Computer Engineering 2009
Mekelweg 4,
2628 CD Delft
The Netherlands
http://ce.et.tudelft.nl/

MSc THESIS
Code Integrity Check targetting RISC Processors

Andre Michel Abikhaled

Abstract

Security is emerging as an important concern in embedded system
design. The security of embedded systems is often compromised due

m to vulnerabilities in the software that they execute. Security attacks
- exploit such vulnerabilities to trigger unintended program behav-
V’} ior, e.g. the leakage of sensitive data or the execution of malicious

code. Many computer security threats involve execution of unautho-
rized foreign code on the victim system. Viruses, network and email
worms, Trojan horses, backdoor programs used in Denial of Service
attacks are just a few examples. Program code in a computer system
can be changed either by malicious security attacks or by various
failures in microprocessors. In this work, we present an enhanced
methodology for code integrity at run-time in Reduced Instruction
Set Computer (RISC) processors. This is achieved by pre-computing
checksums over parts of the binary code before program execution.
These pre-computed checksums are usually generated by a Certi-
fied Trusted Authority. These values embedded on the binary code
are verified at run-time during program execution. For this purpose
the targeted processor is augmented with a cryptographic unit and
dedicated control unit. The added cryptography unit increases the
overhead delay about 30 percent and the area doubles in size.

CE-MS-2009-13

]
TU Delft Faculty of Electrical Engineering, Mathematics and Computer Science

Code Integrity Check targetting RISC Processors

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in
COMPUTER ENGINEERING

by

Andre Michel Abikhaled

born in Beirut, Lebanon

Computer Engineering

Department of Electrical Engineering

Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Code Integrity Check targetting RISC Processors

by Andre Michel Abikhaled

Abstract
Laboratory : Computer Engineering
Codenumber . CE-MS-2009-13
Committee Members
Advisor: dr.ir. Georgi Gaydadjiev, CE, TU Delft
Chairperson: dr. Koen Bertels, CE, TU Delft
Member: dr.ir. Stephan Wong, CE, TU Delft

Member: dr. Marjan Popov, EE, TU Delft

ii

Special Thanks to my advisor for his support in this Thesis work. I
would like also to thank my family and all the friends for their
support.

iii

iv

Contents

List of Figures viii

List of Tables ix

Acknowledgements xi

1 Overview 1

1.1 Problem statement 1

1.2 Thesis Motivation 1

1.3 Outline of the thesis 2

2 Background 5

2.1 Security Issues 5

2.2 Related Work L 6

2.3 Secure Processor Architecture 0oL 12

2.4 Secure Hash Algorithm(SHA) 13

2.5 SHA-1 Hardware Implementation 15
2.6 Proposed SHA-1 round with operations rescheduling and data expansion

Unit .. e e 16

2.7 Conclusion e 19

3 Selection of the processor 21

3.1 Choices while selecting the processor 21

3.2 Introduction to Leon Processor 23

3.2.1 Leon Integer Unit, 24

3.2.2 Instruction and Data Cache System 25

3.2.3 Memory Access and AMBA on-chip buses 26

3.24 Bare-C Compiler 28

3.3 Conclusion 29

4 Implementation and Validation 31

4.1 Certified Authority Emulation. 31

4.2 Implementation of the Code Integrity Check Unit 33

4.2.1 Architecture and Organization of the non extended processor . . . 33

4.2.2 Extension of The Leon3 processor 34

4.2.3 Detection of valid Instructions from the Instruction Cache 36

4.2.4 Cryptographic Control Unit 36

4.2.5 Timing Simulation Results 39

4.2.6 Halting the Pipeline Unit 40

4.3 Conclusion 43

5 Evaluation
5.1 Design Comparisons e
5.2 Experimental Results. o oo
5.3 Conclusion L

6 Conclusions
6.1 Summary e
6.2 Future Work

Bibliography
7 Appendix A: LEON3 VHDL simulation steps with Modelsim

8 Appendix B: Software Test program

vi

45
45
46
48

49
49
50

53

57

59

List of Figures

1.1

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16

5.1

Stack Based Buffer Overflow attack overwriting return address[26] 2
REM datapath[34] L 7
Hardware Assisted Monitoring Architecture[24] 8
XOM overview and memory organization[34] 9
Simple XOM Architecture[41] Lo 10
Hardware Architecture of High-end Secure Coprocessor[42] 10
TPM Architecture[44] Lo 11
Secure System Overview([l] 12
Code Integrity Check[1] 13
Pseudo Code for SHA-1 function[4] 14
Operation in a single step of SHA-1[17] 15
General SHA-1 Implementation[39] 16
Top level design of SHA-1 core 17
Structural Design of the SHA-1 core 18
SHA-1 round unit Implementation[4] 18
SHA-1 data expansion Implementation[4] 19
LEON block diagram[8] 24
LEON integer unit block diagram 25
Instruction cache tag layout[8] 26
data cache tag layout[8] L 26
Memory controller connected to AMBA bus and external memory devices[28] 27
AMBA AHB/ASB and APBBus [38] 28
Certified Authority 31
Application Software L 32
Organization of the Leon-3 template 33
Organization of the LEON3S Unit 33
Architecture of Leon3 Instruction Cache[40] 34
Extended Datapath o oo 34
Code Integrity Check Unit 35
wave diagram of Code Integrity Check 36
generate valid unit oL L Lo 37
wave diagramo 37
Cryptographic Unit Interface 38
Cache to Hash Unit 40
wave diagram of Cache To Hash(no jump instructions) 41
wave diagram of Cache To Hash (with jump instructions) 42
Normal Execution of the pipleine unit[8] 43
Execution of the pipleine unit when cryptography occurs 44
Overhead in Delay vs size of the cache 47

vii

7.1
7.2

8.1
8.2
8.3
8.4

Leon processor Configuration 57

Configuration Inside processor. 57
Simple Test program Lo 59
Test program 2 59
Test program 3 60
Test program 4o 61

viii

List of Tables

2.1 SHA-1 Functions and Constants[4] 15
3.1 Address Spacemap [8] 27
5.1 Design Comparisons e 46
5.2 Architectural Parameters 46
5.3 Delay measurements without modifications 46
5.4 Delay measurements with modifications 47
5.5 Delay overhead 47

X

Acknowledgements

Andre Michel Abikhaled
Delft, The Netherlands
September 11, 2009

xi

xii

Overview

1.1 Problem statement

Let us assume a system of central authority and users. The authority wants to share
secrets and data with users having portable computing devices. Our target is protecting
the executed code from malicious modifications. The possible attacks can be classified
as software and physical attacks on code and data. The authority can be a military
organization with remote devices used by soldiers in the field. It could be a bank with
devices used by customers as personal ATMs for dispensing electronic cash and accepting
deposits into bank. It could even be a cell phone network provider where users are allowed
to download trusted software[1]. The main problem of all the above systems is that most
of the new security attacks result in violating the integrity of the software code of an
application program. Such security attacks or threats try to change the instructions
so that adversary try to gain control over the program execution flow[26]. Figure 1.1
illustrates an example of an attack using malicious code.

In Figure 1.1(a), function g() is vulnerable because it consists of an operation - strcpy
which copies the string strl into buffer without considering the size of the string, strl.
Since buffer is a local array, it will usually be stored in part of a stack frame belonging
to local variables. A program that copies passing the end of this array, will overwrite
anything stored after the array. Figure 1.1(b) depicts the program stack when function
g() is executed. Function g() is called by function f() which has placed the arguments
(arg0..argN) of function g() in the stack just after function f()s local variables before
running a call instruction. Figure 1.1(c) illustrates how the return address is overwritten
using buffer overflow, by making use of a vulnerable function (strcpy in this case). Since
strepy does not check for the length of the string copied across, the hacker is able to make
the program copy data beyond the end of an array (buffer in this case). Apart from the
content of the buffer, the attacker has also overwritten the return address of function
g(). In most of the attacks of this type, the main concern of the attacker is to overwrite
the return address and this is the easiest way to gain control of an application programs
execution flow. Usually, when a function returns, it will return to the address pointed
by the return address in the stack. As described here, if the adversary has changed
the return address to point to the code segment injected probably by the same copy
operation (as in Figure 1.1(c)), when function g() returns, it will execute the injected
malicious code and therefore giving the control to the attackers code[26].

1.2 Thesis Motivation

In this master thesis we are aiming to improve the security of an existing soft- or hard-core
processor by executing it with hardware cryptographic unit performing the Secure Hash

2 CHAPTER 1. OVERVIEW

buffer[0]
buffer[1]

Lower
Addresses

—_—

Malicious Co é

2define L 100 Stack &
k Frame — —_
buffer[L-1] 0 i

int () A
{

0

other_local_vars

a(p.a);

?: —i saved FP g()
-
G return address a()
} x
8 argh argN
int g(char *strl, char *str2) w
{
arg0 arg0
. £ St "
char buffer{L]: ocal variable f{) ;r;a:l; local variable f()
ocal variable ()) local variable f()
strepy(buffer, strl); Higher ocal variable f{) local variable f()
Addresses
} . saved FP f[) o saved FP f()
return address () return address f()
(a) Vulnerable Code (b) Stack Layout (C} Retum Address Overwnting

Figure 1.1: Stack Based Buffer Overflow attack overwriting return address|26]

Algorithm (SHA-1). Whenever the instructions are loaded into the on-chip instruction
cache from external off-chip caches or main memory, the secure processor performs the
code integrity check for the loaded instructions[3]. The secure processor verifies the
integrity of the instructions by comparing the hash embedded in the cache line which
is calculated statically before starting the execution of the code with the one that is
computed at run-time over the instructions in the cache line[2]. The code integrity
check guarantees that the binary code loaded in the memory was not altered before
execution. For this reason we compute for every cache line the checksum signatures
before the program starts. A certified authority generates the checksums loaded into the
binary file. At run-time when the program is executed, the real hash is calculated by the
cryptographic hash unit in hardware. Different hashes imply that the binary code has
been changed and an interrupt is raised[21]. If the hash comparison indicates that both
checksums are the same, then the embedded hash in the cache line will be replaced by
no-op instruction so as not to affect the execution of the instructions in the pipeline [1].

1.3 Outline of the thesis

The remainder of this thesis is organized as follows. Chapter 2 discusses the different
classes of attacks into computer systems like the Hardware-Based Attacks , the architec-
ture for a secure execution of programs on embedded processors is discussed. Moreover,
the hash function which is a computationally efficient function converting binary strings
of arbitrary length to binary strings of some fixed length called the checksums is going
to be discussed. Chapter 3 discusses the 32-bit LEON processor that complies to the
SPARC V8 architecture. Chapter 4 discusses the implementation of the SHA-1 unit, the
code integrity unit. Chapter 5 describes the comparison of this design with other two
designs e.g. The Trusted platform and IBM Secure Coprocessor. Some measurements of

1.3. OUTLINE OF THE THESIS 3

the delay are included in this chapter. Finally this thesis is concluded in chapter 6, where
recommendations for future work can also be found.

CHAPTER 1. OVERVIEW

Background

This chapter discusses the background information. Section 2.1 discusses the security
issues and the different classes of attacks into computer systems like the Hardware-Based
and the Software-based Attacks. The architecture of the design of the Secure Processor is
discussed in section 2.2. Section 2.3 illustrates the related work. A hash function which
is a function converting binary strings of arbitrary length to binary strings of some
fixed length called the checksums is illustrated in section 2.4. Section 2.5 discusses the
proposed SHA-1 architecture. Section 2.6 illustrates the implementation of the SHA-1
core in hardware.

2.1 Security Issues

The definition of dependability in a computing system is the trustworthiness of a system
which delivers a reliable and trusted system[26]. Dependability includes the following
attributes of a computing system[26]:

1. Availability: The correct service of the system is ready or available.
2. Reliability: The correct service is always or continuously available.
3. Safety: The users and environment must have no damage.

4. Security: The security services is defined as the availability for authorized users
only, the confidentiality protection of messages from unintended eavesdroppers, the
authentication of data, and the integrity protection that shows that the message
was not modified in transit.

In this section, the different classes of attacks into computer systems are presented .

1. Hardware-Based Attacks: direct access of the adversary on the hard disk by using
direct hardware block access. Special Cryptography is implemented in hardware
that will protect the hardware from such attacks. Cryptography like encrypting all
sensitive data is used, where the encrypted data can only be accessed after decrypt-
ing the data with the corresponding key where the key can be private or public.
Another kind of attacks in hardware is the attacks over busses in hardware[27].

2. Software-based Attacks: Special attacks where the hacker tries to execute his code
to access protected data or to insert errors in system software to get administrator
access. The adversary tries to insert software implementation errors[27]. Some
of the common software based attacks were explained in details in [26] [27], these
attacks will be again briefly discussed.

6 CHAPTER 2. BACKGROUND

e Buffer Overflow: For instance, if the programmer forgets to check if the length
of the input data is not more than the size of the buffer located on the stack
where data has to be hold, then the adversary inserts errors. The attacker
replaces the return address which is stored on the stack with an address
pointing to the overflowed buffer containing its own malicious code, where
this last can be used to copy passwords or other valuable data to an attacker.

e Heap Overflow: The heap does not contain the return address, but it contains
the actual buffer, the size of the buffer and pointers to next and previous
buffers are stored in the same memory chunk. The adversary overwrites one
of the pointers to point to the return address on the stack such that the return
address is overwritten and the adversary inserts malicious software.

e Double free vulnerability: The adversary overwrites the administrative data
structure.

e Format string attack: The attacker modifies the format string, to overwrite
the contents of the stack to execute a malicious code.

e Temporary file vulnerability: The attacker tries places a link of symbols to
force the program to write to a file where he has access to.

2.2 Related Work

Extensive previous work has been done in the area of code integrity check like the
Runtime Execution Monitoring (REM) [34]. The main concern in REM is to verify the
code integrity at the basic block(a sequence of instructions with a single entry point,
and no internal flow control instructions, such as branch, call, return instructions [34])
level. This is done by pre-calculating the hashes for every basic bock before execution
of program. During the execution of the program, these precomputed values are verified
again by calculating the hash values with the aid of a hash unit implemented in hardware.
The datapath of a pipeline processor has been modified to implement the code integrity
check. The Secure Hash Unit (implemented in hardware to compute the hashes of the
instructions in the basic block) reads instructions in 128-bit blocks and computes the
corresponding hash values to the current basic block. This unit is connected to the
pipeline control and processes a basic block only after all the instructions in the basic
block are executed. At the same time with the hash computation, the stored hash of the
current basic block is read from the memory and stored in the first-in-first-out (FIFO)
hash read buffer. This buffer is trivial because the hash computation delay in hardware
is longer than the latency of looking up the hash value in the buffer. Whenever the hash
value computation is finished, it is compared to the stored value, and an interrupt is
raised if the hash values mismatch [34]. The block diagram in Figure 2.1 depicts the
REM datapath.

Similar work to the REM is done in [22][24]. The embedded processor is modified
by adding extra hardware unit that observes the dynamic execution of the processor,
checks whether the execution of the allowed program behavior is not tampered [22].
The embedded processor is a five stage pipeline RISC processor. The inputs to the new
hardware unit or monitor contains the program counter (PC) and instruction register

2.2. RELATED WORK 7

To I-Fetch Unit Load/Store Pipe
A A
v Y 3 v
L1-l1 Cache g
HMAC L1-D Cache
Compute Logic Hash Iy
Read
Buffer
v
L2 Cache
v :
Exception|
Xeepton = |
o ___________Chip__
¥ Boundary

Main Memory

Figure 2.1: REM datapath[34]

(IR) of the completing instruction, and the pipeline control signal from the pipeline
control unit. The output of the monitor includes a stall signal and an invalid signal.
When the monitor detects a deviation in the program behavior, it raises the invalid
signal, which results in an interrupt to the processor [22].

The monitor is splitted into three sub blocks which check program properties at dif-
ferent level of abstractions. The top-most level is the application level, the second level
describes the intra-procedural control flow by validating each branch/jump instruction
within a function and finally, the lowermost level verifies the integrity of the instruc-
tion stream [24]. Some security attacks may not result in a control flow violation, for
instance the alteration of a basic block in the program code segment during execution.
Hash values of each basic block in the program are pre-computed before the execution
of the program, loaded into the hardware monitor when the application is loaded for
execution, and subsequently checked during program execution. To be able to check
the instruction stream integrity, each row in the basic block lookup table, is augmented
to contain another field that stores the statically-computed cryptographic hash of the
instruction sequence in the basic block. During program execution, the monitor buffers
the instruction stream corresponding to a basic block until a branch/jump instruction
is encountered. At this point, the monitor switches to an empty buffer and enables the
hardware hash unit to compute the hash of the buffered basic block. The computed hash
value is then compared against the value stored in basic block lookup table. When the
buffers are full, the processor is stalled in order to allow the instruction integrity checker
to catch up[22][24]. The design in Figure 2.2 depicts the Hardware Assisted Monitoring
Architecture.

Similar work to the Hardware Assisted Monitoring Architecture is done in [20][21].

8 CHAPTER 2. BACKGROUND

e Titerproe. contral e checher Mo metch (1a invelid der)
i TAH,..,

I
L1 Tl [sState pir o 2 Ref, | State TRV
addr. | Dndew BA &0 Al | i Index iz
PRAOCESSOR FIFELINE
2
Ppddine | | | [N |0 [Qi
e | ol ex fmes Bws centrel ——= 1

-~)

1/ . Pl
- el | Intraprec, contral flow checker !,’ Fsm,
1 re \ ; 2
b ¢ transition
[Inter-procedurel cantrel flew checker] L |
[Intra - procediral antrel flaw chezkir] L1 1]
(S
[sromction ity checker | e T T
vavo 7 |
" R E =

a
cantral prac
A o stall det

Figure 2.2: Hardware Assisted Monitoring Architecture[24]

The same idea of having a hardware monitoring unit, but the only difference with the
work mentioned above is that the code is checked only at lower level of instructions.
A generalized idea for monitoring code integrity at run-time in application-specific in-
struction set processors (ASIPs) is presented, where both the instruction set architecture
(ISA) and the microarchitecture can be customized for a particular application domain.
The monitoring microoperations are embedded in machine instructions, and the proces-
sor is modified with a hardware monitor. The monitor analyzes the processors execution
trace of basic blocks at run-time, checks whether the execution trace aligns with the
expected program behavior, and signals any mismatches [21]. Moreover, soft errors in
microprocessors can also change program code and result in system malfunction. In
[20], an approach for monitoring code integrity at run-time in ASIPs is presented sim-
ilar to the one in [21] is presented where a compiler-assisted and application-controlled
management design for the monitoring architecture is done.

The XOM allows the execution of instructions that are stored in memory but do
not allow the execution of malicious instructions. The idea behind the XOM is that
the Execute-only code which is stored in memory as encrypted form has to be decrypted
when a load instruction occurs[41]. This means that the data are loaded to the processor
chip in decrypted form. On the other hand data written to the memory on a store
instruction has to be encrypted before it is send to the memory. According to [34], the
software is given by the vendor in encrypted form. During the execution of the software
on the target processor, it is decrypted using a secret key. Therefore, there exists an
encryption/decryption unit between the cache and the main memory. On a read miss
from the cache, the data from the memory are first decrypted and loaded into the cache.

On a write back to the memory the data are encrypted because the memory is not
trusted, and the data verified for integrity. This is done by embedding in every data block
a checksum [34]. On the other hand, the memory can be tampered from an adversary. To
overcome this problem the memory hashing concept is used. The memory is considered
as a structured tree where the program data are placed at the leaves of the tree. The
nodes in the tree or the parent nodes contain the hash values of every data block at the
leaves. When a cache miss occurs, the incoming data block is checked for integrity by
checking its hash and all the parent hashes up to the root nodes. In case both values are

2.2. RELATED WORK 9

not the same, an exception is raised. When writing back the data into the memory, the
hashes in the tree are updated including the root hash. Figure 2.3 explains the XOM
overview and how the hashes are organized in the memory.

L2 Cache

Encryption /
Decryption Unit
Write Buffer
__________________________ Chip___ __Chip__
Boundary Boundary
Main Memory Main Memaory
(a) (b)

Figure 1: (a) XOM, (b) Memory Hashing

Root hash in
seclre memory

[
Hashes at
Data blocks parent nodes
at leaves _______-——-""' / \\ "'----__________

|DJ|D]|D.‘|DJ| |D-1|DS|D5|D’-‘| |D!

D9

Di-JlDLll |Dl!|DlJ|D14|DlS|

Figure 2: Memory organization in MH
architecture

Figure 2.3: XOM overview and memory organization|34]

The limitations of XOM are the following [34]:

e Nowadays the software is unencrypted and some of the software is open source
where XOM only protects encrypted code.

e XOM does not protect shared library code and does not fully protect the untrusted
I/O channels.

e XOM does not detect the vulnerability or the alteration that happen during pro-
gram execution.

The implementation of the XOM machine is described in details in [41]. We will
discuss briefly the implementation of the XOM machine. The simple XOM machine is
implemented by slightly modifying a CPU to add a special unit XOM Virtual Machine
Monitor (XVMM), an on-chip private memory, microcode specially designed to store the
private key[41]. The XVMM is implemented in software or in microcode. The XVMM
code is a trusted, authorized, and privileged program. For this reason, the XVMM has
access to the private key and the on-chip private memory [41]. The block diagram in
Figure 2.4 depicts the architecture of the XOM.

Another similar work to the XOM architecture is the IBM4758 Secure Coprocessor
[42]. The secure coprocessor provides a secure platform for the secure distributed ap-
plications where an application program can be executed without being tampered or

10

CHAPTER 2. BACKGROUND

Main Memary

'

L2 Cache

XVMM

L1 Cache

iss trap

|

And Koy

XOM Asymmetri
Decryption Microcode

L1 Instruction
Cache

Path to

decrypted
instructions

l

write Private Memory

L1 Data Cache

intoL1
Instruction
Cache

Decode

!

\—n Register File

Datapath

Protection
Boundary

XOM Valid
Bits

Figure 2.4: Simple XOM Architecture[41]

violated from an adversary with direct physical access to the device [42]. The secure co-
processor must offer high computational and cryptographic resources and must be easily
programmable. These requirements are met by using good cryptographic accelerators,
adding Dynamic RAM (DRAM), and using smaller amount of battery-blacked RAM
(BBRAM) as the non-volatile, secure memory [42]. The block diagram in Figure 2.5
shows the Hardware architecture of the high-end secure coprocessor.

Host PCI Bus

Physical 486 Battery—
Security Processor DRAM Backed EIE)'?WSH
Sensing e |an RAM
arn
Response PC Support
l Hardware Locks
Random Real-
gg%'rg? DES Number Time
and Generator Clock
FIFOs Modular
Physical Security Boundary
PCI Bus Interface

Figure 2.5: Hardware Architecture of High-end Secure Coprocessor[42]

The hardware architecture shown in Figure 2.5 must guarantee secure loading and
execution of code. Physical attacks tamper the system by actually destroying the se-
cret keys that are stored in the memory. This secure architecture detects the physical
attacks that actually destroys the keys in the secure memory, it ensures that the se-
crets, when they are first loaded in the embedded system, are not known outside this

2.2. RELATED WORK 11

system, and despite the fact that many software programs are caused to attack, the
secrets stored in the DRAM and BBRAM are not modified[42]. Another important ex-
ample of Secure processors is the Trusted Computing Module architecture designed by
the Trusted Computing Group (TCG)[44]. The Trusted Computing Group (TCG) is a
non profit organization with the concern of improving the security of the computing en-
vironments in computer platforms by protecting the identity of the platform from being
observed by an adversary or unauthorized entities [44]. The Trusted Platform provides
at least three basic features like protected capabilities, integrity measurement and in-
tegrity reporting[44]. Shielded locations are locations where data can be accessed safely
in memory and registers. Set of commands with exclusive permission that access the
Shielded locations is called protected permissions. Shielded locations are used to protect
and report integrity measurements [44]. According to [44], the TCG systems contain set
of roots which have the concern of describing the embedded system characteristics that
affect the trustworthiness of the system. Men distinguish between three types of roots of
trust: a root of trust for measurement(RTM), root of trust for storage(RTS) and root of
trust for reporting(RTR). The RTM is a computing engine which provides the reliable
integrity measurements while the RTS is a computing engine which gives an accurate
summary of values of integrity digests and the sequence of digests, on the other hand the
RTR is a computing engine capable of reliably reporting information held by the RTS
[44]. The block diagram in Figure 2.6 shows the architecture of the Trusted Platform
Module(TPM).

Platform Attestation
Non-Volatile
Configuration Identity
Register (PCR) Key (AIK)

Communications

Storage

Random

Trusted Platform Module (TPM) "

Figure 2.6: TPM Architecture[44]

Let us explain briefly the functionality of the components inside the TPM [44].

e Input/Output(I/O): The I/O component controls the flow of information over the
communication bus by routing messages to appropriate components.

e Non-Volatile Storage: This component is used to store keys like the root key and
the owner authorization data.

e Program Code: is a firmware that controls the devices in the TPM platform.

e Random Number Generator(RNG): The RNG generates the key.

12 CHAPTER 2. BACKGROUND

e SHA-1 Engine: is a message digest engine, generates checksums.
e RSA Engine: is used to generate the encryption/decryption keys.

e Execution Engine: is used to execute the program code.

2.3 Secure Processor Architecture

This section describes the different steps of how a secure system works. The authority
in a secure processor skips normal execution, changes into the secure mode execution,
and checks for the integrity of the binary code where the binary code is loaded in the
ROM. The authority software determines the checksums over each cache line prior to the
execution of the code and the hashes are stored in every cache line. The block diagram
in Figure 2.7 gives an example of a Secure System.

Sensitive Application Secure User Application User Application
Binary 1 2
Code

Operating System

Disk Processor Chip

Code Main
Integrity Memory
Check

User I/O

Figure 2.7: Secure System Overview|[1]

According to the related work in section 2.2, we selected to implement the idead of
Code Integrity Check in hardware like it is explained in the REM(Runtime Execution
Monitoring). The reason is that the Code Integrity Check guarantees that the secure
instructions remain unmodified throughout its execution. The secure instruction code is
signed by computing a checksum over pieces of code, and embedding the hash into the
binary code[l]. Figure 2.8 depicts the calculation of checksums statically and embedding
them in the cache line. During execution, when the instructions are fetched from off-
chip memory into the instruction cache. The processor will verify the integrity of the
instruction code by computing the checksum at run-time and comparing it with the
stored hash already pre-computed [2]. If both hashes are the same, this implies that the
instruction code is secure otherwise the system has been tampered. If the hash check
passes, the embedded hashes in the cache line are discarded and replaced with no-op
instruction so as not to affect the execution of the processor[3].

2.4. SECURE HASH ALGORITHM(SHA) 13

Binary Code Code address

A

Secure Hash Algorithm

Y Y

Checksum Checksum
—— 4 bytes 1 byte 4 bytes 1byte —
Instructions Checksum Instructions Checksum

5 bytes Cache Line
Figure 2.8: Code Integrity Check][1]

2.4 Secure Hash Algorithm(SHA)

A hash function is a function converting binary strings of arbitrary length to binary
strings of some fixed length, called checksums[6]. The hash functions are a one-way
functions that compute a small fixed length output value, the digest message. One of
the trivial characteristics of the hash functions is that no information of the data input
can be obtained. It is seldom to have two different data messages generating the same
hash value[4]. The uses of hash functions are for digital signatures. The entity receiving
the message then hashes the received message, and verifies that the received signature is
correct for this hash value [6]. Hash functions can also be used for code integrity check.
The hash value of a particular input is computed. To check that the input data has not
been altered, the hash value is recomputed using the input message, and compared for
equality with the original pre-calculated hash value [6].

According to [4], the Secure Hash Algorithm (SHA-1) computes a 160 bit message
digest or output hash value from the input message. The input data stream is separated
into multiple input bocks of 512 bits each. The input block is split into 80*32 bits
words, one 32-bit word for each computational round of the SHA-1 algorithm. Each
round comprises additions and logical operations, such as bitwise logical operations and
bitwise rotations to left. Figure 2.9 illustrates the pseudo code of the SHA-1 algorithm.

The Secure Hash Algorithm (SHA-1) contains two stages of calculations: preprocess-
ing and hash computation[13]. The preprocessing stage converts a message M which
is a sequence of bits of arbitrary length L into m-bit blocks[13][18]. At this stage, the
message M will be padded and parsed into m-bit blocks. The purpose behind padding
is to guarantee that the padded message is a multiple of 512 bits. This is done by con-
catenating the message M by one bit with value of 1, followed by k bits 0, (k being the
least non-negative solution to the expression (L + 1 + k) mod 512 = 448). The length
of the padded message will become a multiple of 512 bits. After the message has been
padded it will be parsed into several m-bit block before starting with the calculation of

14 CHAPTER 2. BACKGROUND

For each data_block do

Wt = expand(data_block);
A =DMO ; B=DM1; C=DM2; D =DMS3; E = DM4;

Fort=0;t<=79;t=t+ 1do
Temp = Rotl(A) +f t(B,C,D) +E+K t+W t;

E =D;

D=C;

C = Rotl(B);

B=A;

A =Temp;
End for

DMO = A + DMO; DM1 =B + DM1; DM2 = C + DM2;
DM3 =D + DM3; DM4 = E + DM4;
End for;

Figure 2.9: Pseudo Code for SHA-1 function[4]

the checksum value. The last step in the preprocessing stage is to set the initial hash
values.

The second stage is the hash computation. The SHA-1 algorithm that is already
described in Figure 2.9 performs 80 rounds. Every round uses a 32-bit word obtained
from the current input data block. Since, each data block only has 16*32 bit words
(512 bits), the rest of the bit words which are 64*32 bit words are obtained from data
expansion. The following formula deduced from [4] shows the remaining 64*32 bits words
how they are obtained.

Wi = Rotl; (Wi_szorWi_gxorWy_14zorWi_16) (2.1)

The computation of the final checksum is an eighty iteration algorithm over each
message block, where every message block is a sequence of 32 bit words. At the beginning
of every computation, the five internal registers are initialized with the initial hash values
and at the end of every round computation each of the five registers contain the current
hash value [18]. Figure 2.10 illustrates the operation in a single step of the Secure Hash
Algorithm:

Let us explain what every rotational and logical operation does. The logical opera-
tions ft and bitwise rotations to the left RotL are involved in every round computation.
The calculation of ft depends on the round t being executed as well as the value of the
constant Kt [4]. Table 2.1 shows the logical functions and the values of the constants for
every group of 20 rounds.

2.5. SHA-1 HARDWARE IMPLEMENTATION 15

A B C D E
Y l
ft |+
<<<5 "+
Wt
Y +
<<<30 l
Kt
+

= LN

Figure 2.10: Operation in a single step of SHA-1[17]

Table 2.1: SHA-1 Functions and Constants[4]

Rounds Function Constants
0to 19 (B and C) xor ((/B) and D) 0X5A827999
20 to 39 B xor C xor D 0X6ED9EBA1
40 to 59 (B and C) xor (B and D) xor (C and D) 0X8F1BBCDC
60 to 79 B xor C xor D 0XCA62C1D6

2.5 SHA-1 Hardware Implementation

This section describes the efficient implementation of Secure Hash Algorithm (SHA-1) in
hardware. First the design of the SHA-1 unit is described in general. The pre-processing
unit performs the appending of the input message, padding it with zeros and forms
message blocks of the fixed length 512 bits for an input message of variable length. The
pre-processing unit forwards message blocks to the message scheduler unit. The Message
scheduler unit computes message dependent words, W(t), each of the message word is
32 bits. The message digest unit calculates the checksums. At every step, the message
digest unit computes the hash value of a new word generated by the message scheduler
unit. The message digest unit is the most crucial part of the implementation, as it
determines both the performance and area of the whole design[39]. The block diagram

16 CHAPTER 2. BACKGROUND

in Figure 2.11 describes the general SHA-1 architecture.

Hash
Message Message Value
—— | Pre-Processor > > E—
Scheduler
Message
Digest

Control
Logic

Figure 2.11: General SHA-1 Implementation[39]

On the other hand, the data dependencies of the algorithms SHA-1 do not allow for
efficient pipelining. The computation time of the message digest unit is very high[4].
Some work has been done in [4] to improve the computational throughput by unrolling
the calculation structure, but at the expense of more hardware resources [4]. Some
methods are proposed in [4] to improve the hardware implementation of the SHA-1
algorithm. The most important ones are:

1. Parallel counters and balanced Carry Save Adders(CSA): are used to improve the
partial additions .

2. Unrolling techniques: are applied to optimize the data dependency .

3. Memory based block expansion structures: the embedded memories are used to
store the constant values described in section 2.4.

4. Operation rescheduling: is used to improve the speed of the circuit.

The block diagram in Figure 2.12 shows the top level design of the SHA-1 core and
the signals that interface this unit. The block diagram in Figure 2.13 shows the structural
design of the SHA-1 core with the interface signals. The SHA-1 core consists of two units
which are the SHA-1 round unit and the Data Expansion unit.

2.6 Proposed SHA-1 round with operations rescheduling
and data expansion unit

From Figure 2.9 in section 2.4, we can conclude that the SHA-1 round computation
is based on the calculation of the A value. The remaining values do not require any
computation, except the value of the rotation of B. The value of A depends on its previous
value, no parallelism can be directly deduced, as depicted in the following formula[4]:

App1 = RotL®(Ay) + [f(Bt, Ct, Dy) + Ey + Ky + W] (2.2)

2.6. PROPOSED SHA-1 ROUND WITH OPERATIONS RESCHEDULING AND
DATA EXPANSION UNIT 17

v |
St Reset | Writely LoadWi yy;
ar

A

SHA-1 Core

finish OutHash

Figure 2.12: Top level design of SHA-1 core

The operation RotL(At) depends on the variable A(t), the remaining terms depend
on variables that require no calculation and do not depend on the value of A(t), therefore
some rescheduling in operations can be done. From equation (4.1), we can rearrange the
terms that are not dependent of the variable A by producing the carry Carry(t) and save
S(t). Thus, the equation becomes[4]:

Sy + Carryt = [f(Bt, Cy, Dt) + B+ Ky + Wt] (23)
If we combine equation (4.1) with equation (4.2), we get:
At+1 = ROtL5(At)+(St_1+CCLTTyt_1), St—l-CCLT’I“yt = [f(Bt, Ct, Dt)+Et+Kt+Wt] (24)

According to [4], the critical path of the SHA-1 round unit is optimized by splitting
the computation of the value of A and by rescheduling as it is shown in formula (4.3).
This shows that the function f (B, C, D) and the partial addition operations are no longer
in the critical path. Therefore, the critical path of the SHA-1 round unit is reduced to a
three input full adder. The final values of the internal variables (A to E) are added to the
current values after completing 80 rounds, where the current values remains unmodified
until the end of each data block computation. The final summation is computed by
one adder for each 32 bits portion of the 160-bit hash value. Figure 2.14 depicts the
implementation of the SHA-1 round unit in hardware.

According to equation (2.1) in section 2.4, the 512 bits generated from the padded
unit is expanded to obtain the 80 32-bit words as input to the SHA-1 round unit. This
unit is implemented with registers and XOR operations. A select logic is also needed
to select between the first 16 rounds and the remaining rounds. Figure 2.15 shows the
design of the SHA-1 data expansion unit.

CHAPTER 2. BACKGROUND

WritelVHash

clk reset start IV clk datain LoadWi
Wi
— SHA-1 Round Unit
Inwi firsti6
3 Y L.
y Y
Data Expansion Unit
outwi
J Y
finish outHash
Figure 2.13: Structural Design of the SHA-1 core
g] DM, X Vs [by
Eui e E:-- Ha—a| 5 .5 DM
N E! }_. =
E s
DM, il enb,
[1 I M 5
Oy u -
“1& C‘ Hisl - A om,
—
" e 2
CEA - —_—
C:ﬂ. & : & E:" A enb,
1.0 7™ M ™7 DM
. L e
[- T ' e
el B v K oM U s, IV enk,

La | o X Hia E oM,
resal 8, —
— oM, -

s
"'—p P-..._I"‘iﬂl_’ cPa | DMy i ek enby
reaai T | I d " I\"u-!ﬂ_' DM,

Syq By

Figure 2.14: SHA-1 round unit Implementation[4]

2.7. CONCLUSION 19

A Comerter D Converer D Converer D Converer ADConvorr _ _AD Converer

LoadWi

—» Mux

Mi

Figure 2.15: SHA-1 data expansion Implementation[4]

2.7 Conclusion

Early in this chapter, some security issues were discussed. Different classes of attacks into
computer systems were described like the Hardware-Based. Attacks where an adversary
has direct physical hardware access, the Software-based Attacks that are specially used
remotely to break into computer and embedded systems. Some of the common software
based attacks that were explained are Buffer Overflow, Heap Overflow, Double free vul-
nerability, format string attack and Temporary file vulnerability. The architecture of
the design of the Secure Processor was discussed. A hash function which is a function
converting binary strings of arbitrary length to binary strings of some fixed length called
the checksums was discussed. The hash functions are one-way functions that computes
a small fixed length output value, the digest message, that is highly correlated with the
input data. One of the trivial characteristics of the hash functions is that no informa-
tion of the data input can be obtained. The efficient implementation of Secure Hash
Algorithm (SHA-1) in hardware was described.

20

CHAPTER 2. BACKGROUND

Selection of the processor

This chapter discusses the 32-bit LEON processor that complies to the SPARC V8
architecture. Section 3.1 describes how the choice of the Leon processor was made.
Section 3.2 gives an introduction for the Leon processor. Subsection 3.2.1 describes the
Leon Integer Unit that consists of five pipeline stages. The on-chip memory in LEON3
that is implemented with separate instruction and data busses, and how to configure the
cache direct map or set associative and the size of the cache are discussed in subsection
3.2.2. The memory controller of the Leon-3 processor that controls a memory bus holding
external memory devices, asynchronous static ram (SRAM) and synchronous dynamic
ram (SDRAM). The AMBA (Advanced Microcontroller Bus Architecture) is an on-chip
bus specification for interconnection and organization of various functional modules that
are a part of System-on-Chip are explained in subsection 3.2.3. Subsection 3.2.4 explains
about the compiler of the Leon3 processor.

3.1 Choices while selecting the processor

A choice has to be made between using a hard-core or a soft-core processor to implement
the envisioned extensions. First of all, we have tried to implement the code integrity check
targeting the Xilinx Virtex-II Pro that uses the PowerPC 405D5 processor core, which is
a 32-bit high performance, low power, scalar RISC(Reduced Instruction Set Computer)
architecture, using separate data and instruction caches. Since the PowerPC is embedded
into the virtex-II Pro device this means that the hard IP cores are diffused at any place
within the FPGA platform, connected with the different neighboring Configurable Logic
Block(CLB)[35].

The choice of implementing cryptography in hardware where the Xilinx Virtex 11
Pro is used as the FPGA platform is going to be rejected. The reason is that none of
the IP cores can be modified, all what can be done is to add an extra IP core on the
OPB bus. Another reason might be the fact that the hard-core PowerPC has limited
design flexibility. On the other hand, the soft-core platforms has better design flexibility
than the hard-core processor. According to [32], a soft-core can be eliminated from the
design when it is not needed. Therefore, a reduction in area is going to be less. On
the other hand, a soft-core uses a lot of resources from the FPGA, while the hard-core
has its own hard-wired hardware. Another positive point of soft-core is that it can be
customized to the requirements of the designer and it can be reconfigured at run-time
to meet the constraints. On the other hand, the hard-core is a lot more optimized for
the silicon-technology than the soft-core.

The next choice is to study three soft-core processors: the Leon-3, the Xilinx Mi-
croblaze and the OpenRISC 1200 RISC Core. The Leon-3 processor is a VHDL model
that is fully synthesizable 32-bit processor implemented with SPARC V8 standard.

21

22

CHAPTER 3. SELECTION OF THE PROCESSOR

. Integer Unit: The IU (Integer Unit) contains 32-bit RISC architecture five stage

instruction pipeline, 8 global registers, 2-32 register windows of 16 registers each
and 32-bit instructions [35].

. Cache: The cache is implemented with a harvard model (separate instruction/data

cache). Instruction and data cache size are modified from 1 KB to 64 KB. The
cache contains direct mapped or multi-set cache with set associativity of 2-4. The
cache lines can be modified between 8 and 32 bytes of data [35].

. Memory: The memory controller has an interface with the PROM, SRAM,

SDRAM and memory mapped I/O devices. The memory contains 2 Gbyte ad-
dress space. the memory areas can be programmed to 8-16-32 bit data width[35].

. Design Tools: Simulation is done via a generic testbench and test program is

available, including support files for Modelsim.

The second platform that is going to be discussed is the Xilinx Microblaze Soft-
core. The Microblaze is a 32-bit soft processor designed by Xilinx. It contains a RISC
architecture with Harvard Model separate data and instruction busses. The main con-
cern of developing the Microblaze platform is to build complex systems for networking,
telecommunication, data communication and embedded systems[35].

1.

Processor Unit: It contains 3-stage pipeline with 32-bit RISC architecture. Every
instruction has 32 bits. The Instruction Set Architecture (ISA) has two types. The
first type which is Type A contains two source and one destination operand while
the second type contains one source and one immediate operand. It contains a
RISC architecture with Harvard Model separate data and instruction busses but
no cache[35]. The memory access can be done via the Local Memory Bus (LMB)
and On-chip Memory Bus (OPB).

. Cache: Separate instruction and data cache. The placement scheme is only direct-

mapping.

. Memory: The memory controller supports up to 8 memory (flash/SRAM) banks.

It contains a separate control register for each bank. Moreover, it supports 8,16,32
and 64-bits bus interface [35].

. Design tools: The Xilinx Software integrated development environment, which cre-

ates software like Standard C [35]. It contains the GNU C compiler tools including
compiler, assembler.

. Performance: System frequency is about 150 MHz.

The third platform is the OpenRISC 1000. This architecture is 32- and 64-bit RISC
processors. It targets medium and high performance networking, portable, embedded,
and automotive applications because it is designed to get a better performance, low
power consumption[35].

3.2. INTRODUCTION TO LEON PROCESSOR 23

1. Processor Unit: It is a scalar, single-issue 5 stage pipeline. It consists of a single-
cycle instruction execution for most of the instructions.

2. Cache: It follows the Harvard model with split instruction and data cache. The
instruction /data cache size can be configured from 1KB to 64 KB.

3. Design tools: It contains the GNU ANSI C, C++, Java and Fortran compilers[35].

4. Performance: System frequency is about 250 MHz.

The question remains which of the three soft-core is going to be used in this project.
To answer this question, let us revise the differences between the three soft-cores. All
three processors are 32-bit RISC processor big endian synthesizable pipelined processors.
LEON-3 and OpenRISC 1200 contain 5-stage pipelines while the Microblaze contains 3
stages of pipeline. LEON and OpenRISC processors are available for free under LGPL
license, on the other hand Microblaze is available by the company XILINX. According to
the analysis done in [36], we have chosen the Leon-3 processor as soft-core to implement
cryptography for the following reasons:

1. Cache: All three processors have Harvard caches with almost equal values for the
cache size. The Microblaze and the OpenRISC 1200 implement in their placement
scheme only the Direct mapping scheme while the Leon-3 provides support for a 2-4
way set associative cache configuration, in which three replacements strategies can
be choosed. The choice of the cache is very trivial in this thesis because we need to
have more flexibility in configuring the cache. Leon soft-core offers better flexibility
than the remaining two. On the other hand the architecture of the cache of Leon-3
is more advanced and complicated than the cache of the remaining two[36].

2. Documentation: The documentation for LEON-3 is acceptable while the docu-
mentation of the Microblaze is a bit more extensive. On the other hand, the
documentation of the OpenRISC 1200 is not so extensive and well documented
like the other two cores[36].

3. Tools: The configuration tools of the Leon-3 and the Microblaze are very easy
to change even the configuration tools of the Leon-3 is easier to use and to access
than the Microblaze. On the other hand, the OpenRISC 1200 configuration is done
manaully. HDL simulation and debugging is less complex for Leon-3 compared to
the other two processors[36].

3.2 Introduction to Leon Processor

Leon-3 is a 32-bit processor that complies to the SPARC V8 architecture. The Leon-3
processor is a soft-core processor that can be configured and made suitable for embedded
applications and System-on-Chip designs with the following features on chip: separate
instruction and data caches, hardware multiplier and divider, interrupt controller, two
24 bit timers, two UARTS, power-down function, watchdog, 16 bit I/O port and flexible
memory controller. Additional modules can easily be added using the on-chip AMBA

24 CHAPTER 3. SELECTION OF THE PROCESSOR

LEOMN processar |

LEOM SPARC VB8

EPU
Integer unit .
g -
T |
|-Cache D-Cache |

AMBA AHB Al |
GController |
Timers | IraCirl |
bemary AH E_'-"APH
Controllar UARTS | 10 port Bridoe |
AMBA APB | | |
loioos soiaeti Wedvme oeeesrid ims S i S i G e s wSni Soseio ashiie)
B/16/32-bits mamory bus

C T 1

PROM SRAM ‘ e}

Figure 3.1: LEON block diagram|8]

AHB/APB buses[7]. All the features of Leon processor are illustrated in the block
diagram of Figure 3.1.

3.2.1 Leon Integer Unit

The LEON integer unit (IU) is implemented using the SPARC Version 8 integer instruc-
tions. The Leon integer unit has the following features:

1. 5-stage instruction pipeline.
2. Separate instruction and data caches (Harvard Architecture).
3. Support for 2 - 32 register windows.

A block diagram of the LEON Integer Unit can be seen in figure 3.2 [8].
The Leon Integer Unit as defined in [8] consists of five pipeline stages and they are
the following:

1. FE (Instruction Fetch): In this stage the next instruction to be executed is fetched
from the memory. In case the instruction cache is enabled, then the instruction
fetch is done directly from the instruction cache.

2. DE (Decode): In this stage the instruction is decoded and the operands are read.
The operands may come from the register file or from internal data bypasses. The
CALL and Branch target addresses are also determined.

3.2. INTRODUCTION TO LEON PROCESSOR 25

FE DE EXE ME WR

Figure 3.2: LEON integer unit block diagram

3. EXE (Execute): In this stage, the arithmetic operations are performed in the ALU
(Arithmetic Logical Unit). Logical and shift operations are also computed in the
ALU. Moreover, the address of memory operations like load , store, jump and
return will be determined.

4. ME (Memory) : In this stage, the data is valid at the end of the stage. For data
write, the data will be written to the data cache during the execute stage.

5. WR (Write): In this stage, the outcome of any arithmetic, logical, shift, and cache
read operations are written back to the register file.

3.2.2 Instruction and Data Cache System

The on-chip memory in LEON3 is implemented with separate instruction and data buses.
The LEON-3 processor uses a Harvard Architecture. Both instruction and data cache
are connected to two independent cache controllers where these last can be configured
to implement either a direct mapped or a multi-set cache with set associativity of 2-4.
The set size is configured from 1-256 KBytes. The simplest one is where for instance
the Leon instruction cache is configured from 1 - 64 Kbytes. It is a direct-mapped
cache[28]. Instruction and data cache operations are controlled via a Cache Control
Register(CCR). Every cache can be operating in one of the three modes: enable, disable
and frozen. In case where the cache is in disable mode, no memory operations like load
and store are performed. The frozen mode operation keeps the cache synchronized with
the main memory as if it was in the enable mode, so the cache can be accessed but
whenever there are misses the cache line will not be updated from the memory. In the
enable mode, the instruction cache is divided into cache lines with 8 - 32 bytes of data
assuming direct mapped cache. In this mode, the cache line is filled from main memory.
The instructions are forwarded at the same time to the Integer Unit(IU) or processor
pipeline. Sometimes, due to internal dependencies or multi-cycle instruction, then the
processor pipeline is halted until the line fill is completed. In case where the processor
pipeline executes a control transfer instruction like branch or call instruction during the
line fill, the termination of the line fill will be on the next fetch. Every cache line has a
cache tag associated for it. The cache tag consists of an address tag (ATAG) and valid
(V) bits[8][28].

26 CHAPTER 3. SELECTION OF THE PROCESSOR

On the other hand, the Leon data cache is configured also from 1-64 Kbyte. It is
a direct-mapped cache. The data cache is divided into cache lines with 8 - 32 bytes of
data. Every cache line has a cache tag associated for it. The cache tag consists of an
address tag (ATAG) and valid (V) bits. The following two figures show the instruction
and data cache tag respectively:

3l 9 8 7 0
| ATAG | 0o | VALID

Figure 3.3: Instruction cache tag layout[§]

1. Address Tag (ATAG)[31:10]: tag address of the cache line.

2. Valid (V) [7:0]: When a sub-block of cache line is filled with data, then the valid
bits are set. A cache fill which results in a memory error will leave the valid bit
unset. A flush instruction will clear all valid bits.

3l w9 8 7 0
| ATAG | 0o | VALID

Figure 3.4: data cache tag layout|§]

1. Address Tag (ATAG) [31:10]: tag address of the cache line.

2. Valid (V) [7:0]: When a sub-block of cache line is filled with data, then the valid
bits are set. A cache fill which results in a memory error will leave the valid bit
unset.

3.2.3 Memory Access and AMBA on-chip buses

The memory controller of the Leon-3 processor controls a memory bus holding exter-
nal memory devices, asynchronous static ram (SRAM) and synchronous dynamic ram
(SDRAM). The memory controller acts as a slave on the AHB (Advanced High Speed)
bus. The memory bus supports four types of devices: prom,sram,sdram and local I/0.
The memory bus can also be configured in 8-bit or 16-bit for applications with low mem-
ory and performance demands[28]. Figure 3.5 shows the interface between the AHB bus
and the external memory. The controller decodes three address spaces (PROM, I/O and
RAM) whose mapping is determined through VHDL generics. The controller decodes in
total a 2 Gbyte address space. The following table shows that:

AMBA (Advanced Microcontroller Bus Architecture) is an on-chip bus specification
for interconnection and organization of various functional modules that are a part of
System-on-Chip. The AMBA specification improves the reusable system on-chip plat-
form by including a common standard for data communication in a System-on-Chip
module[37]. Men distinguish three distinct AMBA buses and they are:

3.2. INTRODUCTION TO LEON PROCESSOR 27

APB AHB A D
PROM
110
Memory
Controller -
» SRAM
SDRAM -

Figure 3.5: Memory controller connected to AMBA bus and external memory devices[28]

Table 3.1: Address Space map [§]
Address range Size Mapping
0X00000000-0X1FFFFFFEF 512 M Prom

0X20000000-0X3FFFFFFF 512 M I/0
0X40000000-0X7FFFFFFF 1 G RAM

1. Advanced High-performance Bus (AHB): The AMBA AHB is used for system mod-
ules with high clock frequency. AHB supports the efficient connection of processors,
on-chip memories and off-chip external memory interfaces.

2. Advanced System Bus (ASB): The AMBA ASB is for systems with high per-
formance. AMBA ASB is an alternative system bus suitable for use where the
high-performance features of AHB are not required.

3. Advanced Peripheral Bus (APB): The AMBA APB is used in systems where low-
power peripherals exists. AMBA APB is optimized for minimal power consump-
tion.

The AMBA AHB system consists of the following components[38|:

28 CHAPTER 3. SELECTION OF THE PROCESSOR

1. AHB master: The bus master initiates read and write operations by providing
informations about the addresses of the data. One master is only allowed to actively
use the bus.

2. AHB slave: A bus slave responds to a read or write operation within a given
address-space range. The bus slave replies back to the active master the success,
failure or waiting of the data transfer.

3. AHB arbiter: The bus arbiter guarantees that only one bus master at a time is
allowed for data transfers.

4. AHB decoder: The AHB decoder is used to decode the address of each transfer of
data and provides a select signal for the slave that is involved in the transfer.

The AMBA ASB has the same components as the AMBA AHB. The following figure
shows all three bus systems and the cores connected to the three busses.

High-performance High-bandwidth
ARM processar an-chip RAM

B| | uart || mimer |
; : R
High-bandwidth AHB or ASE | | APB
External Memary D
Interface G
E | | Keypad |[PO |
DMA bus
master AHE to APB Bridge
ar

ASE to APB Bridge

Figure 3.6: AMBA AHB/ASB and APB Bus [3§]

3.2.4 Bare-C Compiler

BCC(Bare C compiler) is a cross compiler for LEON-3 processors. It is based on the GNU
compiler tools and the Newlib standalone C-library [9]. The cross compiler supports
floating point operations, as well as SPARC V8 multiply and divide instructions. For
further information check [9]. The next thing was to compile a very simple program like
hello world and this is done with the following command : sparc-elf-gcc -msoft-float -g
-0O2 hello.c -o hello.exe.

The compiler has some extra options like -msoft-float, it emulates floating point and
it is used if no Floating Point Unit exists in the system. The other option is -O2 where
it optimizes code maximum performance and minimal code size, for more informations
about the compiler options check [9]. After the simple code of hello world has been
compiled, the next step was to learn how to make Leon boot the PROM and this is done
with the command sparc-elf-mkprom. Note that sparc-elf-mkprom creates ELF files. To

3.3. CONCLUSION 29

create an SRECORD file for a prom program, the command sparc-elf-obj is used. Let us
summarized the steps from compilation, linking and copying from ELF to SRECORD:

1. sparc-elf-gcc -g -O2 hello.c -o hello -msoft-float

2. sparc-elf-mkprom hello -o hello.exe -msoft-float
MKPROM boot-prom builder v1.0

section: .text at 04000000, size 31040 bytes section: .data at 0%4007940, size 1904
bytes

3. sparc-elf-objcopy -O srec hello.exe hello.srec

3.3 Conclusion

In this chapter, three soft-cores was studied, the Leon-3 processor, the Xilinx Microblaze
and the OpenRISC 1200. The 32-bit LEON processor that complies to the SPARC V8
architecture was discussed. The Leon Integer Unit as defined that consists of five pipeline
stages, the on-chip memory in LEONS is implemented with separate instruction and data
buses, and how to configure the cache direct map or set associative and the size of the
cache were illustrated. The memory controller of the Leon-3 processor controls a memory
bus holding external memory devices, asynchronous static ram (SRAM) and synchronous
dynamic ram (SDRAM) were also explained. AMBA (Advanced Microcontroller Bus
Architecture) is an on-chip bus specification for interconnection and organization of
various functional modules that are a part of System-on-Chip. The AMBA specification
that improves the reusable system on-chip platform by including a common standard for
data communication in a System-on-Chip module and the three distinct AMBA buses
which are Advanced High-performance Bus (AHB), Advanced System Bus (ASB) and
Advanced Peripheral Bus (APB). The compiler of the Leon3 processor is also explained.

30

CHAPTER 3. SELECTION OF THE PROCESSOR

Implementation and Validation

This chapter describes the implementation of the Code Integrity Check (CIC) unit in
hardware using the Leon3 Template. Section 4.1 discusses how the emulated certified
authority reads the binary file of the compiled program, assigns the instructions into a
certain number of bytes, calculates the checksums with the SHA-1 algorithm, embeds
the checksums to the cache line that contains the instructions and loads them in the
binary file. Section 4.2 describes the design of the hardware CIC (Code Integrity Check)
unit that consists out of some key components called the controller of the cryptographic
unit, the cryptographic unit (SHA-1 core), additional control units to detect whenever
the data read from the cache is valid, selection logic components and a compare unit.

4.1 Certified Authority Emulation

The first step in implementation was to add to the binary file generated from the sparc-
elf-gcc compiler the checksum calculated for every cache line in the binary file. A software
program is implemented in C language. The binary file is generated after compiling with
the sparc-elf-gcc compiler of the Leon-3 processor and loaded in the PROM of the LEON-
3 soft-core. The certified authority reads the binary file of the compiled program, assigns
the instructions into a certain number of bytes, calculates the checksums with the SHA-1
algorithm, embeds the checksums to the cache line that contains the instructions and
loads them in the binary file. Figure 4.1 illustrates the flow chart diagram that shows
these steps.

: Compute

C Program Sparc Binary Read |, Segment| checkzums

Code elf-gec > 40 Binary Code in !

Compiler code x bytes and write

checksums
Authority Y i

Software, Modified Binary

Code with

embedded

Checksums

Figure 4.1: Certified Authority

A small example illustrates the overal functionality. The software program which is
running on the LEON-3 processor, is shown in Figure 4.2. After compiling the software
program, the binary file is obtained.

000081 D8200003000004821060E081884000
0010819000008198000081800000A 1800000
002001000000030020408210600FC2A00040

31

32 CHAPTER 4. IMPLEMENTATION AND VALIDATION

003084100000010000000100000001000000

int sum (int a , int b)
{
int result;
result = a + b;
return result;

}

int mult (int a , int b)
{
int result;
if (a > b)
result = b * a;
else
result = a * b;

return result;
mainQ)

{

report_start(Q);

base_test();

int resultl,result2;

int x = 2;

inty = 3;

resultl = sum(x,y);

result2 = mult(x,y);

printf(*"the sum is %d \n",resultl);
printf(*"the product is %d \n",result2);
report_end(Q);

Figure 4.2: Application Software

The first four characters correspond to 16-bit address. Every eight characters
represent four bytes of instructions loaded in the memory. The authority software is
going to read the binary file and computes the checksum for every line. The following
checksums are generated.
ee750e0f90421b951f0761e37f9e2889a861e3b1
28552f99df09a02a2f6fbe219251aeb0c494a6b3
9496dc19a05cf4cO0aad3d6ee3ad064165cce252a
536538f090b1ce3fbb3d35aeb028afb836f19abb

The idea originally was to embed the checksums in the existed binary file. So we
need to expand the cache to embed all these checksums in it. The checksums are instead
stored in an on chip memory (look up table) where all the checksums are read from
memory. This look up table is necessary because the SHA-1 computation latency is
longer than the latency of looking up the checksums in the Block RAM. This is why we
thought this is a representative implementation because also the costs of the SHA-1 are
much more than the costs of additional logic we did not consider.

4.2. IMPLEMENTATION OF THE CODE INTEGRITY CHECK UNIT 33

4.2 Implementation of the Code Integrity Check Unit

4.2.1 Architecture and Organization of the non extended processor

This subsection describes the standard implementation of the Leon3 processor. The
general organization of the Leon-3 template consists of the memory controller which is
the interface between the PROM of the Leon3 processor and the AMBA-AHB(Advanced
High Speed) bus controller. On the other hand the Leon3 top level entity consists of
the cache control unit which is the interface between the memory controller, the cache
itself (Instruction and data cache) and the Integer Unit pipeline. The block diagram
in Figure 4.2 shows the organization of the LEON-3 template. From Figure 4.2, the
AHB controller is a combination of an arbiter, bus multiplexer and slave decoder. The
LEONS3S entity is a 32-bit processor core conforming to the SPARC architecture. The
memory controller hosts a memory bus PROM. It acts as a slave on the AHB (Advanced
High Speed) bus|[28].

[EON3S fop ahbmi ahbsi _menmi
clk level entity | ahbmo Memory PROM
- leon <ahbso AHB Controller |anbso | controller | memo
—>__ processor ahbSL

rstn

Figure 4.3: Organization of the Leon-3 template

The signals that interface the AMBA-AHB bus with the Leon3S top level entity and
memory controller are ahbmi (AHB master input), ahbmo (AHB master output), ahbsi
(AHB slave input), ahbso (AHB slave output). The interface signals between the memory
controller and the PROM are memi (memory input) and memo (memory output). The
block diagram in Figure 4.3 illustrates the architecture of the LEONS3S unit.

ici ahbmi

meii ahbmo
Integer Unit Instruction Cache MMU_Acache

Pipeline
ahbso

mcio

ico

Figure 4.4: Organization of the LEON3S Unit

When a miss occurs in the instruction cache, it changes into the streaming mode,
fetching one entire cache line, where the buffer waddr holds the next address to ask
from memory [40]. Figure 4.4 illustrates the organization and behavior of the LEON
Instruction cache. The next subsection explains the modification done to the datapath
of the Leon3 processor.

34 CHAPTER 4. IMPLEMENTATION AND VALIDATION

R—pc
T waddr

Ly

_addr

darain | achemenm | data out

tag out

addr lineend [[] =streaming
- e
[o] [t

Y >

Memory

data out

miss

Figure 4.5: Architecture of Leon3 Instruction Cache[40]

4.2.2 Extension of The Leon3 processor

This subsection describes the implementation of the Code Integrity Check (CIC) unit
in hardware using the Leon3 processor. The top level entity of the leon3 processor is
modified to implement the cryptography in hardware. The datapath is extended by
adding key components like the controller of the cryptographic unit, the cryptographic
unit (SHA-1 core), unit to detect if the instructions read from the cache are valid, a
block RAM memory to dump the pre-computed cheksums and a compare unit. The
block diagram in Figure 4.5 shows the extension of the datapath with the Code Integrity
Check.

; ici mcii ahbmi
tizgger Wlafs ™ Instruction > Sache romo
pipeline . e Controller anbmo
(iu.vhd) Ico q - (MMU_Acache.
(2] mcio vhd) ahbso
)) v
Code
halt Integrity
check
interrupt (eleaney

Figure 4.6: Extended Datapath

At run time the checksum is computed by the cryptographic unit and compared to
the pre-computed checksum computed statically prior to the execution of the program
code. The pre-computed checksums are stored in an on-chip Block RAM module. The
pre-computed hashes of the cache lines are stored in BRAM at the same address of the
cache line. The two checksums are compared when the signal start compare from the
control unit is enabled. In case the two checksums values are not the same, this means
that the binary code has been tampered and an interrupt is sent to the pipeline unit
so that the processor stops the execution of the code. The block diagram in Figure 4.6
shows the structural design of the Code Integrity Check.

The Code Integrity Check unit is tested by a generic testbench. The generic test-

4.2. IMPLEMENTATION OF THE CODE INTEGRITY CHECK UNIT 35

finish
valid Cryptogl;a
> start phic unit
» (SHAl co
) re.vhd)
LoadWi
Cryptographic WritelVHash
control unit and Writelvvalue
interface between > Iy
the cryptographic
unit and the Leon Data to SHA1
cache —
(cach_to_hash.vh
d) Start_compare
halt Read_mem
Precomputed_hash
ico
outhash
3 S N
Initializing hash . ° I N
Instruction in memory ‘ ‘ ‘ ‘
. cache of leon3 | | (dp_memory.v g) :
ici (icache.vhd) hd)
Generate_valid. Y Y
vhd
Comparator.vhd
k4 h J
Pipeline unit
of Leon3 interrupt
(iu.vhd)

Figure 4.7: Code Integrity Check Unit

bench includes external Flash PROM which is pre-loaded with a test program. The
test program will execute on the LEON3 processor and test various functionality in the
design. The generic testbench has been created to read from file. It reads from the file
of the PROM where the binary code is loaded. The binary code has been created after
compiling a software test program like the one shown in Figure 4.2. Other test programs
have been generated with nested for loops, while loops. For further details about the test
program refer to Appendix B. All the interface signals between the processor chip and
the external memory components are defined as internal signals. The generic testbench
emulates the LEON processor where all the components that are inside this processor
chip can be tested. The generic testbench emulates the top level entity of the Leon3 pro-
cessor and all the components are mapped to this entity. The wave diagram in Figure
4.7 shows the evaluation of the design (the relevant signals are circled). According to
the wave diagram in Figure 4.7, we can observe the following;:

e Signal mem-re is enabled after one clock cycle, the pre-calculated mem-hash value
is read from the offset address of the cache line ici.dpc. The offset of the address

36 CHAPTER 4. IMPLEMENTATION AND VALIDATION

0000000C is for instance 000 and this is the address of the pre-computed value.

e After 80 clock cycles, the run time hash value is computed and signal start-compare
is enabled.

g

o

& .l

o

ol

il

- .‘ 3

.+
it

Figure 4.8: wave diagram of Code Integrity Check

4.2.3 Detection of valid Instructions from the Instruction Cache

The main concern is in detecting whether the instructions in the cache are valid. The
instruction address is valid at the beginning of the Fetch stage of the pipeline and is
generated in the execution stage from incrementing the program counter(pc) or from a
previous branch. In case a miss is detected in the fetch stage, the instruction cache is
switched into the streaming state, sending a memory request and at the same time the
pipeline is in halt mode. When the memory request is ready, the data is latched in the
pipeline by using the signal ico.mds which is an output from the instruction cache going
as an input to pipeline unit[40]. Figure 4.8 illustrates the design of the generate valid
unit.

Whenever the signal ico.mds is equal to zero, the instructions in ico.data(0) are ready
in the instruction cache. The transition from state sO to state sl in the state machine
in Figure 4.14 detects the valid signal, this means that in state s1, the instructions are
valid in the cache. The simulation of the generate valid unit with all the interface signals
are shown in wave diagram in Figure 4.9 where the relevant signals are circled in the
waveform.

4.2.4 Cryptographic Control Unit

The main concern is controlling the cryptographic unit (SHA-1 core) by reading the
instructions from the instruction cache if a valid has been generated from the generate
valid unit. The SHA-1 core can accept any message of any size and digest the mes-
sage into an output of 160 bits. The pipeline unit handles four instructions from the
instruction cache. In our case the input to the cryptographic unit is 4 instructions each

4.2. IMPLEMENTATION OF THE CODE INTEGRITY CHECK UNIT 37

¥ lco.mds Instruction cache
Pipeline of the Of the leon processor
leon processor (icache.vhd)
(iu.vhd) “Ico.data

Ico.mds

Y
Generate_valid.vhd [—valid

Figure 4.10: wave diagram

of 32 bits. On the other hand, the SHA-1 core performs pre-processing operations by
appending the message by one and padding the message with zeros as it was described in
section 2.4. The control unit makes sure that the cryptographic unit is reading the valid
instructions from the cache, loads each of the four instructions in registers, enable the
start signal for the SHA-1 core to begin computing the checksums, halts the pipeline of
the processor during the computation of checksums, and makes sure that all the inputs
to the cryptographic unit are appended with one, padded with zero and adding the size
of the message at the end of the input. The block diagram in Figure 4.16 illustrates the
design of the unit in hardware.

The Finite State Machine in Figure 4.12 illustrates the design of the SHA-1 core
controller the cache to hash unit.

e The cache to hash unit describes the interface between the instruction cache of
the Leon-3 processor and the cryptographic unit(SHA-1 core). The output of the

38

CHAPTER 4. IMPLEMENTATION AND VALIDATION

clk

Ico.data(0) i ¢ rst
c.kl l
rst

» finish
valid b Cryptograp
—— start hic unit
> (Shal_core
.vhd)
LoadWi |
WritelVHash :
WritelVvalue _
3 A
loadl | <
‘ ‘ datal
s ! -
A
State
halt Machine =
load2 |* °
| || data2
I y
A
Data_to_SHA1

5 tol —
load3 Mux

J
| || data3

load4 |)
| | datad

% additional *

Select

Pipeline of

the leon3-

processor
(iu.vhd)

Figure 4.11: Cryptographic Unit Interface

instruction cache ico.data(0) is assigned as an input to the control unit. Whenever
the valid signal is detected from the generate valid unit, then the cryptographic
unit is reading the valid instructions.

The transition from state S1, S2, S3 to state S4 in Figure 4.17 describes that
the registers are enabled and the instructions data are loaded in the registers. The
first four states take into consideration the branch instructions. In case of a branch
instruction the special state jump handles those branch instructions, the remaining
instructions and the embedded checksum in the cache line are neglected since there
is a jump to another address in the code. This state jump checks whether there
branch is still equal to 1 or the offset of the address of the cache line not equal to
zero. In this case we stay hanging in this state until there is no more branch or
the offset of the address is equal to zero.

4.2. IMPLEMENTATION OF THE CODE INTEGRITY CHECK UNIT 39

e In state S4 the cryptographic unit is enabled by setting the start signal to one and
the pipeline of the processor is halted. From state 5 to state 20 the pipeline is
halted and the cryptographic unit is doing computation work.

e The signal Load Wi is enabled once the valid instructions are loaded in the registers.
The select signal of the multiplexers select the relevant data as an input to the
cryptographic unit. The select signals select also the additional data, this means
that the value for the appending, padding with zeros and the length of the input
message is also generated from the cache to hash unit.

e At state 21 the cryptographic core is done with the calculations of checksums and
the state transition goes back to state 0, to start the next computation round.

4.2.5 Timing Simulation Results

This subsection shows the simulation results of the cryptographic control unit in case a
binary code is running from the main function and a binary code where the code contains
jumps instructions. The wave diagram in Figure 4.12 illustrates the time simulation of
the cache to hash unit or the cryptographic control unit, the interface signals and the
state transitions of a binary code running from main. The expected behavior is explained
in subsection 4.2.4. (The relevant signals are circled). According to the wave diagram
in Figure 4.12, we can observe the following:

e The four instructions which are ico.data(0) in the simulation wave diagram are
loaded in registers regl, reg2, reg3 and regd when the signals loadli, load?2, load3
and load/ signals are enabled.

e The Loadwi signal of the cryptographic unit is enabled, immediately after the
start signal is enabled, the instructions are loaded to the cryptographic unit and
the Load Wi signal is enabled for a certain period of time.

e During the computation of the checksums, the halt signal is enabled until the com-
putation is finished, so that the processor stops the execution of the instructions.

e This simulation is indicated only for the case of basic blocks so it does not include
any jumps instructions. The binary code runs only from the main function.

The wave diagram in Figure 4.13 shows the time simulation of the cache to hash unit
taking into account the jump instructions. The binary code includes jumps instructions.
The expected behavior is explained in subsection 4.2.4. In case of jump instruction the
transition from the current state(S0... S3) to state jump takes place. The state jump
handles the branch instructions, the remaining instructions and the embedded checksum
in the cache line are neglected since there is a jump to another address in the code. This
state jump checks whether there branch signal is still equal to 1.

According to the wave diagram in Figure 4.13, we can observe the following:

e In the case of jump the signal branch is asserted whenever a jump instruction
occurs. The branch is detected whenever the rbranch signal or the foranch signal
is asserted.

40 CHAPTER 4. IMPLEMENTATION AND VALIDATION

Branch =0 or
ici.dpc =0

s7

S14

of st Halt = 1
LAl Loadwi =1
ik @il = Mux_ctrl =

“010” “101"

S8
Halt=1
loadWi = 1
Mux_ctrl =
‘011"

S15
Halt=1
Loadwi =1
Mux_ctrl =

S9
Halt =1
Loadwi = 1
Mux_ctrl =
100

Load2=1
WIVHash =
1

Mux_ctrl =
“101"

alid=1 Branch #1

S10
Halt=1
Loadwi =1
Mux_ctrl =
“101”

S17
Halt=1
Loadwi =1
Mux_ctrl =
“101"

Branch= 1

2 or S18
Load4 =1 Ici.dpc(3d Halt=1
Read mem own to Loadwi =1

=1 0)/=0 Mux_ctrl =
Start =1
Halt=1

S5
Start =0
Halt=1

loadWi = 1

Mux_ctrl =

“000”

Mux_ctrl =
“101”

Mux_ctrl =
“101”

S6
Halt=1
loadwi = 1
Mux_ctrl
="001"

Halt=1
Loadwi =1
Mux_ctrl =
“101”

Halt=1
Loadwi =1
Mux_ctrl =
“110"

Finish =1

Figure 4.12: Cache to Hash Unit

e The current state is hanging in the state jump and the next address is stored in
ici.fpc.

4.2.6 Halting the Pipeline Unit

Let us show how the pipeline unit looks like when the standard execution of the Leon3
processor is considered and the execution when the cryptography extension is added. The
pipeline unit has been modified where the halt signal is assigned to the hold pc signal of
the Leon processor. The hold pc signal controls the fpc (fetch program counter) register

4.2. IMPLEMENTATION OF THE CODE INTEGRITY CHECK UNIT 41

————]| e i e —

—g=

0000010 | 0000004 0000001 & =

Figure 4.13: wave diagram of Cache To Hash(no jump instructions)

in the pipleine unit of the Leon processor, if hold pc is enabled then the current program
counter is held in this register and the pc is not increased. The data are not latched
in the pipeline stages but nops are included. The halt signal controls a multiplexor to
choose between the normal instruction data or the nops. When hold pc is disabled or
when halt signal is disabled, this means that the cryptographic unit is done with the
computation of the checksum, the program counter is increased and the new instruction
is fetched. Figure 4.14 shows the normal execution of the pipeline unit and Figure 4.15
illustrates the pipeline unit when cryptography occurs.

Figure 4.14 illustrates the standard 5 stages pipeline execution from Fetch, Decode,
Execute, Memory and Write Back. In the Fetch stage the next instruction to be executed
is fetched from memory. In the decode stage, the instruction is decoded and the operands

42 CHAPTER 4. IMPLEMENTATION AND VALIDATION

—_ ——— ————————————— ————————————————

| NTRTRTATAA] | 000007 C IO | IO

L+

L+

r
r
r
r

i
r
r

i
r
r
r
r

NEND]
FEREF

Figure 4.14: wave diagram of Cache To Hash (with jump instructions)

are read. All arithmetic operations are performed in the Arithmetic Logical Unit (ALU).
The data are valid in the memory stage. In the write back stage all results from the
ALU are written back to the register file. Figure 4.15 describes the modification of the
pipeline unit whenever the halt signal is enabled, the fetch program counter register will
hold the current value of pc and nops are included to the pipeline unit so that the unit
does not execute anything.

4.3. CONCLUSION 43

l-cache
........................ ETE
Fetch
------------ EERall----x==+-EX
Decode
------------ 271 [
Execute
------------ EEan ... EB
Memory

Figure 4.15: Normal Execution of the pipleine unit|8]

4.3 Conclusion

In chapter 4, The certified authority which is a software program reads the binary file
of a compiled program, assigns the instructions into a certain number of bytes, calculate
the checksums with the SHA-1 algorithm and embed the checksums in the binary file
and the binary file is loaded in the the PROM. The implementation of the Code Integrity
Check (CIC) unit in hardware using the Leon3 Template is described. The hardware
CIC (Code Integrity Check)unit that was build out of the controller of the cryptographic
unit, the cryptographic unit (SHA-1 core), the generate valid units to detect whenever
the data read from the cache are valid, Block RAM to store the pre-computed checksums
and a compare unit were illustrated. The simulation results of the behavior of the Code
Integrity Check unit, the controller of the cryptography unit were discussed. Finally, the
modification of the pipeline unit was discussed.

44 CHAPTER 4. IMPLEMENTATION AND VALIDATION

nop
callanh s halt
[l ol o0
ache |/ \ i
dela addrs | U joma &t
] | ===
halt A
Felch
............ Xz
Decode
i luluw‘&unwpp
11
e \ll‘ +
............ om--------- A5 EF
Brecte Tl o]
“-M\y/ Y
| {8
: ; - 3+ o aivess
............ L[— ", Eﬁlmm
Memry — D-cache
ﬂwn.mmu
ditan
el
........... 3 FPPUTROREs 5 ; 5 ﬁggi
Write B E
e 24, Wi, pir
o
[

Figure 4.16: Execution of the pipleine unit when cryptography occurs

Evaluation

Section 5.1 discusses the comparison of the three different secure processors that were
discussed in Section 2.3 Related work. Section 5.2 shows some experimental results and
takes into consideration the area and delay overhead when the design is scaled.

5.1 Design Comparisons

The code integrity check controls whether the binary code has been modified by pre-
computing checksums prior the execution of the program. During execution of the
program, the checksum is computed and compared to the pre-computed one (assum-
ing the operating system is trusted). The Code Integrity Check Unit provides only the
integrity of the binary code but does not provide memory integrity verification. If mem-
ory integrity verification is required, then a combination of our design and eXecute Only
Memory (XOM)[41] can be used. Some of the available secure processors are already
discussed in Section 2.2.

We have discussed three different designs the XOM architecture, the Secure Coproces-
sor of IBM4758 and the Trusted Computing Group. As we mentioned in the beginning of
this section that the Code Integrity Check Unit provides only the integrity of the binary
code but does not provide memory integrity verification. If memory integrity verification
is required, then a combination of our design and eXecute Only Memory (XOM)[41] can
be used. The common characteristics of the discussed architecutres is that the hardware
is assumed to be correct. Architectures like XOM provide a software tamper-resistant
execution environment. The check is done inside the processor so no separate hardware
is needed while the Trusted Computing Module of TCG group provides the same thing
as XOM except that the check is done outside the processor, so a separate hardware
is required. On the other hand, the IBM4758 secure Co-processor protects secret keys
for security applications where the secret keys that are stored are never leaked. Table
5.1 explains the comparisons between our design and the XOM processor, the Secure
Coprocessor of IBM4758 and the Trusted Computing Group(e.g Intel Lagrande).

In table 5.1 the comparisons between different designs is made in terms of whether
the design requires separate hardware to implement the cryptography, the measure of the
trust of the user, this means that why a user should trust the system, security perimeter
is taken into account, this means that where the security has been concentrated, is it
inside the processor and not outside or is it in both, e.g in our design/XOM the security
has been concentrated only inside the processor chip, where the memory is untrusted.

45

46

CHAPTER 5. EVALUATION

Table 5.1: Design Comparisons

Our Design /XOM Secure Co- Trusted Computing
processors, e.g. Group,
IBM4758 e.g. Intel LaGrande
Goal Copy and tamper- Secret protection for | Copy and tamper-
resistant software Security applications | resistant software
distribution and distribution and
execution (inside execution (outside
processor) processor)
Separate No Yes Yes
Hardware
Measure of Integrity of Software | The Secrets that are | Integrity of Software
User’s trust and its computation stored are never is checked at load
result is checked leaked time only

Security Processor Chip The private keys are | Processor, DRAM,
perimeter Boundary securely stored inside | TPM chip and busses
the casing during
manufacture
Common Hardware is correct, | Hardware is correct, | Hardware is correct,

Permanent device
secret(Public-private
key)

Permanent device
secret(Public-private
key)

Permanent device
secret(Public-private
key)

Characteristics

5.2 Experimental Results

This section describes some of the test results that we have obtained from synthesizing
our design. The Xilinx ISE tool is used to synthesize the design in hardware. The
default values of the LEON-3 architectural parameters that we used and the latency of
the SHA-1 core are depicted in table 5.2.

Table 5.2: Architectural Parameters

Avrchitectural Parameter Value

L1- Instruction Cache 64 KB/set, 1-set, 32 Bytes/line
L1-latency 1 cycle

Load cycles 2 cycles

Store Cycles 2 cycles

SHA-1 Latency 80 cycles

First, we synthesize the original Leon3MP design without modifications and then
we synthesize the Leon3MP after modification with adding the cryptographic unit. We
check the overhead in delay by taking into account the associativity (number of sets)
and the set size (Kbytes/set) of the Leon3 processor cache. We measure the delay by
increasing the set size for different number of sets between one to four. We do that to
check what the delay is when the design is scaled. The delay is considered to be inverse
proportional to the frequency of the design. We start first with the measurements of the
delay in ns without any modification. From the synthesis results, we discovered that the
delay stays constant when the set size of the cache increases. The delay varies only when
the number of sets varies between one to four. The results are illustrated in table 5.3.

Table 5.3: Delay measurements without modifications

number of sets | 1 2 3 4
Delay[ns] 8.127 ns 8.303 ns 8.305 ns 8.309 ns

5.2. EXPERIMENTAL RESULTS 47

The area usage is about 24 percent usage of the LUT(Look up table on the FPGA).
On the other hand we measure the delay after modifying the Leon3 processor by adding
the cryptographic unit. From the synthesis results, we noticed that the delay does not
vary if the size of the cache increases. The delay increases with the variation of the
number of sets. A possible explanation why the delay stays constants is that we are
loading the binary code in the memory where the size of the code is staying constant.
The results are illustrated in table 5.4. The area usage is 40 percent. The area overhead
almost doubles.

Table 5.4: Delay measurements with modifications

number of sets | 1 2 3 4
Delay[ns] 8.393 ns 8.392 ns 8.392 ns 8.392 ns

If we compare these results with the results of table 5.3, we conclude that the delay
increases. This is due to the fact that the computation time of the cryptographic unit is
high. The overhead in delay is presented in table 5.5 for different number of sets and set
size. The graph in Figure 5.1 illustrates the delay overhead where the x axis represents
the size of the cache in Kbytes/sets and the y axis the delay overhead in percentage for
set associativity 1, 2, 3, 4.

Table 5.5: Delay overhead

number of sets | 1 2 3 4
Delay[ns] 26.6 % 28.9 % 38.7 % 48.3 %

Delay Overhead

60

% delay overhead

50

48.3
% delay overhead,
20 38.7
% delay overhead,
% delay overhead,)ég 9

30 26:6 : m % delay overhead
20
10

0 T T T

1 2 3 4

number of sets

percentage of delay overhead

Figure 5.1: Overhead in Delay vs size of the cache

Let us discuss the reason behind the increase in delay overhead if the set associativity
of the cache varies between 1 to 4. Generally speaking, in a direct mapped cache a mem-
ory block maps to exactly one cache block. At the other extreme, in a fully associative

48 CHAPTER 5. EVALUATION

cache a memory block can be mapped to any cache block. On the other hand to reduce
cache miss rate a compromise is to divide the cache into sets each of which consists of n
"ways” (n-way set associative). A memory block maps to a unique set specified by the
index field and can be placed in any way of that set. The disadvantage of the n-way set
associative cache is that it requires n comparators while 1 comparator in the direct map
is needed. This will increase the delay overhead and area. The n-way set associative
requires additional multiplexor delay for the data than the direct mapping scheme. In
n-way set associative the data is available after set selection and Hit/Miss decision, while
in a direct mapped cache, the cache block is available before the Hit/Miss decision.

Other reasons that lead to performance degradation is the delay caused by the Code
Integrity Check unit implemented in hardware. The delay is caused at the cache-memory
boundary upon the L1 cache miss, where the miss penalty is already several hundred
cycles for typical microprocessors. Hence, some tens of extra cycles for hardware hash
computation is going to cause much of performance degradation. The code integrity
checking inserts additional no-op instructions into the instruction stream for every cache
line. These will cause degradation in the efficiency of the instruction fetch since a fraction
of instructions fetched are useless.

On the other hand, to reduce the performance overhead, the cryptographic unit has
to be pipelined. Instead of waiting 80 clock cycles to compute the hash value for an input
message, we can have 80 pipelined stages so that the throughput will be 160 bits per
clock cycle. Another method to reduce performance overhead, is to modify the compiler,
such that prior to the execution of the program, the hash values are loaded in a bursting
fashion in the on-chip memory, this means that they are not loaded one hash value at a
time.

5.3 Conclusion

This chapter discusses the comparison between the available secure processors which
are XOM architecture, the Secure Coprocessor of IBM4758 and the Trusted Computing
Module of TCG group. The experiment results show that when the design is scaled the
area will double. On the other hand the overhead in delay increases if the set associative
increases, this is because more logic is needed to calculate where the block of data should
be in the set. In case one set Direct Mapping there is only one set. In case of 2 ways
you need to check whether the data is left or right. In case of 4 ways you have to check
where the data will be between one of the four.

Conclusions

6.1 Summary

In this thesis, a design of the code integrity check unit is implemented in hardware. The
optimized cryptographic core SHA-1 unit is used to calculate the hash values at run time.
The pre-computed values are computed statically before the program runs on the Leon
processor. These values are usually generated by an authority software that reads the
binary code, calculates the checksums for every cache line and embed the pre-calculated
checksums in the original binary code. When the program starts executing the checksum
values are generated in hardware and checked with the pre-calculated one. If they are
not similar an interrupt is raised and the pipeline of the processor is stalled.

In chapter 1, the problem statement has been discussed is that most of the new
security attacks result in violating the integrity of the software code of an application
program. Such security attacks or threats try to change the instructions so that adversary
try to gain control over the program execution flow. An example of a malicious code has
been given.

In chapter 2, some security issues were discussed. Different classes of attacks into
computer systems were described like the Hardware-Based Attacks where an adversary
has direct physical hardware access, the Software-based Attacks that are specially used
remotely to break into computer and embedded systems. Some of the common software
based attacks that were explained are Buffer Overflow, Heap Overflow, Double free
vulnerability, Format string attack and Temporary file vulnerability. Some related work
has been discussed like a design of an architecture for a secure execution of programs
on embedded processors. A hash function which is a computationally efficient function
converting binary strings of arbitrary length to binary strings of fixed length called the
checksums was discussed. The hash functions are one-way functions that computes a
small fixed length output value, the digest message, that is highly correlated with the
input data. One of the trivial characteristics of the hash functions is that no information
of the data input can be obtained. It is very rarely to have two different data streams
generating the same hash value. The Secure Hash Algorithm (SHA-1) computes a 160 bit
message digest or output hash value from the input message. The input data stream is
separated into multiple input bocks of 512 bits each. The input block is split into 80*32
bits words, one 32-bit word for each computational round of the SHA-1 algorithm. Each
round comprises additions and logical operations, such as bitwise logical operations and
bitwise rotations to left. The computation of the final checksum is an eighty iteration
algorithm over each message block, where every message block is a sequence of 32 bit
words.

In chapter 3, the choices for the designs were described. A choice has to be made
which of the three soft-core is going to be used in this thesis. The three processors

49

50 CHAPTER 6. CONCLUSIONS

LEON-3 and OpenRISC 1200 and Microblaze are 32-bit RISC processor big endian syn-
thesizable pipelined processors. LEON-3 and OpenRISC 1200 contains 5-stage pipelines
while the Microblaze contains 3 stages of pipeline. Leon3 soft-core processor is the
targeted platform chosen to modify because Leon-3 is the most configurable processor,
while MicroBlaze and OpenRISC have less configuration options. Leon soft-core offers
better design flexibility than the MicroBlaze and OpenRISC. The 32-bit LEON proces-
sor that complies to the SPARC V8 architecture was discussed. The Leon Integer Unit
as defined that consists of five pipeline stages, the on-chip memory in LEON3 is imple-
mented with separate instruction and data buses, and how to configure the cache direct
map or set associative and the size of the cache were also illustrated. The memory con-
troller of the Leon-3 processor controls a memory bus holding external memory devices,
asynchronous static ram (SRAM) and synchronous dynamic ram (SDRAM) were also
explained. AMBA (Advanced Microcontroller Bus Architecture) is an on-chip bus speci-
fication for interconnection and organization of various functional modules that are a part
of System-on-Chip. The AMBA specification that improves the reusable system on-chip
platform by including a common standard for data communication in a System-on-Chip
module and the three distinct AMBA buses which are Advanced High-performance Bus
(AHB), Advanced System Bus (ASB) and Advanced Peripheral Bus (APB).

In chapter 4, The certified authority which is a software program reads the binary file
of a compiled program, assigns the instructions into a certain number of bytes, calculate
the checksums with the SHA-1 algorithm and embed the checksums to the cache line
that contains the instructions and load them in the PROM. The efficient implementation
of Secure Hash Algorithm (SHA-1) in hardware was described. This section describes
the implementation of the Code Integrity Check (CIC) unit in hardware using the Leon3
MTL403 Template. The hardware CIC (Code Integrity Check)unit that was build out of
some key components called the controller of the cryptographic unit, the cryptographic
unit (SHA-1 core), separate control units to detect whenever the data read from the
cache are valid, some selection logic components and a compare unit were illustrated.

In chapter 5, the comparison between the available secure processors which are XOM
architecture, the Secure Coprocessor of IBM4758 and the Trusted Computing Module
of TCG group has been discussed. The delay is measured by configuring the size of the
cache for different number of sets. The experiment results show that when the design
is scaled the area will double. The cryptography unit when it is added to the Leon3
template the delay in overhead increases about 30 percent and the area doubles in size.
The reason why the overhead in delay increases if the set associative increases, because
more logic is needed to calculate where the block of data should be in the set. In case one
set Direct Mapping there is only one set. In case of 2 ways you need to check whether
the data is left or right. In case of 4 ways you have to check where the data will be
between one of the four.

6.2 Future Work

The following points proposes the future research direction work:

e Implementing the Concealed Execution Mode unit that checks for integrity of data

6.2. FUTURE WORK o1

during runtime. When the data are written to the memory. Before sending the
data to the off-chip, the data has to be encrypted and hashed. When the data
are read on chip, the pre-calculated checksums are checked with the one calculated
during run-time(same as instruction hash).

e Modifying the compiler of the LEON processor to add instructions like hash pointer
to the Instruction Set Architecture (ISA). Every basic block begins with the hash
pointer where it points to the pre-computed checksum value of the basic block.
During execution of the code, the checksum is calculated on run-time and compared
to the pre-computed value which is found easily by the hash pointer.

52

CHAPTER 6. CONCLUSIONS

Bibliography

[1] J.S. Dwoskin, R.B. Lee. "Hardware-rooted trust for secure key management and
transient trust,” In Proceedings of the 14th ACM conference on Computer and com-
munications security, pp. 389 - 400, IEEE November. 2007.

[2] R.B. Lee, P.C. Kwan, J.P. McGregor, J. Dwoskin, Z. Wang. ” Architecture for pro-
tecting critical secrets in microprocessors,” In Proceedings. 32nd International Sym-
posiumon, pp. 2- 13, IEEE June. 2005.

[3] J.P. McGregor, R.B. Lee. ”Protecting cryptographic keys and computations via vir-
tual secure coprocessing”, pp. 16 - 26, IEEE March. 2005.

[4] R. Chaves, ”Secure Computing on Reconfigurable Systems”, pp. 207, December 2007,
PhD Thesis.

[5] R.D. Stinson, ”Cryptography-Theory and practice”, CRC Press, 1995.

[6] A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, ”Handbook of Applied Cryptogra-
phy”, CRC Press, 2001.

[7] www.gaisler.com
[8] J. Gaisler, ”The Leon Processor User’s Manual”, Version 2.3.7, August 2001

[9] J. Gaisler, ”BCC-Bare-C Cross-Compiler User’s Manual”, Version 1.0.29, February
2007

[10] www.exforsys.com/tutorials/c-language
[11] S.G.Kochan, ”"Programming in ANSI C”
[12] B.W. Kernighan, D.M. Ritchie, ”The C Programming Language”

[13] Federal Information Processing Standards Publication, ”Specifications for the Se-
cure Hash Standard” ,August 2002.

[14] Federal Information Processing Standards Publication, ”Specifications for the
Keyed-Hash Message Authentication Code” , March 2002.

[15] S. Pongyupinpanich, S. Choomchuay. ”An Architecture for a SHA-1 Applied for
DSA”, 3rd Asian International Mobile Computing Conference May. 2004.

[16] M. Kim, Y. Kim, J. Ryou, S. Jun. ”Efficient Implemntation of the keyed-Hash Mes-
sage Authentication Code Based on SHA-1 Algorithm for Mobile Trusted Computing”,
pp- 410-419, IEEE August. 2007.

[17] D. Zibin, Z. Ning. "FPGA Implementation of SHA-1 Algorithm”, IEEE August.
2003.

93

54 BIBLIOGRAPHY

[18] D. Toma, A. Perez, D. Borrione, E. Bergeret. ”Design Of A Proven Correct SHA
Circuit”, IEEE March. 2003.

[19] J. Dwoskin, D. Xu, J. Huang, M. Chiang , R. Lee. ”Secure Key Managment Archi-
tecture Against Sensor-node Fabrication attacks”, IEEE Dec. 2007

[20] H. Lin, X. Guan, Y .Fei, Z.J. Shi. ” Compiler-assisted Architectural Support for Pro-
gram Code Integrity Monitoring in Application-specific Instruction Set Processors”,
pp 815 - 820,IEEE 2007.

[21] Y .Fei, Z.J. Shi. ” Microarchitectural Support for Program Code Integrity Monitoring
in Application-specific Instruction Set Processors” , IEEE 2007.

[22] D. Arora, S. Ravi, A. Raghunathan, N. K. Jha. ”Secure Embedded Processing
through Hardware-assisted Run-time Monitoring”, pp 178 - 183, IEEE 2005.

[23] D. Arora, S. Ravi, A. Raghunathan, N. K. Jha. ”Enhancing security through
hardware-assisted run-time validation of program data properties” ,pp 190 - 195, IEEE
2005.

[24] D. Arora, S. Ravi, A. Raghunathan, N. K. Jha. ” Architectural Enhacements for
Secure Embedded Processing” ,JEEE 2005.

[25] K.D.Wilken, T. Kong. ”Concurrent Detection of Software and Hardware Data-
Access Faults”, IEEE 1997.

[26] R.G.Gael. ” Architectural Support for Security and Reliability in Embedded Proces-
sors”, August 2006, PhD Thesis.

[27] J.Platte. ” A Security Architecture for Microprocessors”, Nov. 2006, PHD Thesis.
[28] J.Gaisler. ”GRLIB IP Core User’s Manual”, Version 1.0.19, September 2008.

[29] J. Gasiler. ”"Leon 3 ML401 Template Design”, November 2007

[30] L. Buttelmann. ”Leon 3 VHDL simulation guide”, Version 0.1.18.10.2007

[31] ”The SPARC Architectural Manual”, Version 8.

[32] P. Anemaet, T. Van As. ”Microprocessors Soft-Cores: An Evaluation of Design
Methods and Concepts on FPGAs”, part of the Computer Architecture(Special Top-
ics) course ET4078, Department of Computer Engineering.

[33] F. Duarte, ”A Cache-Based Hardware Accelrator for Memory Data Movements”,
Nov.2008, PhD Thesis.

[34] A. Murat Fiskiran, R. B. Lee, "Runtime Execution Monitoring (REM) to Detect
and Prevent Malicious Code Execution”, pp 452 - 457 |, IEEE 2004.

[35] D.Driessens, T. Tierens, ”Embedded Systeemontwerp op basis van soft end Hardcore
FPGA’s”.

BIBLIOGRAPHY 95

[36] D. Mattsson, M.Christensson, ” Evaluation of Synthesizable CPU Cores ”.
[37] R.R. Srivastava, ”System on-chip platform”, Master Thesis, August 2004.
[38] "AMBA Specification”, ARM, May 1999

[39] R. Lien, T. Grembowski, and K. Gaj, A 1 Gbit/s partially unrolled architecture of
hash functions SHA-1 and SHA-512, in CT-RSA, pp. 324338, 2004.

[40] K.Eisele, ”Design of a Memory Management Unit for System-on-a-chip Platform
LEON”, Master thesis, University of Stuttgart.

[41] D.L.C. Thekkath, M.M.P. Lincoln, D.B.J. Mitchell, M.Horowitz, ”Architectural
Support for Copy and Tamper Resistant Software”. pp 168 - 177 , IEEE 2000.

[42] S.W. Smith, S. Weingart, ”Building a High-Performance, Programmable Secure
CoProcessor”. IEEE 1998.

[43] Trusted Computed Group.LaGrande Technology Architectural Overview.
[44] TCG Specification Architecture Overview, August 2007.

[45] S. Bajikar, ”Trusted Platform Module (TPM) based security on Notebook PCs.
June 2002.

56

BIBLIOGRAPHY

Appendix A: LEON3 VHDL
simulation steps with

Modelsim

This appendix explains the steps of how to run an application on LEON3 processor.
Most of the tutorials do not explain clearly the methods and steps that need to be taken

in order to compile, simulate the design. We start first explaining how to configure the
Leon3 processor with make xconfig GUI.

e make xconfig : changes the leon3 configuration by creating a config.vhd

rebuilt.
ple, pun

=T
Syrtesic D ek Link Save and E it
Clock. gerwration | Periphersk: Dok Wikt Saving
Pracossar VHDL D skugging Laad Corfigaration o Fils
AME& conliguration Stere Corfiguration ta File

Figure 7.1: Leon processor Configuration

e Processor : by clicking on processor , a GUI filled with several options is launched.
You have a flexibility of modifying the cores inside the Processor.

Al
g R o et setal Sl
bt Bt

HDL debug setings |

[5| o [Eratlo LEON2 Babeg aupperianit_| Hoip

[3 [@ [roueten et Heg| ||| © v | @ n | Processordsassentbr o consie Help| =1
e =

o] ([o] € o[Proceseordeassembly to conecle Halp)

DetpSugeon Ut [calE
VHDL aog g o EE

© y| & n | 326t orogrem couners Help

Main Mera e | I | Hest Be | oK Newt Frev

Figure 7.2: Configuration Inside processor

Next we describe the steps to compile an application. We give a very simple example
of how to do it.

o7

58 CHAPTER 7. APPENDIX A: LEON3 VHDL SIMULATION STEPS WITH
MODELSIM

e gcc hello.c :This step compiles the C code and creates and executable file. The
command used is : sparc-elf-gcc -msoft-float-O2 hello.c -0 hello.exe

e mkprom : This step loads the binary file into the prom of the Leon processor.
The command used is : sparc-elf-mkprom.exe -rmw -msoft-float -v -ramsize 1024
hello.exe

e objcopy : this step creates a copy of the object file. The command used is :
sparc-elf-objcopy -O srec prom.out prom.srec

After the steps of compilation of the applications are fulfilled, we describe the steps
used for simulation and synthesize with XILINX ISE.

e make vsim : This step compiles all the IP cores of the LEON3 template.
e vsim testbench : This step loads the testbench in modelsim and runs the simulation.

e make scripts : This step creates a compile.xst file which contains commands for
analyzing all GRLIB files and creates also .npl files for the ISE project.

e ise leon3mp.ise : This step creates the .ise project file.

e make ise : This step generates the netlist with XST. The final programming file is
the "LEON3mp.bit” is the file that can be used to be run on the FPGA board.

Appendix B: Software Test
program

This appendix explains the software programs that run on LEON3 processor.

e Simple test program, testing on for basic block.

main()

{

int resultl,result2;
intx=2;

inty =3;

resultl = x +y;

Figure 8.1: Simple Test program

e Simple Test program but including some standard function like printf and basic
test function for the LEON processor but the program is still running from main.

main()

{
report_start();

base_test();

int result1,result2;

intx=2;

inty =3;

resultl = sum(x,y);

result2 = mult(x,y);

printf("the sum is %d \n",result1);
printf("the product is %d \n",result2);
report_end();

Figure 8.2: Test program 2

e Test program 3 including jump instructions and many if statements

e Test progam 4 including while loop and for loops

99

CHAPTER 8. APPENDIX B: SOFTWARE TEST PROGRAM

int sum (int a , int b)
{
int result;
result = a + b;
return result;

}

int mult (int a , int b)
{
int result;
if (a >b)
result = b * a;
else
result = a * b;

return result;
main()

{

report_start();

base_test();

int resultl,result2;

int x = 2;

inty = 3;

resultl = sum(x,y);

result2 = mult(x,y);

printf(*"the sum is %d \n",resultl);
printf(*"the product is %d \n",result2);
report_end();

Figure 8.3: Test program 3

61

Void sum (int a , int b)
{
int *result,
result = malloc(sizeof(int)*1000);
inti;
for(i= 0; i <1000;i++)
result[i] = a + b;

}

int mult (int a , int b)
{
int result;
while (a > b)
result=b * a;
else
result =a* b;

return result;

main()

report_start();

base_test();

int resultl,result2;

intx=2;

inty =3;

resultl = sum(x,y);

result2 = mult(x,y);

printf("the sum is %d \n",resultl);
printf("the product is %d \n",result2);
report_end();

Figure 8.4: Test program 4

62

CHAPTER 8. APPENDIX B: SOFTWARE TEST PROGRAM

