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Abstract

Many algorithms related to vehicular applications, such as enhanced perception of the
environment, benefit from frequent updates and the use of data from multiple vehicles.
Federated learning is a promising method to improve the accuracy of algorithms in the
context of vehicular networks. However, limited communication bandwidth, varying
wireless channel quality, and potential latency requirements may impact the number of
vehicles selected for training per communication round and their assigned radio resources.
In this work, we characterize the vehicles participating in federated learning based on their
importance to the learning process and their use of wireless resources. We then address the
joint vehicle selection and resource allocation problem, considering multi-cell networks
with multi-user multiple-input multiple-output (MU-MIMO)-capable base stations and
vehicles. We propose a “vehicle-beam-iterative” algorithm to approximate the solution to
the resulting optimization problem. We then evaluate its performance through extensive
simulations, using realistic road and mobility models, for the task of object classification
of European traffic signs. Our results indicate that MU-MIMO improves the convergence
time of the global model. Moreover, the application-specific accuracy targets are reached
faster in scenarios where the vehicles have the same training data set sizes than in scenarios
where the data set sizes differ.

Keywords: vehicle selection; resource allocation; MU-MIMO; federated learning; wireless
networks; vehicular networks

1. Introduction
In recent years, many advances have been made in the field of autonomous vehicles.

Autonomous vehicles rely on the information they receive from sensors, as well as from
other vehicles and the network, through vehicle-to-vehicle and vehicle-to-infrastructure
wireless links, respectively, to make real-time decisions, such as route planning, speed
adjustment, and collision avoidance [1]. To ensure driving safety, driving decisions should
be accurate, and communication via vehicle-to-vehicle and vehicle-to-infrastructure links
should be fast and reliable. To address these challenges, machine learning (ML) algorithms
are widely applied. Examples of such ML applications include the optimal assignment of
radio resources and optimal handover control [1].
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When driving, the environment is very dynamic and can change drastically over time.
In addition, driving must be adjusted according to the location/area and the enforced
driving rules. Hence, the applied ML algorithms should be constantly updated based on
new sensor data and can greatly benefit from using data from other vehicles. For example,
vehicles can share their camera data to enhance environmental perception, thus allowing
vehicles to observe obstacles or dangerous situations that are out of the reach of their own
cameras but still in close proximity [1].

Due to the distributed nature of the data, federated learning (FL) is a promising method
for collaborative learning in vehicular networks [2]. Specifically, FL allows the training of a
centralized global model using decentralized data samples from distinct vehicles without
the need to upload the individual samples to a centralized server. A range of applications
has been discussed in the literature that can benefit from FL in vehicular networks, with
one example being co-operative environmental perception [3,4]. In particular, the FL global
model can provide higher accuracy in detecting and localizing obstacles or hazardous
situations compared to a local model trained on a single vehicle. This is because knowledge
from multiple vehicles driving in the same area contributes to the global model and hence
provides information that other vehicles do not have. Another example is the improvement
of navigation systems, because vehicles from different areas, which experience different
driving conditions, contribute to the global model [3]. More examples include traffic
prediction for resource management [3] and steering wheel angle precision [5].

Some major challenges with FL in wireless networks are the high communication
cost for exchanging the model parameters between the FL server and the vehicles, the
wireless channel quality variations, and the limited transmission resources. To overcome
these challenges, a subset of vehicles is selected to take part in each training round of the
learning process. In [6], we addressed the agent (and in this context, vehicle) selection
problem for FL in resource-constrained wireless networks by providing an agent selection
framework based on distinct agent characteristics while also considering an application-
specific latency budget. In this work, we extend the previously proposed framework
to address the challenge of agent selection and resource management in the context of
vehicular wireless networks. Given this context, we consider road and mobility models and
a multi-cell network with multi-user multiple input multiple output (MU-MIMO)-capable
base stations.

The integrated agent selection and resource management problem for wireless net-
works has been addressed in the literature, but mainly for stationary agents and in contexts
other than vehicular networks [7]. For example, Chen et al. [8] address the minimization
of training loss while considering parameters related to the wireless channels, whereas
Zeng et al. [9] focus on minimizing energy consumption. Shi et al. [10] focus on latency-
constrained networks and propose a policy to optimize the global model accuracy under a
given latency constraint. Fan et al. [11] claim to have published the first work that addresses
the minimization of the time duration of each communication round while also considering
a practical mobility model. However, their evaluation does not consider a learning task
related to vehicular networks or MU-MIMO-capable base stations. Moreover, the mobility
model used is simpler and less realistic than the 3GPP-based model used in this study.
One of the few works that addresses FL in vehicular networks is by Deveaux et al. [12].
Specifically, they highlight the need for algorithms addressing unevenly distributed data
and propose a high-level protocol that allows the network to retrieve information about
the type of data within each vehicle. The prior art on applying FL for beam assignment
in MU-MIMO systems is very limited. A work addressing MU-MIMO systems is by
Guan et al. [13], who propose an access scheduling algorithm. Unlike this work, they
consider full-duplex transmissions and focus on Internet of Things applications.
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The main contributions of this study are as follows:

• We evaluate the performance of FL over vehicular scenarios, which are realistically
modeled using the road and mobility models from 3GPP [14]. These models are
more complex and realistic than mobility models typically used in the literature.
Additionally, we consider MU-MIMO-capable base stations, which are not frequently
considered in FL-related studies. Moreover, we consider the learning task of object
classification on the European traffic sign data set, which is a relevant data set for
vehicular applications. This data set is statistically and geographically more diverse,
and therefore more challenging to train on, than commonly used data sets such as
MNIST and CIFAR-10.

• Based on the defined MU-MIMO vehicular scenario, we investigate the challenge
of vehicle selection and resource management by characterizing vehicles based on
their importance in the learning process and their wireless channel quality. We then
propose the “vehicle-beam-iterative” (VBI) algorithm to approximate the solution
of the defined optimization problem. The evaluation of the VBI algorithm provides
insights into the novel and realistic scenario under investigation.

• We show that MU-MIMO-capable base stations improve the convergence time of the
global model by enabling the selection of multiple vehicles on the same time–frequency
resources and improving the achievable vehicle data rates.

• We show that the local loss is an effective vehicle selection metric for scenarios with
non-independent and identically distributed (IID) data, assuming that all vehicles
have the same training times. When vehicles have different training times, e.g., due to
different data set sizes and/or processing capabilities, the loss-based policies do not
provide substantial gains.

• We demonstrate, through realistic numerical evaluations, that convergence time in
scenarios where vehicles have different data set sizes is longer than in scenarios where
vehicles have the same data set sizes.

The outline of the paper is as follows. Section 2 describes the network, learning, and
communication models. Section 3 then derives the joint vehicle selection and resource
allocation optimization problem, and Section 4 describes the VBI algorithm. Section 5
presents the configuration of the considered evaluation scenarios, and Section 6 provides
the numerical evaluation of the VBI algorithm. Finally, conclusions and proposals for future
works are given in Section 7.

2. System Model
This section describes the considered network and learning models, as well as the

communication model between vehicles and base stations. For clarity, a short description
of the most commonly used symbols in this paper is given in Table 1.

Table 1. List of most commonly used symbols.

Symbol Description

Γvb Estimated uplink SNR at vehicle v from beam b in [dB]
ρ Constant tuning the relative significance of the learning importance and the resource consumption
τAPP,MAX Application-specific latency budget in [s]
τDL Broadcast time of the global model in [s]
τT+UL Time for all selected vehicles to train and upload their local models in [s]
τL,b Start time of uplink transmission to beam b in [s]
τT,v Training time of vehicle v in [s]
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Table 1. Cont.

Symbol Description

τUL,vb Upload time of vehicle v on beam b in [s]
τB ∈ RBTOT Upload latency budget at each beam in [s]
τL ∈ RBTOT Start time of uplink transmissions on each beam in [s]
τT ∈ RV Training times of vehicles in [s]
A ∈ RV×BTOT Optimization matrix with beam associations between the vehicles and the base station beams
Q ∈ RV×BTOT Importance of vehicles at each beam
TUL ∈ RV×BTOT Upload times of vehicles at each beam in [s]
WG The weights of the global model
Wv The weights of the local model at vehicle v
s ∈ {0, 1}V Optimization vector for vehicle selection
BM = |Bm| Number of beams at each base station m
BTOT = |BTOT| Total number of base station beams in the network
CR,MAX Available transmission resources
CR,vb Consumption of transmission resources of vehicle v on beam b
F(·) The loss function of the model
K = |K| The total number of samples
Kv = |Kv| Number of training samples at vehicle v
KT,v = |KT,v| Number of testing samples at vehicle v
M = |M| Number of base stations in the network
PNF,M Noise figure at the base stations in [dB]
PV,MAX Maximum transmit power of vehicles in [dBm]
QTOT Total vehicle importance
Rvb Bit rate at vehicle v on beam b in [Mbps]
V = |V| Number of vehicles in the network
VG = |VG| Number of selected vehicles for training
Z Size of the FL model in [Mbits]
fBW System bandwidth in [MHz]
qvb Importance of vehicle v on beam b

2.1. Network Model

Consider a cellular network with one FL server, a set M of base stations and a set V of
vehicles, where M = |M| and V = |V| are the number of base stations and vehicles in the
network, respectively. The vehicles and the FL server collaboratively train a global model,
without requiring the transmission of the data sets gathered by the vehicles, while the
base stations facilitate communication between the vehicles and the FL server. For this, we
assume that the FL server is connected to all base stations with fiber, hence their backhaul
communication latency is negligibly small and that communication between the FL server
and the base stations is synchronized.

Figure 1 shows a schematic overview of a communication round i, assuming a simple
network with V = 2 vehicles and M = 1 base station. First, the FL server selects and
notifies, via the base station, the vehicles that will participate in the learning. The vehicle
selection and notification, potentially via broadcast transmission, are performed within a
time interval of duration τSCH. Each selected vehicle v ∈ VG[i] then trains its local model,
where VG[i] is the set of vehicles selected in communication round i. A vehicle v ∈ VG[i]
has a training time τT,v, which can be different from other vehicles, as shown in Figure 1,
due to different data set sizes and/or processing capabilities.

Once each selected vehicle v ∈ VG[i] finishes its local training, it transmits its local
model using the assigned uplink transmission resources to its serving base station, which
then forwards the model to the FL server. The uplink transmission time τUL,v for vehicle
v depends on its wireless channel quality, discussed in Section 2.3. In Figure 1, the trans-
missions of the two vehicles are assumed to be time-multiplexed, hence vehicle 2 does not
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initiate its uplink transmission until the completion of the uplink transmission of vehicle 1.
Once all local models are aggregated at the FL server, the global model is updated for the
next communication round i + 1. The time duration of this process is τAGG. Finally, the
FL server broadcast in the downlink, with duration τDL, the new global model to each
vehicle v ∈ V. The process repeats until sufficient accuracy is achieved for the global model,
verified using an FL server-specific testing data set.

FL server

Base Station

Vehicle 1

Vehicle 2

τSCH

τT,1

τT,2

τAGG

τUL,1 τUL,2 τDL

τAPP,MAX

τT+UL

Figure 1. Schematic overview of the different steps involved in a single communication round and
the corresponding time intervals.

An application-specific deadline budget τAPP,MAX can be set on the time duration of
each communication round i to prevent the selection of vehicles with limited processing
power and/or poor wireless channel quality, thus

τSCH + τT+UL + τAGG + τDL ≤ τAPP,MAX, (1)

where τT+UL is the time needed for all selected vehicles to perform local training and upload
their local models to the FL server, as shown in Figure 1. We assume that the processing
times at the FL server are negligible because it is likely to have significantly more powerful
hardware compared to the vehicles. Moreover, we assume that the time duration of the
broadcast to notify the selected vehicles for training is negligible because the control data
transmitted is very small in size. Therefore, τSCH ≈ τAGG ≈ 0. Additionally, we assume
that the network is configured to ensure a minimum bit rate at the cell edge and thus, the
broadcast time τDL is fixed for every communication round i. Therefore, using (1), we
perform vehicle selection and resource allocation over a time period fulfilling the inequality:

τT+UL ≤ τAPP,MAX − τDL. (2)

Moreover, the FL process can be bound to the available transmission resources CR,MAX

allocated to the FL task, e.g., in a slice in 5G networks, which can restrict the number of
selected agents per communication round.

In practical wireless communication scenarios, multiple scheduling time slots exist
within the time interval τT+UL, occurring on a millisecond scale. These scheduling decisions
depend on the experienced signal-to-noise ratio (SNR) of the vehicles, which varies within
milliseconds. In this work, we focus on the resource allocation problem from a higher
time-scale perspective. We perform periodic resource allocation over a period τT+UL and
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we assume that the effects occurring on the millisecond scale, e.g., multipath fading, can
be averaged.

2.2. Learning Model

In the considered learning model, vehicle v ∈ V has training data set Kv and testing
data set KT,v, with Kv = |Kv| and KT,v = |KT,v| denoting the respective number of samples
in each data set. Vehicle v’s input training data samples are given by Xv = [xv1, · · · , xvKv ],
with xvk ∈ RnX as the kth input vector to its model and nX as the length of the input
vector. Additionally, the output data samples are given by Yv = [yv1, · · · , yvKv ], with
yvk ∈ {0, 1}nC as the real output vector corresponding to the kth input vector xvk, and nC as
the number of model outputs.

In local training conducted by vehicle v, predictions (model output) Ŷv = [ŷv1, · · · , ŷvKv ]

are generated using the vehicle’s available training data samples in Kv, with ŷvk ∈ RnC

denoting the predicted output vector associated with input vector xvk. The obtained local
model is characterized by the derived parameter weights Wv, which are used such that,
given the input data Xv, the predictions Ŷv represent the real output Yv. The closeness
between the predictions Ŷv and the real output Yv is generally expressed by the loss function
F(Wv; Xv, Yv), which depends on the input Xv and the real output Yv. For notational
simplicity, we will omit this dependency in the remainder of the text and simply denote the
loss function by F(Wv).

The objective of training the local model at vehicle v is

min
Wv

F(Wv) =
1

Kv
∑

k∈Kv

fk(Wv), (3)

where fk(Wv) denotes the loss function of sample k, which for image classification problems
is commonly defined as the cross-entropy loss [15]. To obtain the weights Wv that minimize
the loss function F(Wv), a number of iterations (local epochs) nLE are performed. Assuming
the stochastic gradient descent (SGD) optimizer [16], the weights Wv are adapted at every
local epoch based on the applied learning rate η.

In FL, the training data set K = ∪v∈VKv (with K = |K|) is the union of the vehicle-
specific training data sets and the global objective function F(WG[i]) at communica-
tion round i is approximated by the weighted average of losses for the vehicle-specific
local models:

F(WG[i]) ≈ ∑
v∈VG [i]

Kv

K
F(Wv[i]). (4)

Given the SGD optimizer, the FedAvg method [17] determines the global model weights
WG[i] at the end of communication round i as the weighted average of the local
model weights:

WG[i]← ∑
v∈VG [i]

Kv

K
Wv[i], (5)

The updated global weights are then broadcast to all the vehicles for the next communica-
tion round.

2.3. Communication Model

We assume that both base stations and vehicles are equipped with beamforming
antenna arrays to form narrow and strong beams. Specifically, beam pairs are formed
between the base stations and vehicles, and the same beam pair is used for both uplink
and downlink transmissions [18]. Moreover, we assume that the base station and vehicle
beams are directly pointing at each other and interference between different transmissions
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is neglected. For the base station antenna array, we assume use of a grid-of-beams mode,
i.e., a base station m ∈M can form a pre-defined set of beams Bm in the three-dimensional
space. We further assume that all base stations have the same set of beams and thus each
base station m has BM = |Bm| beams. Regarding the antenna array of the vehicles, we
assume a single beam that can be steered in any direction. A detailed description of the
antenna array models is provided in Appendix A.1.

We assume an OFDMA-based (orthogonal frequency division multiple access) access
technology and MU-MIMO-capable base stations, thus, spatial-multiplexing, i.e., multiple
vehicles can transmit at a serving cell on the same time-frequency resources. Moreover,
we consider time-multiplexing, thus, beams from different vehicles can be paired to the
same base station beam. Additionally, wideband transmissions are assumed. Therefore,
during communication round i, a vehicle v ∈ VG[i] is assigned to beam b ∈ BTOT (from a
base station m ∈M) for a fraction of the time period τT+UL, where BTOT = ∪m∈MBm is the
set with all base station beams and BTOT = |BTOT| = BM M is the total number of beams in
the network. Finally, we assume that during the period τT+UL, vehicles stay connected to
the same beam. This assumption is further discussed in Section 5.4.

For the uplink transmission of the local model, and as an input to the periodic resource
assignment, we estimate the bit rate Rvb of vehicle v from beam b ∈ BTOT as

Rvb = fBW min
(

log2

(
1 + 10Γvb/10

)
, 15
)

, (6)

where 15 bits/Hz/s is the target peak spectral efficiency in the uplink channel in 5G [19],
fBW denotes the system bandwidth in MHz, and Γvb is the estimated uplink SNR at vehicle
v from beam b given, in dB, by

Γvb = PV,MAX + GT,vb + GV,vb + GM,vb − PNOISE − PNF,M, (7)

where PV,MAX is the maximum transmit power of the vehicle in dBm, GT,vb is the trans-
mission gain between vehicle v and the base station that beam b belongs to in dB, GV,vb

and GM,vb are the vehicle and base station antenna gains in dBi, respectively, PNOISE is the
thermal noise power in dBm, and PNF,M is the noise figure in dB at each base station. The
channel gain GT,vb is modeled by [20]

GT,vb = 20 log
(

c
4π fC

)
− 10γ log(dvb) + ψ, (8)

(in dB) with c the speed of light (in m/s), fC the carrier frequency (in Hz), dvb the 3D
distance between vehicle v and its serving base station (in m), γ the path loss exponent,
and ψ as a zero-mean Gaussian random variable with standard deviation σ, included to
model shadow fading. Due to the periodic nature of the resource assignment approach and
the assumption that vehicles stay connected to the same beam during the period τT+UL, the
SNR Γvb and bit rate Rvb are assumed to be constant during the period τT+UL.

Finally, for the broadcast transmission, we assume that all base stations use all their
beams because there are many vehicles in the network, spread in different directions.
We derive the broadcast bit rate based on the network layout and the antenna array
configuration, in Section 5.4.

3. Problem Formulation
In real-world applications, vehicles are diverse in terms of their training data, pro-

cessing capabilities to train their local model, and wireless channel quality. In this section,
we define the so-called vehicle importance metric to characterize the vehicles. We present
the latency considerations, which depend on the processing capabilities and the wireless
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channel quality of the vehicles. Furthermore, we combine the vehicle importance with
the latency considerations to formulate the joint vehicle selection and resource allocation
optimization problem.

For the joint vehicle selection and resource allocation problem, we consider two op-
timization parameters; one for the vehicle selection and one for the resource allocation.
Specifically, we define the optimization vector s[i] ∈ {0, 1}V , during communication round
i, in which sv[i] = 1 when vehicle v is selected for training, and sv[i] = 0 otherwise. Addi-
tionally, we define the optimization matrix A[i] ∈ {0, 1}V×BTOT , in which Avb[i] ∈ {0, 1},
holds the beam associations between the selected vehicles and the base station beams.
Because all selected vehicles remain connected to a single beam during the time interval
τT+UL, the following equality must hold

A[i] · 1BTOT×1 = s[i], (9)

where 1BTOT×1 denotes the all ones BTOT × 1 vector.

3.1. Vehicle Importance

To capture the diversity of vehicles, we introduce the vehicle importance qvb[i] ∈ R,
which is the metric governing the vehicle selection and resource allocation process at
communication round i. Specifically, the vehicle importance qvb[i] captures the trade-
off between the importance of vehicle v in the learning process against its consumed
transmission resources on the, potentially assigned, beam b. The definition of this metric
is essential to the vehicle selection and resource allocation problem, as both learning and
wireless aspects play a significant role in the accuracy and convergence time of the global
model. For example, if only learning aspects are considered, vehicles with poor channels
may be selected for training, which will lead to long upload times and eventually a long
global model convergence time. However, if a vehicle with a poor channel holds a data
set belonging to a class with few samples across the system, i.e., a non-IID data scenario
with varying sample counts across agents, it is important to include that vehicle in the FL
training despite its wireless conditions. The vehicle importance qvb[i] metric also allows for
configuring the relative significance of the learning and wireless aspects, as shown below.

We express the importance of vehicle v in the learning process [6] by the locally
computed loss function F(WG,v[i]), determined based on the testing data set KT,v and
global weights WG[i], as generated and broadcast at the end of communication round
i. The computed loss F(WG,v[i]) is conveyed to the central FL server and used in the
vehicle selection and resource allocation process for upcoming communication round
i + 1. We disregard the corresponding transmission time, considering that the loss is just a
scalar value.

The time-frequency resources CR,vb[i] consumed by vehicle v for the upload of the
locally derived model weights Wv[i] on candidate beam b in communication round i. We
then consider CR,vb[i] as:

CR,vb[i] = τUL,vb[i] fBW =
Z

Rvb[i]
fBW, (10)

where τUL,vb[i] is the transmission time for vehicle v on beam b in seconds, Rvb[i] is the bit
rate given by (6), and Z is the model size in Mbits. Calculation of the resource consumption
CR,bv[i] does not require additional vehicle-to-base station communication since the bit
rates can be estimated based on the periodic channel quality indicator (CQI) feedback that
all vehicles report to their serving base station.
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We define the importance qvb[i] of vehicle v on beam b at communication round i as

qvb[i] =
F(WG,v[i])ρ

C1−ρ
R,vb[i]

, (11)

where ρ ∈ [0, 1] is a constant that can be configured to set the relative significance of
the learning importance and the resource consumption. We further define the matrix
Q[i] = [q1[i], · · · , qBTOT [i]] ∈ RV×BTOT , where qb[i] is a column vector holding the impor-
tance qvb[i] of each vehicle v on beam b ∈ BTOT.

3.2. Latency Considerations

We assume that a fixed amount of uplink transmission resources CR,MAX are allocated
to the FL task, which are expressed as a product of the bandwidth and the maximum
allowed aggregate upload time. Therefore, the selected vehicles should perform their
uplink transmission within the available transmission resources CR,MAX, where the uplink
transmission resources CR,vb[i] of vehicle v on beam b at communication round i are given
by (10). Because we assume wideband transmissions, for simplicity, we will express
from here onward the transmission resources CR,MAX and CR,vb[i] only in terms of time.
Additionally, the selected vehicles should train and transmit their local models within the
latency budget τAPP,MAX− τDL, as previously captured in (2). In this section, we first derive
the training time τT,v of vehicle v, and then elaborate on the two latency constraints.

The training time τT,v of vehicle v depends on the vehicle’s processing capability gv,
as well as on its data set size Kv, and other training-related parameters, e.g., number of
local epochs nLE. The processing capability gv of vehicle v is measured in floating point
operations (FLOPs) per second as [21]

gv = nCORES,v νv ωv, (12)

where nCORES,v is the number of central processing unit (CPU) cores at vehicle v, νv is the
CPU clock frequency at vehicle v in cycles per second and ωv is the number of FLOPs per
cycle at vehicle v. Then, the training time τT,v of vehicle v is

τT,v =

⌈
Kv

sB

⌉
nFLOP,G nLE

gv
, (13)

where nFLOP,G denotes the number of FLOPs to train the model for a batch of size sB and
⌈·⌉ represents the ceiling operation.

The first latency constraint relates to the available transmission resources CR,MAX =

τT+UL = τAPP,MAX− τDL that are available per communication round i. Considering spatial-
and time-multiplexing, multiple vehicles can be scheduled on a given base station beam
and share the frequency resources over time. To perform this co-scheduling of vehicles on
the same beam, the training time τT,v, as defined in (13), of each vehicle should be taken into
consideration. That is because each base station beam becomes active, i.e., receives uplink
data, for the first time when the vehicle with the shortest training time that is assigned to that
beam finishes its local training. We define the vector τL[i] = [τL,1[i], · · · , τL,BTOT [i]]

⊺ ∈ RBTOT

to indicate the start time of the uplink transmissions per beam at communication round i,
where ⊺ denotes the transpose operation, and

τL,b[i] = min
1≤vs.≤V

τ̂L,b[i], (14)
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where τ̂L,b[i] ∈ RV indicates the training times of the vehicles assigned to beam b. The
vector τ̂L,b[i] is defined from the auxiliary matrix T̂L = [τ̂L,1, · · · , τ̂L,BTOT ] ∈ RV×BTOT

which associates the training time τT,v of each vehicle v to its assigned beam as follows:

T̂L[i] = (τT · 11×BTOT) ◦A[i], (15)

where τT = [τT,1, · · · , τT,V ]
⊺ ∈ RV and ◦ is the Hadamard product. Given that uplink

transmissions are starting at a different time per beam, vehicles can be co-scheduled on
the same beam if they can jointly finish their uplink transmissions within the remaining
transmission resources. Hence, the condition for co-scheduling is

11×V · (TUL[i] ◦A[i]) ≼ (τAPP,MAX − τDL) 11×BTOT − τL
⊺(A[i]), (16)

where TUL[i] = [τUL,1[i], · · · , τUL,BTOT [i]] ∈ RV×BTOT with τUL,b[i] ∈ RV holding the
upload time duration τUL,vb of each vehicle v on beam b, ≼ denotes the element-wise
inequality and τL(A[i]) denotes the dependence on A[i].

Figure 2a,b show two examples of assigning two vehicles to the same beam. In both
examples, the start time of the uplink transmissions is equal to τL,b = min{τT,1, τT,2} = τT,1.
Thus, the joint upload time interval is τAPP,MAX − τDL − τT,1. Figure 2a illustrates that the
two vehicles cannot be co-scheduled on the same beam because τUL,1 + τUL,2 > τAPP,MAX−
τDL − τT,1, which violates the constraint in (16). Conversely, Figure 2b shows that co-
scheduling is possible and that the constraint in (16) is fulfilled.

Figure 2. (a) The two vehicles cannot be co-scheduled on the same beam because the constraint in (16)
is violated; (b) The two vehicles can be co-scheduled on the same beam because the constraint in (16)
is fulfilled; (c) The two vehicles cannot be co-scheduled on the same beam because the constraint
in (17) is violated; (d) The two vehicles can be co-scheduled on the same beam because the constraint
in (17) is fulfilled. In all four sub-figures, the color refers to a different vehicles.

The fulfillment of (16) alone does not guarantee that vehicles can train and transmit
within the time interval τAPP,MAX − τDL, which was captured in (2). Therefore, a second
latency constraint is needed, as follows:

τT + (TUL[i] ◦A[i]) · 1BTOT×1 ≼ (τAPP,MAX − τDL)1BTOT×1. (17)
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Consider again the example of assigning two vehicles to one beam and that τL,b =

min{τT,1, τT,2} = τT,1, as shown in Figure 2c,d. Even though (16) is fulfilled, the example in
Figure 2c illustrates that vehicle 2 should not be scheduled on that particular beam, because
its training and upload time is τT,2 + τUL,2, which exceeds the time interval τAPP,MAX − τDL

and violates the constraint in (17). On the contrary, the constraint in (17) is fulfilled in the
example in Figure 2d.

3.3. Problem Formulation

For a given communication round i, we formulate the following joint vehicle selection
and resource allocation optimization problem to maximize the total vehicle importance:

max
s[i],A[i]

Tr(Q[i] ·A⊺[i]) (18)

subject to A[i] · 1BTOT×1 = s[i], (19)

11×V · (TUL[i] ◦A[i]) ≼ (τAPP,MAX − τDL)11×BTOT − τL
⊺(A[i]), (20)

τT + (TUL[i] ◦A[i]) · 1B×1 ≼ (τAPP,MAX − τDL)1BTOT×1, (21)

s[i] ∈ {0, 1}V×1, (22)

A[i] ∈ {0, 1}V×BTOT , (23)

where Tr(·) denotes the trace of a matrix, i.e., the sum of the elements on the diagonal.
The binary optimization variable s[i] indicates whether a vehicle is selected and the binary
optimization matrix A[i] indicates the beam on which the selected vehicles are assigned
to. Therefore, the total vehicle importance is defined as the summation of distinct vehicle
importance values from a set of vehicles, that would potentially jointly be selected for
training. Thus, the optimization problem aims to select the set of vehicles that provides the
maximum total vehicle importance over other vehicle sets, subject to constraints (19)–(23).
With objective function (18), the given optimization problem takes both learning and
wireless aspects into account, and its solution directly affects the accuracy and convergence
time of the global model. Constraint (19) indicates that vehicles participating in the learning
process must be associated with at most one beam in one cell. Constraint (20) shows that
vehicles can be assigned to, and time-multiplexed on, the same beam only if both can finish
their uplink transmissions within the related time interval. Finally, constraint (21) indicates
that all selected vehicles need to train and transmit their local models within the time
interval τAPP,MAX − τDL.

In the optimization problem in (18)–(23), the selection of vehicles s[i] is defined based
on the beam associations A[i] using (19). Therefore, we can reduce the optimization
parameters by combining (19) and (22), leading to:

max
A[i]

Tr(Q[i] ·A⊺[i]) (24)

subject to A[i] · 1BTOT×1 ≼ 1V×1, (25)

11×V · (TUL[i] ◦A[i]) ≼ (τAPP,MAX − τDL)11×BTOT − τL
⊺(A[i]), (26)

τT + (TUL[i] ◦A[i]) · 1BTOT×1 ≼ (τAPP,MAX − τDL)1V×1, (27)

A[i] ∈ {0, 1}V×BTOT . (28)

The optimization problem in (24)–(28) is non-linear because the vector τL
⊺(A[i])

requires the evaluation of a min(·) function, as shown in (14). Typically, non-linear integer
optimization problems are more difficult to solve than linear integer problems, even if the
solution space is relatively small. That is because they are often non-convex and reaching a
global optimum cannot be guaranteed. To eliminate the nonlinearity, we assume the same
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training time τT for all vehicles and define a relaxed version of the optimization problem
in (24)–(28). Such a relaxation is achieved by assuming that all vehicles have the same data
set size Kv and processing capabilities gv. Additionally, constraint (27) is not needed in the
relaxed problem because it is implied by constraint (26). The relaxed optimization problem
is then given by

max
A[i]

Tr(Q[i] ·A⊺[i]) (29)

subject to A[i] · 1BTOT×1 ≼ 1V×1, (30)

11×V · (TUL[i] ◦A[i]) ≼ (τAPP,MAX − τDL − τL)11×BTOT , (31)

A[i] ∈ {0, 1}V×BTOT . (32)

For problems with small numbers of variables and constraints, the solution to the
relaxed optimization problem in (29)–(32) is derived using integer linear programming
solvers. In this work, we consider the COIN-OR branch and cut (CBC) solver [22].
However, once the number of variables and constraints increases, e.g., in scenarios
where a large number of vehicles are considered for the learning, the CBC solver either
requires long runtimes or fails to converge to the optimal solution. In Section 4, we
propose a heuristic algorithm, namely the VBI algorithm, to approximate the solution
of both optimization problems (24)–(28) and (29)–(32). The advantage of a heuristic
algorithm is that it provides a near-optimal solution, even in scenarios where the solver
cannot converge to the optimal solution. Additionally, the algorithm provides its solution
in a shorter time than the solver, especially in scenarios with large number of variables
and constraints.

4. Proposed Solution
In this section, we propose the VBI algorithm as an approximated solution to the

optimization problems (24)–(28) and (29)–(32). First, we provide a description of the
algorithm and then, we address the impact of the vehicle importance qvb in (11) on the
behavior of the VBI algorithm.

4.1. Algorithmic Description

The VBI algorithm indicates which vehicles are selected for training at each com-
munication round and assigns the selected vehicles to an appropriate base station beam.
Hence, the VBI algorithm forms vehicle–beam pairs with the goal of maximizing the total
vehicle importance. The VBI algorithm is described in Algorithm 1 and its explanation is
as follows.

First, in lines 1–4, the initialization is performed. In line 1, the vehicle-beam matrix
A is initialized by setting Avb = 0 to all vehicle-beam pairs that do not satisfy con-
straint (27), i.e., τT,v + τUL,vb ≤ τAPP,MAX − τDL. The remaining entries of matrix A are
temporarily set to the “−1” value and they will be later updated by the algorithm. In
line 2, a vector τB, holding the upload latency budget for every beam is defined and
it is initialized at τAPP,MAX − τDL. Finally, lines 3 and 4, initialize to zero the vector
τL holding the start time of the uplink transmissions and the total vehicle importance
QTOT, respectively.
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Algorithm 1 Vehicle-Beam-Iterative (VBI) Algorithm

Input: Training time τT of vehicles, upload time TUL of vehicles per beam, importance Q
of vehicles per beam and time period τAPP,MAX − τDL

Output: Vehicle selection and beam allocation A and total vehicle importance QTOT
1: Set Avb = 0 if τT,v + τUL,vb > τAPP,MAX − τDL, else Avb = −1, for each vehicle v ∈ V

and beam b ∈ BTOT
2: Set τB,b = τAPP,MAX − τDL, for each beam b ∈ BTOT
3: Set τL,b = 0, for each beam b ∈ BTOT
4: Set QTOT = 0
5: while matrix A contains an entry with value “−1” do
6: for every vehicle v ∈ V not yet scheduled do
7: Obtain b∗ = argmaxb∈BTOT

(qvb), given that Avb = −1
8: end for
9: for every beam b ∈ BTOT do

10: Set scheduled = False
11: Obtain v∗ = argmaxv∈Vb

(qvb), where Vb holds the vehicles selecting beam b as
their b∗

12: if v∗ is the first vehicle scheduled on beam b, i.e., τL,b = 0 then
13: Set training time τL,b = τT,v∗

14: Set scheduled = True
15: else if τUL,v∗b ≤ τB,b −min(τL,b, τT,v∗) then
16: Set training time τL,b = min(τL,b, τT,v∗)
17: Set scheduled = True
18: end if
19: if scheduled = True then
20: Set Av∗b = 1
21: Set Av∗ b̂ = 0 for all other beams b̂ ∈ BTOT \ b
22: Update τB,b− = τUL,v∗b
23: Update total importance QTOT+ = qv∗b
24: end if
25: end for
26: for every vehicle v ∈ V not yet scheduled do
27: for every beam b ∈ BTOT do
28: if τUL,vb > τB,b − τL,b then
29: Avb = 0
30: end if
31: end for
32: end for
33: end while
34: return A, QTOT

After the initialization step, from line 5 onwards the algorithm repeats continuously
until all entries of the matrix A are set to 0 or 1. The algorithm assigns at most one vehicle
per beam per iteration and hence at most V iterations are performed. Each iteration consists
of the following five steps:

• STEP 1 (lines 6–8): For each vehicle v ∈ V that has not already been selected for
training, the beam b∗ that maximizes the importance qvb of the vehicle v is obtained,
assuming that Avb = −1.

• STEP 2 (lines 9–11): From line 9 onwards, the algorithm iterates over all beams
to define per beam b ∈ BTOT whether or not a vehicle will be assigned to it and
which vehicle that will be. Depending on whether or not a vehicle is assigned to the
beam, different steps are followed later on. Therefore, in line 10 a decision variable
is initialized to False. Then, in line 11, based on the derived potential vehicle-beam
pairs from step 1 (line 7), the vehicle v∗ that has the highest importance qvb on each
beam b is selected.
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• STEP 3 (lines 12–18): In this step a decision is taken on whether or not the selected
vehicle v∗ can be scheduled on beam b. In line 12, it is checked whether or not vehicle
v∗ is the first vehicle to be scheduled on beam b. If it is the first one, line 13 sets
the training time τL,b at beam b equal to the training time τT,v∗ of vehicle v∗ and
line 14 sets the decision variable to True. If vehicle v∗ is not the first vehicle to be
scheduled on beam b, line 15 evaluates according to constraint (26) if vehicle v∗ can be
co-scheduled with the other vehicle(s) already scheduled on beam b. If vehicle v∗ can
be co-scheduled, in line 16, the training time τL,b at beam b is set to the minimum time
between the training time τL,b set in a previous iteration, when scheduling a different
vehicle, and the training time τT,v∗ of the newly scheduled vehicle v∗. Line 17 sets the
decision variable to True.

• STEP 4 (lines 19–25): If vehicle v∗ is scheduled on beam b, i.e., the decision variable is
True, in lines 20 and 21, the VBI algorithm updates accordingly the entries of matrix A
involving vehicle v∗ to ensure that it is assigned only to beam b. Next, line 22 reduces
the total available uploading latency budget τB,b accordingly and line 23 increases
the total vehicle importance QTOT with the importance qv∗b of the newly scheduled
vehicle. In case that vehicle v∗ is not scheduled, i.e., the decision variable is False, no
action is taken and the vehicle can be re-considered for scheduling in a later iteration.

• STEP 5 (lines 26–32): After iterating over all beams, and before starting a new iteration
as a result of line 5, an update step takes place. Specifically, lines 26–32 discard vehicle–
beam pairs that cannot fulfill constraint (27) due to the newly scheduled vehicles in
the given algorithm iteration.

Finally, all iterations are completed in line 33 and then line 34 returns matrix A and the
total vehicle importance QTOT.

The complexity of the algorithm is split into two parts. The first part relates to the
initialization steps, which have a complexity of O(VBTOT) due to the calculations in line 1.
The second part relates to STEPS 1–5, which also have a complexity of O(VBTOT) for a
single beam iteration. As mentioned above, the algorithm performs at most V iterations,
and hence the complexity is O(V2BTOT).

4.2. Algorithm Behavior

Because the VBI algorithm depends on vehicle importance qvb in (11), the value of
the tuning parameter ρ influences its behavior. Specifically, when ρ = 0, the importance
qvb depends only on the resource consumption CR,vb, which essentially depends on the
bit rate Rvb and varies per beam. To maximize the total vehicle importance QTOT, the
algorithm selects vehicles with the strongest wireless channels and assigns them to the
beams that provide the highest bit rate Rvb. Hence, the VBI algorithm maximizes the
number of selected vehicles. We will refer to the solution of the VBI algorithm with ρ = 0
as VBI-rate.

On the other hand, when ρ = 1, the vehicle importance qvb depends only on the
training loss F(WG,v), which is independent of the beam. In this case, the VBI algorithm
prioritizes vehicles with high training loss F(WG,v), thus meaning that they may be assigned
on a sub-optimal beam in terms of their resource consumption CR,vb. Nevertheless, latency
constraints are still considered, and the shorter the latency budget τAPP,MAX, the more likely
a vehicle will be assigned to the beam with the lowest resource consumption CR,vb (and
highest bit rate Rvb). If a vehicle is assigned to a sub-optimal beam in terms of the resource
consumption CR,vb, more resources will be consumed, thus limiting the total number of
selected vehicles. We will refer to the solution of the VBI algorithm with ρ = 1 as VBI-loss.

Notably, the VBI algorithm is general, as it allows redefining vehicle importance qvb

in terms of either learning metrics (numerator) or wireless resource metrics (denomina-
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tor) in Equation (11). In addition, it is flexible, since different values of ρ ∈ [0, 1] yield
variants of VBI that emphasize learning performance or wireless resource consumption to
different degrees.

5. Scenario Configuration
This section presents the considered scenarios to evaluate the performance of the VBI

algorithm. First, we present the learning task and then introduce the configuration of four
learning scenarios. Next, we provide the baseline algorithms, which will be compared
against the VBI algorithm and finally, we present the wireless scenario.

5.1. Learning Task

The learning task considered in this paper is the object classification of traffic signs.
This learning task is a relevant FL application in vehicular networks because different
countries use different traffic signs. Therefore, an algorithm that very accurately detects
the meaning of a traffic sign in one country may not be able to detect the traffic sign that
has the same meaning in a different country, or a traffic sign that does not exist in its origin
country. With FL, a global model can be trained based on knowledge from both countries,
which will allow for all vehicles to accurately detect traffic signs from both countries. For
this work, the European traffic sign data set is used, comprising 164 classes of traffic signs
originating from six distinct European countries [23]. Considering that some of the classes
contain very few training samples, we select the nC = 10 classes with the highest number
of available samples for our study.

The object classification task utilizes a convolutional neural network (CNN) archi-
tecture similar to that used in research by Serna and Yuichek [23] and Chiamkurthy [24],
which are in turn both inspired by the Visual Geometry Group (VGG) architecture [25].
Figure 3 depicts the assumed CNN architecture, which applies the rectified linear unit
(ReLU) function, batch normalization, max pooling and dropout regularization. The final
layer is activated by a softmax with 10 outputs indicating the per-class likelihoods. In
total, the CNN comprises 3349418 trainable parameters. Assuming a 32-bit precision per
trainable parameter, this translates to a model size of Z ≈ 107 Mbits.

46×46×32 46×46×32 23×23×32

p=0.25

23×23×64 21×21×64 10×10×64

p=0.25

512×1×1

p=0.5

512×1×1 10×1×1

3 × 3 Conv + ReLU Batch Normalization (2, 2) MaxPool

Dropout Fully Connected Softmax

Figure 3. The CNN architecture assumed to perform the object classification task.

5.2. Learning Scenarios

In our analysis, we consider scenarios with V = 50 vehicles and both IID and non-IID
data. Moreover, we address both the scenarios where vehicles have the same and different
training data set sizes, which are described by the problems in (29)–(32) and (24)–(28),
respectively. In total, we consider four learning scenarios, whose configurations are sum-
marized in Table 2. Apart from the scenario with same data set size and IID data, in the
other three scenarios, the number of training samples are unevenly split over the number
of assigned classes. For the scenario with the same data set size and non-IID data, this split
is performed such that on average all classes are equally represented in the training data
set K. For scenarios with different data set sizes, the number of samples per assigned class
per vehicle is drawn from a Poisson distribution with a rate of 15 and 75, for IID data and
non-IID data, respectively, as also shown in Table 2.
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Table 2. Configuration of the four learning scenarios.

Parameter
Same Data Set Size Different Data Set Sizes

IID Non-IID IID Non-IID

Number of classes per vehicle 10 2 10 2
Training samples Kv per vehicle 150 150 150 (average) 150 (average)

Training samples per class per vehicle 15 75 (average) 15 (average) 75 (average)
Testing samples KT,v per vehicle 50 50 50 (average) 50 (average)

Testing samples per class at FL server 100 100 100 100

For calculation of the loss F(WG,v[i]) of vehicle v at communication round i, the
categorical cross-entropy loss function is applied on the testing data set KT,v, which is
unique for every vehicle and three times smaller than the training data set Kv. Moreover,
the split of the testing data set among the vehicles and the classes is similar to the split of the
training data set. Finally, the accuracy of the global model in all four scenarios is measured
at the FL server based on an FL server specific testing data set, which consists of 100 samples
per class. Note that the accuracy of the global model is defined as the proportion of correctly
categorized testing samples divided by the total number of classification instances, where
for each classification instance a single testing sample from the FL server is used.

For the training, the vehicles use the SGD optimizer with learning rate η = 0.05, batch
size sB = 64 and with each vehicle performing nLE = 2 local epochs. The number of FLOPs
required from the vehicles to train the CNN for a batch size sB = 64 is measured by the
Keras library, in Python version 3.6.8, which is nFLOP,G = 6.55 GFLOPs. Regarding the
hardware of the vehicles, we consider the processing capabilities gv = 64 GFLOPs per
second. Therefore, the training time τT,v of vehicle v, as given by (13), depends on the
number of training samples Kv at vehicle v, which depends on the learning scenario.

5.3. Baseline Algorithms

To evaluate the performance of the VBI algorithm, we compare it with two baseline
algorithms, viz. the max-loss-rate and the random-rate algorithms. The max-loss-rate
algorithm aims to maximize the sum of the losses over all selected agents based on a
rate-based beam assignment. Thus, it treats the loss and rate as fixed metrics for vehicle
importance. First, it sorts the vehicles in descending order based on their loss F(WG,v)

and selects as many vehicles as possible until the constraints in (24)–(28) are violated.
Each selected vehicle v is assigned to the beam b∗ that it experiences the lowest resource
consumption CR,vb∗ . If a vehicle v cannot be assigned to its best beam b∗, the vehicle v is
not selected for training. The random-rate algorithm is implemented similarly, but the
algorithm iterates over the vehicle list in a random order.

One widely used agent selection algorithm from the literature, is the FedCS algorithm,
as introduced by Nishio and Yonetani [26], which is based on a greedy method to maximize
the number of selected agents. When extending this algorithm to our considered scenario,
i.e., vehicle selection and beam allocation, the vehicles need to be assigned to the beam
that provides the highest bit rate. Therefore, the FedCS algorithm is almost identical to our
proposed VBI-rate algorithm (VBI algorithm when ρ = 0). This shows the adaptability
of the VBI algorithm in different scenarios via the appropriate configuration of the tuning
parameter ρ.

5.4. Wireless Scenario

For the wireless communication scenario, we consider an urban macro environment
at fC = 3.5 GHz and a bandwidth of fBW = 50 MHz [19,27]. For the wireless propagation
in (8), we assume a path loss exponent γ = 3.7 and shadowing with σ = 8 dB, which are
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typical values for outdoor dense urban environments [20]. The considered area is covered
by M = 7 three-sectorized base stations, placed on a hexagonal grid with an inter-site
distance of 500 m at a height of 25 m [19]. Each sector is equipped with a 4× 4 uniform
planar rectangular array (UPRA) configured in a grid of beams comprising BM = 12 beams.

In urban macro deployments, a high number of vehicles is expected to drive around
an urban grid that consists of three blocks, each measuring 433 m by 250 m, making up
a total area of 433 m by 750 m [19]. Each street around the block has a total of four lanes
and there are two lanes per driving direction. The lane width is 3.5 m [19]. Moreover, the
vehicles are driving at a speed of 60 km per hour and their antennas are placed at a height
of 1.6 m [27]. At the intersections, the vehicles have a probability of 0.5 to keep driving
straight ahead, 0.25 to go left and 0.25 to go right [27]. Finally, each vehicle is equipped
with a 2× 2 UPRA, which can steer the beam to the direction of the beam formed at the
serving sector.

Based on the considered UPRA model, as defined in Appendix A.1, an analysis is
conducted in Appendices A.2 and A.3 to define the beam directions in the grid of beams
at each base station. The derived beam directions are the same at all sectors and they are
the following: −45◦,−15◦, 15◦ and 45◦ in the azimuth plane and 17◦, 47◦ and 77◦ in the
elevation plane. A coverage analysis revealed that all roads are covered by the beams
pointing at the cell edge. Thus, we only consider the cell edge beams for our evaluation.
The remaining UPRA parameters, and in particular the maximum transmit power, noise
figure and antenna gain, are derived in Appendix A.3 and summarized in Table 3. These
parameters are presented for both the base stations and the vehicles.

Table 3. Parameters of the UPRA at the base stations and the vehicles.

Base Station Vehicle
Parameter Value Parameter Value

PM,MAX 49 dBm PV,MAX 23 dBm
PNF,M 5 dB PNF,V 9 dB

GM,MAX 12 dBi GV,MAX 6 dBi

Recall from Section 2 that during a given communication round, the vehicles stay
connected to one and the same beam. In Appendix A.4, we approximate the time that a
vehicle stays connected to a single beam. From the analysis, it is estimated that vehicles
stay connected to a cell edge beam between 10.4 s and 17.0 s. This time interval upper
bounds the latency budget τAPP,MAX to ensure that the assumption of staying connected to
one beam is not violated.

In Appendix A.5, we calculate the downlink bit rate at the cell edge at 105 Mbps,
which can also serve as a broadcast bit rate. Considering that the FL model size is
Z ≈ 107 Mbits the broadcast time duration is τDL ≈ 1.02 s. Finally, we set the latency
budget τAPP,MAX = 2.5 s, which is long enough to allow vehicles to train and upload their
local models.

6. Results and Discussion
This section evaluates the performance of the VBI algorithm. First, Section 6.1 exam-

ines its relative performance compared to the optimal solution of the problem in (29)–(32).
Then, we assess the accuracy of the global model when solving the problems in (24)–(28)
and (29)–(32). Recall that the accuracy of the global model is defined as the proportion
of correctly categorized testing samples divided by the total number of classification in-
stances. For this evaluation, we consider the four learning scenarios described in Section 5.2
and the baseline algorithms presented in Section 5.3. Sections 6.2 and 6.3 show results
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for scenarios where vehicles have the same and different data set sizes, respectively. Fi-
nally, Section 6.4 compares the four learning scenarios in terms of the time required to reach
a certain accuracy level. We present the results of the four learning scenarios as an average
of 15 independent simulations. The source code used to generate these results is available
in [28].

6.1. VBI Algorithm Relative Performance

We evaluate the VBI algorithm with respect to the problem in (29)–(32), i.e., when
vehicles have the same training data set size. This comparison demonstrates that the VBI
algorithm can provide an accurate approximation to the optimal solution of the problem
in (29)–(32). For evaluation, we compare the performance of the VBI algorithm, in terms of
the total vehicle importance QTOT, against the optimal solution given by the CBC solver.
Note that the problem in (29)–(32) aims to maximize the total vehicle importance QTOT and
thus both the VBI algorithm and the CBC solver return this value as part of their solution.
Therefore, the ratio of the total vehicle importance QTOT as returned by the VBI algorithm
divided by the total vehicle importance returned by the CBC solver indicates how similar
the two values are. In the case where the ratio equals to one, the two values are equal and
the VBI algorithm returns the same value as the CBC solver. We define this ratio as the
‘relative performance’ metric.

For the comparison, three values of the tuning parameter ρ are considered: the two ex-
treme cases of ρ = 0 (i.e., VBI-rate) and ρ = 1 (i.e., VBI-loss) and the case of ρ = 0.8,
which leads to a similar value range for the local loss F(WG,v) and the resource consump-
tion CR,vb. Moreover, the number of vehicles V in the network is also varied. Finally, the
obtained results are averaged over 1000 independent simulations.

Figure 4 shows that for the extreme case of ρ = 0 (i.e., VBI-rate), the VBI algorithm
provides a near-optimal solution, regardless of the number of vehicles in the network. This
is because the VBI-rate algorithm selects vehicles with the strongest wireless channels
and assigns them to beams with the lowest resource consumption CR,vb. Consequently,
the number of scheduled vehicles is maximized, leading to a near-optimal total vehicle
importance QTOT.
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Figure 4. Relative performance of the VBI algorithm to the optimal solution, for the problem where
vehicles have the same training data set size.

At the other extreme case of ρ = 1 (i.e., VBI-loss), the VBI algorithm prioritizes the
selection of vehicles with high loss F(WG,v), which might be assigned to a sub-optimal
beam, as it was explained in Section 4. Figure 4 shows that the relative performance of the
VBI algorithm when ρ = 1 is lower than when ρ = 0, which is a result of the sub-optimal
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beam assignment. Specifically, the sub-optimal beam assignment leads to a higher resource
consumption which in turn limits the total number of vehicles that can be scheduled and
consequently the total vehicle importance QTOT. Figure 4 also shows that the performance
further decreases with the number of vehicles in the network, because there is a higher
probability that a vehicle will be assigned to a sub-optimal beam.

When ρ ∈ (0, 1), and specifically ρ = 0.8 in this comparison, Figure 4 shows that
the relative performance of the VBI algorithm is lower than with ρ = 0 but higher than
with ρ = 1. This is because the tuning parameter ρ configures the vehicle importance qvb

to account almost equally for both the resource consumption CR,vb and the loss F(WG,v).
Therefore, during beam assignment, there is some distinction among the beams to deter-
mine the best serving beam in terms of the resource consumption CR,vb. However, this
distinction is not as prominent as when ρ = 0. Hence, the larger the ρ, the less distinction
there is among the beams, which consequently leads to a sub-optimal beam assignment.
Simulations showed that when ρ = (0, 1), the accuracy of the global model falls between
the accuracies obtained at ρ = 0 and ρ = 1. Therefore, in the remainder of this evaluation,
we only show the performance of the VBI algorithm when ρ = 0 and ρ = 1, i.e., the
VBI-rate and VBI-loss algorithms, respectively. Therefore, the key takeaway from these
evaluations is summarized below:

Result 1. The VBI algorithm provides a near-optimal solution when ρ→ 0 (i.e., VBI-rate), re-
gardless of the number of vehicles, because it leverages the distinction of beams in terms of resource
consumption CR,vb. The performance of the VBI algorithm drifts from the optimal solution when
increasing the parameter ρ, and in combination with the number of vehicles. Overall, the VBI
algorithm offers a good approximation of the optimal solution, and its results will be used in the
further evaluations.

However, the relative performance of the VBI algorithm is not directly related to
the accuracy of the global model. Hence, in the following sections, we evaluate the VBI
algorithm with respect to global model accuracy.

6.2. Same Data Set Size

We evaluate the performance of the VBI algorithm in terms of the accuracy of the global
model for the problem in (29)–(32), where the vehicles have the same training data set size.
For this purpose, we compare the VBI-rate, VBI-loss, max-loss-rate and random-rate
algorithms under scenarios with IID and non-IID data.

6.2.1. IID Data

Figure 5 shows accuracy over time and illustrates that all four algorithms achieve
similar performance. The comparable results of the VBI-loss and max-loss-rate algo-
rithms are expected, as both select vehicles with the highest loss F(WG,v). Additionally,
both algorithms select approximately the same number of vehicles per communication
round. This implies that the two algorithms are almost identical and that the VBI-loss
algorithm mostly assigns, to the selected vehicles, the beam that leads to the lowest resource
consumption CR,vb. This efficiency arises from the short latency budget τAPP,MAX = 2.5 s,
which enforces that only vehicles with favorable wireless channels can participate in the
learning process. Due to vehicle mobility, channel quality varies over time, and hence the
channel quality limitation due to the latency budget τAPP,MAX applies to a different set of
vehicles per communication round. Therefore, all four algorithms achieve resource-efficient
beam assignments, and all vehicles have fair chances, over time, to be selected.
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Figure 5. Accuracy over time for the problem with the same training data set sizes and IID data,
averaged over 15 independent simulations.

Moreover, Figure 5 shows that although the VBI-rate and random-max algorithms do
not take the loss F(WG,v) into account, they perform similarly to the loss-aware VBI-loss
and max-loss-rate algorithms. This is because all vehicles have samples from every class,
thus making the choice of vehicles less crucial for the learning process. Therefore, the main
result herein is the following:

Result 2. When vehicles have the same data set size and IID data are considered, the choice of
vehicles is not crucial, provided that resource-efficient beam assignment is performed.

6.2.2. Non-IID Data

When non-IID data are considered, vehicles contain samples from only two classes;
therefore, the selection of vehicles in a given communication round becomes more crucial
than in scenarios with IID data. Figure 6 illustrates that, under non-IID data, the loss-aware
VBI-loss and max-loss-rate outperform the loss-unaware VBI-rate and random-rate
algorithms. This is because the former algorithms take both learning and channel aspects
into account. The learning aspect ensures that vehicles carrying samples that contribute
more to the learning process are selected more frequently, whereas the channel aspect
ensures resource-efficient beam assignment. Recall that the VBI-loss algorithm implicitly
takes the channel quality into account via the latency budget τAPP,MAX. Additionally,
Figure 6 shows that the VBI-loss and max-loss-rate algorithms behave almost identically,
for the same reason as in the IID data scenario.

Moreover, Figure 6 illustrates that although the four algorithms behave differently,
they eventually converge to the same accuracy level. Specifically, an accuracy of 96%
is reached within 250 s. Convergence to the same accuracy level occurs because many
vehicles are selected per communication round, resulting in sufficient training across all
distributed samples. The use of MU-MIMO plays a key role in this outcome by providing
two main benefits. First, enhanced throughput allows the FL server to select vehicles that
are located at the cell edge. It can be qualitatively argued that these vehicles would not have
been selected in a single-antenna system, thus reducing the overall vehicles participation.
Second, MU-MIMO enables multiple vehicles per base station to be selected in the same
training round, with each vehicle transmitting its model to the base station via a different
beam. These benefits allow training on a larger number of samples per communication
round, and on a wider sample set. This eventually improves the convergence time of the
global model.
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Figure 6. Accuracy over time for the problem with the same training data set sizes and with non-IID
data, averaged over 15 independent simulations.

Therefore, the key takeaway results are:

Result 3. When vehicles have the same data set size and non-IID data are considered, loss-aware
algorithms provide higher accuracy during the initial learning phase, assuming that resource-efficient
beam assignment is performed.

Result 4. MU-MIMO-capable base stations improve the convergence time of the global model, as
they allow training on a larger number of samples at each communication round, and on a wider
sample set. This results from the enhanced quality of the wireless channels, selection of agents at the
cell edge, and exploitation of the spatial separation of the vehicles.

6.3. Different Data Set Sizes

We now evaluate the performance of the VBI algorithm in terms of global model
accuracy for the problem in (24)–(28), where vehicles contain different training data set
sizes. Thus, the vehicles have different training times τT,v. Although the VBI algorithm does
not explicitly select vehicles based on their training time τT,v, vehicles with shorter training
times τT,v have a higher selection probability. This is due to constraint (27), enforcing
that the selected vehicles need to train and upload their local model within the latency
budget τAPP,MAX − τDL ≈ 1.5 s. Therefore, vehicles with short training times τT,v can be
selected even if their channel quality is not very good. On the other hand, vehicles with
long training times τT,v can only be selected when they have a very good channel quality.

6.3.1. IID Data

Figure 7 shows the accuracy over time for the four considered algorithms and demon-
strates that the VBI-rate, VBI-loss and max-loss-rate algorithms perform similarly,
while the random-rate algorithm underperforms. The similarity in performance between
the VBI-loss and max-loss-rate algorithms is explained by the applied short latency bud-
get τAPP,MAX, as noted earlier in Section 6.2.1. Moreover, the design of the two loss-based
algorithms and the VBI-rate algorithm allows them to more frequently select vehicles with
longer training times τT,v compared to the random-rate algorithm. Thus, the random-rate
algorithm trains more frequently on a specific set of samples, resulting in a slower conver-
gence compared to the other three algorithms.
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Figure 7. Accuracy over time for the problem with different training data set sizes and with IID data,
averaged over 15 independent simulations.

Specifically, the VBI-rate algorithm prioritizes vehicles with good channel quality.
Therefore, when vehicles with long training times τT,v experience good channels, they are
likely to be selected. Additionally, the loss-based algorithms prioritize vehicles with higher
loss F(WG,v). Consequently, vehicles with a high loss F(WG,v) are selected for training
once their channel quality allows for it. Overall, Figure 7 shows that the three algorithms
perform similarly. We conclude that the vehicle selection in scenarios with IID data is not
crucial, as long as all vehicles contribute to the learning process, which is consistent with
Result 2.

Moreover, vehicles with shorter training times τT,v have fewer training samples Kv.
Thus, their contribution to the global model is not very significant. Considering that ve-
hicles with short training times τT,v are often selected, the global model does not change
significantly per communication round. Therefore, the convergence time is longer com-
pared to the scenario where all vehicles have the same training times τT,v. The main
message in this scenario is:

Result 5. The good performance of the VBI-rate, VBI-loss and max-loss-rate algorithms, in
scenarios where vehicles have different data set sizes and IID data are considered, is attributed to
their ability of frequently selecting vehicles with high training times and thus, allow all vehicles to
participate in the learning process.

6.3.2. Non-IID Data

Figure 8 shows the accuracy over time for the scenario with non-IID data. Here, the
random-rate algorithm again converges slower than the other three algorithms. Similar
to the IID case, in Section 6.3.1, the performance difference of the random-rate algorithm
compared to the other three algorithms is attributed to not selecting as frequently vehicles
with high training time τT,v. However, this performance difference is more modest in
scenarios with non-IID data compared to scenarios with IID data. This occurs because
most vehicles are important for the learning process, as their local losses are computed
over two classes using a global model averaged across multiple classes. As a result, most
vehicles have comparable learning importance, giving the random-rate algorithm a higher
likelihood of selecting important ones.

As noted in Result 3, with non-IID data, loss-based VBI-loss and max-loss-rate
algorithms provide advantages over VBI-rate and random-rate algorithms. However,
when vehicles have different data set sizes, the loss-based algorithms do not provide
significant performance gains. The fact that some vehicles have small testing data set size
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KT,v, implies that those vehicles calculate their loss F(WG,v) inaccurately. Combined with
the non-IID data, where only two classes are represented per vehicle, the loss values in this
scenario are both high and highly variable. These two factors indicate that most vehicles are
important to participate in the FL training process. As a result, the loss-based algorithms
tend to select vehicles more evenly, which reduces the performance gap between them and
the VBI-rate and random-rate algorithms, as shown in Figure 8.

Figure 8. Accuracy over time for the problem with different training data set sizes and with non-IID
data, averaged over 15 independent simulations.

Nevertheless, both loss-based algorithms and VBI-rate outperform random-rate,
demonstrating that learning importance (loss metric) and wireless importance (rate as
wireless resource consumption metric) are equally relevant for FL training on non-IID data
with varying training times. Therefore, we conclude that the loss F(WG,v) and the rate are
similarly important metrics for identifying vehicle importance in the learning process when
some vehicles have small testing data set sizes KT,v under non-IID conditions.

To further distinguish among vehicles, one option is to consider their testing dataset
sizes KT,v. However, this may not yield substantial gains, as it would implicitly prioritize
vehicles with long training times τT,v. Because the uploading time is limited, fewer vehicles
would be scheduled. This reduction in the number of scheduled vehicles hinders the
learning process and does not allow for faster learning. Thus, we highlight that the loss
metric remains a strong indicator of a vehicle’s importance in the learning process, as it
selects vehicles with lower training times while achieving the highest accuracy.

The key take away message is:

Result 6. When vehicles have different data set sizes and non-IID data are considered, the loss
F(WG,v) remains an effective metric for the learning process, yielding the highest accuracy. However,
the loss metric is equally important as the rate metric.

6.4. Comparison of Learning Scenarios

Some applications require training the global model until reaching a specific accuracy
target. Therefore, we compare the four algorithms in terms of how much time is needed to
reach the 85% and 90% accuracy levels. To average out simulation noise, we consider that
the accuracy level is reached if the average accuracy is above the accuracy target for 30 s.
Table 4 shows the time in seconds to reach each accuracy level, where a hyphen indicates
that the accuracy level could not be reached within the simulated 250 s and have maintained
that level for at least 30 s. Specifically, for the scenario addressing problem (24)–(28), where
vehicles have different data set sizes and non-IID data, the VBI-loss and max-loss-rate
algorithms reach the 90% accuracy target after about 245 s, whereas the VBI-rate and
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random-rate algorithms have not reached the target yet. However, it can be seen from
Figure 8 that all four algorithms reach approximately the same accuracy after 250 s.

Table 4. Time, in seconds, needed to reach the 85% and 90% accuracy levels for every algorithm in
each learning scenario, where the shortest time per level and scenario is marked with bold.

Algorithm
Same Data Set Size

and IID Data
Same Data Set Size
and Non-IID Data

Different Data Set Sizes
and IID Data

Different Data Set Sizes
and Non-IID Data

85% 90% 85% 90% 85% 90% 85% 90%

VBI-rate 95 115 145 170 170 208 198 -
VBI-loss 95 112 137 157 172 206 190 243

max-loss-rate 92 110 137 155 175 208 193 248
random-rate 97 117 145 162 180 212 195 -

Moreover, we conclude from Table 4 that the VBI-loss and max-loss-rate algorithms
consistently reach the 90% accuracy target and do so quicker than the other two algorithms.
However, the differences between the algorithms are not significant after the initial learning
phase, regardless of the learning scenario. This is attributed to the use of MU-MIMO, which
improves the quality of the wireless channels and allows the selection of many vehicles per
communication round, as also highlighted in Result 4.

Additionally, Table 4 shows that it takes longer to reach the accuracy targets when
vehicles have different data set sizes compared to when they have the same data set
size. As mentioned in Section 6.3.1, in scenarios with different data set sizes, vehicles
with shorter training times are more often selected for training, which then requires more
communication rounds to reach a certain accuracy target. Therefore, the comparison among
scenarios has the following important take aways:

Result 7. The two loss-based algorithms, i.e., VBI-loss and max-loss-rate, are stable in terms
of reaching the 90% accuracy target more quickly than the VBI-rate and random-rate algorithms
across all learning scenarios. This is particularly evident with varying data set sizes and non-IID
data, where loss-based algorithms show performance similar to VBI-rate but are more stable.

Result 8. In scenarios where vehicles have the same data set size, hence the same training times,
the accuracy target is reached faster than when vehicles have different data set sizes, hence different
training times.

7. Conclusions
This work investigated the joint vehicle selection and resource allocation problem for

FL in vehicular networks with MU-MIMO-capable base stations. Specifically, we described
the related optimization problem under two scenarios: when vehicles have the same data
set sizes and when they have different data set sizes. To approximate the solution of
these optimization problems, we proposed the VBI algorithm. By conducting extensive
simulations, we evaluated the VBI algorithm in various learning scenarios and highlighted
the key results 1–8. Overall, these results 1–8 showed that loss-based algorithms consistently
achieve high accuracy more quickly than the other algorithms, although their performance
gains are limited in scenarios where vehicles have different data set sizes and non-IID data.
Moreover, we showed that MU-MIMO improves the convergence time of the global model,
as highlighted in Result 4.

We further showed that local loss alone does not adequately characterize importance
in the learning process under non-IID data and different data set sizes. For future work, it
will be of interest to investigate additional learning importance metrics, or combinations
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of learning and wireless metrics, that may provide further improvements in challenging
scenarios with variable data set sizes and non-IID data. In addition, it is worth further
investigating which vehicular applications can benefit from federated learning and deriving
application-specific latency budgets. Finally, future work should also consider scenarios
with energy implications, e.g., optimizing the energy consumption of the network.
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Abbreviations
The following abbreviations are used in this manuscript:

3GPP Third-Generation Partnership Project
CBC COIN-OR Branch and Cut
CNN Convolutional Neural Network
CPU Central Processing Unit
FL Federated Learning
FLOP Floating Point OPeration
GoB Grid of Beams
IID Independent and Identically Distributed
ML Machine Learning
MU-MIMO Multi-User Multiple Input Multiple Output
OFDMA Orthogonal Frequency Division Multiple Access
ReLU Rectified Linear Unit
SGD Stochastic Gradient Descent
SNR Signal-to-Noise Ratio
UPRA Uniform Planar Rectangular Array
VBI Vehicle Beam Iterative
VGG Visual Geometry Group

Appendix A
Appendix A.1. Antenna Model

In this work, we assume for both the base stations and the vehicles, uniform planar
rectangular array (UPRAs) with a total of NE,M and NE,V antenna elements, for the base
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station antenna arrays and the vehicle antenna arrays, respectively. The antenna elements
are positioned at dE = 0.5λ spacing in both the horizontal and vertical plane, where λ is
the wavelength. We assume that each antenna element has an omnidirectional radiation
pattern with a gain of GAE = 0 dBi per antenna element, and the number of antenna
elements in the horizontal and vertical plane are equal.

The antenna array at each base station is configured in the grid of beams (GoB) mode.
We approximate the beams formed by the vehicles and all beams in the GoB are assumed
to have the same half-power beamwidth. Moreover, all beams in the GoB, regardless of
their direction, are approximated to have one continuous uniform side lobe. Additionally,
given the symmetry of the antenna arrays, the half-power beamwidth ∆φk and the first-null
beamwidth φ0,k are assumed to be equal in both the azimuth and elevation planes and they
are defined as [29,30]

∆φk ≈ 2

[
π

2
− cos−1

(
1.391λ

πdE
√

NE,k

)]
≈
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3
NE,k

, (A1)

φ0,k = 2

[
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2
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(
λ

dE
√

NE,k

)]
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The number of beams in the GoB is given by BM = BA,MBE,M, where BA,M and BE,M

denote the number of beams in the azimuth and elevation planes, respectively, and the
number of beams in the GoB is derived from the first-null beamwidth φ0,M and the targeted
angular range in the azimuth and elevation planes. Specifically, setting the boresight
direction of each beam at the null of its adjacent beam, we obtain an angular resolution
of ϕB,M =

φ0,M
2 , for both the azimuth and elevation planes. Thus, the number of beams in

a given plane, i.e., BA,M and BE,M, is given by dividing the angular range of the antenna
(e.g., for three-sectorized antennas, the angular range in the azimuth plane is 120◦) by the
angular resolution ϕB,M.

The effective beam gains GA,vb and GE,vb experienced by vehicle v from beam b in the
azimuth and elevation planes, respectively, are given by [31]

GA,vb = −min
{

12
(

φvb
∆φM

)2
, FBRM

}
+ GM,MAX,

GE,vb = max
{
− 12
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ϑvb

∆φM

)2
, SLLM

}
,

(A3)

where φvb is the angle off the boresight direction of beam b, ϑvb is the negative elevation
angle relative to the direction of beam b, FBRM is the front back ratio in dB, GM,MAX is the
maximum gain in dBi and SLLM is the side lobe level in dB, relative to the maximum gain
of the main lobe. The maximum beam gain GM,MAX is given, in dBi, by

GM,MAX = 10 log(NE,M) + GE. (A4)

The side lobe gain GS,M of each beam for the UPRA is given, in dBi, by [29]

GS,M = 10 log
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Therefore, the side lobe level is given, in dBi, by

SLLM = GM,MAX − GS,M. (A6)
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We further assume [29] that SLLM = −FBRM. The total beamforming gain at vehicle v
from beam b is then given, in dB, by

GM,vb = GA,vb + GE,vb. (A7)

For the transmission beams formed at the vehicles, we assume that they can be steered
to the direction of the serving base station beam b. Therefore, the vehicle antenna gain
GV,vb is equal to the maximum vehicle beam gain GV,MAX, given in dBi by

GV,vb = GV,MAX = 10 log(NE,V) + GE. (A8)

Appendix A.2. Cell Edge Beam Downtilt

This section derives the required beam downtilt to ensure coverage at the cell edge.
Based on the angle of the beam on the azimuth and elevation planes, a certain area on the
ground can be served. A simplified model to calculate the area on the ground which is
served by a beam is to assume a trapezoid ground area, whose size depends on the half-
power beamwidth ∆φM and the downwards elevation angle θ of the beam [32]. Figure A1
illustrates on the left hand side the azimuth projection of the trapezoid ground area, traced
with a blue color. The right-hand side of Figure A1 shows with a solid blue line the direction
θ of a given beam and the distances d1 and d2 defining the size of the trapezoid. Specifically,
distance d1 denotes the distance from the base station until the small base of the trapezoid,
and distance d2 denotes the distance from the base station until the big base of the trapezoid.
Both the distances d1 and d2 are a function of the beam direction θ, which is constrained as
∆φM

2 ≤ θ ≤ 90◦ − ∆φM
2 . Additionally, the angles θd1 and θd2 , which define the distances d1

and d2, are equal to θd1 = θ + ∆φM
2 and θd2 = θ − ∆φM

2 . Then, the distances d1 and d2, for
the range ∆φM

2 ≤ θ ≤ 90◦ − ∆φM
2 , are given in meters by

d1 =
hM

tan
(

θ + ∆φM
2

) , (A9)

d2 =
hM

tan
(

θ − ∆φM
2

) . (A10)
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Figure A1. The trapezoid ground area served by a beam with a downwards elevation angle θ and
with half-power beamwidth ∆φM, is given by the distances d1 and d2.

The cell edge is served by the beam with the smallest downtilt in the elevation plane.
Using the method of the trapezoid ground area, we approximate the downtilt, denoted as
θCE, of the beam serving the cell edge. Using a hexagonal layout, the distance dc from the
base station until the cell edge is given by

dc =
2
3

ISD, (A11)
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where ISD is the inter-site distance. Setting d2 = dc in (A10), the downtilt θCE is given by

θCE = arctan
(

hM
dc

)
+

∆φM
2

. (A12)

Appendix A.3. Antenna Array Configuration

We consider 4× 4 UPRAs for the base stations and thus NE,M = 16. Then, the half-
power beamwidth ∆φM ≈ 25◦ and the first-null beamwidth φ0,M = 60◦, based on (A1)
and (A2), respectively. Therefore, the angular resolution ϕB,M = φ0,M/2 = 30◦ in both the
azimuth and elevation planes.

Considering three-sectorized cells, the antenna arrays need to cover a range of 120◦ in
the azimuth plane. Consequently, there are BA,M = 120◦/30◦ = 4 beams in the azimuth
plane. On the left hand side of Figure A2, the four beams covering the azimuth plane are
shown, pointing at angles −45◦, −15◦, 15◦ and 45◦.

Figure A2. Direction of beams in the GoB for an 4 × 4 UPRA, in the (left) azimuth and (right)
elevation planes.

In the elevation plane, the antenna array needs to cover the vehicles on the ground
and thus cover a range of θ less than 90◦. Because each base station needs to cover a specific
area on the ground, the beams need to point close to the cell edge to ensure that they
do not introduce significant interference to the adjacent cells. Based on an ISD = 500 m
and antenna height hM = 25 m, the angle to the cell edge is equal to 4.3◦. Therefore,
the beams in the elevation plane need to cover a range of 85.7◦. Consequently, there are
BE,M = ⌈85.7◦/30◦⌉ = 3 beams in the coverage range. The beam direction for the cell
edge is given by (A12) and thus, the cell edge beam is at θCE ≈ 17◦. Based on the angular
resolution ϕB,M = 30◦, the other two beam directions are 47◦ and 77◦. The right hand side
of Figure A2 illustrates the three beams and their direction.

Based on the derived beam directions, the UPRA at the base stations can simul-
taneously form and transmit BM = BA,MBE,M = 12 beams. Furthermore, using (A4),
the maximum beam gain GM,MAX = 12 dBi and using (A5) and (A6), we calculate
FBRM = SLLM = 19.1 dB.

Regarding the vehicles, they are equipped with a 2× 2 UPRA and thus NE,V = 4.
Thus, the half-power beamwidth ∆φV ≈ 50◦, as given by (A1). Finally, using (A8), the
maximum beam gain GV,MAX = 6 dBi.

Appendix A.4. Beam Connection Time

A vehicle stays connected to the same beam when moving in the area covered by the
given beam. The area served by a beam can be calculated using (A9) and (A10) when the
half-power beamwidth ∆φM is substituted by the angular resolution ϕB,M. Figure A3 shows
the ground coverage area of each of the three elevation beams calculated in Appendix A.3
for a given azimuth direction. Each beam coverage area is a trapezoid and it is described by
the distances d1 and d2, as defined in Appendix A.2. Hence, the two bases and the height
of the trapezoid can be calculated. Table A1 shows the length of the distances d1 and d2 as
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well as the length of the long base and the height of the trapezoid, considering the angular
resolution ϕB,M = 30◦ (The distance d2 for the beam pointing to the cell edge was set equal
to the cell edge distance dc, as given in (A11).).

θ = 77º θ = 47º θ = 17º

Figure A3. Ground coverage area for every beam in the elevation plane (not in scale), at a given
azimuth direction.

Table A1. Geometry description of the trapezoid coverage areas and beam connection time derivation,
for the given beam directions.

Beam Direction θ Distance d1 [m] Distance d2 [m] Long Base [m] Height [m]
Maximum

Connection
Time [s]

16.8◦ 40.3 333.3 172.5 283.0 10.4–17.0
46.8◦ 13.4 40.3 20.9 26.0 1.3–1.6
76.8◦ 0.0 13.4 6.9 12.9 0.4–0.8

Table A1 also shows a rough approximation of up to how much time a vehicle will
stay connected to the same beam, which depends on the elevation angle of the beam. The
maximum connection time interval is calculated as the length of the long base and height
of the trapezoid divided by the speed of the car, which is assumed to be 60 km/h.

Appendix A.5. Broadcast Bit Rate

The broadcast bit rate is chosen such that the associated SNR requirement can be met.
In this work, we associate the broadcast bit rate to the cell edge bit rate and hence to the
cell edge SNR. We define the cell edge SNR as

ΓCE = PB + GT + GV,MAX + GM − PNOISE − PNF,V , (A13)

where PB denotes the broadcast beam transmit power and PNF,V = 9 dB is the noise figure
at the vehicles [27]. Assuming that all four beams at each cell are used for the broadcast and
that the maximum transmit power PM,MAX = 49 dBm is equally shared among the four
beams, we calculate the power PB = 43 dBm. The distance to the cell edge is dc = 333 m
and thus the path gain GT = −137.8 dB. Moreover, from Appendix A.3, the maximum
beam gain GV,MAX = 6 dBi. For the transmit antenna gain GM, we assume the worst case
scenario in which the angle off the boresight direction of the beam is equal to φ = ∆φM

2
and ϑ =

φ0,M
2 in the elevation and azimuth planes, respectively. Using (A7), the transmit

antenna gain GM = 6 dB. The noise power is given by

PNOISE = −174 + 10 log10(B), (A14)

and for a bandwidth of fBW = 50 MHz, the noise power PNOISE = −97 dBm. Then,
using (A13), the cell edge SNR ΓCE = 5.2 dB. Therefore, the broadcast bit rate is calculated
using (6) as 105 Mbps.
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