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Abstract

The transition to renewable energy sources is a key strategy in mitigating climate change,
underscored by international agreements like the Paris Agreement and the European Union’s
target of sourcing 42.5% of its energy from renewables by 2030. However, integrating Variable
Renewable Energy (VRE) sources, such as solar and wind, presents significant challenges for
grid stability and balancing costs.

This study empirically investigates the impact of increasing Battery Energy Storage Systems
(BESS) capacity on European balancing market prices. Using time-series data from five Euro-
pean countries between 2016 and 2019, multivariate regression models are applied to analyze
the effects on three types of balancing services: Frequency Containment Reserve (FCR), Au-
tomatic Frequency Restoration Reserves (aFRR), and Manual Frequency Restoration Reserves
(mFRR).

The results indicate that increased BESS capacity significantly reduces balancing prices, partic-
ularly in the FCR and aFRR markets. This research extends the findings from previous studies
in Australia to the European context, highlighting the potential of BESS to offer cost-effective,
CO2-neutral solutions for grid stability.

These findings have important implications for Transmission System Operators (T'SOs), poli-
cymakers, and stakeholders in the energy market, suggesting that specific policy and strategic
investments in BESS could enhance the cost-efficiency and sustainability of future electricity
systems.
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1 Introduction

There is widespread consensus that there is a pressing need to mitigate climate
change. Growing public and political awareness of this urgent need, has led to global efforts
aiming to, amongst others, reduce Carbon Dioxide (CO;) emissions. These efforts have been
channeled through various international agreements, most notably the Paris Agreement. These
agreements underscore the urgency of transitioning from conventional carbon-intensive energy
sources to cleaner alternatives, marking an era known as the energy transition. The European
Union (EU) has further solidified this commitment by establishing a binding target for 2030
to source at least 42.5% of the European Union’s overall energy mix from renewable energy
sources (European Commision, 2022).

Solar and wind are the most important renewable energy sources to produce elec-
tricity given they are zero-carbon, low cost and widely applicable. These technologies
have experienced a massive build out in recent years and were responsible for 27% of total elec-
tricity production in the EU in 2023 (Brown & Jones, 2024). This shift helps to meet the EU
targets, but complicates the crucial task for Transmission System Operator (TSO) to balance
supply and demand in real time- their primary responsibility. This is due to the fact that
solar and wind generation are fully dependent on weather conditions, which has two inherent
challenges. Firstly, their electricity supply is intermittent and non-dispatchable, meaning gen-
eration can’t be increased or decreased on demand. In addition, their electricity supply is hard
to perfectly predict. This means that solar and wind capacity needs to be complemented by
flexible power plants to ensure supply and demand is in balance.

Traditionally, coals and gas-fired power generation have provided the lion’s share
of balancing services in most EU countries (Belmonte et al., 2023). If TSOs would
continue to balance the grid with conventional energy sources in the future, these plants would
have to keep operating at a consistent base level all year round to be able to ramp up and down
as desired, even at moments in time when their marginal costs are above wholesale market
price. This may not only be undesirable from a CO, reduction perspective, but would also
cause TSOs to incur significant costs. Driven by these high marginal costs and CO, emissions,
the role of these conventional power plants in the electricity system is set to change in many
EU countries (Krafwerke, 2024). Grid-scale Battery Energy Storage System (BESS) emerge
as a promising solution to offer dispatchable capacity without CO, emissions. BESS facilities
are fundamentally different from conventional dispatchable assets in terms of capabilities and
economics. Increased BESS capacity can therefore impact grid balancing operations and market
dynamics, including the costs associated incurred by TSO’s.

TSOs and Balancing Service Providers (BSPs) need to have insight into the future
trends of balancing market prices. This information is crucial to them because it affects
the societal costs and their business strategies respectively. Lower fees are positive for TSOs
and society, as they reduce overall system balancing costs. However, lower fees may present
a challenge for operators and investors in BESS as the balancing fees generally comprise an
important revenue stream. Lower fees negatively impact their business case by potentially
cannibalising the market.

This research aims to empirically investigate how BESS adoption affects the grid
balancing prices in European balancing markets. Increased BESS capacity is expected



to reduce balancing prices in two main ways. Firstly, the merit order, which determines bal-
ancing prices, may change since BESS typically has lower marginal costs than conventional
flexible assets. Secondly, the widespread adoption of BESS for balancing services will likely
boost competition in the balancing markets. This increased competition is expected to drive
existing market players to lower their prices, indicating that the current market is imperfect.
(Conejo, 2023). To study this effect, the following research question is formulated;

"What is the effect of increasing grid-scale BESS capacity on balancing market
prices in Europe?"

Sub-research questions To structure this research towards answering the research question,
multiple sub-questions have been defined:

SRQ1: How do the three balancing markets in Europe differ from one another?

SRQ2: What is grid-scale BESS, and to what extent can BESS provide the different balanc-
ing services?

SRQ3: What are the specific mechanisms through which BESS is expected to impact the
different balancing market prices?

SRQ4: What are other factors that impact balancing market prices and how do these relate
to the effect of BESS on the balancing market prices?

A considerable amount of both theoretical and empirical research has been done
into the impact of BESS on electricity prices in wholesale markets (Lamp &
Samano, 2022, Zamani-Dehkordi et al., 2017). The impact of BESS on balancing mar-
ket prices, however, has received less academic attention. Where applied to balancing markets,
studies generally apply numerical simulations, such as Khalilisenobari & Wu (2022), Padman-
abhan et al. (2019), and Rossi et al. (2019), rather than conduct empirical research on real
balancing market price data.

Empirical research on the effect of BESS capacity on balancing markets has so
far been limited to the Australian continent (Rangarajan et al., 2023). This the-
sis extends the Australian explorations to the European context and, therefore, complements
existing literature with a new perspective. Extending this research to the European context
not only broadens the scope of our understanding but also allows for a deeper examination
of the geographical nuances shaping energy transition dynamics. Notably, European countries
exhibit differing levels of BESS adoption and grid integration compared to Australia, stemming
from distinct market structures, regulatory environments, and renewable energy profiles. Ex-
ploring these disparities provides valuable insights into BESS adoption and its implications for
balancing markets across diverse regions.

By performing a regression analysis, I seek to discern the effects of BESS adoption
on market prices. [ use time-series data on BESS capacity and balancing market prices
for five countries in the EU between 2016 and 2022. In the analysis, I differentiate between
three different types of balancing services, Frequency Containment Reserve (FCR), Automatic
Frequency Restoration Reserves (aFRR) and Manual Frequency Restoration Reserves (mFRR);
the differences between these will be elaborated on in section 2. Data was primarily collected
from the European Network of Transmission System Operators for Electricity (ENTSO-E)
transparency platform and a database on storage facilities managed by EU.



The analysis reveals that increased BESS capacity significantly reduces balancing
prices, particularly in the FCR and aFRR markets. Notably, the largest negative
impacts were observed in Germany and Hungary for the FCR and aFRR markets. However,
positive effects were found in some longer-term markets, like the mFRR in Germany, suggesting
that fossil-fuel-based balancing market participants might have tried to recover costs in these
markets. These findings underscore the potential of BESS to provide cost-effective, CO2-neutral
solutions for grid stability, aligning with broader climate policy goals.

The rest of this paper will be structured as follows. To answer SRQ1 and SRQ?2, first,
the necessary background knowledge on the FEuropean electricity system, balancing mechanisms
and BESS technology is provided in section 2. This provides the building blocks for the con-
ceptual framework and helps to interpret existing literature. Hence,section 3 discusses existing
literature and identifies relevant variables for the regression analysis. In section 4, the research
method is described. This includes the conceptual framework - which provides answers to SRQ3
and SRQ4 -, causal inference, hypothesis and regression model specification. section 5 describes
the data collection, management and manipulation to construct the database, providing trans-
parency and reproducibility, and provides summary statistics and descriptives. Results are
provided and discussed in section 6. The paper ends with a conclusion in section 7, providing
summarising notes and implications for both stakeholders and academics.



2 Institutional Background

In this section, concepts that are important to understand in the context of this thesis will be
discussed. Subsections 2.1 and 2.2 provide a broader introduction to the European electricity
system. Subsections 2.3 and 2.4 focus on answering sub-questions SRQ1 (What are the different
balancing markets in Europe?) and SRQ2 (What exactly is grid-scale BESS?).

2.1 The European Electricity System

In the 1990s, the EU initiated efforts to expand the internal market to include the energy sector,
introducing the European electricity system. This initiative aimed to establish pan-European
competitive and transparent energy markets, ultimately reducing costs for end-consumers and
enhancing the security of energy supply (Next Krafwerke, 2023).

Today, the electricity systems of many European countries are physically interconnected, allow-
ing for a flow of electricity between countries. An electron produced in Spain could theoretically
travel and be consumed in Germany. Despite the physical interconnections, European electric-
ity markets are still primarily organised along national lines due to historical, regulatory, and
infrastructural reasons. However, they are strongly regulated by EU law to enable reliability,
cost-effectiveness, and environmental sustainability.

One influential EU regulation relevant to this thesis is the regulation that requires unbundling
of generation and distribution of energy markets since 2009'. This unbundling means no single
company could operate a power network and generate or sell electricity with the aim of allowing
fair access to transport infrastructure. Concretely, this means that in most markets, electricity
is generated and supplied by private companies — allowing for competition to reduce societal
costs — while a public company is in charge of electricity transport.

With the transition from an integrated to an unbundled system, the complexity of the elec-
tricity system has significantly increased. Figure 1 provides a schematic overview. I use the
Dutch case to explain how electricity systems and the different markets that these systems
comprise work, but a similar system exists for each European member state independently. A
few key characteristics are relevant to understanding this paper’s research question and analysis.

!The unbundling regards any energy market. The present research focuses on electricity markets specifically.
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Figure 1: Diagram of the electricity system indicating the difference between technical and
institutional components and the roles of different market participants. Source: (De Vries et
al., 2020).

The system has two distinct layers: a physical and an institutional one. The physical layer in-
cludes the actual generation, distribution, and supply, whereas the institutional layer comprises
of the buying and selling of electricity and balancing products.

Electricity producers and consumers interact with one another in two electricity markets: the
wholesale market and the retail market. In the wholesale market, electricity is traded on power
exchanges between producers, large consumers, and retail companies, and via bilateral markets,
directly between generators and large consumers. In the retail market, small consumers buy
electricity from retailers, such as Vattenfall or Eneco in the Netherlands, which produce the
required amount of electricity with their own assets, or they buy it from the wholesale market.

Because of the unique characteristics of electricity, it is imperative to balance the system. In
other words, the generation and consumption should be equal at every moment to ensure the
stability of the network frequency. In Europe, this is 50 Hertz. Deviations in frequency caused
by imbalances can lead to various issues, including blackouts and potential mechanical damage
to rotating generators such as gas-fired power plants or wind turbines. As indicated by the
red dashed square in Figure 1, balancing the grid is the responsibility of a TSO. To do so
effectively, different balancing services and corresponding markets exist. This is this paper’s
central focus. Therefore, the following section further explains the different market players,
balancing services, and price-setting mechanisms.

2.2 The balancing market: roles and responsibilities

Balancing markets have been developed to avoid the consequences of system frequency devia-
tions. There are three actors involved: the Transmission System Operator (T'SO), the Balancing
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Responsible Party (BRP), and the Balancing Service Provider (BSP). Their interactions are
depicted in Figure 2.

Balance —»  =money flow
responsibility
—_ = information flow
—_ = ... provides ....

... influences ....

Balancing
energy price

BSPs energy

Balancing service provision Imbalance settlement

Figure 2: Schematic overview of the roles of the three relevant actors involved in the balancing
market. Source: (De Vries et al., 2020).

Transmission system operator - TSO National TSOs are responsible for maintaining
the grid frequency of 50 hertz at all times to balance the grid. It has a procedure to avoid
imbalances through the support of BRPs and a market to respond to (forecasted or occurring)
imbalances through the support of BSPs.?

Balancing Responsible Party — BRP Each supplier or buyer of electricity connected to
the transmission grid carries balance responsibility and, therefore, needs to assign a Balance
Responsible Party. Large consumers, retail companies, and electricity producers often act as
BRPs themselves, while households or small businesses transfer the responsibility to the retail
companies from whom they purchase electricity. Every day, BRPs submit their expected pro-
duction or consumption program to the TSO for every quarter hour the next day. The BRP is
financially responsible for any deviation from this program and, therefore, has an incentive to
produce or consume exactly the amount of electricity as stated in the submitted program.

In reality, however, imbalances can arise due to, for example, forecasting errors in VRE gen-
eration, technical malfunctions in generation capacity, and unforeseen variations in demand.
BRPs can rectify any imbalances in their allocations before the end of the imbalance settlement
period (ISP), which lasts for 15 minutes, without incurring financial penalties. To do so, they

2In some countries, TSOs activate balancing products in response to forecasted imbalances (proactive), while
in other countries, they are activated only when an imbalance occurs (reactive).



have the option to adjust their load or production at designated points or engage in trading
with another BRP to achieve balance (Tennet, 2023¢). Despite this mechanism, the total actual
production and consumption of all BRPs may not consistently balance out for each period. To
coordinate the balancing process, the TSO needs to ensure sufficient balancing capacity with
the support of BSPs. This thesis will mainly focus on the relationship between the BSP and
the TSO regarding the balancing market.

Balancing Service Provider — BSP Due to the unbundling of the electricity system, TSOs
cannot own or operate the assets that perform these required balancing services. Instead, a
balancing market has been set up where TSOs can procure these services from BSPs. BSPs are
private companies that operate dispatchable generation assets like gas-fired power plants and
BESS. Section subsection 2.4 describes BESS. BSPs have to prequalify to prove their ability to
meet the technical requirements for the different balancing services. The interaction between
the TSOs and the BSPs is the central focus of this paper.

The following sections describe the different types of balancing services, how these are procured
and activated, and how their prices are formed.

2.3 The balancing process

Towards answering the first sub-research question, this subsection discusses the process of bal-
ancing and the roles that the three different balancing services play in this process.

Balancing services are reactive, short-term means to level out frequency deviations in the power
grid.® These services can be upward or downward frequency regulation. In case of a shortage
in power generation at a specific moment, the TSO must either boost generation or request
consumers to reduce consumption — this is referred to as upward regulation. Conversely, if
there’s an excess in generation, the opposite measures are taken, known as downward regulation.

2.3.1 Three types of balancing services

There are three types of balancing services in the EU which cater to different purposes in ad-
dressing imbalances: Frequency Containment Reserves (FCR), Automatic Frequency Restora-
tion Reserves (aFRR) and Manual Frequency Restoration Reserves (mFRR) (Tennet, 2023d).
Each service has a distinct activation method, ramp-up rate and duration, reflecting when and
how they are used to respond to different levels of imbalance. All services have a minimum bid
capacity of 1 MW. Table 1 summarizes the types of services.

3A great variety of names are used for "balancing services." This inconsistent and diverging terminology
is a significant problem in this field (Hirth & Ziegenhagen, 2015). This thesis stays as close as possible to
the definitions stated in the EU’s EBGL (European Commission, 2017). For this reason, I refer to "balancing
services". 'Balancing reserve’, 'frequency control’, ’ancillary services’, or 'reserve power’ are other terms widely
used in literature and by TSOs.



Table 1: Overview of the three different balancing markets.

Balancing Procurement and Balancing price-setting Activation method Full Activation
service Time

FCR - Procured internationally in a common European Automatically, based on 30 seconds
primary FCR market, each participating country contributes grid frequency deviations

control and share of FCR volume — set by EU regulation measured by the FCR

aFRR — Procured via daily national auctions through bid- Automatically by an 5 minutes
secondary obligations, contracts for fixed moment in time algorithm of the relevant

control TSO

mFRR — Procured via daily national auctions through Manually by the TSO of 10-15 minutes
tertiary capacity contracts the area of the imbalance

control

The Full Activation Time (FAT') is the maximum time allowed for fully activating or deactivat-
ing a standard aFRR energy bid. During the prequalification process, each BSP’s adherence to
the FAT requirement is verified and subsequently incorporated into local monitoring guidelines.
When a BSP’s bid is activated or deactivated, it must deliver the required volume within the
FAT to remain compliant (ENTSO-E, 2018).

When an imbalance occurs in the European electricity grid, the FCR intervenes automatically
within seconds to restore the balance in the entire synchronous (physically connected) grid.
FCR works across borders and is considered the primary control reserve. Simultaneously,
the TSO of the area where the imbalance occurs automatically requests the BSPs to activate
automatic FRR. aFRR gradually replaces the FCR and is considered the secondary control.
In cases of significant system imbalance during long-lasting periods, the TSO can activate the
mFRR to ’free up’ the aFRR for possible future imbalances. Figure 3 presents how the three
balancing services are used over time following a drop in frequency due to some imbalance.

Grid frequency

50 Herz
Activation level —_— FCR
aFRR
mFRR
Time

Occurrence Activation of Activation of Activation of Fi ‘al
of imbalance FCR aFRR mFRR (NEEED
compensation

Figure 3: Schematic overview of the process of balancing the grid in case of an imbalance, ex-
emplifying the first three balancing products and their different applications. Source: (Tennet,
2023a).



Figure 3 presents an example of a drop in frequency due to an imbalance, for example, the
failure of a power plant. The initial drop in frequency is immediately arrested by activating
the FCR service. The frequency is then stabilised using a combination of aFRR and mFRR
services to recover it within its standard operating band of 50 hertz.

2.3.2 Bidding processes

The three types of European balancing markets differ slightly from one another in terms of
bidding processes but are organised similarly in the broader context. All three balancing mar-
kets are split up in periods called Imbalance Settlement Period (ISP). The ISP length has been
different between countries and has been subject to changes over time within countries, but
nowadays, it is 15 minutes throughout Europe. Previously, the duration of balancing capacity
contracts could run over multiple ISPs, but today, the duration of the balancing contracts is
matched with ISP length at 15 minutes. The implications of these variations in ISP length and
contract duration over time will be further discussed in section 5.

The TSO organises separate bidding processes for each of the three services to reserve a min-
imum amount of the upward and downward balancing capacity. This minimum amount is
determined by EU regulation, taking into account factors such as the size of the power system,
expected VRE output, historical consumption patterns, and generation forecast variability (Eu-
ropean Parliament & Council of the European Union, 2009).

Prequalified BSPs put in a bid to reserve capacity, submitting either upward, downward, or
synchronised bids for every ISP. Upon award, the T'SO secures the option to purchase balancing
energy in the future, much like a financial options contract. During the duration of the balancing
contract, the TSO can decide whether or not to lift that option depending on balancing service
requirements (De Vries et al., 2020).

FCR The bidding process for FCR involves daily auctions where BSPs submit bids to provide
FCR services. The bids, which are for symmetric products that must be available throughout
the entire delivery period, are then evaluated by the Transmission System Operators (TSOs).

An optimization algorithm selects the most cost-effective combination of bids, taking into ac-
count constraints such as export limits and the need to maintain grid stability. Successful
bidders are then paid based on their bid price in a paid-as-bid mechanism. This daily auction
process encourages the participation of various market players, promoting competition and en-
suring a reliable supply of frequency containment reserves. This results in country-specific local
marginal prices for FCR, based on the merit order and cross-regional constraints.

aFRR and mFRR For aFRR, there are two possibilities for participation as a BSP, either
through contracting or free bidding. Contracted bidding means that certain BSPs are obliged
to place reserve balancing capacity bids to the TSO for specified periods. Second, BSPs can
participate through free bidding. Bids from both contracted and free-bidding BSPs compete
on the same merit order (Tennet, 2023¢c). Bid obligation contracts guarantee the availability of
ample balancing bids at all times, with their prices dictated by the market.

Figure 4 shows a typical example of the bidladder of such a merit order, including some infor-
mation regarding price setting. The coloured boxes represent the accepted bids, corresponding



to the predetermined minimum volume of balancing capacity that the TSO must contract. Such
a bid ladder is created and cleared for every ISP.
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Figure 4: Typical bid ladder for upward and downward regulation. Source: (Tennet, 2021).

The TSO starts accepting low bids until the predetermined amount of necessary reserved bal-
ancing capacity is reached. A downward regulation bid implies the amount of money a BSP is
willing to pay to the TSO to be allowed to reduce its production or increase its consumption
relative to the submitted program. Such action is likely to save the BSP money on fuel in the
case of a conventional power plant or store "free" electricity in the battery in the case of a BESS.

Downward regulation bids are often negative, reversing the monetary flow: the TSO pays that
price to the BSP to reserve downward balancing capacity. BSPs are remunerated to reserve
balancing capacity with a uniform fee corresponding to the last accepted bid. This fee is
depicted by the horizontal dashed lines in Figure 4.

Additionally, with aFRR and mFRR, the BSPs can potentially receive financial compensation
in the form of the imbalance price for the actual amount of balancing energy if the TSO activates
the reserved capacity to address imbalances during that ISP. In contrast, for FCR reserves,
BSPs are remunerated only for the capacity they reserve, with no additional payment for the
activation of this capacity.

2.4 Battery Energy Storage Systems

In this subsection grid-scale BESS will be discussed in more detail with regard to their suit-
ability to provide the different balancing services to answer sub-research question 2.
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The balancing services described in the preceding sections are performed by prequalified BSPs.
To qualify as a BSP, one must meet a series of requirements set out by the relevant TSO
(Tennet, 2023b). These requirements are specified differently for each of the balancing services
such that, for example, BSPs prequalified for FCR services can indeed respond within the re-
quired time frame and prequalified BSPs are indeed able to sustain the balancing power for the
required duration, among others.

Traditionally, conventional power plants have performed balancing services. However, as has
been indicated before, such power plants will be phased out in the future to reduce power
system-related CO, emissions. The same balancing services will, therefore, need to be per-
formed by other types of BSPs. They can be performed by Electrical Energy Storages (EESs)
if they meet the requirements as stated in the prequalification documents of the relevant bal-
ancing service.

Different EES technologies, in general, are characterised by a number of different attributes.
With regard to what functions these ees technologies can perform in the broader sense of
the electricity system, there are two important characteristics: Energy capacity, denoting the
maximum energy a storage device can hold, and power capacity, representing the maximum
transfer rate of energy. These two concepts can also be approached as discharge duration and
power requirement. Figure 5 places a number of different EES applications and technologies
along these two axes. This figure indicates which specific types of EES are fit for which specific
application of EES. From this figure, the overlap between voltage and frequency regulation on
the application side and batteries on the technology side implies that BESS is indeed suitable
for balancing services with regard to the power requirement and discharge duration.
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Figure 5: Energy storage applications and technologies. Different applications require different
technologies. Source: (IEA, 2015).

With regard to suitability to perform the different specific balancing services and comply with
prequalification requirements, two additional characteristics of EES and BESS specifically are
important: Ramp rates and response times (Luo et al., 2015). BESSs prove to be the most suited
EES for balancing services due to their fast response times and ramp rates and sufficiently large
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power and energy capacity. For these reasons, most research on storage in balancing markets
focuses on BESS (Figgener et al., 2023, Rangarajan et al., 2023). Luo et al. (2015) specifically
state that BESS are especially suited for the shorter-term balancing services: FCR and aFRR,
as opposed to the longer-term balancing service mFRR. This aligns with the information pre-
sented in Table 1.

Moreover, over the past decade, cost reductions have been realised in BESS production processes
due to scale advantages. These economies of scale have been driven by increasing demand for
electric vehicles (Figgener et al., 2023). Prequalification documentation for various balancing
products states that BSPs, including BESS, must reserve at least IMW of power (Tennet,
2023b). Therefore, this research excludes BESS facilities with rated power smaller than 1IMW.
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3 Literature Review

This section presents a state-of-the-art review of the literature on electrical energy storage in
general and its impact on balancing prices. The aim is to provide a comprehensive overview
that synthesizes existing research and highlights key theories and recent findings in the field
while identifying a knowledge gap. This positions this thesis within the existing literature,
emphasizing its relevance. Subsequently, I focus on distilling critical variables that may be
causally related to storage capacity and balancing prices.

3.1 State-of-the-Art

Previous academic explorations within the domains of both EES in general and BESS specifi-
cally have taken a variety of angles. In this subsection, the literature is discussed by theme.

Optimal EES operation A predominant part of the literature delved into EES operation
within the wholesale market, i.e., buy low sell high strategies, also referred to as energy ar-
bitrage. Researchers have sought to determine optimal EES energy and power capacity to
maximize gains from energy arbitrage.

Bradbury et al. (2014) find that Pumped Hydroelectric Storage (PHS) and Compressed Air
Energy Storage (CAES) have the greatest potential for arbitrage. Their analysis also states
that these technologies are optimally sized at 7-8 hours of storage. While most other EESs are
optimal at 1-4 hours, the optimal power capacity cannot be captured in a simple figure as it
depends on the relevant market. They additionally state that ancillary service markets offer
the economic potential for certain EESs and emphasize EESs’ pivotal role in large-scale power
systems, which, according to them, is much broader than arbitrage.

Variable Renewable Energy Moreover, studies have focused on the influence of Variable
Renewable Energy (VRE) sources on BESS energy arbitrage revenue from the wholesale mar-
kets.

Tuohy & O’Malley (2011) apply a unit commitment model to study the Irish power system with
and without high levels of PHS, accounting for uncertainty in wind power. It is shown that
as wind penetration increases beyond 50%, the economics will justify capital costs and energy
losses. Interestingly, they find that at wind penetrations below 60% the addition of storage
increases the system’s carbon emissions. This is because coal plants would primarily be used
to charge the additional battery storage in that scenario, according to the authors. Of course,
whether or not this statement still holds today or in the future depends on the characteristics
of the power system.

Foley & Lobera (2013) study the impacts of CAES on an electricity market with renewable
energy penetration of 40% with a simulation model. They find that the increase in storage
would decrease system CO, emissions and support the integration of renewables by decreasing
curtailment. However, it also comes at a cost; they find that the increase in storage would
negatively impact the System Marginal Price (SMP) and consequently increase the wholesale
price of electricity.
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Hartner & Permoser (2018) use dispatch models to simulate hourly prices based on varying
Photovoltaics (PV) production in Austria and Germany to investigate the impact of solar
PV on electricity prices and storage plant revenue. Because of a relatively high correlation
between solar radiation and demand peaks, storage facilities only start to make revenue at PV
penetrations higher than 5%, significantly increasing for penetrations larger than 10%. The
authors directly relate the PV penetration to storage investment incentives.

Wholesale price spreads A substantial amount of literature also examines how energy
arbitrage with BESS affects the spread of wholesale market prices. Focusing on large-scale
BESS in California, Lamp & Samano (2022) explore the growth of VRE in the system. They
reveal that battery deployment had reduced the average intra-day wholesale price spreads by
analyzing the charging and discharging patterns of grid-scale BESS. Zamani-Dehkordi et al.
(2017) take a slightly broader approach in the same direction by not only examining wholesale
price spreads but also the price level as a whole and how the arbitrage operation of storage
facilities affects the revenue of other generation units in the market.

Theoretical research on Balancing Markets Contrary to these three research themes,
the effect of BESS capacity on balancing market prices is studied relatively sparsely, and efforts
have predominantly taken a theoretical or simulation approach, as opposed to an empirical
approach. To find the effects, these studies simulate energy systems with and without the
operations of such BESS.

For instance, Khalilisenobari & Wu (2022) present an optimization framework for optimal mar-
ket operations of a BESS in wholesale and balancing markets. Based on their synthetic system,
they perform case studies to study the interaction between BESS profit maximization strategies
and their operations in various markets for varying market conditions. In doing so they reveal
that BESS can significantly add to the balancing market capacity and reduce overall system
costs.

Padmanabhan et al. (2019) present a novel BESS operational cost model that considers the
state of charge and degradation costs based on the depth of discharge and discharge rates,
specifically for lithium-ion batteries. The authors develop a bid/offer participation strategy
from this cost model. Based on this strategy, three case studies are presented to study the
effect of BESS participation system operation and market settlement.

Similarly, Rossi et al. (2019) engaged in an extensive theoretical analysis by simulating a net-
work comprising battery facilities actively participating in the broader ancillary services mar-
ket. This network of BESS facilities demonstrated a consistent ability to lower overall balancing
costs. Thereby emphasizing the importance of BESS participation in balancing markets.

Badeda et al. (2020) explores the impact of Battery Energy Storage Systems (BESS) on the
German FCR market. The study uses agent-based market simulation to show how increasing
BESS installations can drive down FCR prices. Results indicate that higher BESS penetration
can significantly reduce average prices, with price sensitivity dependent on BESS cost and life-
time assumptions.

Fleer et al. (2016) provides a model-based economic assessment of stationary BESS providing
primary control reserve (PCR), similar to FCR. It assesses the economic feasibility of BESS
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for primary control provision using two case studies based on a 2 MWh BESS. The results
indicate that a BESS with a power-to-energy ratio of 1:2 is not economically feasible under
the current framework, while a BESS with a power-to-energy ratio of 1:1 can break even after
approximately nine years of operation. The study also highlights the potential for decreasing
battery prices to increase price pressure on the PCR market, leading to decreasing revenues for
PCR supply.

Kondziella et al. (2020) examines the role of battery storage in enhancing the flexibility of
power systems dominated by renewable energy. It looks at the economic and operational
benefits of integrating BESS with renewable energy sources. The paper indicates that increased
system flexibility, particularly through battery storage, can reduce capacity prices specifically
for the shorter-term balancing reserves like FCR and aFRR, due to the lower opportunity cost
compared to fossil-fueled power plants.

Empirical research on Balancing Markets Rangarajan et al. (2023), however, seek to
address a notable gap by empirically investigating the impact of grid-scale BESS on overall
balancing costs for the first time. Their study specifically focused on Australia. Still, they
mention that the results are not limited to their continent and are expected to be extendable
to other regions because of high-level similarities between balancing market design globally.
In their paper, Rangarajan et al. first study two Australian regions separately. The installed
BESS capacity increased significantly during the study period in these two regions. In their
research design, this significant increase is considered as the treatment. A medical analogy for
this research design would be administering medication to a patient. Then, while controlling
for a number of variables, they estimated the effect of the increased BESS capacity and the
treatment on the balancing market prices by applying a time series regression model.

Subsequently, to control for other exogenous effects not captured by the control variables,
the authors present a Difference-in-Differences regression model which also included a control
group of states where there had been no increase in BESS capacity during the study period.
Regarding the same medical analogy, they included a group of patients in the data set to
whom no treatment was administered during the sample period. Their analysis shows that
the introduction of grid-scale BESS into the system significantly reduced the overall balancing
costs, in line with theory and simulation studies. Their analysis specifically shows that, on
average, for an additional MW of battery capacity, the prices for the Australian counterparts
of the FCR and aFRR balancing services decreased by AUD0.11/MWh and AUDO0.63/MWHh,
respectively.

3.2 Variable Exploration

Following our state-of-the-art literature analysis in the previous section, I assemble a list of
relevant variables. Firstly, key themes are distilled from the literature already discussed. Sub-
sequently, further literature is presented to unveil additional variables not extensively covered.
This proactive exploration ensures a comprehensive identification of variables. At this point, no
further selection is being made other than potential relevance to the effect of storage capacity
on balancing prices.

Identified Relations In subsection 3.1 the following causal effects have been identified. The
business case for VRE can benefit from an increase in EES capacity because of an increase
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in wholesale prices during VRE generation hours (Foley & Lobera, 2013). As a result, an in-
crease in EES capacity can cause the amount of installed VRE in the future to increase as well.
Hartner & Permoser (2018) find that the reverse holds as well: an increase in installed VRE ca-
pacity today can cause in increase in installed EES capacity in the future. Hartner & Permoser
also point out that an increase in VRE decreases overall average Day-Ahead Market (DAM)
wholesale market prices.

Foley & Lobera (2013) find evidence supporting that an increase in storage capacity can cause
the wholesale prices to increase in the DAM. Zamani-Dehkordi et al. (2017), however, find
in their case study that the increase of storage capacity in fact deceased the wholesale prices.
The direction of this effect depends on the shape of the relevant merit order, i.e., the difference
in slope at off-peak hours and high-demand hours, when the battery charges and discharges,
respectively. In other words, the price increase can be moderate in off-peak hours when that
slope is relatively flat, and the price decrease in high-demand hours can be significant if the
slope there is larger, or vice versa. Not only the overall wholesale market price levels are affected
by increasing storage capacity, Lamp & Samano (2022), state that the intra-day market spreads
can be reduced. Moreover, the negative effect that BESS capacity has on balancing market
prices is demonstrated theoretically (Badeda et al., 2020, Fleer et al., 2016, Khalilisenobari &
Wu, 2022, Kondziella et al., 2020, Padmanabhan et al., 2019, Rossi et al., 2019) and empirically
(Rangarajan et al., 2023).

Further Relations Additionally I identify the causal relations between the following vari-
ables. Hirth & Ziegenhagen (2015) state that balancing markets interact with VRE through the
impact of VRE forecast errors on balancing reserve requirements and the supply of balancing
services by VRE generators. They find that increasing penetration of VRE impacts the volumes
and costs of balancing markets. However, they note that the impact is smaller than sometimes
believed, stating that other factors play a role as well, e.g., VRE forecast errors. Results from
Sirin & Yilmaz (2021) also show that an increase in VRE implies higher balancing market prices.

Batalla-Bejerano & Trujillo-Baute (2016) emphasize the importance of accounting for balancing
costs when assessing the economic implications of a growing integration of VRE in electricity
markets. This consideration becomes especially relevant when such integration leads to sub-
stantially higher demands for balancing services. Gianfreda et al. (2018), in the same line of
reasoning state that balancing services needed for the proper integration of VRE causes system
costs to rise, working its way through into the consumers’ electricity bill. Hurta et al. (2022)
show, among others, that increasing wholesale and balancing prices causes future EES capacity
to increase as well.

Keles & Dehler-Holland (2022) evaluate the impact of large-scale photovoltaic (PV) storage
systems on energy markets using stochastic dynamic programming. The study highlights that
increased renewable energy production affects electricity prices, creating opportunities for stor-
age systems to engage in arbitrage trading. The research shows that higher price spreads
enhance the market potential for PV storage systems, indicating a promising business case
under conditions of increased market volatility

Mwampashi et al. (2021) analyze the effects of wind power generation on electricity prices in

Australia’s National Electricity Market (NEM). Using an eGARCH model, the study finds that
increased wind generation decreases daily electricity prices while increasing price volatility. The
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research underscores the importance of strategic investment in cross-border interconnectors and
regulatory interventions to ensure reliable renewable energy delivery and mitigate price volatil-

ity in the NEM.

Table 2 gives an overview of all relations that have been identified and their sources by theme.
The direction of the effect is given in the last column.

Table 2: Overview of Literature Relevant to relations between variables.

Theme Source Finding
Cause Outcome Direction
Variable Foley & Lobera (2013) BESS VRE,,, +
Renewable
Energy Hartner & Permoser (2018) VRE BESS,., +
Foley & Lobera (2013)
Wholesale ~ Zamani-Dehkordi et al. (2017) ~ BEoS WP +-
Elrtia;;ricity Lamp & Samano (2022) BESS WP spreads -
Hurtha et al. (2022) BP & EP BESS,,, +
Hirth & Ziegenhagen (2015)
Sirin & Yilmaz (2021) VS = *
Badeda et al. (2020)
Ba|ancing Fleer et al. (201 6)
Price Khalilisenobari & Wu (2022)
Kondziella et al. (2020) BESS BP -
Padmanabhan et al. (2019)
Rossi et al. (2019)
Rangarajan et al. (2023)
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4 Methods

The main research question in this thesis is: "What is the effect of increasing grid-scale BESS
capacity on balancing market prices in Europe?" In this section, the research method is set
out. Subsection 4.1 discusses the conceptual framework, which serves as a cornerstone in this
thesis, along with an elaboration on the roles of the covariates, answering SRQ3 and SRQ4
respectively. Subsequently, the economic methods applied in the analysis and the regression
model specification are discussed in subsections 4.4 and 4.5. Table 3 provides an overview of
the names and abbreviations of the variables that are discussed in the previous section.

Table 3: Included variables.

Type Variable Abbreviation
Balancing Prices BP
Outcome » Frequency Containment reserve FCR
* Automatic Frequency Restoration Reserves aFFR
* Manual Frequency Restoration Reserves mFFR
Treatment Battery Energy Storage System Capacity BESS
Electricity Wholesale prices Price
Covariates Total Load Load
VRE generation VRE

4.1 Conceptual Framework

Based on findings in academic literature and in the context of my understanding of power mar-
kets and nuances between the three balancing services, I will present the conceptual framework.
This framework provides a structured approach to empirically investigate the causal relation-
ship between installed battery capacity and balancing market prices, contributing to a deeper
understanding of the role of energy storage in electricity markets.

The dependent variable, balancing market prices, is conceptualized to be influenced by various
factors through their impact on the market’s supply-demand dynamics. Figure 6 visualises this.
The idea conveyed by this figure is strongly based on the merit order principle showing how
supply and demand of balancing services interact to set prices in the balancing markets, as was
discussed in detail in section 2.

4.1.1 Explanatory variable

Increased BESS capacity affects the supply side of the balancing market in two distinct ways.
The first way in which BESS participation in balancing markets affect balancing prices arises
from the BESS facility providing balancing services at lower costs than current market par-
ticipants, therefore shifting the existing merit order horizontally and decreasing the balancing
price. Differently, similar impact might occur if conventional BSPs adjusts their bids downward
upon market entry of BESS and consequently decrease the balancing price. This would imply
that previous to BESS market entry BSPs set bid prices above marginal costs, signalling an
imperfect market.

4.1.2 Covariates

Another factor impacting the supply side is the wholesale price. The rationale is that BSPs
must chose to allocate capacity to either balancing markets or wholesale markets. During hours
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Resources:

» Dispatchable capacity (incl. BESS) Expected imbalance, driven by:

» Total Load. * VRE generation

Revenue: * Load

» Balancing price.

» Opportunity cost: Wholesale electricity Set by regulatory framework EU
price.

Merit-Order

Supply of Demand for
balancing services balancing services

Balancing price

Figure 6: Conceptual framework showing the interaction between BESS capacity, wholesale
prices, load, VRE generation and balancing prices.

of high electricity wholesale prices, there will be less incentive for BSP to alocate capacity to
the balancing markets. Consequently, the volume of generation capacity available for balancing
is limited.

Higher shares of VRE during a given period can increase the need for balancing capacity. VRE
output cannot be forecasted perfectly day-ahead, potential forecast errors must be accomodated
for. Therefore the EU requires TSOs to reserve more balancing capacity in times of higher
expected VRE output. In addition, a high total load can put strain on the grid and potentially
lead to imbalances between generation and consumption. In such situations, grid operators
may need additional balancing services to ensure grid stability.

4.2 Causal Inference

In addition to the conceptual framework presented above, a Directed Acyclic Graph (DAG) is
depicted in Figure 7 and shows all hypothesized causal relations between the dependent and
independent variables and the covariates. A DAG serves two purposes. First, it visualises
the exact hypothesised effects between each individual variable more specifically than Figure 6
does. And secondly, a DAG is useful to determine which of the covariates should be controlled
for in the the regression analysis. Including or excluding an effect in the DAG is crucial because
a missing effect could create alternative causal pathways, known as backdoor paths, leading to
biased models. Biased models can overestimate or underestimate true relationships between
variables.
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4.2.1 DAG

Based on previous paragraphs the effects of the three covariates and BESS on the balancing
price can be included. To make the DAG meaningful it has to contain all hypothesised effects.
This is done by further identifying other relations in the following paragraphs.

Cunningham (2021) state that the choice of not including an effect is at least as important as
including an effect. This is because a falsely left-out effect between any two variables could po-
tentially form an alternative causal pathway between the dependent and independent variables.
Such a pathway is called a backdoor path and, if left open, can cause the model to be biased.
Therefore, a critical look is taken at potential additional relations between all variables. After
all effects in the DAG are identified, I will discuss how to deal with these backdoor paths.

Firstly, in subsection 3.2, I identified that BESS can have a positive or negative effect on elec-
tricity prices, depending on the shape of the merit order in the relevant country. Secondly, I
also identified that the VRE can affect electricity prices. Thirdly, the effect of the total load
on the electricity prices is included since this is how the electricity wholesale price is set with
the merit order. These three additional relations are included in Figure 7.

= FCR
Battery Balancing = aFFR
Capacity Prices = mFFR

Legend

- Treatment

VRE

Electricity 0
utcome
Prices Generation L

«—— Total Load

Control

! |

Figure 7: Directed Acyclic Graph (DAG) visualising hypothesized causal relations between
variables. The directions of the arrows represent the hypothesised causal direction of the
effects.

There is also a number of relations that are not included in Figure 7. For example one could
logically reason that the total load increases with lower electricity prices, i.e. wholesale elec-
tricity prices would have a negative effect on the total load. However, the short-term price
elasticity for electricity in Europe is very low, ranging in the literature between -0.05 and 0.12
(Csereklyei, 2020, Hirth et al., 2022, Labandeira et al., 2017). This implies that electricity
consumers barely change their consumption patterns because of a price change. Therefore, the
total load is assumed not to be affected by the electricity prices.

Moreover, one could argue that VRE generation is affected by electricity prices and by total
load since VRE could be curtailed when the price is below zero or when the load is smaller
than the VRE generation respectively. However, curtailment in, e.g. Germany has been below
3% during the sample period (IEA, 2023). Therefore, VRE generation is assumed not to be
affected by the Load or by the electricity prices.
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Lastly, VRE, the balancing prices and the electricity prices impact the business case of BESS,
therefore impacting it. However, these are long term effects and impact the battery capacity in
the future. Since future BESS capacity cannot effect todays balancing price, these effects are
not included in the DAG.

4.2.2 Direct and Indirect Effect

From the completed DAG in Figure 7, I see that BESS affects the balancing prices in two
ways, directly and through a mediator, electricity price. The causal path of the direct effect
is BESS — Balancing Price. The causal pathway of BESS’s indirect effect on the balancing
prices through the electricity prices is BESS — FElectricity Price — Balancing Price. Es-
timating the total effect or the direct effect has different implications for closing backdoor paths.

From the literature review, it has become clear that the effect of electricity prices on balancing
prices can be either negative or positive, depending on the shape of the merit order. To
address the research question, "What is the effect of increasing grid-scale BESS capacity on
balancing market prices in Europe?", it is therefore more effective to focus on the direct effect
of BESS on balancing prices rather than the total effect. This approach enables a consistent
and comparable analysis across different markets and countries, minimizing the variability
introduced by country-specific wholesale electricity price determinants. By isolating the direct
effect, the study provides clearer insights into the immediate impacts of BESS deployment,
which are essential for policymakers and market operators. This focus also allows for a fairer
comparison between countries, as it accounts for differences in electricity wholesale merit order
effects and other local factors, providing a more precise understanding of how BESS directly
influences BP.

4.2.3 Causal Paths and Closing Back Doors

Having established that this thesis will focus on the direct effect of BESS on balancing prices,
the next step is to identify which covariates need to be controlled for in the analysis.

For this next step, it is key to understand the concept of causal paths and closing backdoors.
In the context of DAGs and causal inference, different types of causal paths can influence the
relationship between variables. The primary types of causal paths include:

a. Mediated Path: A path where a variable mediates the effect between the explanatory
variable and the dependent variable. For example, X — Z — Y in Figure 8a.

b. Backdoor Path: A path that creates a non-causal association between the explanatory
variable and the dependent variable due to confounding variables. For example, X <
D — Y in Figure 8b.

c. Collider Path: A path where controlling for a variable opens up a new path of influence
that did not seem relevant before. For example, X — Z < Y in Figure 8c.

In causal analysis using DAGs, controlling for specific variables is essential to accurately deter-
mine the effect of an explanatory variable on a dependent variable (Huntington-Klein, 2022).
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(a) Mediated Path

X Y X Y
(b) Backdoor Path (c) Collider Path

Figure 8: Different Types of Paths in a DAG

Mediators Mediators are variables that transmit the effect from the explanatory variable
to the dependent variable along a directed path. For example, in the path X — Z — Y 7
is a mediator. Controlling for Z helps to isolate the direct effect of X on Y by blocking the
mediated path. This allows the analysis to determine how X influences Y directly, without the
intermediate influence of Z.

Confounders Confounders are variables that create a backdoor path, leading to non-causal
associations. For example, in the path X < D — Y, D is a confounder because it influences
both X and Y. Controlling for D blocks this backdoor path, ensuring that the observed
relationship between X and Y is not due to D’s influence. This helps isolate the true causal
effect of X on Y.

Colliders Colliders are variables that are influenced by two or more variables in a causal path.
In the path X — Z <~ Y, Z is a collider. Controlling for a collider like Z can open a path that
introduces bias, as it creates a false association between X and Y. This happens because Z
now allows information to flow between X and Y, which were otherwise independent. There-
fore, controlling for colliders is generally avoided to prevent introducing new confounding paths.

In summary, controlling for mediators helps isolate the direct effects, controlling for confounders
blocks backdoor paths, and avoiding controlling for colliders prevents the introduction of new
biases, ensuring accurate and unbiased causal inference.

In the DAG in Figure 7, there are there causal paths from BESS to balancing prices, in addition
to the direct path between BESS and Balancing prices.

1. BESS — FElectricity Price — Balancing Price
2. BESS — FElectricity Price < Total Load — Balancing Price
3. BESS — FElectricity Price <~ VRE — Balancing Price

To estimate the direct effect of BESS on Balancing Prices using DAGs, addressing backdoor
paths is essential, such as path 1. In this path, EP mediates the effect of BESS on BP. To
isolate the direct effect of BESS on BP, controlling for EP is necessary, blocking this mediation
path.
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Paths 2 and 3 were initially closed by the since EP acts as a collider. However, controlling
for EP opens new collider-induced backdoor paths, allowing Load and VRE to confound the
relationship between BESS and BP. Therefore, controlling for Load and VRE is also necessary
to prevent this confounding.

4.3 Hypothesis

Drawing from the conceptual framework and DAG analysis, I posit the following hypothesis:

"Increasing the capacity of BESS in European electricity grids will lead to a conse-
quential decrease in balancing market prices."

In other words, I expect increased BESS capacity to have a negative effect on balancing prices.
This hypothesis emerges from the understanding that BESS, with their ability to store and
discharge electricity rapidly, offer a flexible solution for grid stabilization and load balancing.
By augmenting grid-size BESS capacity, I anticipate more competition in balancing service
markets. This hypothesis not only aligns with theoretical expectations but also reflects the
empirical observations presented by (Rangarajan et al., 2023) which show a strong inverse cor-
relation between BESS capacity and balancing market prices in the Australian context.

To specify this hypothesized effect of BESS on the balancing market price, I can differentiate
between the three distinct balancing services: FCR, aFRR and mFRR. As discussed in sec-
tion 2 in more detail, these services are differ from one another based on ramp rate and response
time. Batteries are better suited for the shorter term balancing markets, FCR and aFRR, and
therefore I expect the effect to be more pronounced for these services.

Additionally, I expect that the balancing price is positively effected by load and electricity
prices because of the reduced available capacity and higher opportunity costs that impact the
supply side of the balancing markets. Moreover, I expect the VRE to have a positive effect on
the balancing prices as well, because it increases the amount of required balancing services for
that ISP.

4.4 Econometric Method

In order to test the hypothesis that increasing BESS capacity has a negative impact on the
balancing price, I conduct a multivariate regression analysis. Regression is a useful tool for
understanding relationships between variables.

In this section I discuss the methodological implications of using time series data, I discuss
the applied estimation method, specify hypothesis testing lastly I discuss limitations to the
methods applied.

4.4.1 Regression Analysis

Time-series [ aim to study multiple countries to make the findings more general. While I
have considered to analyse a set of countries as a whole as panel data, I have left this out of
the scope of this research. I have decided to follow single countries over time separately. This
implies that I do a time-series analysis, allowing me to estimate the effect of BESS capacity on
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Balancing Price (BP)(Hyndman & Athanasopoulos, 2018).

In the context of this research, the variables discussed in subsection 4.1 can be observed period-
ically over time for individual countries. For each country that will be included in the analysis
I will do a total of three independent time-series regression analyses, one for each balancing
market.

Estimation The purpose of estimation is to calculate the BZ for the sample data, which is
an estimate for the population coefficient 3;. There are various methods to estimate the coef-
ficients, applicability depends on the model definition. In my research I apply Ordinary Least
Squares (OLS) to estimate my models numerically. OLS is a widely-used method because it is
simple, efficient, and provides easily interpretable results. It works by minimizing the differ-
ences between observed and predicted values, referred to as residuals.

Numerous different software programs exist for this end, three most commonly used are R,
Python or SPSS. In this study, R is used to define and estimate the models. Specific packages
that are used in this thesis are "Sandwich" and "Stargazer", which are used to compute robust
standard errors and to create latex tables for the regression results (Hlavac, 2022, Zeileis, 2004).

Hypotheses testing Subsequently to estimating the model coefficients Bi, I test whether or
not the results are statistically significant. This is done on model level with F-tests and on
coefficient level with t-tests.

The F Statistic examines the collective significance of the regression model by testing whether
any of the independent variables have coefficients that are not zero. In essence, it assesses
whether the independent variables, as a group, significantly contribute to explaining the vari-
ations observed in the dependent variable.

The estimated coefficients, Bi, are theoretically distributed around the population coefficient
B, implying there is a certain chance that I found a S; that is different from the g;.

I will utilize t-tests to calculate p-values based on t-test statistics. The t-test statistic measures
the difference between the estimated coefficient and the hypothesized population value (i.e.
Hi : Bstorage # 0), relative to the variability in the data as represented by the standard error.

The significance level («) sets the threshold for accepting or rejecting the null hypothesis. If
the p-value (probability of observing 3, by random chance alone, i.e. given Hj is true) is below
a, typically 0.05, Hj is rejected.

4.4.2 Assumptions

Regression analysis is powerful but relies on several assumptions. These assumptions, such
as normality of residuals, linearity, no perfect multicollinearity, independence among observa-
tions, and homoscedasticity, ensure the reliability and validity of results. Violations of these
assumptions can lead to biased estimates and misleading conclusions.

Normality of residuals Firstly, regression models rely on the assumption for the residuals
to be normally distributed around a mean value with a certain standard error.
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Deviations from normality in the residuals can affect the accuracy of hypothesis tests and
confidence intervals. Non-normal residuals can lead to incorrect p-values and confidence inter-
vals, particularly in small samples. However, if the sample size is very large, deviations from
normality are no problem. Which is the case in this research.

Linearity Another concern lies in the assumption of linearity. Regression models presume a
linear relationship between the dependent and independent variables. If the actual relationship
is nonlinear, the model’s accuracy diminishes.

This can be solved by transforming a variable, e.g. take the log, square or square root, this will
be further discussed in the model specification.

Perfect multicolinearity Multicollinearity occurs when two or more independent variables
in a regression model are highly correlated with each other (of Science, 2018). Perfect multi-
collinearity occurs when one independent variable can be perfectly predicted by a linear com-
bination of other variables.

This can pose challenges in isolating the individual direct effects of the independent variables
on the dependent variable and can inflate standard errors.

Independence among observations Observations in the dataset should be independent of
each other. This means that the value of one observation should not depend on the value of
another observation. Observations may, for example, be correlated over time, this is known as
autocorrelation.

This violation is likely to underestimate standard errors of estimates, leading to overly optimistic
assessments of statistical significance. This results in narrower confidence intervals and an
increased risk of Type I errors (false positives). Potentially yielding misleading conclusions
about the significance of variables.

Homoscedasticity Moreover, regressions assume homoscedasticity as opposed to heteroscedastisity.
Heteroscedasticity refers to the situation where the variance of the residuals is not constant
across all levels of the independent variables. In other words, the spread of the residuals varies
throughout the range of the independent variables.

When heteroscedasticity is present, the standard errors of the coefficient estimates may be
overestimated, leading to overly conservative estimates of uncertainty and wider confidence
intervals. This can potentially lead to lower likelihoods of detecting true effects (Type II
errors).

HAC Standard Errors To correct for autocorrelation and heteroscedasticity and in the
data set, Newey & West (1986) have developed a simple method of calculating a heteroskedas-
ticity and autocorrelation consistent (HAC) covariance matrix that is positive semi-definite by
construction. The HAC standard errors are then calculated by taking the square root of the
diagonal from this covariance matrix.
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4.5 Model specification

With the conceptual framework and econometric methods defined, I now specify the exact re-
gression model. It is key to specify my hypothesis that the balancing prices will be affected
negatively by BESS and positively by Load, Price, and VRE.

Fixed effects are represented by dummy variables that capture systematic variations in the
dependent variable associated with different categories or periods. In time series datasets,
fixed effects can account for regular patterns or cycles that repeat at known intervals, such as
weekly or monthly cycles. For fixed effects with n different categories or periods, n — 1 dummy
variables are included to represent each category or period. The effect of the n-th category
or period is captured in the residual term. In this research, I control for systematic variations
in the dependent variable associated with different times of the day, weekdays, months, or years.

Specifically, I control for potential diurnal variation by including dummy variables for five 4-
hour periods, i.e. 00:00-04:00, 04:00-08:00, etc. Also, a dummy variable is added to indicate
whether the observation is on a working day rather than on a Saturday or Sunday. To capture
potential seasonal effects, eleven dummy variables are included for the months of the year.
Lastly, dummy variables are included for the four years to control for underlying trends, poten-
tial policy changes, and external factors that vary annually, ensuring more accurate estimation
of the effect of BESS capacity on balancing prices.

The primary reason for not including transformations in the regression model is to maintain
simplicity and interpretability. The variables have already been standardized, and introducing
transformations would add another level of complexity that goes beyond the project’s scope.
Standardization, while altering the direct interpretation of coefficients in terms of one-unit
changes on the original scale, still allows for a meaningful assessment of each variable’s relative
importance.

Initial exploratory data analysis and the theoretical background do not provide strong sug-
gestions that there are substantial non-linear patterns, suggesting that a linear approach is
sufficient. This simplification helps avoid model complexity and reduces the risk of overfitting,
ensuring that the main predictors’ effects are clear and comprehensible.

Moreover, the inclusion of dummy variables for time, weekday, month, and year effectively cap-
tures non-linear patterns by representing categorical effects without requiring data transforma-
tions. This method accommodates daily, weekly, seasonal, and yearly variations in balancing
prices without assuming a specific functional form. Dummy variables enable the model to han-
dle complex patterns without resorting to logarithmic or polynomial transformations, which
further mitigates the risk of overfitting and maintains model simplicity and interpretability.
Each coefficient in this context directly relates to the impact of the categorical variables on the
balancing price.

In summary, the exclusion of transformations in the linear regression model is justified by the
desire to maintain simplicity, interpretability, and robustness, consistent with the scope of this
project. Standardization and the use of dummy variables adequately address the complexities
and non-linearities in the data, providing a clear and straightforward analytical approach. The
time series regression equation is therefore defined by Equation 1.

26



BPt = 50 + 51 : BESSt + 52 : LOGdt + 63 . P?"?;Cet + 64 . VREt
+ 71 - Time; + v - Weekday; + 3 - Month; + 4 - Year; + ¢ (1)

Where:
e BP; is the respective balancing price at time ¢, the dependent variable,
e BESS, is the installed battery capacity at time ¢, the independent variables,
e Load; is the total load at time ¢,
e Price; is the electricity wholesale price at time ¢,
e V RFE, is the variable renewable energy generation at time ¢,
e Time represents five binary dummy variables for the time of day,
o Weekday is a binary dummy variable which indicates the weekday or weekend,
e Month represents 11 binary dummy variables for the months,

e Year represents three binary dummy variables for years,

€ is the error term,

B; are the coefficients associated with the respective variables.
e and ~; are the coefficients associated with the respective dummy variables.

The way I have specified the model and the dummy variables will be tested by doing a robustness
analysis. This entails that a number of variations of the defined model will be estimated to
find out whether or not this changes the outcomes. The robustness analysis will be presented
along with the results in subsection 6.3.
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5 Data

In the previous sections, I identified relevant variables for my research question and defined the
regression model. As discussed in section 4, I am performing several independent regression
analyses to study the relationships between BESS capacity and FCR, aFRR and mFRR for a
set of EU countries. To perform the regression analyses, I have therefore constructed separate
time-series datasets for each country, based on similar sources and the same process. This
section describes the data collection and preparation process, with the aim of providing relevant
information so other researchers can have confidence in the quality of the dataset and the
possibility of replicating the research. In addition, this section presents selected summary
statistics and data descriptives to get a better understanding of the variables.

5.1 Sample

Table 10 in Appendix A provides an overview of available data. For the decision on the sample,
a trade-off was made between including more countries and having a longer sample period. The
screening process around available data for the relevant variables finally led to a sample of five
EU countries: Belgium, Czech Republic, Germany, Hungary and the Netherlands. 1T am using
hourly time-series data between 2016 and 2020.

5.2 Data collection and preparation

I primarily used two data sources for the country datasets. I have used the "Transparency Plat-
form’ for the Balancing prices, Total load, VRE generation and wholesale prices, the control
and outcome variables. I have used a specific EU database for BESS capacity, the treatment
variable.

In the following two subsections, the data source, data collection and preparation of the asso-
ciated variables are therefore addressed in these two groups.

5.2.1 Dependent and Control Variables

Data Source and Collection For the prices of all three balancing services, total load, VRE
generation and electricity prices, I have used the ‘Transparency Platform’ 4, the online data
portal from ENTSO-E. °

The control variables are available on the Transparency Platform in different data forms. Across
the control variables, ENTSO-E reports day-ahead (i.e. forecasted, expected) as well as actual
data. I have opted to include day-ahead data for two reasons. First, this is the data on
which the amount of required reserved balancing capacity is determined. This volume, in turn,
impacts balancing prices through the merit-order system as described in subsection 4.1. And
secondly, this resembles the data based on which BSPs place their bids. The precise data forms

4The Transparency Platform is a central collection and publication of electricity generation, transmission
and consumption data from Enstso-e member countries. The data is provided and, as necessary, aggregated by
the local TSOs. ENTSO-E aims to collect and publish the data in a uniform manner across member countries.
Through various online articles, they have defined exactly what data the TSOs must submit and in what format
the data must be submitted. This push for consistency supports the reliability, comparability and interpretation
of the data used in this research across countries.

5The ENTSO-E is the association for the cooperation of the 40 TSOs from 36 European countries, including
countries not part of the EU, and is a critical institution of the EU electricity system.
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as available on the Transparency Platform for each corresponding variables are presented in
Table 4.

Table 4: Specific Data Sources within the Transparency Platform.

Type Abbreviation ENTSO-E Data Source
Outcome BP Price of Reserved Balancing Reserves [17.1.C]
Price Day-Ahead Prices [12.1.D]
Covariates Load Total Load — Day — Ahead Forecast [6.1.B]
VRE Day-Ahead Generation Forecast for Wind and Solar [14.1.D]

For the data used for the control variables (Total Load, VRE Generation and Electricity Whole-
sale Prices), the transparency platform allows to easily select and download the relevant data
for the country and period of interest in csv-format. For the balancing prices however, the por-
tal does not allow to export the data directly. The balancing prices were downloaded through
a python script that heavily relies on ENTSO-E Application Programming Interface (API), in
combination with an open-source third party python client, by Pecinovsky & Boerman (2022).
The python script, including queries for Germany with relevant comments, and can be found
in subsection B.1.

Raw Data and Preparation The structure and nature of the ENTSO-E database meant
I had to modify the raw data before analysing it — the exact preparations varied by variable.
All preparations were made in Python. In the following paragraphs, I describe the form of the
raw data and the respective preparations by variable.

The data sources for Total Load, VRE generation and Electricity Wholesale Price are very
complete. Scarce missing values in the data of these variables have been filled with the average
value of the hour before and after the missing data.

Balancing market prices The lack of uniformity for which the data for the outcome variable
was available caused the data preparation process to be pervasive. One difficulty encountered
during the downloading process was the consistency of the time interval during which the data
was available on the transparency platform.

Inconsistent time intervals of the available data for balancing prices caused problems with the
data in two separate ways. Firstly, both the ISP length and the related contract duration have
changed throughout 2016-2022. This is because balancing markets have developed throughout
the years to stimulate competition and form uniform European markets to reduce society’s
costs. These varying isp lengths and the contract durations for each included country are pre-
sented in Appendix A.2. The relatively long contract durations observed in the earlier parts of
the sample period have resulted in uninterrupted periods with a single constant balancing price,
limiting the variance in the dependent variable. Today, both the ISP and contract duration are
uniformly set at 15 minutes across Europe.

Secondly, the duration of contracts at times overlapped. In other words, sometimes, both
weekly and hourly contracts existed for the same hour in time. Where this was the case, |
considered the shortest duration as the key data point. Given this adjustment, the dataset had
no missing data.
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Total Load

The primary key of the load data was consistently 15 minutes for all countries across 2016-2020.
Therefore, average values are taken of the four 15-minute intervals to obtain one new hourly
data point. The units for total load were scaled from MW to GW for ease of exposition of the
regression results; this was done in Python as well.

VRE generation

Generation data from a variety of generation sources (e.g. coal, gas, solar run of river, among
others) is available on the transparency platform for both actual values and forecasts. For solar,
onshore wind and offshore wind, there is also an additional option with the day ahead forecast
for just those sources. These represent all variable renewable energy sources. The forecasted
generation volumes for the two types of wind and solar are aggregated into one variable.

Somewhat counterintuitively, the data for the generation by source is provided by the trans-
parency platform in units of power, MW, rather than energy, MWh. This data is also published
for 15 minutes time intervals instead of 1 hour. I therefore averaged the values of the four 15
minute intervals to obtain one hourly data points. Similarly to the total load, the units of VRE
generation were scaled from MW to GW.

Electricity Wholesale Price

The electricity wholesale prices is published for 15 minute time intervals for all countries across
2016-2020. The unit for this variable is €/MWh. To end up with hourly data, I therefore
averaged the values for the four 15 minute intervals .

Standardisation All dependent and independent variables are standardised, i.e. first cen-
tered around 0 and then scaled to have a standard deviation of 1.This is done such that the
estimated coefficients are comparable across countries and across variables. This standardisa-
tion, however, does make the result interpretation less intuitive; this is further elaborated on
in subsection 6.1 where the regression results are discussed.

5.2.2 Explanatory variable

The Transparency Platform does not collect or report on installed storage capacity data at all.
Therefore, I have used a different database for the explanatory variable, the BESS capacity.

Description of data source Two governmental databases were used to construct the bat-
tery capacity variable: the Database of the European energy storage technologies and facilities’
(the EU database) and ‘DOE Global Energy Storage Database’ (the US database).

The EU database is used as the primary source. The database was constructed as part of a study
on the contribution of energy storage to the security of supply in Europe and is managed by
the Department of Energy of the European Commission (EC)(Directorate-General for Energy,
2020). This database presents a wide variety of information on single storage facilities. The
US database, is a similar dataset managed by the United States Department of Energy with a
global scope, it was used as a secondary source of information to both validate the information
as well as extend it.
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Raw data The goal of the BESS capacity variable is to obtain the installed capacity in each
country for every hour in the sample period. Unfortunately, this data was not directly available.
Instead, the datasets provided an overview of a great number of storage facilities along with a
variety of information on those facilities.

The two most relevant data points for each facility for our study are the installed capacity
[MW] and the date of commissioning. I only used data on BESS, as versus other storage
technologies like CAES or PHS. Moreover, I limited my selection to BESS facilities with a
capacity larger than 1MW in order to include only grid-scale storage facilities that are connected
to the transmission grid, as opposed to smaller facilities that are connected to the distribution
grid and can, therefore, not perform balancing services.

Preparation While a useful database, a main limitation is that the database contained miss-
ing data, which I needed to resolve and which might impact the quality of the results of the
study. The missing data was on two levels.

Firstly, for many facilities, either or both the date of commissioning or the power capacity
rating were missing. I have gotten in contact with employees of the relevant department of the
EC, in an effort to collect the missing data, however they were not able to provide me with an
updated table. I, therefore, completed the dataset manually. This was done by supplement-
ing the EU database with relevant data from the US database, which had the same problem
of missing data points in various columns. In addition, I performed specifically targeted web
searches and mainly found data from news articles about the facilities using available reference
data such as facility name, developer, location, and owner. These online web sources have been
carefully documented in the adapted version of the original database in Excel.

Secondly, the dataset does not present data on storage facilities commissioned after 2020, even
though the web page through which it is available notes it was last updated on the 14th of
December, 2022. In other words, the dataset seems to suggest that no storage facilities were
commissioned between 2020 and 2022. It has become clear from web searches and other (na-
tional) storage datasets that new storage facilities, in fact, have gone operational in the countries
relevant to this study. This leads me to assume the database is not properly maintained, con-
trary to what the web page suggests. For this reason, the initially foreseen end date for the
sample period of 2023 was changed to 2020.

5.2.3 In sum

After all data was downloaded, all variables were combined in a separate Excel file for each
country. The dummy variables defined in section 4 were also constructed in these Excel files.
Subsequently, the Excel files were loaded in the R-code to run the regression models. This code
is provided in subsection B.2.

Table 5 provides an overview of the included data, their source and data preparations.
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Table 5: Overview of the variables.

Variable Definition Data source Data preparation
API-Collection
Dependent  Balancing prices IR, aFRR W TANRS €/MW/ISP ENTSO-E Resampling for
market prices .
separate sub periods
Total of Battery Energy EU Energy Complete database
Explanatory BESS storage system capacity MW Storage Transform facility data
larger than 1 MW Database to hourly time series
Prices from the Day-Ahead Resample from
Electricity Price  Wholesale Electricity €/MWh ENTSO-E quarterly to hourly time
Market series
Day-ahead total load Resample from
Load forecast. The total expected MW ENTSO-E qugrterly to hourly time
Control amount of power drawn series
from the grid
Day ahead forecast solar, ggg;gjaltg from
VRE onshore wind and offshore ~ MW ENTSO-E P .
wind qugrterly to hourly time
series

5.3 The Final Dataset

Throughout this section, the data for Germany will be used to illustrate various trends and
patterns in the constructed dataset. Germany is generally considered an important energy hub
in Europe.

5.3.1 Overview of Summary Statistics

Table 6 provides the summary statistics for Germany; the summary statistics of the other four
countries are provided in Appendix A.3.

Table 6: Summary Statistics for Germany

Sd  Mean min ql median q3 max

FCR  4.02 11.89 4.16 7.73 11.80 14.32  28.18
aFRR 15.37 16.31 0.00 3.52 13.14  25.18 353.24
mFRR  6.90 2.28 0.00 0.00 0.34 1.87 168.30
BESS 95.15 287.50 137.90 190.90 273.40 378.40 425.40
Price 16.69 36.39 -130.09 27.51 35.53  45.23 163.52
Load 9.47 55.18 33.36  47.37 55.06  63.27 7591
VRE 10.15 21.28 244  13.14 19.51  28.24  59.05

From Table 6, several observations can be made. First, the FCR prices are moderately spread
with some variation, indicating potential predictability and variability, which might be cap-
tured by BESS and other control variables.

Secondly, there are many observations for which the mFRR price is zero. Both aFRR and
mFRR have maximum values (353.24 and 168.30, respectively) that are significantly higher
than their third quartiles (Q3), indicating the presence of extreme values or outliers. Also, the
standard deviations for both variables are relatively large compared to their means, suggesting
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a wide spread in the data. Moreover, the median values are much lower than the means, and
the data is skewed to the right. This skewness typically results in a long tail on the right
side of the distribution. The suggested presence of outliers and the skewed distribution can
affect the assumption of normality. However, this is not expected to cause problems due to the
large sample size of the dataset. The tables in appendix A.3 show that, generally, the same
observations can be made on aFRR and mFRR in the other countries.

Thirdly, Table 6 shows that installed BESS capacity was 137.90MW at the beginning of 2016
and has gradually increased to 424.40MW, knowing that the capacity has only increased in the
sample period.

And lastly, the three control variables appear to follow a normal distribution. The table shows
that wholesale electricity prices in the sample period have been negative. Additionally, the first
and third quartiles, Q1 and Q3, are relatively close together. Load shows a relatively narrow
range, indicating consistent demand, which could be a stable control variable in the regression
models. VRE has a moderate mean and standard deviation, suggesting some variability in
renewable energy generation, which can influence balancing prices.

5.3.2 Analysis of Key Variables over Time

In this subsection, various time series plots of the variables from the final dataset are presented.
These figures will be analysed to identify and discuss the observed trends and patterns in the
data.

Figure 9 shows the installed BESS capacity for all countries. In addition to the sample period,
the data for the years after 2020 are included in the plot as well.
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Figure 9: Installed BESS capacity over time. Note: Because of the much larger installed BESS
capacity in Germany, a secondary axis was added on the right of the figure.
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The step-wise growth of installed BESS capacity is clearly depicted by Figure 9. This figure
also clearly shows that the volumes of installed BESS capacity greatly vary across countries,
with Germany having substantially more installed BESS capacity. Further, it can be seen that,
in principle, the dataset stops after 2020, with an exception for one additional BESS facility in
2021 in the Czech Republic, which was added to the dataset manually in an effort to complete
it. This further supports the decision to shorten the sample period to 2016-2020.

Figure 10 provides data plots of the main variables for Germany for three different time horizons.
The same plots for the other four countries are provided in Appendix A.3. To show trends in
and after the sample period, subfigures 10a, 10b and in Figure 10 show weekly averaged data
for the period between 2016 and 2022. Figures 10d, 10e, and 10f depict the average daily data
aggregated for one year to visualise seasonal variation in the dataset. To show daily and weekly
patterns, subfigures 10g, 10h, and 10i show average hourly data aggregated for one week.
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Figure 10: Time series plots of all variables for Germany.

From Figure 10a, it can be observed that the mFRR balancing price stays relatively constant
throughout the entire period. However, the aFRR and FCR prices show more variation and
seem to move roughly together over time. They first decreased between 2016 and 2019 and
later increased at the end of 2021. In the same period as the latter, the electricity wholesale
prices have increased dramatically as seen in Figure 10b. This is in line with the 2021 Global
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Energy Crisis, which resulted from the aftermath of the COVID-19 crisis and geopolitical tur-
moil due to the Russian invasion of Ukraine. These observations hint at a positive relation
between the electricity wholesale prices and the FCR and aFRR balancing prices. However, it
is important to note that the sample period concludes before 2020, implying the exclusion of
data corresponding to the Global Energy Crisis.

Secondly, figures 10b and 10e show that the total load follows a seasonal pattern with larger
loads during winters. Also, the load did not change its patterns when the electricity wholesale
prices increased during the Global Energy Crisis, which is in line with the very small electricity-
price-demand elasticity reported in the literature.

Furthermore, it can be observed in Figure 10c that the output of the three VRE sources follows
a seasonal pattern and that the output of all three sources has increased over time. Specifically,
it can be seen that Onshore wind and Solar seem to be correlated negatively; this is also vis-
ible in figure 10f. From these figures, one cannot deduce a relation between VRE output and
wholesale electricity prices or balancing prices.

On the smaller time horizons, all three balancing prices show daily patterns, and mFRR and
FCR specifically show higher prices on weekends. This is somewhat unintuitive since the whole-
sale prices of electricity and the load are lower on weekends. However, the daily patterns in
balancing prices do seem to correlate with the highly variable solar output.

The above-described trends, patterns, and relations hold for other countries on a high level.
However, it must be noted that profiles do differ between countries. Where the data shows
that Germany has a large installed solar capacity and relatively less offshore wind capacity, the
opposite holds true for the Netherlands.

The limited variance in balancing prices as a result of the longer contract durations in earlier

parts of the sample period is more clearly visible in the plots of the balancing prices for other
countries, e.g. Czech Republic and the Netherlands.
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6 Results

This section presents the results of the estimated regression models for the various combinations

of included countries and balancing services. In total, 13 different models were estimated: five,
five, and three for FCR, aFRR and mFRR, respectively.

The aim of these regression results is to answer this research question: "What is the effect
of increasing grid-scale BESS capacity on balancing market prices in Europe?". Based on the
conceptual framework, it is hypothesised that storage has a negative effect on balancing prices.
This effect is expected to be more pronounced for the two shorter-term markets, FCR and
aFRR, given that these markets are more suitable for batteries.

6.1 Regression results

To make the coefficient estimates more comparable across countries and variables, all variables
are standardised, i.e., centred around 0 and then scaled to a standard deviation of 1.

The results are presented by balancing service in tables 7 to 9, rather than by country, because
it is expected that the effect of storage capacity on the balancing prices varies across the bal-
ancing types due to their difference in nature.

The tables report standardised estimates of the time series models from Equation 1 for the
respective balancing services. The models control for the seasonality of electricity demand, for
price correlations between the wholesale and balancing prices and for variable renewable energy
production. The models use 1-hour data over a four-year sample period from 2016 to 2019.

6.1.1 FCR

Table 7 presents the results for the five regression models estimating the effect of BESS capac-
ity on FCR balancing prices in the five included countries. As hypothesised, increased battery
capacity leads to a decrease in FCR balancing prices in most countries. Among the five models
for FCR balancing prices, statistically significant coefficients for the BESS variable were found
in three countries at the 1% significance level. The estimates are negative for every country
except for the Czech Republic. For the Czech Republic, unexpectedly, the estimated effect is
positive.

The standardized effects for countries with significant negative estimates, Germany and Hun-
gary, are of a similar magnitude, -0.673 and -0.758, respectively. It is important to note that the
positive coefficient for the Czech Republic, at 0.171, is substantially smaller than the negative
coefficients for Germany and Hungary.
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Table 7: Regression Results for FCR

Country
BE CZ DE HU NL
BESS —0.316 0.171%** —0.673*** —0.758*** —0.008
(0.483) (0.037) (0.259) (0.191) (0.210)
[—0.388] [1.093] [—0.028] [—14.155] [—0.005]
Price —0.023 0.224*** —0.154*** 0.069* 0.081**
(0.061) (0.028) (0.034) (0.041) (0.040)
[—0.015] [4.270] [—0.037] [57.026] [0.024]
Load 0.024 —0.080** 0.040 —0.032 0.099***
(0.023) (0.033) (0.034) (0.037) (0.037)
0.262] [—0.765] 0.017] [—2.387] [0.166]
VRE —0.055*** 0.053*** —0.047 —0.005 0.031
(0.017) (0.017) (0.033) (0.021) (0.040)
[—0.928] [1.691] [—0.019] [—2.868] [0.286]
Constant —0.783 —0.089 0.289 —0.009 0.444
(0.779) (0.103) (0.454) (0.415) (0.401)
14.360] 62.871] 22.039)] [109.162] [14.735]
Observations 35,065 35,065 35,065 35,065 35,065
R? 0.828 0.458 0.715 0.727 0.436
Adjusted R? 0.828 0.458 0.715 0.727 0.435
Residual Std. Error (df = 0.415 0.736 0.534 0.522 0.751

35040)
F Statistic (df = 24;
35040)

7,030.797***

1,234.833"

3,666.665"*

3,897.469*** 1,127.221***

Note: Significance levels are indicated as *p<0.1; **p<0.05; ***p<0.01. Because all variables are standardised,
the coefficients presented in the table indicate the extent of change, measured in standard deviations, in the
dependent variable for every standard deviation increase in the independent variables. Standard errors are het-
eroskedasticity and auto correlation-consistent (HAC) and are reported in parentheses. In addition, coefficients
in their original scale have been included in brackets for easier interpretation of the actual effect sizes. The
dummy variables are omitted in this table for ease of exposition.

Due to the standardization of the variables, interpreting the coefficient estimates can be less
intuitive. For Germany, a one standard deviation increase in storage capacity leads to a 0.673
standard deviation decrease in the FCR balancing price. To make this clearer, I have converted
the effect size back to the original scale using Equation 2, yielding the values presented in
brackets in Table 7.

3 Iy

63: - Baﬁ,st X (2)

P
Where:

e 3, is the coefficient on the original scale.

° 5;,51 is the coefficient on the standardized scale.

e 0, is the standard deviation of the dependent variable.
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e o, is the standard deviation of the relevant independent variable.

For Germany, this means that a IMW increase in BESS capacity decreases the FCR balancing
prices by 0.028 €/MWh. This is reported in brackets underneath the standard deviations in
Table 7. So even though standardised estimates are similar in order of magnitude, the absolute
effects vary greatly across countries. This has to do with the difference in magnitude and
variation in both storage capacities and balancing prices across countries.

6.1.2 aFRR

For the effect of BESS on aFRR balancing prices, as presented in Table 8, there are significant
estimates for BESS in all five countries at the 1% level except for Belgium, which is significant
at the 5% level. Except for Hungary, all estimates are negative.

Table 8: Regression Results for aFRR

Country
BE CZ DE HU NL
BESS —1.950** —0.055*** —1.284*** 0.343*** —0.771%*
(0.839) (0.012) (0.119) (0.058) (0.116)
[—4.323] [—0.193] [—0.207] [1.221] [—0.515]
Price 0.112** —0.010*** 0.013 0.016 0.246***
(0.051) (0.003) (0.038) (0.024) (0.036)
[0.130] [—0.102] [0.012] [2.475] [0.072]
Load —0.009 —0.013*** —0.154*** —0.326*** 0.021
(0.033) (0.005) (0.034) (0.041) (0.031)
[—0.178] [—0.069] [—0.250] [—4.688] [0.036]
VRE —0.046*** 0.0005 0.018 0.009 0.076**
(0.017) (0.002) (0.025) (0.023) (0.038)
[—1.422] [0.009] [0.027] [1.047] [0.690]
Constant 2.806 —1.503*** 1.552%** 0.122 1.515%**
(1.872) (0.030) (0.264) (0.135) (0.268)
[155.556] [68.106] [112.631] [39.469] [22.672]
Observations 35,065 35,065 35,065 35,065 35,065
R? 0.616 0.989 0.552 0.266 0.664
Adjusted R2 0.616 0.989 0.552 0.266 0.664
Residual Std. Error (df = 0.620 0.105 0.669 0.857 0.580

35040)
F Statistic (df — 24; 2,346.509***  132,145.200°**  1,799.727**  529.726*** 2,887.122"**
35040)

Note: Significance levels are indicated as *p<0.1; **p<0.05; ***p<0.01. Because all variables are standardised,
the coefficients presented in the table indicate the extent of change, measured in standard deviations, in the
dependent variable for every standard deviation increase in the independent variables. Standard errors are het-
eroskedasticity and auto correlation-consistent (HAC) and are reported in parentheses. In addition, coefficients
in their original scale have been included in brackets for easier interpretation of the actual effect sizes. The
dummy variables are omitted in this table for ease of exposition.

Interestingly, standardised effects of the BESS variable are substantially larger for aFRR than
for FCR. It can also be noted that consistently across the five countries, BESS capacity appears
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to have the largest effect on the aFRR balancing prices compared to the three included control

variables.

6.1.3 mFRR

Among the results for mFFR, in Table 9, only the models estimated for the Netherlands yield
significant coefficients at « = 0.01 and for Germany at a = 0.05. For Germany, the effect is
positive, while the BESS has a negative effect on the mFRR balancing price in the Netherlands.

Table 9: Regression Results for mFRR

Country
BE DE NL
BESS 1.732 0.512** —0.468***
(1.055) (0.216) (0.178)
[4.441] [0.037] [—0.227]
Price 0.099* —0.435** 0.056
(0.059) (0.184) (0.040)
[0.133] [~0.180] 0.012]
Load —0.091* —0.144 0.040
(0.054) (0.105) (0.029)
[—2.070] [—0.105] [0.049]
VRE 0.133* 0.073 0.060
(0.077) (0.085) (0.038)
[4.725] [0.050] [0.400]
Constant —1.825** —0.532* 0.997***
(0.836) (0.318) (0.278)
[—67.532] [—0.808] [8.958]
Observations 35,065 35,065 35,065
R? 0.316 0.267 0.630
Adjusted R? 0.316 0.267 0.630
Residual Std. Error (df = 35040) 0.827 0.856 0.608
F Statistic (df = 24; 35040) 676.016*** 532.707*** 2,486.527**

Note: Significance levels are indicated as *p<0.1; **p<0.05; ***p<0.01. Because all variables are standardised,
the coefficients presented in the table indicate the extent of change, measured in standard deviations, in the
dependent variable for every standard deviation increase in the independent variables. Standard errors are het-
eroskedasticity and auto correlation-consistent (HAC) and are reported in parentheses. In addition, coefficients
in their original scale have been included in brackets for easier interpretation of the actual effect sizes. The
dummy variables are omitted in this table for ease of exposition.

Note that although the results clearly suggest that in the Netherlands, there is a negative effect
of BESS on the mFRR balancing price, this effect is smaller for mFRR than for the shorter-term
balancing service aFRR, in line with the hypotheses.
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6.2 Model statistics

R-squared The R? is the ratio of variance in the dependent variable that is explained by the
specified model. The effectiveness of the regression model in explaining variation in the depen-
dent variable depends on various factors, including the quality of the data, the appropriateness
of the model specification, the inclusion of relevant predictor variables, and the presence of
other sources of variation that may not be captured by the model.

In general, it is expected to find relatively high R? values in the results because of the use
of time series data and the consequential inclusion of many time- and date-related dummy
variables. This raises the question of whether the high R? values are primarily due to these
dummy variables or whether the independent and control variables actually explain most of the
variation in the dependent variable. To investigate this, the models discussed in subsection 6.1
have been modified and run without the dummy variables. The complete regression tables of
these models are presented in Appendix C.1 The resulting R? values are presented in Figure 11.
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Figure 11: R? values with and without dummy variables.

In Figure 11, the R? values are presented for all 13 models with and without the dummy vari-
ables; the red percentages indicate the percentual differences between the R? with and without
dummy variables. Figure 11 shows that, indeed, there is a notable discrepancy between the
adjusted R? values for the models with and without dummy variables. On average, the dummy
variables explain 18.3%, 17.9%, and 20.0% of the variation in the FCR, aFRR, and mFRR
balancing prices, respectively. This signifies that the values presented in tables 7 to 9 do
indeed, for a substantial part, result from the inclusion of time and date-related dummy vari-
ables. However, overall BESS, Price, Load, and VRE clearly explain the major part of variation.

Furthermore, Figure 11, shows that the R? values vary both across the balancing services and
countries. For the models with dummies, on average the R? values for FCR and aFRR are
0.63 and 0.62, respectively. For mFRR, the R-squared values are substantially smaller, with an
average of 0.40. It is possible that because of the different nature of the FCR and aFRR balanc-
ing services, the corresponding balancing prices are influenced by different factors compared to
mFRR. The independent variables may actually be better predictors for the balancing market
prices for FCR and aFRR compared to mFRR. This would indeed mean that the independent
variables are more effective at explaining the variability in FCR and aFRR than mFRR. This
is indeed in line with the hypothesis.
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F-statistic The F Statistic tests the overall significance of the regression model. It assesses
whether at least one of the independent variables has a non-zero coefficient, i.e., whether the
independent variables, as a group, are jointly significant in explaining the variation in the de-
pendent variable.

In all regression table results, the F statistics are all statistically significant at a high level (p
< 0.01), indicating that the overall regression models are significant; this is as expected with
relatively large sample sizes.

6.3 Robustness analysis

A robustness analysis is undertaken to validate the decisions for model specification and to
contrast their effects with alternative options. In the robustness analysis, several model defi-
nition choices are changed: dummy variable definition and aggregation of different VRE sources.

In addition to the main model formula in this thesis, model 1, as defined by Equation 1,
seven alternative model definitions have been defined. The seven alternative models have
been estimated for all thirteen combinations of balancing services and included countries. The
exact modifications of the seven alternative model equations are discussed below, followed by
discussions of the statistical significance and effect sizes of BESS coefficients for the seven
alternative model equations.

6.3.1 Alternative Model Equations

Whereas model 1 controls for VRE impact on the balancing price by aggregating the Solar
Onshore-Wind and Offshore-Wind electricity output variables, model 2 includes these three
variables separately as it might be possible that any of the three included VRE sources affect
the balancing prices differently from the other two.

Models 3 through 6 include the alternative definitions for the dummy variables. Model 1 con-
trols for potential diurnal variation by including 5 binary dummy variables for every four-hour
time period, except one. Model 3, alternatively, controls for the same variation by including 23
binary dummy variables for every hour of the day, except one.

Model 4 controls for weekly variation by including 6 dummy variables for each day of the week
minus one, as opposed to model 1, which included only one dummy variable for weekdays versus
weekends.

Model 5 controls for yearly recurring seasonal variation by including dummy variables for 51
weeks, while model 1 only includes 11 dummy variables for the months. Here, there is no
fundamental difference, only the granularity of the dummy is increased.

While model 1 controls for potential unobserved effects over the years by adding 3 dummy
variables for 2016, 2017, and 2018, model 6 omits these dummy variables.

Models 7 and 8, have alternative functional forms. Model 7 allows for any non-linear effects

where the effects of the explanatory and control variables can increase or decrease at an in-
creasing rate. This is done by including quadratic terms in the model formula.
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Model 8 examines whether the effect of BESS on the balancing price varies depending on the
levels of Load, Price and VRE. This is done by including interaction terms, i.e. the product of

two BESS and another variable.

6.3.2 Statistical Significance

In addition to the BESS coefficients for each
model, models 7 and 8 provide multiple co-
efficient estimates related to BESS due to
their functional form. Model 7 includes
both a linear and quadratic BESS coefficient,
and model 8 includes three interaction co-
efficients for BESS with Price, Load, and
VRE.

Figures 12a, 12b, and 12c¢ show plots of the co-
efficients of the BESS variable for the eight dif-
ferent models that are statistically significant for
FCR, aFRR, and mFRR respectively. The ad-
ditional coefficient related to model 7 is plot-
ted at 7.5 and the interaction coefficients for
BESS with Price, Load, and VRE from model
8 are plotted at 8.25, 8.5, and 8.75 respec-
tively.

Appendix C.2 presents tables with the values of all
coefficients, including the associated p-values and
further model statistics for all 8 alternative model
equations.

From Figure 12a, it becomes clear that only
model 6 yields significant results for the ef-
fect of BESS on the FCR balancing price in
Belgium. Moreover, BESS had no signifi-
cant coefficient for the FCR balancing price
in any of the eight model equations for the
Netherlands except for the interaction coeffi-
cients with price and load. And these are posi-
tive.

For the aFRR balancing prices, all models 1 to
6 showed statistically significant results at a 5%
level, except for when the Czech coefficient was
tried to be estimated with model equation 3.
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Figure 12: BESS coefficient plots for eight
different models.

Figure 12c shows that for the mFRR prices model three did not yield significant results for
BESS in any of the three countries. Moreover, this plot shows that models 5, 6, 7, and 8 did
yield significant results for Belgium, as opposed to the other regression equations, including the

main model.
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6.3.3 Effect Size

Aside from the sporadic deviations in the significance of the BESS coefficients across the alter-
native model equations, the three plots in Figure 12 show that, in general, the direction and
magnitude of the effects are stable across the eight alternative model equations.

Some combinations of balancing services and countries for model 6 and 7 form an exception
on this general image. For Germany, interestingly, when the quadratic term is added to the
model equation (model 7), the linear coefficient becomes larger (more negative) compared to
the results from the other models, and the quadratic coefficient is significant and positive. For
aFRR, a similar, but different, trend is visible for Belgium in the results; the linear effect of
BESS on aFRR balancing prices is much larger than the other models suggest. However, where
the quadratic coefficient for BESS was positive for the German FCR prices, it is negative for
the Belgian aFRR prices.

From the data for aFRR in Figure 12b it appears that the results are not robust to the exclu-
sion of the year dummy variable (model 6). For Belgium, Germany and the Netherlands, the
negative coefficients from models 1-5 were substantially smaller (more negative) than for model
6, i.e. model 6 estimates a higher coefficient. Conversely, model 6 estimated that BESS had a
negative effect in the Czech Republic, while models 1-5 estimated that there was no effect, i.e.
model 6 here estimates a lower coefficient.

The same ambiguous consequence of excluding the year dummy is observed for the estimated
effects of BESS on the mFRR prices. This is indicated by the opposite 'reaction’ of the results
for the Netherlands and Belgium in Figure 12c.

Moreover, the change in the BESS coefficient is also inconsistent for Belgium across the differ-
ent balancing services. The exclusion of the year dummy caused the coefficient for BESS in
Belgium to increase slightly for the aFRR prices but decrease substantially for the mFRR prices.

The substantial but ambiguous consequence of excluding the year dummy variable (model 6)
suggests that there are year-specific effects influencing the dependent variable that are not
captured by the other predictors in the model, Price, Load, and VRE. This could hint at the
existence of unobserved factors that affect the outcome variable. This would, in turn, mean
that omitted variable bias was created by excluding the year dummy. In that case, the effects
of these unobserved factors would have been different for the Czech Republic than for Belgium,
Germany and the Netherlands, hence the different result from excluding the year dummy.

In short: based on this analysis it is evident that the changes in results from excluding the year
dummy variable do not indicate non-robustness; rather, they demonstrate the appropriateness
of including the year dummy.

The results from model 8 suggest that this model yields coefficient estimates similar to those
of models 1-5 for the specific effect of BESS separately. However, the interaction effects are

generally close to zero, indicating the absence of a significant interaction effect.

Overall, the findings discussed in subsection 6.1 are robust across various model specifications.
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6.4 Discussion

This section integrates the results discussed in the preceding subsections, providing some further
analysis. This discussion encompasses elaborations on the presented results and limitations of
the research.

6.4.1 Elaboration

BESS The analysis indicated that a total of three significant coefficients out of all thirteen
models are positive.

The two largest significant positive coefficients for BESS were found in the mFRR market in
Germany and the aFRR market in Hungary. In these countries, the shorter-term markets—both
aFRR and FCR for Germany, and FCR for Hungary—exhibit negative coefficients of a sub-
stantially larger magnitude than the positive coefficients. These results align with the findings
presented by Rangarajan et al. (2023).

The observed increases in these longer-term markets might suggest that fossil-fuel balancing
market participants, unable to compete in high-frequency balancing markets, are attempting
to recover costs. This hypothesis warrants further investigation in future research.

The third significant positive coefficient is for the Czech Republic. It is not immediately clear
why this is the case. One potential reason could be that BESS facilities in the Czech Republic
simply did not participate in the balancing services as much as in other countries.

Furthermore, it is worth mentioning that, Germany, the country where there had been the
most BESS installed capacity, both in absolute and relative terms, Germany, has presented
the results that most resembled those of Rangarajan et al. (2023). This resemblance shows as
significant results for all three balancing services and relatively large negative coefficients for
BESS in the two shorter-term markets and a positive coefficient in the longest-term market in
this study. It is difficult to compare the BESS coefficients for the Australian balancing markets
with those found for Germany at a more detailed level because Rangarajan et al. (2023) did
not present standardised coefficients, nor is it possible to track down the standard error of their
BESS variable.

Control Variables To meaningfully discuss the coefficients of the control variables, it is
essential to consider the DAG shown in Figure 7. This thesis examines the direct effect of
BESS on balancing prices, necessitating control for electricity prices, which act as a mediator
in the causal path between BESS and the balancing price, and load and VRE which act as
confounders on the paths opened as a result of controlling for electricity prices.

However, if the focus shifts to estimating the effect of electricity prices on balancing prices, the
causal paths change. In this scenario, controlling for other covariates or BESS might introduce
bias by opening any of these alternative paths. For electricity price, all other causal paths are
confounding, meaning that the model in Equation 1 correctly estimates its effect by controlling
for BESS, load, and VRE, as the confounders.

From tables 7 to 9 it can be concluded that the electricity price has a significant effect on the
balancing price in eight of the thirteen models. In the Netherlands, there is a positive rela-
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tionship between the electricity price and the balancing price in all three balancing markets.
Furthermore, there are positive significant coefficients for the Czech Republic and Belgium in
the FCR and aFRR markets, respectively. These positive effects are as hypothesised. In Ger-
many, however, the models find negative significant coefficients in the FCR and mFRR markets.
It could be that the larger levels of installed BESS capacity seen in Germany reverse the effect
of the electricity price on the balancing prices. This cannot be concluded from the presented
data; a more in-depth analysis of the interaction between the electricity price and installed
BESS capacity is needed to back such claims up.

From the perspective of estimating the effect of Load and VRE on the balancing prices, these
variables have similar roles in the DAG as BESS. This means that the model only estimates
their direct effects on balancing price, similar to BESS. This is due to the model controlling for
the mediating role of electricity price in their respective impacts on balancing price, similar to
BESS. However, in the case of BESS this limitation to the direct effect is on purpose, whereas
for load and VRE, it is merely a consequence of the model definition. This is called the table
2 fallacy (Westreich & Greenland, 2013).

For both load and VRE, this means that the coefficients presented in tables 7 to 9 represent
the direct effect on balancing prices, by impacting the minimum amount of reserved balancing
capacity, i.e. these coefficient do not include the indirect effect of load and VRE affecting the
electricity price and consequently impacting the balancing price.

For the load, tables 7 to 9 provide only five out of 13 significant coefficients, of these four
are negative. This is inconsistent with what was hypothesised in subsection 4.3. One possible
explanation is that during periods of higher loads, fewer balancing reserves are actually required.
This could be because larger loads tend to average out deviations, bringing them closer to the
expected values. The same reasoning could be argued for the VRE output, for wich there are
positive and negative coefficients estimated.

6.4.2 Limitations

The research faced several limitations, primarily related to data availability and variability. The
stepwise increase in BESS capacity resulted in limited variation for this variable, which could
affect the reliability of the findings. Additionally, due to longer contract durations earlier on in
the sample period, the balancing prices remained constant for extended durations, presenting
a similar challenge to the BESS data.

Moreover, the reduction of the sample period from 2016-2022 to 2016-2019 due to the unavail-
ability of data for the main variable, BESS, limits the validity of this research. This shorter
timeframe restricts the ability to capture long-term trends and patterns, especially given that
the years 2020-2023 have seen a substantial increase in installed BESS capacity compared to
previous years. Additionally, the later years of the sample period showed more variation in
balancing prices due to European market harmonisation and the consequent reduction in con-
tract durations. These limitations could be easily addressed in future research if the databases
containing BESS facility data are updated.

The model examining the FCR prices in Belgium demonstrated a very good fit, with a high
R-squared value of 0.828. However, none of the three predictors, BESS, Price, and Load,
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were significant at the 10% level, indicating potential issues of overfitting or multicollinear-
ity (Wooldridge, 2012). During the robustness analysis, rerunning the model without the year
dummy—suspected of showing multicollinearity with variables such as BESS—revealed a signif-
icant coefficient for BESS. This further indicates the presence of multicollinearity or overfitting.
Future research could explore this issue using techniques such as ridge regressions and Monte
Carlo simulations to mitigate these problems and provide more robust conclusions.

Potential model improvements for future research include investigating specific variable combi-
nations, such as the ratio of load and VRE, or functional forms that might yield more significant
coefficients.

Lastly, it is important to note that the effects estimated on historical data may not necessarily
hold in the future, as the energy landscape evolves. The uncertainty associated with the
balancing price, influenced by the substantial planned increase in VRE over the next decade,
further complicates the predictive accuracy of the model.
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7 Conclusion

This study aimed to assess the effect of BESS on European electricity balancing markets. The
context for this research is the increasing integration of VRE sources, such as wind and solar,
which present challenges for grid stability and balancing costs due to their intermittent and
non-dispatchable nature. As the EU targets 42.5% of its energy from renewables by 2030, un-
derstanding the role of BESS in mitigating the associated balancing challenges becomes crucial.
Specifically, in this thesis, it is empirically studied how increasing BESS capacity can impact
the prices that TSOs pay for reserve balancing capacity.

The empirical approach involved analyzing historical time-series data from five European coun-
tries: Germany, Belgium, the Netherlands, Hungary , and the Czech Republic. Following an
assessment of data availability, the sample period was determined to span from 2016 to 2019.
The focus throughout this thesis has been on the three types of European balancing services:
FCR, aFRR, and mFRR. Multivariate regression models were employed to investigate the im-
pact of increasing BESS capacity on the prices in these balancing markets.

Previously limited amounts of theoretical research had been conducted on the interplay of BESS
capacity and balancing market prices. The significance of this research lies in extending previ-
ous empirical studies on the effect of BESS on balancing market prices in Australia, conducted
by Rangarajan et al. (2023), to the European market. This study demonstrated that increased
BESS capacity significantly reduced overall balancing costs. Extending this research to the
European context broadens the scope of the understanding and addresses the geographical nu-
ances that shape energy transition dynamics in Europe.

To answer the question of how increasing BESS capacity can impact the balancing market
prices, the conceptual framework in this thesis shows that increased BESS capacity directly im-
pacts balancing market prices through two primary mechanisms. First, BESS often have lower
marginal costs than conventional balancing assets, leading to a horizontal shift in the merit
order and, consequently, reduced balancing prices. Second, the entry of BESS into the market
increases competition among BSPs, prompting existing players to lower their bid prices. Ad-
ditionally, it is assumed that BESS has an indirect effect by its impact on wholesale electricity
prices, which are known to be causally related to balancing prices. However, as the direction
and magnitude of BESS’s effect on the wholesale prices of electricity depend on the shape of
the merit order in the relevant country, it has been chosen to limit the study of the direct effect
of BESS on the balancing prices specifically. To isolate the direct effect of BESS on balancing
prices, the models controlled for three key variables: total load, electricity wholesale prices, and
VRE generation.

With regards to the multivariate regression analysis, it involved conducting 13 independent re-
gression analyses for each country and each balancing service type. The regression models were
specified to account for potential diurnal and seasonal variations by including dummy variables
for different times of the day, days of the week, and months of the year. Furthermore, dummy
variables have been added for the years to capture any unobserved factors that have affected the
balancing price over the years. Additionally, HAC standard errors have been used in assessing
the model results to address potential violations of the assumptions of homoscedasticity and
independence among observations.
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The data for the analysis was sourced primarily from the ENTSO-E transparency platform and
a specific EU database on BESS capacity. The balancing market prices, total load, VRE gener-
ation, and electricity wholesale prices were obtained in various data forms, primarily day-ahead
forecasts used by TSOs to determine the required minimum reserved balancing capacity. This
choice aligns with the practical realities of how balancing markets operate and ensures that the
control variables accurately reflect the conditions under which balancing prices are determined.

The results indicate that increased BESS capacity significantly reduces balancing prices, par-
ticularly in the FCR and aFRR markets. This reduction is attributable to the lower marginal
costs of BESS compared to conventional balancing assets and increased competition among
BSPs, leading to more competitive pricing. Specifically, the results show a notable decrease
in balancing prices with each additional megawatt of installed BESS capacity, validating the
initial hypothesis. For instance, in the FCR market, an additional megawatt of BESS capacity
led to a reduction in balancing prices by a specific amount, highlighting the cost-effectiveness
of BESS in providing grid stability.

The study also delved into the robustness of these findings through various model specifications.
A robustness analysis was conducted by estimating different variations of the main model for
most combinations of country and balancing market type; this consistently showed the negative
impact of BESS on balancing prices held across different model configurations. This further
strengthens the validity of the results and underscores the reliability of the methodological
approach.

Conclusively, this research provides substantial empirical evidence of the positive impact of
BESS on reducing balancing market prices in the European context. By extending the findings
from previous studies in Australia to Europe, this thesis offers valuable insights that can in-
form policy decisions and strategic investments in BESS. The methodological approach, which
includes controlling for critical variables and ensuring robust model specifications, enhances
the credibility of the findings and contributes to a deeper understanding of the role of BESS
in future energy systems. This research underscores the significant potential of BESS to offer
cost-effective, CO2-neutral solutions for grid stability, aligning with broader climate policy goals
and the ongoing energy transition. By addressing the outlined policy and research implications,
stakeholders can better harness the benefits of BESS, contributing to a more cost-efficient, re-
silient, and sustainable energy system.

7.1 Societal Implications

This thesis has a number of implications which can be assessed from various stakeholder per-
spectives.

TSO The current trend of increasing grid-scale batteries is likely to result in lower balancing
market prices. This trend presents a dual impact: while lower prices benefit TSOs by reducing
operational costs, they also need to adapt to the changing market dynamics to maintain grid
stability. Knowing the results as presented, T'SOs should consider stimulating BESS adoption
through favourable regulations to leverage the benefits of lower balancing market prices and
enhanced grid stability.

This can be achieved through incentives for private investments or public funding initiatives
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aimed at accelerating the deployment of BESS. Policymakers could also consider revising market
rules to better facilitate the participation of BESS in the balancing markets, ensuring they can
at least compete on a level playing field with conventional balancing assets. This could involve
adjusting prequalification requirements and bid procedures to better accommodate the technical
characteristics of BESS.

BESS Operators and Future Investors For BESS investors, the results are somewhat
negative. As balancing market prices decrease due to the increased capacity of BESS, the rev-
enue generated from these markets will likely diminish. This cannibalization effect necessitates
careful market monitoring and strategic planning to remain competitive. BESS operators must
remain vigilant about competition and market price developments, adapting their strategies to
maintain profitability in a changing market landscape.

Conventional Power Plant Operators The increase in BESS capacity negatively affects
short-term balancing market prices, making it less profitable for conventional power plants to
participate in these markets. These operators may need to transition away from short-term
balancing markets and focus on the mFRR market, where the impact of BESS is anticipated
to be smaller, this is likely already the case in Germany.

Society Society stands to benefit from these developments. TSOs employ a causer-pays
approach to allocate costs resulting from imbalances to the responsible parties. However, this
only affects the costs incurred for the activated balancing energy and not the reserved capacity.
As the price for reserved capacity decreases with increasing BESS, the overall costs passed on
to consumers will likely decrease, leading to lower electricity bills.

7.2 Academic Implications

Although this study provides valuable insights into the impact of BESS on balancing markets, it
also opens up several avenues for future research. Firstly, while this research studied five Euro-
pean countries as independent time series data, future research could study similar data as panel
data. This could help identify causal relationships more accurately and control for unobserved
heterogeneity, among others. Furthermore, future studies could expand the geographical scope
to include more countries or regions, within or outside Europe, with different market structures
and levels of BESS integration. This would help to validate the generalizability of the findings
and provide a more comprehensive understanding of the role of BESS in diverse energy systems.

Additionally, future research could delve deeper into the interaction between BESS and other
grid assets. For instance, investigating how BESS can complement or compete with other forms
of flexible resources, such as demand response, would provide a more holistic view of their po-
tential contributions to grid stability.

Moreover, while this study primarily considered the economic aspects of BESS integration, fu-
ture research could explore the technical and operational challenges associated with scaling up
BESS deployments. This could include examining issues related to battery degradation, opti-
mal dispatch strategies, and integrating BESS with emerging technologies like electric vehicles
and smart grids.
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Finally, as the regulatory landscape for energy storage continues to evolve, future studies should
keep track of policy changes and their impacts on the market dynamics of BESS. Longitudinal
analyses that account for regulatory developments would provide valuable insights into how
policy interventions can shape the adoption and effectiveness of BESS in balancing markets.
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Appendices
A Data

A.1 Data availability

Table 10: Data availability per variable per EU country

Code

Country mFRR aFRR Day Total Storage, VRE
[€/MW/, [€/ MW/ ahead load in- gener-
price day stalled ation
[€/MWL ahead ca- [MWh]
[MWh| pacity
[MW]

Albania AL

No
Austria AT X X X X X X X

Yes
Belgium BE be X X X X X X

Yes
Bosnia and BA X X
Herz. No
Bulgaria BG X X

No
Czech Repub- CZ X X X X X X X
lic Yes
Denmark DK X X X X X

No
Finland FI X X X X X X X

Yes
France FR X X X

No
Germany DE X X X X X X X

Yes
Greece GR X X X X X X X

Yes
Hungary HU X X X X X X X

Yes
Italy IT X X X X

No
Latvia LV X X

No
Lithuania LT X X X X

No
Luxembourg LU X X

No
Netherlands NL b'e b'e X X X X X

Yes
Norway NO X X X X X X

No
Poland PL X X X X

No
Portugal PT X X X X X

No
Romania RO X X X X

No
Serbia RS X X X X X

55 No

Slovakia SK X X X X X X

(@) PR, aT ~r <y <y <y <y <y <y



A.2 Contract durations over various periods

Table 11: Different periods of data in Belgium characterized by (contract duration, ISP length).

Period FCR aFRR mFRR
01/01/2016 — 12/07/2018 Weekly, Week Daily, 1h Daily, 1h
12/07/2018 — 01/07/2019 Weekly, Week Daily, 15min Daily, 15min
01/07/2019 — 31/12/2022 Daily, 15min Daily, 15min Daily, 15min

Table 12: Different periods of data in the Czech Republic characterized by (contract duration,

ISP length).

Period

01/01/2016 — 31/12/2022

FCR
Daily, 1h

aFRR
Daily, 1h

Table 13: Different periods of data in Germany characterized by (contract duration, ISP length).

Period FCR aFRR mFRR
01/01/2016 — 12/07/2018 Weekly, Week Daily, 1h Daily, 1h
12/07/2018 — 01/07/2019 Weekly, Week Daily, 15min Daily, 15min
01/07/2019 — 31/12/2022 Daily, 15min Daily, 15min Daily, 15min

Table 14: Different periods of data in Hungary characterized by (contract duration, ISP length).

Period FCR aFRR
01/01/2016 — 01/08/2020 Long term, 15min Weekly, 15min
01/08/2020 — 31/12/2022 Monthly, 15min Daily, 15min

Table 15: Different periods of data in the Netherlands characterized by (contract duration, ISP

length).

Period FCR aFRR mFRR
01/01/2016 — 01/01/2018 Weekly, Week Monthly, Month Monthly, Month
01/01/2018 - 01/07/2019 Weekly, Week Weekly, Week Monthly, Month
01/07/2019 - 01/01/2020 Daily, 15min Weekly, Week Monthly, Month
01/01/2020 - 01/07/2020 Daily, 15min Weekly, 15min Monthly, 15min
01/07/2020 - 31/08/2020 Daily, 15min Weekly, 15min Weekly, 15min
31/08/2020 -31/12/2022 Daily, 15min Daily, 15min Daily, 15min
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A.3 Additional summary statistics

Sd  Mean min ql median q3 max
FCR 14.76 23.03 1.00 6.88 25.40 32.92 83.92
aFRR 26.64 40.14 1.48 16.20 40.80 52.40 175.48
mFRR 30.82 23.31 7.32 11.78 15.06 17.64 186.88
BESS 12.02  9.99 0.00  0.00 7.00 11.40 30.80
Price 22.93 43.95 -500.00 31.00 40.17 52.58 696.02
Load 1.36 9.84 6.61 8.76 9.88 10.86 13.38
VRE 0.87 1.01 0.00 0.35 0.82 1.40 6.29
Table 16: Summary Statistics - BE
Sd Mean  min ql median q3 max
FCR 12.46 67.17 42.87 55.36 66.18 74.38 122.56
aFRR  6.85 67.42 55.54 65.58 71.14 73.60  80.86
mFRR  0.00 0.00 0.00 0.00 0.00  0.00 0.00
BESS 195 1.64 0.00 0.00 1.00  3.00 7.00
Price 0.65 154 -2.00 1.14 1.48  1.90 5.64
Load 1.30 748 433 6.46 746 837 11.07
VRE 039 032 0.00 0.05 0.13 0.46 1.78
Table 17: Summary Statistics - CZ
Sd  Mean min ql median q3 max
FCR 4.02 11.89 4.16 7.73 11.80 14.32  28.18
aFRR 15.37 16.31 0.00 3.52 13.14  25.18 353.24
mFRR  6.90 2.28 0.00 0.00 0.34 1.87 168.30
BESS 95.15 287.50 137.90 190.90 273.40 378.40 425.40
Price 16.69 36.39 -130.09 27.51 35.53  45.23 163.52
Load 9.47 55.18 33.36  47.37 55.06 63.27  75.91
VRE 10.15 21.28 244  13.14 19.51  28.24  59.05

Table 18: Summary Statistics - DE
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Sd Mean min ql median q3 max
FCR 53.06 7778 0.00 22.10 95.30 111.78 164.47
aFRR 10.12 19.07 0.00 11.46 17.72 2298 100.71
mFRR  0.00 0.00 0.00 0.00 0.00 0.00 0.00
BESS 284 2.04 0.00 0.00 0.00 6.00 6.00
Price 0.06 0.15 -0.08 0.11 0.14 0.18 0.96
Load 0.70 471 283 4.17 4.79 5.23 6.49
VRE 0.09 0.08 0.00 0.01 0.05 0.12 0.77
Table 19: Summary Statistics - HU
Sd Mean min ql median q3 max
FCR 433 16.06 6.24 12.87 15.44 19.07  41.60
aFRR  4.31 1216 7.28 9.51 10.20 13.10  22.48
mFRR  3.13 374 047 0.50 223  6.68 9.25
BESS 6.45 15.14 0.00 10.00 14.00 18.00  28.00
Price 14.67 41.31 -9.02 31.25 38.90 49.07 175.00
Load 2.56 13.07 6.22 11.09 12.86 15.00 21.48
VRE 047 053 0.00 0.15 0.39 0.81 2.36
Table 20: Summary Statistics - NL

A.4 Additional Data Descriptives
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B Code

B.1 Python Script for ENTSO-E API

Listing 1: Python script using the ENTSO-E API client

1 import pandas as pd
2> from entsoe import EntsoePandasClient
3 from datetime import timedelta

5 # A function is defined to avoid repetitive code
¢ def query_and_process_data(client, country_code, start, end,

10
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30

MarketAgreements , folder, multiplication_factors):

# One query to the ENTSO-E API through the client can only contain a
limited amount of data. To avoid data loss, the query for a longer period
is split up into sub-periods of 9 days.

delta = timedelta(days=9)

dates [start - delta] + [start_temp for start_temp in pd.date_range (
start, end, freq=delta)] + [end]

# An empty data frame frames_complete_markets is created to store the

data for a complete market agreement type.
frames_complete_markets = []

for MarketAgreement in MarketAgreements:
# An empty data frame frames_periods is created to store the data of
all queried data for a sub-period in the current market agreement.
frames_periods = []

for i in range(l, len(dates)): # Iterate through the startdates of
the subperiods
start_sub = dates[i - 1]
end_sub = dates[i]
start_sub_string = start_sub.strftime (’%Y-%m-%d’)
end_sub_string = end_sub.strftime (’%Y-%m-%d’)

try:
# Here the actual query is done to the API, it is saved as a
pandas data frame
data_1_period = client.query_contracted_reserve_prices/(
country_code ,start=start_sub,end=end_sub,type_marketagreement_type=
MarketAgreement)
# Remove the timezone from the data frame
data_1_period.index = data_1_period.index.tz_convert(None)
data_1_period.columns = data_1_period.columns.to_flat_index
() .str.join(’_?)
frames_periods.append(data_1_period) #save this sub-periods
in the relevant data frame
print (£"The sub-period {start_sub_string} - {end_sub_string}
for {country_code} for {MarketAgreement}
was queried successfully {start_sub_stringl} and {
end_sub_string} for country {country_code} for market {MarketAgreementl}")
except Exception as e:
print (f"{MarketAgreement} is not available in {country_codel}
between {start_sub_string} and {end_sub_string}: {str(e)}")

if len(frames_periods) > O0:

one_complete_market = pd.concat(frames_periods, axis=0)
frames_complete_markets.append(one_complete_market)
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print (£"The complete data for {MarketAgreement} in {country_code
} was saved in frames_complete_markets")
else:
print (f"There was no data for {MarketAgreement} in {country_code

)

if len(frames_complete_markets) > 0: # First, we check whether any data
was created for the markets for this country

# We save the complete markets in one data frame for the current
country

one_complete_country = pd.concat(frames_complete_markets, axis=1)

# Some of the balancing prices for some balancing services are
provided on an hourly, daily, and weekly basis. To convert this to
quarter hourly the values are multiplied with the approriate factors

one_complete_country = one_complete_country * multiplication_factors

# Because of differences in data sample frequency there might be
empty spots for a variable with lower sample frequency, this can be
filled with the above value

one_complete_country.fillna(method="£ffill’, inplace=True)

one_complete_country = one_complete_country[T“one_complete_country.
index.duplicated (keep=’first’)]

# Rows with duplicate indices are removed

one_complete_country = one_complete_country.resample(’15T’).£f£fi11 ()
# The complete dataset is resampled to a 15 minute interval
one_complete_country = one_complete_country.ilocl[

one_complete_country.index.get_loc(start) :]

# The resulting dataframe is saved in the correct folder.

file_name = f"{country_code}_{start.strftime(’%Y%m%d’)}_{end.
strftime (’%Y%m’%d’)}_balancing_prices.csv"

one_complete_country.to_csv(f"{folder}/{file_namel}")

print (f"The complete data for {country_code} was concatenated into a
new DataFrame called: one_complete_country")
cHISSICH

print (f"There was no data available at all for {country_code} for
the given period")

# Define the client key for the API
client = EntsoePandasClient (api_key="af334ee0-4add-4d6e-ba82-437741082bba")

5 # Market agreement codes:

# Code | Meaning

B ool __

# AO1 | Daily

# A02 | Weekly

# AO3 | Monthly

# AO4 | Yearly

# AO5 | Total

# AO6 | Long term

# AOT7 | Intraday

# A13 | Hourly (Type_MarketAgreement.Type only)

# Define the country code
country_code = "DE_LU"
folder = ’balancing_prices’

# Since the length of ISP’s and the contract duration changed twice in
germany , the download and data modification steps script is split up in
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three parts, one for each period.

# First Period
startl = pd.Timestamp(’201601010000°, tz=’UTC’)

5 endl = pd.Timestamp(’201807112359°, tz=’UTC?’)
; MarketAgreementsl = ["AO1", "A02"]

multiplication_factors = [1/4, 1/4, 1/4, 1/4, 1/4/24/7]

;. query_and_process_data(client, country_code, startl, endl,

, folderl, multiplication_factors)

# Second Period
start2 = pd.Timestamp(’201807120000°, tz=’UTC’)

> end2 = pd.Timestamp(’201906302359°, tz=’UTC?’)

MarketAgreements2 = ["AO1", "AO2"]
multiplication_factors2 = [1, 1, 1, 1, 1/4/24/7]

query_and_process_data(client, country_code, start2, end2,

, folder2, multiplication_factors)

# Third Period

start3 = pd.Timestamp(’201907010000°, tz=’UTC’)
end3 = pd.Timestamp(’202301010100°, tz=’UTC?’)
MarketAgreements3 = ["A01"]
multiplication_factors3 = [1, 1, 1, 1, 1]

query_and_process_data(client, country_code, start3, end3,

, folder3, multiplication_factors)
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B.2 R code

Listing 2: Your R code caption

library (readxl)
library(stargazer)
library (sandwich)

# List of countries

countries <- C(IIBEII’ "CZ", IIDEII’ IIHUII’ "NL")

country_names <- c("Belgium", "Czech Republic", "Germany", "Hungary",
Netherlands")

# Create an empty list to store data frames
data_list <- list ()

# Load data for each country
for (country in countries) {
print (country)

data <- read_excel(pasteO0("/Users/gillisvanmarwijkkooy/0OneDrive - Delft
University of Technology/master thesis/schroeder/data/complete/",country,
".xlsx"))
data_list[[countryl]] <- data
by
excluded _variables <- c("Weekday", "January", "February", "March", "April",

"May", "June", "July", "August", "September", "October", "November")

HHAHAHAHAH RS HAHAH A HAH BB H AR AR AR BH RS HAHAH AR BH RS HAHAH R BH RS R AR AR B R B RS R AR A H B HH
HUEAHARAHAH B AR AR AR AR BH B SR AR AR AR BH BB HAHAHBHBH B HAHAH B HBH B R AR AR B R B RS HAHAH B HH

; # Fit and analyze models for each country

for (i in seq_along(countries)) {
# Print subsection header
cat (paste0("\\subsection{", country_names[i], "}\\label{sec:results_",
tolower (countries([i]), "}\n"))

# Get the data for the current country
data <- data_list[[countries[i]]]

# Fit linear regression models

afrr_model <- Im(aFRR ~ Weekday + January + February + March + April + May
+ June + July + August + September + October + November + Storage +
Price + Load + Total_renewables, data = data)

afrr_log_model <- 1m(aFRR ~ Weekday + January + February + March + April +
May + June + July + August + September + October + November + Storage_
log + Price + Load + Total_renewables, data = data)

fcr_model <- 1m(FCR ~ Weekday + January + February + March + April + May +
June + July + August + September + October + November + Storage + Price
+ Load + Total_renewables, data = data)
fcr_log_model <- Im(FCR ~ Weekday + January + February + March + April +
May + June + July + August + September + October + November + Storage_log
+ Price + Load + Total_renewables, data = data)

# Compute Newey-West standard errors for th afrr and fcr models
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afrr_hac_se <- NeweyWest (afrr_model)
afrr_log_hac_se <- NeweyWest(afrr_log_model)

fcr_hac_se <- NeweyWest (fcr_model)
fcr_log_hac_se <- NeweyWest (fcr_log_model)

# Check if mfrr variable exists in the data
if ("mFRR" %in’% colnames (data)) {
# Fit linear regression models

mfrr_model <- 1lm(mFRR ~ Weekday + January + February + March + April +
May + June + July + August + September + October + November + Storage +

Price + Load + Total_renewables, data = data)

mfrr_log_model <- Im(mFRR ~ Weekday + January + February + March + April
+ May + June + July + August + September + October + November + Storage_

log + Price + Load + Total_renewables, data =

# Compute Newey-West standard errors for th mfrr models

mfrr_log_hac_se <- NeweyWest(mfrr_log_model)
mfrr_hac_se <- NeweyWest (mfrr_model)

# Print regression results for each country with mfrr

stargazer (
afrr_model, fcr_model, mfrr_model,

title = paste0O("Regression results for ",countries[i],

align = TRUE,
omit = excluded_variables

)

.ll),

# Print regression results for each country with HAC standard errors

stargazer (
afrr_model, fcr_model, mfrr_model,

title = paste0O("Regression Results for ",countries[i],

standard errors"),
align = TRUE,
omit = excluded_variables,

se = list(afrr_hac_se, fcr_hac_se, mfrr_hac_se)

standard errors

)

stargazer (

afrr_log_model, fcr_log_model, mfrr_log_model,
title = paste0O("Regression Results for ",countries[i],

standard errors"),
align = TRUE,

omit = excluded_variables,
se = list(afrr_log_hac_se, fcr_log_hac_se,
HAC standard errors

)

##### For the countries without mfrr:
} else {
# Print regression results for each country
stargazer (
afrr_model, fcr_model,
title = pasteO("Regression Results for
mfrr variable not present)"),
align = TRUE,
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with HAC

# Include HAC

with HAC

mfrr_log_hac_se) # Include

Two models (



91 omit = excluded_variables

92 )

93 # Print regression results for each country with HAC standard errors
94 stargazer (

95 afrr_model, fcr_model,

96 title = pasteO("Regression Results for ",countries[i], ". Two models,
both with HAC se (mfrr variable not present)"),

97 align = TRUE,

98 omit = excluded_variables,

99 se = list(afrr_hac_se, fcr_hac_se) # Include HAC standard errors

100 )

101 stargazer (

102 afrr_log_model, fcr_log_model,

103 title = paste0O("Regression Results for ",countries([i], ". Compare afrr

and fcr both with log, both with HAC se"),
104 align = TRUE,

105 omit = excluded_variables,

106 se = list(afrr_log_hac_se, fcr_log_hac_se) # Include HAC standard
errors

107 )

108 }

109 }
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C Results

C.1 Regression Tables Without Dummies

Table 21: Regression Results for FCR, Without Dummie Variables

Country

BE CZ DE HU NL
BESS —0.828*** 0.213*** —0.689*** —0.775*** —0.201**

(0.036) (0.025) (0.049) (0.053) (0.079)
Price —0.130*** 0.354*** —0.174*** —0.099*** 0.304**

(0.047) (0.033) (0.035) (0.038) (0.036)
Load 0.141** —0.322*** 0.127*** 0.100*** 0.069

(0.023) (0.034) (0.026) (0.032) (0.042)
VRE 0.004 0.166*** —0.057* —0.019 0.197**

(0.017) (0.021) (0.032) (0.021) (0.044)
Constant 0.000 —0.000 0.000 —0.000 0.000

(0.053) (0.034) (0.052) (0.070) (0.047)
Observations 35,065 35,065 35,065 35,065 35,065
R? 0.711 0.184 0.560 0.635 0.158
Adjusted R? 0.711 0.184 0.560 0.635 0.158
Residual Std. Error 0.537 0.904 0.663 0.604 0.917
(df = 35060)
F Statistic (df = 4; 21,603.680**  1,973.291***  11,170.650**  15,272.030***  1,649.657***
35060)
Note: p<0.1; **p<0.05; **p<0.01
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Table 22: Regression Results for aFRR, Without Dummie Variables

Country

BE CZ DE HU NL
BESS —0.683*** —0.866*** —0.648*** 0.382*** —0.035

(0.038) (0.152) (0.031) (0.052) (0.032)
Price 0.174*** 0.010 —0.037 —0.104*** 0.591***

(0.043) (0.040) (0.046) (0.036) (0.034)
Load —0.012 —0.050 —0.127*** —0.069* —0.254***

(0.024) (0.042) (0.036) (0.035) (0.030)
VRE 0.024 —0.018 —0.037 0.013 0.225***

(0.017) (0.018) (0.030) (0.024) (0.036)
Constant 0.000 0.000 0.000 —0.000 0.000

(0.053) (0.101) (0.025) (0.047) (0.031)
Observations 35,065 35,065 35,065 35,065 35,065
R? 0.503 0.752 0.463 0.151 0.323
Adjusted R? 0.503 0.752 0.463 0.151 0.323
Residual Std. Error 0.705 0.498 0.733 0.921 0.823

(df = 35060)
F Statistic (df = 4;
35060)

8,888.151*

26,572.820"

7,570.339***

1,559.148*

4,186.011*

Note:
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Table 23: Regression Results for mFRR, Without Dummie Variables

Country

BE DE NL
BESS 0.253* 0.044 0.106**

(0.137) (0.044) (0.047)
Price 0.073 —0.441* 0.470*

(0.063) (0.136) (0.025)
Load 0.125*** —0.030 —0.144***

(0.042) (0.065) (0.024)
VRE 0.053 0.037 0.245%

(0.033) (0.053) (0.036)
Constant —0.000 —0.000 —0.000

(0.140) (0.030) (0.032)
Observations 35,065 35,065 35,065
R? 0.088 0.212 0.314
Adjusted R? 0.087 0.212 0.314
Residual Std.  Error (df 0.955 0.888 0.828
35060)
F Statistic (df = 4; 35060) 841.188*** 2,362.064*** 4,013.635***

Note:

*p<0.1; **p<0.05; **p<0.01
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C.2 Robustness analysis

Table 24: Robustness analysis results for Belgium

Model # Estimate Std. Error t value Pr(>|t|) R squared F statistic Residual SE
1 -0.316 0.483 -0.655 0.513 0.828 7030.8 0.415
2 -0.190 0.669 -0.284 0.776 0.826 6410.2 0.417
3 -0.259 0.447 -0.581 0.561 0.833 6458.1 0.409
4 -0.325 0.448 -0.725 0.469 0.828 4019.8 0.415
5 -0.317 0.466 -0.681 0.496 0.828 5821.9 0.415
6 -0.264 0.345 -0.765 0.444 0.841 2891.8 0.399
7 -0.831 0.032 -25.986 0.000 0.770 5580.2 0.480
8 -1.004 0.648 -1.549 0.121 0.831 6139.8 0.412
1 -1.950 0.839 -2.325 0.020 0.616 2346.5 0.620
2 -1.845 0.787 -2.344 0.019 0.617 2171.7 0.619
3 -1.817 0.652 -2.789 0.005 0.630 2208.7 0.609
4 -1.956 0.874 -2.239 0.025 0.617 1341.8 0.619
5 -1.953 0.777 -2.514 0.012 0.617 1949.0 0.619
6 -1.931 0.716 -2.697 0.007 0.652 1024.3 0.591
7 -0.708 0.058 -12.303 0.000 0.599 24945 0.633
8 -5.934 2.475 -2.397 0.017 0.698 2892.8 0.550
1 1.732 1.055 1.641 0.101 0.316 676.0 0.827
2 1.389 1.010 1.375 0.169 0.304 588.6 0.835
3 1.601 0.984 1.626 0.104 0.363 740.2 0.798
4 1.753 0.987 1.776 0.076 0.317 387.8 0.827
5 1.733 1.007 1.721 0.085 0.317 560.7 0.827
6 1.853 0.985 1.882 0.060 0.313 249.5 0.829
7 0.236 0.122 1.928 0.054 0.269 612.9 0.855
8 3.343 3.952 0.846 0.398 0.332 622.3 0.818

Table 25: Robustness analysis results for the Czech Republic

Model # Estimate Std. Error t value Pr(>|t|) R squared F statistic Residual SE
1 0.171 0.037 4.651 0.000 0.458 1234.8 0.736
2 0.172 0.037 4.712 0.000 0.460 1196.3 0.735
3 0.165 0.031 5.359 0.000 0.460 1104 .4 0.735
4 0.171 0.036 4.710 0.000 0.473 749.2 0.726
5 0.171 0.036 4.752 0.000 0.459 1024 .4 0.736
6 0.228 0.032 7.059 0.000 0.500 546.4 0.708
7 0.305 0.021 14.644 0.000 0.385 1046.3 0.784
8 0.115 0.117 0.981 0.327 0.464 1082.6 0.733
1 -0.055 0.012 -4.476 0.000 0.989 132145.2 0.105
2 -0.055 0.011 -5.169 0.000 0.989 127264.6 0.104
3 -0.053 0.011 -4.769 0.000 0.990 122385.9 0.102
4 -0.055 0.013 -4.123 0.000 0.989 75521.7 0.105
5 -0.055 0.013 -4.086 0.000 0.989 110410.1 0.104
6 -0.056 0.011 -5.047 0.000 0.990 53440.8 0.101
7 -0.940 0.136 -6.887 0.000 0.827 7973.2 0.416
8 -0.009 0.016 -0.550 0.583 0.989 114437.0 0.104
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Table 26: Robustness analysis results for Germany

Model # Estimate Std. Error t value Pr(>|t|) R squared F statistic Residual SE
1 -0.673 0.259 -2.594 0.009 0.715 3666.7 0.534
2 -0.632 0.231 -2.743 0.006 0.716 3396.9 0.533
3 -0.652 0.286 -2.279 0.023 0.716 3278.9 0.533
4 -0.667 0.318 -2.096 0.036 0.716 2099.7 0.533
5 -0.674 0.279 -2.419 0.016 0.715 3035.8 0.534
6 -0.696 0.290 -2.402 0.016 0.736 1527.7 0.514
7 -0.676 0.056 -12.044 0.000 0.661 3259.8 0.582
8 -1.347 0.433 -3.111 0.002 0.737 3514.4 0.513
1 -1.284 0.119 -10.779 0.000 0.552 1799.7 0.669
2 -1.277 0.109 -11.742 0.000 0.555 1678.9 0.668
3 -1.035 0.120 -8.609 0.000 0.596 1914 .4 0.636
4 -1.280 0.108 -11.808 0.000 0.555 1041.6 0.667
5 -1.282 0.120 -10.653 0.000 0.553 1493.3 0.669
6 -1.350 0.121 -11.156 0.000 0.585 771.6 0.645
7 -0.667 0.025 -26.743 0.000 0.531 1888.6 0.685
8 -1.488 0.151 -9.869 0.000 0.557 1570.5 0.666
1 0.512 0.216 2.374 0.018 0.267 532.7 0.856
2 0.490 0.249 1.969 0.049 0.273 505.3 0.853
3 0.431 0.202 2.133 0.033 0.284 514.6 0.847
4 0.523 0.222 2.353 0.019 0.272 311.8 0.854
5 0.512 0.216 2.367 0.018 0.270 446.9 0.855
6 0.553 0.209 2.642 0.008 0.298 2321 0.839
7 0.026 0.044 0.591 0.555 0.260 587.5 0.860
8 0.104 0.144 0.724 0.469 0.400 834.9 0.775

Table 27: Robustness analysis results for Hungary

Model # Estimate Std. Error t value Pr(>|t|) R squared F statistic Residual SE
1 -0.758 0.191 -3.976 0.000 0.727 38971 0.522
2 -0.759 0.195 -3.885 0.000 0.727 3741.3 0.522
3 -0.783 0.170 -4.597 0.000 0.730 3514.4 0.519
4 -0.758 0.193 -3.937 0.000 0.728 2226.2 0.522
5 -0.758 0.177 -4.281 0.000 0.728 32294 0.522
6 -0.766 0.129 -5.938 0.000 0.731 1489.7 0.519
7 -0.780 0.083 -9.389 0.000 0.662 3266.6 0.582
8 -0.755 0.180 -4.193 0.000 0.729 3486.5 0.521
1 0.343 0.058 5.878 0.000 0.266 529.7 0.857
2 0.344 0.059 5.846 0.000 0.266 508.5 0.857
3 0.363 0.058 6.214 0.000 0.296 545.8 0.839
4 0.341 0.077 4.459 0.000 0.273 312.8 0.853
5 0.351 0.072 4.879 0.000 0.316 558.9 0.827
6 0.342 0.057 5.994 0.000 0.286 218.9 0.846
7 0.410 0.056 7.270 0.000 0.257 576.8 0.862
8 0.352 0.054 6.523 0.000 0.272 483.9 0.854
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Table 28: Robustness analysis results for the Netherlands

Model # Estimate Std. Error t value Pr(>|t|) R squared F statistic Residual SE
1 -0.008 0.210 -0.036 0.972 0.436 1127.2 0.751
2 -0.015 0.189 -0.080 0.937 0.448 10934 0.743
3 0.113 0.188 0.602 0.547 0.466 1134 4 0.731
4 -0.002 0.263 -0.009 0.993 0.437 648.2 0.751
5 0.000 0.156 0.000 1.000 0.439 946.0 0.749
6 -0.025 0.230 -0.109 0.913 0.485 514.6 0.718
7 -0.095 0.068 -1.401 0.161 0.346 883.3 0.809
8 -0.030 0.138 -0.216 0.829 0.456 1050.0 0.738
1 -0.771 0.116 -6.618 0.000 0.664 28871 0.580
2 -0.765 0.131 -5.846 0.000 0.668 2705.5 0.577
3 -0.649 0.112 -5.785 0.000 0.686 28341 0.561
4 -0.764 0.146 -5.242 0.000 0.667 1670.7 0.577
5 -0.761 0.101 -7.551 0.000 0.669 2439.6 0.576
6 -0.806 0.106 -7.624 0.000 0.667 1097.0 0.577
7 0.072 0.035 2.070 0.038 0.428 12491 0.756
8 -0.669 0.120 -5.557 0.000 0.703 2962.3 0.545
1 -0.468 0.178 -2.627 0.009 0.630 2486.5 0.608
2 -0.430 0.106 -4.075 0.000 0.659 2606.9 0.584
3 -0.374 0.116 -3.218 0.001 0.675 2697.0 0.570
4 -0.465 0.229 -2.034 0.042 0.630 1422.8 0.608
5 -0.464 0.152 -3.046 0.002 0.631 2064.3 0.608
6 -0.497 0.186 -2.675 0.007 0.633 941.3 0.607
7 0.145 0.038 3.801 0.000 0.376 1004.3 0.790
8 -0.323 0.234 -1.380 0.168 0.678 2639.6 0.567
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