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1
Introduction

Aviation must become more sustainable, currently emitting 2% of all human-induced CO2 emissions, 12%
of all CO2 emissions attributed to transport [2]. Thanks to rapidly advancing technologies, electric aircraft
could be part of the solution. While electric VTOL (Vertical Take-Off and Landing) receive a lot of attention
from researchers, many hurdles remain in regulation, certification and public acceptance. Meanwhile some
fixed-wing electric aircraft with up to 10 seats are already in the flight testing phase. Electric propulsion is
already common place for gliders equipped with self-starter motors and Pipistrel and Siemens are already
flying electric ultralights. while electric aircraft start entering general aviation, the logical next step is electric
aircraft with a seating capacity of 6 to 10 people. MagniX started test flying an electrified Cessna Caravan in
June 2020, Eviation also already has a prototype of their electric aircraft and Skylax intends to start flight test-
ing early 2022. These aircraft are entering the ballpark of thin-haul airlines, who provide scheduled services
over small distances ranging from just ten to a couple hundreds of kilometers in small aircraft with up to 10
seats. Due to their high costs ofe0.40/ASK compared to an airlinese0.11/ASK [1], thin-haul airlines are only
found where there are no alternatives for fast transport such as the Hawaiian islands or Alaska. Economic
feasibility studies conclude that these electric aircraft can provide huge costs savings for thin-haul airlines
[1] [3], [4]. Furthermore, feasibility studies show that lower prices may even unlock a huge amount of latent
demand such that electric thin-haul air transport may appear in many more places where it currently does
not exist. Yet there is very little research dedicated to their operations.

With these promising applications, the need for operations research in electric-thin haul aviation is clear.
With a number of aircraft swiftly advancing in their development, the urgency is also abundantly clear. Prior
work explored the feasibility so the logical next step is to investigate how to operate them, which is the gap
that this thesis attempts to close. In doing so, determining which service trips to make must be part of the
problem and cannot be known in advance. Whereas it may be realistic to assume that the set of service trips
is known in a scenario where a traditional fleet is replaced by an electric fleet, this may not be a good solution
as it is not tailored to electric aircraft with limited range and long charging times. Furthermore, the service
trips cannot be known in advance when the electric aircraft are not replacing an already existing fleet. In the
fiercely competitive airline industry, An operator will be interested in designing a schedule that minimises
cost per RPK (Revenue-Passenger Kilometer) because this has been the main reason why thin-haul air trans-
port largely missed out on the growth of the airline industry. This metric also allows for a direct comparison
of the economic competitiveness versus other modes of transport and gives a lower bound on ticket fares in
order to be profitable.

This thesis report is organized as follows: In chapter 2, the scientific paper is presented where we discuss
a novel method to solve our problem. We applied the methods to a number of case studies and discuss
the results. Chapter 3 contains the Literature Study that preceded and supports this project. We focus on
prior work on the E-VRP (Electric-Vehicle Routing Problem), E-VSP (Electric-Vehicle Scheduling Problem)
and feasibility studies in electric thin-haul operations. Appendix A presents how the problem was developed.
Appendix B discusses a Branch-and-Price. Appendix C presents an alternative LNS (Large Neighborhood
Search) algorithm, which was discarded in favor of the LNS algorithm presented in the scientific paper. Lastly,
Appendix D summarises the results of all case studies.
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Fleet Sizing and Scheduling of Electric Thin-Haul Aircraft, a Column
Generation and Large Neighborhood Search Based Method

Bart Debeuckelaere,∗

Delft University of Technology, Delft, The Netherlands

Abstract

This paper proposes an optimisation model to minimize operational cost of a fleet of electric thin-haul air-
craft under a minimum RPK (Revenue-Passenger Kilometer) constraint. A solution that minimises cost
per RPK can be found by varying the minimum RPK level. The solutions describes how many aircraft are
needed, as well as a schedule for each aircraft for a single day. We consider a set of airports where charging
infrastructure is assumed to be present. All aircraft must start and end the day from the assigned hub
airport. Next, we consider a discretised time space between a start time and end time with constant time
steps. The problem is represented on a time-space network where each node uniquely defines a location
(airport) and point in time, and arcs connect the nodes. An arc connecting two consecutive nodes at the
same airport are ground arcs and represent waiting on the ground. An arc connecting two nodes at different
airports are flight arcs. The cost, duration and energy consumption on flight arcs is determined in advance.
A schedule is represented as a sequence of arcs. The number of passengers on a flight is limited by the
demand. We developed a method to find a schedule that minimises costs while meeting a minimum RPK
constraint. This method was then illustrated on a network with 5, 10, 15, 20 and 30 airports. The results
show that our method is much faster than a traditional linear programming model. The obtained solution
is a local minimum and is very close to the global optimum. We found that cost per RPK shows a sawtooth
pattern, gradually decreasing as aircraft utilisation increases but spiking up when an additional aircraft is
added to the fleet. Furthermore, the sawtooth pattern shows an increasing trend. The schedule shows a
strong preference for connections with a longer distance and with high demand. The algorithm first fills up
these connections, often using back-and-forth flights, until they are largely saturated. When there is little
demand left on these connections, the algorithm starts adding flights on connections with a shorter distance
or less demand.

Keywords: scheduling, electric vehicle, electric aircraft, thin-haul, fleet sizing, linear optimisation, column
generation, large neighborhood search

1 Introduction
Aviation must become more sustainable. Aircraft are currently emitting 2% of all human-induced CO2 emis-
sions globally, or 12% of all transport related CO2 emissions [8], and the public opinion is becoming more
opposed to flying. Electric aircraft could be part of the solution. Recent developments in battery and charging
technology have been very promising. In operations research, a lot of work has been dedicated to UAM (Urban
Air Mobility). In this concept, an autonomous VTOL (Vertical Take-Off & Landing) aircraft with a handful of
seats available provides on-demand mobility. Though technology is developing at a high pace, there are many
hurdles to this concept in regulation, certification and public acceptance. Meanwhile fixed-wing electric aircraft
with up to 10 seats are already in the flight testing phase. A number of economic feasibility studies conclude
that these electric aircraft provide opportunities for huge costs savings for commuter airlines [3] [27], [31]. Yet
there is very little research dedicated to their operations, which is vastly different from fossil fuel powered aircraft.

Some experts still consider electric propulsion infeasible for commercial aviation and advise research to focus
on electric regional airlines with a potential market introduction 20 years from now. This is a misconception
according to Moore et al. [6], who states the importance of having an agile and adaptable research and market
plan, starting with smaller applications. Current commercial aviation is receiving most attention because that
is where the bulk of the revenue is but there is a poor fit with current technology levels. Meanwhile, electric
propulsion is already common place for gliders equipped with so called self-starter motors and Pipistrel and
Siemens are already flying electric ultralights. while electric aircraft start entering general aviation, the logical
next step is electric aircraft with a seating capacity of 6 to 10 people. MagniX started test flying an electrified

∗Msc Student, Air Transport and Operations, Faculty of Aerospace Engineering, Delft University of Technology
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Cessna Caravan in June 2020, Eviation also already has a prototype of their electric aircraft and Skylax intends
to start flight testing early 2022.

Clearly, electric aircraft are entering the ballpark of thin-haul commuter airlines, who provide scheduled services
over small distances ranging from just ten to a couple hundreds of kilometers in small aircraft with up to 10
seats. Due to their currently high costs of 0.40 e/ASK compared to an airlines 0.11 e/ASK [3], commuter
airlines are only found where there are no alternatives for fast transport such as the Hawaiian islands or Alaska.
As current developments and research plainly show that electric aircraft can substantially reduce costs, some
current operators are already planning to electrify their fleets. Furthermore, feasibility studies show that lower
prices may even unlock a huge amount of latent demand such that electric thin-haul air transport may appear in
many more places where it currently does not exist. Yet, very little operations research is devoted to operating
an electric fleet.

With the very promising applications to replace current thin-haul fleets and even provide new thin-haul ser-
vices where it currently does not exist, the need for operations research in electric-thin haul aviation is clear.
With a number of promising concepts rapidly advancing in their development, the urgency is also abundantly
clear. Prior work explored the feasibility of such air transport so the logical next step is to investigate how
to operate them. In doing so, determining which service trips to make must be part of the problem and can-
not be known in advance. Whereas it may be realistic to assume that the set of service trips is known in a
scenario where a traditional fleet is replaced by an electric fleet, this may not be a good solution as it is not
tailored to electric aircraft with limited range and long charging times. Furthermore, the service trips can-
not be known in advance when the electric aircraft are not replacing an already existing fleet. In the fiercely
competitive airline industry, An operator will be interested in designing a schedule that minimises cost per
RPK (Revenue-Passenger Kilometer) because this has been the main reason why thin-haul air transport largely
missed out on the growth of the airline industry. This metric also allows for a direct comparison of the economic
competitiveness versus other modes of transport and gives a lower bound on ticket fares in order to be profitable.

This paper therefore proposes a method to minimise cost under a minimum RPK constraint. A solution that
minimizes cost per RPK can be found by varying the minimum RPK level. We are interested in finding i)
What fleetsize is required to meet a certain RPK? ii) How should the aircraft be scheduled? What makes up a
successful schedule? And iii) Is there a pattern w.r.t. cost per RPK?

The contributions of this paper are as follows. To the best of our knowledge, this is the first paper that considers
cost per RPK as an evaluation criterion in an electric vehicle scheduling problem and is the first paper to apply
operations research to electric thin-haul aircraft. We propose a new variation of the electric-vehicle scheduling
problem where the set of service trips is not known in advance and where a meeting a minimum RPK level
must be met. We then propose a method to solve the problem, tailored to the intricacies of the problem. The
methods and insights developed in this paper will support future thin-haul airline operators in deciding how
many aircraft to acquire and provide a schedule that minimises cost per RPK.

The remainder of this paper is structured as follows. In Sec. 2, the state-of-the-art in electric thin haul aviation
and electric-vehicle scheduling and routing is discussed. In Sec. 3, we describe the formulation of our problem.
In Sec. 4, we propose a novel method to solve our problem. The case studies to evaluate the methods are
described in Sec. 5. Lastly, the results of the case studies are laid out in Sec. 6.

2 Literature Review
This chapter reviews the state-of-the-art in operations research of electric aircraft and closely related fields.
The research in the field of electric aircraft scheduling is very limited. Three fields of research are deemed most
relevant. Firstly, Sec. 2.1 considers the E-VRP (Electric-Vehicle Routing Problem), which applies the classical
VRP (Vehicle Routing Problem) to an electric fleet. A set of customer nodes is represented on a graph. The
problem consists in finding an optimal set of routes such that each customer node is visited exactly once. The
E-VRP is known to be NP-Hard and most research uses heuristics to efficiently solve the instances. A second
relevant field of research considers the E-VSP (Electric-Vehicle Scheduling Problem) and is discussed in Sec.
2.2. Instead of a set of customer nodes as is the case in the VRP, the VSP (Vehicle Scheduling Problem) is
concerned with a set of service trips. Each service trip has a start and end location and duration. The problem
is to schedule a fleet of electric vehicles such that each service trip is performed under the given constraints. In
the single-depot problem, all vehicles start and end their service from the same vehicle depot. A variation to
this problem is the multi-depot problem. The single-depot VSP is Polynomial bound (O(N3)) but multi-depot
VSP and the E-VSP are NP-Hard [30]. Lastly, a small number of feasibility studies and other considerations
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towards electric aircraft are presented in Sec. 2.3.

2.1 The Electric-Vehicle Routing Problem (E-VRP)
Erdogan and Miller-Hooks [26] are the first to discuss routing for alternative vehicles. They describe the G-
VRP (Green-Vehicle Routing Problem) to help organisations overcome the difficulties of operating vehicles
using alternative power sources of limited driving range and limited refuelling infrastructure. The problem is
represented on a graph G(V,E). The set of vertices or nodes V consists of the set of customer nodes, refuelling
station nodes and one depot node. Each node can only be visited once. To allow for multiple visits to the
refuelling stations, the author decided to create the augmented graph G(V ,E) which contains a number of
copies of the refuelling station nodes. The objective is to minimize the total travelled distance, as shown in Eq.
(1).

min
∑
ij

dijxij ∀ij ∈ V ′, i ̸= j (1)

The original G-VRP [26] provided a very good baseline for future work in electric vehicle routing. A number
of extensions were proposed to make the model more practically relevant and a number of solution techniques
have been developed. These include partial recharge, time-windows and more. Table 1 summarises the current
literature concerning the E-VRP. The fourth column denotes whether the servicing is modelled using a constant
servicing time (C), a partial recharge (RP) or a full recharge (FR). The problem is NP-Hard and a range of
heuristic methods were proposed to solve real life instances. Further work in this field includes studying exten-
sions to the problem that could be relevant in practice while further improving on the methods to efficiently
handle larger instances.

Paper Objective Time Windows Service #Customers # Vehicles Exact
[26] Distance - C 500 80 -
[1] Distance + FR 500 80 -
[7] Operating Cost - PR 500 80 -
[11] Operating Cost + PR 50 ? +
[25] Operating Cost + PR 100 15 +
[18] Distance + PR 100 15 -
[20] Distance - C 20 10 +
[5] Distance + C 20 10 +
[2] Total Cost + C/FR 100 15 -
[10] Charging Time + PR 100 15 -

Table 1: Summary of E-VRP research papers

2.2 The Electric-Vehicle Scheduling Problem (E-VSP)
The traditional VSP (Vehicle Scheduling Problem) is a well known problem. The problem consists of designing
an optimal schedule for a fleet of vehicles such that a set of pre-determined service trips is performed at a
minimal cost. After the publications of Li [13] and Adler [14], addressing the scheduling of electric vehicles, this
field of research has been extremely active.

In most cases, the objective is to minimize the operational costs while executing each service trip. The models
are usually formulated on a graph. Each arc or node in the graph has certain attributes such as cost and energy
consumption. The task is to select a set of arcs to form the schedule of one or more vehicles. A number of varia-
tions of the original E-VSP have been proposed in literature as shown in Table 2. In the Service column, C, PR
and FR denote constant time, partial recharge and full recharge respectively. Though the problem is NP-Hard,
exact methods based on Column-Generation algorithms often do the job. The problem has been applied in a
number of case studies of electric bus fleets. One downside to this approach is that the set of service trips must
be determined beforehand. Steiner and Inrich [16] present a variation with a dynamic demand pattern as input
such that determining which service trips to make becomes part of the problem. Further work is this field will
be studying different extensions and variations to the problem in specific case studies.
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Paper Vehicle Objective Service Infr. #Trips # Vehicles Exact
[13] Bus Operating Cost C - 1,000 60 +
[14] Bus Operating Cost C - 4,300 500 +
[30] Bus Operating Cost PR - 500 30 +
[12] Bus Annual Cost C + 600 30 +
[9] Bus Annual Cost FR + 300 35 +
[16] (Diesel) Bus Profit N/A N/A 18 1 +
[29] Bus # vehicles PR + 700 35 -
[32] Bus Operating Cost C - 60 13 -
[15] Bus Annual Cost PR + ? 700 +
[21] Aircraft Operating Cost PR - 50 25 +

Table 2: Summary of E-VSP research papers

2.3 Electric Flight
Electric technology is developing at an extremely high pace. This has lead to a number of common miscon-
ceptions about electric propulsion that are preventing research from reaching its full potential [6]. Therefore,
this section will discuss electric aircraft technology and operations in more detail with a focus on thin-haul
commuter aircraft.

Thin-haul or Commuter refers to one step smaller than short-haul. Flight legs vary in distance from ten to
a couple hundred kilometers using small aircraft with no more than 10 seats. Due to their high cost, they
are only found where there is no high speed alternative. Harish et al. [3] assessed the economic feasibility of
electric thin-haul operations. The demand on each individual route in a thin-haul network may be small but the
cumulative demand over a network provides opportunities. Consider as well that latent demand may emerge
if the service becomes successful and prices drop. Although the demand is arguably there, thin-haul airlines
have not experienced the growth rates of commercial transport before the COVID crisis. That is mainly caused
by the high operating costs. Whereas traditional airlines such as have an operating cost of e0.11 per ASK
(Available Seat Kilometer) (Delta Air Lines) compared to e0.40 for commuter airlines (Cape Air) [3]. The high
operating costs and alternative fast transport make it very hard for commuter airlines to be successful. From a
direct comparison, using electric aircraft results in a staggering 20 to 30% reduction in operating costs, mainly
driven by a reduction in energy and maintenance costs and partly offset by an increased acquisition cost of the
aircraft and batteries.

To assess the potential demand, Sun et al. [31] estimated door-to-door travel time of existing modes of transport
and air taxis, which essentially are commuter aircraft. They found that commuter aircraft are most competitive
for distances between 100 and 300km. A similar study by Wei et al. [28] concludes that a suburban commuter
airline should target ground commutes exceeding 45 minutes. With a cruise speed of 160 knots and take-off
distance of 500 feet (300kph, 150m), travel times can be reduced by 45%. According to Courtin et al. [22],
these requirements are realistic.

3 Problem Description
This section describes how the problem is formulated and introduces mathematical notations. We consider a
homogeneous set of aircraft K. The exact fleet size is not known in advance but rather a decision to make in
our problem. Let a1, a2, ... be airports that the aircraft can operate at. Let one of these airports be the hub ah,
where all aircraft are stationed overnight. We consider a discretised time space, starting and ending at tmin and
tmax respectively with a time step tstep. Let i(a, t) be a node defining airport a at time t where t ∈ [tmin, tmax]
and t = tmin + ntstep (n ∈ N). Let N denote the set of all nodes. Denote the first and last node at the hub as
the origin node No(ah, tmin) and destination node Nd(ah, tmax). Let N ′ be the set of all nodes except for the
origin and destination node such that N = No∪Nd∪N ′. Let two consecutive nodes at the same airport i(a1, t1)
and j(a1, t1 + tstep) be connected by a ground-arc (i, j). Next, consider two airports a1, a2 where the distance
d(a1,a2) between them lies within an interval [dmin, dmax]. Suppose the flight-time t(a1,a2) to fly from airport a1
to airport a2 is known. Let nodes i(a1, t1) and j(a2, t1 + t(a1,a2)) be connected by a flight-arc (i, j). Let Ag and
Af be the set of ground- and flight-arcs respectively. Let A = Ag ∪ Af be the set of all arcs and let δ+i and
δ−i be the set of incoming and outgoing arcs at node i respectively. Knowing the nodes i and j is sufficient to
uniquely define the arc (i, j) connecting them. Each arc (i, j) ∈ A has a cost c(i,j) indicating how much it costs
to use this arc, and an energy e(i,j), indicating how the energy level in the aircraft’s battery changes over that
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arc. On a flight-arc, e(i,j) has a negative value as energy is consumed during the flight. On ground-arcs, the
aircraft can recharge it’s battery. By assuming a linear charging process, the energy in ground arcs is set equal
to the charging power times the duration of the arc e(i,j) = Pchargetstep. Let G(N,A) be a TS (Time-Space)
graph, comprising of the set of nodes N and set of arcs A.

Demand is defined for each airport pair in time windows with length tD. Let D((a1,a2),[tmin+ntD,tmin+(n+1)tD)) be
the maximum number of passengers that can be flown from airport a1 to airport a2 on a flight departing in the
interval [tmin+ntD, tmin+(n+1)tD) where n ∈ [0, 1, · · · , (tmax− tmin)/tD] to create non-overlapping intervals,
spanning the time between tmin and tmax. In the remainder of this paper, we will refer to a combination of an
airport pair and time interval as a demand interval. Let D be the set of all possible demand intervals. The
number of passengers on each flight-arc is limited by either the number of seats s available on the aircraft, or
by demand. On each flight, the number of passengers may not exceed the number of seats s on the aircraft.
Next, let A((a1,a2),[t1,t2)) be the set of all flight-arcs serving demand from airport a1 to a2 departing in the time
interval [t1, t2). The total number of passengers on all flights in this demand interval ((i, j) ∈ A((a1,a2),[t1,t2)))
cannot exceed the demand in that interval D((a1,a2),[t1,t2)).

Determining the exact number of passengers on each flight does leave symmetries in the problem, different
solutions with the same outcome. Suppose there are 2 flights serving the same demand interval such that
capacity exceeds demand (2s > D((a1,a2),[t1,t2))). Note that costs are not affected by the number of empty seats
on each flight. The solution where passengers are distributed (s, D((a1,a2),[t1,t2)) − s) (the first flight taking s
passengers while the second takes the remaining passengers) has the same cost as the solution where passengers
are distributed the other way around (D((a1,a2),[t1,t2)) − s, s). However, the exact number of passengers on each
arc does not have to be known. It suffices to know the number of empty seats (’loss’) l((a1,a2),[t1,t2)) in a demand
interval. Suppose that a number of f flights are scheduled in the demand interval ((a1, a2), [t1, t2)). The value
of the related loss variable can be calculated using Eq. (2) without specifying on which flights they occur. This
simplifies the model by eliminating these passenger-symmetries. Note that it is also possible to have a higher
value for the loss variable. This would mean that seats are left empty while there actually is demand for them.
In reality, the operator will always attempt to sell as many seats as possible.

l(a1,a2),[t1,t2) =

{
0 if f · s ≤ D((a1,a2),[t1,t2))

f · s−D((a1,a2),[t1,t2)) else
(2)

A feasible schedule can be constructed on graph G by selecting a subset of arcs, adhering to the following rules.
An example of how a schedule may look on a graph is visualised in Fig. 1

• The aircraft must start at the origin-node No and end at the destination-node Nd. This represents starting
and ending the day at the assigned Hub airport.

• Between any two consecutive flights, the aircraft must stay on the ground for at least the TAT (Turn-
Around-Time) ttat before departing for another flight.

• The aircraft starts at No with a fully charged battery. Over each arc, the energy changes according to
the energy of the arc. If the energy exceeds the battery capacity emax, it is set equal to emax. Suppose
the energy in the battery at node i is ei. Then if arc (i, j) is used, the energy in the battery at node j is
ej = min(ei + e(i,j), emax). The energy in the batteries is not allowed to drop below zero at any point in
the schedule.

• The selected arcs must form a continuous path.

By slightly altering the graph G, we can ensure that any continuous path from No to Nd automatically satisfies
the TAT. We achieve this by including the TAT in the flight-arcs. Let the flight-arc (i, j) connect nodes nodes
i(a1, t1) and j(a2, t1+t(a1,a2)+ttat). During the TAT, the aircraft is on the ground so has the option to recharge
the batteries. If e(a1,a2) is the energy consumed during the flight and etat = Pchargettat, then the change in
energy over this arc is e(i,j) = e(a1,a2)+ etat. This also implies that now the energy is not allowed to drop below
etat at any node. If it is lower, that means that the energy dropped below zero at the end of a flight and partly
recharged during the TAT.

The cost of this schedule equals the sum of the costs of all arcs that make up the schedule. Let the RPK
(Revenue-Passenger Kilometer) of a flight equal the number of revenue-generating passengers (so excluding
crew) multiplied by the flight distance. The RPK of a schedule is the summation of the RPKs of all flights
in that schedule. Recall that the exact number of passengers wasn’t known. Instead, the number of available
seats is known as well as the number of empty seats in each demand interval. The total RPK of a schedule can
thus be computed as the ASK (Available Seat Kilometer) minus the ESK (Empty Seat Kilometer). The ASK
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Figure 1: Example of a schedule where the aircraft flies from airport 2, to airport 1, back to airport 2, to airport
3 and back to airport 2. Airport 2 is the hub in this case. In between flights, the aircraft stays on the ground
for two time steps.

of a schedule is the summation of ASKs of all flights in the schedule, whereas the ESK is the summation of the
ESKs in each demand interval.

The objective is to create a schedule that minimises Cost/RPK, which is a nonlinear objective. Therefore, we
change the objective to creating a schedule that minimises cost while meeting a minimum RPK level RPKmin.
This can be formulated as a MILP (Mixed-Integer Linear Program). By repeatedly solving this problem for
various minimum RPK levels, a solution that minimizes Cost/RPK can be found.

Let xijk be a binary decision variable indicating whether aircraft k ∈ K is using arc (i, j) ∈ A. Let eik be a
continuous decision variable indicating the energy level of aircraft k ∈ K at node i ∈ N . Lastly, let l((a1,a2),[t1,t2))

be a continuous ’loss’ variable, indicating the number of empty seats on all selected flights in demand interval
from airport a1 to airport a2 on all flights departing in the time interval [t1, t2) where ((a1, a2), [t1, t2)) ∈ D.
Because the schedule is constructed by selecting which arcs to include, we call this the ’Arc-Based Formulation’.

(ARC BASED FORMULATION)

Decision Variables

xijk =

{
1 if aircraft k is using arc (i, j)

0 else

eik ∈ [etat, emax] the energy level in the battery of aircraft k at node i

l((a1,a2),[t1,t2)) ≥ 0 the total number of empty seats on flights from airport a1 to airport a2 departing in the time
interval [t1, t2)

MILP formulation

min
∑

(i,j)∈A

∑
k∈K

xijkcij (3)

s.t.

∑
(i,j)∈δ+i

xijk =
∑

(i,j)∈δ−i

xijk ∀i ∈ N ′, k ∈ K (4)
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∑
(i,j)∈δ−o

xijk ≤ 1 ∀k ∈ K (5)

∑
k∈K

xijk ≤ 1 ∀(i, j) ∈ Af (6)

∑
(i,j)∈Af

∑
k∈K

xijk · s · dij −
∑

((a1,a2),[t1,t2))∈D

l((a1,a2),[t1,t2))d(a1,a2) ≥ RPKmin (7)

∑
(i,j)∈A((a1,a2),[t1,t2))

∑
k∈K

xijk · s− l((a1,a2),[t1,t2)) ≤ D((a1,a2),[t1,t2)) ∀((a1, a2), [t1, t2)) ∈ D (8)

ejk ≤ eik + xijkeij + (1− xijk)emax k ∈ K, (i, j) ∈ A (9)

etat ≤ eik ≤ emax ∀k ∈ K, i ∈ N (10)

xijk = {0, 1} ∀(i, j) ∈ E, k ∈ K (11)

l((a1,a2),[t1,t2)) ≥ 0 ∀((a1, a2), [t1, t2)) ∈ D (12)

The Objective (3) is to minimise total operating costs. Constraint (4) ensures flow conservation for each aircraft
on each node, except for the origin and destination nodes. Constraint (5) ensures that each aircraft can be
deployed at most once. Constraint (6) certifies that a flight arc can be used by at most one aircraft. Constraint
(7) guarantees that a sufficient RPK is served. Constraint (8) verifies the passenger demand limits in each
demand interval, where several flight arcs may serve the same demand interval. Constraint (9) regulates the
energy level. The last component is needed such that non-used arcs do not impose a restriction on the energy
level. Constraints (10), (11) and (12) regulate which values the decision variables may assume. x variables are
binary, e are continuous within the limits of the battery and the l variables should be positive integers but are
relaxed to positive continuous decision variables. Suppose some l in the solution has a non-integer value. When
rounded down to the nearest integer, Constraint (8) will still be satisfied as all other terms in this constraint
are integer and constraint (7) will become less tight. This solution is therefore still feasible and thus l can be
relaxed without loss of generality.

This problem is extremely difficult to solve. That is because it is a resource-constrained vehicle-scheduling
problem, which is NP-Hard [13]. While this formulation is relatively simple and can easily be plugged into a
commercial solver like Gurobi, its NP-Hardness and the fact that the graph G can easily contain hundreds or
thousands nodes and arcs make it impractical in most realistic cases. Moreover, the arc-based formulation has
a lot of seemingly useless of decision variables and symmetries. For each aircraft added to the fleet, there is
a new set of decision variables on each arc and on each node, even those that are not used by the aircraft.
Symmetries remain in two forms. i) Suppose aircraft #1 uses a path (feasible sequence of arcs) and aircraft #2
takes a different path. Assigning the same path to the other aircraft results in the same solution. When the
fleet size increases, the number of permutations for any of set of paths increases exponentially. ii) Suppose a
path contains a flight arc (i(a1, t1), j(a2, t2)). Replacing this flight arc by the same flight at the next time step
(i′(a1, t1+ tstep), j

′(a2, t2+ tstep)) often results in the same objective value. Section 4 therefore discusses a novel
method to solve the problem.

4 Methodology
Because the arc based formulation in Sec. 3 is only able to solve very small instances to optimality, this section
presents a new optimisation algorithm to solve this problem. Firstly, Sec. 4.1 proposes a label correcting
algorithm to heuristically construct a good initial solution. Starting from this initial solution, a CG (Column
Generation) algorithm explained in Sec. 4.2 computes a strong lower bound by repeatedly solving a smaller
version of the problem called the RMP (Restricted Master Problem) until the optimality criterion is met. CG
solves the relaxed RMP to find a lower bound. Next, the integer version of the final RMP is used to improve
on the initial solution. To obtain a global optimum, CG must be implemented in a B&P (Branch-and-Price)
framework as explained in Appendix B. Because B&P proved unsuccessful to find a global minimum, an LNS
(Large Neighborhood Search) algorithm was developed in Sec. 4.3 to find a local minimum.

7



4.1 Initial Solution Heuristic Using Label Correction
One may realise that the solution with the minimum cost per RPK will likely have a high aircraft utilisation,
which means that the aircraft are performing as many flights as possible. In that case, the fixed, daily ownership
cost of the aircraft is shared over a high RPK and contributes less to the overall Cost/RPK. Intuitively, a high
aircraft utilisation makes sense. This section proposes an algorithm to heuristically construct an initial feasible
solution with a high aircraft utilisation, which can also be interpreted as heuristically minimising the fleet size.
The heuristic works by repeatedly finding the path from No to Nd with the highest RPK, given the previously
selected paths, and adding this to the initial solution. This process repeats until the total RPK of all paths in
the initial solution combined exceeds the minimum RPK as shown in Fig. 2.

Figure 2: Process of the heuristic to construct an initial feasible solution

The problem of finding the maximum RPK path can be formulated as the following MILP program.

(MAXIMUM RPK PATH)

Decision Variables

xij =

{
1 if arc (i, j) is part of the maximum RPK path
0 else

ei ∈ [etat, emax] the energy level in the battery of the aircraft at node i

l(a1,a2),[t1,t2) ≥ 0 the total number of empty seats on flights from airport a1 to airport a2 departing in the time
interval [t1, t2)

MILP formulation

max
∑

(i,j)∈Af

xijdij −
∑

((a1,a2),[t1,t2))∈D

l((a1,a2),[t1,t2))d(a1,a2) (13)

s.t.

∑
(i,j)∈δ+i

xij =
∑

(i,j)∈δ−i

xij ∀i ∈ N ′ (14)

∑
(i,j)∈A((a1,a2),[t1,t2))

xij · s− l((a1,a2),[t1,t2))d(a1,a2) ∀((a1, a2), [t1, t2)) ∈ D (15)

ej ≤ ei + xijeij + (1− xij)emax ∀(i, j) ∈ A (16)

etat ≤ ei ≤ emax ∀i ∈ N (17)

xij = {0, 1} ∀(i, j) ∈ A (18)

l((a1,a2),[t1,t2)) ≥ 0 ∀((a1, a2), [t1, t2)) ∈ D (19)

The Objective (13) is to maximise the RPK over a single path from No to Nd. Constraint (14) ensures flow
conservation at all nodes, except for the origin and destination. Constraint (15) makes sure that demand is
not exceeded. Note that when a path is added to the initial solution, the demand that this path serves must
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be removed from the demand before searching for the next path. Constraint (16) ensures that the energy con-
sumption is satisfied. Constraints (17), (18) and (19) regulate which values the decision variables may assume.
Besides updating the demand before finding the next path, the used flight arcs must be removed from the graph
to avoid having a flight arc used by multiple paths.

This formulation is similar to the arc-based formulation presented in Sec. 3. This is a variation of the resource-
constrained shortest-path problem and is thus also NP-Hard [13]. Label correcting is commonly used to effi-
ciently solve this problem. Consider a state at a certain node, which consists of an energy- and RPK-level. A
label (e, rpk) represents this state and is feasible at node i if there is a feasible path that leads to this state
at i. At each node, there is a finite set of feasible states. At the origin there is only one (emax, 0). This label
corresponds to a fully charged battery and zero RPK. The label correcting algorithm starts at the origin and
chronologically visits all nodes. At each node, it updates the label set of all nodes that are directly reachable
from that node. Suppose there is a non-empty set of labels at node i and an arc (i, j). Then for each label
(e, rpk) at i, a label (e+ e(i,j), rpk+ d(i,j) ∗min(s,D((ai,aj),[t1,t2)))) is added to the set of labels at j. However,
if e+ e(i,j) < etat, then this state is infeasible because it does not satisfy the energy limits constraint (17) and
is therefore not added to the set of labels at j.

Additionally, we use dominance rules to ignore the labels that cannot lead to the maximum RPK path. A label
(e1, rpk1) at node i is dominated if there is another label (e2, rpk2) at node i such that e1 < e2 and rpk1 < rpk2.
If a label is dominated, it is removed and no longer considered. Because the second label has more energy, any
remaining path from i to Nd that is feasible starting from state (e1, rpk1) is also feasible for state (e2, rpk2). It
is thus impossible for the first state to make up for its lower RPK.

The labels are programmed as keys in a dictionary. Each label (key) in the dictionary points to a list containing
the sequence of arcs that led to that state. This enables easy extraction of the path. When the algorithm
reaches the destination node Nd, the path corresponding to the label with the highest RPK is extracted and
added to the initial solution. This is guaranteed to be the feasible path with the maximum RPK because the
algorithm exhaustively explores all possible states and only ignores a state if i) the state is infeasible; or ii) the
state cannot lead to the maximum RPK path.

The pseudo-code of the initial solution construction heuristic is shown in Alg. (1)

Algorithm 1 Maximum RPK label correcting
1: Input TS graph G, demand, RPKmin

2: RPK = 0, solution = [ ], labels = [{}, {}, ...] (|N | dictionaries)
3: while RPK ≤ RPKmin do
4: # Label Correcting
5: for i in N do
6: for (i, j) in δ−i do
7: for label in labels(i) do
8: Update label ((e+ e(i,j), rpk + d(i,j) ∗min(s,D((ai,aj),[t1,t2)))))
9: Check feasibility, check dominance & add updated label to labels(j)

10: end for
11: end for
12: end for
13: # Add best path to the solution
14: Get path with highest RPK in labels(d)
15: Add path to the initial solution
16: Remove served demand & used flight arcs
17: end while
18: return solution
19: Output Initial feasible solution

4.2 Column Generation
The algorithm described in Sec. 4.1 provides a good initial feasible solution. We now want to i) Evaluate how
good this solution is by computing a lower bound; and ii) Further improve on this initial solution. The CG
(Column Generation) algorithm presented in this section attempts to do both.
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In the arc based formulation, the problem was solved by selecting an optimal set of arcs that constitute a set of
feasible paths. Let R be the set of all feasible paths from No to Nd. An equivalent way of looking at the problem
is to select the optimal set of paths from R. Let cr equal to the total operating cost and askr the ASK (Available
Seat Kilometers) of path r ∈ R. Let δr(i,j) equal 1 if arc (i, j) is part of path r, and 0 otherwise. Let pr((a1,a2),[t1,t2))

equal the number of seats available in demand interval (a1, a2), [t1, t2)) in path r. Let yr be a binary decision
variable indicating if path r is included in the solution. This leads to the path based formulation of the problem.

(PATH BASED FORMULATION)

Decision Variables

yr =

{
1 if path r is used
0 else

MILP formulation

min
∑
r∈R

yrcr (20)

s.t.

∑
r∈R

yr ≤ K (21)

∑
r∈R

yr · δr(i,j) ≤ 1 ∀(i, j) ∈ Af (22)

∑
r∈R

yr · pr((a1,a2),[t1,t2))
− l((a1,a2),[t1,t2)) ≤ D((a1,a2),[t1,t2)) ∀((a1, a2), [t1, t2)) ∈ D (23)

∑
r∈R

yr · askr −
∑

((a1,a2),[t1,t2))∈D

d(a1,a2)l((a1,a2),[t1,t2)) ≥ rpkmin (24)

yr = {0, 1} ∀r ∈ R (25)

As in the arc based formulation, the objective (20) is to minimize costs. Constraint (21) limits the fleet size.
Constraint (22) prevents multiple paths from occupying the same flight arcs. Constraint (23) keeps the solu-
tion from exceeding demand. Constraint (24) ensures that the minimum RPK is met. Lastly, constraint (25)
indicates that yr are binary decision variables.

As the path-based formulation is equivalent to the arc based formulation, it is also NP-Hard. Moreover, the
number of feasible paths |R| quickly explodes to an impractical size with a growing number of arcs in G. Most
variables yr however will equal 0 in the solution, so instead we only consider a subset of columns (paths) R ⊂ R
and iteratively solve i) an RMP (Restricted Master Problem) using this subset of columns, starting from the
initial solution. ii) a PSP (Pricing Sub-Problem) to extract columns with a negative RC (Reduced Cost) to add
to R. The RC of a path r indicates how much the objective function would change per unit increase yr. When
a path with a negative RC is found, it may be beneficial to add this to the subset of paths R in the RMP. When
no paths exists with a negative RC, that means that the objective value cannot be decreased and thus that the
optimal solution is reached. The process of CG is visualised in Fig. 3

Next, let us discuss the PSP. Let α1 be the dual variable to constraint (21), let α(i,j)
2 the dual to constraint (22)

for (i, j) ∈ Af , let α
((a1,a2),[t1,t2))
3 correspond to constraint (23) for ((a1, a2), [t1, t2)) ∈ D and let α4 the dual

variable of constraint (24). The reduced cost c∗r of any path can then be computed as in Eq. (27).

c∗r = −α1 +
∑

(i,j)∈r

c∗(i,j) (26)

c∗(i,j) = c(i,j) − α
(i,j)
2 − α

((a1,a2),[t1,t2))
3 · s− α4 · s · d(i,j) (27)
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Figure 3: Process of Column Generation to solve the linear relaxation of the path based formulation

The PSP consists in finding a path from No to Nd that minimises the reduced cost and can be formulated as
follows.

(PRICING SUB-PROBLEM)

Decision Variables

xij =

{
1 if arc (i, j) is included in the minimum RC path
0 else

ei ∈ [etat, emax] the energy level in the battery of the aircraft at node i

MILP formulation

min− α1 +
∑

(i,j)∈A

xijc
∗
(i,j) (28)

s.t.

∑
(i,j)∈δ+i

xij =
∑

(i,j)∈δ−i

xij ∀i ∈ N ′ (29)

ej ≤ ei + xijeij + (1− xij)emax ∀(i, j) ∈ A (30)

etat ≤ ei ≤ emax ∀i ∈ N (31)

xij = {0, 1} ∀(i, j) ∈ A (32)

The objective (28) is to minimise the reduced cost. Constraint (29) ensures flow conservation at all nodes except
No and Nd. Constraint (30) regulates energy consumption and constraints (31) and (32) indicate which values
the decision variables are allowed to take.

This formulation is surprisingly similar to the one to find the maximum RPK path in Sec. 4.1. With the excep-
tion of the objective function and absence of the demand constraints, the formulation is identical. This too is
a variation on the resource-constrained shortest-path problem and is thus NP-Hard [13]. The label correcting
algorithm for Sec. 4.1 is therefore slightly adjusted to be used in solving the pricing subproblem. Consider a
state at a certain node, which in this case consists of an energy and RC. A label (e, rc) represents this state. A
state is feasible at node i if there is a feasible path that leads to this state at i. At each node, there is a finite
set of feasible states. At the origin there is only one (emax,−α1). The label correcting algorithm starts at the
origin and chronologically visits all nodes. At each node, it updates the label set of all nodes that are directly
reachable from that node. Suppose there is a non-empty set of labels at node i and an arc (i, j). Then for each
label (e, rc) at i, a label (e+ e(i,j), rc+ c∗(i,j)) is added to the set of labels at j. However, if e+ e(i,j) < etat, then
this state is infeasible because it does not satisfy the energy limits constraint (31) and is therefore not added
to the set of labels at j.

Additionally, the dominance rules to ignore the labels that cannot lead to the minimum RC path are as follows.
A label (e1, rc1) at node i is dominated if there is another label (e2, rc2) at node i such that e1 < e2 and
rc1 > rc2. If a label is dominated, it is removed and no longer considered. In that case, any remaining path
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from node i to the destination node Nd that is feasible starting from state (e1, rc1) is also feasible from state
(e2, rc2) such that it is impossible for the first state to make up for its higher RC.

The labels are programmed as keys in a dictionary. Each label (key) in the dictionary points to a list containing
the sequence of arcs that led to that state. This enables easy extraction of the paths. Note that there is not
one but rather a set of labels at Nd after running label correcting. Instead of only looking for the path that
minimises RC, all path with a negative RC at the destination are added to R. This label correcting algo-
rithm is guaranteed to find the path that minimises RC because it exhaustively explores all possible states and
only ignores a state if i) the state is infeasible; or ii) the state cannot lead to the minimum RC path. If the
algorithm cannot find a label with a negative RC at Nd, that means that there are none and thus that we
obtained the optimal solution of the linear relaxation of the path based formulation. This is a much stronger
lower bound than the solution to the linear relaxation of the arc based formulation because there, the energy
constraints are also relaxed and the solution can use infeasible paths to obtain a lower solution. The paths in
the linear relaxation of the path based formulation do still have to be feasible, leading to a stronger lower bound.

There is no guarantee that this solution will be integral. To achieve integrality, CG must be implemented in
a B&B (Branch-and-Bound) framework where CG is executed at each node in the branching tree, resulting
in a B&P (Brand-and-Price) algorithm. The B&P algorithm and reasons why it proved unsuccessful to solve
the problem to optimality are discussed in Appendix B. Instead, we attempt to improve on the initial solution
by solving the integer version of the final RMP, using the final subset of columns R. This solution will be
at least as good as the initial solution because the paths that make up the initial solution are included in R.
There is however no guarantee that the integer solution of the final RMP is the optimal integer solution of our
problem. There actually is a major flaw in this approach, namely that R only consists of high utilisation paths.
Though the optimal solution likely consists primarily of high utilisation paths for the reasons laid out in Sec.
4.1, the optimal solution may require one or more lower utilisation paths. Consider the following example, with
RPKmin = 1. The minimum cost solution is found when flying one aircraft on a single out-and-return flight
to the nearest airport, which is a low utilisation path. Any additional flights just increase the cost while the
minimum RPK is already met. Suppose for simplicity that each flight arc has a reduced cost equal to −1. Then
the RC of the optimal path is c∗r = −2. Now suppose that there is a feasible path that performs the same
out-and-return flight twice. This higher utilisation path has a reduced cost of −4 and will dominate the lower
utilisation path, which will therefore not appear in R.

While CG is useful to compute a strong lower bound and improve on the integer solution by solving the integer
version of the final RMP, we would still like to keep improving. As B&P proved unsuccessful to find the global
minimum, the next section proposes an LNS (Large Neighborhood Search) algorithm to improve the best-known
solution to a local minimum.

4.3 Large Neighborhood Search
This section proposes an LNS (Large Neighborhood Search) algorithm to improve the best known solution until
a local minimum is found. In general, any LNS starts from a known solution, iteratively explores its neighbor-
hood and moves to the best neighbor. When there is no better solution in the neighborhood, the solution is
locally optimal. To fully define the LNS, we need to define i) the neighborhood; and ii) a mechanism to explore
the neighborhood.

Let the neighborhood be the set of all feasible solutions where all but one path in the solution are equal. If
in a solution, one path is replaced by a low-utilisation path such that the overall solution is still feasible, this
is a valid neighbor. The best known solution up until now was achieved by solving the integer version of the
final RMP, as explained in Sec. 4.2. This had the major drawback that the subset of paths R in the RMP only
contained high utilisation paths. This LNS algorithm directly addresses this concern by allowing high-utilisation
paths to be replaced by more suitable paths. On each iteration of the LNS, the optimal replacement path is
computed for each path in the solution. The algorithm then moves to the best neighbor, with the lowest total
cost as visualised in Fig. 4.

The mechanism to explore the neighborhood and find the best neighbor is a variation of the arc based MILP
formulation from Sec. 3. While the arc based formulation is impractical to solve large instances, it does work
to solve small cases with only 1 aircraft. Consider a solution consisting of a number of paths. Suppose that
one path is removed from this solution such that the remaining solution does not meet the minimum RPK. Let
RPKremaining be the total RPK of the remaining solution. We will now compute the optimal replacement path
such that the solution is feasible again. Let RPKgap = RPKmin −RPKremaining be the RPK that is required
from this replacement path, as visualised in Fig. 5. The following MILP formulation is used to find the optimal
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Figure 4: Process of the Large Neighborhood Search to improve the best known solution to a local minimum

replacement path.

Figure 5: Visual representation of the relation between RPKmin, RPKgap and RPKremaining

(ARC BASED FORMULATION - REPLACEMENT PATH)

Decision Variables

xij =

{
1 if the aircraft is using arc (i, j)

0 else

ei ∈ [etat, emax] the energy level in the battery of the aircraft at node i

l(a1,a2),[t1,t2) ≥ 0 the total number of empty seats on flights from airport a1 to airport a2 departing in the time
interval [t1, t2)

MILP formulation

min
∑

(i,j)∈A

cijxij (33)

s.t.

∑
(i,j)∈δ+i

xij =
∑

(i,j)∈δ−i

xij ∀i ∈ N ′ (34)

∑
(i,j)∈δ−o

xij ≤ 1 (35)

∑
(i,j)∈Af

xij · s · dij −
∑

((a1,a2),[t1,t2))∈D

l((a1,a2),[t1,t2))d(a1,a2) ≥ RPKgap (36)
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∑
(i,j)∈A((a1,a2),[t1,t2))

xij · s− l((a1,a2),[t1,t2)) ≤ D((a1,a2),[t1,t2)) ∀((a1, a2), [t1, t2)) ∈ D (37)

ej ≤ ei + xijeij + (1− xij)emax ∀(i, j) ∈ A (38)

etat ≤ ei ≤ emax ∀i ∈ N (39)

xij = {0, 1} ∀(i, j) ∈ A (40)

l((a1,a2),[t1,t2)) ≥ 0 ∀((a1, a2), [t1, t2)) ∈ D (41)

The objective (33) is to minimise operating costs. Constraint (34) ensures flow conservation on each node,
except for the origin and destination nodes. Constraint (35) ensures that the aircraft can be deployed at most
once. Constraint (36) guarantees that a sufficient RPK is served. Constraint (37) verifies the passenger demand
limits in each demand bucket. Here the demand served by the remaining paths must be removed from the
demand available for the replacement path. Constraint (38) regulates the energy level. Constraints (39), (40)
and (41) regulate which values the decision variables may assume.

This formulation is very similar to the arc based formulation in Sec. 3. The program presented here differs in
that it only considers one aircraft, instead of a fleet of |K| aircraft, and in that the constraint that prohibits
multiple paths to use the same flight arc is absent here. Instead, the flight arcs that are already used by
the remaining paths are temporarily removed from the graph. While this formulation is still NP-Hard, it is
computationally tractable when applied for just a single aircraft.

4.4 Overall Methodology
The full algorithm consists of the steps described in the previous sections. These steps and their purposes are
summarized in Fig. 6. Firstly, an initial feasible solution is constructed by heuristically maximising aircraft
utilisation. This is achieved by iteratively finding the maximum-RPK path using a label correcting algorithm
and adding it to the solution. This initial solution serves as a starting point for Column Generation, which
solves the linear relaxation of the path based formulation and results in a strong lower bound, much stronger
than the one from the linear relaxation of the arc based formulation presented in Sec. 3. This is particularly
useful to evaluate the best-known integer solution and deciding how many resources should be deployed to
try and improve it. Column Generation iteratively solves an RMP (Restricted Master Problem), the path-
based formulation using a subset of columns (paths), until no column can be added that would result in an
improvement. When Column Generation has run to optimality, the final RMP is solved with integer restrictions
to improve on the initial solution. Lastly, an LNS is started from this solution. The LNS iteratively explores
the neighborhood where all but one paths in the solution are equal. On each iteration, the algorithm moves to
the best neighbor, which is found by using a variation of arc based formulation to find the optimal replacement
path for all paths in the solution. When no better neighbor can be found, a local optimum is reached.

Figure 6: Schematic of the full algorithm proposed in this thesis

5 Description of the Case Studies
This Section describes the case studies on which the methods have been tested. Sec. 5.1 lays out the aircraft
model, which is based on the all-electric Skylax E10. Sec. 5.2 introduces the cost model to calculate the cost
of each arc. The demand model is presented in Sec. 5.3. Sec. 5.4 presents the Time-Space network and lastly,
Sec. 5.5 presents the instances on which the algorithms will be tested.
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5.1 Aircraft Model
The aircraft considered in this thesis is the Skylax E10, a very promising concept currently in development.
The performance estimates in Tab. 3 are publicly available. This section builds an aircraft model to validate
that these claims are realistic and to estimate power consumption for a flight.

Parameter Value
# seats s 9 + 1 pilot
MTOW 3,500 kg
Empty weight 2,700 kg
Battery weight 1,000 kg
Engine power 260 kW (x2)
Cruise speed 300 kph
Range at MTOW 300 km
Energy costs 47 e/h
Variable costs 109 e/h

Table 3: Aircraft parameters claimed for the Skylax E10

The difference between the MTOW and empty weight leaves 800kg for payload, equivalent to 10 people of 80kg.
We assume a parabolic drag polar (Eq. (42)).

CD = CDmin
+ k(CL − CLminD

)2 (42)

Where CLminD
is the lift coefficient corresponding to the minimum drag coefficient. The lift induced drag

constant is calculated as k = 1/(π ·AR ·e) where AR is the wing aspect ratio and e the Oswald efficiency factor.
We assume AR = 10 and e = 0.9 such that k = 0.035. Next, we assume CLminD

= 0.1. Lastly, two methods
exist to estimate CDmin

. The first one is by comparing to similar aircraft. This is a quick estimation, useful
in the early stages when the aircraft layout is not yet available. According to [23], this results in a CDmin of
0.0225 for a light, twin engine aircraft. Alternatively, Eq. (43) provides an estimation based on a build up of
drag of the various aircraft components.

CD0 =
1

Sref

∑
CfC · FFC · IFC · Swet (43)

Where CfC is the flat plate skin friction coefficient, FFC is a form factor to account for pressure drag,IFC

is an interference factor to account for the drag increase due to proximity of multiple objects. Based on the
assumptions provided in Table 4, a CD0 of 0.02055 is obtained. This is very close to the first estimation. We
therefore continue with the value in between CD0 = 0.021. These result in a L/D in cruise of 20.5.

Component Cf FF IF Swet

Wing 0.0015 1.13 1 32
Tail 0.0015 1.13 1.04 8
Fuselage 0.00027 1.49 1 63
Nacelles 0.00027 1.19 1.5 0.9

Table 4: Assumed values for Eq. (43) [23]

The lift coefficient in each flight phase is calculated from the lift equation L = 1
2ρV

2SCL, where we assume
that the wing surface S = 16m2. Subsequently, the drag coefficient is calculated by inserting the lift coefficient
in Eq. (42). Total drag then equals D = 1

2ρV
2SCD. The power required from the propellors then becomes

P = DV . We assume an airspeed of 300 km/h in cruise, climb and descend. For the final approach, an airspeed
of 120km/h was used. In climb and descend, a vertical speed of Vz = 4m/s adds Vzmg to the power required,
where m is the aircraft mass and g the gravitational acceleration. In an electric aircraft m remains constant
during a flight as no fuel is burned. The jet velocity Vj is calculated from Pr = ṁ(Vj − V ), with mass flow
ṁ = ρApV where Ap is the area of the propellers. Additionally, the propulsive efficiency was estimated by
assuming a propeller radius of 1m and using the formula ηj = 2/(1 + Vj/V ). This efficiency converts power
required to shaft power Pr = Ps · ηj . An efficiency of 78% is applied to convert battery power to shaft power
Ps = Pb · 0.78 [17]. We assume that 40 kW of battery power is used during taxi. During take-off, we assume
full that full power is used, which is around 500kW for the Skylax E10. During landing, power is brought to
idle and no power is consumed. Lastly, a 45 minute reserve at minimum power consumption is assumed. This
leads to the estimated power in each flight phase in Figure 7.
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Figure 7: Power estimations per flight phase for the Skylax E10

We assume that all flight phases except for the cruise are fixed in duration as shown in Tab. 5. All fixed flight
phases require a combined energy of ef = 108kWh. We also assume that the distance of df = 92km covered
during climb and descent also contributes to the range, meaning that 42 minutes of cruise are required to reach
300km. The total power consumption of this trip is 238 kWh. A battery reserve for 45 minutes is also reported.
Minimum power consumption occurs around 200 kph at sea level. Including efficiency losses, 140kW is required.
For a 45 minutes reserve, 105 kWh must be available. This brings to total battery capacity to 343kWh. The
specific energy of 343W/kg is in line with the expected battery advancements by 2025.

Flight phase Power [kW] Duration [min] Energy consumption [kWh]
Taxi 40 10 6.7
Take-off 500 1 8.3
Climb 360 10 56.7
Cruise 186 42 119
Descent 11 10 3.3
Approach 373 5 23.3
Landing 0 1 0
Reserve 140 45 105
Total 343

Table 5: Estimated power consumption and duration of the flight phases

Finally, the energy required to perform a certain flight can be computed using Eq. (44), in kWh. In reality,
aircraft cannot simply fly the shortest possible route. Therefore, the distance is multiplied by a routing factor
r. A routing factor of 1.08 is used in this thesis. As all required values have been estimates, the energy required
to perform any flight can now be estimated.

e = ef + (r · d− df ) · Pcruise/Vcruise (44)

5.2 Cost Model
This section documents the estimation of direct operating costs in function of the schedule. This consist of the
four parts listed below. Indirect costs also exist and include passenger services, ground equipment, administrative
expenses, etc. The first three elements are calculated per flight, whereas ownership costs are a fixed daily cost.

• Energy

• Maintenance

• Battery depreciation

• Labor
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• Ownership

Energy costs are difficult to estimate because they vary between cities and different providers. Additionally,
prices depend on the peak power and total volume of electricity used. The energy bill can be split in two parts.
The supply is concerned with production of electricity and charges a cost per kWh. The delivery part is con-
cerned with transporting the electricity to the user [4]. Delivery charges a price per kWh, a premium for peak
power and a fixed charge for the services and being connected to the grid. To reliably determine the electricity
rates applicable, one would need to know the total energy consumption and peak power at each individual
airport. Electricity costs are included in the direct operating costs. Ownership of charging infrastructure is not.
In practice, charging infrastructure may be owned and operated by a third party such as the airport itself, in
which case the aircraft operator only incurs the cost of electricity. A cost of e0.20/kWh was chosen. Knowing
the energy consumption for a flight, the energy cost can also be determined.

Maintenance costs of a disruptive technology are hard to assess. Two approaches exist. The first one being
a bottom up estimation of the maintenance related to all components or assemblies. This approach requires
extensive data about the individual components and their failure rates. As this information is not available, a
second approach is used. This approach uses top-down semi-empirical relations like the one found in [24]. It
estimates 6 sources of maintenance costs. To take the new technologies into account, adjustment factors found
in literature were used. According to Boeing, a composite airframe reduces airframe labor hours by 35% due to
the lack of corrosion. Information from the automotive industry shows that electric engine material and labor
costs are reduced by 20% because of less moving parts and consumables. Finally, the engine overhaul reserves
are neglected as electric engines’ lifetime exceeds that of the aircraft. They will therefore not be overhauled
during the aircraft’s lifetime. As labor cost is an hourly cost too, the two are combined. A single pilot suffices
to fly the Skylax E10 and a rate of 25e/h is assumed. Whereas Skylax reports a variable cost of e109/h,
including maintenance, inspections, labor, parts and miscellaneous costs. This is 22% lower then the estimate
of e140/h for maintenance and labor. The difference could be in the assumed labor hour rate and other cost
factors but seems optimistic. This thesis therefore proceeds with the estimate of e140/h.

Electric aircraft do have one additional cost component, namely that of battery depreciation as they must
be replaced at the end of its useful life. The battery lifetime depends on a range of factors such as the DoD
(Depth-of-Discharge), charging power, operating temperature, etc. For this thesis, we assume a battery lifetime
of 1,000 cycles, after which a new battery back must be acquired. Current market prices are around e200/kWh
but these are expected to drop to 100-150 by 2025. We therefore assume a price of e125/kWh, resulting in a
battery price of e43,000. By assuming linear depreciation over 1,000 cycles, We obtain a cost of e0.125/kWh
of consumed energy.

Lastly, the ownership costs refer to the costs for an operator to own an asset over a period of time. This
includes financing the acquisition, depreciation and insurance. As suggested in [3], we linearly depreciate the
aircraft over a period of 15 years and apply an insurance of 2% of the market value. Additionally, we assume
that the operator sells the aircraft after 9 years to trade it for a newer model. With an original price of e2m,
the aircraft is still worth 800k after 9 years. Over those 9 years, the insurance was on average 28k/year. That
leaves the operator with a total ownership cost of 1.452m over the course of 9 years or e440 per day per aircraft.

The elements of the direct operating costs are summarised in Tab. 6. As the energy consumption and flight
time for each flight can be determined in advance, these costs are pre-computed and attached to the flight arcs
in the TS graph.

Cost Value
Energy 0.2 e/kWh
Battery depreciation 0.125 e/kWh
Labor & maintenance 140 e/h
Aircraft ownership 440 e/day

Table 6: Cost model for the Skylax E10

5.3 Demand Model
In this section we discuss a simple demand model. While in reality demand will depend on many factors such as
service level, travel time, availability of alternatives, public acceptance, fare prices, marketing, etc. a thorough
demand analysis is far beyond the scope of this thesis. This sections presents a simple demand model used in
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the case studies but the methods developed in this thesis are flexible to use any demand model as input.

The demand model proposed in this thesis considers three factors: i) population of the origin and destination
city, ii) the distance and iii) ToD (Time of Day), Firstly, a variation of the gravity model is used. Let Pa1

and
Pa2

be the population of the cities where airport a1 and a2 are located respectively. These are multiplied and
instead of dividing by a power of distance as is the case in a classical gravity model, this is multiplied by a
Gaussian distribution based on distance N(d(a1,a2)|µ = 200, σ = 100) because this reflects the competitiveness
of thin-haul air transport in Europe [31]. Next, demand is scaled by three Gaussian distributions, depending on
the ToD t: N(t|µ = 8, σ = 2), N(t|µ = 16, σ = 2) and N(t|µ = 12, σ = 6) to model daily fluctuations in demand
[19]. Lastly, the demand is scaled by a factor f to get within reasonable bounds. Because no thin-haul airline
service is currently available in Europe, one option is to calibrate f by benchmarking against existing modes
of transport. However, as these other modes transport huge amounts of people every day, small calibration
errors could have a very large influence. Therefore, f chosen manually and fixed at a value of 0.01 to achieve
a reasonable demand. This leads to Eq. (45) to calculate the demand between cities a1 and a2 at time t.
Naturally, demand is rounded to the nearest integer.

D(a1, a2, t) = Pa1
· Pa2

·N(d(a1,a2)|200, 100) ·N(t|8, 2) ·N(t|16, 2) ·N(t|12, 6) · f (45)

Demand is divided in time windows. For this thesis, a time window of 1 hour was used and the center of each
time interval was used to compute demand in that interval. Fig. 8(a) shows the effect of the variation on the
gravity model. Observe how the connections around London for example have a higher demand because of the
large population. Fig. 8(b) shows the variation of demand on some connections around Brussels throughout
the day. A clear morning peak at 8am and afternoon peak at 16pm can be observed.

(a) Network with 20 airports and demand weighted links (b) Variation of demand on a few connection depending on ToD

Figure 8: Visualisation of the demand model between some airports

5.4 Time-Space Network
This section lays out how the TS (Time-Space) network G is created. The parameters to create the network
are summarised in Tab. 7.

Parameter Value
[tmin, tmax] [6.00 AM, 8.00 PM]
tstep 15 minutes
ttat 30 minutes
Pcharge 250 kW
ah Brussels
[dmin, dmax] [100 km, 300 km]
r 1.08

Table 7: Parameters to create a Time-Space network G
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The operating hours are from 6AM until 8 PM and nodes are created at 15 minute time steps. For any airport
a, there are nodes (a, 06.00), (a, 06.15), (a, 06.30), ..., (a, 20.00). The TAT (Turn-Around-Time) is set at 30
minutes. This is in between the average TAT for Cape Air (52 min) and Mokulele Airlines (19 min) [27]. Air-
ports are chosen near large cities in the area of Belgium and The Netherlands with an extension in the North of
France, South-West of Germany and South of the UK because these regions likely have good demand for such
an air transport service [31]. Table 8 presents the list of airports, divided in several networks. The airports in
the first column are used to construct a TS network of 5 airports. The ones in the next column are added to
create a TS network of 10 airports, etc.

30 airport network
20 airport network

15 airport network
10 airport network

5 airport network
Brussels (hub) Frankfurt Antwerp Liege Ostend Nantes
Amsterdam Stuttgart Rotterdam Munchen Birmingham Angers
Paris Strassbourgh Zurich Neurenberg Bristol Leeds
Luxemburg Dijon Lyon Rouen Manchester Sheffield
Cologne Lille London Southampton Norwich Liverpool

Table 8: List of airports in the networks

Brussels was assigned as the hub airport ah because of its central location on the map. The distance between
any airport pair is calculated as the great circle distance, which is the shortest distance on a globe. Distance
is subsequently multiplied by a routing factor of 1.08 to account for the fact that the aircraft may not be able
to fly the shortest possible route. Flights are considered between any airport pair where the resulting distance
lies in the range of 100km to 300km. Below 100km, cars and trains become more attractive modes of transport
and above, traditional airlines become more competitive [31]. Besides, the range of the Skylax E10 is currently
limited to 300km. The network of airports is visualised in on a map in Fig. 9

Figure 9: Map of the networks of airports

In our problem, all aircraft must start and end the day at the origin- and destination nodes No and Nd. As
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a result, a number of nodes and arcs in the TS network G cannot be reached. Consider the node i(a1, tmin)
where a1 ̸= ah. This node is obsolete because there is no way for an aircraft to ever reach it. Any arc starting
from this node (i, j) ∈ δ+i is therefore also obsolete. After the TS networks are created, a post-processing step
removes these obsolete nodes and arcs. Firstly, a forward travelling recursive algorithm is used, starting from
No, to label all nodes that are reachable from No without considering energy consumption. Next, a backward
travelling recursive algorithm starting from Nd is used to mark all nodes that can reach Nd. If a node is not
marked as reachable in both cases, the node and all connected arcs are removed from G. The TS network G
for 5 airports is shown if Fig. 10.

Figure 10: Time-Space network with 5 airports

5.5 Instances
The algorithm will be tested on different networks with a different number of airports. Also within the same
network, the algorithm will be tested on a varying minimum RPK. Because the network of Cape Air, the
largest thin-haul airline in the world, consists of 20 airports [27], the algorithm will be tested up until 20 air-
ports in steps of 5. To see how far we can push the algorithm, it will then also be tested on a 30 airport network.

Let the market size RPKmax be the sum of all RPK that can be served, which is the demand multiplied
by the distance in each demand bucket. (RPKmax =

∑
((a1,a2),[t1,t2))∈D D((a1,a2),[t1,t2))d(a1,a2)). The mini-

mum RPK can then be chosen as a percentage market share. E.g. if a 30% market share is desired, then
RPKmin = 0.30RPKmax. The network with 5 airports was evaluated in steps of 1% market share (1, 2, 3,
...) whereas all other networks were evaluated in steps of 10% market share (10, 20, 30, ...) as indicated in Tab. 9

# Airports Market Share
5 1, 2, 3, ...
10 10, 20, 30, ...
15 10, 20, 30, ...
20 10, 20, 30, ...
30 10, 20, 30, ...

Table 9: Instances on which the algorithm will be tested

A market share of 100% is not feasible however. This has three reasons: i) The number of flights serving the
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same piece of demand is limited. With a time step of 15 minutes, there is a maximum of 4 flights per hour
from any airport a1 to airport a2. Demand may exceed the number of seats available, even if all 4 flights are
scheduled. There may also be fewer than 4 flights available. Suppose it takes 1 hour to fly from the hub to
airport a1. Then an aircraft can arrive at a1 no sooner than 7AM. Using a TAT of 30 minutes, the earliest
time at which an aircraft can serve demand starting from a1 is 7.30AM. This means that for the demand
buckets b = ((a1, a2), [7AM, 8AM)), there are only 2 flight arcs present in G, one departing at 7.30 AM and one
departing at 7.45 AM. ii) The energy consumption may make it impossible to use a certain flight arc. Expanding
on the previous example. Suppose that upon arrival at airport a1, the aircraft must first charge its batteries
for at least 1 hour before it has enough energy to fly to airport a2. In that case the flight arcs from a1 to a2
departing at 7.30 AM and 7.45 AM are infeasible. This effect becomes more pronounced in larger networks
with more airports. The further away an airport is from the hub, the more likely it is that the aircraft has to
make intermediary stops to recharge the batteries before continuing. One could filter the flight arcs that are
infeasible due to the energy consumption. However, that would make the graph G charger-specific. This means
that if one would change the charging power of all chargers, or even just at one airport, then some arcs may
become feasible again or others may also become infeasible. Therefore, they were not removed from the graph
G. Lastly, iii) There are groups of flight arcs were it is impossible to serve all of them. Suppose there is only
one flight arc (No, i) leading to node i. If there are two different flight arcs (i, j1) and (i, j2), then the aircraft
can only choose to operate at most one of these two. If the aircraft is schedule to fly (i, j2), it is impossible
to schedule another aircraft for (i, j2) because the only arc to reach i is by using the flight arc (No, i), which
is already used by the first aircraft. We therefore run the case studies up to the maximum attainable market
share where a feasible initial solution could be constructed.

6 Case Study Results
The case studies consist of two parts. Firstly, the performance of the algorithms is evaluated in Sec. 6.1. There
the improvements and running time of each step in the algorithm presented in Sec. 4 are compared to that of the
arc based formulation presented in Sec. 3. Secondly, Sec.6.2 analyses a solution in detail. We investigate why
the given schedule looks the way it does. Lastly, in Sec. 6.3 we look for a pattern between different solutions
and what makes up a successful schedule. The algorithms were implemented in Python 3.6 and the Gurobi
9.1 default solver was used to solve the MILP models. The experiments were run on a Toshiba laptop with an
Intel(R) Core(TM) i7-6500U CPU at 2.50GHz and 8 GB of RAM.

6.1 Algorithmic Performance
Let us analyse how the objective value evolves with a growing market share. The full results of all instances
can be found in Appendix D. Here, let us consider the relation between cost and market share on the network
with 5 airports, as visualised in Fig. 11. Costs were minimised for each percentage market share (1%, 2%, 3%,
...). This is a discrete graph where the consecutive data points are connected.

(a) Cost for all market shares (b) Detailed view of 0-30% market share

Figure 11: Cost-market share relation in the network with 5 airports

Several interesting observations can be made. Firstly, the construction heuristic used to create the initial solu-
tion results in clear step increases in cost. These step increases occur each time an aircraft is added to the fleet.
A single aircraft is sufficient up to 5% market share but a second aircraft is needed to serve 6% market share.
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As costs consist of i) a daily ownership cost of e440 and ii) a cost per flight, the step increase will be at least
e440. We observe however that the step increases are roughly 5 times higher than that. That is a result of the
way the initial solution is constructed. Each time an aircraft is added to the fleet, this aircraft is assigned a high
utilisation schedule that maximises RPK for this aircraft. As a result, its schedule includes multiple flights and
thus additional costs, raising the step increases. These high utilisation schedules often overshoot the required
RPK. Consider the initial solution for 6% market share. This initial solution has enough capacity to serve up
to 11% market share and thus remains unchanged until it can no longer meet the required market share. At
12% market share, a third aircraft is added to the fleet. The fleetsize in the initial solution can thus be found
by counting the number of steps. To do that, the discretisation of market shares has to be sufficiently small to
see these steps. Here, market share was discretised in steps of 1%. For the larger networks with more than 5
airports, market share was discretised in steps of 10%. This discretisation is not fine enough and no steps can
be observed. Additionally, the market size of a larger network is also larger, A 5% market share in the 5 airport
network equates to RPKmin = 12, 851 and can be served by 1 aircraft, whereas a 5% market share in the 10
airport network equal RPKmin = 17, 626, which needs two aircraft. Also notice how the step increases become
shorter with an increasing market share. That happens because each time an aircraft is added to the fleet, its
schedule maximizes RPK. As this aircraft imposes new restrictions on the schedule of subsequent aircraft, the
next aircraft will be given a schedule with an RPK that is equal or lower than the previous. At high market
shares, the RPK of additional aircraft is limited by the demand already satisfied by other aircraft. Additional
aircraft may have to perform flights with only a small number of passengers on board.

These steps are still visible in the integer RMP solution, but less pronounced. As noted in Sec. 4.2, the columns
R in the RMP only contain high utilisation paths. As a result, when an aircraft is added to the fleet, this
aircraft can only be assigned a high utilisation schedule, causing these step increases. The reason that these
steps are less pronounced compared to the step increases in the initial solution is that after running column
generation, R contains tens or hundreds of paths such that a more optimal schedule can almost always be found
among those. At a market share of around 50%, the steps in the integer RMP solution start to smooth out.
This happens because i) R contains more paths with increasing market share. At market shares 10%, 50% and
90%, the number of paths |R| = 43, 292 and 688 respectively; and ii) The fleetsize is larger so more paths must
be selected. When more paths must be selected, it is possible to select a set of paths that does not overshoot
the RPKmin by a large amount. The integer RMP solution is therefore more suitable for a large fleet, which
occurs at large market shares.

This issue of overshooting the RPKmin with high utilisation paths was the motivation to develop the Large
Neighborhood Search. Figure 11(b) shows that the LNS is very effective at reducing the size of the steps. There
is still a small inevitable step increase due to the fixed cost of e440 each time an aircraft is added to the fleet.
After this smaller increase follows a roughly linear increase in cost until a subsequent aircraft is needed. This
linear increase is the result of the aircraft performing more and/or longer flights to meet the RPKmin. However,
at market shares above 50%, the improvements of LNS become less noticeable. As mentioned, the larger set of
paths R and larger fleetsize result in an integer RMP solution that is already very good and leaves little room
for the LNS to improve further. The motivation behind LNS becomes less of a problem at these higher market
shares and naturally, LNS leads to smaller improvements.

The lower bound provided by Column Generation proves to be a strong bound at low market shares. Near
the end of the step increases in costs, the objective value of the integer solution, integer RMP solution and
LNS solution get very close to the lower bound, often within a few percentages. To better understand how
good these solutions are, the Cost/RPK is plotted in Fig. 12(a). The steps in cost translate to a sawtooth
pattern in Cost/RPK here. The solutions that are very close to the lower bound are minimise Cost/RPK for
that fleetsize. This confirms the hypothesis upon which the initial solution construction heuristic was built.
Namely that the schedule that minimises Cost/RPK is a high utilisation schedule. We also observe that the
best known integer solution (LNS solution) diverges from the lower bound with increasing market share. That
is because at high market shares, when most of the remaining flights are left with low demand. This causes
the integer solution to become more expensive quickly while the impact on the relaxed solution (lower bound)
is less severe. Suppose all flights in path r have demand for just a single passenger. The linear relaxation can
give a value of 1/s to the related decision variable yr, and thereby receive the benefit of flying this passenger for
only 1/s’th of the cost. The lower bound is thus not severely affected by low demand while the integer solution is.

To verify this hypothesis, we attempted to solve the arc based formulation for the network with 5 airports using
the Gurobi 9.1 default solver on the faculty’s server with 64 cores, 128 threads and 256 GB of RAM. When
the server was unable to solve the arc based formulation to optimality within 1 hour, we saved the best known
solution as well as the lower bound provided by Gurobi. From Fig. 12(b) we see that at 10% market share,
the LNS actually found the global minimum. In the other cases, Gurobi was able to find a solution that was
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a few percentages better than the LNS solution but was unable to solve these cases to optimality. Still, the
lower bound provided by Gurobi was stronger than the one provided by Column Generation and confirms our
hypothesis that when the CG lower bound and LNS solution start diverging, the global optimum is closer to
the LNS solution than the CG lower bound. The LNS solution is thus a very good one.

(a) Cost/RPK for our own methods (b) The objective value from the arc based formulation is closer
to the local minimum from LNS than the CG lower bound

Figure 12: Cost/RPK for discrete market shares in a network with 5 airports

Besides the objective value, we are also interested in the running time. The running times in the networks with
5 airports and 20 airports is plotted in Fig. 13. For visual purposes, the number of datapoints in Fig. 13(a)
was reduced from one every 1% to one every 6%.

(a) Runtime in the 5 airport network (b) Runtime in the 20 airport network

Figure 13: Running time for the different algorithms in the 5 and 20 airport networks

As the heuristic to construct the initial solution performs the same label correcting algorithm for each aircraft
in the fleet, the runtime of this heuristic increases linearly with fleetsize. Note that fleetsize initially increases
linearly with market share but at a certain moment, there is simply not much demand left such that the fleetsize
start growing slighly faster. As discussed in Sec. 4.1, this algorithm is NP hard and thus, runtime increases
exponentially w.r.t. the graph size of G, in terms of number of nodes and arcs |N |, |A|. Luckily, this only takes
a small amount of the total runtime and remains computationally tractable, even in the 30 airports network.

The runtime of the Column Generation increases exponentially w.r.t. market share, caused by a rapidly growing
number of iterations required to to run CG to optimality, where each iteration takes roughly the same time.
Runtime also increases expontentially w.r.t. the size of the graph G because of the pricing subproblem, which is
NP-Hard and is solved using a label correcting algorithm. Next, the integer version of the final RMP is solved
using the Gurobi 9.1 default solver. Usually, this takes only a fraction of the total runtime but on some rare
occasions the optimiser needs much more time, resulting in sudden spikes in the runtime for some market shares.
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Lastly, the runtime of the LNS increases linearly with increasing fleetsize because on each iteration of the LNS,
the same procedure of finding the optimal replacement path, which takes a comparable time for each replace-
ment path, is performed for each aircraft in the fleet. The number of LNS iterations varies only a little bit.
Three or four iterations suffice in most cases. LNS runtime does increase exponentially with increasing size of
the graph G, because finding the replacement path happens by solving an adjusted version of the arc based
formulation, which is known to be NP-Hard.

Only CG scales exponentially with increasing market share. All methods however scale exponentially with
increasing graph size. Whereas in most cases in the 5 airport network could be solved in a matter of a couple
of minutes, this took multiple hours for the 20 airport network. Interestingly, at high market shares, the LNS
leads to very little improvement in the objective value, often less than 1% while it uses the largest part of the
running time. Depending on the time and computational power available, it may not be worth it to execute the
LNS when it is observed that it led to little improvements for market shares just below.

6.2 Detailed Analysis of a Solution
When a potential operator is investigating the options and costs related to offering air transport services using
electric thin-haul aircraft, they can use the methods presented in this paper to construct a graph such as the
one in Fig. 12(a). For each fleetsize, there is a solution with the lowest Cost/RPK. Which fleetsize to choose
depends on the objectives and resources of the operator. E.g., the budget may only allow for the acquisition
of a set number of aircraft, the operator may have a target market share in mind, the Cost/RPK may need to
be below a certain threshold to ensure profitability, etc. Let us consider the case where an operator envisions a
target market share of 30% and analyse the solution in detail. As seen in Fig. 14, the fleetsize for 30% and 31%
market share is equal but the Cost/RPK is lower at 31%. Therefore, the solution at 31% which is indicated by
a star in the figure is the chosen schedule.

Figure 14: The solution indicated by the star is the chosen schedule

The schedule has a Cost of 13.08 cents per RPK. The lower bound lies 4.81% lower at 12.48 cents per RPK. The
13.08 cents can be interpreted as a lower bound on the ticket prices for the operator to be profitable. Suppose a
passenger is flown from Brussels to Paris, which is a 272km flight, this costs the airline e36.6 in direct operating
costs. The ticket price must be higher than e36.6 to cover this. Besides direct operating costs, other expenses
such as overhead or airport fees also have to be added so in reality, the fares will be higher. This schedule uses a
fleet of 6 aircraft. At an estimated sales price of e2M per aircraft, the initial investment in the fleet will be e12M.

The schedule is given in Tab. 10. Let us analyse this schedule in detail.

We observe that the schedule has a strong preference to fly back-and-forth between Brussels and Paris. Table 11
shows that only on three occasions, there is a flight to and from Cologne and only one to and from Amsterdam.
Secondly, we see that all flights are out-and-return flights to the hub at Brussels Airport. Let us analyse why
these patterns exist.
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Aircraft Origin Destination Departure Arrival Distance Passengers
1 Brussels Paris 6:45 8:00 272 km 9
1 Paris Brussels 8:45 10:00 272 km 9
1 Brussels Cologne 10:45 11:45 201 km 8
1 Cologne Brussels 14:00 15:00 201 km 9
1 Brussels Paris 15:45 17:00 272 km 9
1 Paris Brussels 17:45 19:00 272 km 9
2 Brussels Paris 6:00 7:15 272 km 7
2 Paris Brussels 8:00 9:15 272 km 9
2 Brussels Paris 10:15 11:30 272 km 9
2 Paris Brussels 13:15 14:30 272 km 9
2 Brussels Paris 15:15 16:30 272 km 9
2 Paris Brussels 17:30 18:45 272 km 7
3 Brussels Paris 7:15 8:30 272 km 9
3 Paris Brussels 9:15 10:30 272 km 9
3 Brussels Paris 11:30 12:45 272 km 9
3 Paris Brussels 14:00 15:15 272 km 9
3 Brussels Paris 16:15 17:30 272 km 9
3 Paris Brussels 18:45 19:30 272 km 9
4 Brussels Amsterdam 7:00 7:45 171 km 9
4 Amsterdam Brussels 8:15 9:00 171 km 9
4 Brussels Paris 9:45 11:00 272 km 9
4 Paris Brussels 12:00 13:15 272 km 9
4 Brussels Paris 14:30 15:45 272 km 9
4 Paris Brussels 16:45 18:00 272 km 9
5 Brussels Paris 7:00 8:15 272 km 9
5 Paris Brussels 10:15 11:30 272 km 9
5 Brussels Paris 12:15 13:30 272 km 9
5 Paris Brussels 14:30 15:45 272 km 8
5 Brussels Cologne 16:45 17:45 201 km 9
5 Cologne Brussels 18:45 19:15 201 km 7
6 Brussels Cologne 6:00 7:00 201 km 9
6 Cologne Brussels 7:45 8:45 201 km 9
6 Brussels Paris 9:15 10:30 272 km 8
6 Paris Brussels 11:45 13:00 272 km 9
6 Brussels Paris 14:15 15:30 272 km 8
6 Paris Brussels 16:30 17:45 272 km 9

Table 10: Complete Schedule for 31% market share on the 5 airport network

From
To Brussels Paris Cologne Amsterdam Luxemburg

Brussels - 14 3 1 0
Paris 14 - - - -
Cologne 3 - - 0 0
Amsterdam 1 - 0 - -
Luxemburg 0 - 0 - -

Table 11: Distribution of flights for 31% market share on the 5 airport network
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Paris Brussels Cologne Amsterdam Luxemburg
Population 2.148 million 1.209 million 1.061 million 0.822 million 0.614 million

Table 12: The population of the cities in the 5 airport network causes large differences in demand

Firstly, the link between Brussels and Paris has the largest demand and thus, the aircraft can fly at full capacity
more often whereas on other links, there isn’t always enough demand to fill up all seats. The differences in
demand are shown in Fig. 15 and are mainly caused by the population of the cities as shown in Tab. 12.
Throughout the entire day, demand between Brussels and Paris exceeds the number of seats on the aircraft,
which means that one flight per hour can be performed in both directions (Bru-Par and Par-Bru) without leaving
a single seat empty. In the time intervals [07:00 - 09:00) and [15:00-17:00) there is even enough demand for a
second flight at full capacity. The connection with the second highest demand is Brussels-Cologne, but already
here, there is a gap from 10:00 to 14:00 and after 18:00 where there is not enough demand for even just one flight
per hour without leaving any seats empty. Of the 6 flights between Brussels and Cologne, 2 are scheduled within
this time period and must therefore leave 1 and 2 seats empty respectively. Next is the Brussels-Amsterdam
connection. Only between [07:00, 09:00) and [15:00, 17:00) can an aircraft fly at full capacity between these two
cities. The only two flights between Brussels and Amsterdam are therefore scheduled within these times and
don’t leave any seat empty.

(a) (b)

Figure 15: Visualisation of the demand on all connections in the 5 airport network

Secondly, the distance between Brussels and Paris is almost at the maximum flight range of the aircraft. Recall
from Sec. 5.1 that energy consumption of a flight was composed of a fixed amount of energy and a part varying
linearly with distance. As a result of the fixed part, the energy per kilometer decreases with flight distance as
shown in Fig. 16(a). As the cost of a flight are partly based on a per kWh basis, also cost per kilometer decrease
with increasing flight distance as visualised in Fig. 16(b). The solution therefore prefers to schedule flights with
a longer distance. In some cases it may still be wise to include shorter distance flights as well. Longer flights
also have a longer flight time and total energy consumption, so they also take more time to recharge. If more
flights can be scheduled for an aircraft by using shorter flights, the fixed daily ownership cost of e440/aircraft
can be distributed over a larger RPK, resulting in a lower overall cost per RPK. Furthermore, a lack of demand
may also prevent the solution from scheduling longer flights.
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(a) Energy consumption per km (b) Cost per km

Figure 16: Energy and Cost per RPK decrease with flight distance, assuming a constant number of s passengers

Lastly, the hub at Brussels Airport lies at a convenient central location in the network and has access to the
3 connections with the highest demand (Bru-Par, Bru-Col, Bru-Ams) out of 5 connections in total. These
connections are the first to be exploited when a market share of only 31% is required. Note that the links are
non-directional, meaning that demand, cost and energy consumption are identical for a flight from a1 to a2 and
from a2 to a1. If the schedule includes a flight from Brussels to Paris for example, then the return flight is also
worth considering. However, when a larger market share is required, at some point the demand to and from
Brussels will be largely exploited and it may be necessary to include other flights such as Paris-Luxemburg,
breaking the out-and-return pattern.

Each aircraft is assigned six flights to get the most out of each one. As a result, 6 peaks can be seen in the
number of simultaneous flights in Fig. 17. Note that not all six aircraft start flying immediately. As aircraft
#1 and #2 occupy the demand from Brussels to Paris in the first hour [06.00, 07.00), aircraft #3 and #5 stay
on the ground until 07.15 and 07.00 respectively to serve demand on the same route but in the next hour.
By the time all aircraft took-off for their first flight of the day at 07.00, two aircraft already landed (#2 at
07.15, #6 at 07.00). Hence, the first peak in simultaneous flights does not exceed 4 at this stage. Recall that
demand varied throughout the day but even at the lowest point, between 11.00 and 13.00, there is enough
demand to schedule 4 flights without empty seats, both ways between Brussels and Paris during each hour. The
schedule in Tab. 10 shows that indeed 4 flights are scheduled as such. It makes more sense to schedule as many
flights per aircraft as possible instead of waiting on the ground to avoid the off-peak hours. As a result, the vari-
ation in demand throughout the day is not really reflected in number of simultaneous flights throughout the day.

Also shown in Fig. 17 is the number of chargers in use at Brussels. Throughout the day, at most two chargers
are in use simultaneously. Near the end of the day the number of chargers peaks to 5. However, as the aircraft
have all night to recharge, two chargers would actually suffice. Next to the two chargers at Brussels, there must
also be two charger at Paris, and one at Amsterdam and Cologne. This makes 6 chargers in total to keep this
fleet of 6 aircraft airborne.

6.3 Comparison of Multiple Solutions
Whereas the previous section analysed the solution for 31% market share in detail, this sections compares the
solutions for the market shares indicated in Fig. 18 and looks for a pattern between different solutions.

In Sec. 6.2, we learned that at 31% market share, flights between Paris and Brussels make up the bulk of the
schedule because of the long distance between them and high demand. The distribution of flights when the
market share is increased to 49% is shown in Tab. 13. The additional market share is mainly achieved by
adding flights between Brussels-Cologne and Brussels-Amsterdam, the two pairs with the highest demand after
Brussels-Paris. There is also a flight from Amsterdam to Cologne, which has the second largest flight distance
after Brussels-Paris. Lasty, one out-and-return flight between Brussels and Luxemburg is scheduled.

In Tab. 14 and Tab. 15, the market share is increased to 63% and 81% respectively. More flights are added on
the Brussels-Amsterdam and Brussels-Cologne connections, which become largely saturated. At 81% market
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Figure 17: Number of flights occurring simultaneously and number of chargers in use at Brussels throughout
the day

Figure 18: The solutions of 49%, 63%, 81% and 94% market share are compared in this Section

share, flights are also scheduled between Cologne and Luxemburg. Even though the short flight distance and
low demand between these two cities makes it unattractive to schedule flights between them, they are necessary
to achieve the desired market share and can no longer be avoided. The higher cost per km related to the
short flight distance is amplified by the lack of demand. The cost per km between Luxemburg and Cologne is
e0.87/km as seen in Fig. 16(b). If the aircraft could fly at full capacity, with 9 passengers on board, this would
result in a Cost/RPK of 9.7 cents on this flight. However, demand here peaks at 6 as shown in Fig. 15(b). As
the cost per km can only be distributed over 6 passengers, the cost per RPK increases by 49% to 14.5 cents.

When the market share is increased, the schedule is forced to include more and more flight with a lower demand.
This can be seen in the average load factor of the schedule. The load factor of a flight is the percentage of seats
that is occupied. The load factor of a schedule is the average load factor over all flights in the schedule. The
inclusion of of low demand flights results in a decreasing average load factor, as shown in Fig. 19.

Lastly, Tab. 16 shows the distribution of flights at the maximum feasible market share of 94%. Predictably,
the largest number of flights is found where most demand is, between Brussels and Paris. The lowest number
of flights is found between Cologne-Luxemburg and Cologne-Amsterdam. An aircraft first needs to fly from
the hub (Brussels) to Amsterdam, Cologne or Luxemburg before a flight between them can be scheduled. The
window to schedule these flights is therefore shorter and that is reflected in the distribution of flights.
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From
To Brussels Paris Cologne Amsterdam Luxemburg

Brussels - 16 8 7 1
Paris 16 - - - -
Cologne 9 - - 0 0
Amsterdam 6 - 1 - -
Luxemburg 1 - 0 - -

Table 13: Distribution of flights for 49% market share on the 5 airport network

From
To Brussels Paris Cologne Amsterdam Luxemburg

Brussels - 18 11 9 3
Paris 18 - - - -
Cologne 12 - - 3 0
Amsterdam 8 - 4 - -
Luxemburg 3 - 0 - -

Table 14: Distribution of flights for 63% market share on the 5 airport network

Figure 19: The average load factor of the schedule decreases with increasing market share

From
To Brussels Paris Cologne Amsterdam Luxemburg

Brussels - 21 18 17 16
Paris 21 - - - -
Cologne 19 - - 10 10
Amsterdam 16 - 11 - -
Luxemburg 16 - 10 - -

Table 16: Distribution of flights for 94% market share on the 5 airport network

From
To Brussels Paris Cologne Amsterdam Luxemburg

Brussels - 19 13 11 9
Paris 19 - - - -
Cologne 13 - - 8 4
Amsterdam 10 - 9 - -
Luxemburg 10 - 3 - -

Table 15: Distribution of flights for 81% market share on the 5 airport network
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To achieve the minimum RPK, the algorithm tends to schedule back-and-forth flights between airports with
a long distance and high demand. These flights are the first to be scheduled until they are largely saturated.
When this happens and the market share is increased further, the schedule will start planning flights with a
shorter distance and/or lower demand.

7 Conclusions and Recommendations
In this paper, we addressed a scheduling problem, aimed at electric thin-haul aircraft. The problem was to
determine a schedule that minimises cost under a minimum RPK (Revenue-Passenger Kilometer) constraint,
which can also be interpreted as a minimum market share. By repeatedly solving this problem for various
RPKs, a solution that minimises cost per RPK can be found. Because the problem is NP-hard and could not be
solved to optimality using the MILP (Mixed Integer Linear Programming) arc based formulation, we developed
our own algorithm. The algorithm was implemented and tested on a range of networks, varying from 5 airports
to 30 airports for a scheduling horizon of one day.

The algorithm started by heuristically minimising the fleetsize to satisfy the minimum RPK constraint. A
lower bound to the objective value was obtained by solving the linear relaxation of the path based formulation
through CG (Column Generation). Though the integer version of the path based formulation is equivalent to
that of the arc based formulation, its linear relaxation provides a much stronger lower bound. Next, we improve
on the initial solution by solving the integer version of the final RMP (Restricted Master Problem). Lastly,
as Branch-and-Price proved unsuccessful to find the global optimum, a LNS (Large Neighborhood Search) was
designed to improve on the best-known integer solution until a local optimum.

The algorithm proved to be successful in finding a very good local optimum. The case studies revealed that the
Cost per RPK is not a smooth function, rather showing a sawtooth pattern. Each time an aircraft was added to
the fleet to meet the desired market share, cost per RPK shoot up and gradually decrease when the minimum
market share is increased further until another additional aircraft is required. For a given fleetsize, the lowest
Cost/RPK is obtained when the fleet is operating near full capacity.
The schedule has a strong preference for flights with i) high demand; and ii) long distance. When demand
is large enough, no seats must be left empty and a larger RPK is achieved for the same cost. Long distance
flights are preferred because the energy and cost per kilometer is lower for long distance flights. To achieve the
minimum RPK, the algorithm tends to schedule back-and-forth flights between airports with a long distance
and high demand. These flights are the first to be scheduled until they are largely saturated. When this hap-
pens and the market share is increased further, the schedule will start planning flights with a shorter distance
and/or lower demand. The general trend in the sawtooth pattern is therefore an increasing Cost per RPK with
increasing market share.

The contributions of this paper are as follows. To the best of our knowledge, this is the first paper that considers
cost per RPK as an evaluation criterion in an E-VSP (Electric-Vehicle Scheduling Problem) and is the first pa-
per to apply operations research to electric thin-haul aircraft. We proposed a new variation of the E-VSP where
the set of service trips is not known in advance but rather had a minimum RPK constraint. We then propose
a method to solve the problem, which proved successful in finding a good local minimum. The methods and
insights developed in this paper will support future thin-haul airline operators in deciding how many aircraft
to acquire and provide a schedule that minimises cost per RPK.

Further research could focus on the following extensions to the problem. i) The multi-depot variation. In this
paper, there was only 1 hub. It may however be interesting to have multiple hubs where the aircraft can stay
overnight. This variation would provide access to more flights and the flights around the hub would be less
congested at high market shares; ii) Adding a charger constraint. In this paper, the number of chargers required
at any airport is assumed to be present. In reality, the number of chargers will be limited. This could be
achieved by adding variables to track whether an aircraft is charging on a ground arc or not, and adding a
constraint to limit the number of aircraft charging simultaneously on the same ground arc.; iii) A battery swap
variation. Instead of using chargers, another variation may use battery swapping or a combination of charging
and swapping.; and lastly iv) Include variable electricity prices. The cost of electricity may vary drastically by
geographic location, time of day, peak charging power and total charging volume. A variation of the problem
where electricity costs are incurred on the ground arcs instead of on flight arcs may allow to include variations
based on location and time of day. An additional variable will be required to track whether an aircraft on
the ground is in fact charging, or just waiting. This thesis took the first steps in the field of electric thin-haul
airline operations. With the current plethora of opportunities for further development, it promises to remain a
fascinating field for the upcoming years.
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1 Introduction

Commercial aviation must become more sustainable. Aircraft are currently emitting 4% of all green-
house gasses and the public opinion is becoming more opposed to flying. Electric aircraft could
be part of the solution. Recent developments in battery and charging technology have been very
promising. In operations research, a lot of work has been dedicated to Urban Air Mobility (UAM).
In this concept, an autonomous Vertical Take-Off and Landing (VTOL) aircraft provides on-demand
mobility. Though technology is developing at a high pace, there are many hurdles to this concept in
regulation, certification and public acceptance. Meanwhile electric aircraft with up to 10 seats are
already in the flight testing phase. A number of economic feasibility studies conclude that electric
aircraft provide opportunities for huge costs savings for commuter airlines [8] [53], cite46. Yet there
is very little research dedicated to their operations, which is vastly different from fossil fuel powered
aircraft.

Some experts still consider electric propulsion infeasible for commercial aviation and advise re-
search to focus on electric regional airlines with a potential market introduction 20 years from now.
[17] consider this as a misconception and states the importance of having an agile and adaptable re-
search and market plan, starting with smaller applications. Current commercial aviation is receiving
most attention because that is where the bulk of the revenue is but there is a poor fit with current
technology levels. Meanwhile, electric propulsion is already common place for gliders equipped
with so called self-starter motors and Pipistrel and Siemens are already flying electric ultralights.
Electric aircraft are slowly entering general aviation. The logical next step is electric aircraft with a
seating capacity of 6 to 10 people. MagniX started test flying an electrified Cessna Caravan in June
2020, Eviation also already has a prototype of their electric aircraft and Skylax intends to have one
next year. This type of aircraft is entering the ballpark of Thin-Haul commuter airlines. This type
of airline provides scheduled services over small distances ranging from just ten to a couple hun-
dreds of kilometers in small aircraft with up to 10 seats. Due to their high costs of 0.40 AC/Revenue
Passenger Kilometer (RPK) compared to an airline’s 0.11 AC/RPK, commuter airlines are only found
where there are no alternatives for fast transport such as the Hawaiian islands or Alaska. Some of
these operators are already planning to electrify their fleets and yet, very little research is devoted
to operating an electric fleet. As some research has shown that electric aircraft are able to substan-
tially reduce costs, more opportunities for commuter airline services may appear. The urgency of
operations research on electric thin-haul commuter aircraft is clear.

This literature study reviews the state-of-the-art in operations research of electric aircraft and closely
related fields. Firstly, this study will look which optimization models have been developed in the
past. Though there is very little research on electric commuter aircraft, there is a lot of research
on two very closely related topics. i) Electric-Vehicle Routing Problem (E-VRP) research applies the
famous Vehicle Routing Problem (VRP) to electric vehicles, often representing cars or busses. A lot
of progress has been made on E-VRP research, making the material useful to apply in more specific
topics; ii) Electric-Vehicle Scheduling Problem (E-VSP), mostly applied to electric bus scheduling
as electric busses are becoming a viable alternative to fossil fuel powered busses, This area of re-
search attempts to develop efficient and useful optimisation models to answer questions around
fleet sizing, charging infrastructure and scheduling.

Each of the optimization models need some input to start from. Firstly, they require an estimation
of demand. Previous research in E-VRP and E-VSP usually assume a predefined set of service trips
the fleet must conduct. That is realistic where an operator intends to transition an existing service
to electric vehicles. A number of variation on this problem exist. One such example is the use of
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time-windows for the service trips.

Equally important are the aircraft model parameters. These can be obtained from a comparison
and critical assessment of the claims of the companies currently working on an electric aircraft. A
number of companies are showing very promising results. Nevertheless, their claims are likely to
change when technology matures, either because they overestimated themselves or as technology
advances. Therefore an extensive sensitivity analysis is required to draw valid and general conclu-
sions. The battery and charging model are also paramount. Past research has often assumed the
battery State-of-Charge to decrease linearly in operations and increase linearly up until a certain
threshold while charging. More recent papers sometimes treat the charging process as a non-linear
process or bi-linear process to make the model more realistic. A small number of feasibility stud-
ies of electric thin-haul commuter airlines provide a baseline to estimate operational costs. Lastly,
emissions are important to consider because these also give electric aircraft an advantage over gas
powered aircraft. Though electric aircraft produce no local emissions, the production of electric-
ity does. Taking this into account, the effective CO2 emissions of electric aircraft are over an order
of magnitude smaller than for fuel powered aircraft and in the same range as gasoline powered
cars.

In the remainder of this literature study, the Electric-Vehicle Routing Problem (E-VRP) and Electric-
Vehicle Scheduling Problem (E-VSP) will be discussed in Section 2.1 and Section 2.2 respectively.
The developments in electric aircraft and batteries will be discussed in Section 3.1 and Section 3.2
respectively. Section 3.3 presents the current literature on electric thin-haul aviation. Lastly, con-
siderations towards emissions are presented in Section 3.4.



2 Optimisation Models

The research in the field of electric aircraft scheduling is very limited. There exist extensive amounts
of research in traditional airline operations, which is very different to operating small electric air-
craft. Recently, UAM has become a very active field of research. These assume on-demand mobility
using VTOL aircraft and is thus also very different from operating a scheduled electric aircraft fleet.
Two fields of operations research are deemed most relevant. Firstly, the E-VRP considers the clas-
sical VRP for an electric vehicle. A set of customer nodes is represented on a graph. The problem
consists in finding an optimal set of routes such that each customer node is visited exactly once.
This field of research is discussed in Section 2.1. Note that the E-VRP is known to be NP-Hard.
Therefore, most research uses heuristics to efficiently solve the instances. This literature study will
focus on the Mixed Integer Linear Programming (MILP) formulations and considerations given to
operations of a fleet of electric vehicles. This study will not go into the heuristic methods that have
been developed to solve real life instances of the E-VRP in detail.

A second relevant field of research considers the E-VSP and is discussed in Section 2.2. Instead of a
set of customer nodes as is the case in the VRP, the Vehicle Scheduling Problem (VSP) is concerned
with a set of service trips. Each service trip has a start and end location and duration. The problem is
to schedule a fleet of electric vehicles such that each service trip is performed under the given con-
straints. In the single-depot problem, all vehicles start and end their service from the same vehicle
depot. A variation to this problem is the multi-depot problem. The single-depot VSP is Polynomial
bound (O(N 3)) but multi-depot VSP and the E-VSP are NP-Hard [60]. Some case studies apply the E-
VSP to an intra- or inter-city bus network. The problem is usually represented on a graph. Obviously
a bus is very different from an aircraft but many analogies can be drawn, making the operations re-
search very relevant for the scheduling of an electric aircraft. Firstly, the charging infrastructure and
technology is practically identical. The same issues arise for electric aircraft as for electric busses
such as long charging time, expensive charging infrastructure, etc. Both are carrying a relatively
small amount of passengers on scheduled trips where demand varies drastically throughout the
day. Both are more expensive in acquisition and have a lower performance than their fossil fuel
powered equivalents, which is offset by lower operational and maintenance costs.

2.1. The Electric-Vehicle Routing Problem (E-VRP)
The first paper discussing alternative vehicles for vehicle routing was [52]. The author describes the
Green Vehicle Routing Problem (G-VRP) to help organisations overcome the difficulties of operating
vehicles using alternative power sources of limited driving range and limited refuelling infrastruc-
ture. The problem is represented on a graph G(V ,E). The set of vertices or nodes V consists of
the set of customer nodes, refuelling station nodes and one depot node. Each node can only be
visited once. To allow for multiple visits to the refuelling stations, the author decided to create the
augmented graph G ′(V ′,E ′) which contains a number of copies of the refuelling station nodes. The
objective is to minimize the total travelled distance, as shown in Equation 2.1.

mi n
∑
i , j

di j xi j ∀i , j ∈V ′, i 6= j (2.1)

Note that this paper is not considering electric vehicles. However, as the service time required at
each refuelling station is assumed to be 15 minutes, this can be interpreted as fully changing, which
takes 15 minutes to charge. That may be a very optimistic charging assumption but the important

7
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thing is that this is a variable that can be changed in the model. The distance travelled is minimized
under a maximum time constraint using a MILP optimisation model. As the VRP is NP-Hard and
the VRP is a special case of the G-VRP, the G-VRP is also NP-Hard, meaning that the exact optimum
cannot be found in polynomial time. As the instance size increases, the computation time will in-
crease exponentially, making it impossible to efficiently solve large instances exactly. Therefore, the
author solves the optimisation using a combination of heuristic methods. Numerical experiments
have shown that the heuristics perform well compared to exact methods for small instances and
that they can be used to solve large instances as well. This paper provides a solid foundation for fur-
ther research. Recommendations include expanding the model with additional constraints to make
it more relevant in practice and developing better heuristic approaches.

2.1.1. Time-Windows, Limited Capacity & Partial Recharge
[2] introduces the electric vehicle routing problem with time windows and recharging stations,
which builds on the work of [52] by including customer time-windows and limited capacity. Cus-
tomer time windows and capacity are important constraint for delivery services in practice. The
authors present a hybrid heuristic method to solve the problem using a combination of a variable
neighbourhood search algorithm and tabu search. Constraint 2.2 is added to ensure the correct
changing time until a full charge upon visit to a charging station, where τi is the time of arrival at
node i , g the recharge rate, Q the battery capacity and yi the remaining battery capacity at node
i . This constraint ensures that the battery is fully charged. Constraint 2.3 ensures that each cus-
tomer is visited within its time window. Lastly, Constraints 2.4 and 2.5 ensure that the capacity at
the start of a tour is within the limits and that it never falls below zero during the tour, where ui is
the remaining cargo at node i and C the total capacity of the vehicle.

τi + (ti j xi j )+ g (Q − yi )− (l0 + gQ)(1−xi j ) ≤ τi ∀i ∈ F ′, j ∈V ′
N+1, i 6= j (2.2)

e j ≤ τi ≤ l j ∀ j ∈V ′ (2.3)

0 ≤ u j ≤ ui −qi xi j +C (1−xi j ) ∀i ∈V ′
0, j ∈V ′

N+1, i 6= j (2.4)

0 ≤ u0 ≤C (2.5)

[20] also expands on the work of [52] but in a different way by introducing the Green Vehicle Routing
Problem with Multiple Technologies and Partial Recharges. The contributions of this paper are the
inclusion of partial recharges and minimisation of costs. Partial charging allows for a more optimal
solution by expanding the feasible space. This paper minimises costs instead of distance travelled.
In reality, the costs will be a decisive factor for companies to decide on the electrification of their
vehicle fleet. In doing so, the authors made a very valuable contribution towards operationalizing
electric fleets. The paper also considered multiple charging technologies. The simplest technologies
are the cheapest and take more time to charge. They discovered that no technology outperformed
the others in all cases. Firstly, the objective function is changed to Equation 2.6 to minimize costs in-
stead of distance. Because costs depend on multiple components, the objective function becomes
more complex. The first term represents the cost of overnight charging at the depot, the second
term the cost of charging en-route and the third term the fixed to travel a link. The cost of electricity
is represented by γ, gv is the amount charged at the depot and Z j t is the amount charged at charg-
ing stations using technology t . Because this is a decision variable, partial charges are now possible
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using multiple technologies. Constraint 2.7 ensures that a partial recharge is allowed and that multi-
ple charging technologies can be considered. Constraint 2.2 to ensure the correct charging time also
has to adapt accordingly. A numerical study revealed that of the heuristic methods developed, the
local exhaustive search heuristic performed best for instances with less than 200 customers while a
simulated annealing algorithm worked best for larger instances.

mi n
∑

γgv +
∑∑

γt z j t +θ
∑

xi j (2.6)

yL
j = y A

j + ∑
t∈T j

zi t ∀ j ∈ F0 (2.7)

[24] presents a similar model with time windows and partial charging using multiple technologies.
Their contribution was the development of a math-heuristic method to find the exact solution. In a
first stage, an Adaptive Large Neighbourhood Search is used to find a good solution. Starting from
this good solution, a commercial solver can be used to get to the exact solution.

In [50], the authors. present 4 variations of the model presented in [52]; i) A single, full recharge
per route; ii) Multiple full charges per route; iii) A single partial recharge per route and iv) Multi-
ple partial recharges per route. Additionally, instead of heuristic methods, the paper presents exact
branch-price-and-cut algorithms to get to an exact solution. The study reveals that allowing multi-
ple, partial recharges allows to reduce costs up to 5% at the cost of increased computational com-
plexity. Essentially, the variations of the model that this paper discusses don’t reveal anything new.
The main contribution is in branch-price-and-cut methods to solve the problem exactly.

[38] proposes a variation on [2], extended to allow for partial recharge. The authors propose an
adaptive large neighbourhood search algorithm to solve the instances. The average improvement
by allowing partial recharge was roughly 2.9% over a full recharge. This improvement comes at the
cost of an increase in computation time by 10% to 25% depending on the instance.

In all of the previous papers, the model is based on an augmented graph which includes a number
of copies of recharging nodes to allow for multiple visits. This introduces additional binary variables
to an already large problem. To avoid this, [11] proposes a different method. The authors do this
by adding 3-point binary variables zi ,r, j to indicate when a vehicle travels from depot or customer
node i to depot or customer node j via recharging node r . These variables replace the variables xi ,r

and xr,i . As a result, the time and energy level variables only exist for the depot and customer nodes
and not for the recharging nodes anymore as the value of the time and energy level after passing
by a recharge station can immediately be calculated for at the next customer node. In this model,
charging nodes are no longer required. This method is known as the arc-duplication method. There
are two arcs between each pair of nodes, one direct arc and one recharging arc. The recharging
arc passes by the closest recharging station. [24] compares the computational effort of the node
duplicating and arc duplicating method and found that the less common arc-duplication method
outperforms node-duplication.

[40] further improves on this formulation. The author achieves this by developing a nonlinear for-
mulation that is linearized using the Reformulation-Linearization Technique. The paper subse-
quently proves that their newly proposed formulation can be solved using commercially available
solvers and consistently outperforms the state-of-the-art branch-and-cut methods as previously
proposed in [50] and [11]. [46] proposes a three-stage heuristic method but the method does not
appear to be very competitive.

2.1.2. Battery Swap
[3] is the first paper to explicitly model battery swap instead of battery charging, although the orig-
inal G-VRP from [52] used a fixed service time, which realistically models a battery swap. When
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a vehicle reaches a service station, it can choose to charge the batteries or to perform a battery
swap, in which case the vehicle receives a new, fully charged battery. A battery swap takes a con-
stant amount of time and assumes a fixed cost. This process is much quicker than fully charging an
empty battery and as a result, the number of vehicles can be reduced. Electric vehicles are very ex-
pensive so a reduced fleet size is a huge advantage. However, additional batteries must be acquired
and batteries happen to be the most expensive part of an electric vehicle. The mathematical model
is almost identical to the model that only allows for a full recharge. The time to charge is replaced
by a constant swap time and a fixed cost per battery swap is assumed if the model is optimizing for
costs.

2.1.3. Other Variations
[23] proposes a variant of the E-VRPTW by allowing satellite customers. The idea is that while a ve-
hicle is charging, once customer can be visited using an alternative mode of transport. The driver
could for example walk a few hundred meter to deliver a package. To model the alternative mode of
transport, a certain distance may be covered during the charging period at a given speed ratio.This
allows to reduce the distance travelled by the vehicles and makes use of the idle time while charg-
ing.

2.1.4. Final Remarks
The original G-VRP [52] provided a very good baseline for future work in Electric Vehicle Routing. A
number of extensions were proposed to make the model more practically relevant and a number of
solution techniques have been developed. Table 2.1 summarises the current literature concerning
the E-VRP. The fourth column denotes whether the servicing is modelled using a constant servicing
time (C), a partial recharge (RP) or a full recharge (FR). The problem is NP-Hard and a range of
heuristic methods were proposed to solve real life instances. Further work in this field is may be to
study different extensions to the problem that could be relevant in practice while further improving
on the methods to solve the problem to efficiently handle larger instances.

Paper Objective Time Windows Service #Customers # Vehicles Exact
[52] Distance - C 500 80 -
[2] Distance + FR 500 80 -
[20] Operational Cost - PR 500 80 -
[24] Operational Costs + PR 50 ? +
[50] Operational Cost + PR 100 15 +
[38] Distance + PR 100 15 -
[40] Distance - C 20 10 +
[11] Distance + C 20 10 +
[3] Total Cost + C/FR 100 15 -
[23] Charging Time + PR 100 15 -

Table 2.1: Summary of E-VRP research papers

2.2. The Electric-Vehicle Scheduling Problem (E-VSP)
The traditional Vehicle Scheduling Problem (VSP) is a well known problem. The problem consists of
designing an optimal schedule for a fleet of vehicles such that a set of pre-determined service trips
is performed at a minimal cost. The first papers found in literature that address the scheduling of
electric vehicles are [28] and [29]. After that, this field of research has been extremely active.

[28] and [29] propose an Electric Vehicle (EV) scheduling model using either battery charging or
battery swap and a vehicle scheduling model with a maximum distance constraint. Both models
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are NP-hard. A column-generation algorithm was developed to solve the instances. The first model
is referred to as EV scheduling with battery renewal and is represented on a graph as shown in Figure
2.1. This may imply charging or battery swap.

Figure 2.1: Graph representation of the model for Electric Vehicle scheduling with battery renewal
[28]

The graph consists of an origin and destination depot, the set of service trip nodes S and set of time-
expanded station nodes T . Each service trip is characterised by a fixed start and end time. Each
station is represented by a number of nodes called time-expanded station nodes. Because vehicles
may arrive at the station nodes at any time, they are time-discretised and a node exists for each time
step, The set of arcs A define the possible routes the busses can take. If a route is infeasible, for
example, trip a ends at t=5 and trip b starts at t=4, no arc exists connecting the two. A maximum
waiting time is used to limit the number of arcs to the station nodes.

The objective is to minimize the operational costs while executing each service trip. The costs are a
combination of distance related costs, cost for waiting time, service costs at battery stations and a
daily maintenance cost collected upon arrival at the destination depot. All costs can be assigned to
the arcs and are calculated beforehand. For convenience, the distance of a service trip is included in
the distance of the arc going to that service trip. For example, if the distance from node A to node B
is 3 and the service trip at B has a distance of 1, then the arc from A to B has a distance of 4. This has
no effect on the outcome of the minimisation because each service trip must be performed exactly
once. The objective function is given in Equation 2.8. The binary decision variable xi j is 1 if a bus is
assigned to node j directly after visiting node i .

mi n
∑

(i , j )∈A
ci , j xi , j (2.8)

Constraints 2.9 computes the distance that a vehicle has already accumulated at node j . This is the
combination of the distance accumulated at note i and the distance from i to j . Constraint 2.10
resets the accumulated distance to zero at the start depot or at a service station. Lastly, Constraint
2.11 ensures that the accumulated distance plus the distance to a service station does not exceed
the vehicle’s range.

g j =
∑
j∈A

(gi +di j )xi j ∀ j ∈ S (2.9)

gi = 0 ∀i ∈ T ∪o (2.10)

(gi +di t )xi t ≤ D ∀t ∈ T ∪d , (i , t ) ∈ A (2.11)
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Using a fixed service time at the service stations is a good representation of battery swap or refueling.
Battery charging on the other hand can be variable in duration based on how much energy is left
in the batteries and how much the vehicle should be recharged. A conservative estimation would
be to use the time to fully charge a completely depleted battery. This yields a sub-optimal solution
because too much time would be spent at the service stations. The second model discussed in [28]
is the same but without the service nodes. That means that there is no possibility of recharging or
swapping a battery along the way.

The optimisation is solved using a Branch-and-Price for small scale instances and a column-generation
based heuristic algorithm for large instances. Branch-and-Price works by applying Branch-and-
Bound to the original problem and solving the problem at each node in the branching tree using
Column-Generation. Branch-and-Bound starts by fixing one binary variable. This adds two nodes
in the branching tree, where the value of the variable is either 1 or 0. For each node in the branching
tree, the linear relaxation of the path-based formulation of the problem is solved using Column-
Generation. If the binary variables in the relaxed solution are still binary, the solution is feasible.
If this is not the case, the relaxed solution gives a lower bound. If the lower bound of a branch is
higher then the best known feasible solution, that branch is fathomed and no longer considered. In
the path based formulation, a route is defined as a sequence of service trips and charging events. To
problem consists in selecting an optimal set of routes such that each service trip is served at minimal
cost. Because the number of possible routes grows exponentially, the Restricted Master Problem
(RMP) starts with a small subset of all possible routes. Once an optimal set is selected, the pricing
problem is solved to identify arcs with a negative reduced cost. When the reduced costs of the arcs
is known, a dynamic programming algorithm is able to extract the routes with the minimal reduced
cost. These are then added to the RMP and the problem is solved again until no columns (routes)
with a negative reduced cost remain. The optimal solution of the relaxed problem is then found and
the branching and bounding resumes. The Branch-and-Price method works in case of a fixed ser-
vice time or full recharge. If partial recharge is allowed, the number of routes is infinite and column
generation is no longer possible. One way to get around this is to use discretised partial charging
but also that drastically increases the number of possible routes for column generation.

The author of [60] defines 2 different models. Though using a slightly different formulation, the first
model is equivalent to the ones from [28] and [29]. The cost minimizing objective function consists
of a fixed cost per vehicle and a cost per arc. The fixed cost per vehicle was previously described as
a daily maintenance cost. This model also assumes linear charging. The difference in formulation
is that no additional nodes exist for the chargers or battery swap stations. Instead, the waiting time,
service time and change in battery level are included in the arc. This makes the model simpler but
does not allow to constrain capacity of the service stations. The second model takes into account
nonlinear charging and a variable electricity price throughout the day. To include the variable price,
an arc variable is added that says how much energy was charged on that arc. The electricity costs
are no longer based on the electricity consumed per arc but on the electricity charged per arc. This
way, the cost can vary throughout the day. To model the nonlinear charging behaviour, a set of
nodes is created for each trip that represent the combination of a trip and SoC level as depicted in
Figure 2.2. A benefit of this method is that it also allows for partial charging but only in discrete
steps. The discretisation causes the model size to grow significantly, especially as the discretisation
step decreases. Only one of the trip nodes must be visited so the constraint forcing each trip to be
executed must change accordingly. Two column-generation algorithms were proposed to solve real
life instances.

Interestingly, both models produced very comparable results. Therefore, linear charging can be the
model of choice if uncertainties are large. In that case, it might not make sense to try to present a
really detailed model because other uncertainties are larger while linear charging is able to capture
the general behaviour.
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Figure 2.2: Node set for a discretized SoC per trip

[27] attempts to integrate the planning of charger infrastructure and scheduling of electric busses to
achieve a global optimum. This is particularly useful for operators where no charging infrastructure
is present and must therefore also be provided by the operator. The model is applied to an existing
bus network in Davis, California. To incorporate the infrastructure planning, a number of candi-
date stations were identified beforehand. Each candidate station has a finite number of candidate
chargers. The binary variables Znk assumes a value of 1 if the k’th charger at station n is used and 0
if it is not used. The binary variable Z ′

n indicates if a station is used and equals 1 if any of its charg-
ers are used. Constraint 2.12 ensures the correct value for each candidate station n, where M is a
sufficiently large positive number. If there is any nonzero Y nk

i t , a bus coming from trip i assigned to
charger k of station n, than Znk must be one. Similarly, Constraint 2.13 ensures that Z ′

n assumes a
value of 1 if any of its chargers are used.

∑
Y nk

i t ≤ M Znk ∀k ∈ K ,n ∈ N (2.12)

Kn∑
k

Znk ≤ M Z ′
n ∀n ∈ N (2.13)

The objective function becomes the minimization of the annual electric bus recharging system op-
erating costs. This now also includes installation and maintenance costs per charging station and
per charger on top of the vehicle and electricity costs as discussed in previous papers. [58] also con-
siders the total cost of ownership to combine scheduling and infrastructure planning. They take it
one step further by considering two distinct bus types.

Intercity bus transport is different from urban transit bus transport. In urban transit, passengers
usually pick a line and busses are scheduled with a high frequency. For intercity busses, passengers
choose a specific scheduled service beforehand based on a number of factors including time-of-
day, trip duration and service level. This way, intercity bus operations closely resemble scheduled
commuter airline operations. [34] recognizes the interaction between the schedule and demand.
His model determines which service trips to make, starting from a dynamic demand pattern on a
single bus corridor for a non-electric bus. A corridor is a sequence of stations which a bus may
choose to serve. Di j kl represents the demand between stations i and j for a bus leaving in time-
window k with trip duration l . The profit is maximised by choosing which stations to include in the
bus line. The profits consist of revenues minus fixed and variable costs. The novelty of this paper is
using dynamic demand as an input. Whereas previous scheduling papers used a predefined set of
service trips, determining which trips to make is decided based on the input. This makes the model
very useful in a context where EVs are offering a new service instead of replacing an existing service.
In case of a new service, determining which service trips to make should be part of the problem.
The instances are solved using a Branch-and-Cut algorithm.
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[55] is the first and so far only research paper to apply Deficit Function (DF) theory to solve the E-
VSP for battery electric transit vehicles. The DF and related Surplus Function (SF) are determined
based on a given set of service trips. It is assumed that all service trips start and end at a terminal and
chargers can be installed at the terminals. From DF theory, a lower bound on the required number
of vehicles and an upper bound on the number of chargers at each terminal can be determined.
With some additional considerations, a Pareto-front is constructed relating the required number of
vehicles with the accompanying required number of chargers.

In real life applications, it is possible that multiple vehicle types are used. [56] Attempts to solve
the E-VSP for multiple vehicle types. The objective is to minimize the total annual scheduling costs.
To solve the Multi-Deport VSP with different vehicle types, [22] models the vehicle flow on a Time-
Space-Energy (TSE) network and passenger flow on a Time-Space (TS) network.

The only paper that considers the E-VSP for aircraft is [41]. She optimises operational costs, which
are a combination of aircraft and battery acquisition costs and charging costs. The aircraft under
consideration is a conceptual electric regional aircraft. The parameters are based on a Class I esti-
mation using the Embraer E175 as a starting point. Both battery swap and fast charging are allowed.
In a first stage, a fixed cost per battery swap is assumed to optimise the scheduling. In a second
stage, the number of batteries for battery swapping and scheduling the charging of swappable bat-
teries is optimised. The author found that during off-peak hours, fast charging is the preferred op-
tion because this is cheaper than battery swaps. During peak hours, battery swaps are preferred
because they prevent the fleet size to grow to satisfy the peak demand, resulting in a lower overall
cost.

2.2.1. Robust Scheduling
Whereas the previously discussed papers assume a deterministic network, in reality trip times and
energy consumption are affected by road and traffic conditions. To increase the robustness of the
schedule, [62] proposes two strategies. Both models optimize the fleet size and schedule. The first
one is a static model that includes a buffer distance such that the busses are unlikely to end up
stranded with a depleted battery. This is fairly straight forward. The range Constraint 2.11 is ad-
justed with parameter λ to keep keep a buffer in the driving range at all times, as seen in Equation
2.14.

(gi +di t )xi t ≤ D/λ ∀t ∈ T ∪d , (i , t ) ∈ A (2.14)

The static model is capable of increasing robustness of the schedule but is unable to make use of
any real-time information that might be available. The second method is a dynamic method that
allows to periodically reschedule based on real-time the traffic information. The day is divided in
a number of time periods. At the start of each period, the fleet is rescheduled. The situation and
schedule for the rest of the day are known at that moment. The schedule is represented by arc
set A1. Two alternative arc sets A2 and A3 are possible but not executed. Based on the current
traffic information, the likelihood of en-route breakdowns of the schedule are estimated. A penalty
factor is applied to en-route breakdowns in the objective function. The problem is now to select the
optimal arc set for the remainder of the day to minimize the costs, thus preferring routes with a low
likelihood of breakdowns.

[33] considers a bus operators who wants to transition to an electric fleet while preserving the sched-
ule. The objective is to minimize the total costs, consisting of charging station costs, bus costs,
average costs for the relocation of buses from a terminal to a charging station, charging costs and
a penalty incurred in case of a charging demand overflow. The model is formulated as an inte-
ger stochastic program and is solved using a Lagrangian relaxation and a branch-and-bound algo-
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rithm,

Note that these are applied to a bus schedule. Also in air traffic, trip times are not deterministic.
Wind may affect the estimated flight time. Delays due to weather or ground handling activities
may propagate through the schedule. Robust scheduling is a very active field in airline operations
research. [16] proposed a stochastic optimisation model. [35] attempts to minimize the probability
of a passenger missing a connection in a hub-and-spoke network. [51] applies fuzzy logic while
[21] creates a scenario tree to have multiple plans ready in case of deviations to the original plan.
[1] integrate aircraft routing and scheduling with an eye on robustness. These papers are a small
selection of the wide pool of robust airline scheduling research to illustrate that this is an active
field of research and that there are many ways to approach robustness.

2.2.2. Fleet Transition
It may happen that an existing operator intends to partially or fully electrify its fleet. A target is
then set at some point in the future. The author of [30] introduced the Electric Bus Fleet Transition
Problem. The objective is to minimize the costs during the planning horizon such that the electrifi-
cation target is met in time. Costs include the necessary acquisition of electric busses and charging
infrastructure.

2.2.3. Infrastructure Planning
A number of papers include infrastructure costs in their objective function. By doing so, they are
able to make a decision on which candidate charging stations to include. While this is an elegant
modelling framework, this may not always be realistic because this method does not take inter-
actions with the power grid into account. [6] developed a method to determine an infrastructure
planning taking both the electrical grid and transportation system into account. To account for a
gradual deployment of electrical busses, the planning is multi-staged and was found to be robust to
changes. Though it is good to be aware of this, this is beyond the scope of this literature study.

2.2.4. Final Remarks
The E-VSP has been discussed in a number of different variations as shown in Table 2.2. Again
C, PR and FR denote constant time, partial recharge and full recharge respectively. Though the
problem is NP-Hard, exact methods based on Column-Generation algorithms often seem to do the
job. The problem has been applied in a number of case studies of electric bus fleets. One downside
to this approach is that the set of service trips must be determined beforehand. [34] Presents a
variation with a dynamic demand pattern as input such that determining which service trips to
make becomes part of the problem. Further work is this field will be studying different extensions
and variations to the problem that are useful for specific case studies.

Paper Vehicle Objective Service Infr. #Trips # Vehicles Exact
[28] Bus Operational Costs C - 1,000 60 +
[29] Bus Operational Costs C - 4,300 500 +
[60] Bus Operational Costs PR - 500 30 +
[27] Bus Total Annual Costs C + 600 30 +
[22] Bus Total Annual Costs FR + 300 35 +
[34] (Diesel) Bus Profit N/A N/A 18 1 +
[55] Bus # vehicles & batteries PR + 700 35 -
[62] Bus Operational Costs C - 60 13 -
[33] Bus Total Annual Costs PR + ? 700 +
[41] Regional Aircraft Operational Costs PR - 50 25 +

Table 2.2: Summary of E-VSP research papers



3 Electric Flight

Electric technology is developing at an extremely high pace. This has lead to a number of common
misconceptions about electric propulsion that are preventing research from reaching its full poten-
tial [17]. Therefore, this section will discuss electric aircraft technology and operations in more de-
tail with a focus on thin-haul commuter aircraft. The terms commuter and thin-haul are often used
interchangeably in terms of air transport. Thin-haul refers to one step smaller than short-haul. It
involves from the General Aviation market with seating for 6 to 10 passengers. Flight legs vary in
distance from ten to a couple hundred kilometers. Section 3.1 will discuss the electric aircraft and
power consumption model, Section 3.2 discusses battery technologies, Section 3.3 discusses con-
siderations about thin-haul operations and related costs and lastly, Section 3.4 briefly touches on
the emissions attached to energy consumption.

3.1. Aircraft Model
Electric aircraft have been around for a while. Already way back in 1940, Fred Militky attempted to
build an electric model aircraft. Only with the introduction of Nickel-Cadmium (Ni-Cd) batteries
and more efficient motors, he was able to commercially produce the first Radio-Controlled (RC)
aircraft in 1972. One year later, the first manned electric aircraft took to the skies. The MB-E1 was
able to fly for 15 minutes, more than enough for a proof of concept [37]. Especially considering
that the Wright brothers only flew for 12 seconds on their first flight and are still remembered for
it.

Developments in battery and electric motor technology enable significantly improved flight perfor-
mance. Modern Lithium-ion (Li-ion) batteries achieve a battery density of up to 400Wh/kg, over a
10-fold improvement compared to the Ni-Cd batteries from the 70s with 30Wh/kg but still roughly
60 times lower than Kerosene. The author of [37] compares the efficiency through the entire energy
chain, from energy source to propulsion. They find that the overall efficiency of current electric
propulsion is 73%. That’s almost double the efficiency of a Kerosene powered propeller-driven air-
craft with 39%. From this direct comparison between electric propulsion and fossil fuel powered
aircraft and considering the requirements of regional aircraft, [37] concludes that battery energy
density must increase to at least 1000kWh/kg but preferably even to 2,000kWh/kg to be commer-
cially interesting.

This is a misconception according to [17]. There are two flaws in this idea. Firstly, the battery den-
sity requirement follows from a direct comparison between electric and fossil fuel based propulsion
while electric aircraft are fundamentally different. Because electric motors are scalable, that is a
10W motor has approximately the same efficiency and power-to-weight as a 1,000W motor, there
is a lot more design freedom that allows for aerodynamic coupling between the propulsion, control
surfaces and wing. One very promising concept is Distributed Electric Propulsion (DEP) with a large
number of small electric motors over the entire span of the wing. This would allow to eliminate the
need for high-lift devices because of artificially created airflow over the wing and allow for a smaller
wing, designed for cruise. This concept is being explored by NASA with the X-57 prototype. The
second flaw is that research and development should focus on regional and large airlines. This ig-
nores the development path that may lead to this. Their assumption is that as technologies develop,
the research and market plan should be adaptable. While it is tempting to focus on airlines because
that’s where the bulk of revenues are, there is a poor fit with current technology and the evolution
that it will take cannot be ignored. The first applications will be found in General Aviation. Some
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motorgliders and a number of ultralights have already adopted electric propulsion. One step larger
and the aircraft become attractive for commuter airlines. Only after that can one realistically start
planning the introduction of an electric regional airliner.

There are three ways to obtain input parameters to an aircraft model for an optimisation problem.
Firstly, a number of studies have performed a conceptual design and sizing of electric aircraft. For
example, the author of [36] performed a conceptual design of a 4-seater electric-combustion hybrid.
No research was found considering an all-electric aircraft for 6 to 10 passengers, the range for a
commuter aircraft. Therefore, a second option is to perform the conceptual sizing as part of the
thesis. This method is far beyond the scope of the thesis. The last method is to critically evaluate the
performance figures from real aircraft and/or claims from aircraft in development. The next section
will therefore summarise the current state in the development of electric aircraft.

3.1.1. Current State of Aircraft Development
An overview of the current state of relevant aircraft in development is provided in Table 3.1. This
overview presents the electric aircraft that appear to have a high potential for thin-haul operations
or are technologically relevant.

Aircraft Seats Range [km] Cruise Speed[kph] VTOL
MangiX eCaravan 10 240 200 No
Skylax E6 6 300 300 No
Skylax E10 10 300 300 No
Eviation Alice 10 1,000 440 No
X-57 Maxwell (Mod III) 2 160 277 No
Lilium Jet 5 300 300 Yes
Jaunt Journey 4 250 280 Yes
Joby S4 4 280 370 Yes

Table 3.1: Summary of promising aircraft for thin-haul operations

Electrical equipment company MangiX transformed an existing Cessna Caravan to a fully electric
aircraft. Their expertise is in electrical equipment, not aircraft design. Therefore they opted to start
from an existing airframe. The Cessna Caravan has been around for almost 40 years and with over
2,600 units produced, it is one of the most used airframes in the world. The seating capacity for
10 people makes it ideal for thin-haul operations. MangiX started flight testing in June 2020 and
plans to put the aircraft in service as early as 2021. The fact that they are this far in development
makes the performance claims thrust worthy. Starting from an existing airframe is the cheapest and
fastest way to put an electric aircraft in operations. As [17] discussed, they are not able to exploit the
additional design freedom of electric technology.

The Skylax E6, Skylax E10 an Eviation Alice are starting from scratch. As a result, their designs are
more suited for electric propulsion and have an improved performance. Skylax is planning an initial
version with a 300km range and intends to double that range by 2030. It must be noted that Skylax
does not have a flying prototype yet so their claims must be interpreted with a grain of salt. However,
their performance seems realistic compared to the eCaravan which has an older airframe that was
not designed for electric propulsion. While electric technology gives more design freedom for exotic
concepts such as DEP, Skylax still uses the concept of podded engines as traditional aircraft do. In
doing so, they also do not fully exploit the benefits of electric technology yet. The reason is likely
to be a rapid market introduction, currently planned in 2025. This follows the logic laid out by [17]
that the market plan must be agile. Eviation Alice uses two wingtip propellers that fold back during
cruise. Cruise power is provided by a single pusher propeller in the back. Though full scale models
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exist, no flight testing has been performed so far. Eviation Alice has a big lead in performance over
Skylax but that comes at a cost. The Alice is estimated at AC4 million compared to AC1.9 million for
the Skylax E10. In fact, the Skylax’ list price comes very close the the fuel powered Cessna Caravan
atAC1.8 million.

Meanwhile NASA is developing the next X-plane, the X-57 Maxwell. The aircraft has a much lower
performance than the previously discussed ones. That is because this aircraft has a different pur-
pose. It is a research platform and flight demonstrator for new technologies and has no commercial
intentions. A series of modifications or mods is planned for flight testing. In Mod II, a regular Tec-
nam P2006T is electrified, resulting in a configuration that is similar to the Skylax aircraft. Mod III
and IV will test a wing 60% smaller than the original and DEP.

The last three aircraft in the list are VTOLs and have a lower seating capacity. That is because these
aircraft are intended for UAM. A number of hurdles such as regulations about noise, safety and pri-
vacy must be overcome before UAM can become a reality. While this research will focus on electric
thin-haul operations because that might very well become a reality in a few years, it is interesting
to consider the performance achieved by these aircraft. Of these, only Lilium is already in the flight
testing phase. An array of electric fans tilt downwards for VTOL. In cruise mode, the electric fans
provide DEP on top of the wing.

One may observe that both the range and cruise speed of these aircraft are spread around 300km
and 300kph. The Eviation Alice claims a much higher performance but is the only one to do so.
Meanwhile, the low range of the X-57 can be attributed to the non-commercial purpose of this air-
craft. A realistic aircraft model for research that intends to be practically relevant could therefore be
assumed to have a range of 300km, a cruise speed of 300kph and 10 seats.

There are two very important side notes. Firstly, to critically assess whether these claims are real-
istic, the numbers must be validated. This does not have to be an extensive conceptual design but
the parameters should make sense when subjected to basic aircraft performance calculations. Sec-
ondly, these parameters are by no means the only realistic parameters. Once the aircraft presented
in Table 3.1 will be operational, their actual performance will be different from the current estima-
tions. Over time, technology will improve and performance will increase. To be practically relevant,
the thesis must address the uncertainty with extensive sensitivity analysis.

[41] proposes Equation 3.1, an adaptation for electric aircraft of the range equation proposed by
[37]. The difference from the original range equation is that the mass of an electric aircraft stays
constant throughout the flight.

R = E∗ ·ηtot al ·
1

g
· L

D
· mbat ter y

m
(3.1)

Where E∗ is the energy density of the battery, ηtot al is the total system efficiency, g the gravitational
acceleration, L

D the lift-drag ratio in cruise and
mbat ter y

m the ratio of battery mass over total mass.
From this equation, it is clear that range depends on total mass and thus, occupation of the air-
craft. A static range is therefore not realistic when the number of passengers is varying. The ranges
discussed previously refer to the range at Maximum Take-Off Weight (MTOW).

3.1.2. Phases of Flight
How much power is required to fly a given flight leg depends on the distance. Because the aircraft
goes through a number of flight phases which each have different power requirements, a simple
linear relation between range and energy consumed might be oversimplified. Figure 3.1 shows the
different flight phases and related power usage for a conceptual electrified Tecnam P2012T Traveller
as investigated by [53].
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Figure 3.1: Power Consumption for the different flight phases of a conceptual electric Tecnam
P2012T Traveller [53]

If one assumes that for all flight legs, all phases are identical in duration and power except for cruise,
then the power required for a flight leg can be calculated using Equation 3.2. Where c0 is the energy
required for all fixed flight phases, c1 the energy required for a unit distance in cruise, d0 the distance
already covered in climb and descent and r a routing factor to take into account that the aircraft
might not be able to fly the shortest route. [44] uses a routing factor of 0.42 while [53] uses a 0.06 in
the network of Cape Air and 0.28 for Mokulele Airlines, two commuter airlines. This model is simple
and flexible. If for example it is known that at a given airport, the aircraft will have to taxi a bit longer,
than c0 can be adjusted accordingly. If the aircraft has to make a large detour to fly from A to B, then
r can be increased for that particular flight leg.

E = c0 + c1 · r · (d −d0) (3.2)

3.2. Battery Model
The battery is an essential part of the electric aircraft. It must be able to store enough energy and
deliver it at high power to the motors under all conditions. Battery performance is subject to degra-
dation and changes in temperature. Therefore, batteries are designed to operate under worst case
conditions. The following sections will discuss the battery types available on the market and in
development, the definition of SoC, the battery charging process and considerations for battery
swap.

3.2.1. Battery Types
A vast array of battery types is available nowadays and choosing the right one is crucial. The most
important factors for an electric aircraft are i) Energy density in Wh/kg; ii) Price in AC/kWh and iii)
Other characteristics such as degradation, etc.

Promising advancements have been made. Lithium-air batteries reach a theoretical energy density
close to that of gasoline but issues with stability and air purity render this battery type impractical
for real applications. Lithium-ion batteries are currently the most widely used type. Lithium-Sulfur
is close to commercialisation but suffers from high degradation and thus a short battery life. Table
3.2 provides an overview of battery types. [57]

The most widely used battery today is the Li-ion battery. This battery is completely maintenance
free and has a very low self-discharge rate. Its high performance make this the battery of choice in



3.2. Battery Model 20

Type Specific energy [Wh/kg] Price [AC/kWh] Cycle-life
Li-ion 250 150 1200
Lead-acid 40 50 350
Li-metal 300 - 2,500
Li-Sulfur 600 125 50
Ni-Cd 80 100 1,000
Ni-MH 120 100 500
Li-air 13,000 - 50

Table 3.2: Summary of current and promising battery types

cellphones, where size is an important factor and in electric vehicles, where weight is important. Re-
search is showing very promising results for Li-metal batteries. These have a higher specific energy
and longer cycle life than Li-ion batteries. However, uncontrolled Lithium depositions can pene-
trate the separator and cause a short circuit. Safety is therefore the main hurdle to be overcome
before Li-metal batteries can be widely adopted. Lithium-Sulfur (Li-S) batteries are also showing
promising results. To be commercially interesting, the cycle-life has to be improved. Lastly, the
Lithium-air (Li-air) battery has a mind-boggling theoretical specific energy, similar to that of gaso-
line. However, it is currently not possible to create a Li-air battery outside the lab. One issue is air
purity. Because the air in cities and airports is not clean, filters and compressors would be required,
consuming a large portion of the energy stored in the battery. Even if the battery had an efficiency of
just 25%, it would still be competitive with gasoline. A combustion engine has a thermal efficiency
of roughly 25% while electric motors are over 90% efficient. Another issue is the sudden-death syn-
drome. The reaction between Lithium and Oxygen creates a Lithium peroxide film, blocking elec-
tron movements and killing the battery. It is currently not possible to build a practically usable Li-air
battery. [57]

The Lead-acid battery is the battery of choice for many industrial applications where weight is not a
factor because of its low cost. They are not sensitive to abuse in the form of deep cycle discharging
and overcharging. Because they have a shorter cycle-life, the price per cycle is similar to that of Li-
ion batteries. Still, the up-front investment is significantly lower and if a consumer has to replace
the lead-acid battery, he or she can benefit from technology improvements and/or reduced battery
prices over time. This battery requires some maintenance. [57]

Lastly, the Ni-Cd and Nickel-Metal Hybrid (Ni-MH) batteries are well understood and relatively low
in maintenance. The low performance make this battery useful for applications where weight is not
important but a relatively high cycle-life is preferred. [57]

3.2.2. State-of-Charge
Batteries degrade over time. One factor that influences degradation is the Depth-of-Discharge (DoD).
A Battery Management system (BMS) is required to keep the battery in the right operating window
to minimize degradation [41]. The BMS measures the SoC, the capacity remaining in the battery q
over the nominal capacity Qn as seen if Equation 3.3. The DoD is the complement of the SoC.

SoC = 1−DoD = Qn −Qb

Qn
= q

Qn
(3.3)

[41] found that there is no common consensus in literature over a definition for the SoC. That is
because degradation causes the available capacity to reduce and because the BMS limits the SoC
range, reducing the available capacity further. [43] uses three formulations, the SoC, relative SoC
and practical SoC, The motivation behind these formulations is that batteries degrade over time. [7]
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showed a reduction in capacity of 10% to 40% over 450 charge cycles of Li-ion batteries, the most
widely used battery type in the world. Over time the measured capacity Qm reduces. Degradation
depends on many variables. Most notably is the SoC during each cycle. To limit battery degradation,
batteries are not charged and discharged to their limits, resulting in the practical capacity Qp and
practical SoCp .

SoCr = Qm −Qb

Qm
(3.4)

SoCp = Qp −Qb

Qp
(3.5)

Figure 3.2: Assessment of geographical regions to enter the MRO market

The State-of-Health SoH is the ration between Qm and Qn and gives an indication of the degra-
dation of the battery. [48] proposed a method to determine the SoH under temperature and cycle
aging but this was too complex for use in practise.

The previous equations relate to a single battery cell. For applications requiring a larger capacity,
the battery is composed of a group of individual cells placed either in series or parallel. A battery
constructed of cells in parallel can be considered as a single large cell and Equations 3.3 through
3.5 apply. For placement in series, Equation 3.6 is to be used [26] where N is the total number of
cells.

SoC =
∑N

i SoCi Qn,i∑N
i Qn,i

(3.6)

If all individual cells are identical, this equation simplifies to Equation 3.7

SoC =
∑N

i SoCi

N
(3.7)

Due to the chemical nature of batteries, an accurate determination of the SoC is difficult and re-
mains a highly theoretical exercise. A number of methods are proposed in literature. [42] sum-
marised the most common methods and discuss which use cases they are most suitable for. The
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most reliable test is the discharge test. The major drawback is that it interrupts the battery usage
and is time consuming. Ampere-Hour counting is the most common technique. Starting from a
known SoC, the current from the battery is measured and integrated over time to determine the
SoC at that moment. This method has two issues. Firstly, accurate current measuring equipment is
expensive. Secondly, losses in the system could account for substantial errors. Re-calibration is re-
quired to keep the errors from growing. The most simple SoC determination method is by applying
a constant charge/discharge factor. Sometimes, knowing the chemical properties of the reactants
in the battery suffice to determine the SoC. For example, the acid density in a lead-acid battery is
directly related to the SoC. This is not possible for all types of batteries. The open-circuit voltage is
also related to the SoC. However, long waiting times are required to reach a steady-state, making the
open-circuit voltage an impractical parameter to use.

3.2.3. Battery Charging & Battery Swapping
At a certain moment, the battery reaches a point where the energy level is insufficient to com-
plete the next flight leg. At that moment, the battery must either be charged to a sufficient level
or swapped with a fully charged battery.

Chargers can be classified by the time it takes to fully charge. The Electric Power Research Institute
(EPRI) and the Society of Automotive Engineers (SAE) define three levels of charging [41].

• Alternating Current (AC) Level 1 is characterised by a maximum power of up to 1.9kW in the
US and 7.4 kW in Europe. This type of charging is convenient for overnight charging when the
battery is not used.

• AC Level 2 is characterised by a maximum power of 19.2kW in the US and 43 kW in Europe. A
level 2 charger has a price tag betweenAC2,000 andAC15,000.

• Direct Current (DC) Level 3, also known as Fast-Charging, is the most expensive type with
prices ranging fromAC50,000 toAC150,000. Level 3 includes all charging levels above level 2.

[57] calls these levels slow, rapid and fast charging respectively and adds the level of Ultra-Fast
Charging. An Ultra-Fast charger is able to charge a battery up to 70% in 10 to 60 minutes. Note
that the battery should be specifically designed for this and will feature a reduced specific energy.
Even if the battery is designed for Ultra-Fast Charging, this will expedite degradation. Fast chargers
are naturally more expensive. Besides more expensive infrastructure, the peak power drawn from
the grid is higher and this results in increased electricity prices. A famous example of a fast charger is
the Tesla Supercharger. The V1 and V2 Superchargers have a power output of 150Kw. For the V3, this
is increased to 250kW. Tesla is even planning the introduction of the Megacharger, intended for their
electric truck, the Semi. The Megacharger is reported to have an output level of over 1 MW. It must
be noted that charging time cannot simply be decreased with more power as battery and charger
design go hand-in-hand. The increased charger power is serving larger batteries. With the current
technology, Tesla is able to recharge batteries to 80% in 30 minutes and 100% in 75 minutes.

To model the battery process, most papers in operations research assume linear charging and dis-
charging behaviour as discussed in Section 2. That is, the SoC varies linearly over time. A number of
papers use a nonlinear relation or approximate the nonlinear behaviour by assuming a multi-linear
graph. The added accuracy comes at the cost of computational complexity.

If a linear charging process is assumed, the charging time can be determined from Equation 3.8
[14]. The main benefit of this equation is its simplicity. According to [60], though it is not a perfect
representation of reality, linear charging is able to capture the general behaviour of the system. Still,
a better approximation is highly desired in a scheduling problem because of the large difference in
charging time.
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tchar g e =
Qn∆SoC

Pchar g er
(3.8)

Linear charging is an approximation of the actual charging process as can be seen in Figure 3.3a. A
common argument for accepting linear behaviour is that the range of batteries is never fully utilized
because the rate of degradation increases when the DoD is pushed to the limits. That line of thought
is not entirely correct. Batteries are never fully discharged. Fully charging is common practice and
the difference in charge rate is large when approaching a full charge. For Tesla batteries, the last
20% charges approximately 6 times slower than the first 80%. Below a SoC of 80%, linear charging
is a very good approximation. With increasing SoC, the charge acceptance decreases and the pro-
cess starts slowing down. [41] used a bi-linear approximation of the charging process as shown in
Figure 3.3b to take this reduction in speed into account. This bi-linear process is an elegant solu-
tion because it is already much better approximation of reality without making the model overly
complex.

(a) The actual charging process is nonlinear once the
SoC surpasses 80%

(b) Bi-linear charging process approximation

To model the bi-linear charging, the author of [41] introduces additional variables a, b and c as
defined in Equations 3.9 through 3.11. In these equations, qR is the energy level required to make the
next flight and SF the safety factor to have reserve capacity in the battery. The energy level present
in the batteries before starting the charging process is qE . The charging time is then computed using
Equation 3.12.

a =
{

1, if qR +SF ≥ 0.9Q
0, otherwise

(3.9)

b =
{

1, if a = 1 and qE ≥ 0.9Q
0, otherwise

(3.10)

c =
{

1, if a = 1 and b = 0
0, otherwise

(3.11)

tc =


qc

pc
if a = 0

qc

pc /10 if b = 1
0.9Q−qE

pc
+ qR+SF−0.9Q

pc /10 if c = 1

(3.12)

The operational costs of charging depend on the costs of the charger infrastructure and cost of elec-
tricity. [53] breaks the electricity price down into supply, transmission and delivery. Though not
visible on your electricity bills, this is commonly performed by different companies. Usually, there
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is a fixed monthly charge for being connected to the grid besides the charge for the amount of elec-
tricity consumed. The electricity price itself depends on the location, time of day and peak power
draw. In [53], the author discusses an optimisation method for charging batteries in a battery swap
station. This method takes into account that lower charging power and charging in off-peak hours
results in lower electricity prices. [31] only looked at price variations throughout the day. From
a cost-benefit analysis, they found that expanding their fleet from the minimum of 59 vehicles to
62 vehicles results in a lower total cost because charging can be scheduled in the off-peak hours.
In April 2020, the average Dutch household paid AC0.1707 cents per kWh of electricity. A Tesla Su-
percharger charges AC0.28 per kWh. The increased price covers the infrastructure costs as well as
increased electricity price due to the high power levels.

Now matter how advanced chargers become, they will never be as quick as refueling. One alterna-
tive method is to swap the depleted battery entirely with a fully charged one. This may lead to a
reduced Turn Around Time (TAT). According to [41], the battery swap on the Siemens eFusion takes
5 minutes. Typical battery swaps for EVs take between 5 and 15 minutes according to [63] while
Tesla’s battery swap stations needed just 1.5 minute [45] before the project was scrapped.

Charging takes a lot longer but the actual time saved due to battery swap is smaller. That is because
scheduled aircraft have a minimum TAT to perform a sequence of ground handling tasks. These
tasks may include unloading and loading passengers, cargo and crew, refueling, providing catering,
cleaning the cabin and performing line maintenance. Legacy airlines usually have a TAT between
45 and 60 minutes. Low cost airlines like Ryanair achieve TATs of down to 25 minutes. They achieve
this by cleaning less and speeding up the boarding of passengers. The TAT for commuter aircraft
can be brought down further because the cabin does not have to be cleaned between every short
flight and because boarding and unboarding of a small number of passengers goes a lot quicker.
Two famous commuter airlines are Mokulele Airlines and Cape Air. They have an median TAT of 19
minutes and 35 minutes respectively. During those 19-35 minutes, the battery can already charge.
Only when the charging time exceeds the minimum TAT is battery swap actually faster.

Despite lowering the electricity prices thanks to off-peak charging at lower power levels, the logistics
and upfront investment form a large obstacle. Additional batteries must be acquired as well as the
battery swap station itself. Battery swap is therefore more expensive than charging. [41] used both
charging and battery swap in her optimisation model and found that battery swaps during peak
hours reduced the total number of aircraft requires while charging was used during off-peak hours.
The battery swap stations bring an additional scheduling problem. Namely how many batteries to
store and when to charge them. [53] proposed a method to hierarchically minimize the number
of batteries and peak-power demand during charging. With this method, they are able to reduce
peak power by over 50% and reduce electricity prices by 20% compared to the heuristic benchmark
method which minimizes the number of batteries and charges immediately. [5] studied the number
of batteries required for different charging speeds at Munich’s airport. In their example, 290 batteries
are required if fully charging takes 1 hour. This increases to 499, 1230 and 2318 batteries required
for 2, 6 and 12-hour charging times respectively. Clearly, the number of batteries grows rapidly as
charging power decreases.

To use battery swap in a scheduling optimization model, one may assume a fixed cost per swap.
From the determined schedule, the cost of battery swaps can be validated by minimizing the num-
ber of batteries and charging power required to comply with the schedule. If the assumed cost per
swap is not close enough, the assumed cost must be changed and the aircraft scheduling optimi-
sation must be re-done. This method does not guarantee to find the overall optimal solution. No
literature currently exists that combines the aircraft scheduling and battery swap optimisation to
find the global optimum.

A number of hurdles remain for battery swap stations. First is the upfront investment. An operator
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intending to launch electric aircraft services may not have the capital to build a number of battery
swap stations. Alternatively, airports may decide to build those themselves but that arises questions
with ownership. Who owns the batteries? What if a brand-new battery is swapped for a heavily de-
graded one? Homogeneity is preferred as a swap station can only store and charge a finite number of
batteries but currently, no standards exist. Logistical issues add to the already complex operations.
An operator entering the market with a new fleet of electric aircraft may want to limit complexity
because this has never been done before. Lastly, flexibility is limited. Whereas an electric aircraft
would be able to fly to any airport that has a charger, this might not be possible for battery swaps
if the operator does not have spare batteries stored at an airport. The author of this literature study
is of the opinion that battery swapping is only interesting at the home base from where the airline
operates. At all other airports, only charging should be considered. Only after the successful intro-
duction of an electric fleet may the operator identify improvement potentials with additional swap
stations.

3.3. Thin-haul Operations & Costs
The terms commuter and thin-haul are often used interchangeably for air transport. Thin-haul
refers to one step smaller than short-haul. It involves from the General Aviation market with space
for up to 10 passengers. Flight legs vary in distance from ten to a couple hundred kilometers. Due to
their high cost, they are only found where there is no high speed alternative. Mokelulu Airlines for
example provides fast transport between the Hawaiian Islands where the only alternative is to travel
by boat.

The author of [59] applies the VRP to an on-demand air taxi network. This is different from sched-
uled operations because the passengers determine the service trips. The optimisation assigns a
routing to each aircraft based on the current state of the fleet and a requested trip. If the problem
turns out to be infeasible, the newly requested trip is rejected. The model presented in this paper
lies at the basis of Fly Aeolus, a commercial air taxi service operating a fleet of 15 Cirrus SR22 aircraft.
Besides 1 pilot, there is space for 3 passengers.

[49] differentiates UAM and thin-haul as summarised in Table 3.3. Note that this is an interpretation
of the author. A thin-haul commuter may be powered by fossil fuels and the mission range may be
smaller than 150 miles. Nevertheless a number of clear differences can be identified. Thin-haul
commuter aircraft offer more seats than UAM and offers mobility over longer distances to travel
between cities. An additional difference is that current UAM concepts are on-demand whereas thin-
haul operations are scheduled services. A lot of VTOL aircraft are currently in development and
those are aiming at UAM.

Thin-Haul Commuter Intra-City UAM
4-9 passengers 1-4 passengers
Fixed wing tiltrotor or rotorcraft configuration
Standard runway or Short Take-Off and Landing (STOL) VTOL
(Distributed) electric or hybrid/electric propulsion Quiet electric or hybrid/electric propulsion
200-300 knot cruise mission range 5-50 miles
mission range 150-300 miles enhanced autonomy

Table 3.3: Characteristics of a thin-haul commuter aircraft and intra-city UAM aircraft [49]

The author of [8] build on this envisioned thin-haul commuter concept to assess the economic fea-
sibility of electric thin-haul operations. According to [8] only 10% of all available airports are used by
commercial airlines. The demand on each individual route in a thin-haul network may be small but
the cumulative demand over the entire network provides opportunities. Consider as well that latent
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demand may emerge if the service becomes successful and prices can be reduced. Although the
demand is arguably there and a large network of airports is available, thin-haul airlines have not ex-
perienced the growth rates of commercial transport before the COVID crisis. That is mainly caused
by the high operating costs. Whereas traditional airlines such as have an operating cost of $0.13 per
Available Seat Kilometer (ASK) (Delta Air Lines) compared to $0.47 for commuter airlines (Cape Air)
[8]. The high operating costs and alternative fast transport make it very hard for commuter airlines
to be successful. To address the economic feasibility, the operational costs of a Cessna 402 used
by Cape Air and a concept electric aircraft are compared. From a direct comparison, using electric
aircraft results in a staggering 20% reduction in operating costs, mainly driven by a reduction in
energy and maintenance costs and partly offset by an increased acquisition cost of the aircraft and
batteries. The benefits of electric propulsion are clear.

In [53] the authors build on the work of [8] by developing a "power-optimized" strategy to minimize
the peak power used for charging in a battery swap station. Firstly, they performed the conceptual
sizing on an electric version of the Tecnam P2012T Traveller and considered two philosophies. In
the first one, the battery is sized to perform a full day of operations and only charging during the
night. The other concept is to use swappable batteries. Due to the huge battery required to perform
uninterrupted operations, they went on with the latter. The strategy was simulated on the network
of Cape Air and Mokulele Airlines, two successful commuter airlines. Table 3.5 provides an overview
of key information of these two airlines. The "power-optimized" strategy is able to reduce energy
costs by 20% compared to the benchmark "Power-as-needed" charging strategy and by 70% com-
pared to fossil fuel powered aircraft. However, lowering the peak-power and number of chargers
may increase the number of batteries required. Therefore, [9] develops the "power-investment-
optimized" strategy. This strategy starts from the "power-optimized" solution as an upper bound
on the number of batteries and lower bound on the number of chargers. A pareto-front is con-
structed by incrementally increasing the number of chargers to find the solution with the minimum
overall cost. Interestingly, fast charging was not considered as it was deemed impractical with the
short TATs usually operated by commuter airlines. However, modern fast charging technology as
described in Section 3.2.3 has numerous advantages over battery swap and cannot be ignored. The
TAT window of 20 to 35 minutes provides an opportunity to at least partly recharge the batteries.
Table 3.4 shows the cost assumptions made in [8], [53] and [9], based on an entry into service in
2030. These assumptions appear to be very realistic. Skylax claims that its aircraft will have price of
AC1.9m. That claim is likely to increase when the aircraft actually enters production. Eviation claims
a price of AC4m for an electric aircraft with a better performance. As Tesla Supercharger already
achieve a power output of 250W, the assumed charger power seems conservative. As battery swap
is used in these papers, that is fine. If fast-charging is used instead, the charger power will likely be
higher.

Aircraft Acquisition Cost AC2.5m [8]
Charger Power 125kW [53] [9]
Charger Efficiency 90% [53] [9]
Charger Useful Like 7 years [9]
Battery Specific Energy 350 Wh/kg [53]
Battery Useful like 1,000 cycles [53] [9]
Charger Cost $100,000 [53] [9]
Battery Specific Cost 125 $/kWh [53], 100$/kWh [9]
Discount Factor 8.1% [53] [9]

Table 3.4: Cost assumptions in literature
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Cape Air Mokulele Airlines
Fleet 48 Cessna 402 8 Cessna 208
Weekly flights 1839 732
Cities Served 19 9
Median TAT 35 min 19 min

Table 3.5: Key information of existing commuter airlines Cape Air and Mokulele Airlines

On average, each aircraft in the Cape Air fleet conducts 5 flights per day while Molukele aircraft
conduct 10 flights per day on average. The difference is partly in the lower TAT but mostly in the
shorter distances flown by Mokulele. From Figure 3.4 it can be seen that 12% of the Cape Air flights
exceeds 300km, which was identified as a realistic range for electric aircraft in the near future.

Figure 3.4: Flight distance distribution of Cape Air (left) and Mokulele Airlines (right)

To assess the potential demand, [61] estimated door-to-door travel time of existing modes of trans-
port and air taxis, which essentially are commuter aircraft. They found that commuter aircraft are
most competitive for distances between 100 and 300km. In that range, railways is the biggest com-
peting mode of transport. Potential demand therefore depends on how well the railway network
is developed. Western-Europe is very well connected by railways. Figure 3.5 shows the top 1000
links based on travel demand and travel time competitiveness of a commuter aircraft. Even though
Western-Europe is well connected by railway, the high travel demand is appealing. An extension
to the UK also seems promising, especially up north where railway connections are more scarce.
Other potential regions include Madrid and Barcelona and large cities in Eastern-Europe. This pa-
per does not consider the average income and living standards. With this in mind, the region of
Western-Europe and the UK appears to be most interesting to start an initial service.

A similar study was performed on suburban areas in the United States in [54]. They also vary take-
off distance in their sensitivity analysis because this affects the number of available airports. They
conclude that a suburban commuter airline should target ground commutes exceeding 45 minutes.
With a cruise speed of 160 knots and take-off distance of 500 feet (300kph, 150m), travel times can
be reduced by 45%. If the take-off distance doubles to 1,000 feet, travel time is reduced by 40%.
According to [47], these requirements are realistic. A 300 feet take-off distance is readily feasible
and can be reduced to 100 feet with near-future technology and a reduction in cruise speed.

Also for UAM, many demand estimations have been made. Though demand for this concept of
transport is different than for thin-haul aviation, there are many similarities. [18] expects such a
demand that small airports which are almost not utilized today will need upgrading and additional
short runways will be required. In [10], an agent based model called BaySim is used. This model
generates passengers with trip requests. The numbers of passengers that are generated is based on
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Figure 3.5: Top 1000 links based on travel time competitiveness and travel demand

demographic studies of the Bay Area, California. The author of [39] uses the combination of three
normal distributions, N(4,2), N(16,2) and N(12,6), to model the variation of demand throughout the
day. [44] models demand by creating individual people with trip requests. The trips can be either
commuter, churn or airport transfer. A commuter travels in the morning and back in the afternoon,
a churn trip is a one-way trip at random times throughout the day. The outcome is similar to the
simple model used by [39]. This supports the use of a simple demand model based on normal
distributions in a generalised context.

[41] proposed an aircraft scheduling optimisation for an electric version of a regional airliner with
both battery swapping and battery charging. Since no such aircraft exists to date, she based her air-
craft model on a Class I estimation starting from the Embreaer 175. For fast charging, she assumes
a charger power of 3MW. This by far exceeds any existing charging technology. Tesla Superchargers
have up to 250kW and the currently in development Tesla Megacharger has 1MW. A 3MW charger is
not realistic in the foreseeable future. Then again, this paper considers an electric regional airlines
so it is acceptable to assume future advancements in technology and look further than the near
future. That is in contrasted with the assumed battery price of over 1,402 AC/kWh, equal to the bat-
tery price of the Pipistrel Taurus Electro G2. This aircraft has only been build on a small scale and
with already relatively old technology. In contrast, other papers assume a battery price down to 100
AC/kWh. Continuing along the lines of assuming future technologies, this would be a more realistic
assumption.

3.4. Energy and Emissions
Electric aircraft have no tailpipe emissions, meaning they do not emit locally. Obviously, the energy
consumed is produced somewhere and that can involve emission of harmful gasses. To understand
how environmentally friendly electric aircraft actually are, the production of electric energy must
be investigated. Furthermore, The European Union (EU) has implemented the Emission Trading
Scheme (ETS). This already covers all intra-European flights. Policies like these provide additional
opportunities for operations involving lower emissions so it is important to be aware of them.

Figure 3.6 provides an overview of the CO2 emissions related to electricity production in the EU [4].
There is a clear downwards trend as renewable energy sources are becoming more prevalent but the
situation varies drastically between different countries. In 2016, The Netherlands was still above 500
g/kWh while Sweden went as low as 13g/kWh. The EU wide average is around 300g/kWh.
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Figure 3.6: CO2 emissions related to the production of electricity

To put this into perspective, current airlines are estimated to produce 115g of CO2/RPK [25]. The
developers of the Skylax E10 report that the aircraft will have a battery weight of 1,000 kg and range
of 300 km. Assuming an energy density of 250 Wh/kg results in a 250kWh battery. At EU average, a
full charge is therefore equivalent to 75kg of CO2. This 75kg is able to transport 10 passengers over
a distance of 300km, resulting in 25g/RPK, just 22% of the estimated emissions for airlines. This is
already a substantial improvement over traditional airlines but renewable energy sources can fur-
ther reduce this number. If the aircraft was charged in Sweden, the effective emissions would only
be 1.1g/RPK. Compared to cars, a consumption of 5 liter of gasoline per 100 km results in roughly
120g/km [15]. If the car contains 5 people, that means 24 g/RPK. Note that these are simplified es-
timations but it shows that electric aircraft are competitive with gasoline powered cars in terms of
CO2 emissions. Trains still do better, at just 10g/RPK [32].

3.4.1. NOx Emissions Charge
Five countries in Europe are charging NOx emission charges for aircraft (Switzerland, Sweden, United
Kingdom, Denmark and Germany). The purpose of these is to reduce local emission of nitrogen
oxides. Switzerland and Sweden were the first to introduce these charges in 1997 and 1998 based
on the aircraft emission class. Switzerland used five classes and Sweden seven. To harmonise the
policies in Europe, the European Civil Aviation Conference published guidelines for emission clas-
sifications to use for emission charges. Following these guidelines, London Heathrow introduced
their own charges in 2004 and Gatwick in 2005. Germany followed in 2008. [19]

The charges are based on emission value units. The emission value units are determined for each
aircraft type during the Landing and Take-Off (LTO) cycle and are based on the number of engines,
fuel flow during the LTO cycle and an index indicating the NOx emissions per weight unit of fuel.
The amount that is charged per emission unit varies per country. In Germany, this is set atAC3/unit.
Sweden chargesAC5.5, Switzerland charges betweenAC1 andAC3 and the UK chargesAC1.6. As a result,
aircraft such as the A320 may be charged up toAC27 and the Boeing 747 up toAC385 per landing. For
aircraft lighter than 5.7 tonnes, a fixed amount ofAC3 is charged per landing. [19]

Germany intends the charges to be revenue neutral, meaning that this is not an additional cost for
airlines. Instead, the landing fees based on the aircraft weight are lowered by an equivalent amount.
This benefits the airlines with lower emissions and makes environmentally friendly aircraft and en-
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gines a more attractive option. As these charges are aimed at reducing local emissions, electric
aircraft should be entirely exempt.

3.4.2. CO2 Emission Policies
Aviation accounts for roughly 3.5% of CO2 emissions in the EU and became part of the ETS in 2008
[19]. In total, roughly 45% of emissions within Europe fall under this scheme. The ETS is referred
to as a ’cap and trade’ system. There is a limit to how much each sector is allowed to emit. If a
sector surpasses this cap, they can trade the additional emission rights with another sector who is
under its emissions cap. Set-up in 2005, the ETS became the first carbon trade market in the world.
Emission rights are traded in auctions so there is no fixed price. At the start of 2020, the average
price was AC25 per tonne of CO2. This dropped by 40% to AC15 per tonne following the outbreak of
COVID-19 [12]. Given that airlines are estimated to emit 115g of CO2 per RPK [25], this translates
into a cost of AC0.0029/RPK. Airline costs are estimated at AC0.13/RPK, meaning that the acquisition
of emission rights increases costs by 2.2%. Electric aircraft may allow the aviation industry to reduce
its emissions below the cap to avoid this extra cost.

The ETS is in its third phase, which lasts until 2021. This phase is mainly characterised by the in-
clusion of additional gasses and sectors in the trading scheme. The fourth phase will last from 2021
until 2030 and will see additional policies to reduce emissions. This will be part of the European
Green Deal which is currently being developed and negotiated by the European Commission.

3.4.3. Noise Charges
Noise is also seen as pollution. Zurich was the first airport to introduce noise charges in 1980. Today,
over 100 airports in Europe apply noise charges based on the time-of-day, the weight category and
noise class of the aircraft. There are 9 weight categories based on the maximum take-off weight.
Light aircraft with a MTOW between 6 and 15 tonnes fall under category 1, the heaviest aircraft such
as the A380 fall under category 9. General Aviation is typically lighter than category 1 and is therefore
exempt from the noise charges and so are commuter aircraft. For aircraft that are too heavy to be
exempt, there are 4 noise classes where the quietest aircraft fall under class 4. Modern aircraft are
usually classified in class 4. This means that even if electric aircraft are quieter, this will not give
them an economic advantage over aircraft from the same weight class. Besides, electric aircraft are
not completely silent as much of the noise is generated by the propeller, airframe, landing gear, etc.
[13].

In an optimisation problem, noise and emission charges may be represented by a fixed cost per
flight leg. For electric commuter aircraft, no such costs actually apply. Only once electric aircraft
become larger to carry more passengers or cargo, the noise charges will apply. With current poli-
cies, no emission charges apply to electric aircraft, even though they are not entirely zero-emission
because of electricity production.



4 Research Outline

The feasibility and economic considerations in electric thin-haul aviation have been investigated in
previous research. However, no one has proposed a fleet sizing and scheduling optimisation model
using fast charging technology. [41] comes close by doing this for a conceptual electric regional
airline and is based on a given set of service trips and given charger location. While a large electric
aircraft seems very far off, a number of companies are developing 10-seater electric aircraft with
commercial potential in thin-haul operations. It would be possible to adjust this model to apply it at
a thin-haul commuter network but this requires the timetable of scheduled service trips to be known
in advance, Because the operating costs of electric aircraft are over 20% lower and because they
may provide an environmentally friendly alternative in more and more congested ground transport,
there may be opportunities for electric air transport services where currently no network exists. In
that case, determining which service trips to make must be part of the question. This has been
recognized in research and some papers have estimated demand and competitiveness.

4.1. Research Gap
Electric thin-haul aviation lies in the overlap between airline research and electric vehicle or bus
scheduling research. The reason being that electric thin-haul aviation has many similarities with
electric busses, probably more than with airliners. The electric bus scheduling problem can be
extended to also include where to install charging infrastructure. Airline research on the other hand
is in a very advanced stage and focuses on robustness of the schedules, which is not applicable for
thin-haul yet as this field is not mature enough. The papers discussing the E-VSP usually take a
given set of service trips as input. This is not applicable to electric aircraft for two reasons; i) Electric
aircraft have very different performance figures. The service trips that an electric aircraft should
make could be different to what a fossil fuel powered aircraft should take; ii) Hardly any scheduled
thin-haul networks currently exist. An operator intending to deploy a fleet of electric aircraft will
have to determine which service trips to make.

Whereas E-VRP and E-VSP studies minimize either travelled distance or costs, this approach will not
work for this thesis because determining the service trips is part of the problem. Minimizing costs
would simply return an empty set of service trips unless if a minimum RPK constraint is added. In
the end, every company wants to maximise profits but also this is not possible because prices and
thus revenues cannot be estimated reliably. The author of this literature study is of the opinion that
the most commercially relevant objective is to minimize the cost per RPK. That will allow a direct
comparison with other modes of transport and give an impression of the minimum ticket price an
operator should apply to be profitable.

4.2. Research Questions
These considerations lead to the following Research Question and Sub-questions.

Given a daily time discretised dynamic demand pattern, how should a fleet of electric aircraft
be sized and scheduled given charging infrastructure and current airport infrastructure to min-
imise costs/RPK?

• How do we model an electric aircraft, capturing it’s behavior in a network, in the simplest way?

• What infrastructure do electric aircraft require?

• How do we estimate the costs of operating a fleet of electric commuter aircraft and charging
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infrastructure?

• How can we model demand in a thin-haul network, such that is captures dynamic behavior
while remaining flexible to new input?

• How can we model a network of electric commuter aircraft using current airport infrastruc-
ture?

• How can a linear optimisation problem be formulated to minimize costs of a thin-haul net-
work based on dynamic demand with a minimum RPK constraint?

• What is the computational complexity of such optimisation problem?

• Can an algorithm based on Branch-and-Bound and Column Generation solve the optimisa-
tion problem exactly in reasonable time on a network with up to 20 airports and 50 aircraft?

• What is the relation between computational time and instance size?

• What are the characteristics of an optimal schedule in terms of ASK, RPK, costs per ASK and
RPK, load factors and aircraft productivity?

• Which routes are most prominent in an optimal schedule?

• What is the sensitivity of the Key Performance Indicator (KPI)s to variations in the model pa-
rameters?

• How do costs- and emissions per RPK compare with other modes of transport?

• What are the remaining obstacles towards commercialization of an electric thin-haul net-
work?

• Which topics are most relevant for further research?

4.3. Method
The main contribution of this thesis will be proposing a new model that is able to use a complex
demand pattern to determine an optimal set of service trips, fleet sizing and scheduling to have the
largest chance to succeed commercially. Because determining service trips, fleet size and schedul-
ing are interrelated, this thesis will attempt to combine these in a single mathematical model. The
objective will be to minimize the cost per RPK. Both costs and RPK are variable so this implies a non-
linear objective function. Therefore, the model will incorporate a minimum RPK constraint and the
objective will be to minimize the costs. The problem will be solved iteratively for different minimum
RPK levels to construct a graph indicating the cost-RPK relation. This graph will start at a minimum
cost of acquiring a single aircraft and operating it on the shortest route as this is required to achieve
a non-zero RPK. The maximum RPK is determined by the demand model. When taking a low RPK,
acquisition costs will be high relative to operational costs. When taking the maximum RPK value,
a less optimal schedule is expected to ensure inclusion of all passengers, even those on expensive
routes requiring deadheading. The optimal cost/RPK is expected to be somewhere in between. The
planning for the research project can be found in Appendix A.



5 Conclusion

Electric aircraft are key to sustainable aviation in the future. Technology is developing at a very high
pace and even has commercial potential in the near future. A number of companies are developing
electric commuter aircraft and intend to start production in the coming years. These aircraft will
be very different to operate than fossil fuel powered aircraft. Operations research is required to
ensure optimal fleet sizing and scheduling. This literature review summarized the state-of-the-art
in relevant research fields.

Although a number of hurdles currently prevent commercial operations of UAM or large electric
aircraft, that is where operations research in electric aviation has focused on. This ignores the need
for an agile market and research plan. Electric commuter aircraft will provide a step up to larger
electric aircraft but receive little attention in research. Economic and operational feasibility studies
have indicated that electric aircraft reduce costs in thin-haul commuter operations over 20%.

Electric technology has been studied extensively for the VRP and VSP. Heuristic methods are usu-
ally used to solve the E-VRP whereas exact algorithms based on Branch-and-Bound and Column-
Generation are more common for the E-VSP. The E-VSP has been applied to a number of case stud-
ies to investigate scheduling of electric bus fleets. Scheduled electric bus operations have many
similarities with scheduled electric thin-haul aviation. The models developed in these papers pro-
vide a starting point to develop a model for the fleet sizing and scheduling of electric aircraft.

The feasibility studies in electric thin-haul aviation assume battery swap. As fast-charging tech-
nology is already very advanced, the batteries can already be charged substantially during the TAT.
Battery swapping induces additional logistic challenges in the scheduling of spare batteries and
ownership issues in case the swap stations are operated by a third party provider. It also requires a
larger upfront cost because of the additional batteries and the swap station. Fast-charging appears
to be the most practical way to replenish the energy level.

Commuter airlines missed out on the industry growth due to high operating cost. Electric aircraft
will allow costs to decrease and optimisation algorithms must ensure optimal use of the aircraft in a
network. The reduced cost may allow new entrants to enter the market and offer a scheduled thin-
haul airline service. A decisive KPI that determines success is the cost/RPK. Therefore, the research
project following this literature study will attempt the following:

• Develop a fleet sizing and scheduling optimisation for electric commuter aircraft using fast-
charging technology based on dynamic demand, charging infrastructure and current airport
infrastructure. Past research assumes a known set of service trips. No past research has inves-
tigated the fleet sizing and scheduling of electric aircraft based on dynamic demand and no
past research has minimized cost/RPK.

• Develop an algorithm to solve the optimisation exactly for a network with up to 20 nodes and
50 aircraft. This will ensure that the model is useful in practice.

• Conduct sensitivity analysis in aircraft and network parameters to draw conclusions on the
general behaviour of the optimisation and address uncertainty in the assumptions.
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A Gantt Chart

Figure A.1: Planning for the research project
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4
Conclusions

In this MSc Thesis, we formulated an optimisation model to schedule a fleet of electric thin-haul aircraft.
The problem was to determine a schedule that minimises cost under a minimum RPK (Revenue-Passenger
Kilometer) constraint. By varying the minimum RPK, a solution that minimises cost per RPK can be found.
Because the problem is NP-hard and could not be solved to optimality using the pure MILP (Mixed Inte-
ger Linear Programming) formulation, we developed a novel method. The algorithm was implemented and
tested on various of networks, ranging from 5 to 30 airports for a single day of scheduling.

The algorithm proved to be successful in finding a very good local optimum. The case studies revealed that
the Cost per RPK is not a smooth function, rather showing a sawtooth pattern. For a given fleetsize, the min-
imum Cost/RPK is found when the aircraft are flying at high-utilisation, meaning that they are performing
as many flights as possible. The schedule shows a strong preference for flights with i) high demand; and ii)
long flight distance. When demand is large enough, few seats must be left empty and a larger RPK is achieved
for the same cost. Long distance flights are preferred because they have a lower energy and cost per flown
kilometer. To achieve the minimum RPK, the algorithm tends to schedule back-and-forth flights between air-
ports with a long distance and high demand. These flights are the first to be scheduled until they are largely
saturated and there is little demand on them left. When this happens and the minimum RPK is increased
further, the schedule will start planning flights with a shorter distance and/or lower demand. This causes the
sawtooth pattern for Cost/RPK to have an increasing trend.

The contributions of this MSc Thesis are as follows. To the best of our knowledge, this is the first paper that
considers cost per RPK as an evaluation criterion in an E-VSP (Electric-Vehicle Scheduling Problem) and is
the first paper to apply operations research to electric thin-haul aircraft. We proposed a new scheduling
problem where the set of service trips is not known in advance but rather had a minimum RPK constraint.
We then proposed a method to solve the problem, which proved successful in finding a good local minimum.
The methods and insights developed for this MSc Thesis will support future thin-haul airline operators in
decisions on fleetsize and in scheduling to minimise the cost per RPK.

Further research could focus on the a number of extensions to the problem formulated in this Thesis. i) A
multi-depot variation. This Thesis considers only 1 hub where all aircraft start and end their day. It may
however be interesting to have multiple hubs to provide access to more flights and prevent the flights around
the hub to be congested; ii) Adding a charger constraint. In this Thesis, the number of chargers required at
any airport was assumed to be present. In reality, the number of chargers will be limited; iii) A battery swap
variation. Instead of using fast-charging, swapping depleted batteries by fully charged ones also has some
benefits; and lastly iv) Variable electricity prices. The electricity prices can vary drastically by geographic lo-
cation, time of day, peak power and total energy consumption. A variation of the problem where electricity
costs are incurred on the ground arcs instead of on flight arcs may allow to include variations based on lo-
cation and time of day. An additional variable will be required to track whether an aircraft on the ground
is charging or not. This Thesis took the first steps in the field of electric thin-haul airline operations, which
promises to remain a fascinating field for the upcoming years with many opportunities for further research.
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A
Improvements on the arc based

formulation

The first step in the optimisation was laying out the mathematical formulation of the problem. This is the arc
based formulation and is explained in detail in Sec. 3 of the scientific paper. This section discusses how the
problem was originally formulated and what improvements were made to finally get to the arc based formu-
lation.

A.1. Enforcing the Turn-Around-Time
In the original network, the TAT (Turn-Around-Time) was not included in the flight arcs as plotted in Fig.
A.1(a). Constraint A.1 is installed to enforce the TAT. We realise that when an aircraft arrives at node i (a, t ),
then the earliest possible node where the aircraft may depart for a subsequent flight is node j (a, t + tt at ). We
therefore augment the TS (Time-Space) network by making the following adjustments. For each node i (a, t )
in the network, we create a copy i∗(a, t ). Let the original node i be a ground node and the new node be an
arrival node. Each flight arc (i , j ) is replaced by flight arc (i , j∗) which, apart from arriving at the arrival node,
has exactly the same properties as the original arc. Lastly, let the arrival nodes be connected to the ground
nodes using TAT arcs (i∗(a, t ), j (a, t + tt at )). This is visualised in Fig. A.1(b) Upon arrival at an arrival node
after a flight, the aircraft must first use a TAT arc before it has access to new flight arcs. The TAT is therefore
automatically respected and constraint A.1 is no longer necessary.

xi ′′(a,t−2tstep )i ′(a,t−tstep )+xi ′(a,t−tstep )i (a,t ) ≥ 2
∑

(i , j )∈(δ−i ∪A f )
xi j ∀i (a, t ) ∈ N−(i (ah , tmi n)∪i (ah , tmi n+tstep ))

(A.1)
Augmenting the network comes at the cost. The number of nodes is doubled and a new set of arcs is in-
troduced. As each aircraft has a decision variable for each node and for each arc, this introduces a lot of
additional decision variables. Furthermore, additional constraints are needed to ensure flow conservation
on the arrival nodes and to regulate the change in energy over the TAT arcs. Augmenting the network does
more harm than good. Luckily, we can simplify the network. After using a flight arc, there is only one arc
available, the TAT arc. The flight- and TAT arc can be merged without loss of generality. By doing so, the ar-
rival nodes and separate TAT arcs are no longer needed while retaining the advantage that no TAT constraint
is needed. This results in the simplified augmented network and is visualised in Fig. A.1(c). This network
even has a few nodes and arcs less than the original network. Suppose that that TAT is 30 minutes and the
time step in the TS network is 15 minutes. Suppose it takes a flight time t (ah , a1) to fly from the hub ah to
airport a1. In the original network, the first node at a1 would be i1(a1, tmi n + t (ah , a1)). This node is followed
by i2(a1, tmi n + t (ah , a1)+ tstep ) and i3(a1, tmi n + t (ah , a1)+2tstep ). These are connected by the ground arcs
(i1, i2) and (i2, i3). The first node in the simplified augmented network is i3(a1, tmi n + t (ah , a1)+ tt at ) because
tt at = 2tstep . The nodes i1 and i2 and the ground arcs (i1, i2) and (i2, i3) are not present anymore. On top of
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eliminating the TAT constraints, the number nodes and arcs is reduced slightly, which reduces the number of
decision variables and number of other constraints.

(a) Original network (b) Augmented network

(c) Simplified augmented network. The underlying original net-
work shows the elimination of the first few nodes and ground arcs.

Figure A.1: Comparison of the different versions of the TS network

A.2. Determining the Number of Passengers
The number of passengers has to be determined to properly compute the RPK and to prevent exceeding the
demand. In the original formulation, the number of passengers was set as an attribute of a flight arc. To allow
for a 0,1, · · · , s passengers on a flight, there were s +1 copies of each flight arc. As there is a binary decision
variable on each arc for each aircraft, there are (s +1)|K | decision variables for each pair of nodes with flight
arcs.

A first improvement was to eliminate these copies of the flight arcs. Instead, the integer decision variable pi j

was introduced to choose to the number of passengers on the flight arc (i , j ). Constraint (A.2) is added to
ensure that the number of passengers is zero when the arc is not used. Note that the p decision variable is
independent of which aircraft it applies to. This leaves |K | binary decision variables and one integer decision
variable for a pair of nodes with a flight arc.

pi j ≤
∑

k∈K
s · xi j k ∀(i , j ) ∈ A f (A.2)

Integer decision variables remain difficult to handle and determining the exact number of passengers on
each flight leaves symmetries in the problem, different solutions with the same outcome. Suppose there are
2 flights serving the same demand interval such that capacity exceeds demand (2s > D((a1,a2),[t1,t2))). Note
that costs are not affected by the number of empty seats on each flight. The solution where passengers
are distributed (s, D((a1,a2),[t1,t2)) − s) (the first flight taking s passengers while the second takes the remain-
ing passengers) has the same cost as the solution where passengers are distributed the other way around
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(D((a1,a2),[t1,t2)) − s, s). However, the exact number of passengers on each arc does not have to be known. It
suffices to know the number of empty seats (’loss’) in a demand interval. Let l((a1,a2),[t1,t2)) an integer deci-
sion variable, representing the number of empty seats in the demand interval. Instead of an integer decision
variable on each flight arc, there now is only one integer decision variable for all flights in the same demand
interval.

As a final improvement, the integer loss variable can be relaxed without loss of generality. As explained in Sec.
3 of the scientific paper, when a loss variable assumes a non-integer value, it can always be rounded down to
the nearest integer without breaking any of the other constraints nor affecting the objective value.



B
Branch-and-Price

The method laid out in the scientific paper is able to find a local optimum to the problem as well as a lower
bound. The lower bound indicates how far the local optimum is from the global optimum at most, but there
is no way to prove exactly where this global optimum is located without computing it. As the arc based formu-
lation was unsuccessful in solving the problem to optimality, this section describes a B&P (Branch-and-Price)
algorithm to find the global optimum. We also explain why also this was unsuccessful.

The path based formulation laid out in Sec. 4 of the scientific paper is equivalent to the arc based formula-
tion from Sec. 3. CG was used to solve the linear relaxation of the path based formulation to optimality. If the
solution obtained by CG happens to be integral, then this is also the optimal solution to the integer version
of the problem and thus the global optimum we are seeking. There is however no guarantee that this will be
the case. While solving the integer version of the final RMP usually results in an improved integer solution,
no claims can be made about local nor global optimality of this solution. The computational results show
that LNS often results in an improvement over the integer RMP solution, proving that it is not necessarily
locally/globally optimal. To find a global optimum, CG must be implemented in a B&B (Branch-and-Bound)
framework where CG is solved at each node in the search tree, resulting in a B&P algorithm.

The underlying idea behind B&B is to divide and conquer. Because the original problem is too difficult to
be solved directly, it is divided in smaller subproblems that can be conquered individually. The dividing is
done by partitioning the feasible space in smaller and smaller subsets called branches. Conquering is done
by bounding how good the solution of a branch can be. If the bound of a branch is worse than the incumbent
solution (the currently best known integer solution), the branch is fathomed (discarded from further consid-
eration). The three steps of branching, bounding and fathoming make up the B&B framework.

We start by solving the path based formulation without any binary restrictions using CG. Next, a binary de-
cision variable is selected to branch on. This gives rise to two subproblems, one where the variable is 0, one
where it is 1. This is enforced by setting Constraint (B.1) to either = 1 or = 0.

∑
r∈R

yr ·δr
(i , j ) ≤ 1 ∀(i , j ) ∈ A f (B.1)

Each of the subproblems can be solved using CG. Consider one branch. Even if the solution obtained by CG is
not integral, it provides a bound to how good any integer solution in this branch can be. A branch is fathomed
when one of the following situations occurs:

• The bound is worse than the incumbent solution

• The branch has no feasible solution

• The solution of the branch is integer
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After a branch is solved and the fathoming criteria are checked, the next variable to branch on is selected.
This continuous branching results in a search tree as depicted in Fig. B.1.

Figure B.1: Example of a branch-and-Bound search tree where x1 is branched first, and x2 is branched next on the x1 = 0 side.

Before selecting which variable to branch one, we must first select which node in the search tree will be
branched. In this paper, we use best-first search, meaning that we always branch on the node with the best
bound (lowest) because this is the fastest way to get to the global optimum. If this global optimum is buried in
this branch, the fastest way to it is by branching there. If it is not, then it must be in one of the other branches
with a higher bound. So when the global optimum where to be found, we would still need to branch on the
nodes with a lower bound to know for sure that we have indeed found the global optimum. Either way, the
node with the lowest bound must be solved at some point.

Branching is done on the flight arc with a cumulative arc flow closest to 0.5 because this is keeping the so-
lution from being integer. Additionally, branching where the arc flow is either 0 or 1 will result in the same
solution and bound in one of the sub-branches.

In a best-case scenario, the incumbent solution is actually the global optimum. In that case, B&P needs to
branch on all nodes in the search tree where the bound is lower than the incumbent solution, until these are
all fathomed. The B&P was tested on the network with 5 airports at a very low market share. This instance
was sufficiently small to find the global optimum using the arc based formulation and the global optimum
was set as the incumbent solution. Even in this best-case scenario in a very small instance, B&P was unable to
reduce the gap between the incumbent solution and the lowest bound in the search tree. The main reason for
this was that setting an arc variable equal to 0 imposes little restrictions on the solution, which almost always
finds a way around the prohibited arcs to obtain a solution that remains lower than the incumbent solution.
In the branch where the variable was forced to 1, the solution was usually worse than the incumbent solution
and the branch was fathomed. This causes the search tree to be very unbalanced and continuously branch
on the 0-side without improving the lower bound.



C
Alternative Large Neighborhood Search

with Time Windows

An alternative LNS (Large Neighborhood Search) based on time-windows was considered. Let (t1, t2] be a
time-window. let A(t1,t2] be the set of arcs that start in the time-window and let AC

(t1,t2] be its complement

such that A = A(t1,t2] ∪ AC
(t1,t2]. Let two different solutions be neighbors if the decision variables related to all

arcs in AC
(t1,t2] are equal. So if (i , j ) ∈ AC

(t1,t2] and it is included in one solution, then it must also be part in the
neighboring solution. If it is not included in one solution, then it is also not present in its neighbor.

To find the best neighbor, a variation of the arc based formulation MILP is solved, using a small TS graph that
is extracted from the full TS graph. Because all arcs starting outside the time-window are fixed, the nodes
where a path must start and end inside the time-window are also fixed. The smaller TS graph is extracted by
labelling all reachable arcs using i) A forward travelling recursive labelling algorithm, starting from each node
where a path must start, and ii) A backward travelling recursive labelling algorithm, starting from each node
where a path must finish. The result is an extracted graph such as the one depicted in Fig. C.1.

Figure C.1: Example of an extracted graph for the LNS with a time-window (7:00, 9:00]

This variation of an LNS was tested using Time-windows of 2,3 and 4 hours. However, because the solution
outside of the time-window is already fixed, short windows of a couple of hours leave little room for improve-
ment. When the time-windows are extended too much, the graph becomes too large and starts resembling
the full-sized problem, which cannot be solved exactly in most cases. This variation of the LNS was therefore
discarded and is not presented in the scientific paper.
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D
Complete Computational Results

The algorithm was tested on various instances as explained in Sec. 5 of the scientific paper. The compu-
tational results of all instances are summarised in Tab. D.1. The first two columns indicate the number of
airports in the network and the market share. Next, the runtime and objective value of the initial construc-
tion heuristic is given. The runtime of CG is shown in the next column, as well as the obtained lower bound,
number of iterations performed and number of columns. The runtime and objective value of solving the
integer RMP is displayed next as well as the percentage improvement compared to the initial solution. For
LNS, the runtime, objective, percentage improvement compared to the integer RMP solution and number of
iterations performed is given. Finally, the number of aircraft is the LNS solution is shown.

Table D.1: Computational Results

construction Column Generation Integer RMP LNS
airports share runtime obj. runtime LB #it. col. runtime obj. runtime obj. #it. #ac.
5 1% 0min 10s 1900 0min 1s 316 2 21 0min 0s 1810 (-4.7%) 0min 11s 754 (-58.3%) 2 1
5 2% 0min 8s 1900 0min 0s 633 2 21 0min 0s 1810 (-4.7%) 0min 16s 986 (-45.5%) 2 1
5 3% 0min 9s 1900 0min 0s 950 2 21 0min 0s 1810 (-4.7%) 0min 14s 1211 (-33.1%) 2 1
5 4% 0min 8s 1900 0min 0s 1267 2 21 0min 0s 1810 (-4.7%) 0min 28s 1465 (-19.0%) 2 1
5 5% 0min 6s 1900 0min 0s 1584 2 21 0min 0s 1810 (-4.7%) 0min 7s 1668 (-7.9%) 2 1
5 6% 0min 16s 3800 0min 0s 1900 2 22 0min 0s 3621 (-4.7%) 0min 34s 2464 (-32.0%) 3 2
5 7% 0min 11s 3800 0min 0s 2217 2 22 0min 0s 3621 (-4.7%) 0min 17s 2606 (-28.0%) 2 2
5 8% 0min 11s 3800 0min 0s 2534 2 22 0min 0s 3621 (-4.7%) 0min 42s 2879 (-20.5%) 2 2
5 9% 0min 10s 3800 0min 0s 2851 2 22 0min 0s 3621 (-4.7%) 0min 17s 3063 (-15.4%) 2 2
5 10% 0min 11s 3800 0min 0s 3168 3 43 0min 0s 3520 (-7.4%) 0min 21s 3336 (-5.2%) 2 2
5 11% 0min 11s 3800 0min 1s 3485 4 69 0min 0s 3621 (-4.7%) 1min 0s 3609 (-0.3%) 2 2
5 12% 0min 16s 5722 0min 0s 3801 2 26 0min 0s 5431 (-5.1%) 0min 50s 4274 (-21.3%) 3 3
5 13% 0min 15s 5722 0min 0s 4118 4 50 0min 0s 5320 (-7.0%) 0min 53s 4529 (-14.9%) 3 3
5 14% 0min 16s 5722 0min 1s 4435 4 49 0min 0s 5320 (-7.0%) 1min 7s 4731 (-11.1%) 3 3
5 15% 0min 16s 5722 0min 1s 4752 4 53 0min 0s 5320 (-7.0%) 1min 24s 5046 (-5.2%) 3 3
5 16% 0min 24s 5722 0min 1s 5069 4 67 0min 0s 5420 (-5.3%) 0min 30s 5229 (-3.5%) 2 3
5 17% 0min 27s 7432 0min 1s 5389 5 58 0min 0s 6939 (-6.6%) 2min 7s 5942 (-14.4%) 4 4
5 18% 0min 21s 7432 0min 1s 5712 5 70 0min 0s 7029 (-5.4%) 1min 15s 6174 (-12.2%) 3 4
5 19% 0min 20s 7432 0min 2s 6035 8 73 0min 0s 7119 (-4.2%) 1min 4s 6489 (-8.8%) 2 4
5 20% 0min 21s 7432 0min 2s 6360 8 92 0min 0s 7029 (-5.4%) 2min 36s 6714 (-4.5%) 4 4
5 21% 0min 21s 7432 0min 1s 6685 6 122 0min 0s 7130 (-4.1%) 1min 18s 6987 (-2.0%) 2 4
5 22% 0min 20s 7432 0min 1s 7009 6 114 0min 0s 7342 (-1.2%) 0min 31s 7342 (-0.0%) 1 4
5 23% 0min 25s 9141 0min 2s 7334 8 129 0min 1s 8638 (-5.5%) 3min 10s 7906 (-8.5%) 4 5
5 24% 0min 25s 9141 0min 2s 7660 9 129 0min 0s 8650 (-5.4%) 2min 2s 8109 (-6.3%) 4 5
5 25% 0min 26s 9141 0min 2s 7985 10 133 0min 0s 8738 (-4.4%) 2min 7s 8363 (-4.3%) 4 5
5 26% 0min 25s 9141 0min 2s 8311 9 157 0min 0s 8839 (-3.3%) 1min 43s 8786 (-0.6%) 2 5
5 27% 0min 31s 10982 0min 3s 8636 11 171 15min 20s 10258 (-6.6%) 2min 34s 9432 (-8.0%) 3 6
5 28% 0min 31s 10982 0min 3s 8962 12 202 1min 21s 10258 (-6.6%) 1min 49s 9616 (-6.3%) 3 6
5 29% 0min 32s 10982 0min 3s 9289 10 180 0min 1s 10407 (-5.2%) 4min 42s 9870 (-5.2%) 6 6
5 30% 0min 30s 10982 0min 2s 9616 9 171 0min 0s 10489 (-4.5%) 2min 18s 10162 (-3.1%) 3 6
5 31% 0min 31s 10982 0min 4s 9943 15 229 0min 0s 10549 (-3.9%) 1min 0s 10417 (-1.2%) 2 6
5 32% 0min 35s 12905 0min 3s 10271 12 171 3min 44s 12082 (-6.4%) 2min 47s 11142 (-7.8%) 4 7
5 33% 0min 35s 12905 0min 3s 10598 13 212 0min 51s 12026 (-6.8%) 1min 45s 11426 (-5.0%) 2 7
5 34% 0min 34s 12905 0min 3s 10925 12 197 0min 2s 12157 (-5.8%) 2min 30s 11640 (-4.3%) 4 7
5 35% 0min 37s 12905 0min 3s 11253 12 225 0min 0s 12265 (-5.0%) 4min 39s 11932 (-2.7%) 6 7
5 36% 0min 34s 12905 0min 3s 11581 13 218 0min 0s 12341 (-4.4%) 1min 9s 12216 (-1.0%) 2 7
5 37% 0min 38s 14574 0min 4s 11910 16 230 41min 2s 13723 (-5.8%) 1min 56s 13005 (-5.2%) 3 8
5 38% 0min 29s 14574 0min 2s 12240 10 178 0min 17s 13731 (-5.8%) 2min 38s 13248 (-3.5%) 3 8
5 39% 0min 38s 14574 0min 5s 12571 18 282 0min 7s 13749 (-5.7%) 2min 12s 13476 (-2.0%) 3 8
5 40% 0min 38s 14574 0min 4s 12903 14 250 0min 0s 13891 (-4.7%) 1min 21s 13682 (-1.5%) 2 8
5 41% 0min 44s 16182 0min 4s 13235 15 275 60min 0s 15323 (-5.3%) 1min 34s 14437 (-5.8%) 2 9
5 42% 0min 42s 16182 0min 4s 13568 13 206 1min 44s 15305 (-5.4%) 4min 20s 14853 (-3.0%) 5 9

Continued on next page
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Table D.1 – Continued from previous page
construction Column Generation Integer RMP LNS

airports share runtime obj. runtime LB #it. col. runtime obj. runtime obj. #it. #ac
5 43% 0min 41s 16182 0min 5s 13902 20 258 0min 9s 15424 (-4.7%) 1min 59s 15174 (-1.6%) 3 9
5 44% 0min 47s 16182 0min 7s 14236 23 225 0min 1s 15573 (-3.8%) 2min 31s 15358 (-1.4%) 4 9
5 45% 0min 46s 16182 0min 7s 14573 23 298 0min 1s 16050 (-0.8%) 1min 33s 15867 (-1.1%) 2 9
5 46% 0min 59s 17962 0min 7s 14910 21 299 60min 0s 17070 (-5.0%) 3min 4s 16538 (-3.1%) 4 10
5 47% 0min 49s 17962 0min 7s 15247 22 298 0min 21s 17114 (-4.7%) 3min 26s 16949 (-1.0%) 4 10
5 48% 0min 49s 17962 0min 6s 15585 21 258 0min 3s 17313 (-3.6%) 2min 27s 17030 (-1.6%) 3 10
5 49% 0min 49s 17962 0min 7s 15923 22 305 0min 0s 17520 (-2.5%) 1min 21s 17345 (-1.0%) 2 10
5 50% 0min 54s 19771 0min 9s 16261 30 292 12min 52s 18633 (-5.8%) 3min 51s 18023 (-3.3%) 4 11
5 51% 0min 53s 19771 0min 9s 16600 29 285 0min 53s 18872 (-4.5%) 4min 25s 18397 (-2.5%) 5 11
5 52% 0min 55s 19771 0min 13s 16940 36 377 0min 10s 19072 (-3.5%) 2min 46s 18795 (-1.4%) 3 11
5 53% 0min 53s 19771 0min 10s 17280 30 357 0min 1s 19328 (-2.2%) 1min 33s 19220 (-0.6%) 2 11
5 54% 0min 57s 21619 0min 12s 17620 37 332 2min 57s 20331 (-6.0%) 5min 9s 19775 (-2.7%) 5 12
5 55% 0min 58s 21619 0min 12s 17961 34 386 0min 11s 20540 (-5.0%) 3min 38s 20181 (-1.7%) 4 12
5 56% 1min 7s 21619 0min 10s 18304 32 328 0min 1s 20774 (-3.9%) 2min 34s 20523 (-1.2%) 3 12
5 57% 1min 3s 23318 0min 13s 18648 37 374 0min 7s 21446 (-8.0%) 3min 0s 21300 (-0.7%) 3 12
5 58% 1min 4s 23318 0min 13s 19000 40 313 0min 15s 22007 (-5.6%) 4min 27s 21563 (-2.0%) 4 13
5 59% 1min 5s 23318 0min 11s 19353 34 322 0min 2s 22263 (-4.5%) 2min 54s 21985 (-1.2%) 3 13
5 60% 1min 3s 23318 0min 13s 19709 38 333 0min 2s 23039 (-1.2%) 2min 36s 22931 (-0.5%) 2 13
5 61% 1min 47s 25028 0min 19s 20064 42 334 1min 12s 23429 (-6.4%) 4min 7s 23179 (-1.1%) 3 14
5 62% 1min 21s 25028 0min 16s 20420 46 327 0min 3s 23706 (-5.3%) 3min 38s 23454 (-1.1%) 3 14
5 63% 1min 11s 25028 0min 15s 20776 47 362 0min 3s 23869 (-4.6%) 1min 50s 23695 (-0.7%) 2 14
5 64% 1min 14s 26634 0min 21s 21132 56 424 1min 19s 24982 (-6.2%) 3min 53s 24515 (-1.9%) 4 15
5 65% 1min 15s 26634 0min 18s 21489 59 299 0min 17s 25345 (-4.8%) 2min 22s 25112 (-0.9%) 2 15
5 66% 1min 24s 26634 0min 19s 21847 62 297 0min 2s 25619 (-3.8%) 3min 40s 25369 (-1.0%) 3 15
5 67% 1min 16s 28209 0min 21s 22206 68 317 8min 34s 26628 (-5.6%) 4min 44s 26185 (-1.7%) 4 16
5 68% 1min 26s 28209 0min 22s 22565 65 344 0min 18s 26763 (-5.1%) 4min 3s 26340 (-1.6%) 4 16
5 69% 1min 17s 28209 0min 26s 22924 69 400 0min 7s 27147 (-3.8%) 2min 34s 27039 (-0.4%) 2 16
5 70% 1min 22s 29818 0min 25s 23285 70 372 7min 35s 28310 (-5.1%) 3min 31s 27782 (-1.9%) 3 17
5 71% 1min 21s 29818 0min 31s 23647 83 387 0min 33s 28348 (-4.9%) 4min 12s 28133 (-0.8%) 4 17
5 72% 1min 27s 29818 0min 31s 24012 88 382 0min 3s 28611 (-4.0%) 2min 51s 28531 (-0.3%) 2 17
5 73% 1min 21s 31413 0min 34s 24380 95 394 1min 23s 29584 (-5.8%) 2min 58s 29501 (-0.3%) 2 18
5 74% 1min 21s 31413 0min 36s 24750 95 441 0min 26s 29952 (-4.7%) 3min 16s 29686 (-0.9%) 3 18
5 75% 1min 33s 33125 0min 43s 25123 110 413 0min 34s 30461 (-8.0%) 1min 8s 30461 (-0.0%) 1 18
5 76% 1min 28s 33125 0min 45s 25501 110 481 2min 27s 31093 (-6.1%) 2min 43s 30980 (-0.4%) 2 19
5 77% 1min 25s 33125 0min 48s 25880 109 427 0min 21s 31533 (-4.8%) 1min 4s 31533 (-0.0%) 1 19
5 78% 1min 28s 34922 0min 47s 26261 118 453 2min 48s 32497 (-6.9%) 2min 59s 32345 (-0.5%) 2 19
5 79% 1min 38s 34922 0min 50s 26643 123 476 0min 36s 32855 (-5.9%) 2min 15s 32854 (-0.0%) 2 20
5 80% 1min 33s 36365 1min 0s 27028 142 498 0min 36s 33294 (-8.4%) 2min 27s 33255 (-0.1%) 2 20
5 81% 1min 31s 36365 1min 24s 27413 153 522 4min 32s 34238 (-5.8%) 3min 52s 33882 (-1.0%) 3 21
5 82% 1min 31s 37719 1min 0s 27800 143 449 1min 16s 34828 (-7.7%) 3min 38s 34713 (-0.3%) 3 21
5 83% 1min 42s 37719 1min 5s 28190 151 499 10min 26s 35820 (-5.0%) 1min 6s 35820 (-0.0%) 1 22
5 84% 1min 33s 39271 1min 17s 28585 155 538 3min 28s 36226 (-7.8%) 3min 54s 35882 (-0.9%) 3 22
5 85% 1min 32s 39271 1min 11s 28987 168 520 5min 34s 37448 (-4.6%) 5min 5s 37252 (-0.5%) 3 23
5 86% 1min 36s 40879 1min 38s 29406 193 577 6min 46s 38052 (-6.9%) 2min 37s 37944 (-0.3%) 2 23
5 87% 1min 39s 40879 1min 21s 29832 179 558 8min 40s 39037 (-4.5%) 4min 48s 38612 (-1.1%) 3 24
5 88% 1min 35s 42483 1min 37s 30268 186 659 6min 27s 39466 (-7.1%) 4min 43s 39230 (-0.6%) 3 24
5 89% 1min 36s 42483 1min 34s 30732 190 654 60min 0s 40688 (-4.2%) 7min 49s 40408 (-0.7%) 5 25
5 90% 1min 39s 44243 1min 32s 31216 185 688 53min 38s 42081 (-4.9%) 4min 15s 41828 (-0.6%) 3 26
5 91% 1min 45s 45927 1min 48s 31721 195 800 36min 7s 42819 (-6.8%) 3min 16s 42629 (-0.4%) 2 26
5 92% 1min 43s 47692 1min 59s 32245 195 845 58min 53s 44121 (-7.5%) 1min 16s 44121 (-0.0%) 1 27
5 93% 4min 10s 50299 2min 43s 32773 177 824 60min 1s 45647 (-9.2%) 4min 19s 45647 (-0.0%) 1 28
5 94% 2min 47s 53463 2min 33s 33322 183 999 60min 1s 47645 (-10.9%) 6min 50s 47288 (-0.7%) 2 29
10 10% 2min 15s 5722 0min 3s 4345 4 64 0min 0s 5431 (-5.1%) 5min 4s 4690 (-13.6%) 2 3
10 20% 4min 22s 10982 0min 22s 8741 20 353 3min 18s 10569 (-3.8%) 11min 3s 9534 (-9.8%) 3 6
10 30% 5min 21s 16182 0min 50s 13235 35 619 31min 4s 15489 (-4.3%) 27min 14s 14485 (-6.5%) 4 9
10 40% 7min 19s 21656 1min 12s 17833 53 662 0min 27s 20732 (-4.3%) 19min 40s 20175 (-2.7%) 3 12
10 50% 8min 41s 28500 2min 13s 22624 101 654 0min 6s 27296 (-4.2%) 26min 6s 26729 (-2.1%) 3 16
10 60% 10min 48s 36986 5min 5s 27647 199 761 0min 10s 36181 (-2.2%) 28min 34s 35635 (-1.5%) 2 21
10 70% 13min 14s 48738 9min 6s 32953 287 1002 0min 12s 48217 (-1.1%) 42min 45s 47548 (-1.4%) 2 28
10 80% 14min 18s 68957 23min 52s 38746 437 1653 19min 41s 66792 (-3.1%) 134min 20s 65659 (-1.7%) 4 41
15 10% 4min 43s 7432 0min 8s 6173 7 126 0min 0s 7169 (-3.5%) 9min 21s 7026 (-2.0%) 2 4
15 20% 8min 35s 14576 1min 9s 12464 30 540 0min 6s 14051 (-3.6%) 25min 22s 13367 (-4.9%) 3 8
15 30% 14min 0s 23459 2min 26s 18940 54 791 26min 18s 22795 (-2.8%) 76min 2s 21416 (-6.0%) 4 13
15 40% 17min 55s 32022 5min 3s 25708 123 815 1min 15s 30759 (-3.9%) 52min 47s 29977 (-2.5%) 2 18
15 50% 20min 44s 42134 10min 11s 32875 234 883 0min 11s 40784 (-3.2%) 131min 16s 40307 (-1.2%) 4 24
15 60% 25min 37s 54274 17min 8s 40425 325 1141 0min 17s 53672 (-1.1%) 76min 49s 53566 (-0.2%) 2 31
15 70% 30min 46s 71964 28min 41s 48402 395 1566 0min 29s 71511 (-0.6%) 162min 59s 70938 (-0.8%) 3 42
15 80% 36min 22s 104973 65min 0s 56921 580 2361 1min 35s 104973 (–0.0%) 186min 22s 104476 (-0.5%) 2 64
20 10% 9min 31s 9349 0min 45s 7481 21 267 0min 2s 9030 (-3.4%) 41min 40s 8007 (-11.3%) 4 5
20 20% 16min 17s 18150 2min 5s 15160 40 682 1min 29s 17396 (-4.2%) 86min 19s 16681 (-4.1%) 4 10
20 30% 22min 30s 27034 5min 30s 23153 100 727 0min 4s 27034 (-0.0%) 68min 30s 26843 (-0.7%) 2 15
20 40% 29min 39s 38855 15min 33s 31673 239 927 0min 7s 38749 (-0.3%) 102min 24s 38598 (-0.4%) 2 22
20 50% 39min 43s 54091 28min 43s 40740 351 1417 0min 18s 53392 (-1.3%) 214min 57s 53069 (-0.6%) 3 31
20 60% 51min 4s 75400 60min 10s 50363 490 2032 0min 50s 74335 (-1.4%) 322min 42s 74029 (-0.4%) 3 44
20 70% 57min 31s 110873 144min 50s 60588 691 3263 24min 48s 110595 (-0.3%) 376min 33s 109879 (-0.6%) 2 68
30 10% 28min 0s 14582 6min 3s 12103 40 758 2min 55s 13989 (-4.1%) 126min 55s 13248 (-5.3%) 3 8
30 20% 51min 21s 28942 41min 11s 24899 187 1271 0min 20s 28735 (-0.7%) 295min 49s 28457 (-1.0%) 3 16
30 30% 80min 23s 48093 101min 47s 38942 404 1602 0min 28s 47680 (-0.9%) 472min 11s 47370 (-0.7%) 3 27
30 40% 109min 59s 72048 379min 42s 54135 742 3154 1min 0s 72048 (-0.0%) 283min 17s 72048 (-0.0%) 1 41
30 50% 108min 52s 106751 788min 36s 70723 1259 5977 3min 51s 105810 (-0.9%) 1744min 11s 105442 (-0.3%) 4 63
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