the graphene flake resulting in a relative
low contact resistance, usually a few hundred Ohms). We performed conductance
measurements as a function of back-gate voltage, temperature and magnetic field
on many different devices yielding consistent results (the conductance was mea-
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FIGURE 7.1: (a) The conductance G as a function of the gate-voltage Vbg , showing a transport gap at
low charge densities. The inset shows a schematic picture of the device geometry. (b) In the transport
gap, Coulomb peaks are observed when sweeping the gate voltage with smaller steps. (c) Colorplot of
log(G) as a function of voltage bias Vsd measured at different Vbg , showing the insulating regime at low
charge densities and small voltage bias Vsd (T = 4 K, B = 0 T). (d) When sweeping the gate voltage with
smaller voltage steps, Coulomb diamonds are observed in the colorplot at low charge densities (T = 4
K, B = 0 T).
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sured by using a lock-in amplifier in a voltage bias configuration). Here, we discuss
the systematic results of a ribbon with length L = 500 nm and width W = 50 nm
(see inset of figure 7.1a), which is representative of the overall behaviour observed.
All data shown in this chapter corresponds to this ribbon, unless stated otherwise.

7.4 COULOMB BLOCKADE
First, we study the conductance in the transport gap. In figure 7.1a, the differential
conductance G of the ribbon as a function of the gate voltage Vbg is shown. The
conductance is strongly suppressed in the voltage range [−2V ,+4V ]. Effectively,
the ribbon becomes insulating for these values of the gate voltage, therefore we re-
fer to this voltage range as to the transport gap. Figure 7.1b shows the conductance
in this insulating regime by sweeping the gate with smaller voltage steps. Repro-
ducible conductance peaks appear at several gate voltages, while the conductance
vanishes between these peaks. This is a strong indication that charging effects give
rise to Coulomb blockade in the ribbon.

We also measured the conductance as a function of voltage bias (Vsd ) at differ-
ent gate voltages (figure 7.1c and 7.1d). We clearly observe an insulating regime,
where the conductance is highly suppressed at low Vsd . The irregular structure
of this insulating regime, shown in (figure 7.1c), results in a series of diamond-
like structures when measurements are performed by sweeping the gate voltage
with smaller steps (figure 7.1d). These diamond-like structures are expected when
Coulomb blockade limits the current through the ribbon. Apparently, the electrons
are confined or localized in small areas of the ribbon (which we will call islands).
Figure 7.1d shows that the diamonds have different sizes and partially overlap, in-
dicating that islands with varying size in series contribute to the current through
the ribbon.

7.5 MAGNETIC FIELD DEPENDENCE
Next, we explore the effects of a magnetic field on the conductance in the transport
gap. In figure 7.2a, the conductance as a function of backgate voltage at different
magnetic fields from 0 to 8 T is shown. We observe that the transport gap becomes
smaller if the magnetic field increases. Figure 7.2b shows a similar measurement as
in figure 7.1c, but now at a high magnetic field (B = 8 T). It is apparent that the (bias
and gate) voltage ranges at which we observe the insulating regime, are smaller at
high field (note that we have observed similar behaviour in several devices).

We also observe Coulomb peaks (figure 7.3a) and Coulomb diamonds (figure
7.3b) at B = 8 T. Interestingly, in the presence of a high magnetic field, the average
number of Coulomb peaks and the peak conductance are higher. This evolution
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from B =0 T to 8 T can be clearly seen in figure 7.3c. Qualitatively, these observa-
tions are expected when the average island size in the ribbon increases with mag-
netic field. This increase will be discussed in more detail in next section.

From the data shown in figure 7.3c, we determine the average value of the
conductance as a function of magnetic field in the gate voltage range [+1V ,+3V ].
Since the conductance between the Coulomb peaks is negligibly small due to Cou-
lomb blockade, this average value is mainly a measure of the average conductance
at the Coulomb peaks and the number of peaks. Figure 7.4 clearly shows that the
average conductance increases with magnetic field for B < 3 T and that it saturates
for B > 3 T. Consequently, we can conclude that the average number of Coulomb
peaks and the average peak conductance increase for B < 3 T, but remain approxi-
mately constant for B > 3 T. Similar measurements on two other ribbons, which
have a different width, W = 80 nm and W = 110 nm, show that these ribbons
exhibit qualitatively a similar magnetic field dependence (figure 7.4). Most sur-
prisingly, the average conductance saturates at approximately similar values of the
magnetic field, irrespective of the ribbon width. These observations can be ex-
plained by considering strong localization of electronic states.

7.6 STRONG LOCALIZATION OF ELECTRONS
Figure 7.1a shows that the transport gap is only observed at low charge densities.
From the slope ∂G/∂Vbg at high charge densities, we can determine the field-effect

mobility: μ = tL
W εr ε0

∂G
∂Vbg

≈ 1000 cm2/Vs (note that we disregard the large conduc-

tance fluctuations). This value is smaller than the mobilities usually found for
graphene flakes (μ∼ 5000−10000 cm2/Vs [1]), confirming that graphene nanorib-
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bons are more disordered.

In this high density regime, we can determine the mean free path lm using the
Einstein relation σ = νe2D (where D is the diffusion constant). At Vbg = −10 V,
we determine the conductivity, σ ≈ G� = GL/W , and the charge density, ν(εF ) =
8π|εF |/(h2v2

F ) (with εF and vF are the Fermi energy and Fermi velocity, respec-
tively). Here, εF is obtained from the charge density induced electrostatically, n(Vbg =
−10V ) = 4πε2

F /(h2v2
F ) ≈ 1·1012 cm−2. This yields D ≈ 0.006 m2/s and lm = 2D/vF ≈

10 nm. Thus, the mean free path at high charge density is smaller than the ribbon
width (W = 50 nm).

While the ribbon is conducting at high charge densities, it becomes insulat-
ing at low densities. The short mean free path value indicates the presence of
strong disorder and suggests that the electrons are strongly localized at low charge
density. A signature of an insulating state due to strong localization is a positive
magnetoconductance, which originates from an increase of the localization length
ξ due to time reversal symmetry breaking [18,21-23]. In the strong localization
regime, time reversal symmetry is broken when the magnetic flux through an area
of ξ2 is of the order of the flux quantum h/e. This mechanism can explain our data
of figure 7.4, which shows that the average conductance at low n increases when
sweeping the magnetic field from 0 T to ∼3 T. The saturation of the average con-
ductance at B > 3 T may indicate that time reversal symmetry is broken at B ≈ 3 T,
which corresponds to a localization length of ξ≈ (h/eB)1/2 ≈ 37 nm (note that this
value of ξ is smaller than the ribbon width, for all three ribbons plotted in figure
7.4).
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FIGURE 7.4: Average conductance < G > in the transport gap as a function of B (T = 4 K) for three
ribbons with different width (< G > is determined in a gate-voltage range of ΔVbg = 2 V). Irrespective
of the ribbon width, an increase of <G > with increasing B is observed for B < 3 T, while <G > saturates
for B > 3 T.

Close to the charge neutrality point, it is theoretically expected that ξ∼ lm , be-
cause the number of occupied transverse channels is low [13,18,19,21-23]. This
indicates that close to the charge neutrality point lm is of the same order as at
high density (≈ 10 nm). In the strong localization regime, ξ should be smaller than
the phase coherence length lϕ. We can estimate lϕ = (Dτϕ)1/2 by using D = 0.006
cm2/Vs and τϕ ≈ 5 ps (at T =4 K; estimated from the experimental data of Ref.
[24]), which gives lϕ ≈ 175 nm. This shows that lm ≲ ξ < lϕ and, therefore, is con-
sistent with what we would expect if strong localization occurs [21].

We propose that the electrons are strongly localized within domains of size ξ2.
Such localization domains can be considered as islands. Because of the small is-
land size, not only the localization energy, but also the charging energy of an is-
land and the Coulomb interactions between islands will affect electronic transport.
This will give rise to Coulomb blockade effects and may explain our observations
of conductance peaks and Coulomb diamonds at zero magnetic field (figure 7.1b
and 7.1d) as well as at high field (figure 7.3a and 7.3b). The increase of the average
conductance in figure 7.4, which corresponds to a decrease of the average peak
spacing and an increase of the average peak height, indicates an increase of the
average island size with magnetic field. This observation is qualitatively in agree-
ment with an increase of the localization length, as expected when time reversal
symmetry is broken.
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FIGURE 7.5: (a) Arrhenius plot of the average conductance < G > in the transport gap at B = 0 T and
B = 8 T (< G > is determined in a gate-voltage range of ΔVbg = 2 V). (b) The same data plotted as a

function of T−1/2. The dashed lines are linear fits to the data.

7.7 VARIABLE RANGE HOPPING
When electrons are strongly localized, they can hop from one electron state to an-
other yielding an electric current. In general, two hopping mechanisms are dis-
tinguished: nearest neighbour hopping and variable range hopping [18,22]. Since
both hopping mechanisms yield a different temperature dependent conductance,
we can use this difference to determine which transport mechanism dominates in
graphene nanoribbons.

We measured the average conductance in the gap as a function of temperature
at B =0 T and 8 T in the temperature range 2− 60 K (figure 7.5a,b). If electronic
transport occurs by nearest neighbour hopping, the temperature dependence of
the conductance should be G ∝ exp−(T0/T ) [18,22] (with a characteristic tem-
perature T0). However, the non-linear Arrhenius plots of figure 7.5a indicate that
nearest neighbour hopping is not the dominant transport mechanism.

If variable range hopping occurs, the temperature dependence of the conduc-
tance should be G ∝ exp−(T0/T )n [18,22], where the exponent n depends on the
dimensionality of the system as well as on the presence of Coulomb interactions.
Since Coulomb interactions are relevant in graphene nanoribbons, an exponent
of n = 1/2 is expected (irrespective of the dimensionality of the system). Indeed,
figure 7.5b shows that the data fits better to G ∝ exp−(T0/T )1/2. This result indi-
cates that electronic transport is dominated by variable range hopping (note that
we have observed a similar temperature dependence in several ribbons).

The parameter T0 is related to the energy needed by an electron to hop be-
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tween localized states. At B = 0 T, we obtain kT0 ≈ 6 meV from the fit to the data of
figure 7.5b†. On the other hand, the fit to the data of B = 8 T yields a smaller value,
kT0 ≈ 4 meV. This result is qualitatively in agreement with what we would expect if
ξ is larger at high magnetic field, because the level spacing and the charging energy,
which determine the hopping energy, become smaller if the localization length in-
creases. Thus, this result is consistent with the magnetic field dependent measure-
ments, which also indicates that the average island size at high field is larger than
at zero field.

We should note that at high temperatures (T > 10 K), the Arrhenius plots of
figure 7.5a become more linear. This may indicate that a crossover from variable
range hopping to nearest neighbour hopping occurs if T ≳ 10 K. Such a crossover
is theoretically predicted for strongly localized electrons in graphene nanoribbons
[17]. On the other hand, we should take into account that at higher temperatures,
the Coulomb peaks broaden and the conductance between the peaks increases
significantly (i.e. effectively the conductance is not blockaded anymore at higher
temperatures). While at low temperatures (T ≲ 10 K), the average conductance
is mainly determined by the conductance at the peaks, the conductance between
the peaks starts to contribute to the average value at high temperatures (T ≳ 10 K).
This may also explain the observed deviation of the temperature dependence at
higher temperatures. However, the temperature dependence of the average con-
ductance, which depends on the exact nature of the localized states, remains to be
understood.

7.8 CONCLUSIONS AND DISCUSSION
The first experiments on graphene nanoribbons were performed by Han et al. [5]
and Chen et al. [6]. They attributed the transport gap to the presence of a bandgap,
which is theoretically predicted in nanoribbons. In the presence of a high magnetic
field, when the magnetic length, lB = (ħ/eB)1/2, becomes smaller than the ribbon
width, Landau levels are expected to appear in the energy spectrum. These Landau
levels will give rise to the appearance of edge states which contribute to the con-
ductance (∼ e2/h). Since graphene has a zeroth Landau level exactly at the center

† Note that this hopping energy of 6 meV is an order of magnitude smaller than what we would expect
by simply considering the level spacing, Δ ∼ ħvF /ξ ≈17 meV, and the charging energy, Ec ∼ e2/Cg ≈
e2/2ε0(ε+1)ξ ≈ 50 meV [25] (by using ξ = 37 nm at B =0 T). A possible explanation of this large mis-
match is that, due to the coupling of neighbouring islands, the effective values of the level spacing and
the charging energy may be much smaller than expected from an island with dimensions equal to the
localization length. Furthermore, if an electron hops from one island to another, we would expect that
it only needs to pay the difference in charging energy, ΔEc , which is smaller than Ec . However, based
on our measurements, a conclusive explanation of the mismatch cannot be given. A more quantita-
tive study of the hopping mechanism in graphene nanoribbons is required to be able to explain the
extracted values of T0.
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of the gap (E = 0), the appearance of this Landau level will close the bandgap. Al-
though in our experiments lB ≈ 10 nm for B =8 T, we did not observe any signature
of the presence of edge states in the transport gap (while lB <W ). Therefore, in our
measurements we cannot attribute the magnetic field dependence of the conduc-
tance to the formation of Landau levels. The absence of edge states is an indication
that the ribbons are highly disordered.

Since the ribbons are disordered, some groups attributed the transport gap to
a bandgap in conjunction with a disorder potential [7-10]. They assumed that dis-
order induced potential fluctuations give rise to puddles of electrons and holes, as
observed in usual graphene [26]. These puddles may be separated by a bandgap [2-
4] and give rise to Coulomb islands. However, it is unclear how this mechanism can
explain the increase of the average conductance with increasing magnetic field, as
we observed in our experiments.

More recently, experiments have shown that the transport gap of disordered
nanoribbons can be explained by strong localization of electronic states [11], as
theoretically predicted in disordered ribbons [13-17]. Complementary to these ex-
periments, we have shown in this chapter that the transport gap, observed in our
ribbons, can indeed be explained by strong localization: (i) We observed Coulomb
peaks and Coulomb diamonds at low n, as expected when Coulomb islands are
formed in the ribbon, which scale with the localization length ξ; (ii) We observed
that the average peak spacing decreases and the average peak height increases with
increasing magnetic field up to ∼3 T, while they remain approximately constant at
higher fields. This is expected in the strong localization regime, when ξ increases
with magnetic field until time reversal symmetry is fully broken [18,21-23]; (iii)
From the value of the crossover-field (B ≈3 T), we have estimated the localization
length, ξ ≈37 nm. We found that lm ≲ ξ < lϕ, which indicates that electrons are
indeed strongly localized [21]; (iv) We showed that electronic transport is best de-
scribed by a variable range hopping mechanism: G ∝ exp−(T0/T )n with n = 1/2.
We found that the fitted value of T0 is higher at B = 0 T than at 8 T, as expected
when the localization length at high magnetic field is larger than at low field.

In conclusion, our transport measurements indicate that the transport gap,
which appears at low charge densities, originates from strong localization of elec-
tronic states. We suggest that disorder induced localization effects effectively lead
to the formation of Coulomb islands which scale with the localization length. The
measurements show that the effective island size increases by a magnetic field,
which can be explained by an increase of the localization length due to time re-
versal symmetry breaking. Moreover, our measurements indicate that electronic
transport occurs by variable range hopping between these islands, while Coulomb
blockade effects limit the current at low temperatures.
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APPENDIX

In this appendix, we describe how graphene flakes are prepared, how electronic
devices are fabricated, and how the fabricated devices are measured electrically in
cryogenic measurement setups.

PREPARATION OF GRAPHENE FLAKES

Graphene flakes are prepared by the following procedure:

1. Highly p-doped Si wafers with thermally grown SiO2 (thickness 285 nm) are
obtained from the company Nova Electronic Materials, Ltd. We dice these
4" circular wafers to get square substrates of 19x19 mm2.

2. After cleaning the 19x19 mm2 substrates (similar to the pre-cleaning step
that will be described in step 3), we pre-pattern the substrates by standard
e-beam lithography techniques (see next section). The pattern consists of
bonding pads and markers and is created by evaporation of 10 nm Ti fol-
lowed by 50 nm AuPd (a mixture of 60% Au and 40% Pd). After lift-off, the
substrates are cut into pieces, corresponding to eight samples of ∼5x7 mm2

with pre-defined markers and bonding pads.

3. Before graphene is transferred to a 5x7 mm2 sample, the sample is pre-cleaned
as follows, in an ultrasonic bath: (i) 2 minutes in aceton; (ii) 2 minutes in
H2O; (iii) 1 minute in fuming nitric acid (∼100% HNO3); (iv) 2 minutes in
H2O; (v) 2 minutes in isopropanol (IPA).

4. To mechanically exfoliate graphite, we take one single grain of graphite (typ-
ical size <1 mm) and put it on adhesive tape (scotch tape). Usually, we peel
the graphite for about 5−10 times to get thinner graphite flakes on the tape.
Then, we take a pre-cleaned sample directly from the IPA bath, we blow it
dry with N2-gas, and immediately press it with the SiO2 side on the tape. Af-
ter removing the sample from the tape, layers of graphite remain attached to
the SiO2 surface (figure A.1).
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FIGURE A.1: (a) Natural graphite in a plastic cylinder, received from colleagues at other universities (e.g.
from Andre Geim and Kostya Novoselov at Manchester University), (b) Repeatedly peeling of graphite
with adhesive tape, (c) Optical image of graphite on the tape after cleaving, (d) Graphite flakes sticking
on a Si/SiO2 sample after pressing the sample on the tape.

5. After the transfer of graphite (and possibly single-layers, i.e. graphene), we
post-clean the sample: (i) 30 seconds in tetrahydrofuran (THF); (2) 10 sec-
onds in IPA. THF removes the glue residues from the sample and, addition-
ally, removes graphite flakes that do not adhere well to the SiO2 (note that
these flakes are in general not useful for device fabrication).

6. In order to find graphene flakes, we inspect the sample surface with an op-
tical microscope (Olympus BX60F5). An optical camera (Sony power HAD
3CCD color vedio camera), which is mounted on top of the microscope, is
connected to a PC. By using standard real-time image-processing software
(e.g. "Analysis" of Olympus), we obtain clear images of the sample surface
on a computer screen. We use a digital green filter to get a better contrast
between flakes and the underlying SiO2 substrate. When graphene flakes
are found, a digital picture is taken and the flake thickness is determined by
measuring the average RGB-values of the flake relative to the substrate (see
§2.7; we use the software "Adobe Photoshop" to determine the RGB-values).
Using the images, the precise positions of the flakes are determined with re-
spect to the pre-patterned reference markers on the sample.

DEVICE FABRICATION BY E-BEAM LITHOGRAPHY TECHNIQUES
Device fabrication is done under "clean-room" conditions to reduce the risks of
contaminating the samples. After having identified and localized graphene flakes
on a sample, devices are fabricated by the following procedure:

1. Device fabrication starts with a design in the software "Designcad". First, an
optical picture of the flake with reference markers is imported into this soft-
ware. Subsequently, the patterns of the different lithography steps are de-
fined (e.g. patterns of electrical contacts, top-gates, etch structures). When
a design is finished, the output file of "Designcad" is converted to a format
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which can be read by the control software of the electron beam lithography
(EBL) system.

2. Since we use an EBL to generate the patterns, a chemical resist that is sen-
sitive to an electron beam (e-beam), is spun on the sample surface: (i) for
the patterns of electrical contacts and top-gates, we use a double-layer resist
consisting of a ∼150 nm bottom-layer (PMMA 350K 3% in chlorobenzene
or PMMA 495K 3% in anisol) and a ∼100 nm top-layer (PMMA 950K 2% in
chlorobenzene or PMMA 950K 3% in anisol); (ii) for patterns of etch struc-
tures, we only use the ∼100 nm top-layer. After spinning each layer of resist,
we bake the sample for 15−30 minutes at 175◦C.

3. The sample with resist on top is loaded in an EBL system (Leica 5000+ EBPG
operating at 100 kV). The design pattern is "written" in the resist by expos-
ing it with a well-defined e-beam (figure A.2a). The PMMA that is exposed
sufficiently by high-energy electrons, decomposes and becomes soluble in
a developer. The settings of the e-beam are pre-determined by doing so-
called dose-tests on test-samples (using patterns with critical dimensions of
∼50 nm).

4. The chemical development of the exposed resist is done by using the follow-
ing recipe (figure A.2b): (i) two minutes in a 1:3 solution of MIBK:IPA (MIBK =
methylisobutylketone); (ii) one minute in IPA; (iii) blow-drying with N2-gas.

5. After development, the electrical contacts or top-gates are evaporated, or
the graphene flake is etched. In case of evaporation (figure A.2c), the sam-
ple is loaded into an e-beam evaporation system (see chapters 3−7 for de-
tails about the evaporated materials and thicknesses). In case of etching, the
sample is loaded into the plasma-chamber of a sputtering machine (with
this machine, 20 seconds in an Argon plasma (power of 70 Watt) is sufficient
to etch graphene).

6. After evaporating materials, the remaining (unexposed) resist with metal on
top needs to be removed (figure A.2d). This so-called lift-off process is done
by leaving the sample for several hours in aceton (or alternatively in PRS-
3000) at ∼50◦C. To remove the resist after etching, the sample is left for 1−2
hours in chloroform at ∼50◦C.

7. When all lithography steps are completed, the sample with one or more gra-
phene devices is glued on a 32-pins golden chip-carrier by using conducting
silver-paint (in order to be able to apply back-gate voltages at the conduct-
ing back-side of the silicon sample). All the contacts and top-gates on top of
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substrate
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a)   e-beam exposure b)   development c)   evaporation d)   lift-off

metal
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FIGURE A.2: The process of e-beam lithography: (a) a double-layer of PMMA on top of a substrate
is exposed by an e-beam to "write" a pattern, (b) Development of the pattern in order to remove the
exposed PMMA, (c) Evaporation of a metal, partly on the bare substrate and partly on the PMMA, (d)
Lift-off process to remove the PMMA, leaving a substrate patterned with the metal.

the sample are electrically connected by bonding wires from the bonding-
pads of the sample to the bonding-pads of the chip-carrier (note that the
bonding-pads of the sample consist of a AuPd bottom-layer, as described
in step 2 of previous section; since AuPd is a hard material, the SiO2 is pre-
vented to be damaged by the ultrasonic bonding machine).

ELECTRICAL MEASUREMENTS IN CRYOGENIC MEASUREMENT SETUPS
In order to measure quantum transport in the fabricated graphene devices, the
chip carrier is mounted and cooled down in a cryogenic measurement setup. Dif-
ferent systems are used: an Oxford dilution refrigerator for temperatures from 4.2
K down to ∼30 mK, a Heliox system for temperatures from ∼60 K down to 235 mK,
and a Desert Cryogenics dipstick setup for temperatures from ∼ 60 K down to 2
K. All setups are equipped with a superconducting magnet for applying magnetic
fields up to 8 or 10 T.

These cryogenic setups are optimized for performing low-noise electrical mea-
surements. We use "in-house-built" electronic measurement systems, which are
powered by batteries. Each system is controlled by a PC (we use the control soft-
ware "Labview"). An optical fibre is used for communication between the PC and
the measurement system in order to minimize interference effects from the PC.
Additionally, each cryogenic setup contains copper shields and filters to minimize
environmental noise. For instance, the setup in which we performed the super-
current measurements (described in chapter 5), contains three different types of
filters: π-filters, copper-powder filters and RC-filters.



SUMMARY

QUANTUM TRANSPORT IN GRAPHENE

Jeroen B. Oostinga

After the experimental discovery of graphene, a scientific rush started to ex-
plore graphene’s electronic behaviour. Graphene is a fascinating two-dimensional
electronic system, because its electrons behave as relativistic particles (i.e. they
are described by the Dirac equation instead of the Schrödinger equation). Con-
sequently, graphene has electronic transport properties which differ from usual
materials. Moreover, graphene is a promising material for nano-electronic appli-
cations, because for instance, it is easy to produce and exhibits room temperature
mobilities up to 104-105 cm2/Vs. A thorough study is required to reveal graphene’s
exceptional electronic properties and to pave the way for the development of gra-
phene nano-electronic devices. In this thesis, several experiments are described
which contribute to a better understanding of electronic transport in graphene de-
vices.

Single-layer and bilayer graphene are zero-gap semiconductors. At the charge
neutrality (CN) point, the top of the highest valence and the bottom of the low-
est conduction bands touch. Consequently, both types of graphene are gapless
and have metallic properties. In chapter 3, we have presented resistance measure-
ments of double-gated structures of single- and bilayer graphene as a function of
a perpendicular electric field. Surprisingly, we observed in the bilayer a strong in-
crease of the resistance at the CN-point with increasing electric field, while the
resistance of the single-layer was unaffected by a field. In this experiment, we
demonstrated that bilayer graphene can be turned from a metal to an insulator
by the opening of a bandgap. Moreover, when a bilayer is turned into an insula-
tor, we showed that its transport properties are best described by a variable range
hopping mechanism.

While single-layer and bilayer graphene are zero-gap semiconductors, trilayer
graphene is a semi-metal with a small band overlap. In chapter 4, we have pre-
sented resistance measurements of trilayer graphene at the CN-point as a func-
tion of temperature and perpendicular electric field. Contrary to the bilayer, in
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which the resistance increases with increasing electric field (due to the opening of
a bandgap), the resistance of the trilayer decreases with the applied field. In our
experiments, we demonstrated that the band overlap increases with an increasing
electric field, which is consistent with theoretical predictions.

In ideal single-layer graphene, the density of states vanishes at the CN-point,
while the conductivity does not vanish. The electronic transport properties at the
CN-point are still not completely understood. In chapter 5, we have studied phase
coherent transport in single-layer graphene by measuring the transport properties
of graphene superconducting junctions (length ≲500 nm). Most strikingly, we ob-
served Josephson supercurrents in all our devices, irrespective of the charge den-
sity. This demonstrated that electronic transport in single-layer graphene is phase
coherent, even at the CN-point. However, these observations are in stark contrast
with the magnetoresistance measurements on the same devices, which showed
that weak localization is highly suppressed or even absent. We can explain this
sample-specific behaviour of weak localization by considering the peculiar band
properties of graphene.

In chapter 6, we have studied the Aharonov-Bohm (AB) effect in a ring-shaped
structure, etched in single-layer graphene. The AB-effect gives rise to periodic con-
ductance fluctuations as a function of magnetic field. Most surprisingly, we found
that the amplitude of these oscillations scales linearly with the average conduc-
tance and vanishes at the CN-point (where the conductance is lowest). Further-
more, at high magnetic fields we observed an increase of the oscillation amplitude.
The precise nature of these observations remains to be understood.

In graphene nanoribbons, a transport gap appears at low charge densities which
gives rise to an insulating regime. In chapter 7, we have studied the temperature
and magnetic field dependence of the average conductance in this transport gap.
The average conductance increases with magnetic field and saturates at higher
fields. These observations can be explained by the presence of strongly localized
electron states with a localization length that increases with magnetic field due
to time reversal symmetry breaking. The temperature dependence of the average
conductance in the gap indicates that electronic transport occurs by variable range
hopping.

In conclusion, we have shown in this thesis that we can control the bandstruc-
ture of bilayer and trilayer graphene. Simply by applying a perpendicular elec-
tric field in a graphene device, a bandgap can be tuned in the bilayer, and a band
overlap can be induced in the trilayer. Furthermore, we have described transport
measurements on graphene devices (length ∼0.1−1 μm) showing that electronic
transport in graphene is phase coherent at cryogenic temperatures (T ≲4 K). We
have observed weak localization, bipolar supercurrents and the Aharonov-Bohm
effect. We have also shown that in narrow graphene nanoribbons (width ≲100
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nm) a transport gap appears, which can be well explained by strong localization
of electronic states. Our experimental results provide a better understanding of
electronic transport in graphene, and are also a first step towards the realization of
graphene nano-electronic devices.





SAMENVATTING

KWANTUMTRANSPORT IN GRAFEEN

Jeroen B. Oostinga

Na de experimentele ontdekking van grafeen begon een wetenschappelijke race
naar het elektronisch gedrag. Grafeen is een fascinerend tweedimensionaal elek-
tronensysteem, omdat de elektronen zich gedragen als relativistische deeltjes (dat
wil zeggen dat ze worden beschreven door de Dirac vergelijking in plaats van de
Schrödinger vergelijking). Daardoor heeft grafeen andere transporteigenschap-
pen dan gebruikelijke materialen. Bovendien is grafeen een veelbelovend mate-
riaal voor toepassingen in nano-elektronica, want het is bijvoorbeeld gemakkelijk
te produceren en het vertoont kamertemperatuur ladingsmobiliteiten hoger dan
104−105 cm2/Vs. Een grondige studie is nodig om de buitengewone elektronische
eigenschappen van grafeen bloot te leggen en om de weg vrij te maken voor de
ontwikkeling van grafeen nano-elektronica. In dit proefschrift zijn enkele experi-
menten beschreven die bijdragen aan een beter begrip van elektronentransport in
grafeen.

Enkel- en dubbellaags grafeen zijn halfgeleiders zonder bandgap. De top van
de hoogste valentie- en de bodem van de laagste geleidingsband raken elkaar bij
het ladingsneutraliteitspunt (LNP). Daardoor gedragen beide grafeensoorten zich
als metalen. Van enkel- en dubbellaagse grafeenstructuren met twee gates hebben
we in hoofdstuk 3 weerstandsmetingen laten zien als functie van een loodrecht
elektrisch veld. In de dubbele laag zagen we een sterke toename van de weerstand
bij het LNP als gevolg van het elektrisch veld, terwijl in de enkele laag de weer-
stand niet veranderde. Dit experiment toonde aan dat dubbellaags grafeen veran-
derd kan worden van metaal naar isolator door een bandgap te openen. Boven-
dien hebben we laten zien dat in het isolerende regime de geleiding het beste
beschreven wordt door een transportmechanisme waarbij de elektronen over vari-
abele afstanden hoppen.

Terwijl enkel- en dubbellaags grafeen halfgeleiders zijn zonder een bandgap, is
drielaags grafeen een metaal met een kleine bandoverlap. In hoofdstuk 4 hebben
we weerstandsmetingen van drielaags grafeen bij het LNP laten zien als functie van
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temperatuur en loodrecht elektrisch veld. In tegenstelling tot dubbellaags grafeen,
waarvan de weerstand toeneemt door een toenemend elektrisch veld (doordat een
bandgap opent), neemt de weerstand van drielaags grafeen af. Met deze exper-
imenten hebben we laten zien dat de bandoverlap groter wordt door een toene-
mend elektrisch veld, wat consistent is met theoretische voorspellingen.

In ideaal grafeen gaat de ladingsdichtheid naar nul bij het LNP, terwijl de gelei-
ding niet naar nul gaat. Elektronentransport bij het LNP wordt nog steeds niet
volledig begrepen. In hoofdstuk 5 hebben we fasecoherent transport in enkel-
laags grafeen bestudeerd door het transport in supergeleidende grafeenjuncties te
meten (lengte ≲500 nm). We observeerden Josephson superstromen in alle junc-
ties, onafhankelijk van de ladingsdichtheid. Dit toont aan dat elektronentrans-
port in grafeen fasecoherent is, zelfs bij het LNP. Deze waarnemingen staan echter
in contrast met de magnetotransportmetingen in dezelfde juncties, waarin werd
laten zien dat zwakke lokalisatie van elektronentoestanden sterk onderdrukt wordt
of zelfs afwezig is. We kunnen dit sample-specifieke gedrag begrijpen door de bij-
zondere bandenstructuur van grafeen te beschouwen.

In hoofdstuk 6 hebben we het Aharonov-Bohm (AB) effect in een ringvormige
structuur van grafeen onderzocht. Door het AB-effect ontstaan periodieke geleid-
ingsoscillaties als functie van magnetisch veld. Wij vonden dat de amplitude van
deze oscillaties lineair afhankelijk is van de gemiddelde geleiding en dat de oscil-
laties verdwijnen bij het LNP (waar de geleiding het laagst is). Verder vonden we
dat de amplitude van de oscillaties toeneemt bij een hoog magnetisch veld. Een
fysische verklaring voor deze waarnemingen moet nog gevonden worden.

In grafeen nanoribbons verschijnt een transportgap bij lage ladingsdichthe-
den, wat isolerend gedrag met zich meebrengt. In hoofdstuk 7 hebben we de gemid-
delde geleiding in de transportgap onderzocht als functie van temperatuur en mag-
netisch veld. Wij vonden dat de gemiddelde geleiding toeneemt met toenemend
magnetisch veld en verzadigt bij hoge velden. Een verklaring voor deze waarne-
mingen kan zijn dat elektronentoestanden sterk gelokaliseerd worden, waarbij de
lokalisatielengte toeneemt door een magnetisch veld. De temperatuursafhanke-
lijkheid van de gemiddelde geleiding in de transportgap geeft aan dat transport
gebeurt door elektronen die over variabele afstanden hoppen.

Samengevat: in dit proefschrift hebben we laten zien dat we controle kun-
nen hebben over de bandenstructuur van dubbel- en drielaags grafeen. Simpel-
weg door het aanleggen van een loodrecht elektrisch veld kunnen we een bandgap
openen in dubbellaags en de bandoverlap vergroten in drielaags grafeen. Verder
hebben we laten zien dat elektronentransport in kleine grafeenstructuren (lengte
∼ 0.1−1μm) fasecoherent is bij cryogene temperaturen (T ≲4 K). We hebben zwakke
lokalisatie, bipolaire superstromen en het Aharonov-Bohm effect waargenomen.
Verder hebben we laten zien dat een transportgap ontstaat in grafeen nanoribbons
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(breedte ≲100 nm) door sterke lokalisatie van elektronentoestanden. Onze exper-
imentele resultaten verschaffen meer inzicht in het elektronentransport in grafeen
en zijn daarmee een eerste stap in de ontwikkeling van grafeen nano-elektronische
systemen.
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Propositions

accompanying the dissertation

QUANTUM TRANSPORT IN GRAPHENE

by

Jeroen B. OOSTINGA

1. Graphene is a promising material for future high-speed nano-electronic devices, be-
cause it is an excellent electrical conductor with a high crystal quality and a high
room temperature charge carrier mobility. (chapters 1 and 2)

2. The tunability of the bandgap and band overlap in bilayer and trilayer graphene, re-
spectively, are unique properties that can be used to distinguish bi- and trilayer from
single-layer graphene. (chapters 3 and 4)

3. Due to strong intervalley scattering,electronic states in disordered graphene nanorib-
bons can be strongly localized. (chapter 7)

4. Progress and innovations in science, research and development are slowed down
when non-experts try to micromanage them.

5. Modern organizations often push the ideal that employees should manage them-
selves and be responsible for their own employability. However, this does not seem
to hold during reorganizations, when organizations usually force full control of their
employees, violating their ideal without any self-criticism.

6. The more rules and procedures are implemented to increase the efficiency of orga-
nizations, the less efficient individual employees are working.

7. There is one European Union, but the European Union will never be one unity.

8. The greatness of a nation and its moral progress can be judged by the way its animals
are treated (Mahatma Gandhi, 1869-1948). The Dutch policy of destroying healthy
animals preventively when the human health is in danger shows that the Dutch soci-
ety is still uncivilized.

9. By the numerous speculations about the economic crisis, terroristic threats and flu
pandemics, the Dutch media spread more anxiety than useful information. There-
fore, the media are a major cause of the growing unrest in the Dutch society and
should take their responsibility for this.

10. The average intelligence level of programs on Dutch television reflects the average
intelligence level of Dutch citizens.

These propositions are considered opposable and defendable and as such have been
approved by the supervisors prof. dr. H. W. M. Salemink and prof. dr. A. F. Morpurgo.



Stellingen

behorende bij het proefschrift

QUANTUM TRANSPORT IN GRAPHENE

door

Jeroen B. OOSTINGA

1. Grafeen is een veelbelovend materiaal voor toekomstige snelle nano-elektronica,om-
dat het een voortreffelijke elektrische geleider is met een hoge kristalkwaliteit en een
hoge kamertemperatuur ladingsmobiliteit. (hoofdstukken 1 en 2)

2. De instelbaarheid van de bandgap en de bandoverlap in respectievelijk tweelaags en
drielaags grafeen zijn unieke eigenschappen waarmee twee- en drielaags van enkel-
laags grafeen onderscheiden kunnen worden. (hoofdstukken 3 en 4)

3. Door sterke intervalley scattering kunnen elektronentoestanden in wanordelijke grafeen
nanoribbons sterk gelokaliseerd worden. (hoofdstuk 7)

4. Voortgang en vernieuwing in wetenschap,onderzoek en ontwikkeling worden afgeremd
als ondeskundigen proberen ze te micromanagen.

5. Moderne organisaties dringen vaak aan op het ideaal dat werknemers zelfstuurbaar
en verantwoordelijk voor hun eigen employabiliteit moeten zijn. Dit lijkt echter niet
te gelden tijdens reorganisaties, wanneer organisaties gebruikelijk de volledige lei-
ding over hun werknemers afdwingen, waarmee ze zonder enige zelfkritiek geweld
doen aan hun ideaal.

6. Hoe meer regels en procedures geïmplementeerd worden om de efficiëntie van or-
ganisaties te verhogen, hoe minder efficiënt individuele werknemers gaan werken.

7. Er is één Europese Unie, maar de Europese Unie zal nooit één zijn.

8. De mate van beschaving van een samenleving is af te meten aan de wijze waarop
deze met dieren omgaat (Mahatma Gandhi, 1869-1948). Het Nederlandse beleid om
gezonde dieren preventief te ruimen wanneer de menselijke gezondheid in gevaar is,
laat zien dat de Nederlandse samenleving nog steeds onbeschaafd is.

9. Door de talrijke speculaties over de economische crisis, terroristische dreigingen en
griepepidemieën verspreiden de Nederlandse media meer angst dan zinvolle infor-
matie. De media zijn daarom een belangrijke oorzaak van de groeiende onrust in de
Nederlandse samenleving en dienen hiervoor hun verantwoordelijkheid te nemen.

10. Het gemiddelde intelligentieniveau van Nederlandse televisieprogramma’s is een af-
spiegeling van het gemiddelde intelligentieniveau van de Nederlandse burgers.

Deze stellingen worden opponeerbaar en verdedigbaar geacht en zijn als zodanig
goedgekeurd door de promotoren prof. dr. H. W. M. Salemink en prof. dr. A. F. Morpurgo.


