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SUMMARY

PDF modelling and particle-turbulence interaction
of turbulent spray flames

Turbulent spray flames can be found in many applications, such as Diesel engines,
rocket engines and power plants. The many practical applications are a motiva-
tion to investigate the physical phenomena occurring in turbulent spray flames in
detail in order to be able to understand, predict and optimise them.

Turbulent spray flames are a two-phase flow system consisting of a turbulent
reacting continuum phase and a dispersed liquid phase contained in the contin-
uum phase. In this thesis the interaction between these two phases is being stud-
ied, and specifically the effects of vaporisation and the effects of the presence of
droplets on the turbulence characteristics of the continuum phase (the two-way
coupling effect). The main goal of the research described in this thesis is to de-
velop and evaluate stochastic Lagrangian models for turbulent spray flames that
are characterised by significant or dominant two-way coupling effects.

In the first part of the thesis, isolated droplet vaporisation models are studied
and several models are evaluated. The problem of droplet interaction is briefly
explained using some simple simulations and general theoretical ideas and the
concept of group combustion is introduced.

In the second part of the thesis the hybrid Lagrangian-Lagrangian method is
presented. The continuum phase is described by the transport equation for the
joint mass density function (MDF) of velocity and composition, which is solved
indirectly using a Monte Carlo particle method where Langevin type equations
are solved. This method is augmented by a finite volume method where the mean
Eulerian transport equations for momentum, Reynolds stresses and turbulence
dissipation are solved, making it a hybrid approach for the continuum phase. The
dispersed phase is described solely by the droplet MDF which is also solved using
a Monte Carlo method.

A novel modification of the turbulence model for the pressure rate of strain in
the Eulerian transport equation for the Reynolds stresses is presented that takes
into account the effect of the presence of particles and the effect of mass transfer.

The models in the Langevin equation in the Lagrangian formulation are then
modified in order to be consistent with the pressure rate of strain model in the Eu-
lerian formulation. The modification of the diffusion term in the Langevin equa-
tion implies a modification of Kolmogorov’s hypothesis regarding the first order
Lagrangian structure function.

An investigation of the transport equation for the scalar dissipation rate shows
that Lagrangian mixing models are affected by liquid particle vaporisation. Other
theoretical developments are the extension of the Generalised Gradient diffusion
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model and the Daly Harlow model for the triple correlations and an exact expres-
sion for the effect of mass transfer on the turbulence dissipation.

In the third part of this thesis the results of numerical simulations of two test
cases are presented. In the first test case an Eulerian-Lagrangian approach was
used and the influence of the modification of the model for the pressure rate of
strain by the presence of particles is investigated for an axially symmetric non-
burning turbulent dispersed spray and compared with experimental data. Small
improvements in turbulence quantities over the conventional turbulence and two-
way coupling model are noticed when the novel modification of the pressure rate
of strain is being used.

In the second test case, simulations of an axially symmetric turbulent spray
flame are performed to illustrate the performance of the complete hybrid method
proposed in this thesis. A good agreement with experimental data was found
using the hybrid method. In the mass transfer controlled spray flame studied in
this thesis, taking into account the reduction of the drag coefficient and the heat
and mass transfer coefficient due to mass transfer turned out to be crucial to the
performance of the method.
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SAMENVATTING

PDF modellering en deeltjes-turbulentie interactie
van turbulente spray vlammen

Turbulente spray vlammen komen voor in veel toepassingen, zoals Diesel mo-
toren, raket motoren en energiecentrales. De vele praktische toepassingen zijn een
motivatie om de fysische fenomenen die voorkomen in turbulente spray vlammen
nader te onderzoeken met als doel om ze beter te kunnen begrijpen, voorspellen
en optimaliseren.

Een turbulente spray vlam is een twee-fasen systeem bestaande uit een turbu-
lent reagerende gasfase en een vloeibare gedispergeerde (druppeltjes) fase. In dit
proefschrift wordt de interactie tussen deze twee fases bestudeerd, en met name de
effecten van verdamping en de effecten van de aanwezigheid van druppeltjes op
de turbulentie van de gasfase (het two-way coupling effect). Het hoofddoel van
het onderzoek is het ontwikkelen en valideren van stochastische Lagrangiaanse
modellen voor turbulente spray vlammen die gekarakteriseerd worden door sig-
nificante of dominante two-way coupling effecten.

In het eerste deel van dit proefschrift worden verdampingsmodellen voor ge-
isoleerde druppeltjes bestudeerd en gevalideerd. Het probleem van druppeltjes
interactie wordt kort behandeld door middel van enkele simpele modellen en een
theoretisch kader wordt geschetst van het begrip groepsverbranding (’group com-
bustion’).

In het tweede deel van dit proefschrift wordt de hybride Lagrangiaans- La-
grangiaanse methode gepresenteerd. De gasfase en de druppeltjesfase worden
beschreven door een transportvergelijking voor de massa dichtheidsfunctie (de
MDF). Deze vergelijking wordt indirect opgelost door middel van het oplossen
van Langevin vergelijkingen in een Monte Carlo deeltjesmethode. De gasfase
Monte Carlo methode wordt aangevuld met een eindige volume methode waarmee
de gemiddelde Euleriaanse transportvergelijkingen voor impuls, Reynolds span-
ningen en turbulentie dissipatie worden opgelost. In dit proefschrift wordt spe-
ciale aandacht geschonken aan de consistentie van deze twee methoden. Een in-
novatieve aanpassing van het turbulentiemodel voor de pressure rate of strain in de
Euleriaanse transportvergelijking voor de Reynolds spanningen wordt beschreven
waarin het effect van de aanwezigheid van druppels en het effect van verdamping
wordt meegenomen. Het Langevin model in de Lagrangiaanse formulering wordt
op zodanige wijze aangepast dat het Langevin model zo consistent mogelijk is
met het Euleriaanse model. De aanpassingen van de diffusieterm in de Langevin
vergelijking impliceert een modificatie van de hypothese van Kolmogorov voor de
eerste orde Lagrangiaanse structuurfunctie.

Een nadere beschouwing van de transport vergelijking voor de scalaire dissi-
patie snelheid laat zien dat ook Lagrangiaanse mengmodellen beinvloed worden
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door de verdamping van aanwezige druppeltjes. Andere theoretische ontwikke-
lingen die beschreven worden zijn de uitbreiding van het gegeneralizeerde gradi-
ent diffusie model en het model van Daly-Harlow, die de derde orde correlaties
beschrijven. Ook wordt een exacte uitdrukking gegeven voor het effect van ver-
damping op de turbulentie dissipatie.

In het derde deel van dit proefschrift worden numerieke resultaten van twee
testgevallen gepresenteerd. In het eerste testgeval wordt een Euleriaanse meth-
ode voor de gasfase en een Lagrangiaanse methode voor de gedispergeerde fase
gebruikt om de invloed van de aanpassingen in het turbulentie model te onder-
zoeken. Een axiaal-symmetrische niet isotherme spray wordt onderzocht en de
numerieke resultaten worden vergeleken met experimentele data. Geconstateerd
wordt dat kleine verbeteringen in de voorspellingen van de Reynolds spanningen
optreden wanneer het aangepaste model gebruikt wordt. In het tweede testgeval
zijn simulaties van een axiaal-symmetrische turbulente spray vlam uitgevoerd om
de prestaties van het complete hybride model te illustreren. In deze door mas-
saoverdracht gedomineerde spray is het vooral de reductie van de weerstandsco-
efficient en de warmte- en massaoverdrachtscoefficient door massaoverdracht die
cruciaal blijkt te zijn om goede overeeenkomsten met de experimenteel verkregen
waarden te verkrijgen.
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CHAPTER 1

Introduction

1.1 Background and Motivation

The evaporation and combustion of droplets and sprays has been studied exten-
sively (experimentally as well as numerically) because of their numerous impor-
tant applications, including spark-ignition engines, diesel engines, aircraft propul-
sion systems, liquid rocket engines, liquid fuelled furnaces, etc. However, the
major focus has always been the experimental and numerical study of either a
single, isolated vaporising or burning droplet [149, 150] or the experimental in-
vestigation of atomisation and burning of fuel sprays [16, 49, 50, 51]. Whereas
the experimental and numerical studies of isolated droplets were performed un-
der idealised conditions (no turbulence, fast chemistry), the (mainly experimental)
studies on spray combustion focused on a wide range of complex phenomena like
primary and secondary break-up, ignition, dispersion and gas-droplet interaction.
Although this has led to a lot of insights and knowledge about spray combustion,
numerical simulations of spray flames have long been limited to simple locally
homogeneous flow (where gas and droplet velocity are the same) and k−ǫ type
flow simulations with simple chemistry. More complex numerical simulations of
practical sprays that were studied experimentally have been computationally too
expensive until very recently.

1.2 PDF methods

Probability Density Function (PDF) methods maintain a high level of physical de-
tail, while still remaining computationally attractive. Since their introduction in
the beginning of the 1980s [127, 128, 130], PDF methods have become standard
methods to compute reacting gas flows. In PDF methods, the problem of turbu-
lent reacting flows is attacked from a statistical point of view and a model transport
equation of the probability density function (PDF) of composition and/or velocity
is being solved [117, 180]. This high dimensional transport equation is computa-
tionally unattractive to solve by direct integration. It has long been known that
there is a direct relationship between this transport equation of the PDF (which is
a Fokker-Planck type equation) and stochastic equations of motion, also known as
Langevin equations [56, 120, 136]. The general form of the Langevin equation for
velocity is:

dUi(t) = Gij(Ui(t) − Ũi(t))dt+BijdWi(t), (1.1)

1
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Finite Volume
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MC method
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Figure 1.1: Sketch of the hybrid Finite Volume - Monte Carlo modelling approach.

where Gij(x, t) and Bij(x, t) are constants that depend only on the local values of
the mean Reynolds stresses, turbulence dissipation and the mean velocity gradi-
ents. dWi(t) is a Wiener process [56, 136]. Solving the transport equation of the
PDF indirectly by solving Langevin equations for stochastic particles is called a
Monte Carlo (MC) method. Since the solution of (stochastic) Lagrangian equa-
tions of motion like equation (1.1) is computationally more attractive than solving
a high-dimensional transport equation for the PDF, and since it can be easily im-
plemented, solving the transport equations indirectly by means of a Monte Carlo
method is the preferable approach. There is a big advantage of PDF methods over
Reynolds Averaged Navier Stokes (RANS) methods, in which only transport equa-
tions for the first and second moments of velocity are solved. In PDF methods the
reaction source term appears in closed form, which makes it especially appealing
for solving reacting flow problems [72].

Using a Monte Carlo method also has a drawback. The velocities of the compu-
tational particles present in a finite volume cell in the solution domain are used to
compute the mean velocity in this cell. When the number of computational parti-
cles is low, there will be a statistical error in the mean velocity. This mean velocity
is then used in the Langevin equation (1.1) to compute the evolution of the indi-
vidual computational particles. This feed-back mechanism leads to a bias error,
which is a deterministic error, but with a statistical cause [183, 184]. A solution to
this problem is to calculate the mean velocities and mean Reynolds stresses using
a Finite Volume (FV) method, with which the Reynolds Averaged Navier Stokes
equations are being solved. Only a Langevin equation for the fluctuating velocity
is solved with the Monte Carlo method. This hybrid FV-MC method can lead to
possible inconsistencies between the second moments of velocity computed in the
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Finite Volume method and those computed using the Langevin equations in the
Monte Carlo method. The relationships between second moment closures and the
Lagrangian equations of turbulence have been investigated in detail in the past for
single phase flows [129]. However, these relationships have not been extended for
multiphase flow problems. In multiphase flows, more than one phase is present
in the flow. In polydispersed two-phase flows, which will be the focus of this
thesis, liquid droplets (the dispersed phase) of varying diameter are transported
by the turbulent carrier fluid (the gas phase). In a hot or reacting environment,
these droplets will vaporise and the droplet diameter will change. The disper-
sion -or spreading- of solid or liquid particles in a turbulent flow depends on the
particle diameter. Extensive research about Lagrangian models for polydispersed
two-phase flows can be found in the literature [60, 89, 109, 110, 117, 122]. Because
Lagrangian equations of motion are used for both simulations of the gas phase
and the dispersed phase we denote our approach as a ’Lagrangian-Lagrangian’
approach, different from the more standard Eulerian-Lagrangian approach. In this
thesis some time will be spent on examining a specific dispersion model. However,
the major part of the thesis will focus on the interaction between the dispersed
phase and the gas phase.

1.3 Gas-particle interaction

In dispersed two phase flows, the presence of liquid or solid particles will disturb
the flow of the gas phase. When the particle mass loading, which is the ratio of the
total particle mass over the total mass of the gas phase, in a small finite volume
is high, the disturbances may not be negligible anymore. Extra source terms that
take into account momentum transfer, interphase mass transfer and transfer of
transported scalars (e.g. heat), appear in the transport equation of the PDF as
well as in the RANS equations [39, 58, 60, 89]. When the mass loading increases
further, some assumptions may need to be re-evaluated to ascertain their validity
in dispersed two-phase flows. In sprays, droplets may not be considered to be
isolated anymore; neighboring droplets will compete for oxygen (or for heat, in the
case of vaporisation), their vaporisation rate will be changed, as well as their drag,
heat transfer, etc. Droplet-vaporisation interaction effects, which is an important
feature of group combustion, may become a dominant feature of the spray flame.

The mixing of the fuel vapour with the air as well as the dispersion of liquid
particles is mostly governed by the turbulence characteristics of the gas phase. A
better understanding of the interaction between particles and turbulence, and of
the vaporisation modulation of particles due to turbulence and interaction with
other particles will not only be of academic importance, but will also be of use in
the industry, where complex flow solvers are used to design and develop multi-
phase flow and combustion devices.

It is therefore interesting to identify the main interaction mechanisms and to as-
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sess their importance in turbulent spray flames. The main interaction mechanisms
identified and studied in this thesis are:

• The influence of the gas on the particle phase (one-way coupling);

• The momentum interaction between the gas and the particles (two-way cou-
pling);

• The interaction between particle vaporisation and transported scalars like
heat and fuel vapour (two-way coupling, group combustion).

1.4 Objectives of the research

In hybrid Lagrangian-Lagrangian simulations of turbulent spray flames, the in-
teraction between droplets and the gas phase is extremely important. The main
objective of this study is to develop a Lagrangian turbulence model that takes into
account the effect of the presence of vaporising particles on the carrier phase, and
to establish the relationship between Eulerian second moment closures and La-
grangian turbulence and mixing models. Knowing these relationships will lead to
a consistent hybrid model for the continuum phase.

Once these relationships are established, it is important to compare simulation
results of this approach with experimental data to establish its performance and to
compare simulation results with different models with each other to establish the
importance of the model improvements. A second objective is therefore to assess
the model performance of the turbulence and mixing models in turbulent spray
flames.

1.5 Outline of this thesis

This thesis consists of 8 chapters and 1 appendix. The first chapter is this introduc-
tion and in the last chapter, conclusions and perspectives are given. In chapter 2,
we will consider the heating, vaporisation and burning of a single isolated particle.
A review of currently used models is given. We will also discuss the vaporisation
modulation of a pair of droplets and a cloud of droplets, known as group combus-
tion.

Chapter 3 treats the (Eulerian) Reynolds averaged transport equations. Special
attention is paid to the effect of the presence of particles on the gas phase: the
two-way coupling effect. Chapter 4 treats the Lagrangian approach of the gas
phase. The Langevin model is chosen in such a way that it is consistent with the
Eulerian transport equations, specifically the model for the pressure rate of strain.
Chapter 5 introduces the Lagrangian modelling approach for the dispersed phase
and discusses in detail the Lagrangian dispersion model. In Chapter 6, the effect
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of the modifications of the turbulence model is shown using a polydispersed non-
evaporating spray. In chapter 7, the simulation results of a methanol spray flame
are used to establish the performance of the hybrid PDF method to turbulent spray
flames. In Chapter 8 the main conclusions, which were already given at the end
of each chapter, are briefly discussed and recommendations for future research are
given. Finally, in the appendix the stochastic integration method that was used
to integrate the system of stochastic equations of motion describing the dispersed
phase is given in appendix A.
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CHAPTER 2

Isolated and interacting fuel droplet vaporisation and

combustion

The evaporation and combustion of an isolated droplet is considered in this

chapter. Several vaporisation models are presented and compared under dif-

ferent circumstances. The single droplet evaporation models are sensitive to

the way thermodynamic properties are evaluated, and a lot of freedom exists

in the evaluation method. This aspect of the model is investigated. A brief

literature review of vaporisation modulation due to neighboring droplets is

given and the concept of droplet interaction in sprays and ’group combustion’

is presented.

2.1 Introduction

Since a spray flame contains droplets, a first step towards modelling a complete
spray is to be able to model a single, isolated vaporising or burning fuel droplet.
Many single droplet model studies can be found in the literature, experimental
[25, 93, 119, 179] as well as numerical [3, 108, 145, 149, 150, 167]. In this chap-
ter some standard single droplet vaporisation and heat transfer models are given

Figure 2.1: Temperature profiles for an isolated vaporising droplet and a burning
droplet.

7
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and their performances are compared with each other as well as with experimen-
tal data. The detailed explanation about the derivation of the single droplet mass
vaporisation rate in section (2.2) will aid in the understanding of the problems
occurring in vaporisation modulation of interacting droplets. The numerical sim-
ulations were performed for two specific fuels, namely n-decane and methanol.
N-decane fuel droplet vaporisation is interesting to study from a practical point
of view since it is a main component of gasoline. Its chemistry can however be
quite complex and in academic studies of spray flames, chemically simple fuels
are sometimes used to reduce the complexity and to isolate and study a specific
phenomenon. This is why methanol fuel vaporisation and burning is also studied
here. Another advantage of using methanol fuel, which is closely related to its sim-
ple chemistry, is that hardly any soot formation occurs. The spray flames studied
later in this thesis both use methanol as a fuel, so the single droplet model perfor-
mance of the methanol droplet simulations can give insights into the performance
of the spray flame simulations.

Although studies of isolated droplets can give us valuable information that can
be used to analyse the performance of spray flame simulations, droplets cannot
always be considered isolated in sprays [3, 15, 150, 167]. Apart from the occur-
rence of particle collisions, fuel vapour from neighboring droplets and local flame
structures will invalidate the assumptions made in the single droplet vaporisation
models. A review of vaporisation interaction of two droplets at small separation
distances and the interaction of droplet clouds is given in the second part of this
chapter.

2.2 Detailed droplet evolution equations

In this section we will consider a spherically symmetric droplet which is evapo-
rating or burning in a stagnant hot gas without convection, see Figure (2.1). The
flow around the droplet is caused only by the Stefan flux ρgvg (the mass flux at the
droplet interface in the direction of the outward normal) due to evaporation. Oxy-
gen diffuses to the surface and fuel diffuses to the environment. Heat radiation
is neglected for now. The heat released from the flame zone is transferred on one
side of the flame sheet located at rflame to the droplet and on the other side to the
environment.

Gaseous phase The governing equations of continuity, energy (temperature) and
species concentration can be simplified to a one-dimensional system of partial dif-
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ferential equations and can be written in spherical coordinates as:

∂ρg

∂t
+

1

r2

∂

∂r
(r2ρgvg) = 0

ρg
∂Yg,i

∂t
+ ρgvg

∂Yg,i

∂r
= − 1

r2

∂

∂r
(r2ρgYg,iVr,i) + ωg,i (2.1)

ρgCpg

∂Tg

∂t
+ ρgCpgvg

∂Tg

∂r
= +

1

r2

∂

∂r
(r2λg

∂Tg

∂r
) − ρg

n∑

i=1

(Yg,iVr,iCpg,i
)
∂Tg

∂r
−

n∑

i=1

ωg,iHg,i

In these equations, t is time and r is the radial distance from the centre of the
droplet. ρg, Tg, Cpg, vg and λg are the density, temperature, heat capacity (at con-
stant pressure), fluid velocity in radial direction and the thermal conductivity of
the gas at (t, r). Yg,i, Vr,i, ωg,i, Cpg,i

and Hg,i are the mass fraction, diffusion velocity,
gas phase mass production rate, heat capacity (at constant pressure) and enthalpy
(of combustion) of the gaseous ith species of a total of n species that are being con-
sidered. These equations are augmented by two algebraic equations. The first is
the equation of state:

ρg

n∑

i=1

Yg,i

Wi

=
p

RTg

, (2.2)

with p pressure, R the universal gas constant R = 8.314J ·K−1 ·mole−1 and Wi the
molar weight of species i. The second algebraic equation is a general form of Ficks
law for the diffusion velocity Vr,i:

Vr,j =
−1

Xg,iW

∑n
j 6=iXg,jWj
∑n

j 6=i
Xg,j

∆ji

∂Xg,i

∂r
− ID

T
g,i

ρgYg,i

1

Tg

∂Tg

∂r
, (2.3)

where Xg,i is the mole fraction and Wi is the molecular weight of the ith species.
W is the average molecular weight of the mixture and ID

T
g,i is the thermal diffusion

coefficient of the ith species. ∆ji is the binary diffusion coefficient of Hirschfelder.
Mole fractions and mass fractions are related by:

Yi =
XiWi∑n
i=1XiWi

, Xi =
Yi/Wi∑n
i=1 Yi/Wi

. (2.4)

The evaluation of the thermodynamic properties are not discussed here, but stan-
dard methods can be found in e.g. [126] or [78, 79, 80].
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Liquid phase The governing equations of mass, species and energy conservation
for the liquid phase are given by:

∂ρl

∂t
+

1

r2

∂

∂r
(r2ρlvl) = 0

ρl
∂Yl,i

∂t
+ ρlvl

∂Yl,i

∂r
=

1

r2

∂

∂r
(r2ρlID l

∂Yl,i

∂r
)

ρlCpl

∂Tl

∂t
+ ρlCpl

vl
∂Tl

∂r
=

1

r2

∂

∂r
(r2λl

∂Tl

∂r
), (2.5)

where it is assumed that no reactions occur in the liquid phase. For a multicom-
ponent droplet, the different components are assumed to be perfectly mixed with
equal diffusivities and the liquid thermodynamic properties can be described by
the mixture values of the liquid density ρl, the diffusion coefficient ID l and the
liquid heat capacity Cpl

.

Boundary conditions Neumann (symmetry) boundary conditions at r = 0 and
Dirichlet boundary conditions at r = ∞ are applied:

∂Yl,i

∂r

∣∣∣∣
r=0

= 0 ,
∂Tl

∂r

∣∣∣∣
r=0

= 0 (2.6)

Yg,i(∞, t) = Yg,i
∞

, Tg(∞, t) = Tg∞ (2.7)

At the interface r = rp, the gas and liquid temperature are assumed equal to each
other (Tg = Tl) and the droplet radius decrease, temperature gradient and species
gradients at the interface are given by:

drp
dt

=

(
vl − (vg − vl)

ρg

ρl

)∣∣∣∣
r=rp

(2.8)

Vr,i = vg(ǫi − Yg,i) (2.9)

ρlID l
∂Yl,i

∂r
− (vg − vl)ρg(Yl,i − ǫi) = 0 (2.10)

λl
∂Tl

∂r
− λg

∂Tg

∂r
− ρg(vg − vl)L = 0, (2.11)

where rp is the interface location (i.e. the droplet radius) and L is the total latent
heat of vaporisation of the mixture:

L =
n∑

i=1

ǫiLi, (2.12)
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with ǫi is the fractional gasification rate of the ith species, which is defined as:

ǫi =
ṁpi∑n
i=1 ṁpi

. (2.13)

By definition, the fractional gasification rate is zero for species which do not con-
dense into the liquid phase. A negative fractional gasification rate indicates that
there is an inward flux from the gas phase into the liquid phase over the interface
for that species. This condensation occurs for instance in the burning of methanol
droplets where water, which is formed as a combustion product, is absorbed by
the methanol droplet [97, 187]. The fractional gasification rate is found using

ρgvgǫi = ρgvgYg,i − ρgIDg
∂Yg,i

∂r
. (2.14)

The first interface condition equation (2.8) describes the balance of the interface lo-
cation rp by momentum on the liquid phase side and momentum on the gas phase
side. The second condition (2.9) implies that the diffusion velocity of each of the
species at the interface is the balance between the fraction of the radial velocity
of the gas phase due to gasification and the local gas phase mass fraction of the
species. The third condition (2.10) describes a similar balance saying that the inter-
face concentration gradient is due to the balance between local concentration and
gasification. The last equation (2.11) describes the heat balance at the interface,
which is given by the difference in conductive fluxes and the heat required for va-

porisation. In this equation, Li is the latent heat of vaporisation of the ith species,
evaluated at temperature Tp. Gas phase equilibrium at the interface is assumed to
obey the Clausius-Clapeyron equation:

X(I)
eq =

psat

patm
= exp(

L

R/WV
(

1

Tboil
− 1

T
(I)
l

)), (2.15)

where WV is the molecular weight of the fuel vapour, Tboil is the boiling temper-

ature of the liquid and T
(I)
l is the particle temperature at the interface I located

at rp. When the internal liquid particle temperature is uniform, (Tl(t, r) → Tl(t)),

we will use the notation T
(I)
l = Tp. The accuracy of expression (2.15) has been

questioned by Bellan and Summerfield [5, 8] for droplet temperatures close to the
boiling point and for very small droplet diameters, but is generally accepted to be
valid throughout the droplet lifetime, e.g. in [150].

This already simplified one-dimensional system of differential equations (2.2)-
(2.5) can be solved numerically and single droplet simulations can be found in the
literature [25, 34, 77, 97]. The spatial resolution that is needed to accurately capture
the numerical solution of these equations however is too large to be of practical use
in spray combustion simulations. A more simplified approach is needed.
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2.2.1 Derivation of the burning rate formula, or ”d2”-law

We will now consider a single component liquid fuel droplet with uniform (but not
constant) temperature Tp(t) that is vaporising or burning in stagnant air. The clas-
sical derivation of the equation for the mass vaporisation rate was first reported
by Spalding and Godsave and is detailed in standard works like Williams [178],
Kuo [85], and others. The continuity equation can be written as

dmp

dt
= 4πr2ρpvg = Constant, (2.16)

In a quasi-steady approach, the temperature and species equations are simplified
to

ρgvgCpg

dTg

dr
=

1

r2

d

dr
(r2λg

dTg

dr
) − ωT , (2.17)

ρgvg
dYg,i

dr
=

1

r2

d

dr
(r2ρgIDg

dYg,i

dr
) + ωg,i. (2.18)

Here, ωT =
∑n

i=1 ωg,iHg,i. The only species considered are Fuel (F), Oxidiser (O),
Products (P) and inert gas (N, usually Nitrogen) and we assume that reactions can
be described by the one step reaction

νF F + νOO → νP P. (2.19)

Furthermore, all species are assumed to diffuse in the same way, having the same
diffusion constant IDg. If we multiply the species and temperature equations by
4πr2 and use the continuity equation, we obtain:

dṁpCpgTg

dr
=

d

dr
(4πr2λg

dTg

dr
) − 4πr2ωT , (2.20)

dṁpYg,i

dr
=

d

dr
(4πr2

IDgρg
dYg,i

dr
) + 4πr2ωi. (2.21)

Since the mass fractions of the individual components sum to one, the nitrogen
mass fraction can be found with the algebraic relationship YN = 1− YF − YO − YP .
The 8 boundary equations for the 4 remaining second order differential equations
are determined by the ambient temperature and species concentration at r = ∞
and by the heat and mass flux at the droplet boundary. The energy boundary
condition at the droplet boundary is given by the difference of conductive fluxes
and the energy required for vaporising the liquid at the surface:

4πr2
pλg

dTg

dr

∣∣∣∣
r=r+

p

= q̇l −
dm

dt
L =

dm

dt
Leff, (2.22)

with q̇l = 4πλlr
2
p

∂Tl

∂r

∣∣
r=r−p

the liquid phase conductive heat flux at the droplet

surface approached from the liquid phase. At the liquid droplet surface, the sum
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of Stefan convection and diffusion on the gas side is equal to the convection on the
liquid side:

dm

dt
Y

(I)
g,i − ρgIDg4πr

2
p

dYg,i

dr

∣∣∣∣
I

=
dmp

dt
δiF , (2.23)

where the index i = F,O,N, P . Finally, the boundary equations at r = ∞ are
prescribed Dirichlet boundary conditions. When all fuel vapour comes from the
droplet then:

Tg(∞, t) = T∞

Yg,F (∞, t) = 0

Yg,P (∞, t) = 0 (2.24)

Yg,O(∞, t) = YO,∞

Yg,N(∞, t) = YN,∞

After integration of eq. (2.21) and using the boundary conditions at the interface,
this leads to:

dmp

dt
[Cpg(Tg∞ − Tp) + Leff] = 4πr2λg

dTg

dr
+

∫ r

rp

4πr2ωTdr. (2.25)

Integrating again, we obtain the final form of the equation for the vaporisation
rate:

dmp

dt
=

1∫∞
rp

(4πr2ρgIDg)−1dr
ln


1 +

∑n
i=1(
∫ Tg∞

T
(I)
f

Cpg,i
dT ) + ν(Yg,O

∞
− Y

(I)
g,O)Hg,F

L+ νY
(I)
g,O∆hg,F


.

(2.26)

If we now assume that λg

Cpg
= ρgIDg = constant, then we can evaluate the integrals

in equation (2.26) from rp to ∞ to obtain dmp

dt
:

dmp

dt
= 4πrp

λg

Cpg

ln(1 +
cp(Tg − Ts)

Leff
) = 4πrp

λg

Cpg

ln(1 +BT ), (2.27)

dmp

dt
= 4πrpρgIDg ln(1 +

YF,I

1 − YF,I
) = 4πrpρgIDg ln(1 +BM). (2.28)

In equation (2.28), the Spalding mass transfer coefficient BM and the Spalding heat
transfer coefficient BT are defined as

BM =
Y

(I)
g,F − Yg,F

∞

Yg,F 0
− Y

(I)
g,F

, (2.29)
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BT =
Cpg(Tg∞ − T

(I)
g )

Leff
, (2.30)

where Yg,F 0
is the mass fraction of fuel in the interior of the droplet (which, in the

case of a single component fuel, is equal to one). Here, λg is the thermal conduc-

tivity of the gas. The specific enthalpy of species i is hi =
∫ T

T0
Cpg,i

dT + Hg,i, with
Hg,i the specific formation enthalpy of species i.

This equation can be rewritten as the well-known d2 law by using

dṁp

dt
= 4πr2

pρl
drp
dt

=
πrp
2
ρl

d(d2
p)

dt
, (2.31)

where dp = 2rp. If we now define the burning rate constant as K =
d(d2

p)

dt
, the

vaporisation law can be rewritten as

d2
p(t) = d2

p(0) −Kt. (2.32)

The constant K can be calculated from equation (2.28) as

K = 8
ρg

ρl
IDg ln (1 +BM ), (2.33)

and an estimation of the droplet lifetime is then simply tp = d2
p(0)/K.

If the droplet is vaporising in a gaseous environment the thermodynamic prop-
erties of the surroundings will in principle be spatially varying. Then, the integral
expression in the detailed burning rate equation (2.26) cannot be simply reduced
to a constant. This is an important observation. It shows that the vaporisation
rate depends on the volume integrated properties of the gas phase. The volume
integration can be represented by a single value for the thermodynamic proper-
ties. Determining the temperature at which the thermodynamic properties need
to be evaluated is important to realise a good performance of the vaporisation
model. Several models for the temperature seen have been proposed in the lit-
erature [108, 149, 186]. Droplets with low boiling points in high temperature en-
vironments will quickly reach their wet-bulb temperature. When diffusion to the
environment is slow, the droplet is assumed to be immersed in its own fuel gas
having a temperature Twb or Tboil and the temperature used to evaluate the ther-
modynamic properties is either the wet-bulb or boiling temperature. Yuen and
Chen on the other hand suggest a 1

3
rule to evaluate this temperature. The vapour

mass fraction and temperature (Ym, Tm) at which the gas phase properties will be
evaluated are determined using:

Tm = Tp +
1

3
(Ts − Tp) and Ym = Ysurf +

1

3
(Ys − Ysurf) , (2.34)

where Ts and Ys are the gas phase temperature and gas phase mass fraction of the
environment ’seen’ by the droplet. Yuen and Chen [186] also advocate the use
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of a ’1/3’ rule to calculate the dynamic viscosity used to determine the droplet
Reynolds number (defined below):

µm = µsurf +
1

3
(µs − µsurf) . (2.35)

In turbulent evaporating spray simulations without combustion it was shown
that the mean vaporisation rate will not be affected much when temperature vari-
ations in the surrounding gas are taken into account, although individual droplet
evolution (of variance or diameter) may be significantly affected by temperature
variations [13].

2.3 Empirical correlation based models for convective droplet heat-

ing

2.3.1 Infinite conductivity model for droplet temperature evolution

The droplet temperature evolution is determined by a balance between conduc-
tive heating and evaporative cooling. When the liquid thermal conductivity is
infinitely fast, the temperature of the droplet can be considered uniform, but time-
varying. Models of this type are called infinite conductivity or rapid mixing mod-
els. Using Newtons law for the convective heat transfer to the droplet, the temper-
ature evolution of the droplet is given by:

mpCpl

dTp

dt
= Nuπλg(Ts − Tp) − Lṁp. (2.36)

In this equation, Cpl
is the liquid heat capacity, λg is the thermal conductivity of the

gas phase and Nu is the Nusselt number. The Nusselt number is the nondimen-
sional heat transfer coefficient and tells about the relative importance of convection
over heat diffusion. It can be determined with the Ranz-Marshall correlation:

Nu = 2 + 0.552Re1/2
p Pr1/3

g , (2.37)

where the Prandtl number is defined as

Prg =
µgCpg

λg
. (2.38)

A different way of writing the evolution equation of temperature to take into ac-
count different model assumptions can be found in Miller et al. [108]:

dTp

dt
=
f2Nu

3Prg

Cpg

Cpl

(T∞ − Tp)

τ St
p

− ṁp

mp

L(Tp)

Cpl

, (2.39)
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with τ St
p the particle characteristic time scale in Stokes flow:

τ St
p =

ρpd
2
p

18µg
. (2.40)

Due to the balance between heating and cooling, liquid droplets usually do not
reach the boiling point of the liquid when they are heated. Instead, the temper-
ature evolves towards the wet-bulb temperature. An estimation of the wet-bulb
temperature can be obtained by setting the left-hand side of equation (2.39) to zero
[31]. When droplets are placed in a very hot carrier gas, they will reach the wet-
bulb temperature quickly. The wet-bulb temperature can then be used instead of
the evolution equation of the droplet temperature. When the carrier gas is hot and
the boiling point of the liquid is low, the wet-bulb temperature will be close to the
boiling temperature of the liquid.

The standard d2 law together with an infinite conductivity model for the droplet
temperature typically overpredicts the vaporisation rate, leading to shorter droplet
lifetimes. Some corrections have been proposed in the literature [1, 108, 145]. We
will consider two of them, the model of Abramzon and Sirignano [1] and the
model of Miller, Harstad and Bellan [108].

2.3.2 Forced convection

When a droplet is exposed to forced convection, fuel vapour surrounding the
droplet will convect away and the vaporisation rate is enhanced. The effect of
forced convection can be implemented using the Nusselt number. Assuming a
stagnant film with radius r1 surrounding the droplet and assuming a balance be-
tween heat conduction in the film and heat convection in the surroundings, then

Q = πd2
ph(T − Ts) = π

d1dpλ

r1 − rp
(T − Ts). (2.41)

The radius r1 of the stagnant film surrounding the droplet is a function of Nu,

r1 = rp
Nu

Nu − 2
, (2.42)

where Nu is given by equation (2.37). Instead of using r = ∞ as the upper bound-
ary of the integral in equation (2.26), we can use r = r1 as the upper boundary and
the evaporation rate can now be written as:

dmp

dt
= πdp

λg

Cpl

Nu ln(1 +BT ). (2.43)

The d2 law can now be obtained by using the definition of the evaporation rate:

dmp

dt
= 4πr2

pρl
drp
dt

=
πrp
2
ρl

d(d2
p)

dt
. (2.44)
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We can now write the mass vaporisation rate as a d2 law including the Nusselt
number as:

d(d2
p)

dt
= 4Nu

λg

ρlCpg

ln(1 +BT ) (2.45)

d2
p(t) = d2

p(0) − 4Nu
λg

ρlCpg

ln(1 +BT ) · t, (2.46)

or equivalently:

d2
p(t) = d2

p(0) − 4Nu
ρg

ρl
IDg ln(1 +BM) · t. (2.47)

Unfortunately, the vaporisation rate is very sensitive to the way the thermody-
namic properties in equations (2.46,2.47) are evaluated. In droplet vaporisation
modelling, the thermodynamic properties are functions of temperature T and com-
position(mass fraction) Y . The question is at which temperature T and composi-
tion Y the thermodynamic properties should be evaluated, since (T ,Y ) can vary
between the values at the droplet surface and the values of the undisturbed fluid
flow. Often, the ’1/3’ rule [186] is used:

T = Tp +
1

3
(T∞ − Tp), (2.48)

Y = YI +
1

3
(Y∞ − YI). (2.49)

(2.50)

This approach is also adopted here, although we will also compare numerical re-
sults using different assumptions.

Several detailed studies of the effects of convective heat transfer of a liquid
droplet on the Nusselt number, Sherwood number and drag coefficient can be
found in the literature [1, 14, 52, 150].

2.4 The effect of Stefan flow

Abramzon and Sirignano [1] revised the infinite conductivity model to incorporate
the effects of Stefan flow on heat and mass transfer. This approach is based on the
so-called ’thin-film’ theory where it is assumed that the resistance to heat or mass
exchange between a surface and a gas flow may be modelled by introducing the
concept of gas films of constant thickness around the droplet. The occurrence of
Stefan flow will lead to a boundary layer thickening.

The Nusselt and Sherwood numbers are modified to take this into account and
are calculated as
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Sh⋆ = 2 +
Sh − 2

FM
, FM =

(1 +BM )0.7

BM
ln (1 +BM) (2.51)

Nu⋆ = 2 +
Nu − 2

FT
, FT =

(1 +B′
T )0.7

BT
ln (1 +B′

T ) (2.52)

with

B′
T = (1 +BM)φ, φ =

Cpv

Cpg

Sh⋆

Nu⋆

1

Le
, (2.53)

with Cpv
the specific heat of the vapour and Cpg the specific heat of the gas (air)

determined using the 1/3 rule for temperature and mass fraction. Equations (2.52),

(2.53) are solved iteratively by first determining the Le = λg

ρgIDgCpg
, FM and Sh, and

then using an initial guess for BT (e.g. BT = BM ) to subsequently determine FT ,
Nu, φ and BT . When |BTold

− BTnew | > ǫ with ǫ a small value, we replace the initial
guess for BT with our new BT and continue until BT has converged. BT is then
used in the temperature equation as:

mpCpl

dTp

dt
=
Cpv

(Ts − Tp)ṁp

BT
− Lṁp. (2.54)

Rewriting this equation as in equation (2.39) yields for f2:

f2 =
ṁp

mpB
′
T

3Prτp
Nu

(2.55)

A comparative analysis of the performance of the model of Abramzon and Sirig-
nano with other, similar models for fuel droplet heating can be found in Sazhin et
al. [145].

2.5 Non-equilibrium effects

Miller et al. [108] report that non-equilibrium effects will become important for
droplets with small initial diameter. The non-equilibrium Langmuir-Knudsen law
[5] is incorporated through the definition of the vapour mole fraction at the droplet
surface:

X(I)
neq = X(I)

eq − LK

rp
β, (2.56)

with X
(I)
eq the equilibrium mole fraction of fuel vapour at the surface given by

equation (2.15). LK is the Knudsen layer thickness, given by

LK =
µg

√
2πTp

R
WF

αeScp

. (2.57)
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αe is the molecular accommodation coefficient representing the fraction of molecules
that vaporise and enter the gas phase at the surface (here, we assume as was done
in Miller et al. that all molecules participate in the evaporation process and αe = 1)
and β is the nondimensional evaporation parameter:

β = −3

2
Prτp

ṁp

mp
. (2.58)

The nonequilibrium mole fraction is then used in the calculation of the Spalding
mass transfer number BM in equation (2.29). More important is the correction to
the heat equation proposed by Miller et al. . The evaporation correction to the heat
balance f2 in equation (2.39) is given by the expression

f2 =
β

eβ − 1
. (2.59)

The thermodynamic non-equilibrium effects incorporated by equation (2.56)
are important only for initial droplet diameters < 50µm [108]. The results in [108]
show that the vaporisation rate slightly decreases and slightly longer droplet life-
times are predicted when incorporating the non-equilibrium thermodynamic ef-
fects. The main improvement in the predictions comes from the expression f2,
which is not due to the non-equilibrium analysis. However, we will keep using
the term ’non-equilibrium model’ or ’Langmuir Knudsen model’ to refer to the
model of Miller et al. because this term has already been adopted in the literature.

2.6 Single droplet simulation results and comparison with exper-

imental data

The performance of the different droplet vaporisation and heating models de-
scribed in the previous section should be evaluated using single droplet experi-
ments. To this purpose, some experiments found in literature were chosen where
small hydrocarbon droplets vaporise in a high temperature convective gaseous
environment. However, experimental data on single droplet vaporisation seems
to be limited to rather large droplets, ranging mainly from 100µm up to 5 mm.

Model f1

Classic rapid mixing 0

Abramzon-Sirignano ṁp

mpB′

T

3Prτp
Nu

Miller, Harstad and Bellan β
eβ−1

Table 2.1: Different infinite conductivity droplet models used to simulate single
droplet vaporisation.
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(a) (b)

Figure 2.2: Temporal evolution of the droplet diameter squared and the droplet
temperature for decane. Experimental results from Wong and Lin. Reference con-
ditions are far field conditions at decane boiling temperature (Tb = 447.7K).

The smallest droplet range measured experimentally are the largest droplets com-
monly found in spray combustors. There are two reasons that explain the diameter
range chosen by experimentalists. First of all, small droplets vaporise faster than
large droplets, so the spatial resolution as well as the frequency of the high speed
camera used in the experiment needs to be high. Secondly, the droplets are usually
fixed using a small needle or cross-wire quartz fibres. When the droplets are small,
the relative disturbance of the positioning fibres will be larger. Micrometer size fi-
bres are needed to ensure that only small disturbances to the droplet deformation
and small heat transfer through the fibres occurs.

We start our comparison with the experimental data of Wong and Lin [179],
which was also used in the paper by Miller et al. [108]. Measurements of droplet
size and internal temperature distributions under conditions of relatively high
evaporation rate are available. Their experiments consist of a droplet of decane
with initial diameter dp(0) = 2.0 mm and liquid temperature Tp(0) = 315K placed
in a high temperature (T∞ = 1000K) convective environment with an initial Reynolds
number of Re(0) = 17. Multiple experiments were performed under identical con-
ditions. Only the position of the thermocouple was changed in order to obtain
spatial information of the internal liquid temperature. This allowed the experi-
mentalists to obtain the spatial as well as the temporal temperature distribution
inside the droplet. In the experimental results shown for droplet temperature, the
measured temperature at r/rp = 0.6 was taken.

Figure (2.2) shows a comparison between the experimental and numerical re-
sults for the diameter squared (2.2(a)) and temperature (2.2(b)). As a reference
temperature, the liquid boiling temperature was used to evaluate the thermody-
namic properties of the fuel vapour. The standard infinite conductivity model (also
called rapid mixing model) is still able to predict the correct diameter evolution,
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(a) (b)

Figure 2.3: Temporal evolution of the droplet diameter squared and the droplet
temperature for decane. Experimental results from Wong and Lin. Reference con-
ditions are far field conditions evaluated at the wet bulb temperature.

although it fails to obtain a correct heat balance, resulting in too fast heating of the
droplet. Furthermore, the rapid mixing model does not converge towards the liq-
uid boiling point as shown in Figure (2.2(b)) and the model needs to be augmented
by the condition Tp < Tboil. This behaviour for the rapid mixing model was also
found in [108].

The non-equilibrium Langmuir Knudsen model compares well with the exper-
imentally obtained results, but the Abramzon-Sirignano model overpredicts the
droplet diameter. The bad performance of the Abramzon-Sirignano model is due
to the fact that we have not taken average values of the thermodynamic properties
and we have not used the ’1/3’ law as proposed in the original model [1]. Both
models predict a temperature evolution towards the liquid boiling point and do
not need an auxiliary cut-off requirement.

These numerical results were obtained with the reference conditions of the gas
phase taken at the boiling temperature (Tboil = 447.7K) of decane and the gas
phase conditions occurring in the far field region of the droplet were taken. Since
the droplet temperature does not evolve towards the liquid boiling point Tboil but
towards the wet-bulb temperature Twb (which can be close to the boiling point
however, depending on the saturation conditions of the gas phase), it might be
better to use Twb as the temperature seen by the particle. The numerical results for
these simulations are shown in Figure (2.3).

The simulation results when the ′1/3′ rule is used for the temperature as well
as the mass fraction seen are shown in Figure (2.4). The thermodynamic proper-
ties are then evaluated using these reference conditions. A mixing rule is used to
determine the thermodynamic properties seen, e.g.

λ = YmλF + (1 − Ym)λg, (2.60)
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(a) (b)

Figure 2.4: Temporal evolution of the droplet diameter squared and the droplet
temperature for decane. Experimental results from Wong and Lin. Reference con-
ditions are ′1/3′ rule for mass fraction and temperature.

where subscript F indicates a property of the fuel vapour. These reference and
mixing conditions were used in the original paper of Abramzon and Sirignano [1].

The droplet diameter as well as the droplet temperature are predicted correctly
by the model of Abramzon and Sirignano and the Langmuir-Knudsen model. The
model of Abramzon and Sirignano also correctly predicts the nonlinear deviation
from the d2 law shown by the experimental results in (2.4(a)). During the first half
of the evaporation time, the Langmuir-Knudsen model underpredicts the droplet
diameter and the Abramzon-Sirignano model overpredicts the droplet diameter.
During the second part of the lifetime, the Langmuir Knudsen model predicts
a higher droplet diameter than the Abramzon-Sirignano model. These observa-
tions are directly related to the evolution of droplet temperature shown in Figure
(2.4(b)). Similar simulations were performed where equation (2.35) was used to
evaluate the viscosity instead of a mixture rule based on mass fraction. A remark
of Yuen and Chen [186] where they say that the far field gas density ρg should be
used to evaluate the Reynolds number was also tested. Both model changes led to
a slight increase in the droplet lifetime and no real improvements were observed.

The conclusion from this comparison is that the Langmuir-Knudsen law per-
forms the best when used with far field thermodynamic conditions, whereas the
model of Abramzon and Sirignano performs the best when used with the 1

3
-law.

The Langmuir-Knudsen model is also found to be the least sensitive to the choice
of reference conditions, which is a desirable property.

Since the spray flame simulations discussed later in this thesis in chapter 7
use methanol as liquid fuel, a single droplet simulation using methanol can be of
value. Law et al. [93] have done experiments on droplet vaporisation in humid
air at room temperature (T∞ = 298K) and with droplet diameters of dp(0) = 1.60
mm. No experimental data on methanol vaporisation at higher temperatures were
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(a) (b)

Figure 2.5: Temporal evolution of the droplet diameter squared and the droplet
temperature for methanol vaporisation in dry air. Experimental results from Law
et al.

found in the literature, but an abundance of data on burning methanol droplets is
available. The simulation of burning methanol droplets will be discussed in a later
section. Figure (2.5) shows the diameter squared and temperature evolution of
a 1.60 mm diameter methanol droplet vaporising in dry (zero water content) air
with temperature T∞ = 298 K. Because of the low gas temperature, the droplet
cools down due to evaporation. The temperature reaches a steady state value of
around 270 K. The numerical simulations slightly underpredict the steady state
temperature by 2 K for the rapid mixing and the Langmuir Knudsen model. The
model of Abramzon and Sirignano underpredicts the temperature by 5 K, which
is the reason that it shows a slightly slower vaporisation rate in figure (2.5(b)). The
diameter squared is almost linear in time, but because the droplet temperature is
slightly underpredicted by all three models, the droplet evaporates a little too slow
and the droplet diameter is slightly overpredicted. This is in agreement with the
numerical results from Law et al. , although our approach is less complex than the
method discussed in [93], where gas and liquid phase are spatially resolved.

2.7 Finite conductivity models

In the previous section infinite conductivity models were discussed. The droplet
was considered to be a point, and its thermodynamic properties were only depen-
dent on time, i.e. Tp(t). The emphasis was on the model description in the gas
phase. In this section, we will discuss finite conductivity models, where the liquid
phase is described in more detail. Thermodynamic properties are spatially vary-
ing and are not considered to be uniform throughout the droplet anymore, i.e. we
consider Tp(t, r).
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2.7.1 Conduction limit model

In this section, the conduction limit model describing the internal temperature dis-
tribution of a liquid droplet will be discussed for a single isolated droplet [91]. The
heat diffusion equation describing the temperature T (r, t) of a spherically symmet-
ric liquid droplet is given by [150]:

∂Tl

∂t
= αl

(
∂2Tl

∂r2
+

2

r

∂Tl

∂r

)
, (2.61)

which is the temperature equation (2.5) with αl = λl

ρlCpl

and vl ≈ 0. The zero-

dimensional infinite conductivity model is obtained by letting αl → ∞. The sym-
metry condition at r=0 is given by

∂T

∂r

∣∣∣∣
r=0

= 0, (2.62)

and the initial droplet temperature is assumed to be uniform:

T (r, 0) = T0. (2.63)

The boundary condition at the droplet surface is more complicated, but can be
found to be [150]:

∂Tl

∂r

∣∣∣∣
I

=
λg

λl

∂T

∂r I
− ṁpL

4πr2
pλl

=
λg

λl

Nu

2

Ts − Tp + νQYO∞

Cpg

rp
− ṁpL

4πr2
pλl

(2.64)

2.7.2 Effective conductivity model

The heat transfer in a liquid droplet is usually not only governed by conduction
but also by convection (see Figure (2.6(a))). Internal circulation caused by surface
friction plays can play an important role in droplet vaporisation [149]. Taking con-
vection into account means solving two-dimensional differential equations (usu-
ally the vorticity-stream function equations [14, 52]), and to avoid this we instead
modify the thermal conductivity and use an effective conductivity derived from
detailed numerical results. The thermal diffusivity is now replaced by an effective
thermal diffusivity αeff = χαl [1, 150], with

χ = 1.86 + 0.86 tanh(2.225 log(Pel/30)), (2.65)
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Figure 2.6: Sketch of a liquid droplet with internal circulation (2.6(a)) and numer-
ical results of the temperature Tl(t, r) inside a decane droplet obtained with the
effective conductivity model.

with the liquid Peclet number defined as :

Pel =
2UmaxrpρlCp,l

λl

,

Umax =
1

6π

µg

µl
CFRep |Us −Up|

CF =
12.69Re−2/3

p

1 +BM

(2.66)

The effective conductivity model will correct for internal circulation in the sense
that internal circulation will speed up the internal droplet heating through convec-
tion. By assuming faster conduction, this faster heating is mimicked.

2.7.3 Non-dimensional form

When using the conduction limit model or the effective conductivity model, the
heat diffusion equation describing the internal droplet temperature, eq. (2.61),
has to be solved numerically. After each time step, an amount of liquid fuel has
been vaporised and the droplet diameter decreases. The surface regression of the
droplet complicates the numerical calculations, since discrete points near the liq-
uid/gas boundary can be located outside the new computational domain at the
next timestep. To overcome this problem and the need for interpolation, it is best
to perform a transformation of coordinates and rewrite the heat conduction equa-
tion in non-dimensional form [150]. The heat conduction equation can be cast into
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a non-dimensional form to obtain a fixed boundary problem as follows. We define:

ξ =
r

rp(t)
, τ =

αlt

r2
p(0)

, rs(τ) =
rp(t)

rp(0)

z =
Tl(t, r) − Tl(0, r)

Tl(0, r)
, β =

1

2

dr2
s

dτ
, (2.67)

with Tl(0, r) the initial (uniform) temperature of the liquid, ξ is the normalised
radius, τ is the transformed time, rs is the ratio of droplet diameter with respect to
the initial droplet diameter, z is the nondimensionalised temperature and β is the
d2 rate of change with time τ . We can now write the heat diffusion equation as:

r2
s

∂z

∂τ
− βξ

∂z

∂ξ
=
χ

ξ2

∂

∂ξ
(ξ2∂z

∂ξ
) (2.68)

The boundary equation transforms to:

∂z

∂ξ
(1, τ) =

λg

λl

T∞ − Ts

2Tl,0

Nu − ṁpL

4πrpλlTl,0

. (2.69)

Equation (2.69) can now easily be solved by the Crank-Nicolson method, which
is an implicit method with second order accuracy in space and time and uncon-
ditionally stable. These qualities make it the preferred method for solving heat
equations 1.

The numerical results for the internal droplet temperature for the conditions of
the experiment of Wong and Lin are shown in Figure (2.6(b)).

The liquid temperature Tl(t, r) at four moments in time is shown. The cen-
tre of the droplet is always the coldest, but the temperature difference between
the droplet centre and the droplet interface decreases. The effect of finite conduc-
tivity is therefore mainly important in the transient heating phase. Note that in
a real droplet, due to the internal vortex structure, the minimum temperature is
not in the centre of the droplet. The effective conductivity model is therefore not
qualitatively correct in the sense that it cannot predict an off-centre temperature
minimum [1].

Numerical results for the classical rapid mixing infinite conductivity model,
the conduction limit model and the effective conductivity model, together with
the experimental results from Wong and Lin [179] are shown in figure (2.7). The
thermodynamic properties of the gas phase are all evaluated at the interface tem-
perature Tp. The number of internal gridpoints was set to N = 20, which was
sufficient to guarantee a grid-independent solution.

The effect of taking into account the finiteness of the conductivity is very large.
The droplet diameter is now severely overpredicted by the conduction limit model.
Forced convection creates internal circulation in the droplet, and the correction to

1exact solutions also exist. See for instance [143].



2.8. Burning droplet modelling 27

(a) (b)

Figure 2.7: Temporal evolution of the droplet diameter squared and the droplet
temperature for decane. Experimental results from Wong and Lin (1992).

the conductivity implemented in the effective conductivity model improves the
predictions. The effective conductivity model predicts a slightly higher tempera-
ture at the start of the vaporisation process, and the droplet diameter is slightly
underpredicted.

From this analysis the following conclusions can be drawn. Resolving the in-
ternal droplet temperature does not systematically improve the predictions of the
droplet diameter evolution or the temperature evolution. The extra computational
effort of solving the conduction equation (2.61) is much higher than for the infinite
conductivity model. Although there are cases where the internal droplet temper-
ature distribution can be important (large droplets with low conductivity in a low
temperature environment), for spray flame simulations the infinite conductivity
models will suffice.

2.8 Burning droplet modelling

In turbulent spray flames two limit cases of droplet burning can be distinguished.
In the first case the droplet vaporises in a hot (burning) environment. The fuel
vapour mixing with the environment is fast and no local flame structures influ-
ence the droplet vaporisation process. In the other limit, the fuel vapour diffusing
from the droplet forms a diffusion flame surrounding the droplet and a local flame
structure will influence the droplet burning characteristics. Although the case of
single droplet burning will not frequently happen in turbulent spray flames, local
flame structures can appear that partially surround a single droplet or a droplet
cluster. It is for this reason that single droplet burning behaviour is more than an
academic test case.

We assume in our droplet-burning analysis that the fuel and oxygen depletion
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are related in stoichiometric proportions (see also Kuo [85] or Williams [178]):

ω̇F = ω̇O

(
F

O

)

st

ω̇Fhr,F = ω̇Ohr,F

(
F

O

)

st

= −Q̇, (2.70)

where
(

F
O

)
st

is the stoichiometric fuel to oxidiser mass ratio. The spalding mass
transfer number for combustion becomes:
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and the Spalding heat transfer number becomes:

BO,T =
Cpg(T∞ − Ts) + (YO∞

− YOs
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For a general hydrocarbon fuel F, the heat of reaction (heat of combustion) hr,F

can be determined using the formation enthalpies for the stoichiometric reaction
ν

′

1F + ν
′

2O2 → ν
′′

1CO2 + ν
′′

2H2O.
Many experiments on single droplet combustion can be found in the litera-

ture, most of them performed under zero-gravity conditions [41, 97, 182] to avoid
natural convection (gravity) effects. We will discuss here simulation results un-
der conditions similar to the experimental conditions described in Xu et al. [182],
who describes experiments on n-decane droplets at gaseous temperatures between
T = 298K and T = 1093K. Detailed numerical simulations have been performed
by Cuoci et al. [34]. A droplet can be ignited by using a spark ignition when
the gas temperature is low, or by auto-ignition in a hot temperature field where
Tg > Tp,ignition. The choice of reference temperature is now important, because
in the auto-ignition and in the spark-ignited cases the droplet will see different
temperature fields. When using the standard 1

3
-rule, the flame temperature is not

taken into account. In the case of spark ignition, the far field temperature is low,
T∞ = 298K and the droplet will see a low temperature. After ignition, a flame will
develop surrounding the liquid particle, as depicted in Figure (2.1). The effects of
the presence of a flame, located at a certain flame standoff distance rf , needs to
be taken into account. The flame standoff distance rf/rp can be calculated using
[178]:

rf

rp
=

ln (1 +BM)

ln (1 + νF WF

νOWO
YF,∞)

, (2.73)
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(a) (b)

Figure 2.8: d2(t) of n-decane droplets for different initial diameters during (2.8(a))
auto ignition (T∞ = 1093K) and (2.8(b)) spark ignition (T∞ = 298K). Dots: Ex-
perimental results from [182]. Lines: simulation using 1/3 rule. Dotted lines in
(2.8(b)): simulation using wet-bulb temperature.

although other estimations can be found in the literature, e.g. [166]. For spark
ignition, the flame standoff distance is smaller compared to the auto-ignition case,
and the temperature gradient between the droplet and the flame will be larger. In
other words, the near-field temperature will be larger and the droplet sees a larger
temperature. The thermodynamic properties should be evaluated at the wet-bulb
temperature. In the case of autoignition, the flame standoff distance will be larger.
The integral effect of the surrounding temperature field will be larger and the ther-
modynamic properties can best be evaluated with a ′1/3′ averaging rule. The effect
of this modification of the temperature at which droplet properties are evaluated
is demonstrated in Figure (2.8). The numerical simulations were performed using
the Langmuir-Knudsen model and the ′1/3′ rule was used to determine the satura-
tion mass fraction and thermodynamic properties. The importance of the choice of
temperature seen is illustrated in figure (2.8(b)). Using the ′1/3′ rule for the spark
ignited case leads to severe overprediction of the vaporisation rate, resulting in
an underestimation of the droplet life time. Simulations using the wet-bulb tem-
perature now perform much better. These simulations illustrate that information
about the spatial structure of the flame can be of importance. In zero-dimensional
single droplet calculations, this information is compressed into a single property:
the temperature at which the thermodynamic properties should be evaluated.

The method proposed by Ulzama and Specht [166], where diffusion of fuel
vapour between the droplet and the flame is assumed to be in a quasi-steady state
and the diffusion of oxygen is assumed to be in an unsteady state, might improve
the burning rate predictions. In turbulent flows however, the spherically symmet-
ric nature of the diffusion flame will be lost and more detailed simulations are
needed to correctly predict the burning rate [157].
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2.8.1 Methanol combustion

Several single droplet experiments as well as spray experiments were performed
using methanol as liquid fuel. The advantage of using methanol in experiments
and numerical simulations is that its chemistry is simpler than that of heavier fuels
like kerosene or gasoline, and that there is almost no soot formation. A disadvan-
tage of using methanol as a liquid fuel is that it absorbs water from the environ-
ment. Since water is an important byproduct of methanol combustion, a methanol
droplet will tend to absorb the water formed by its own combustion. Water ab-
sorption during evaporation has been investigated by Law et al. [93], and water
absorption during combustion by Marchese and Dwyer [97], using the experimen-
tal results of Cho et al. [25]. They find that the liquid Peclet number:

Pel =
1

8

∣∣∣d(d2
p)

dt

∣∣∣
ID l

, (2.74)

with ID l the liquid diffusivity, is the governing parameter that determines the rate
of absorption: A low Peclet number will lead to more and faster water absorption
than a high Peclet number. Zhang and Williams [187] found that the Lewis number
of water is a governing parameter and for Lewis numbers close to unity, the water
absorption rate is maximised. Experiments with large (dp(0) > 1000µm) methanol
droplets combusting in a water containing environment show that extinction can
occur long before the droplet has completely evaporated, due to the high water
mass fraction in the droplet. However, experiments [188] show that the water mass
fraction absorbed by methanol droplets drops to zero very fast for droplets with an
initial diameter smaller than dp(0) = 1000µm. This suggests that water absorption
is less important for the small droplets found in spray flames, which are typically
smaller than dp(0) = 100µm. The effect of water absorption is therefore neglected
in this work.

Figure (2.9) shows the results of a numerical simulation of a burning methanol
droplet and a comparison with the experimental data of Cho et al. [25]. The initial
droplet diameter was dp(0) = 1000µm and the temperature of the air T∞ = 298K.
The numerical results where the boiling point of the liquid was taken as the ref-
erence temperature compares most favourably with the experimental data. The
temperature evolution shows that there is no balance between heating and evapo-
ration. The temperature quickly rises to the liquid boiling point and is then fixed
at Tp(t) = Tboil.
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Figure 2.9: Droplet diameter squared and temperature evolution for a 1000µm di-
ameter burning methanol droplet in air at 1 atm and T∞ = 298K. Classic rapid
mixing model with three different reference temperatures for evaluating physical
properties.



32 Chapter 2. Isolated and interacting fuel droplet vaporisation and combustion

2.9 Vaporisation modulation of interacting droplets

The equation for the droplet vaporisation rate (2.44) was derived under the as-
sumption that the droplet is an isolated droplet vaporising and burning in a one-
dimensional gaseous environment (thermodynamic properties are a function of
the distance to the centre of the droplet). This allowed us to explicitly evaluate the
integral in eq. (2.25). But when the temperature and mass fraction fields are dis-
turbed by the presence of other vaporising droplets, this integral expression cannot
be easily evaluated. In spray combustion devices where the spray can be consid-
ered dilute, the isolated droplet vaporisation rate is still a reasonable assumption
when the mean interdroplet spacing l

dp
is large, say l

dp
> 10. However, when the

interdroplet spacing is small, vaporisation modulation will occur due to droplet-
droplet interaction. This is similar to hydrodynamic interaction between particles
where the assumption of isolated particles in an undisturbed one-dimensional
flowfield is also violated. Interactive problems are dealt with primarily by four
methods:

1. Bispherical coordinates, suitable for two drop arrays;

2. The method of images, suitable for small arrays of less than 20 drops;

3. The point source method, suitable for arrays of up to 1000 droplets;

4. The continuum method, suitable for clouds;

The vaporisation modulation of two interacting vaporising droplets is the first
step towards understanding the interaction of a group of droplets. The interaction
between two burning droplets has been investigated analytically by Umemura et
al. [168, 169] and by Labowski [86]. Umemura introduces bipolar coordinates

σ =
c sin η

cosh ξ − cos η
, z =

c sinh ξ

cosh ξ − cos η
,−∞ < ξ <∞, 0 < η < π, (2.75)

and assumes that the mass flux can be derived from a scalar potential φ:

ρvi =
∂φ

∂xi
, (2.76)

and φ must satisfy the Laplace condition ∂2φ
∂x2

i

= 0. In the end, Umemura finds that

the vaporisation modulation of either of the two droplets can be written as

dmp

dt
= C

dmp

dt

∣∣∣∣
0

, (2.77)

with the modulation factor

C = sinh(ξ⋆)

∞∑

n=0

(1 − tanh(n +
1

2
)ξ⋆), (2.78)
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Type of array modulation

triangular (2D) g = rp(φs−φ∞)

1+2
rp
l

tetrahedral (3D) g = rp(φs−φ∞)

1+3
rp
l

square (2D) g = rp(φs−φ∞)

1+(2+ 1
2

√
2)

rp
l

cubical (3D) g = rp(φs−φ∞)

1+(3+ 3
2

√
2+ 1

3

√
3)

rp
l

Table 2.2: Modulation factor g for different geometries according to the analysis of
Marberry et al. .

where ξ⋆ is the position of the droplet surface in the coordinate system (ξ, η). The
analytical results show that the vaporisation of each of the droplets decreases from
dmp

dt
= dmp

dt

∣∣∣
0

for large separation distances to approximately dmp

dt
= 0.7 dmp

dt

∣∣∣
0

for

two vaporising droplets touching each other.
Labowski [86] uses the method of imaging to obtain similar conclusions for

modest groups of droplets (N = 9).
Marberry et al. [87, 96] uses a method closely resembling panel methods to

solve the potential field around geometrically arranged droplet arrays. In this
study, they obtain approximate vaporisation modulations of the form

dmp

dt
=
dmp

dt
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0

grp
3(φs − φ∞)

N∑

i=1

e1,i

r1,i
, (2.79)

with

e1,i = |x1 − xi| + |y1 − yi| + |z1 − zi| , (2.80)

r2
1,i = (x1 − xi)

2 + (y1 − yi)
2 + (z1 − zi)

2, (2.81)

and

e1,1 = 3rp, r1,1 = rp. (2.82)

The expression of the vaporisation modulation g for some configurations are
given in table (2.2).

The vaporisation modulation for a particle pair could not be described by equa-
tion (2.79) but is given by:

dmp

dt
=
dmp

dt

∣∣∣∣
0

[
C1

rp,1
+

C2

6rp,1
(

1

(P1 − 1)2
+

1

(P1 + 1)2
+

4

(P 2
1 + 1)

3
2

)

]
, (2.83)

with

C1 = rp,1

P1 − rp,2

rp,1

P1 − 1
P2

, C2 = rp,2

P2 − rp,1

rp,2

P2 − 1
P1

. (2.84)
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and P1 = l
rp,1

and P2 = l
rp,2

.

More recently, Imaoka and Sirignano [70, 71] have developed a method which
is also based on the solution of the Laplace equation for the mass flux. Simulations
for droplet arrays of up to 1000 droplets in several configurations indicate that
the vaporisation rate of symmetric droplet arrays with monosized droplets and
uniform spacing correlates well with a similarity parameter ξ given by

ξ =
l

rp

1

N0.72
p

(2.85)

The array vaporisation rate

η =
dmp

dt

dmp

dt

∣∣∣
0

(2.86)

can be described in terms of the similarity parameter ξ and was found to be

η = 1 − 1

1 + 0.725671ξ0.91716
(2.87)

An interesting result from their studies is that the vaporisation rate of a droplet
array is maximised at a specific droplet number density. This is in correspondence
with the group combustion theory that will be discussed in the next section.

2.9.1 Comparison with experimental data for a pair of droplets

Since the droplet pair interaction models all predict approximately the same va-
porisation rates, only the predictions using Marberry’s correlations will be given
here. Figure (2.10) shows the experimentally measured values of diameter squared
in time for a burning pair of methanol droplets at different separation distances
[119]. The initial droplet size was 900µm and the gas phase conditions for the
experiments shown here are air at one atmosphere ambient pressure and room
temperature.

The experimental data show an almost linear decrease of the diameter squared
over the entire droplet lifetime, except near the end of the burning period, where
extinction (possibly due to water absorption) occurs. The experimental data for
the isolated droplet case matches well with the numerical solution, where as a ref-
erence temperature a ’1/3’ rule was used with the flame temperature instead of the
ambient temperature: Tav = Tp + 1

3
(Tflame − Tp). As a reference fuel mass fraction

the classical ’1/3’ law was used and thermodynamic properties were evaluated
using a mixture of fuel and air at these reference conditions. It is immediately
clear from Figure (2.10) that the correction factor for the droplet pair vaporisa-
tion is too small to capture the large vaporisation modulation that occurred in the
experiments. Even the theoretical correction factor of 0.69 from Marberry for two
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Figure 2.10: Droplet diameter squared as a function of time for a burning droplet
pair at different separation distances. Experiments are from Okai et al. [119]. Figure
(2.10(a)) shows the correction of Marberry et al. , Figure (2.10(b)) shows the actual
slopes of r2

p(t).

touching droplets is not enough to capture the vaporisation rate of the droplet pair,
even when they are almost five droplet diameters apart. Other processes that were
not taken into account in the analysis of Marberry play a role here. The unsteady-
ness of the near field region might be of importance [124, 166]. The experimental
results in Mikami et al. [107] were also compared with the quasi steady theory, but
they found that the liquid phase unsteadyness plays an important role. Reason-
ably matching results were obtained for droplet pairs with not too small separation
distances for the experimental results of Miyasaka et al. [111] and Xiong et al. [181].

2.10 Combustion of droplet clouds

When the interdroplet spacing of droplets in a droplet cloud or spray becomes
smaller and smaller, droplets will start to interact with each other. For droplet
coalescence and droplet breakup, the droplets actually have to touch each other.
A burning droplet on the other hand can influence other droplets over large dis-
tances due to the heating of the surrounding gas, the presence of combustion prod-
ucts and the presence of a flame zone located at several droplet diameters from
the droplet centre. Chiu and others [22, 23, 30, 190] have developed group com-
bustion models where a spherically symmetric droplet cloud of radius rc is com-
pletely or partially surrounded by a diffusion flame at radius rf . When rf < rc, all
droplets located outside the flame burn individually, whereas all droplets located
at r < rf share the diffusion flame at rf . In the limit where the cloud radius goes to
the droplet radius, the group combustion model reduces to a single droplet burn-
ing model where all droplet in the cloud burn individually. The group combus-
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Figure 2.11: The four combustion modes defined by Chiu [22].

tion model knows 4 different burning modes depending on the group combustion
number G, defined here as2

G =
3

4
LeShN

2
3
p
dp

l
, (2.88)

where Le is the Lewis number, Sh the Sherwood number, Np the total number of
droplets in the cloud and l the mean droplet separation distance.

A graphical representation of the burning modes is shown in Figure (2.11(a)).
In single droplet combustion all droplets burn individually with a surrounding
flame. The group combustion number G is much smaller than one in this case.
When the group combustion number increases to unity, a flame sheet enclosing
a group of droplets will appear in the centre of the cloud. All droplets in the
interior vaporise and all droplets in the exterior burn individually. This is called
internal group combustion. When the group combustion number increases even
more, the flame sheet will eventually reach the boundary of the droplet cloud and
a flame stand off distance between the vaporising droplet cloud and the flame
sheet appears, which is known as external group combustion. When the flame
standoff distance increases, the droplets near the centre of the cloud will not be
heated enough to evaporate. This combustion mode where a non-vaporising inner
core exists is called external sheet combustion. As this core grows larger, less fuel
vapour will enter the gas phase and at a certain point, not enough fuel will enter
the gas phase to sustain a stable flame and extinction will occur.

The hypothesis is made that the same equations used to calculate the vaporisa-
tion and burning of a single droplet can be used for the vaporisation and burning

2Other definitions can be found in the literature, e.g. in [23].
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δif 1 i = O
−1 i = F

δf 1 r ≤ Rc

0 r ≥ Rc

r = 0 u = 0,
∂αj

∂r
= 0 symmetry conditions

r = Rc α|R+
c

= α|R−

c
∂α
∂r

∣∣
R+

c
= ∂α

∂r

∣∣
R−

c
continuity conditions

r = ∞ αj = α∞
t = t0 = 0 ρ = ρ(r), αj(r) = αj , u = 0, rl = rl(t0) initial conditions

of a spherically symmetric droplet cloud of radius Rc containing n droplets:

∂ρg

∂t
+

1

r

∂ρr2u

∂r
= n

dmp

dt
δ̇s (2.89)

∂ρgYi

∂t
+ ρgv

∂Yi

∂r
− 1

r2

∂

∂r
(r2ρgIDg

∂Yi

∂r
) = n

dmp

dt
δif + ω̇iδf (2.90)

∂ρgTg

∂t
+ ρgvCpg

∂Tg

∂r
− 1

r2

∂

∂r
(r2λg

∂Tg

∂r
) = −ndmp

dt
L+ ω̇T δf (2.91)

(2.92)

with boundary conditions given in Table (2.10) and the definition of δif , δf
given in Table (2.10). After making these equations non-dimensional by introduc-

ing the dimensionless variables αi = Yi

Wiνi
, αT =

Cpg (Ts−Tp)

q
, v = v/vc and η = r

Rc
, we

get the result:

dρgIDg
vRb

vcRc

dη
= n

dmp

dt

IDgRb

vcRc

(2.93)

ρgIDgv
Rb

Rc

dαi

dη
− d

dη
(η2

IDρgIDg
dαi

dη
) =

1

Wiνi
(IDG

rp
rp0

ln(1 +Bf )δifδs

+ ω̇iδf) (2.94)

ρgIDgv
dαT

dη
− d

dη
(η2

ID
λ

cp

dαT

dη
) = IDG

rp
rp0

L

q
ln(1 +Bf )δs + ω̇T δf (2.95)

with ID = IDg

Rcvc
and the group combustion number

G =
2πrl0λgηShR2

b

ρgIDgCpg

(2.96)

Chiu and Liu among others [23] report that the group burning rate of a cloud of
droplets with large group combustion number G (such that we are in the exter-
nal group combustion regime) is similar to the burning rate of a single droplet
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Figure 2.12: Typical shape of a pair distribution function (solid line). The dashed
line represents the underlying single droplet factor.

with a radius equal to the cloud radius rc. It is difficult however to extend these
analyses to spray combustion phenomena, where the cloud radius is not defined
anymore. Chiu [18] tried to extend first the analysis of the vaporisation rate of a
single isolated droplet in a diffusion controlled gaseous environment to that of a
general flow governed by the complete Navier-Stokes equations using renormal-
isation theory [17, 18, 20, 21]. This leads however to an extremely complicated
volume integration over the space where the droplet resides and it requires de-
tailed knowledge about the exact state of the surrounding gas phase. It is there-
fore mainly suited for studies in Direct Numerical Simulations. The model how-
ever reduces to the rapid mixing law (2.32) in the limit of a spherically symmetric
stationary droplet in a uniform environment, which is convenient when droplet
clouds are being studied.

For the determination of the vaporisation rate as well as the aerodynamic drag
of a droplet in a droplet cloud, a similar approach is used [19, 24]. In this ap-
proach, Chiu assumes that the droplet under consideration only cares about the
droplets located in the direct vicinity of this droplet. The far field region is seen as
a continuum where the exact location of droplets is not important anymore. The
droplets in the near-field region are assumed to be distributed according to a pair
distribution function g (also known as the pair correlation function in statistical
physics [158]), which is the joint probability density of finding the test droplet and
a neighboring droplet (in the near field region) at a particular separation distance.
In general, for g we have that

g(r) ≥ 0 lim
r→∞

g(r) = 1. (2.97)

Figure (2.12) shows a pair distribution typical for random distributions of spherical
particles. The vaporisation modulation of a droplet in a dispersed two-phase flow



2.10. Combustion of droplet clouds 39

can be written as [24]:

dmp

dt
=

dmp

dt

∣∣∣
0

1 + (4π rl

1− rl
rts

)
∫ rts

rl

dr
r2

∫
V
ngµg(1 + αT

αT +γ
)dV

(2.98)

where dmp

dt

∣∣∣
0

is the vaporisation rate of an isolated droplet, determined according

to the analysis of Chiu, or by using the Godsave-Spalding (classic rapid mixing)
law (2.28). The results of numerical simulations of Chiu show that:

1. Vaporisation rate decreases with decreasing separation distance

2. For higher temperatures, interaction effects will be smaller

3. For higher Reynolds numbers, interaction effects will be weaker 3. The ef-
fects of temperature on the vaporisation rate is less pronounced for higher
Reynolds numbers

4. Droplet drag decreases with decreasing separation distance

5. The effect of temperature on the drag is negligible for all but the smallest
separation distances

From the analysis and numerical results of Chiu we may conclude that in spray
flames, where the temperature and Reynolds number is high, the vaporisation
corrections to the isolated mass vaporisation rate may be small.

A different analysis of spray flames was proposed by Borghi [11]. Borghi pro-
poses a categorisation that includes the characteristic flame time τf , a flame thick-
ness δf and an evaporation delay time τv , analogous to the ’Borghi’ diagram for
turbulent premixed gas flames. When τV ≪ τf the droplets vaporise before they
reach the reaction zone and a premixed flame develops. If the characteristic flame
length is larger than the droplet separation distance l, droplets are immersed into
the reaction zone, leading to a thick flame zone. Other regions can be identified de-
pending on the ratio of the droplet separation distance over the characteristic flame
length. If this ratio is small, flames between droplets will be suppressed due to the
high fuel/oxygen ratio. This is similar to the external group combustion regime
of Chiu. As this ratio increases, flames may be formed between droplet groups
and percolation occurs. Eventually, pockets of droplets with surrounding flames
may be formed. This is similar to internal group combustion, where only part of
the droplets have a shared diffusion flame. Réveillon and Vervisch [135] propose a
slightly more complex categorisation than Borghi, based on direct numerical sim-
ulations of laminar and weakly turbulent spray flames. In their analysis, the liquid

3This is not apparent in the figures shown in [24], but the Re dependence is clear in the correction
factors given in the paper.
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Figure 2.13: The Borghi diagram for gas flames and spray flames.

fuel over air mass ratio is taken into account. Other studies of droplet arrays or
droplet groups can be found in the literature, e.g. [5, 6, 7, 40, 115, 139, 144, 165]
and [3, 167] and the references therein.
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2.11 Conclusions

In this chapter the performance of several droplet vaporisation models was in-
vestigated under different circumstances. First, some isolated droplet vaporisa-
tion models were investigated. The main conclusion from this analysis is that all
droplet vaporisation models studied here are very sensitive to the way the thermo-
dynamic properties are evaluated, and that there is a preferred evaluation method
for each of the models: the classical rapid mixing model tends to predict too fast
vaporisation and the thermodynamic properties are best evaluated at the wet-bulb
temperature. The model of Abramzon and Sirignano was tuned to perform opti-
mally using the ’1/3’ law and the Langmuir-Knudsen model of Miller et al. per-
forms the best when the thermodynamic properties are evaluated at the boiling
temperature of the liquid. When the evolution of droplet temperature as well as
droplet diameter are considered, it seems that the model of Abramzon and Sirig-
nano performs marginally better than the model of Miller. The classic rapid mixing
model always fails to predict a correct temperature evolution.

Resolving the internal droplet temperature increases the computational time
significantly because a differential equation needs to be solved for the liquid tem-
perature. However, this does not lead to better predictions of the droplet diameter
or the droplet temperature for the case investigated here.

When burning droplets are considered, it is much more difficult to correctly
predict the diameter evolution of the droplet because the surrounding temperature
field increases in complexity. The droplet diameter could not be predicted correctly
for both the auto-ignited and the spark-ignited droplet using the same method.
This interesting observation certainly deserves more attention in future work on
the development of single droplet burning models.

The interaction of two or more vaporising and burning droplets has been a
research topic for some decades. In the past, a good correspondence was found
between experimental data and numerical predictions of the droplet evolution of
a burning droplet pair. However, the numerical predictions of droplet diameter
evolution of a burning droplet pair did not correspond with the experimental re-
sults presented in this chapter. The vaporisation rate for the burning droplet pair
was found to be much smaller (the droplet interaction was stronger) than the nu-
merical results predicted.

In the last section of this chapter different concepts of droplet group combus-
tion were presented. The main difficulty according to the analysis of Chiu is that
for each droplet the volume integration of the temperature field surrounding the
droplets is needed to evaluate the vaporisation rate in a spray flame. The analysis
of Borghi and also of Réveillon and Vervisch shows that in spray flames, different
regions exist where the flame structure is fundamentally different and therefore
the droplet vaporisation rate also differs in each region.
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CHAPTER 3

Turbulence modelling in dispersed two-phase flows: I

Second Moment Closure modelling in momentum and scalar
transport

A modified Reynolds stress turbulence model for the pressure rate of strain

tensor Πij can be derived for dispersed two-phase flows taking into account

two way coupling between the continuous phase and the dispersed phase.

The transport equations for the Reynolds stresses as well as the equation for

the fluctuating pressure can be derived starting from the multiphase Navier

Stokes equations. The unknown pressure rate of strain correlation in the Reynolds

stress equations is then modelled by considering the multiphase equation for

the fluctuating pressure. This leads to a multiphase pressure rate of strain

model. The extra particle interaction source terms occurring in the model for

the pressure rate of strain can be constructed easily, with no noticeable extra

computational cost. The modified turbulence model for Πij predicts a faster

return to isotropy in dispersed two phase flows. Lagrangian mixing models,

which are related to the transport equation for the scalar dissipation rate, are

shown to be affected by the mass transfer between the phases through the

model for the scalar dissipation rate. The often used algebraic gradient dif-

fusion models for the Reynolds stress, the triple correlations as well as the

Reynolds flux are extended to multiphase flows.

3.1 Introduction

Second moment closures (SMC) have become a standard method of solving turbu-
lence problems. The starting point are the Eulerian Navier Stokes equations which
are decomposed into a mean and a fluctuating part using the (Reynolds) decom-

position U = 〈U〉 + u′ and p = 〈p〉 + p′. The Reynolds stresses ũ′′i u
′′
j then appear as

unknowns in the transport equation for momentum. These Reynolds stresses are
then obtained by solving a transport equation for them.

The modelling of the pressure rate of strain term appearing in the transport
equations for the Reynolds stresses has been given the most attention over the
years [26, 90, 95, 116, 138, 155], but also algebraic closures of the second and third
order correlations have been developed [35, 64, 129].

The modeled Reynolds stress equation can also be obtained by starting with the
Navier Stokes equations in Lagrangian form and using a Reynolds decomposition.
The Lagrangian evolution can then be modeled using a Langevin equation for the

43
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velocity Ui of a computational gas particle [127] dUi = Gij(Uj − Ũj)dt+BijdWj(t),
where models for the drift tensor Gij and diffusion tensor Bij need to be found.
Equations for the mean momentum, the Reynolds stresses, turbulence dissipation
et cetera can then be derived from this stochastic Lagrangian model [65, 127, 128,
129, 130]. Both approaches lead to an almost identical form of the Reynolds stress
equation. The relationship between these two approaches for single phase flows
was investigated in [129]. This will be treated in detail in chapter 4. First, in this
chapter, the Eulerian SMC modelling approach will be treated.

When considering multiphase flows, additional source terms appear in the
Navier Stokes equations [42, 76, 117]. There can be momentum exchange, mass
transfer due to vaporisation or condensation, heat transfer or, more general, trans-
fer of a scalar through the interface between the phases. These effects also show
up in the Reynolds stress equations leading to new closure problems compared
to the case of single phase flow. In particular, the closure of the pressure rate of
strain has to be reconsidered. Simulation results of a polydispersed particle laden
jet where the modification of the (Eulerian) model for the pressure rate of strain
has been investigated numerically were already reported in [4].

In section 3.2, the instantaneous transport equations describing a two-phase
flow are presented and in section 3.3 the mean transport equations are derived.
In section 3.4, the Reynolds stress transport equation is introduced to close the
mean momentum equation, and model closures are presented. In section 3.5, the
modelling of the pressure rate of strain, occurring in the transport equation for the
Reynolds stresses, is described and an extension to multiphase flow turbulence
is proposed. In section 3.6, the modelling of scalar transport is presented and a
transport equation for the scalar dissipation rate (used in a later chapter in the
model for Lagrangian mixing) is derived. We end with some general remarks and
conclusions in section 3.7.

3.2 Instantaneous equations

Our starting point is the multiphase Navier Stokes equation derived previously by
Drew [42] and Kataoka [76] and more recently revisited by Naud [117]. We will
consider here dispersed two phase flows, where the continuous phase is a gaseous
phase and the dispersed phase is assumed to be present in the form of liquid par-
ticles (droplets) or solid particles. In a conservative formulation the properties of
a continuous phase, namely the instantaneous velocity Uf = Uf,i and the pres-
sure field p, together with a transported scalar φ, are given by the solution of the
transport equations:

∂

∂t
(ρX ) +

∂

∂xj

(ρUjX ) = S(I)
m , (3.1)
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∂

∂t
(ρUiX ) +

∂

∂xj
(ρUiUjX )=−∂ (pX )

∂xi
+
∂ (τijX )

∂xj

+(ρX ) gi + S(I)
Ui

+ UI,iS(I)
m , (3.2)

∂

∂t
(ρφX ) +

∂

∂xj
(ρφUjX ) =− ∂

∂xj
(JjX ) + (ρX )S

+S(I)
φ + φIS(I)

m , (3.3)

where ρ is the density of the carrier fluid and gi is the gravity vector. X (x, t) is
the indicator function of the continuous phase: equal to one when the continuous
phase is present at (x, t) and equal to zero otherwise.

Any continuous phase property Q is a priori only defined when X = 1. Thus,
rather than discontinuous fields Q, we will consider the associated generalised
functions [117]

QX . (3.4)

S(I)
Ui

is the two-way coupling source term: the source of momentum due to

stress at the interface (surface forces). The source term S(I)
φ is the two way coupling

source term due to the scalar flux at the interface and S is the source term due
to chemical reactions in the carrier fluid. Finally, S(I)

m is the source term taking
into account mass transfer from the dispersed phase to the carrier phase due to
evaporation. In the momentum equation, it is premultiplied by the fluid velocity
at the interface: UI,i. The vaporised mass is assumed to enter the gas phase with
the instantaneous particle velocity Up,i, and therefore UI,i = Up,i. In the scalar
equation, the source term for mass transfer is premultiplied by the scalar value
at the interface φI . The value of φI is in general determined by thermodynamic
equilibrium. The Newtonian stress tensor τij in the continuous phase reads:

τijX = µX
[(

∂UiX
∂xj

+
∂UjX
∂xi

)
− 2

3

∂UkX
∂xk

δij

]
, (3.5)

with µ the dynamic viscosity of the fluid. For the molecular flux J appearing in
equation (3.3) we assume a gradient diffusion such that:

JjX = −ΓX ∂φX
∂xj

= −ρX ID
∂φX
∂xj

. (3.6)

In equation (3.6), Γ ≡ ρID is the molecular diffusivity and ID is the diffusion coef-
ficient.
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3.3 Mean continuity and momentum equation

The mean continuity and mean momentum equations are obtained by Reynolds
averaging and taking the expected value 〈 〉 of equations (3.1) and (3.2):

∂ρ

∂t
+
∂ρŨj

∂xj

=
〈
S(I)

m

〉
, (3.7)

∂ρŨi

∂t
+
∂ρŨjŨi

∂xj
= − ∂p

∂xi
− ∂ρũ′′i u

′′
j

∂xj
+
∂τij
∂xj

+ ρgi +
〈
S(I)

Ui

〉
+
〈
UI,iS(I)

m

〉
, (3.8)

∂

∂t

(
ρφ̃
)

+
∂

∂xj

(
ρφ̃Ũj

)
=− ∂Jj

∂xj

− ∂ρũ′′jφ
′′

∂xj

+ ρS̃

+
〈
S(I)

φ

〉
+
〈
φIS(I)

m

〉
, (3.9)

where the following notations have been introduced:

Q = α〈Q〉|f = 〈QfX〉, Q̃ = Q̃|f =
〈ρfQfX〉
〈ρfX〉 , (3.10)

To be more precise, the notation 〈 〉 refers to the expected value of volume averages
over small volumes. The fluctuations are defined as

q′X = QX − 〈Q〉|fX , q′IaI = QIaI − 〈Q〉|faI ,

q′′X = QX − Q̃X , q′′I aI = QIaI − Q̃aI ,

(3.11)

which will be used later in the derivation. In equation (3.11), aI is the interfacial
area concentration, which can be defined as

aIk(x, t) = |∇ϕk| δ(ϕk(x, t)) . (3.12)

δ is the Dirac delta function and ϕk is the interface function, given by

ϕk(x, t) > 0 within phase k,
ϕk(x, t) < 0 within any other phase than phase k,
ϕk(x, t) = 0 at the interface of phase k.

. (3.13)
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Two way coupling Considering that the integral of the forces exerted on a parti-

cle surface are equal to the drag force, the expected value of the source term
〈
S(I)

Ui

〉

describing momentum transfer at the particle interface is obtained as a sum over
the particles present in a small domain Ω of volume VΩ:

〈
S(I)

Ui

〉
= − 1

VΩ

〈
∑

Ω

mp

(
dUp,i

dt
− 1

ρp

∂p

∂xi
− gi

)〉
. (3.14)

The particle force Fp = mp
dUp,i

dt
exerted on the carrier fluid can be obtained from

the equation of motion of a particle in a turbulent fluid, which is given by the
Maxey-Riley equation [99] discussed in chapter 5. In subsequent sections, we will

work with the general source term S(I)
Ui

instead of substituting the specific form
appearing at the right-hand side of (3.14). This makes the procedure described in
this paper independent of the form of the source term and therefore more generally

applicable. Similarly, the mean source term for mass transfer
〈
S(I)

m

〉
is obtained

as the sum of the vaporisation rate of the individual droplets in the considered
volume VΩ :

〈
S(I)

m

〉
= − 1

VΩ

〈
∑

Ω

ṁp

〉
. (3.15)

Models to determine ṁp were discussed in chapter 2. Note that the notations intro-
duced in (3.10) imply that the mean density and pressure appearing in equations
(3.7) and (3.8) are averaged over the whole two-phase flow. For instance, in case
of a constant density ρf :

ρ = 〈X 〉ρf , (3.16)

where 〈X 〉 is the probability of presence of the continuous phase (i.e. the volume
fraction of the continuous phase since we consider volume averages). The mean
continuity equation can be substituted into the mean momentum equation to yield
the non conservative form of the mean momentum equation

ρ
∂Ũi

∂t
+ ρŨj

∂Ũi

∂xj
= − ∂p

∂xi
−
∂ρũ′′i u

′′
j

∂xj
+
∂τij
∂xj

+ ρgi +
〈
S(I)

Ui

〉
+
〈
UI,iS(I)

m

〉
− Ũf,i

〈
S(I)

m

〉
. (3.17)

In this non conservative formulation, the source term for mass transfer will dis-
appear from equation (3.17) only if the velocity at the interface is taken to be the
mean fluid velocity. It is important to realise that in the instantaneous nonconser-
vative formulation the source term due to mass transfer disappears whereas for
the mean nonconservative formulation not resolving the flow around the droplets
leads to the appearance of a source term.
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3.4 Reynolds stress transport equation

The mean momentum equation contains an extra term that was not present in the
instantaneous momentum equation: the transport term of the second moment cor-

relations ũ′′i u
′′
j . Due to these second moment correlations, also called the Reynolds

stresses, the system of equations (3.7-3.8) is not closed. Although many models
have been proposed in the literature (see e.g. [130, 176]) we will restrict ourselves
here to a closure based on the modelling of the exact transport equation for the
Reynolds stresses. This approach is known as Second Moment Closure (SMC). The
fluctuating velocity transport equation can be obtained from the Navier Stokes
equations and is given by:

∂

∂t
(ρu′′iX ) +

∂

∂xk

(
ρu′′i ŨkX

)
+ ρu′′kX

∂Ũi

∂xk

=− ∂pX
∂xi

+
∂τikX
∂xk

− ∂

∂xk

(ρu′′i u
′′
kX ) + S(I)

Ui
+ u′′I,iS(I)

m

− ρX
[
∂Ũi

∂t
+ Ũk

∂Ũi

∂xk
− gi

]
. (3.18)

Multiplying equation (3.18) by u′′jXk we obtain an equation (Eij).
〈(Eij) + (Eji)〉 then gives the exact transport equation for the Reynolds stress:

∂

∂t

(
ρũ′′i u

′′
j

)
+

∂

∂xk

(
ρũ′′i u

′′
j Ũk

)
+ ρũ′′i u

′′
k

∂Ũj

∂xk

+ ρũ′′ju
′′
k

∂Ũi

∂xk

=−
[
u′′i

∂p

∂xj
+ u′′j

∂p

∂xi

]
+

[
u′′i
∂τjk
∂xk

+ u′′j
∂τik
∂xk

]

− ∂

∂xk

[
ρũ′′i u

′′
ju

′′
k

]

+
〈
S(I)

uiuj

〉

+ 2
〈
u′′I,iu

′′
I,jS(I)

m

〉
− ũ′′i u

′′
j

〈
S(I)

m

〉
, (3.19)

with the two way coupling source term S(I)
uiuj due to momentum transfer between

the phases defined as:

〈
S(I)

uiuj

〉
≡
〈
u′′I,iS(I)

Uj

〉
+
〈
u′′I,jS(I)

Ui

〉
, (3.20)

where u′′
I ≡ U I − Ũf is the velocity fluctuation at the interface.

The interface source terms
〈
S(I)

uiuj

〉
and 2

〈
u′′I,iu

′′
I,jS(I)

m

〉
− ũ′′i u

′′
j

〈
S(I)

m

〉
reflect the

modulation of turbulence due to interface momentum transfer and mass transfer.〈
S(I)

uiuj

〉
accounts for the effects of surface forces (mainly due to the drag in case
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of particles in a gas). The contribution to the modulation of the Reynolds stresses

due to mass transfer can be decomposed into two terms. First of all,
〈
u′′I,iu

′′
I,jS(I)

m

〉

accounts for the effect of mass transfer (the effect of extra mass appearing in the
gas in the case of droplet evaporation) entering the gas phase with the Reynolds

stress ũ′′I,iu
′′
I,j. The source term

〈
u′′I,iu

′′
I,jS(I)

m

〉
− ũ′′i u′′j

〈
S(I)

m

〉
accounts for fluctuations

in the (local) vaporisation rate and arises from the continuity equation. This term

is zero when the source term for mass transfer knows no local fluctuations: S ′
m

(I) =

S(I)
m −

〈
S(I)

m

〉
= 0. Introducing the dissipation ǫ:

ǫ ≡ 1

2
ǫkk with ρǫij ≡ 2

〈
µX ∂u′′i X

∂xk

∂u′′jX
∂xk

〉
, (3.21)

and neglecting the terms 〈u′′iX〉 (in the decomposition of the velocity-pressure gra-
dient tensor) and the molecular diffusion terms, equation (3.19) can be written as:

∂

∂t

(
ρũ′′i u

′′
j

)
+

∂

∂xk

(
ρũ′′i u

′′
j Ũk

)
(3.22)

=Pij + Tij +Πij −
2

3
ρǫδij

+
〈
S(I)

uiuj

〉
+ 2
〈
u′′I,iu

′′
I,jS(I)

m

〉
−
〈
u′′I,iu

′′
I,j

〉〈
S(I)

m

〉
,

where the production Pij,

Pij ≡ −ρũ′′i u′′k
∂Ũj

∂xk
− ρũ′′ju

′′
k

∂Ũi

∂xk
, (3.23)

is closed and needs no modelling. The tensor Tij contains the third order correla-
tions together with the pressure fluctuations:

Tij ≡ − ∂

∂xk

[
ρũ′′i u

′′
ju

′′
k − p′u′′i δjk − p′u′′j δik

]
, (3.24)

where the pressure-velocity fluctuation correlations come from the decomposition
of the velocity-pressure gradient tensor. The tensor Πij is defined by

Πij ≡
〈
p′X

(
∂u′′i X
∂xj

+
∂u′′jX
∂xi

)〉
− ρ

(
ǫij −

1

3
ǫkkδij

)
. (3.25)

Under the assumption of local isotropy, the last term in equation (3.25) cancels,
and Πij is the pressure rate of strain. Except for the production term, all terms on
the right hand side of equation (3.23) are unclosed and need to be modeled.
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3.4.1 Assumptions on the velocity at the interface UI,i

The velocity at the interface between the phases is known in Direct Numerical
Simulations (DNS), where the flow at the interface is resolved. In our Reynolds
Averaged approach however, an assumption for the velocity at the interface needs
to be adopted. Several approaches exist in the literature for determining the veloc-
ity UI,i and the velocity fluctuations at the interface u′′I,i [2, 31, 32, 60, 89].

The approach termed ’standard’ approach assumes that in expressions which
have to be Reynolds averaged the velocity at the interface is the fluid phase veloc-

ity: UI,i = Uf,i. The source term
〈
u′′I,iS(I)

Uj

〉
is then modeled as:

〈
u′′I,iS(I)

Uj

〉
=
〈
Uf,iS(I)

Uj

〉
− 〈Uf,i〉

〈
S(I)

Uj

〉
. (3.26)

The second approach was proposed by Crowe [32] and is based on an energy
balance (i.e. the first law of thermodynamics). A no-slip condition is imposed
on the particle surface, implying that the velocity at the interface is equal to the
particle velocity: UI,i = Up,i. The velocity fluctuation at the interface is written as
(see eq. (3.11))

u′′I,i = UI,i − Ũf,i

= Up,i − Ũf,i (3.27)

and the source terms appearing in (3.20) can be written as

〈
u′′I,iS(I)

Uj

〉
=
〈
Up,iS(I)

Uj

〉
− Ũf,i

〈
S(I)

Uj

〉
. (3.28)

Note that the mean of the fluctuations at the interface does not equal zero because
we have used the zero-slip assumption to determine the instantaneous velocity at
the interface. In general, the mean particle velocity is not equal to the mean fluid
velocity. Equation (3.28) can be written out into the following form for the source
term appearing in the equation for the turbulent kinetic energy:

Sk =
1

τp

ρ̃p

ρ̃f

[
|〈Up,i〉 − 〈Uf,i〉|2 +

(〈
u′′p,iu

′′
p,i

〉
−
〈
u′′f,iu

′′
f,i

〉)]
(3.29)

The interpretation of the first term on the right hand side of equation (3.29)
is that it describes the wake induced turbulence; it reflects the conversion of me-
chanical energy by the drag force into turbulent kinetic energy. The second term
functions as a redistribution of the turbulent kinetic energy of the particles to that
of the carrier fluid.

Ahmadi et al. [2, 27] go a step further by considering a thermodynamically
consistent modelling approach involving the Clausius-Duhem inequality. After
a lengthy analysis, they find an expression for the source term appearing in the
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equation for the Reynolds stresses. In their analyses, the Reynolds stress equations
are contracted to yield an expression for the turbulent kinetic energy. The expres-
sion can be written down in several ways, but a comparison with the expression
of Crowe is possible by writing it in the following form:

Suiuj
= β

〈
u′′I,iS(I)

Uj

〉

︸ ︷︷ ︸
Crowe

+
〈
u′′f,jS(I)

Ui

〉

︸ ︷︷ ︸
standard term

, (3.30)

with

β = α′ +
(1 − α′)

(〈
Up,iS(I)

Ui

〉
− 〈Up,i〉

〈
S(I)

Ui

〉)

〈
u′′I,iS

(I)
Ui

〉 . (3.31)

β is interpreted as a model coefficient that needs to be determined. In the calcula-
tions presented in Chrigiu et al. [27], a value of β = 0.5 has been used. Effectively,
the model of Ahmadi et al. is an interpolation between the classical two-way cou-
pling term (3.26) and the two way coupling term of Crowe (3.28).

Expression (3.30) reduces to the source term proposed by Crowe when the fluid
velocity fluctuations at the interface are zero and when β = 1.

In the approach used in this thesis, the velocity at the interface is modelled
according to the model of Crowe, as was done in [89].

3.4.2 Turbulent kinetic energy equation

We can construct the transport equation for the turbulent kinetic energy from the

Reynolds stress equation by using k = 1
2
u′′i u

′′
i , k̃ = 1

2
ũ′′i u

′′
i . Taking the trace of

equation (3.23) gives:

∂ρk̃

∂t
+

∂

∂xk

(
ρŨkk̃

)

=Pii + Tii + Πii − ρǫ

+
1

2

〈
S(I)

uiui

〉
+ 2
〈
kIS(I)

m

〉
− 〈kI〉

〈
S(I)

m

〉
, (3.32)

where kI = 1
2
u′′I,iu

′′
I,i. In flows where mass transfer occurs, the trace of the pressure

rate of strain is not exactly zero, since the continuity condition contains a source
term for mass transfer. The trace of the pressure rate of strain in case of mass
transfer is

Πii = 2〈p′IS ′
m〉. (3.33)

Note that in this case, the pressure rate of strain Πij is not an ’ideal’ redistribution
term for the Reynolds stress anymore since the trace is not zero.
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Constant Cǫ
s Cǫ1 Cǫ2 Cǫ3

Value 0.18 1.44 1.92 1.8

Table 3.1: Model constants in the equation for turbulence dissipation.

3.4.3 Dissipation equation

The exact equation for the dissipation ǫ can be derived starting from the trans-
port equation for the velocity fluctuations and taking the gradient of this expres-
sion. However, it is more usual to work with a model dissipation equation [130].
Adding the exact two way coupling terms for interface momentum and mass
transfer to a standard form of the modeled single phase dissipation equation, one
obtains

∂ρǫ

∂t
+
∂ρŨjǫ

∂xj
=

∂

∂xj

[(
µδjk +

Cǫ
s

ω
ρũ′′ju

′′
k

)
∂ǫ

∂xk

]
(3.34)

+ω

(
Cǫ1

1

2
Pkk − Cǫ2ρǫ

)
+
〈
S(I)

ǫ

〉
+
〈
S(I)

ǫm

〉
.

In equation (3.35), the turbulence frequency is defined as ω ≡ ǫ
ek .

The two way coupling source term

〈
S(I)

ǫ

〉
≡ 2

〈
µ

ρ
X ∂u′′i X

∂xj

∂S(I)
Ui

∂xj

〉
(3.35)

is usually modelled as [60, 89]

〈
S(I)

ǫ

〉
= Cǫ3

ǫ

ũ′′ku
′′
k

〈
S(I)

ukuk

〉
, (3.36)

where the value of the constant Cǫ3 = 1.8 is taken from [89]. The values of the other
constant are taken from standard literature [130] and are given in table (3.4.3). Note
that the two-way coupling source term 〈Sǫ〉 given by equation (3.36) is different
from the source term used in the analysis of Mashayek and Taulbee [98]. They
find for homogeneous flows the expression

S(I)
ǫ =

ǫ

k̃

λαp

τp
(2k̃ − Cǫ3u

′′
f,ku

′′
p,k), (3.37)

with λ ≡ ρpρf and a constant Cǫ3 = 0.8.
The exact form of the mass transfer source term following from the derivation

of the equation for dissipation is given by

〈
S(I)

ǫm

〉
= 2

〈
µ

ρ
X ∂u′′i X

∂xj

∂u′′iX
∂xj

S(I)
m

〉
. (3.38)



3.5. Modelling the pressure rate of strain tensor 53

When the instantaneous dissipation and the source term for mass transfer are un-
correlated, this source term can be written as

〈
S(I)

ǫm

〉
= ǫ
〈
S(I)

m

〉
. (3.39)

A model similar to equation (3.36) can be used to model (3.38) as suggested in
Berlemont et al. [9]. However, the advantage of the approach given here is that
there is no need to introduce an extra model constant. Model (3.39) implies that
the direct effect of vaporisation (in which case the source term Sm will be positive)
is that it always causes an increase of the turbulence dissipation.

3.5 Modelling the pressure rate of strain tensor

In the transport equation for the Reynolds stresses, the unknown pressure rate
of strain tensor Πij appears. The modelling of this term is of crucial importance
to correctly determine the Reynolds stresses. Much attention has been given to
the modelling of the pressure rate of strain tensor over the past several decades
[26, 64, 90, 95, 116, 138, 155]. Models for the pressure rate of strain tensor Πij

can be constructed by examining the equation for the fluctuating pressure, which
can be derived from the Navier Stokes equation. The Poisson equation for the
fluctuating pressure p′ can be obtained by subtracting the divergence of the mean
momentum equation (3.8) from the divergence of the transport equation for the
fluctuating velocity (3.18) (in conservative form). We then obtain:

− ∂2p′X
∂x2

i

= 2
∂ρŨi

∂xj

∂u′′jX
∂xi︸ ︷︷ ︸

Rapid part

+
∂

∂xi

[
∂ρXu′′i u′′k − ρũ′′i u

′′
k

∂xk

]

︸ ︷︷ ︸
Slow part

+
∂

∂xi

[
S(I)

Ui
−
〈
S(I)

Ui

〉]

︸ ︷︷ ︸
Particle contribution to slow part

+
∂

∂xi

[
UI,iS(I)

m −
〈
UI,iS(I)

m

〉]

︸ ︷︷ ︸
Vaporisation contribution to slow part

. (3.40)

In this work, surface contributions (wall effects) will be neglected and therefore do
not appear in equation (3.40).

We see that the presence of particles as well as the occurrence of mass transfer
give a contribution to the slow part consisting of respectively the fluctuations in
the two way coupling source term for momentum transfer and the fluctuations in
the two way coupling source term for mass transfer.

In the work of Chou [26], it is shown that the solution of the equation for the
fluctuating pressure in single phase flows can be written in terms of Green’s func-
tions. The equation for the fluctuating pressure can be written as a Poisson equa-
tion. The solution of a Poisson equation with a general right hand side f(x),

∂2p′

∂x2
i

= f(x) (3.41)
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and boundary conditions p′ = 0 (we neglect the surface contribution) is given by
the volume integration over the Green’s function 1

|y−x| ,

p′ = − 1

4π

∫

V

f(y)

|y − x|dV. (3.42)

In equation (3.42), x denotes the location at which p′ is evaluated and y is the
location in the flow domain over which the integration is taken. V is the volume
of the flow domain bounded by surface S. Since the Poisson equation is linear, the
solution of each of the inhomogeneous terms at the right hand side of equation
(3.40) can be calculated separately and then added to obtain the final solution. The

pressure strain correlation1 Πij =
〈
p′X (

∂u′′

i X
∂xj

+
∂u′′

j X
∂xi

)
〉

is obtained by multiplying

the solution by the fluctuating strain rate s′′ij =
∂u′′

i X
∂xj

+
∂u′′

j X
∂xi

and taking the expected

value of the result. The pressure-velocity gradient correlation can now be written
in terms of second and fourth order tensors [151, 164] as follows:

Πij = Aij +Mijkl
∂ρŨk

∂xl︸ ︷︷ ︸
Π

(f)
ij

+Π
(fp)
ij + Π

(m)
ij . (3.43)

Single phase flow The slow term of the pressure rate of strain tensor Π
(1)
ij = Aij

is given by

Aij =
1

4π

∫

V

〈
(
∂u′′i X
∂xj

+
∂u′′jX
∂xi

)
∂2ρu′′ku

′′
l X

∂xk∂xl

〉
dV

|y − x| , (3.44)

and Π
(2)
ij = Mijkl

∂ρfUk

∂xl
is the rapid term, where the fourth order tensor Mijkl is given

by:

Mijkl =
1

2π

∫

V

〈
(
∂u′′i X
∂xj

+
∂u′′jX
∂xi

)
∂u′′l X
∂xk

〉
dV

|y − x| . (3.45)

Tensors Aij and Mijkl satisfy the constraints of

• symmetry : Aij = Aji, Mijkl = Mjikl = Mijlk,

• continuity : Aii = 0, Mijkk = Miikl = 0,

• normalisation : Mijkk = 2ρũ′′i u
′′
j .

1Note that in the literature, the pressure rate of strain correlation is usually defined to contain
p′

ρ
instead of simply p′.
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These constraints were already recognised by Rotta [138].
The modelling assumption that we make is that the tensors Aij andMijkl can be

written as algebraic tensors depending only on the history of the Reynolds stress
tensor and dissipation rate (See for details on the single phase turbulence model
the paper of Speziale et al. [155]):

Aij = ǫAij(b),

Mijkl = k̃Mijkl(b), (3.46)

with b the normalised anisotropy tensor:

bij =
ũ′′i u

′′
j

ũ′′ku
′′
k

− 1

3
δij. (3.47)

The mean velocity gradient tensor can be decomposed into a symmetric and an
antisymmetric part:

∂Ũi

∂xj
= Sij + Ωij , (3.48)

with the mean strain rate tensor Sij and the mean vorticity tensor Ωij defined as:

Sij =
1

2

k̃

ǫ

(
∂Ũi

∂xj

+
∂Ũj

∂xi

)
and Ωij =

1

2

k̃

ǫ

(
∂Ũi

∂xj

− ∂Ũj

∂xi

)
. (3.49)

The model for the pressure strain correlation can be written in the equivalent form:

Πij = ǫfL
ij(b,S,Ω) (3.50)

Here, fL
ij is the part of the tensor function fij that is linear in the mean velocity

gradients and traceless. Form invariance under a change of coordinates requires
fL

ij to transform as:

Qf(b,S,Ω)QT = f(QbQT ,QSQT ,QΩQT ), (3.51)

where Q is the rotation tensor. This relationship implies that fL
ij be an isotropic

tensor function of its arguments. The most general form of the pressure strain

correlation for the single phase terms Πij = Aij +Mijkl
〈Uk〉
∂xl

is [151]:

Π
(f)
ij = β1ρǫbij + β2ρǫ(b

2
ij −

1

3
b2kkδij) + β3ρǫSij

+ β4ρǫ(bkjSik + bikSkj −
2

3
blkSklδij) + β5ρǫ(b

2
kjSik + b2ikSkj −

2

3
b2lkSklδij)

+ β6ρǫ(bikΩkj + bkjΩik) + β7ρǫ(b
2
kjΩik + b2ikΩkj). (3.52)
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Model C1 C2 C3 C4 C5 model constants
Rotta −2c1 0 0 0 0 c1 = 4.15
LRR −2c1 0 4

3
c2 2c2 2c2 c1 = 1.8, c2 = 0.6

SSG −2c1 − c⋆1
Pii

ǫ
c2 c3 − c⋆3

√
b2ii c4 c5 c1 = 1.7, c2 = 4.2, c3 = 0.8

c4 = 1.25, c5 = 0.40
c⋆1 = 1.8, c⋆3 = 1.30

Table 3.2: Model constants for three different Reynolds stress models.

The notation b2ij is the usual abbreviation for bilblj and b2ii is the trace of b2ij . Speziale
et al. [155] have shown that the equilibrium structure of (3.52) in plane homoge-
neous turbulent flow is indistinguishable from the reduced expression:

Π
(f)
ij = C1ρǫbij + C2ρǫ(b

2
ij −

1

3
b2kkδij) + C3ρǫSij

+ C4ρǫ(bkjSik + bikSkj −
2

3
bklSlkδij) + C5ρǫ(bikΩkj + bkjΩik). (3.53)

IfC1 6= 0 is the only non-zero constant, the linear return-to-isotropy model of Rotta
is obtained [130, 138]. The model constants can be chosen in such a way that they
correspond to well known turbulence models [130]. The values of the constants for
the Rotta model, the model of Launder, Reece and Rodi (LRR) [90] and the model
of Speziale, Sarkar and Gatski (SSG) [155] are summarised in Table (3.2).

Fluid-particle contribution We now have two additional contributions to the

pressure rate of strain term: the gas-particle interaction term Π
(fp)
ij ,

Π
(fp)
ij =

1

4π

∫

V

〈
(
∂u′′i X
∂xj

+
∂u′′jX
∂xi

)
∂S(I)

Uk

∂xk

〉
dV

|y − x| (3.54)

and the mass transfer term Π
(m)
ij :

Π
(m)
ij =

1

4π

∫

V

〈
(
∂u′′iX
∂xj

+
∂u′′jX
∂xi

)
∂UI,lS(I)

m

∂xl

〉
dV

|y − x| . (3.55)

In the presence of a dispersed phase and mass transfer, the pressure strain
rate can be decomposed into a particle-free part (the single phase flow turbulence
model that was discussed previously) and contributions due to particle interaction
and due to mass transfer:

Πij = Π
(f)
ij + Π

(fp)
ij + Π

(m)
ij

= ǫf
(f)
ij (b,S,Ω) +

〈
S(I)

ukuk

〉
f

(fp)
ij (b(fp)) +

〈
u′′I,ku

′′
I,kS(I)

m

〉
f

(m)
ij (b(m)). (3.56)
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Following the same procedure as described above, we propose a pressure rate
of strain model of the general form

Π
(fp)
ij =

〈
S(I)

ukuk

〉
f

(fp)
ij (b(fp)) (3.57)

for the gradient of the source term for interface momentum transfer, and

Π
(m)
ij =

〈
u′′I,ku

′′
I,kS(I)

m

〉
f

(m)
ij (b(m)) (3.58)

to take into account the effect of mass transfer. In eqs. (3.57, 3.58), f
(fp)
ij (b(fp)) and

f
(m)
ij (b(m)) are isotropic tensor functions, depending only on the anisotropy tensors

b
(fp)
ij and b

(m)
ij .

These anisotropy tensors b(fp) and b(m) are given by:

b
(fp)
ij =

1

2

〈
u′′I,iS(I)

Uj
+ u′′I,jS(I)

Ui

〉

〈
u′′I,kS

(I)
Uk

〉 − 1

3
δij =

〈
Suiuj

〉

〈Sukuk
〉 −

1

3
δij (3.59)

b
(m)
ij =

1

2

〈
u′′I,iu

′′
I,jS(I)

m + u′′I,ju
′′
I,iS(I)

m

〉

〈
u′′I,ku

′′
I,kS

(I)
m

〉 − 1

3
δij =

〈
u′′I,iu

′′
I,jS(I)

m

〉

〈
u′′I,ku

′′
I,kS

(I)
m

〉 − 1

3
δij (3.60)

This choice of fluid particle and mass transfer anisotropy tensor can be justi-
fied by performing an analysis analogous to that of Launder, Reece and Rodi [90].
This tedious analysis results in a model similar to the Rotta model with anisotropy
tensors given by eqs. (3.59,3.60).

With the anisotropy tensor (3.59), the most general form for the contribution of
interface momentum transfer to the pressure rate of strain is then found to be:

Π
(fp)
ij = −1

2

〈
S(I)

ukuk

〉 [
C

(fp)
1 b

(fp)
ij + C

(fp)
2

(
b
2(fp)
ij − 1

3
b
2(fp)
kk δij

)]
, (3.61)

Equation (3.61) is the most general tensor satisfying equation (3.57) according to

the Cayley-Hamilton theorem [130]. The factor 1
2

〈
S(I)

ukuk

〉
in equation (3.61) spec-

ifies the time scale for the return to isotropy implied by Π
(fp)
ij , as we will see in

equation (3.66). It plays the same role as the factor ρǫ in equation (3.53). It is in-
deed the two-way coupling source term appearing in the turbulent kinetic trans-
port equation next to ρǫ (with opposite sign). Mashayek et al. [98, 161] proposed

the form for Π
(fp)
ij corresponding to the LRR model2:

Π
(fp)
ij = −Cf3

〈
S(I)

ukuk

〉
b
(fp)
ij = −1

2
C

(fp)
1

〈
S(I)

ukuk

〉
b
(fp)
ij . (3.62)

2 Note that in their Eulerian-Eulerian formulation Mashayek and Taulbee do not introduce the
source term SUi

appearing in (3.2). Instead, they directly express mean source terms as functions
of volume fraction, τp, and particle and fluid velocity difference by considering the drag force for
a monodispersed spray.



58 Chapter 3. Turbulence modelling in dispersed two-phase flows: I

where Cf3 is the model constant introduced by Mashayek et al. and C
(fp)
1 is the

model constant introduced in equation (3.61).
The contribution from mass transfer can be modeled similar to the fluid particle

contribution. The most general form for the mass transfer contribution is:

Π
(m)
ij =

1

2

〈
u′′I,ku

′′
I,kS(I)

m

〉 [
C

(m)
1 b

(m)
ij + C

(m)
2

(
b
2(m)
ij − 1

3
b
2(m)
kk δij

)]
, (3.63)

with b
(m)
ij the normalised anisotropy tensor based on the Reynolds stress mass

transfer source terms (3.60).
Note that the continuity constraints are slightly violated when mass transfer

occurs, as was mentioned in section 3.4.2.
The relative importance of these extra two-way coupling terms appearing in

the model for the pressure rate of strain can be seen immediately when they are

compared directly with the two-way coupling source terms
〈
S(I)

uiuj

〉
that are ex-

plicitly present in the Reynolds stress equations. The source term that is explicitly
present in the Reynolds stress equations is given by:

〈
S(I)

uiuj

〉
=
〈
u′′I,iS(I)

Uj

〉
+
〈
u′′I,jS(I)

Ui

〉
, (3.64)

and the indirect two-way coupling source term present in the Reynolds stress
equations, through the model for Πij , is given by:

Π
(fp)
ij = −1

2
C

(fp)
1 (

〈
S(I)

uiuj

〉
− 1

3

〈
S(I)

ukuk

〉
δij). (3.65)

The extra contribution due to the modification of the pressure rate of strain is of
the same order of magnitude as the original (’classical’) two-way coupling source
term.

Evolution equation for anisotropy tensor When considering (for the sake of
simplicity) a non-vaporising two phase flow, this model implies the following evo-
lution for the fluid phase anisotropy tensor bij :

dbij
dt

= (2 − C1)ωbij + ω(fp)




〈
S(I)

uiuj

〉

〈
S(I)

ukuk

〉 − ũ′′i u
′′
j

ũ′′ku
′′
k

− Cf3b
(fp)
ij




= (2 − C1)ωbij + ω(fp)
[
b
(fp)
ij (1 − Cf3) − bij

]
, (3.66)

with

ω =
ǫ

k̃
and ω(fp) =

〈
S(I)

ukuk

〉

ρk̃
. (3.67)
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The first term on the right hand side of (3.66) is the linear model of Rotta where
the time scale of return to isotropy is 1/ω. The last term represents the effect of
two-way coupling on the return to isotropy. The time scale 1/ω(fp) is based on the
two-way coupling source term appearing in the turbulent kinetic energy transport
equation.

Determining the model constants When extending the SSG turbulence model
to dispersed two-phase flows, only two extra constants need to be evaluated.

Mashayek and Taulbee [98] obtained a value of Cf3 = 0.5 (or C
(fp)
1 = 1) from their

Direct Numerical Simulations. No information is available on the model constant
C

(fp)
2 . Therefore, we will now restrict to the model (3.62) proposed by Mashayek

et al. [98], in the context of Rotta or LRR Reynolds stress models. No information
in the form of detailed simulations is available at all for the mass transfer contri-
butions to the pressure rate of strain and the coefficients C

(m)
1 and C

(m)
2 cannot be

determined. To get an impression of the importance of the modification of Πij due

to mass transfer, the constants are set to C
(m)
1 = 1 and C

(m)
2 = 0.

3.6 Scalar flux transport equation

Similar to the derivation of the transport equation for the Reynolds stresses, a
transport equation for the scalar flux (also sometimes called the Reynolds flux)
and scalar variance can be derived. In addition to the equation for the velocity
fluctuation (3.18), the equation for the scalar fluctuation is used:

∂

∂t
(ρφ′′X )+

∂

∂xj

(
ρφ′′ŨjX

)
+ ρu′′jX

∂φ̃

∂xj

=− ∂

∂xi
(J ′

iX ) + (ρX )S − ∂

∂xj

(
ρφ′′u′′jX

)

+S(I)
φ + φ′′

IS(I)
m − ρX

[
∂φ̃

∂t
+ Ũj

∂φ̃

∂xj

]
. (3.68)

Multiplying equation (3.68) by u′′iX we obtain an equation (Eiφ). Multiplying
the equation for the velocity fluctuations (3.18) by φ′′X we obtain an equation (Eφi).
〈(Eiφ) + (Eφi)〉 then gives the equation for the scalar flux

∂

∂t

(
ρũ′′i φ

′′
)

+
∂

∂xj

(
ρũ′′i φ

′′Ũj

)
+ ρφ̃′′u′′j

∂Ũi

∂xj
+ ρũ′′i u

′′
j

∂φ̃

∂xj

= −φ′′ ∂p
′

∂xi

+ φ′′∂τij
∂xj

− u′′i
∂J ′

i

∂xi

− ∂

∂xj

(
ρũ′′i φ

′′u′′j

)
+ ρũ′′iS +

〈
S(I)

uiφ

〉

+ 2
〈
u′′I,iφ

′′
IS(I)

m

〉
−
〈
u′′I,iφ

′′
I

〉〈
S(I)

m

〉
, (3.69)
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with
〈
S(I)

uiφ

〉
=
〈
φ′′

IS(I)
Ui

〉
+
〈
u′′I,iS(I)

φ

〉
. (3.70)

In these equations the fluctuations φ′′
I and uI,i are defined by equation (3.11). The

interface source term
〈
S(I)

uiφ

〉
reflects the modulation of the scalar flux due to inter-

face scalar transfer (like for instance enthalpy transfer in non-isothermal flows). It
contains two parts. The first contribution is the correlation between scalar fluctua-
tions at the interface and the source term for momentum transfer; This source term
is generated by scalar gradients at the surface, for instance a temperature gradient
in the case of droplet heating or a concentration gradient. Similar to the assump-
tion for the velocity fluctuations at the interface, the scalar fluctuation is given
by the difference between the instantaneous scalar value at the interface (e.g. the
particle surface temperature Tp or the surface vapour mass fraction Y (I)) and the
scalar mean of the fluid phase:

φ′′
I = φp − φ̃f . (3.71)

The second contribution in equation (3.70) is the correlation of the velocity fluctu-
ations at the interface and the scalar source term.

The source terms including Sm reflect the modulation of the scalar flux due to
mass transfer (e.g. vaporising droplets). If the scalar flux and the source term for
mass transfer are uncorrelated, this source term simplifies to

〈
u′′I,iφ

′′
I

〉〈
S(I)

m

〉
. (3.72)

If we now introduce the scalar flux dissipation ǫφi as

ǫφi ≡ (ν + ID)
˜∂u′′i X

∂xj

∂φ′′X
∂xj

(3.73)

and neglecting 〈u′′iX〉, 〈φ′′X〉 and its divergence, the equation for the scalar flux is
given by

∂

∂t

(
ρũ′′i φ

′′
)

+
∂

∂xj

(
ρũ′′i φ

′′Ũj

)

=
∂

∂xj

(
T φ

ij − ρũ′′i u
′′
jφ

′′ − p̃φ′′δij + Pφ
i + Rφ

i

)
− ρ̃ǫφi + ρũ′′iS

+
〈
S(I)

uiφ

〉
2
〈
u′′I,iφ

′′
IS(I)

m

〉
−
〈
u′′I,iφ

′′
I

〉〈
S(I)

m

〉
. (3.74)

The production term P φ
i , defined by

P φ
i ≡ −ρφ̃′′u′′j

∂Ũi

∂xj

− ρũ′′i u
′′
j

∂φ̃

∂xj

, (3.75)
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is closed in this equation. All other terms on the right hand side of equation (3.69)

are unclosed and need to be modeled. The molecular transport term T φ
ij is defined

as

Tij ≡ ρ̃ν
˜
φ′′∂u

′′
i

∂xj
+ ρ̃ID

˜
u′′i
∂φ′′

∂xi
(3.76)

and is responsible for spatial transport of the scalar flux. In high Reynolds number
flows, this term is negligible and the transport of scalar flux will be due mainly to

the triple correlations. The pressure scrambling term Rφ
i , defined by

Rφ
i =

˜
φ′′ ∂p

′

∂xi
(3.77)

is related to the pressure rate of strain term Πij in the transport equation for the

Reynolds stress. This term can be decomposed into a pressure diffusion term p̃φ′′

and a pressure scalar gradient term Πφ
i = p̃′ ∂φ′′

∂xi
:

Rφ
i = Πφ

i − ∂p̃φ′′

∂xi
, (3.78)

The scalar flux arises in the equation for the scalar variance, which will be dis-
cussed next.

3.6.1 Scalar variance transport equation

The transport equation for the scalar variance can be derived by multiplying the
equation for the scalar fluctuation by 2φ′′ and taking the expected value of the
resultant expression. This leads to:

∂

∂t

(
ρφ̃′′2

)
+

∂

∂xj

(
ρφ̃′′2Ũj

)
+ 2ρφ̃′′u′′j

∂φ̃

∂xj

= −2φ′′∂J
′
i

∂xi

− ∂

∂xj

(
ρφ̃′′φ′′u′′j

)
+ 2ρφ̃′′S

+
〈
S(I)

φφ

〉
+ 2
〈
φ′′2

I S(I)
m

〉
−
〈
φ′′2

I

〉〈
S(I)

m

〉
︸ ︷︷ ︸

S(I)
φφm

, (3.79)

where
〈
S(I)

φφ

〉
≡ 2
〈
φ′′

IS(I)
φ

〉
. (3.80)
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Colin and Benkenida [29], following Demoulin and Borghi [39], arrive at a

slightly different source term S(I)
φφm in the special case when the considered scalar φ

is the mixture fraction Z. They assume that in the equation for the scalar transport
(3.3), the mixture fraction at the surface of the droplet is ZI = 1, which means they

start with a scalar equation where the source term is simply S(I)
m instead of φIS(I)

m .
In [39], they arrive at the following expression for the effects of mass transfer in

the equation for the mass fraction variance Z̃ ′′Z ′′:

S(I)
φφm = 2ρ(

〈
ZIS(I)

m

〉
− 〈ZI〉

〈
S(I)

m

〉
) + ρ(〈ZI〉2

〈
S(I)

m

〉
−
〈
Z2

IS(I)
m

〉
). (3.81)

When we drop the assumption of ZI = 1 and take into account the fact that the
product of a scalar φ and a source term (which is only nonzero at the interface) will
take the value at the interface, we arrive at the expression:

Sφφm = ρ(
〈
ZIZIS(I)

m

〉
− ρ〈ZI〉

〈
ZIS(I)

m

〉
+ ρ(〈ZI〉2

〈
S(I)

m

〉
−
〈
Z2

IS(I)
m

〉
) (3.82)

It can now easily be verified, using a Reynolds decomposition of
〈
ZIZIS(I)

m

〉
, that

the source term (3.82) is in fact the source term
〈
φ′′

Iφ
′′
IS(I)

m

〉
appearing in equation

(3.79). The remaining source term,
〈
φ′′

Iφ
′′
IS(I)

m

〉
− 〈φ′′

Iφ
′′
I〉
〈
S(I)

m

〉
, originating from

the gradient of the scalar flux φ̃′′u′′i and which takes into account the effect of fluc-
tuations of the mass transfer source term, is not accounted for in the model of
Demoulin and Borghi.

3.6.2 Scalar dissipation rate

The transport equation for the scalar dissipation rate can now be derived from the
equation for the scalar fluctuations. This equation is important in the context of
PDF modelling since a reduced expression for the scalar dissipation rate is used
to determine the time scale of mixing in Lagrangian mixing models [55, 129]. The
derivation of the transport equation for the scalar dissipation rate is analogous
to the derivation of the exact transport equation for the turbulence dissipation
rate. We differentiate both sides of eq. (3.68) with respect to xi and substitute
equation (3.6) for the diffusion flux. The resultant expression is then multiplied by

2∂φ′′X
∂xi

. We define gi ≡ ∂φ′′X
∂xi

to make the procedure more tractable. The resulting
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intermediate transport equation is:

∂ρgigiX
∂t

+
∂ρgigiŨjX

∂xj
+ 2gigj

∂ρŨjX
∂xi

+ 2giφ
′′X ∂S(I)

m

∂xi

= 2Γgi
∂2giX
∂x2

i

− 2gi

∂ρu′′jX
∂xi

∂φ̃X
∂xj

− 2giρu
′′
jX

∂2φ̃

∂xixj

− 2gi

∂2ρφ′′Xu′′j
∂xi∂xj

+ 2gi
∂ρXS
∂xi

+ 2gi

∂S(I)
φ

∂xi

+ 2gi
∂φ′′S(I)

m

∂xi

− 2gi
∂

∂xi

(
ρX
[
∂φ̃

∂t
+ Ũj

∂φ̃

∂xj

])
. (3.83)

We now define the scalar dissipation rate by

ǫφ ≡ 〈2Γgigi〉 (3.84)

Multiplying equation (3.83) by 2Γ and Reynolds averaging yields the final form
for the multiphase scalar dissipation rate transport equation:

∂ρǫφ
∂t

+
∂ρŨjǫφ
∂xj

+ 2ρǫφ
∂Ũk

∂xk

(3.85)

= Γ
∂2ǫφ
∂x2

j

− ∂
〈
u′′j ǫφ

〉

∂xj

− 4Γ〈gigj〉
∂ρŨj

∂xi

− 4Γ

〈
ρgi

∂u′′j
∂xi

〉
∂φ̃

∂xj
− 4ρũ′′jgiΓ

∂2φ̃

∂xj∂xi

− 4Γ

〈
gigj

∂u′′j
∂xi

〉
+ 4

〈
Γ
∂gi

∂xj
Γ
∂gi

∂xj

〉

+

〈
4Γgi

∂ρXS
∂xi

〉
+

〈
4Γgi

∂S(I)
φ

∂xi

〉
+
〈
4ΓgigiS(I)

m

〉
.

Introducing the following notations:
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Sφ
ǫ ≡ −4Γ〈gigj〉∂ eUj

∂xi
- mean velocity gradient term

Gφ
ǫ ≡ −4Γ

〈
ρgi

∂u′′

j

∂xi

〉
∂ eφ
∂xj

- mean scalar gradient term

Cφ
ǫ ≡ −4ρũ′′jgiΓ

∂2 eφ
∂xj∂xi

- mean scalar curvature

Vφ
ǫ ≡ 4Γ

〈
gigj

∂u′′

j

∂xi

〉
- vortex stretching

Dφ
ǫ ≡ 4

〈
Γ ∂gi

∂xj
Γ ∂gi

∂xj

〉
- gradient dissipation〈

S(I)
ǫφ

〉
=
〈
4Γgi

∂ρXS
∂xi

〉
- source term due to presence of particles〈

S(I)
ǫm

〉
=
〈
4ΓgigiS(I)

m

〉
- source term due to mass transfer

equation (3.86) can be written as [55]:

∂ρǫφ
∂t

+
∂ρŨjǫφ
∂xj

+ 2ρǫφ
∂Ũk

∂xk

(3.86)

=Γ
∂2ǫφ
∂x2

j

− ∂
〈
u′′j ǫφ

〉

∂xj
+ Sφ

ǫ + Gφ
ǫ + Cφ

ǫ + Vφ
ǫ −Dφ

ǫ

+

〈
4Γgi

∂ρXS
∂xi

〉
+
〈
S(I)

ǫφ

〉
+
〈
S(I)

ǫm

〉
.

The mean scalar gradient term and the mean scalar curvature term are usually
neglected under high Reynolds number assumption.

If the small scales of the scalar field are locally isotropic, then

4Γ〈gigj〉 =
2

3
ǫφδij . (3.87)

If a steady-state problem is assumed, applying the continuity equation to the mean
velocity gradient term Sφ

ǫ is found to be

Sφ
ǫ =

2

3
ǫφ
〈
S(I)

m

〉
, (3.88)

which vanishes in flows without mass transfer between the phases.
The last two terms in equation (3.87) represent a source term from interface

scalar transfer and a source term from mass transfer. Assuming vanishing correla-
tion between fluctuating scalar dissipation rate and mass transfer source term we
obtain:

〈
S(I)

ǫm

〉
≡ 4
〈
ΓgigiS(I)

m

〉
= 4ǫφ

〈
S(I)

m

〉
. (3.89)

Using this assumption, the source term for mass transfer in the transport equation
for the scalar dissipation rate does not need any further modelling. Furthermore,
the modelling of the mean velocity gradient term is similar to the mass transfer
source term and they can be merged into a single source term which is 5

3
times the

source term (3.89).
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We propose to model the source term for interface scalar transfer in a way sim-
ilar to the source term appearing in the turbulence dissipation equation (3.35). We
assume a form of the gradient hypothesis and propose the following model:

〈
S(I)

ǫφ

〉
≡
〈

4Γgi

∂S(I)
φ

∂xi

〉
= Cǫφ

ǫφ

φ̃′′φ′′

〈
S(I)

φ

〉
. (3.90)

It should be noted that the source term for mass transfer (3.89) is significantly less
complex than the source term derived by Colin and Benkenida [29]. Colin and
Benkenida introduce a scalar dissipation source term of the form

S(I)
ǫ =

1

τǫ

〈
φ′′φ′′S(I)

m

〉
, (3.91)

which is the source term appearing in the equation for the scalar variance, but
divided by an unknown timescale τǫ.

3.7 Summary and conclusions

In this chapter, the Eulerian mean transport equations describing the carrier phase
of dispersed multiphase flow were presented and a modified second moment clo-
sure for the pressure rate of strain was proposed. The modified pressure rate of
strain model includes the effect of the presence of particles and the effect of mass
transfer on the pressure rate of strain. The extra two-way coupling source terms
appearing in the model for the pressure rate of strain remain relatively simple
and can be described with a model containing only two constants. When the sec-
ond model constant is set to zero, the model reduces to a form similar to the Rotta
model for single-phase flows, but with an anisotropy tensor based on the Reynolds
stress two-way coupling source term.

Additionally, it was shown in this chapter that the source terms for mass trans-
fer which are present explicitly in the transport equations for the Reynolds stresses,
consist of two terms; a contribution due to the slip velocity between the phases,
and a contribution due to local vaporisation fluctuations. This latter term is gener-
ally neglected in the literature [9, 60].

Furthermore, the transport equation for the scalar dissipation rate was anal-
ysed and a simple model for the effect of mass transfer was proposed.

These transport equations for turbulence will be used later in this thesis in
spray flame simulations to augment the PDF method. The PDF method will be
discussed in chapter 4.
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CHAPTER 4

Turbulence modelling in dispersed two-phase flows: II

The relationship between Lagrangian models for turbulence and
second moment closures for dispersed two phase flows

The analysis of the relationship between stochastic Lagrangian turbulence

models and second moment closures is extended to multiphase flows with

mass transfer and scalar transport. The Reynolds averaged transport equa-

tions and its Second Moment Closure model were derived in chapter 3 start-

ing from the Eulerian multiphase Navier Stokes equations. In this chapter,

a stochastic Lagrangian turbulence model is derived starting from the La-

grangian form of the multiphase Navier Stokes equations. The correspon-

dence between the Lagrangian model and the Second Moment Closure is ob-

tained for the pressure rate of strain Πij and the pressure scrambling term Π
φ
ij .

The modified turbulence model for Πij predicts a faster return to isotropy in

dispersed two phase flows. Lagrangian mixing models, which are related to

the transport equation for the scalar dissipation rate, are shown to be affected

by the mass transfer. The often used algebraic gradient diffusion models for

the Reynolds stress, the triple correlations as well as the Reynolds flux are

extended to multiphase flows.

4.1 Stochastic Lagrangian turbulence models

4.1.1 Introduction

In a stochastic description of turbulence, the Probability Density Function (PDF)
f is considered. A general transport equation for the pdf can be derived, into
which then subsequently the Navier Stokes equations can be substituted. When
the density is not a constant, it is however more advantageous to consider the
density weighted PDF, or Mass Density Function (MDF) F . In multiphase flows
with interphase mass transfer, the continuity equation contains a source term for
mass transfer and applying the continuity equation yields a modified transport
equation for the MDF. To place the derivation of the MDF in the proper context, we
will first present the PDF and its general properties, then introduce the MDF and
derive a transport equation into which the Navier Stokes equations are substituted.

4.1.2 Derivation of the MDF transport equation

The transport equation for the multiphase Eulerian joint velocity-composition MDF
of a general state vector Ψ is derived in this section. This derivation is based on

67
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the properties of the fine-grained PDF, which is described in detail in [130]. The
description following below is an extension for multiphase flows for a general
state vector and for MDFs. We consider a multiphase flow consisting of N phases
k = 1..N .In the specific case of a dispersed two phase flow, N = 2 and the different
phases can be indicated as k = 1, 2 = f, p. Phase k is completely described by the
property vector Φ(x, t), which consists of the velocity of phase k and its compo-
sition φk: Φk = (Uk,φk). The evolution of each of the properties is described by a
transport equation for ΦkXk of the form

Xk
∂ (ΦkXk)

∂t
+ Uk,jXk

∂ (ΦkXk)

∂xj
= Xk

D|k

Dt
(ΦkXk) . (4.1)

In general, the presence of k at pointM(x, t) is a random event. Moreover the flow
within phase k might be turbulent. It is then of interest to consider the statistics of
the values taken by ΦkXk =(UkXk,φkXk) on the sample space [Ψ ]=[V ,ψ]. For this
purpose, we introduce the fine-grained pdf fΦ. The definition of the fine-grained
PDF is [128, 130]:

fΦ(Ψ ;x, t)′ = δ [Φ(x, t) − Ψ ] , (4.2)

where the state vector Φ is defined as the sum of the state vector of each of the N
phases k present,

Φ =
N∑

k=1

ΦkXk. (4.3)

So at each point x and time t, fΦ(Ψ ;x, t)′ is a delta function in state space located
at Ψ = Φ(x, t). When taking the expected value of (4.2), we obtain

fΦ(Ψ ;x, t) = 〈δ [Φ(x, t) − Ψ ]〉, (4.4)

The conditional PDF f
|k
Φ ,

f
|k
Φ (Ψ ;x, t) =

〈Xk(x, t) .δ [Φk(x, t)Xk(x, t) − Ψ ]〉
〈Xk(x, t)〉

. (4.5)

is only defined if the volume fraction of phase k, αk(x, t) 6= 0 (i.e. if the probabil-
ity that phase k is present is not zero). Instead we consider the Eulerian density
functions [117]:

fk(Ψ ;x, t) = 〈Xk(x, t) δ(Φk(x, t)Xk(x, t) − Ψ)〉, (4.6)

such that fk(Ψ ;x, t) .dΨ is the probability that phase k is present at M(x, t) times
the conditional probability that Φk(x, t) is in the interval [Ψ ,Ψ + dΨ ] (conditional
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on phase k being present at M(x, t)). The function fk is not called probability den-
sity function because it does not integrate to one:

∫

[Ψ]

fk(Ψ ;x, t) .dΨ = 〈Xk(x, t)〉 = αk(x, t) . (4.7)

When the density of phase k is not constant, it is more useful to consider the mass
density function (MDF) Fk rather than the density function fk.

Fk(Ψ ;x, t)= 〈ρk(x, t)Xk(x, t) δ(Φk(x, t)Xk(x, t) − Ψ )〉
= ρk(Ψ ) 〈Xk(x, t) δ(Φk(x, t)Xk(x, t) − Ψ )〉
= ρk(Ψ ) fk(Ψ ;x, t) . (4.8)

The MDF is defined everywhere and has the following properties:

∫

[Ψ]

Fk(Ψ ;x, t) .dΨ = 〈ρkXk〉 = αk(x, t) 〈ρ(x, t)〉|k, (4.9)

∫

[Ψ]

1

ρk(Ψ)
Fk(Ψ ;x, t) .dΨ = αk(x, t) . (4.10)

Averages We will consider the expected value of generalised functions defined
in terms of the density functions fk and Fk:

〈QkXk〉 =

∫

[Ψ]

〈Qk|Ψ 〉
k
fk(Ψ ) .dΨ , (4.11)

〈ρkQkXk〉 =

∫

[Ψ]

〈Qk|Ψ 〉
k
Fk(Ψ ) .dΨ . (4.12)

Finally it will be useful to consider the density weighted averages

Q̃|k =
〈ρkQkXk〉
〈ρkXk〉

=
〈ρQ〉|k
〈ρ〉|k

. (4.13)

The phasic average 〈.〉|k,

〈Qk|Ψ ;x, t〉
k
=

〈Qk(x, t)Xk(x, t) δ(Φk(x, t)Xk(x, t) − Ψ )〉
〈Xk(x, t) δ(Φk(x, t)Xk(x, t) − Ψ )〉

=
1

fk(Ψ ;x, t)
〈Qk(x, t)Xk(x, t) δ(Φk(x, t)Xk(x, t) − Ψ )〉

if fk(Ψ ;x, t) > 0 and equals zero otherwise. (4.14)

is only defined if αk>0 and does not commute with time or space derivatives.
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4.1.3 MDF transport equation

The transport equation of the MDF was derived previously by Naud [117] and oth-
ers. Since the derivation is short and clear, it is repeated below for the sake of com-
pleteness. We are considering the function g′k(Ψ ;x, t)=δ(Φk(x, t)Xk(x, t) − Ψ ). Its
time and space derivatives within phase k are

Xk
∂g′k
∂t

= −Xk
∂g′k
∂Ψα

∂Φk,αXk

∂t
= − ∂

∂Ψα

[
Xk
∂Φk,αXk

∂t
g′k

]
, (4.15)

Xk
∂g′k
∂xj

= −Xk
∂g′k
∂Ψα

∂Φk,αXk

∂xj
= − ∂

∂Ψα

[
Xk
∂Φk,αXk

∂xj
g′k

]
. (4.16)

We can use those expressions in the following derivatives

∂ρkXkg
′
k

∂t
= ρkXk

∂g′k
∂t

+
∂ρkXk

∂t
Xkg

′
k

=− ∂

∂Ψα

[
Xk
∂Φk,αXk

∂t
ρkg

′
k

]
+
∂ρkXk

∂t
Xkg

′
k, (4.17)

Vj
∂ρkXkg

′
k

∂xj
=
∂ρkUk,jXkg

′
k

∂xj

= ρkUk,jXk
∂g′k
∂xj

+
∂ρkUk,jXk

∂t
Xkg

′
k

=− ∂

∂Ψα

[
Uk,jXk

∂Φk,αXk

∂xj
ρkg

′
k

]
+
∂ρkUk,jXk

∂xj
Xkg

′
k. (4.18)

The expected value of the sum of (4.17) and (4.18) gives the general form for the
MDF transport equation:

∂Fk

∂t
+ Vj

∂Fk

∂xj
=− ∂

∂Ψα

[〈
D|k (Φk,αXk)

Dt

∣∣∣∣Ψ
〉

k

Fk

]

+
1

ρk(Ψ )

〈
∂ρkXk

∂t
+
∂ρkUk,jXk

∂xj

∣∣∣∣Ψ
〉

k

Fk. (4.19)

In the above expression the definition of D|k/Dt is simply the multiphase version
of the substantial derivative given by equation 4.1. The second term on the right-
hand side of equation (4.19) contains the continuity equation which does not equal
zero in multiphase flows with interphase mass transfer.
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4.1.4 Model transport equation for the MDF

Our starting point is the transport equation for the mass density function F (4.19).
We will consider a reduced state vector Ψ = (U) with U the velocity vector. Sub-
stituting the Navier Stokes equations and considering only the continuum phase,
we obtain the fluid phase velocity-MDF FU

1:

∂FU

∂t
+ Vi

∂FU

∂xi

=− ∂

∂Vi

[〈Ai|V〉FU ]

− ∂

∂Vi

[
1

ρ

〈
S(I)

Ui

∣∣∣V
〉
FU

]
+

1

ρ

〈
S(I)

m

∣∣V
〉
FU , (4.20)

where Ai is determined by the Navier Stokes equations:

Ai = −1

ρ

∂pX
∂xi

+
1

ρ

∂τijX
∂xj

+ giX . (4.21)

We first focus on the modelling of the expected value of Ai and then use the same
approach to determine the fluid-particle interaction source term and the mass
transfer source term. The Ai term is decomposed into a mean and a fluctuating
part, using the right-hand side of the Navier-Stokes equation:

∂

∂Vi

[〈Ai|V〉FU ] =

(
− 1

〈ρX〉
∂〈pX〉
∂xi

+
1

〈ρX〉
∂〈τijX〉
∂xj

+ giX
)
∂FU

∂Vi

+
∂

∂Vi

[
1

ρ

〈
−∂p

′X
∂xi

+
∂τ ′ijX
∂xj

∣∣∣∣V
〉
FU

]
, (4.22)

The expectation of the fluctuating acceleration (conditional upon U(x, t) = V)
needs to be modeled. In a small interval of time ∆t the position and velocity of the
fluid particle at x(t) change by

xi(t+ ∆t) = xi(t) + Ui(t)∆t, (4.23)

Ui(t+ ∆t) = Ui(t) + 〈Ai〉∆t+

∫ t+∆t

t

ai(t
′

)dt
′

. (4.24)

By analogy to Langevin’s equation, we model the unknown acceleration a by
a random contribution and a deterministic contribution [127]. For single phase
flows the deterministic part is assumed to be linear in the fluctuating velocity.

For the multiphase interaction terms we assume that the deterministic part is

linear in the fluctuation of the particle interaction source term S(I)
Ui

. For vaporising

1all subscripts referring to the fluid phase have been left out for clarity
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dispersed phase flows, we also assume that there is a contribution to the determin-
istic part that is linear in the fluctuation in the source term for mass vaporisation

u′′I,iS(I)
m . The integral in equation (4.24) can then be written as:
∫ t+∆t

t

ai(t
′

)dt
′

=Gij(Uj − Ũj)∆t+BijdWj(t) (4.25)

+G
(fp)
ij (S(I)

Uj
−
〈
S(I)

Uj

〉
)∆t

+G
(m)
ij (u′′I,jS(I)

m −
〈
u′′I,jS(I)

m

〉
)∆t, (4.26)

with the diffusion term Bij containing three contributions: a fluid phase contribu-
tion, a particle interaction contribution and a contribution due to mass transfer:

Dij = D
(f)
ij +D

(fp)
ij +D

(m)
ij , (4.27)

with Dij = (B · BT )ij . For single phase flows, the stochastic diffusion term B
(f)
ij

is determined based on Kolmogorov’s hypothesis [84, 127], which states that in
isotropic homogeneous turbulence the Lagrangian structure function:

D
(f)
L (s) ≡

〈
[U+(t+ s) − U+(t)]2

〉
(4.28)

for high Reynolds number turbulent flows is of the form:

D
(f)
L (s) = C0ǫs, ∀τn ≪ s≪ TL. (4.29)

In equation (4.28), U is a velocity component in any direction, τn is the Kolmogorov
time scale and TL is the integral time scale (i.e. the value of s in the inertial range).
From the model Langevin equation (See e.g. [130]):

dU(t) = −U(t)
dt

TL
+ (

2σ2

TL
)

1
2dW (t), (4.30)

we obtain the Lagrangian structure function

D
(f)
L (s) =

2σ2

TL

s. (4.31)

To be consistent with the Kolmogorov hypothesis, we demand that 2σ2

Tl
= C0ǫ. The

diffusion term is therefore

B
(f)
ij =

√
C0ǫδij . (4.32)

The Lagrangian timescale TL can now be expressed in terms of the turbulent ki-

netic energy k̃ and the turbulence dissipation ǫ. If we further assume that the

velocity variance is that of a Gaussian distribution and therefore given by σ2 = 2
3
k̃,

the Lagrangian timescale is:

T−1
L =

C0ǫ

2σ2
=

3

4
C0

ǫ

k̃
. (4.33)
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Modification of the diffusion term in dispersed two phase flows We will now
propose a model for the diffusion term Bij in equation (4.26) to take into account
the effect of the presence of the dispersed phase and interphase mass transfer. The
derivation starts by a modification of the Lagrangian structure function based on
the equation for turbulent kinetic energy valid for dispersed two phase flows. This
modification implies a modification of the Kolmogorov hypothesis for the first
order Lagrangian structure function. It is known from previous studies that indeed
particle laden flows imply a modification of the theoretical results obtained by
Kolmogorov, although definitive answers as to how the mechanism of turbulence
modification exactly works have yet to be found [43, 44, 48, 66, 156, 160, 162].

In multiphase flows, the transport equation for the turbulent kinetic energy k̃ =
1
2
ũ′′i u

′′
i (3.32) can be simplified under the assumption of homogeneous turbulence

to yield

∂ρk̃

∂t
= −ρǫ+

1

2

〈
S(I)

uiui

〉
︸ ︷︷ ︸D

S(I)
k

E

+
〈
u′′I,iu

′′
I,iS(I)

m

〉
− 1

2

〈
u′′I,iu

′′
I,i

〉〈
S(I)

m

〉
︸ ︷︷ ︸D

S(I)
km

E

. (4.34)

The right hand side of this equation contains the total dissipation in a turbulent
multiphase flow, with a contribution from the fluid phase, the fluid particle inter-

action and mass transfer. The short hand notations
〈
S(I)

k

〉
and

〈
S(I)

km

〉
introduced

in equation (4.34) will be used from this point to indicate the two-way coupling
source terms. Accordingly, the Lagrangian structure function is replaced by:

DL(s)=C0ǫs−
C

(fp)
0

ρ

〈
S(I)

k

〉
s− C

(m)
0

ρ

〈
S(I)

km

〉
s (4.35)

In this equation we have introduced different constantsC
(fp)
0 andC

(m)
0 for the parti-

cle interaction and mass transfer to anticipate on the expected form of the modified
turbulence models. The stochastic contribution to the acceleration becomes:

∫ t+∆t

t

ai(t
′)dt′ =

[
Gij(Uj − Ũj) +G

(fp)
ij (S(I)

Uj
−
〈
S(I)

Uj

〉
)

+ G
(m)
ij (u′′I,jS(I)

m − u′′I,j

〈
S(I)

m

〉
)

]
∆t (4.36)

+

[
C0ǫ−

C
(fp)
0

ρ

〈
S(I)

k

〉
− C

(m)
0

ρ

〈
S(I)

km

〉] 1
2

dWi(t).

The last term in equation (4.37) is our new model for the stochastic diffusion Bij ,
including the effects of the presence of particles and the effect of mass transfer. It
remains to determine a proper model for the drift tensors Gij . When the diffusion
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and the drift tensors have been determined, it is then possible to derive a mean
momentum and Reynolds stress equation from them. These equations can then
be compared to the Eulerian mean momentum and Reynolds stress equation that
were derived by Reynolds averaging the Eulerian Navier Stokes equations.

The corresponding modeled transport equation for the MDF FU can be derived
[127, 172] and is given by:

∂FU

∂t
+ Vi

∂FU

∂xi
= −

(
− 1

ρ(ψ)

∂p

∂xi
+

1

ρ(ψ)

∂τij
∂xj

+ gi

)
∂FU

∂Vi
(4.37)

− ∂

∂Vi

(
FU

[
Gil(Vl − Ũl) −

1

2
C0ǫ

∂ ln(FU)

∂Vi

])

− ∂

∂Vi

(
FU

[
G

(fp)
il (S(I)

Vl
−
〈
S(I)

Ul

〉
) +

1

2

C
(fp)
0

ρ

〈
S(I)

k

〉∂ ln(FU)

∂Vi

])

− ∂

∂Vi

(
FU

[
G

(m)
il (v′′I,lS(I)

m −
〈
u′′I,lS(I)

m

〉
) +

1

2

C
(m)
0

ρ

〈
S(I)

km

〉∂ ln(FU)

∂Vi

])
.

4.1.5 Consistency with Second Moment Closures

A modeled transport equation for the Reynolds stresses can be derived from this
result by multiplying equation (4.38) by ρ(Vj−〈Uj〉)(Vk−〈Uk〉) and integrating. The

result is (with a rearrangement of indices to identify the Reynolds stresses ũ′′i u
′′
j ):

∂ρũ′′i u
′′
j

∂t
+
∂ρũ′′i u

′′
j Ũk

∂xk

+
∂ũ′′i u

′′
ju

′′
k

∂xk

+ ρũ′′ju
′′
k

∂Ũi

∂xk

+ ρũ′′i u
′′
k

∂Ũj

∂xk

=

+Gilρũ
′′
ju

′′
l +Gjlρũ

′′
i u

′′
l + C0ρǫδij

+G
(fp)
il

〈
u′′I,jS(I)

Ul

〉
+G

(fp)
jl

〈
u′′I,iS(I)

Ul

〉
− C

(fp)
0

〈
S(I)

k

〉
δij

+G
(m)
il

〈
u′′I,ju

′′
I,lS(I)

m

〉
+G

(m)
jl

〈
u′′I,iu

′′
I,lS(I)

m

〉
− C

(m)
0

〈
S(I)

km

〉
δij .

A model for Gij, G
(fp)
ij and G

(m)
ij can now be found by comparing the above expres-

sion with the Eulerian transport equation for the Reynolds stresses (3.23) [130].
If viscous and pressure transport are neglected, then the model terms corre-

spond to the pressure redistribution term and the dissipation. When dissipation is
assumed to be isotropic we obtain the relationship:

Πij =Gilρũ′′ju
′′
l +Gjlρũ′′i u

′′
l + (1 +

3

2
C0)ρǫ

2

3
δij

+G
(fp)
il

〈
u′′I,jS(I)

Ul

〉
+G

(fp)
jl

〈
u′′I,iS(I)

Ul

〉
− 3

2
C

(fp)
0

〈
S(I)

k

〉2

3
δij

+G
(m)
il

〈
u′′I,juI,l′′S(I)

m

〉
+G

(m)
jl

〈
u′′I,iu

′′
I,lS(I)

m

〉
− 3

2
C

(m)
0

〈
S(I)

km

〉2

3
δij . (4.38)
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If we require Πii = 0 (redistributive) we obtain the requirement

Gilρũ′′i u
′′
l + (1 +

3

2
C0)ρǫ+

G
(fp)
il

〈
u′′I,iS(I)

ul

〉
− 3

2
C

(fp)
0

〈
S(I)

k

〉
+

G
(m)
il

〈
u′′I,iu

′′
I,lS(I)

m

〉
− 3

2
C

(m)
0

〈
S(I)

km

〉
= 0. (4.39)

Because we want this expression to appropriately reduce to the single phase Reynolds
stress model as well as the non-vaporising Reynolds stress model, each line in
equation (4.39) has to be equal to zero independently. We will now first briefly
discuss the single phase flow situation and derive an expression for the drift ten-
sor Gij. The particle laden case and the vaporising particle laden case are then
subsequently treated in a similar fashion.

Single phase flow The simplest choice for Gij in the case of a single phase flow
is

Gij = −1

2
(1 +

3

2
C0)

ǫ

k̃
δij , (4.40)

which is the Simplified Langevin Model (SLM). Substituting this into the first line
(the single phase part) of equation (4.38) leads to

Π
(f)
ij = − (1 +

3

2
C0)

︸ ︷︷ ︸
c1

ρǫ(
ũ′′i u

′′
j

k̃
− 2

3
δij

︸ ︷︷ ︸
2bij

). (4.41)

This corresponds to Rotta’s model with the Rotta coefficient c1 = 1 + 3
2
C0 (see

equation (3.53) and table (3.2)). A more general expression for Gij can be found
by assuming that Gij is a general tensor function depending on n flow properties.
Haworth and Pope [65] hypothesized that a sufficiently general functional form
for Gij is given by

Gij = Gij(ũ′′ku
′′
l ,
∂Ũp

∂xq
, ǫ). (4.42)

The most general form of this equation that is linear in the anisotropy tensor and in
the mean velocity gradients, and that satisfies the four principles of invariant mod-
elling: dimensional consistency, coordinate system independence, Galilean invari-
ance and rules for forming isotropic tensor functions of other tensors, is given by

Gij =
ǫ

k̃
(α1δij + α2bij + α3b

2
ij) +Hijkl

∂Ũk

∂xl

. (4.43)
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Contribution of the fluid-particle interaction To obtain the most general model

for G
(fp)
ij , it is sufficient to consider tensors of the form

G
(fp)
ij = α

(fp)
1 δij + α

(fp)
2 b

(fp)
ij + α

(fp)
3 (b

(fp)
ij )2. (4.44)

We want to have a model for G
(fp)
ij that corresponds to the two-way coupling part

of the pressure rate of strain tensor Π
(fp)
ij given by

Π
(fp)
ij = −1

2
〈Sukuk

〉
[
C

(fp)
1 b

(fp)
ij + C

(fp)
2

(
b
2(fp)
ij − 1

3
b
2(fp)
kk δij

)]
. (4.45)

In the derivation of the Langevin model, we set C
(fp)
2 = 0 in equation (4.45) and

neglect the second and third contribution to the Langevin model in equation (4.44).
We now get a fluid particle contribution similar to a Simplified Langevin Model.
The fluid-particle contribution to the pressure rate of strain reduces to

Π
(fp)
ij =

1

2
C

(fp)
1

(〈
u′′I,iS(I)

Uj

〉
+
〈
u′′I,jS(I)

Ui

〉
− 2

3

〈
u′′I,kS(I)

uk

〉
δij

)
. (4.46)

A model for the first contribution of the dispersed phase to Gij is then:

G
(fp)
ij = −1

2
· 3

2
C

(fp)
0 δij . (4.47)

Substitution into equation (4.38) yields:

Π
(fp)
ij = −3

2
C

(fp)
0

(〈
u′′I,iS(I)

Uj

〉
+
〈
u′′I,jS(I)

Ui

〉
− 2

3

〈
S(I)

k

〉
δij

)
, (4.48)

which corresponds to Π
(fp)
ij in the Reynolds stress model (4.45) with C

(fp)
1 = 3C

(fp)
0

and C
(fp)
2 = 0.

Contribution of mass transfer Similarly for the contribution of mass transfer:

G
(m)
ij = α

(m)
1 δij + α

(m)
2 b

(m)
ij + α

(m)
3 (b

(m)
ij )2. (4.49)

A model for the mass transfer source term is obtained in a similar manner:

G
(m)
ij = −1

2
· 3

2
C

(m)
0 δij . (4.50)

Substitution into equation (4.38) yields:

Π
(m)
ij = −3

2
C

(m)
0

(
2
〈
u′′I,iu

′′
I,jS(I)

m

〉
− 2

3

〈
S(I)

km

〉
δij

)
. (4.51)
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There is now a slight inconsistency because the source term
〈
S(I)

km

〉
contains an

extra contribution due to the vaporisation fluctuations which did not appear in the
model for the pressure rate of strain derived from the equation for the pressure
fluctuation. This inconsistency is most likely caused by the neglect of the mean
contributions in the model for the pressure rate of strain, effectively causing the
pressure rate of strain to depend on the instantaneous two-way coupling terms
instead of the fluctuating two-way coupling terms. Although this inconsistency
deserves to be investigated (and solved), for now we will neglect it since it is most
likely to play only a small contribution to the total turbulent kinetic energy budget.

4.1.6 Summary and conclusions on the Langevin model

To summarise, the complete generalised Langevin model for the equation of mo-
tion of stochastic samples of the fluid flow in a two-phase turbulent flow is:

dXi(t) = Ui(t)dt, (4.52)

dUi(t) = −1

ρ

∂p

∂xi
dt+ gidt

+ Gij(Uj(t) − Ũj)dt

+ G
(fp)
ij (S(I)

Uj
−
〈
S(I)

Uj

〉
)dt

+ G
(m)
ij (u′′I,jS(I)

m −
〈
u′′I,jS(I)

m

〉
)dt

+

[
C0ǫ−

C
(fp)
0

ρ

〈
S(I)

k

〉
− C

(m)
0

ρ

〈
S(I)

km

〉] 1
2

dWi(t)

+
1

ρ
S(I)

Ui
dt+

1

ρ
u′′I,iS(I)

m dt, (4.53)

with Gij given by:

Gij =
ǫ

k̃
(α1δij + α2bij + α3b

2
ij) +Hijkl

∂〈Uk〉
∂xl

,

G
(fp)
ij = −3

4
C

(fp)
0 δij ,

G
(m)
ij = −3

4
C

(m)
0 δij. (4.54)

The models for the fluid particle contribution and mass transfer contribution are
Simplified Langevin Models, which correspond to a term similar to a Rotta term
(A linear return to isotropy) in second moment closures. It is not necessary to use a
SLM or a Rotta turbulence model for the continuum phase turbulence model. This
model can be chosen independently.
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In Monte Carlo simulations the mean velocity in a finite volume in the com-
putational domain is obtained by averaging over the Monte Carlo particles Np

present in the cell. The calculated mean velocity will contain a statistical error
which is a function of Np. When the number of particles in the cell is small, the
calculated mean velocity will have a large statistical error. when this mean veloc-
ity is then used in the calculations of the individual particle evolutions, a bias error

results, which is a deterministic error that scales with N
− 1

2
p [183, 184]. To keep the

bias error small, the mean velocities are obtained from the mean transport equa-
tions discussed in chapter 3 and the fluctuating quantities are obtained by solving
a Langevin equation for the fluctuating velocity.

The Langevin equation for the velocity fluctuation u′′i = Ui − Ũi is:

du′′i = −
(

1

ρ
− 1

ρ

)
∂p

∂xi
dt− u′′j

∂Ũi

∂xj
dt+

1

ρ

∂ρũ′′i u
′′
j

∂xj
dt

+ Giju
′′
jdt

+ (G
(fp)
ij (S(I)

Uj
−
〈
S(I)

Uj

〉
)dt

+ G
(m)
ij (u′′I,jS(I)

m −
〈
u′′I,jS(I)

m

〉
)dt

+ (C0ǫ−
C

(fp)
0

ρ

〈
S(I)

k

〉
− C

(m)
0

ρ

〈
S(I)

km

〉
)

1
2dWi(t)

+

[
1

ρ
S(I)

Ui
− 1

ρ

〈
S(I)

Ui

〉]
dt+

[
1

ρ
u′′I,iS(I)

m − 1

ρ

〈
u′′I,iS(I)

m

〉]
dt. (4.55)

In equation (4.55), the pressure gradient is premultiplied by a factor 1
ρ
− 1

〈ρ〉 . This

factor represents the difference between the instantaneous specific volume and the
mean specific volume. In an isothermal incompressible flow, the density will be
constant and this term vanishes. In a spray flame however, large density variations
can occur and this term may not be negligible. For now, this term will be neglected.

There are also several contributions to the Langevin model due to the presence
of dispersed phase particles. The contribution to the mean drift in the third line
of equation (4.55) and the contribution to the diffusion term in the fifth line of of
equation result from the modification of the model for the pressure rate of strain.
The two way coupling term in the last line of equation (4.55) takes into account the
momentum transfer at the interface between the phases, i.e. due to the presence of
dispersed phase particles interacting with fluid particles. The mean two way cou-
pling source terms experienced by the gas phase Monte Carlo particles are known

(see equation (3.14)). The instantaneous two way coupling source terms S(I)
Ui

and

u′′I,iS(I)
m seen by fluid particles are more complicated since the fluid particles are

located at xf and the dispersed phase particles are at xp. Fluid particles in the
vicinity of a discrete particle will experience a force exerted by the discrete par-
ticle on the neighbouring fluid element, but fluid particles farther away will not
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experience this force. The instantaneous two way coupling source term appearing
in the Langevin equation is therefore non-zero only if the fluid particle shares an
interface with a discrete particle. This can be modeled as a random event with a
probability equal to the particle volume fraction. So when the Langevin equation
is given by

dUi = Af,idt+ Ap→f,i +BijdWj, (4.56)

the two way coupling source term Ap→f is given by

Ap→f,i =

{
0 with probability 1 − αp
1
ρf
SUi

= 1
ρfVf

Fp→f,i with probability αp
(4.57)

where Vf is the volume occupied by fluid particle f. This model was already pro-
posed by Minier and Peirano [109]. In the case of mass transfer, other distribution
algorithms for the source terms of mass transfer can be constructed, e.g. based on
the saturation of the fluid phase particles [117].

4.2 Relationship with Lagrangian mixing models

In Lagrangian mixing models, scalars often evolve with a time scale based on the
ratio of scalar variance and scalar dissipation rate. We want to study here the
effects of the presence of particles and the effects of mass transfer on Lagrangian
mixing models through the modification of the scalar dissipation rate. We will use
here as an example one of the simplest models, i.e. the Interaction by Exchange
with the Mean (IEM). The Lagrangian IEM model assumes a linear relaxation of a
scalar towards its mean value:

〈
Γ∇2φ′|ψ

〉
=

ǫφ

2φ̃′′2
(φ̃− ψ). (4.58)

To obtain a model for the ratio of scalar dissipation rate over scalar variance, we
will analyse the simplified transport equation of the scalar dissipation rate. In the
case of homogeneous nonreacting fully developed turbulence,

dǫφ
dt

= +Vφ
ǫ −Dφ

ǫ +
〈
S(I)

ǫφ

〉
+
〈
S(I)

ǫm

〉
.

The vortex stretching term Vǫ is modelled as [55]

Vφ
ǫ ≡ −4Γ

〈
∂φ′′

∂xj

∂u′′j
∂xi

∂φ′′

∂xi

〉

≈ CVRe
1
2
L

ǫ

k̃
ǫφ, (4.59)
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and the gradient dissipation term is modelled as [55]

Dφ
ǫ ≡ 4

〈
(Γ

∂2φ′′

∂xi∂xj

)2

〉

≈ CDRe
1
2
L

ǫφ

φ̃′′φ′′
ǫφ, (4.60)

where the Reynolds number ReL is defined as

ReL ≡ k̃

ǫν
. (4.61)

The source term accounting for the presence of the dispersed phase was already
discussed when deriving the equation for the scalar dissipation rate:

〈
S(I)

ǫφ

〉
= Cǫφ

ǫφ

φ̃′′φ′′
S(I)

φ . (4.62)

The scalar source term S(I)
φ is due to diffusion at the interface:

S(I)
φ =

[
−Jjn

(I)
j

]
aI , (4.63)

where n
(I)
j is the unit normal directed towards the interior of the dispersed phase,

and aI is the surface area per unit volume. When we assume a simple gradient
diffusion model for the molecular flux J , such that:

Jj = −Γ
∂φ

∂xj
= −ρID ∂φ

∂xj
, (4.64)

we can write the interface diffusion source term as:

S(I)
φ =

[
Γ
∂φ

∂xj
n

(I)
j

]
aI . (4.65)

So in case of enthalpy, this represents the enthalpy gradient at the surface of a
dispersed phase particle.

The source term for mass transfer was found to be:
〈
Sm

ǫφ

〉
= 4ǫφ

〈
S(I)

m

〉
. (4.66)

We want to have a look at the effects of mass transfer and two-way coupling
on the scalar dissipation rate, so we will not neglect these terms. In homogeneous,
nonreacting fully developed turbulence, the equation for the scalar dissipation rate
can be reduced to:

dǫφ
dt

≈Vφ
ǫ −Dφ

ǫ +
〈
S(I)

ǫφ

〉
+
〈
Sm

ǫφ

〉
(4.67)

=Re
1
2
Lǫφ

[
CV

ǫ

k̃
− ǫφ

φ̃′′φ′′
CDǫφ − ǫφ

φ̃′′φ′′

Cǫφ

Re
1
2
L

〈
S(I)

φ

〉
− ǫφ

4

Re
1
2
L

〈
S(I)

m

〉
]
.
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For large Reynolds numbers, the right hand side of this expression will be large,
thereby forcing the scalar dissipation rate to attain a stationary solution quickly
[55]. Thus, for a fully developed scalar spectrum, the scalar mixing rate is related
to the turbulent frequency by

ǫφ

φ̃′′φ′′
= Cφ

ǫ

k̃
+
Cǫφ

CD

1

φ̃′′φ′′

〈
S(I)

φ

〉
+

4

CD

〈
S(I)

m

〉
, (4.68)

with Cφ = CV

CD
. The analysis shows that when the Reynolds number increases, the

contributions of the two way coupling source terms decrease and may be neglected
in high Reynolds number flows. Mass transfer has the effect of increasing the
mixing frequency; scalar mixing goes faster when there is mass transfer.

4.2.1 Pressure-scrambling term

It has already been shown by Pope [129] that a Langevin model for the rapid pres-
sure scrambling term

Πφ
ij = −

〈
φ′′ ∂p

′

∂xi

〉
(4.69)

is completely determined by the rapid pressure rate of strain model Πij:

Π
(r)
i = Gijũ′′jφ

′′. (4.70)

A consistent scalar-flux model will use the same expression forGij in the pressure-
scrambling term as is used in the Reynolds stress model.

4.3 Gradient diffusion models

Gradient diffusion models are simple algebraic models for the Reynolds stresses
and scalar fluxes. They are obtained by extreme simplification of the transport
equation for the Reynolds stress or scalar flux [35, 55]. Despite their deficiencies, it
is still interesting to study their extension to multiphase flows because the simplic-
ity of the equations allows for an easy analysis of the behaviour of the Reynolds
stresses. Moreover, the gradient diffusion hypothesis is often used to close specific
terms in a complex differential equation like the Reynolds stress equation (3.19).
The triple correlation is closed by writing down a differential equation for it and
then simplifying the equation until it reduces to an algebraic expression. A similar
approach can be used to obtain an algebraic closure for the scalar flux.
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4.3.1 Triple velocity correlations

The triple velocity correlations ũ′′i u
′′
ju

′′
k appearing in the transport equation for the

Reynolds stresses are often modeled using an analysis of the transport equation
for the triple velocity correlations. A transport equation for the triple order cor-
relations can be derived by multiplying the transport equation for the fluctuating
velocity u′′i by u′′ju

′′
kX . This leads to an equation Eijk. 〈Eijk + Ejki + Ekij〉 then

gives:

∂

∂t

(
ρũ′′i u

′′
ju

′′
k

)
+

∂

∂xl

(
ρũ′′i u

′′
ju

′′
kŨl

)
(4.71)

+ ρũ′′i u
′′
ju

′′
l

∂Ũk

∂xl
+ ρũ′′i u

′′
ku

′′
l

∂Ũj

∂xl
+ ρũ′′ju

′′
ku

′′
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∂Ũi
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′′
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∂xk
+ u′′ju
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∂xi
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∂xj
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+
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u′′i u

′′
j

∂τkl

∂xl
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′′
k
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∂xl

+ u′′ku
′′
i

∂τjl
∂xl

]

− ∂

∂xl

[
ρ ˜u′′i u

′′
ju

′′
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′′
l

]

+
〈
S(I)

uiujuk

〉

+ 3
〈
u′′I,iu

′′
I,ju

′′
I,kS(I)

m

〉
−
〈
u′′I,iu

′′
I,ju

′′
I,k

〉〈
S(I)

m

〉
,

with
〈
S(I)

uiujuk

〉
=
〈
u′′I,iu

′′
I,jS(I)

Uk

〉
+
〈
u′′I,iu

′′
I,kS(I)

Uj

〉
+
〈
u′′I,ju

′′
I,kS(I)

Ui

〉
. (4.72)

The last term in eq. (4.71) arises from the gradient of the fourth order correla-
tion and the application of the continuity equation (which contains a mass source
term). The transport equation for the triple correlations derived from the pdf trans-
port equation is obtained by multiplying eq. (4.38) by (Vi − 〈Ui〉)(Vj − 〈Uj〉)(Vk −
〈Uk〉) and integrating. The result is

∂

∂t

(
ρũ′′i u

′′
ju

′′
k

)
+

∂

∂xl

(
ρũ′′i u

′′
ju
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kŨl

)
(4.73)

=

− ∂

∂xl
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ρ ˜u′′i u
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′′
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′′
l − p′u′′i u

′′
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kδil

]
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′′
i u

′′
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〉
)

+
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S(I)

uiujuk

〉
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〈
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I,ju
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I,kS(I)

m

〉
−
〈
u′′I,iu

′′
I,ju

′′
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〉〈
S(I)

m

〉
.
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For the fourth order correlation we use the Millionshchikov hypothesis [112] which
relates fourth order correlations to second order correlations:

〈
u′′i u

′′
ju

′′
ku

′′
l

〉
=
〈
u′′i u

′′
j

〉
〈u′′ku′′l 〉 + 〈u′′i u′′k〉

〈
u′′ju

′′
l

〉
+ 〈u′′i u′′l 〉

〈
u′′ju

′′
k

〉
. (4.74)

In order to obtain an algebraic relationship, we neglect the first two terms on
the right hand side of (4.71) and substitute the Millionshchikov approximation.
For the simplest stochastic model (SLM), Gij = α1

ǫ
ekδij . In general, this term is

handled by introducing the tensor Kij , defined to satisfy:

Gij −
∂Ũi

∂xj
= α1

ǫ

k̃
δij +Kij. (4.75)

The transport equation for the triple order correlation can now be reduced to an
algebraic expression:
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ũ′′i u

′′
l
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, (4.76)

with Cs = 1
3α1

If we assume zero mean velocity gradients and Gij given by the
SLM, Kij = 0 and equation (4.76) reduces to the two phase version of the model of
Launder, Reece and Rodi [90].
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, (4.77)

with a model constant Cs = 0.11. The two phase version of the Daly-Harlow
model [35] can be obtained from this already simplified expression by neglecting

all gradients except the gradient of ũ′′i u
′′
j :

ũ′′i u
′′
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. (4.78)
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The best value of the model constant in single phase flow was found to be Cs =
0.22. The gradient of the triple velocity correlation appearing in the transport equa-
tion for the Reynolds stresses is often modeled using the Daly-Harlow approxima-
tion. In dispersed multiphase flows, this approximation needs to be extended to
the multiphase Daly-Harlow approximation (4.78). More detailed numerical stud-
ies will need to be done to establish the importance of the extra terms.

The same hypothesis can be used to express the fourth order correlations ap-
pearing in the transport equation for the triple correlation u′′i u

′′
jφ

′′, leading to the
scalar multiphase version of the LRR model for the triple correlation:
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. (4.79)

4.3.2 Gradient hypothesis for diffusion flux

The modeled transport equation for the scalar flux was derived previously and is
the starting point for the derivation of an algebraic model:

∂
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+
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)
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−
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〉
. (4.80)

An expression for the anisotropic rate of strain tensor Rφ
i derived starting from a

Lagrangian point of view has the form

Rφ
i = Gφ

ij ũ
′′
jφ

′′, (4.81)

with the second order tensor Gφ
ij a function of the Reynolds stresses, the strain rate

and the turbulence dissipation:

Gφ
ij = Gφ

ij(ũ
′′u′′,

∂Ũ

∂x
, ǫ). (4.82)

At high Reynolds numbers, the molecular transport term T φ
ij will be small and for

local isotropy, the scalar dissipation rate ǫφi will be zero. The scalar-flux transport
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equation (3.69) thus reduces to

−Kij ũ
′′
jφ

′′ = −ρũ′′i u′′j
∂φ̃
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+
〈
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〉
+ 2
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′′
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m

〉
−
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〉〈
S(I)

m

〉
. (4.83)

In equation (4.83) the triple correlations were neglected as well as the transport
terms and the reaction source term, and the scalar fluxes are combined using

Kij ≡ Gφ
ij −

∂Ũi

∂xj

, (4.84)

The tensor Kij is usually assumed to be isotropic and is modeled as:

Kij ≈ −ScT
ǫ

k̃
δij . (4.85)

we now obtain the final form of the gradient diffusion approximation, extended
for multiphase flows with mass transfer:

ũ′′jφ
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1
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k̃
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− ρũ′′i u
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∂φ̃
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+
〈
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〉
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〉
−
〈
u′′I,iφ
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〉〈
S(I)

m

〉)
. (4.86)

This algebraic expression for the scalar flux reveals a number of features:

• A positive contribution of the source term Suiφ will lead to an increase of the
value for the scalar flux.

• A positive contribution due to the source term for mass transfer will lead to
an increase of the value for the scalar flux.

• When two way coupling and mass transfer is neglected, the relationship
(4.86) reduces to the gradient diffusion model described in e.g. [55, 130].

Note that this gradient diffusion model allows for a misalignment between the
scalar flux and the mean scalar gradient which, although not very accurate, is an
improvement over the older (single phase) gradient diffusion models of the form
[35]

ũ′′i φ
′′ = − νT

ScT

∂φ̃

∂xi
, (4.87)

with νT the turbulent viscosity and ScT the turbulent Schmidt number, ScT ≈ 0.7
which relates ΓT to νT :

ΓT ≡ νT

ScT

. (4.88)
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Although these relationships are not actually used in the numerical simulations
presented in this thesis (the scalar flux is obtained from the velocity-composition
pdf), they do give a first approximation for the behaviour of the scalar flux and
offer some insights that would be obtained with far more effort from the complete
transport equations.

4.4 Conclusions

The relationship between Lagrangian turbulence models and second moment clo-
sures has been extended for dispersed multiphase flows with mass transfer. It has
been shown that extra contributions to the model for the pressure rate of strain,
due to fluid-particle interaction and to vaporisation, appear in the transport equa-
tion for the Reynolds stresses. A corresponding Lagrangian turbulence model
(Langevin model) exists and a consistent model approach has been proposed. It
has been shown that the presence of particles tends to accelerate the process where
the fluid phase Reynolds stresses tend to ’return to isotropy’. A similar conclu-
sion can be reached when solving the transport equation for the scalar flux. The
transport equation for the scalar dissipation rate, which is the basis for Lagrangian
mixing models, also contains a two way coupling source term that takes into ac-
count the effect of the presence of the particles and the effect of mass transfer on
the mixing behaviour. It is shown that mixing in the continuum phase is affected
by the diffusion of the scalar at the interface of the dispersed phase and by the
rate of mass transfer. The conclusions are that mixing will go faster when there is
mass transfer from the dispersed phase to the continuum phase (evaporation) and
when the scalar gradient at the interface is positive. For temperature, this means
cold solid or liquid particles in a hot environment cause faster mixing. For mix-
ture fraction, this means that the presence of a dispersed phase is always causing
faster mixing. Finally, the effects of the dispersed phase on the closure of the triple
correlations is investigated and a multiphase gradient diffusion hypothesis (Daly
Harlow approximation) has been derived. In future work, it will be interesting to
investigate the two way coupling terms further in Direct Numerical Simulations
of vaporising droplets in turbulence.
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CHAPTER 5

Modelling of the dispersed phase

In this chapter the Lagrangian treatment of the dispersed phase is presented.

The transport equation for the droplet mass density function Fp (the MDF),

which is a density weighted Droplet Density Function (fp) will be discussed

[85, 117, 177, 178, 189]. The transport equation for the MDF is solved using a

particle method, also known as a Monte Carlo method. The Lagrangian par-

ticle equation of motion in a non-uniform flow is given by the Maxey-Riley

equation [99]. Following the analysis of Hjelmfelt and Mockros [68] and Hinze

[67], this equation can be reduced to a simple ordinary differential equation in

the case of small heavy particles in a gaseous fluid. The equation of motion for

a single particle contains the instantaneous, undisturbed velocity of the fluid

at the location of the particle. This velocity is unknown in RANS and PDF ap-

proaches and needs to be modeled. The model for the velocity is a dispersion

model, akin to diffusion models. To correctly model the dispersion behaviour,

the continuity effect and the crossing trajectories effect need to be taken into

account [33, 109, 171, 185]. The instantaneous velocity of the fluid at the lo-

cation of the particle is modeled using a stochastic equation of motion for the

velocity ’seen’ by the particle. The coupled system of differential equations

for particle location, particle velocity and particle velocity seen is a stochastic

system and a weak first order stochastic integration scheme is presented to

obtain the numerical solution of these properties [81, 110, 122]. The numer-

ical scheme is extended to the general case where the mean drift velocity Ur

between a discrete particle and the fluid phase is not aligned with the first

coordinate axis of the reference system.

5.1 Introduction

5.2 Statistical description of the dispersed phase

In the previous chapters a multiphase description of turbulent flow was presented
and the Eulerian Reynolds Averaged Navier Stokes (RANS) equations as well as
the Lagrangian transport equation of the velocity-composition pdf were given. A
Monte Carlo particle method to solve the transport equation for the pdf using
Langevin equations was presented. In this chapter, the transport equation for the
pdf of particle velocity, describing the evolution of a dispersed phase in a turbulent
continuum fluid phase, is presented and the corresponding Langevin equations

89
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are given. We will consider here a dispersed two phase flow with a fluid phase
k = f and a dispersed phase k = p.

In the statistical approach we consider a spray composed of Np discrete (dis-
persed) liquid or solid particles. The particle can be described completely by the
state vector. The state vector Φ can contain any relevant property needed to de-
scribe the evolution of the dispersed phase. In turbulent spray flames, where the
particles can heat up, vaporise, etc, the state vector will contain the particle posi-
tion, the particle velocity, the particle diameter, the particle temperature and the
velocity of the fluid phase sampled along the particle path: the velocity seen. We
will come back to this property in section 5.5. The state vector in physical space
then becomes [X,Φ =(Xp,Up, dp, Tp,Us,φs). The corresponding phase space con-

sidered here is then given by [x, Ψ̂ ] = [x,Vp, Dp, θp,V s,ψs], where θp corresponds
to the possible values of droplet temperature Tp andψs corresponds to the possible
values of composition seen φs.

The statistical description of the flow is made in terms of the joint one-point

MDF Fp such that Fp

(
x, Ψ̂ ; t

)
dXdΨ̂ is the probable mass of dispersed phase ele-

ments with position within the interval [x,x+ dx] and property Φp in the interval[
Ψ̂ , Ψ̂ + dΨ̂

]
at point M(x, t).

The ensemble of particles is enclosed in the finite volume V . The dispersed
phase is described in terms of the discrete joint mass density function of the state
vector Φ(t) (the droplet MDF):

Fp

(
x, Ψ̂ ; t

)
=

〈
∑

+ in V
m+

p (t) .δ
(
X+

p (t) − x
)
.δ
(
Φ+

p (t) − Ψ̂
)〉

. (5.1)

X+
p is the droplet position vector, andΦ+

p is the state vector containing the relevant
properties describing the evolution of the droplet MDF. The superscript ′+′ is used
to denote discrete (dispersed phase) properties. Dispersed phase volume averages
can be obtained using

Q+
p (t) =

1

V+
p (t)

∫

x∈Ω+
p (t)

Qp(x, t)Xp(x, t) .dx, (5.2)

where Ω+
p (t) is the domain of volume Vp occupied by droplets + at time t.

The density of the dispersed phase is assumed to be constant, and the mass of
a discrete spherical particle can then simply be obtained by

mp(Dp) = ρp
π

6
D3

p. (5.3)

The effect of the composition seen by a discrete particle on the vaporisation rate of
the particle has already been discussed in Chapter 2. It is possible to develop com-
plex models for the composition seen, where molecular and turbulent mixing of
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the vaporised liquid with the surrounding continuous phase is taken into account.
As a model for the composition seen, we will however assume that a discrete par-

ticle sees the mean composition of the gas phase, φs = φ̃f . Closely related to this is
the model for the temperature seen, which is taken to be the mean temperature of

the gas phase, Ts = T̃f .
We define a conditional expectation 〈 | 〉

p
such that:

〈
Q+

p

∣∣x, Ψ̂ ; t
〉

p

Fp

(
x, Ψ̂ ; t

)
=

〈
∑

+ in B

Q+
p (t)m+

p (t) .δ
(
X+

p (t) − x
)
.δ
(
Φ+

p (t) − Ψ̂
)〉

if Fp

(
x, Ψ̂ ; t

)
> 0, and equal zero otherwise. (5.4)

In the absence of collisions, coalescence and breakup, the droplet MDF transport
equation reads [117]:

∀(x,V ,ψ, ϕ̂) ∈ [x,V ,ψ, ϕ̂]
B
,

∂Fp

∂t
+ Vp,j

∂Fp

∂xj
=− ∂

∂Vp,i



〈

dU+
p,i

dt

∣∣∣∣∣x, Ψ̂ ; t

〉

p

Fp




− ∂

∂Dp

[〈
dd+

p

dt

∣∣∣∣x, Ψ̂ ; t

〉

p

Fp

]
− ∂

∂θp

[〈
dT+

p

dt

∣∣∣∣x, Ψ̂ ; t

〉

p

Fp

]

− ∂

∂Vs,i



〈

dU+
s,i

dt

∣∣∣∣∣x, Ψ̂ ; t

〉

p

Fp


− ∂

∂ψs

[〈
Θ+

s

∣∣x,Ψ ; t
〉
p
Fp

]

+

〈
1

m+
p

dm+
p

dt

∣∣∣∣x, Ψ̂ ; t

〉

p

Fp, (5.5)

The last term in (5.5) corresponds to a rescaling of Fp if mass of discrete elements
changes in time.

Droplet conditional averages Naud [117] showed that when the MDF Fp =
mpfp is considered instead of the PDF fp, it is possible to directly relate the sta-
tistical moments of Fp to Eulerian statistics. When the edge effect is neglected
[159] and when assuming statistical homogeneity in a small domain Ω of volume
VΩ, we can write:

∀x ∈ Ω,

〈ρ2Q2X2〉 =
1

VΩ

〈
∑

+

m+
p,Ω(t)Q+

p,Ω(t)

〉
. (5.6)

Note that in two phase flows the droplet MDF Fp and the fluid phase MDF Ff

describing each of the two phases should not be considered separately. Instead,
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the coupled system of MDFs should be considered as this will lead to the proper
treatment of the continuity condition, imposed through the normalisation condi-
tion:

∑

k

∫

[V,ψ]

[ρk(ψ)]−1 Fk(V ,ψ;x, t) .dV .dψ =
∑

k

αk(x, t) = 1. (5.7)

5.3 Lagrangian modelling of the droplet MDF

In order to model and solve Eq. (5.5), a Monte Carlo method is used. A set of
uniformly distributed computational droplets (each having a position, diameter,
temperature, velocity and seen velocity and a composition seen) evolves according
to stochastic differential equations such that the ensemble provides a numerical
approximation of the modelled droplet MDF FP

p .
In the case of a turbulent spray flame which will be considered in chapter 7,

each computational droplet ’∗’ has a set of properties {n∗
p,X

∗
p, D

∗
p, T

∗
p ,U

∗
p,U

∗
s , Θ

∗
s},

where n∗
p is a weight factor associated to the particle1. The superscript ∗ denotes

that the quantity is a stochastic particle property. The modelled droplet MDF is
defined as

FP
p (x, Dp, Tp,Vp,V s, Θs; t) (5.8)

=

〈
∑

∗
n∗

pm
∗
p.δ
(
X∗

p(t) − x
)
.δ
(
Φ∗

p(t) − Ψ̂
∗
p

)〉
,

Unconditional droplet mean properties in a small domain Ω of volume VΩ, are
obtained as:

ρp〈Qp〉 =
1

VΩ

{
∑

∗ in Ω

m∗
pQ

∗
p(t)

}

TA

, (5.9)

and conditional averages are obtained as:

〈Qp〉|p =

{
∑

∗ in Ω

m∗
pQ

∗
p(t)

}

TA

/{
∑

∗ in Ω

m∗
p

}

TA

, (5.10)

where { }TA is an averaging operator, introduced to smooth statistical fluctuations.
In the case of statistically stationary flows, the conditional averages of time in-
dependent quantities Q∗

p are time independent and {..}TA can be taken as a time
averaging [118].

1 A computational droplet is not in one to one correspondence to a “real” droplet: each compu-
tational droplet is a statistical sample of the dispersed phase. The weight factors accommodate the
difference between number of samples and the number of real droplets.
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Model equations are now needed for each of the properties contained in the
state vector Φ∗. The equations describing the droplet diameter (or, equivalently,

mass) evolution ddp

dt
and droplet temperature evolution dTp

dt
was already discussed

in detail in the previous chapter. In the following section, the model equation for
the particle location Xp,i and particle velocity Up,i will be discussed, followed by a
discussion on the model equation for the velocity seen Us,i in section 5.5.

5.4 Equation of motion of a spherical particle in a turbulent fluid

The equation of motion of a spherical particle in a turbulent flow was already
considered by Tchen [163]. Tchen’s proposal was however based more on intuition
than rigour. A more rigorous derivation of the motion of a small rigid sphere
in a nonuniform flow was presented by Maxey and Riley [99] and by Gatignol
[57]. They consider the exact solution of an unsteady Stokes flow disturbed by the
presence of a particle. In this creeping flow, the Reynolds number is assumed to be
small, Rep → 0. The final form of their equation of motion is:

dXp,i = Up,i, (5.11)

and

mp
dUp,i

dt
= (mp −mf) gi︸ ︷︷ ︸

gravity force

+ mf
DUf,i

Dt

∣∣∣∣
xp(t)︸ ︷︷ ︸

pressure gradient

− 6µfπdp

(
Up,i(t) − Uf,i(xp(t), t)︸ ︷︷ ︸

drag force

− 1

6
d2

p∇2Uf,i

∣∣∣∣
xp(t)︸ ︷︷ ︸

Faxen force

)

− 1

2
mf

d

dt

(
Up,i(t) − Uf,i(xp(t), t)

︸ ︷︷ ︸
added mass

− 1

10
d2

p∇2Uf,i

∣∣∣∣
xp(t)︸ ︷︷ ︸

Faxen force

)
(5.12)

− 6µfπd
2
p

∫ t

0

d
dτ

(
Up,i(τ) − Uf,i(xp(τ), τ) − 1

6
d2

p∇2Uf,i

∣∣
xp(τ)

)

(πνf(t− τ))
1
2

dτ

︸ ︷︷ ︸
history term

+ Fi︸︷︷︸
other forces

.

In this equation, mf is the mass of the fluid displaced by the particle and the nota-
tion Uf |xp(t) has the meaning of the undisturbed instantaneous fluid velocity at the
location of the particle. On the right-hand side of (5.13), the following terms can
be distinguished:

• Body force: A buoyancy effect due to the presence of gravity.

• Pressure force: A force due to the presence of a pressure gradient.

• Drag force: The main contribution to the motion of a heavy particle is due to
the drag force.
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• Added mass: Added or ’virtual’ mass due to the displacement effect. This
term becomes important when the particle to fluid density ratio is very small,
e.g. when the ’particle’ is a gas bubble in a liquid fluid.

• Faxen force: A force due to non uniform flow. This term is negligible when
the particle diameter is small. Two different contributions to the Faxen force
can be distinguished, a Faxen contribution to the drag force an a contribution
to the added mass.

• History term: The history term, also known as the Basset force represents the
effect of initial and past conditions. Vojir and Michaelides [170] found that
this term can be neglected when the particle to fluid density ratio ρp

ρf
> 500.

• Other forces: Forces that do not follow from the analysis of Maxey and Riley
and were not taken into account, like the Saffman force due to shear lift,
Magnus effect due to particle rotation, magnetic force, etc.

This equation has also been discussed in a lot more detail in the work of Michaelides
[106], where interesting analogies between the evolution of particle velocity and
particle temperature are presented. Hjelmfelt et al. [68] analysed the equation orig-
inally proposed by Tchen [163] (no external forces, no gravity force) and consid-
ered the range of validity of the equation of motion under different approxima-
tions. They found that for high particle/fluid density ratios ρp

ρf
≫ 1 the particle

equation of motion is governed mainly by the drag term. In our approach, we will
also keep the gravity force and the pressure gradient force and the final form of
the equation of motion is

mp
dUp,i

dt
= mpgi −

mp

ρp

∂p

∂xi

+ 6µfπdp(Us,i(t) − Up,i)︸ ︷︷ ︸
F drag

, (5.13)

where the instantaneous (undisturbed) fluid velocity at the location of the particle
has been replaced by the model velocity seen Us,i. Note that with ’undisturbed’ it is
meant undisturbed by the considered particle, but disturbed by all other particles
in the flow; hence the appearance of p = 〈αfp〉 instead of 〈p〉 in equation (5.13),
with αf the volume fraction of the continuous phase.

5.4.1 Drag term

The drag force is the most dominant force acting on the particle. An exact expres-
sion can be derived for the drag force under the assumption of small Reynolds
numbers, but corrections are necessary when the particle equation of motion is
used in flows where Rep > 1. The drag force can be rewritten as

F drag = mp
Us −Up

τp
, (5.14)
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where Us is the velocity seen by the particle (a model for the velocity of the undis-
turbed instantaneous fluid flow at the position of the particle centre) and τp is the
particle relaxation time (i.e. the timescale at which the particle velocity relaxes to
the surrounding fluid velocity).

The particle Reynolds number Rep characterises the flow around the particle:

Rep =
ρf |Up −Us| dp

µf

, (5.15)

In the Stokes regime, the particle relaxation time is given by

τ St
p =

ρpd
2
p

18µf

. (5.16)

For higher Rep the assumption of creeping flow is not valid and the drag is not
linear anymore. The particle relaxation time is then expressed as

τp =
ρp

3ρf

4dp

CD |Us −Up|
, (5.17)

where the drag coefficientCD is given by semi-empirical correlations. A frequently
used one is the Schiller-Naumann correlation for solid particles [28]:

CD =





24

Rep

(
1 + 0.15Re0.687

p

)
if Rep ≤ 800,

0.44 if Rep > 800.
(5.18)

Note that liquid particles will rarely approach the limit value for high Reynolds
numbers due to droplet breakup, which will automatically reduce the particle di-
ameter based Reynolds number.

A convenient way of dealing with high Reynolds number modifications is to
introduce the correction factor f1. When we introduce the notation

1

τp
=

f1

τ St
p

, (5.19)

the Schiller-Naumann correlation reads:

f1 =

{
1 + 0.15Re0.687

p if Rep ≤ 800,

0.44
Rep

24
if Rep > 800.

(5.20)

Drag modification due to internal circulation Besides the high Reynolds num-
ber modification other effects may be of importance. For liquid particles where the
viscosity ratio κ = µp

µf
is small, say κ < 10, internal circulation can reduce the drag

coefficient [28, 52]. This effect will be neglected in our case because κ > 10 (for
methanol droplets, κ ≈ 25).
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Drag modification due to vaporisation For vaporising particles, the drag coef-
ficient is modified by the Spalding mass transfer number BM or Spalding heat
transfer number BT , defined earlier in chapter 2. The simplest modification is due
to Eisenklam [16, 47] and reads:

CDevap

CD

=
1

1 +BT

, (5.21)

with CD the drag coefficient corresponding to a nonvaporising particle, i.e. equa-
tion (5.18). Expression (5.21) is similar to the drag correction proposed by Chiang
et al. [14, 150], who proposes

CDevap(1 +BH)0.32 =
24

Rep
(1 + 0.2Re0.63

p ), (5.22)

with

BH = BT (1 − Ql

Qf

). (5.23)

In equation (5.23), Ql is the energy spent for droplet heating and Qf is the total
heat flux obtained from the gas phase. The largest correction is obtained when the
received heat goes to evaporation.

Additionally, Chiang et al. also suggest to correct the Nusselt and Sherwood
number for vaporising droplets using the heat transfer number BH and BM :

Nu(1 +BH)0.700 = 2 + 0.454Re0.615
p Pr0.98, (5.24)

Sh(1 +BM)0.557 = 2 + 0.390Re0.540
p Sc0.76, (5.25)

leading to lower Nusselt and Sherwood numbers compared to the classical Ranz-
Marshall correlations. These corrections incorporate the slower droplet vapori-
sation due to the finite diffusion of the fuel vapour to the environment. Similar
corrections due to mass transfer have been suggested by Yuen and Chen [186].

5.4.2 Shear lift

Particles moving with a shear flow will experience a lift force perpendicular to the
direction of the flow. This is illustrated in Figure (5.1) for a particle in a simple one-
dimensional shear flow . The expression for the one-dimensional shear lift force
on a particle was first obtained by Saffman [142] and reads:

FL = 1.615ρf

√
νfd

2
p (Us − Up)

∣∣∣∣∣
dŨf

dy

∣∣∣∣∣ · sgn

(
dŨf

dy

)
, (5.26)
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Figure 5.1: Sketch of the shear lift force on a particle.

where the instantaneous fluid velocity has again been replaced by the model ve-
locity Us,i. The velocity gradient at the location of the particle is obtained using the
mean fluid velocity This equation can also be expressed in a more general form as
[31]:

FL = 1.615d2
p

√
µfρf

(Us −Up) × ω

|ω| 12
, (5.27)

with ω = ∇ × Us. The Saffman lift was derived under the assumptions that the
particle Reynolds number Rep is smaller than the shear Reynolds number Reσ:

Rep ≪
√

Reσ =

√
d2

p

νf

dŨf

dy
(5.28)

An extension of the Saffman lift for particle Reynolds numbers larger than the
shear Reynolds number was first proposed by McLaughlin [104]. Based on the
numerical studies of Dandy and Dwyer [36], Mei [105] proposed an empirical fit
to the Saffman lift:

FL

FL,Saffman
=

{
(1 − 0.3314

√
β)e−0.10Rep + 0.3314

√
β if Rep ≤ 40,

0.0524
√
βRep if Rep > 40

(5.29)

with

β =
dp

2 |Us −Up|
|ω| , 0.005 < β < 0.4. (5.30)

The shear lift force might become very large in particle laden jets, where the shear
force will cause the particles to move away from the centreline if the axial parti-
cle velocity is smaller than the axial flow velocity, and it will cause the particles
to move towards the centreline if the particles move faster than the axial flow ve-
locity. A quick analysis using equation (5.26) shows that a 100 µm particle in air
moving with a slip velocity of Ur = 10m

s
in a shear flow of dUf

dy
= 10, 000m

s2 will ex-
perience a Saffman lift force of the order of 0.01mp. A direct comparison with the
gravity force mpg shows that the Saffman lift force is usually a small contribution
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in particle laden jets. In particular, it was found to be small in the spray flames
studied in this thesis, from which the specific values used in the above analysis
were obtained. The Saffman lift is however taken into account in some numeri-
cal simulations [88] in the context of studies where particle collisions may play an
important role.

5.4.3 Other forces

Other forces and corrections can also be taken into account [28, 31], but these forces
are usually considered to be negligible in particle laden turbulent flows when the
density ratio ρp

ρf
≫ 1. No other forces are considered in this thesis.

5.5 Dispersion of particles in turbulent flow

Turbulent particle dispersion is a commonly used term to describe the transport
phenomena of discrete particles which are distinguishable from the carrier phase
that exhibit turbulent motion. It is the dispersed phase equivalent of turbulent
diffusion in a continuum phase fluid flow. Many studies can be found in the liter-
ature devoted to Lagrangian (and Eulerian) dispersion models (e.g. [131, 146, 171]
and the references therein).

After a short description of dispersion, the model for the velocity seen disper-
sion model will be given in the case that the mean drift velocity is aligned with
the first axis of the reference coordinate system. We will call this the specific co-
ordinate system. This model is then extended to a general coordinate system and
a transformation is given that allows us to go from the specific coordinate system
to the general coordinate system. A first order integration scheme can be derived
in a rather straightforward manner for the equation for the velocity seen when it
is given in the specific coordinate system. The numerical strategy in the general
case is then to first perform an orthogonal transformation to the specific coordinate
system, evolve the velocity seen over a small timestep ∆t, and then transform the
solution back to the generalised coordinate system.

Due to the finite particle inertia and external force fields like gravity, a fluid
element and a particle element located initially at the same location will follow
a different trajectory. One should therefore model the successive fluid velocities
sampled or ’seen’ by the dispersed phase particles as they move through the fluid.
The modelling of the velocity seen by the dispersed phase particle involves two
submodels where the effect of finite particle inertia and the effect of external force
fields (causing the crossing trajectories effect) are modeled. These two effects will
be discussed briefly before the model for the velocity seen is derived.

Inertia effect The inertia effect is due to instantaneous drift: the velocity differ-
ence between the particle and the surrounding fluid. We will consider an isotropic
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Figure 5.2: Illustration of the Crossing Trajectory Effect.

turbulent flow with zero mean drift, so no external force fields are present. In this
flow a dispersed phase particle will experience (’see’) small fluid phase fluctua-
tions. Because of a difference in inertia, the dispersed phase particle is not able
to respond instantaneously to the fluid phase velocity fluctuations. The particle
inertia is characterised by the particle relaxation timescale τp, given by equation
(5.17). Because of the inertia effect, the fluid and particle velocity correlations will
be different. These correlations were already derived by Tchen [163] and revisited
in Hinze [67].

In the case of dispersed phase particles with zero inertia, the particle will re-
spond immediately to changes in the fluid phase and follow the fluid ’perfectly’.

As a result, it will ’see’ (experience) the fluid Lagrangian timescale, TL = CL
ek
ǫ
, i.e.

it will see fluctuations with an autocorrelation time TL. When the particle inertia
is large, the particle will be practically standing still with respect to the fluid phase

elements and it will see an Eulerian timescale TE = LE

σf
, with LE = CE

ek 3
2

ǫ
and σ

the fluid velocity variance. In practice, a dispersed phase particle will experience
a timescale varying between the two limits TL and TE.

Effect of crossing trajectories The effect of a mean relative velocity (or drift ve-
locity) between the discrete particle velocity and the velocity of the fluid seen,

Ũr = Ũp − Ũs, on the velocity correlation is known as the ’crossing trajectories
effect’, a term introduced by Yudine [185] and later investigated by Csanady [33]
and refined by Wang and Stock [171]. The effect is illustrated in Figure (5.2). When
an external force, like gravity, works on a discrete particle in a turbulent fluid, a
mean drift velocity occurs between the fluid and the discrete particle. A fluid and
a discrete particle located at exactly the same position xn at time tn will follow dif-
ferent trajectories and after a time dt, their positions will be a distance r = 〈Ur〉dt
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Figure 5.3: Diffusion Ellipsoid with different major axes. When the axes x′ are not
aligned with the mean drift, an orthogonal transformation is needed.

apart. The velocity of the fluid seen along the discrete particle trajectory from tn to
tn+1 will be different from the velocity of the fluid particle located at xn(tn).

As a result, the fluid velocities ’seen’ by the discrete particles are less correlated
than the Lagrangian fluid velocities and the dispersion coefficient decreases.

Continuity effect In the limit as
fUrq
gu′′

f u′′

f

→ ∞, the dispersion coefficient normal

to the drift velocity Ũr is one half that parallel to Ũr, see Figure (5.3). This effect
of different dispersion behaviour in different directions is called the ’continuity
effect’ by Csanady [33, 171] and it is a consequence of the crossing trajectories
effect.

5.5.1 Modelling dispersion

It is the purpose of a dispersion model to correctly describe the spreading of dis-
persed phase particles in a turbulent flow. We follow here the approach laid out
by Minier and Peirano [109] and Simonin [148].

The stochastic particle position X∗
p and velocity U∗

p follow the simplified equa-
tions of motion (5.11) and (5.13). The velocity of the fluid at the location of the
particle is then modeled by a Langevin equation, whose general form is:

dUs,i = [As,i(t,Z) + Ap→s,i(t,Z)] dt+Bs,ij(t,Z)dWj, (5.31)



5.5. Dispersion of particles in turbulent flow 101

where As,ij is the drift vector and Bs,ij is the diffusion matrix. The two-way cou-
pling term seenAp→s,i at the location of a discrete particle xp is in principle different
from the two-way coupling term appearing in the Langevin equation of the fluid
phase [109].

All three terms on the right hand side of (5.31) depend on time and on a state
vector which is taken to be Z= Z(xp,Up,Us) [131]. We will first present the mod-
elling of the drift and diffusion terms in the simplified case where the mean drift
vector is aligned with the first coordinate axis.

5.5.2 Closure of the two way coupling terms

The two way coupling source term Ap→s,i contains two contributions. First, a con-
tribution due to momentum transfer, which is the usual two way coupling term.
In case of vaporising particles it also contains a contribution due to mass transfer.
Both source terms need to be modeled.

Momentum transfer The force exerted by one particle on the fluid is the drag
force Fdrag (with opposite sign) given in equation (5.14). The total force experi-
enced by the fluid element surrounding a discrete particle is the sum of the indi-
vidual particle forces per unit volume Vf . The two-way coupling term ’seen’ then
becomes equal to the mean two-way coupling source term 〈SU〉:

A
(1)
p→s,i = − 1

Vf

∑

∗∈V

1

ρf

Fdrag,i =
1

ρ

〈
S(I)

Ui

〉
. (5.32)

In the second step we have neglected any fluctuations in the fluid phase density.
The particles therefore ’see’ the mean fluid phase density.

Mass transfer When there is mass transfer between the phases, the Langevin
equation describing the fluid phase should contain a source term taking this mass
transfer into account. And a discrete particle p will see a fluid particle which is
affected by the mass transfer of the same discrete particle p.

The mass transfer from the dispersed phase to the fluid phase follows the idea
of Demoulin and Borghi [38] (which was implemented by Naud [117]) that evap-
orated mass should be distributed to the gas phase in such a way as to feed a peak
in the mass fraction pdf at saturation conditions (see also chapter 4). Out of the set
of fluid particles in the neighbourhood of the discrete particle p, the fluid particle
whose composition state is closest to saturation conditions is selected. This parti-
cle will get the evaporated mass until it reaches saturation conditions. If the fluid
particle is not saturated after obtaining the complete evaporated mass of discrete
particle p, then it will get the evaporated mass of another discrete particle until the
fluid particle is saturated or until all evaporated mass has been given to the fluid
phase.
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This model takes into account the nonhomogeneous distribution of fuel vapour
in a finite volume cell due to the finite timescale of turbulent mixing. A discrete
particle is more or less immersed in its own fuel vapour and it will see fluid par-
ticles with high amounts of fuel vapour or even saturated fluid particles. We use
this idea to extend the Langevin model for the velocity seen to situations where
mass transfer occurs.

In the case of momentum transfer, we have assumed that particles see the mean
fluid phase density. The algorithm used to distribute mass to the fluid phase par-
ticles allows to take the fluctuations in fluid phase density into account. The fluid
particle density that is seen by the discrete particle is obtained from the fluid par-
ticle that received the evaporated mass of that discrete particle.

The source term added to the Langevin equation for the velocity seen,

A
(2)
p→s,i =

1

ρf
UI,iS(I)

m , (5.33)

is implemented as a simple momentum balance of the fluid particle seen (which
occupies a volume mp

ρp
with mass mf = ρf

ρp
mp):

Un+1
s,i = Un

s,i +
∆mp

mf + ∆mp
(Un

p,i − Un
s,i). (5.34)

5.5.3 Closure of drift and diffusion term

The details of how the drift and diffusion terms are obtained will now briefly be
explained. A more detailed explanation is given in [109]. A modification of the
diffusion term is proposed based on the presence of two way coupling and mass
transfer in the evolution of the turbulent kinetic energy of the velocity fluctuation
seen.

Closure of the drift term The basis for the model is the simplified Langevin
model for a fluid particle. In the limit case of negligible particle inertia τp → 0 and
negligible mean drift velocity Ur → 0, the Langevin model for the discrete particle
reduces to that of a fluid particle. The discrete particles are then ideal tracers of the
fluid flow. Following the approach of Minier and Peirano [109], our starting point
to create a model for the velocity of the fluid seen will be the Simplified Langevin
Model discussed in Chapter 4.

In the fluid case, the drift term in the stochastic differential equation consists of
the pressure gradient and a relaxation towards the mean:

− 1

ρf

∂p

∂xi
− Uf,i − 〈Uf,i〉

TL
. (5.35)
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To take into account the effects of crossing trajectories, an extra term containing the
mean relative velocity appears in the Langevin equation for the discrete particle.
The proposed drift term is then

As,i = − 1

ρf

∂p

∂xi

+ 〈Ur,i〉
∂〈Uf,iX〉
∂xj

− Us,i − 〈Us,i〉
T ∗

L

. (5.36)

Here, T ∗
L is the Lagrangian timescale of the velocity of the fluid seen. According

to Csanady’s analysis, the integral timescale of the velocity of the fluid seen is
different from the fluid Lagrangian timescale TL. When the mean drift is aligned
with the first coordinate axis, the timescale in longitudinal direction T ∗

L = TL,‖ is

TL,‖ =
TL√

1 + β2 |Ur|2
2
3〈u′

k
u′

k〉

, (5.37)

and in the transversal directions T ∗
L = TL,⊥:

TL,⊥ =
TL√

1 + 4β2 |Ur|2
2
3〈u′

k
u′

k〉

, (5.38)

where β = TL

TE
= Cβ is the ratio of the Lagrangian and Eulerian timescales of the

fluid, which is a constant. The value of this constant is taken to be Cβ = 0.45.

Closure of the diffusion term The modelling of the diffusion term is discussed
extensively in [109]. We will follow the same step-by-step approach, but making
some modifications by taking into account the two-way coupling source terms

S(I)
Ui

. In the case of stationary isotropic turbulence, with mean velocities equal to
zero and vanishing pressure gradient, the stochastic differential equation for the
velocity seen is given by

dUs,i = −Us,i

T ∗
L

dt+Bs,ijdWj +
1

ρf
S(I)

Ui
dt+

1

ρf
UI,iS(I)

m dt. (5.39)

Effectively, we are dealing with an equation for the velocity fluctuation seen,
since the mean velocity is zero. We define the fluctuating velocity seen u′

s as u′
s =

Us − 〈Uf〉. In the case considered here, there is no mean drift velocity and u′
s = Us.

Using the stationarity constraint dks/dt = 0 for the turbulent kinetic energy
of the velocity seen, ks = 1

2

〈
u′s,iu

′
s,i

〉
and by applying the stochastic calculus rule

d(UiUj) = UidUj + UjdUi + Dijdt, we obtain a relationship between the diffusion
term and the Lagrangian timescale:

B2
s,ij = Cst

0 ǫbi −
2

3

〈
1

ρf
u′s,iS(I)

Ui

〉
− 2

3

〈
1

ρf
u′s,iUI,iS(I)

m

〉
, (5.40)
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with the ratio of the fluid timescale and the seen timescale bi = Tf

Ti
. Cst

0 is the value

of the proportionality constant in the stationary case, Cst
0 = C0 + 2

3
and TL = 4

3
k
ǫ
Cst

0 .
We have implicitly assumed in (5.40) that 〈Uf〉 = 〈Us〉.

In the case of anisotropic turbulence a weighted turbulent kinetic energy has to
be introduced to compensate for the non-isotropic drift vector:

K =
3

2

∑3
i=1 bi

〈
u′f,iu

′
f,i

〉
∑3

i=1 bi
, (5.41)

leading to the intermediate Langevin model

dUs,i = −3

4
Cst

0

ǫ

k̃
bi(Us,i − 〈Us,i〉)dt+

√
Cst

0 ǫbi
K
k̃
− 2

3

〈
1

ρf
u′s,iS(I)

Ui

〉
− 2

3

〈
1

ρf
u′s,iUI,iS(I)

m

〉
dWi

+
1

ρf
S(I)

Ui
dt+

1

ρf
UI,iS(I)

m dt. (5.42)

When considering homogeneous non-stationary turbulence, e.g. decaying tur-
bulence, the turbulent kinetic energy of the fluid seen is expected to satisfy an
equation similar to that for the turbulent kinetic energy of the fluid:

1

2

d
〈
u′s,iu

′
s,i

〉

dt
= −ǫ+

〈
u′′I,iS(I)

Ui

〉

︸ ︷︷ ︸
1
2

D
S(I)

uiui

E

+
1

2

〈
u′′I,iu

′′
I,iS(I)

m

〉
, (5.43)

with S(I)
uiuj the two-way coupling source term appearing in the Eulerian transport

equation for the Reynolds stresses. The final expression for the Langevin model
for the velocity seen is then given by:

dUs,i = − 1

ρf

∂p

∂xi

dt+ 〈Ur,i〉
∂〈Ui〉
∂xj

dt

− (
1

2
+

3

4
C0)

ǫ

k̃
bi(Us,i − 〈Us,i〉)dt+

√
4

3
ǫ

(
(
1

2
+

3

4
C0)bi

K
k̃
− 1

2

)
dWi

+
1

ρf

S(I)
Ui
dt+

1

ρf

U
(I)
s,i S(I)

m dt. (5.44)

Note that the two way coupling source term in the diffusion term has cancelled.

5.5.4 Model equations

In an article by Minier, Peirano and Chibbaro [110], a stochastic numerical scheme
is suggested to numerically integrate the coupled system of stochastic differential
equations describing the evolution of a dispersed phase particle in a turbulent
fluid.
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The system of equations considered by Minier et al. are given in the general
form:

dxp,i = Up,idt (5.45)

dUp,i =
1

τp
(Us,i − Up,i)dt+ Aidt (5.46)

dUs,i = Gs,ijUs,idt+ Cidt+Bs,ijdWj(t), (5.47)

with τp the characteristic particle relaxation time scale discussed in section 5.4.
Ai is the acceleration containing the undisturbed fluid flow forces:

Ai = − 1

ρf

∂p

∂xi

+ gi, (5.48)

andBij is a diagonal tensor (nonzero values only on the diagonal). The description
of the fluid flow in which the considered particle is immersed is assumed to be
accurately described by a simplified Langevin model. One of the properties of the
model should be that in the limit of zero inertia, a dispersed phase particle should
follow the fluid flow and the system of equations (5.11-5.47) should reduce to the
SLM describing the fluid flow. The drift term Gs,ij is modeled accordingly as a
diagonal tensor:

Gs,ij =
1

Ti
δij , (5.49)

with Ti given by

Ti = Tf

[
1 + βi

3

2

|〈Ur〉|2
k

] 1
2

, (5.50)

with Tf the timescale of the fluid, defined as Tf ≡ Cµ
ek
ǫ
. Cµ is a constant determined

by the SLM, and is given here as C−1
µ = 1 + 3

2
C0. βi is a constant that depends

on the direction i (according to the analysis of Csanady). The diagonal diffusion
tensor Bij is given by

B2
ij =

2

3
ǫ

[(
1 +

3

2
C0

)
bi
K
k̃
− 1

]
δij, (5.51)

and the vector Ci consists of the following terms:

Ci =
〈Us,i〉
Ti

− 1

ρf

∂p

∂xi
+ (〈Up,i〉 − 〈Us,i〉)

∂〈Uf,i〉
∂xj

+
1

ρf
S(I)

Ui
+

1

ρf
UI,iS(I)

m . (5.52)

It can now be easily checked that when τp → 0, the particles behave as fluid
particles and the equation for the velocity seen reduces to the SLM described in
chapter 4.



106 Chapter 5. Modelling of the dispersed phase

5.6 Equation for the fluctuation of velocity seen

The equation for the velocity seen contains a term Gij(Us,i − 〈Us,i〉). A similar term
occurs in the Langevin equation describing the fluid flow. It is this term that gives
rise to the bias error: Due to the finite number of particles in the considered vol-
ume, the computed mean velocity seen in this volume will contain a statistical
error. The feedback of this computed mean velocity seen (including the error) will
then lead to a bias error [183, 184]. In single phase flow, this problem was resolved
by obtaining the mean flow properties from a finite volume solver [72] and using
the Langevin equation only for the fluctuating velocity. We follow here the ap-
proach of Naud [117] to obtain an equation for the fluctuating velocity seen. The
starting point is the modified SLM equation (5.47) and (5.52). By subtracting the
following equation from the modified SLM

∂〈Ui〉|1
∂t

+ Up,j

∂〈Ui〉|1
∂xj

=
1

ρ

[
∂ρ〈Ui〉|1
∂t

+
∂ρ〈Ui〉|1〈Uj〉|1

∂xj

]
+
(
Up,j − 〈Uj〉|1

) ∂〈Ui〉|1
∂xj

− 1

ρ
〈Ui〉|1

〈
S(I)

m

〉

=
1

ρ

[
− ∂p

∂xi

+
∂τij
∂xj

+ ρgi −
∂

∂xj

(
ρ
〈
u′iu

′
j

〉
|1

)
+
〈
S(I)

Ui

〉
+
〈
UI,iS(I)

m

〉]

+
(
Up,j − 〈Uj〉|1

) ∂〈Ui〉|1
∂xj

− 1

ρ
〈Ui〉|1

〈
S(I)

m

〉
, (5.53)

we obtain the modeled increment for the fluctuation of the velocity seen. Neglect-
ing the gravity and mean viscous diffusion terms we obtain the final model for the
equation for the fluctuating velocity seen:

du′s,i =−
[

1

ρf
− 1

ρ

]
∂p

∂xi
dt+

1

ρ

∂

∂xj

(
ρ
〈
u′iu

′
j

〉
|1

)
dt

−
(
u′p,j +

〈
u′s,j
〉
|2

) ∂〈Ui〉|1
∂xj

dt+Gs,iju
′
s,jdt+Bs,ijdWj (5.54)

+
1

ρf
UI,iS(I)

m dt− 1

ρ

〈
UI,iS(I)

m

〉
dt+

1

ρ
〈Ui〉|1

〈
S(I)

m

〉
.

In equation (5.55), the source term for momentum transfer drops out of the equa-
tion because the density fluctuations are neglected. If the density fluctuations are
systematically neglected, the pressure gradient can also be removed from the equa-
tion. The source term for mass transfer can still be determined by considering a
momentum balance. In this way, all references to the instantaneous value for fluid
density can be avoided and equation (5.55) can be solved.

5.7 Dispersion model in general coordinates

The dispersion model derived in the previous section was derived under the as-
sumption that the mean drift velocity (the mean relative velocity Ur) is aligned
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with the first axis of the reference system. The Langevin model is now generalised
for the case where Ur has any orientation with respect to the axis of the reference
system.

Modified drift vector The modified matrix Gij reads

Gs,ij = − 1

TL,⊥
δij +

[
1

TL,‖
− 1

TL,⊥

]
rirj , (5.55)

where r is the unit vector aligned with the mean drift: r = 〈Ur〉|2/|〈Ur〉|2|; and
where TL,‖ and TL,⊥ are the Lagrangian timescales seen in the directions parallel
and perpendicular to the mean drift according to Csanady’s analysis. Based on the
SLM modeled Lagrangian timescale T (SLM)

L , they read:

TL,‖ = T (SLM)

L

/
H‖ and TL,⊥ = T (SLM)

L

/
H⊥, (5.56)

with

H‖ =
√

1 + Cβξr, H⊥ =
√

1 + 4Cβξr and ξr = 3 |〈Ur〉|2|2
/
〈u′ku′k〉|1. (5.57)

Introducing the specific form of T (SLM)

L , (5.55) can now be written as:

Gs,ij = − 1

T (SLM)

L

Hij = −
(

1

2
+

3

4
C0

)
2ǫ

〈u′ku′k〉|1
Hij , (5.58)

with

Hij = H⊥δij +
(
H‖ −H⊥

)
rirj. (5.59)

Modified diffusion matrix The diffusion matrix is obtained as the solution of

(
BsB

T
s

)
ij

= Dij , (5.60)

where BT
s,ij is the transpose matrix of Bs,ij. The symmetric matrix Dij is given as

Dij = ǫ

(
C0λHij +

2

3
(λHij − δij)

)
, (5.61)

with the factor λ specified as λ = 3 Tr(HR)/ [Tr(H) 〈u′ku′k〉|1], where Tr(H) de-

notes the trace of matrix Hij and with Rij =
〈
u′iu

′
j

〉
|1, such that in isotropic decaying

turbulence, the turbulent kinetic energy of the fluid seen is given by equation (5.43)
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5.8 Orthogonal transformation

The solution of the equation for the velocity seen can be obtained exactly for small
timesteps when assuming constant coefficients. This solution is then used as the
basis of a weak first order numerical integration scheme [110, 122]. When the
equation for the velocity seen in generalised coordinates is considered, an orthog-
onal transformation is used to decouple the equations for Us,1, Us,2 and Us,3. The
exact solution of each equation can now be considered individually, which makes
the analysis less complicated. In order to perform an orthogonal transformation,
the eigenvalues and eigenvectors of the general system are needed. This will be
discussed in the next paragraph.

Eigenvalues and Eigenvectors The eigenvalues λG of Gs,ij, given by (5.58-5.59),
are found to be

λG = − 1

T (SLM)

L

(
H‖, H⊥, H⊥

)
(5.62)

and the orthogonal matrix of eigenvectors Pij is given by

P =




+ Vrx√
V 2

rx
+V 2

ry
+V 2

rz

− Vry√
V 2

rx
+V 2

ry

− VrxVrz√
V 2

rx
+V 2

ry

√
V 2

rx
+V 2

ry
+V 2

rz

+
Vry√

V 2
rx

+V 2
ry

+V 2
rz

+ Vrx√
V 2

rx
+V 2

ry

− Vry Vrz√
V 2

rx
+V 2

ry

√
V 2

rx
+V 2

ry
+V 2

rz

+ Vrz√
V 2

rx
+V 2

ry
+V 2

rz

0 +

√
V 2

rx
+V 2

ry√
V 2

rx
+V 2

ry
+V 2

rz



. (5.63)

With the introduction of the Euler angles

cos(θ) = Vrx√
V 2

rx
+V 2

ry

sin(θ) =
−Vry√
V 2

rx
+V 2

ry

,

cos(ψ) =

√
V 2

rx
+V 2

ry√
V 2

rx
+V 2

ry
+V 2

rz

sin(ψ) = −Vrz√
V 2

rx
+V 2

ry
+V 2

rz

,

the matrix Pij can also be written as:

P =




cos(θ) cos(ψ) sin(θ) cos(θ) sin(ψ)
− sin(θ) cos(ψ) cos(θ) − sin(θ) sin(ψ)
− sin(ψ) 0 cos(ψ)


 . (5.64)

The coupled system of differential equations

dUs,i = Gs,ijUs,jdt (5.65)

can now be decoupled by making a change of variable Vs = PTUs and solving the
decoupled system

dVs,i = λs,ijVs,jdt, (5.66)
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where the matrix λij is the eigenvalue matrix, a diagonal matrix whose diagonal
entries are the eigenvalues λG, arranged in the same order as the corresponding
eigenvectors in the eigenvector matrix Pij. The solution of the original system of
equations can be obtained using the back-transformation Us = P · Vs.

Eigenvalues of diffusion matrix Since the diffusion matrix Dij is a function of
Hij, the eigenvalues ofDs,ij are closely linked to the eigenvalues ofGs,ij. By writing
the diffusion matrix Ds,ij as

Ds,ij = ǫ

(
(C0 +

2

3
)λHij −

2

3
δij

)
, (5.67)

we see that the eigenvalues of Dij are related to the eigenvalues of Hij as:

λD = (C0 +
2

3
)λǫλH − 2

3
ǫ, (5.68)

and the eigenvectors of Dij are the same as the eigenvectors of Gij . The diffusion
matrix Bij can also be written as (no summation over j implied at the right hand
side)

(
BsB

T
s

)
ij

= PLP−1

= (P
√

L)(
√

L
T
PT )

= (P
√

L)(P
√

L)T , (5.69)

with Lij the eigenvalue matrix and Pij the corresponding orthogonalised eigen-
vector matrix. So Bij can be written as

Bij = Pij

√
lj, (5.70)

with eigenvalues li. In the transformed equation of motion for the velocity seen,
this term is premultiplied by PT , so the matrix Bij reduces to the diagonal matrix√

L.

Nonhomogeneous system To solve the more general case

dUs,i = Gs,ijUs,jdt+ Cidt+BijdWj , (5.71)

but with the restriction that Ci is independent of the instantaneous velocity seen
Us,i, the same strategy can be used. Introducing the change of variable Us = PVs,
with P still given by equation (5.63) or (5.64), we obtain

dVs,i = λs,ijVs,jdt+ P−1
ij Cjdt+ P−1

ij Pij

√
ljdWj

= λs,ijVs,jdt+ P T
ijCjdt+

√
lidWi, (5.72)

because Pij is orthogonal. Because Ci and Pij are independent of the velocity Us,i,
and because the diffusion matrix is reduced to a diagonal matrix, the system (5.72)
is still decoupled.
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5.9 Numerical integration scheme

The purpose of this section is to find the analytic solution of the general system
(5.46-5.47) over small timesteps ∆t. It is possible to find the solution when as-
suming that the values of the coefficients τp, Ai, Gs,ij, Ci and Bs,ij remain constant
during the timestep. Since Ci given by equation (5.52) is clearly depending on the
instantaneous value of the particle velocity and particle velocity seen through the
two-way coupling source term, we will neglect two way coupling in the following
analysis. Using the Ito formula and the Ito isometry (see appendix A), the numer-
ical solution of equations (5.46-5.47) at timestep n+ 1 can be found in terms of the
solution at timestep n as follows:

xn+1
p,i = xn

p,i + AUn
p,i +BUn

s,i + CT n
i C

n
i + Aiτ

n
p (∆t−A) + Ωn

i (5.73)

Un+1
s,i = Un

s,i exp(−∆t/T n
i ) + T n

i C
n
i [1 − exp(−∆t/T n

i )] + γn
i (5.74)

Un+1
p,i = Un

p,i exp(−∆t/τn
p ) +DiU

n
s,i + T n

i C
n
i (E −Di) + Aiτ

n
pE + Γn

i , (5.75)

with the coefficients A− E given by:

A = τn
p

[
1 − exp(−∆t/τn

p )
]

(5.76)

B = θn
i [T n

i (1 − exp(−∆t/T n
i )) − A] , with θn

i = T n
i /(T

n
i − τn

p ) (5.77)

C = ∆t−A− B (5.78)

D = θn
i

[
exp(−∆t/T n

i ) − exp(−∆t/τn
p )
]

(5.79)

E = 1 − exp(−∆t/τn
p ). (5.80)

The stochastic contributions are determined by

γn
i = P11G1,i (5.81)

Ωn
i = P21G1,i + P22G2,i (5.82)

Γn
i = P31G1,i + P32G2,i + P33G3,i, (5.83)

where G1,i, G2,i, G3,i are independent random variables drawn from a normal dis-
tribution N (0, 1). The coefficients Pij are defined as:

P11 =
√
〈(γn

i )2〉 (5.84)

P21 =
〈Ωn

i γ
n
i 〉

P11
, P22 =

√
〈(Ωn

i )2〉 − P 2
21 (5.85)

P31 =
〈Γn

i γ
n
i 〉

P11

, P32 =
(〈Ωn

i Γn
i 〉 − P21P31)

P22

, P33 =
√
〈(Γn

i )2〉 − P 2
31 − P 2

32, (5.86)
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with the covariance matrix given by:

〈
γ2

i (t)
〉

= B2
i

Ti

2
[1 − exp(−2∆t/Ti)] , where B2

i =
∑

j

B2
ij

1

B2
i θ

2
i

〈
Γ2

i (t)
〉

=
Ti

2
[1 − exp(−2∆t/Ti)] −

2τpTi

Ti + τp
[1 − exp(−∆t/Ti) exp(−∆t/τp)]

+
τp
2

[1 − exp(−2∆t/τp)]

1

B2
i θ

2
i

〈
Ω2

i (t)
〉

= (Ti − τp)
2∆t+

T 3
i

2
[1 − exp(−2∆t/Ti)] +

τ 3
p

2
[1 − exp(−2∆t/τp)]

− 2T 2
i (Ti − τp) [1 − exp(−∆t/Ti)]

+ 2τ 2
p (Ti − τp) [1 − exp(−∆t/τp)]

− 2
T 2

i τ
2
p

Ti + τp
[1 − exp(−∆t/Ti) exp(−∆t/τp)] (5.87)

1

B2
i θiTi

〈γi(t)Γi(t)〉 =
1

2
[1 − exp(−2∆t/Ti)]

− τp
Ti + τp

[1 − exp(−2∆t/Ti) exp(−∆t/τp)]

1

B2
i θiTi

〈γi(t)Ωi(t)〉 = (Ti − τp) [1 − exp(−∆t/Ti)] −
Ti

2
[1 − exp(−2∆t/Ti)]

+
τp

Ti + τp
[1 − exp(−∆t/Ti) exp(−∆t/τp)]

1

B2
i θ

2
i

〈Γi(t)Ωi(t)〉 = (Ti − τp)Ti [1 − exp(−∆t/Ti)] − τp [1 − exp(−2∆t/τp)]

+
T 2

i

2
[1 − exp(−2∆t/Ti)]

− τ 2
p

2
[1 − exp(−2∆t/τp)]Tiτp [1 − exp(−∆t/Ti) exp(−∆t/τp)] .

It is trivial to use the same numerical method for the system of equations where
the fluctuating velocity seen is solved. When two-way coupling terms are present,
Ci depends on the velocity seen and one of the assumptions under which the
scheme was derived is violated. In the equation for the fluctuating velocity seen,
the two way coupling source terms only cause a weak dependence on the fluctuat-
ing two-way coupling source term. Indeed, the instantaneous and mean two-way
coupling source terms are present in equation (5.55) but they cannot be directly
rewritten to yield a dependence on the fluctuating velocity seen. This issue needs
to be investigated in more detail in future research.
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5.10 Conclusions

In this chapter the Lagrangian treatment of the dispersed phase was discussed.
First, a stochastic approach was introduced, leading to the transport equation of
the Mass Density Function. The solution of the transport equation of the MDF is
then obtained by means of a particle method: Lagrangian equations of motion are
solved for stochastic dispersed phase samples of the MDF. In the derivation pre-
sented in this chapter, the emphasis was on the two way coupling source terms
that eventually would appear in the equation for the fluctuating velocity seen. A
stochastic Lagrangian dispersion model was presented, together with a weak in-
tegration scheme that is first order accurate. However, several open issues remain
which were not investigated here:

• The two way coupling source terms in the equation for the fluctuating ve-
locity seen were neglected in the numerical integration scheme. It might be
possible to derive a consistent first order numerical integration scheme in-
cluding the two way coupling terms. This needs to be investigated further.

• The importance of including the fluctuations of the two way coupling source
term in the equation for the fluctuating velocity seen should be investigated.



CHAPTER 6

Simulation of a non-evaporating turbulent spray jet

To investigate the importance of including the two-way coupling source terms

in the model for the pressure rate of strain, simulations of a turbulent polydis-

persed non-evaporating spray were performed. The continuum phase model

consists of the Eulerian mean transport equations for momentum, Reynolds

stresses and dissipation given in Chapter 3. The pressure field is obtained

using a Poisson solver, which also implicitly ensures that the mean continu-

ity equation is obeyed. The dispersed phase model consists of the Lagrangian

equations of motion (5.11,5.13) and the model for the velocity fluctuation seen,

eq. (5.55). These equations are discussed in chapter 5.

6.1 Configuration and boundary conditions

The configuration corresponds to the spray investigated experimentally in [53, 54].
The experiment is characterised as a constant density air jet laden with liquid par-
ticles flowing downwards, issuing from a 8 mm diameter nozzle into a cubic cham-
ber with sides of 0.5 mm. The sides are far away from the edge of the spray and
the influence of the presence of the wall on the spray behaviour can be neglected.

In this experiment, a two-component Phase Doppler anemometer (PDA) was
used to simultaneously measure droplet velocities and diameters and Laser In-
duced Fluorescence (LIF) combined with PDA was used to extract the local value
of concentration and flux per droplet size class. The estimated statistical errors
for the velocity differ per size class, ranging from 0.8% for the smallest size class
(0 − 5µm) to 7.3% for the size class 80 − 90µm. This effect is mainly due to a
decreasing number of samples for increasing droplet size class. Four cases were
investigated experimentally with different liquid mass loadings φ ≡ mp

mf
, i.e. φ = 0

(gas flow only), φ = 0.12, φ = 0.41 and φ = 0.73. We will discuss results for the
test-case with the highest mass loading only. The gas-particle interactions are the
strongest for this test-case and will therefore illustrate the importance between the
different two-way coupling terms more clearly. Numerical simulations of the case
with mass loading φ = 0.41 are presented and discussed in detail in the thesis of
Naud [117].

The droplet sizes range from 1-120 µm. The droplets in the smallest size class
are assumed to behave as tracer particles and can be used as an estimation for the
gas-phase mean and rms velocity. The inlet conditions for the simulation corre-
spond to the measured values in the section closest to the nozzle, at x = 20 mm
downstream. The inlet boundary data not available experimentally is the profile

113
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Figure 6.1: Experimental setup and
computational domain.

Re 9500
φ 0.73
ρp 760 kg/m3

domain 600 × 250 mm2

grid cells 120 × 64 on a stretched grid

Table 6.1: Experimental and numeri-
cal conditions.

for turbulent dissipation. This profile was obtained by first estimating the dissi-
pation profile for the unladen jet case, and then adding an extra dissipation term
1
2

〈
Su′′

k
u′′

k

〉
due to two-way coupling.

A sketch of the experimental setup together with a table with some additional
relevant information is shown in Figure (6.1). The Cartesian grid used for the
computations consists of 120 cells in axial direction and 64 cells in the radial direc-
tion. A local time-stepping algorithm for the gas phase as well as for the dispersed
phase was used to determine the time step used in each cell [114, 118]. For the dis-
persed phase, 5 particles per class per cell were used and 13 droplet classes were
considered. An iteration averaging scheme [117] was used to reduce the statisti-
cal error, which allowed us to use this very low value for the number of particles
per class per cell. Typical computation times for these simulations are less than
a day and a stationary solution in an iteration averaged sense was obtained after
approximately 20,000 iterations.
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6.2 Results and discussion

Four simulations were performed to investigate the influence of the different two-
way coupling terms:

(a) A simulation without any two-way coupling was performed as a reference.

(b) A simulation taking into account only the two-way coupling effects in the
transport equation for momentum.

(c) A simulation taking into account the two-way coupling effects in the trans-
port equation for momentum, dissipation and Reynolds stresses (called full
coupling in the legend).

(d) A simulation similar to the previous simulation (full coupling), but addi-
tionally taking into account the source term appearing in the model for the
pressure rate of strain.

The numerical results at four axial locations downstream of the injector will be
discussed, i.e. at x = 40, x = 80, x = 160 and x = 320 mm downstream of the
injector, which corresponds to 5, 10, 20 and 40 injector diameters.

6.2.1 Results for the dispersed phase

We first discuss some numerical results for the dispersed phase. In the simula-
tion results shown, all two-way coupling source terms were taken into account
(case (d), including the extra source terms in the model for the pressure rate of
strain). Figure (6.2) shows the mean axial velocity of the dispersed phase Up for
three droplet size classes at four locations downstream from the injector. The axial
velocity is only slightly underpredicted, and the agreement with the experimental

data is very good. The root mean square (rms) of the Reynolds stresses
√
ũ′′pu

′′
p

and
√
ṽ′′pv

′′
p are shown in Figures (6.3) and (6.4) respectively. The rms values of the

Reynolds stresses of the dispersed phase are slightly overpredicted in the first two

downstream locations. Further downstream
√
ũ′′pu

′′
p is slightly underpredicted, but

we still overpredict the value of
√
ṽ′′pv

′′
p. However, the discrepancy is not very large

and there is still a good agreement with the experimental data.
The size classes shown in the figures are the size classes 40−50µm, 70−80µm

and 100−110µm. The size classes between 40−100µm contribute the most to the
two-way coupling source term. The larger size classes will also be less influenced
by changes in the continuous phase, and the different two-way coupling models
will have only a small effect on the dispersed-phase properties. The velocity of the
smallest droplet size class will quickly relax to the velocity of the continuous phase
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Figure 6.2: Axial velocity of the dispersed phase Ũp at locations x = 40, x = 80,
x = 160, x = 320 mm downstream of the inlet for case (d).

and the particles will then more or less follow the fluid flow. This size class will be
affected the most by changes in the continuous phase, but these small particles will
also have a negligible contribution to the two-way coupling source term. Since the
largest droplet classes are the least affected by the surrounding gas flow, the dis-
crepancy between the experimental and numerical results for the dispersed-phase
Reynolds stresses may well be caused by modelling issues in the dispersed phase
only. Since the performance analysis of the dispersion model is not the focus of this
chapter, we will therefore now focus our analysis on the results of the continuous
phase.

6.2.2 Results for the continuous phase

Figure (6.5) shows the axial velocity of the continuous phase for the four different
simulations. For comparison, the experimental results of the single-phase test case
was added to the graph as well. In the simulation without two-way coupling, the
continuous phase is not influenced by the presence of the particles. This axial ve-
locity profile quickly relaxes to the experimentally measured axial velocity profile



6.2. Results and discussion 117

Size class [40-50] micron

Size class [70-80] micron

Size class [100-120] micron

Simulation [40-50] micron

Simulation [70-80] micron

Simulation [100-120] micron

0.000 0.010 0.020 0.030
r [m]

0.0

2.0

4.0

6.0

u-
rm

s 
[m

/s
]

0.000 0.010 0.020 0.030
r [m]

0.0

1.5

3.0

4.5

u-
rm

s 
[m

/s
]

0.000 0.020 0.040 0.060
r [m]

0.0

1.0

2.0

3.0

u-
rm

s 
[m

/s
]

0.000 0.030 0.060 0.090
r [m]

0.0

0.5

1.0

1.5

u-
rm

s 
[m

/s
]

Figure 6.3: Rms of Reynolds stress
√
ũ′′pu

′′
p at locations x = 40, x = 80, x = 160,

x = 320 mm downstream of the inlet for case (d).
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Figure 6.4: Rms of Reynolds stress
√
ṽ′′pv

′′
p at locations x = 40, x = 80, x = 160,

x = 320 mm downstream of the inlet for case (d).
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of the single-phase flow. Only adding the two-way coupling source terms in the
momentum equation is not sufficient to get a good correspondence with the mea-
surements. When taking into account the two-way coupling source terms in the
Reynolds stress equations and the dissipation equation (full coupling), the axial
velocity downstream of the injector is now slightly underpredicted. When taking
into account the extra particle source terms in the model for the pressure rate of
strain, the prediction of the axial velocity of the gas phase improves slightly.

Larger difference can be observed in the profiles for the rms values of the nor-

mal Reynolds stresses
√
ũ′′u′′ and

√
ṽ′′v′′, shown in Figures (6.6) and (6.7) respec-

tively. We can again see that without two-way coupling the Reynolds stress pro-
files relax to the experimental values of the single-phase jet. Adding two-way
coupling in the momentum equation only is not sufficient to improve the pre-
dictions of the Reynolds stresses, but full two-way coupling improves the results
at all downstream locations. The performance difference between model (c) and
model (d) is not clear from Figures (6.6) and (6.7), but model (d) tends to decrease
the Reynolds stress anisotropy compared to model (c). Further downstream the
effect of the source term in the pressure rate of strain decreases (as the turbulence
becomes more isotropic) and the difference between simulations (c) and (d) be-

comes smaller. For the rms values of the Reynolds stress component
√
ṽ′′v′′ shown

in Figure (6.7) the experimentally measured profile at x = 40 mm has higher val-

ues at the symmetry axis than
√
ũ′′u′′. When no two-way coupling effects are

present, the experimental value of
√
ṽ′′v′′ is higher than that of the experiment

with φ = 0.73 in this figure. The two-way coupling effects cause a reduction of

the rms of Reynolds stress
√
ṽ′′v′′. The simulation with no coupling also predicts

higher values of
√
ṽ′′v′′ than the simulations with two-way coupling. However,

models (c) and (d) underpredict the value of the Reynolds stress. This could in-
dicate an overprediction of the magnitude of the source term for the transport

equation of
√
ṽ′′v′′. Further downstream we see that both models (c) and (d) are

able to capture the correct behaviour of
√
ṽ′′v′′ and there is good agreement with

the experimental results. The values for the shear stress
√
ũ′′v′′, which is shown

in Figure (6.8), are overpredicted near the injector, but further downstream there
is good agreement between the experimental data and the predictions from the
simulations for all three two-way coupling models.
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Figure 6.5: Axial velocity of the gas phase Ũ at locations x = 40, x = 80, x = 160,
x = 320 mm downstream of the inlet.
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Figure 6.6: Rms of Reynolds stress
√
ũ′′u′′ at locations x = 40, x = 80, x = 160,

x = 320 mm downstream of the inlet.
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measurement single-phase jet
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Figure 6.7: Rms of Reynolds stress
√
ṽ′′v′′ at locations x = 40, x = 80, x = 160,

x = 320 mm downstream of the inlet.
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Figure 6.8: Reynolds stress
√
ũ′′v′′ at locations x = 40, x = 80, x = 160, x = 320

mm downstream of the inlet.
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6.3 Conclusions

In this chapter the dispersed phase model discussed in chapter 5 and the RANS
approach for the continuous phase discussed in chapter 3 were used to obtain
numerical results for a turbulent non-evaporating spray. A modified Reynolds
stress model for dispersed two-phase flows was used that takes into account the
modification of the pressure rate of strain due to the presence of the dispersed
phase.

A simulation of a polydispersed two-phase flow was performed to investigate
the importance of the different two-way coupling terms appearing in the Reynolds
averaged transport equations.

For this particular test case, taking into account the particle source term in the
model for the pressure rate of strain leads to a small improvement of the predic-
tions of the gas-phase properties. The importance of this source term will however
become more significant in flows with a higher fluid-particle anisotropy.

The determination of more optimal constants for the source term appearing in
the model for the pressure rate of strain, is open for future research.
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CHAPTER 7

Simulation of a turbulent spray flame with two-way

coupling

This chapter deals with the numerical simulation of a turbulent nonpremixed

methanol spray flame, with emphasis on the investigation of the importance

of taking into account the different two-way coupling terms. The calculations

performed are compared with each other and with an experiment described

by Karpetis and Gomez [73, 74, 75]. After a short review on available spray

flame experiments, the setup of the spray experiment of Karpetis will be dis-

cussed, the numerical setup is described and numerical simulations are pre-

sented.

7.1 Introduction

The numerical simulation of turbulent spray flames is still a very challenging prob-
lem, but due to the increase in computational power and the implementation of
new numerical algorithms it has now become at least practically possible to nu-
merically investigate a turbulent burning spray. Detailed DNS and LES studies of
reacting dispersed two phase flows [135] have yielded many insights into flame
structures and burning behaviour in spray flames, and RANS and PDF methods
have advanced in the last decade towards a level that allows for accurate and de-
tailed modelling of spray flames, taking into account many features that were not
feasible in the early days of turbulent spray simulations 20 years ago.

In this study we will focus on the modelling of a spray flame using the hybrid
PDF approach discussed in previous chapters. This approach has already been
used for some time in the numerical modelling of single phase turbulent reacting
flows [72, 113, 117, 128, 180].

Several reviews about spray combustion phenomena, including evaporation,
mixing, transport and atomisation can be found in the literature [16, 49, 50, 51,
92] and the reader is referred to these papers for a more complete overview of
spray combustion research prior to 1995. Some recent experimental and numerical
results will be discussed now.

Successful simulations of vaporising sprays have been reported in the litera-
ture, most of them devoted to simulating the vaporising isopropyl-alcohol spray
of Sommerfeld and Qiu [153]. We will refer here to the simulation results per-
formed by [83, 152] and [141] and [12, 117] where generally a good agreement
with experimental data was found in the studies.
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Less numerical studies have been reported on burning sprays. This has three
main reasons. First of all, the complexity of the simulation is such, that it will
take a considerable amount of time to develop a computer code to solve the gov-
erning equations. Furthermore, the computational capabilities of computers only
recently allows us to simulate a burning spray with enough details to be scientifi-
cally valuable. Finally, experimental data from burning sprays, suited for simula-
tion purposes, are scarce and most often only concern a limited subset of physical
properties. This last point makes the interpretation of some of the numerical re-
sults and the comparison with experimental results more difficult or questionable
since too many degrees of freedom exist in setting up the numerical simulations.
Even with experimental data available, caution should be applied when compar-
ing experimental results with simulation results, since both represent a different
view on physical ’reality’.

In the 1980’s, simulations of turbulent reacting sprays were restricted by com-
putational power to Locally Homogeneous Flow simulations (LHF) [49]. In LHF
simulations, the gas and dispersed phase are assumed to be in dynamic and ther-
modynamic equilibrium, i.e. the dispersed phase acts as ideal tracer particles of
the flow. No two-way coupling effects were taken into account and the only ’in-
teraction’ was the addition of fuel vapour to the gas phase. These simulations
were compared to experimental data of ’ultra-dilute’ sprays [147] where interac-
tion effects were minimal. In later years, Stochastic Separated Flow (SSF) analysis
was used, in which the dispersed phase was simulated using a Lagrangian ap-
proach. Two way coupling effects were taken into account in this approach. When
the interaction between the dispersed phase and the fluid phase turbulence was
completely ignored, the method was called Deterministic Separated Flow (DSF)
analysis [50].

Recently, Ge [58] used a PDF approach to simulate the methanol spray flame
of McDonell and Samuelsen [103] and the ethanol spray flame of Duwel et al. [45].
In his simulations flamelets based on counterflow spray diffusion flames are used.
This work is closely connected to the work performed by Gutheil and Sirignano
on the modelling of counterflow diffusion sprays [62, 69]. Furthermore, a modifi-
cation of the Lagrangian mixing model similar to the model presented in chapter
4 of this thesis was presented and its effects on the shape of the mixture fraction
pdf was investigated.

Joint PDF modelling of a turbulent spray flame was also presented by Rybakov
and Maas [140].

Sadiki et al. [141] describe simulation results based on the testcases of Wit-
tig et al. [82], which consists of a cylindrical combustor where swirled air enters
the combustion chamber through a swirler and liquid dodecane is injected into
the combustion chamber from axially located nozzles. The vaporising isopropyl
spray of Sommerfeld [153] was also simulated in the same paper. The approach
used by Sadiki et al. consists of an Eulerian-Lagrangian approach, where the gas
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phase properties are treated in an Eulerian way by solving the RANS equations
using a Finite Volume solver. The dispersed phase is solved using a Lagrangian
method with the vaporisation models of Abramzon and Sirignano [1] and the non-
equilibrium model of Miller et al. [108]. A better agreement with the experimental
data of Sommerfeld was found using the latter model.

Experimental data for kerosene spray flames are also reported in the literature
[46, 63, 134, 154], because of their practical application in jet engines. The mod-
elling of this complex fuel poses an extra difficulty and is a challenge left for fu-
ture research. Pichard et al. [125] have studied partially prevaporised spray flames
of n-heptane using PDA to measure the droplet velocity and diameter and planar
laser induced fluorescence (PLIF) to obtain information on the mean progress vari-
able.

We will now mention some experimental studies suited for CFD modelling
purposes before proceeding to the description of the experiment that is being stud-
ied in the remaining part of this chapter.

Widmann and Presser [132, 173, 174, 175] study a hollow cone turbulent methanol
spray in a weakly swirling coflow. The gas phase axial, radial and tangential flow
velocities were measured using a Particle Image Velocimetry (PIV) system, and the
axial and radial particle velocities and the droplet diameter were measured using
Phase Doppler Interferometry (PDI). It was not possible to measure the gas phase
velocity in the spray region close to the injector, leaving some room for the creativ-
ity of the numericist. Near the injector the local gas phase velocities are low and the
spray is injected with high velocities (Up = 20m

s
), leading to strong two-way cou-

pling effects near the injector. The mass flow rate in their experiments was 0.833
g
s
. A kerosene spray flame was also investigated [134], and the effects of different

fuels on the structure of spray flames was reported in [133]. Simulation results for
the dispersed phase properties were presented by Zuo et al. [191] and by Giridha-
ran et al. , [59]. Recently, in a short technical note about the methanol spray flame
database from NIST, some simulation results for the dispersed phase are reported
[132]. In another recent publication, de Jager [37] presented simulation results on
the gas phase velocities (as well as dispersed phase velocities) obtained using an
Eulerian-Eulerian approach, showing a disagreement between the measured and
the simulated gas phase axial and radial velocity.

McDonell and Samuelsen [100, 101, 102, 103] study a methanol spray under
many different conditions, including swirling and non-swirling conditions and
reacting and non-reacting (but still vaporising) and with and without the presence
of the dispersed phase. Phase Doppler-Interferometry (PDI) is used to measure gas
phase velocities as well as dispersed phase velocities and droplet diameter. The
gas phase velocities are measured by seeding the air stream with small particles.
The mass flow rate in their experiments is 1.32 g

s
.

Karpetis [73] and Karpetis and Gomez [74, 75] also study a methanol spray,
but they do not have a swirling flow and the relative velocity between the particle
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phase and the continuum phase is smaller. The two-way coupling effects are less
strong, but still significant. In their experiment, they measure the droplet veloci-
ties and diameter with a PDA system. The velocities of the smallest droplets are
used to represent the gas phase velocity. Additionally, they have measured the gas
phase temperature using Raman spectroscopy. The experiments were done at two
different mass flow rates, namely 0.085 g

s
and 0.05 g

s
.

Stårner and Masri [137] on the other hand study an acetone spray flame, which
has almost the same index of refraction and density as methanol. Their purpose
was to investigate the effect of different vaporisation and burning properties on
the flow properties of a burning spray. They have reported experimental data for
the dispersed phase using a PDA setup.

In this chapter we study the importance of vaporisation modulation and par-
ticle turbulence interaction in a dilute methanol spray flame. Particularly, we will
compare the simulation results with the experimental results of Karpetis [73]. This
spray configuration has not been investigated numerically yet. First, the experi-
mental testcase is presented, followed by the numerical setup of our simulations.
The simulation results of the continuous phase are discussed in section 7.3 and the
dispersed phase results are presented and discussed in section 7.4.

7.2 Presentation of the test case

7.2.1 Description of the experiment

A turbulent methanol spray flame under conditions similar to those measured ex-
perimentally in the experiments of Karpetis and Gomez [73, 74, 75] has been nu-
merically simulated. This experiment will be referred to as the Karpetis spray. A
sketch of the experimental configuration with the numerical domain can be found
in Figure (7.1). The spray flame is of the non-premixed type. Experimental condi-
tions for two spray flame measurements can be found in table (7.1). In table (7.1),
Q̇g is the volumetric flow rate of the air and ṁp the liquid mass flow rate. The mass
based equivalence ratio φ is defined as

φ =
ṁp/ṁg

(ṁp/ṁg)sto
, (7.1)

where subscript sto refers to stoichiometric conditions. This nondimensional pa-
rameter is used in [75] to characterise the nondimensional flame height. The Reynolds
number mentioned is based on the cold flow conditions. Re’ is based on the ve-
locity variance and the macroscopic lengthscale at cold conditions. Finally, η is the

Kolmogorov length scale, which was estimated using η = Re′−
3
4D.

The spray with the highest liquid droplet mass flow rate (flame I, ṁ = 0.085
g/s) was simulated. Figure (7.1) shows the computational domain used and the
location of the measurement sections. Measurements were performed at x = 0.1D,
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Figure 7.1: Sketch of the ex-
perimental configuration includ-
ing the numerical domain used
(with kind permission of A. Kar-
petis).

Flame I

Mass flow rate gas Q̇g

[
1

min

]
80

Mass flow rate liquid ṁp

[
g
s

]
0.085

Equivalence ratio φ [-] 0.35
Flame length lflame/D [-] 10
Reynolds number Re [-] 21,000
Reynolds number Re’ [-] 2500
Kolmogorov scale η[µm] 36

Table 7.1: Experimental conditions for one
of the spray flames investigated by Karpetis
and Gomez [73] (spray flame I).

x = 0.5D and at every half burner diameter D (D = 12.7 mm) thereafter, up to x =
6.5D. Phase Doppler Anemometry (PDA) was used to obtain the first and second
moments of gas and droplet velocities, the droplet number density Np and droplet
diameter d10. Results for three different size classes, together with the mean results,
are available. The gas velocity statistics were calculated by considering all droplets
smaller than 8 µm as tracer particles of the gas flow. It is mentioned in [75] that
tests where either 6 µm or 12 µm was used as an upper limit for the tracer size class
yielded minimal differences in the velocity and velocity correlations attributed to
the gas phase. In addition to the PDA measurements, Raman Spectroscopy was
used to measure mean gas temperature T and rms of temperature fluctuations√
T̃ ′′T ′′.

7.2.2 Simulation setup

Since the first measurement location is at 0.1D (1.27 mm) downstream of the injec-
tor, the inlet boundary for the computational domain starts at x = 1.27 mm and ex-
tends up to x = 600 mm. A two-dimensional cartesian grid, stretched in both axial
and radial directions, is used. The total number of cells used was 170 cells in axial
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direction and 80 cells in radial direction. The smallest cell size at (x, r) = (1.27, 0.0)
was 0.5 × 0.5 mm, which allowed for a sufficiently high resolution to capture the
profile of the dispersed phase properties.

The spray radius at the inlet plane is r = 3.5 mm and the dispersed phase inlet
covers only 7 cells.

The inlet profile for dissipation can be constructed by reducing the transport
equation for turbulent kinetic energy to a production-dissipation balance. When
two-way coupling effects are included, the equation reduces to:

ρǫ = ρũ′′i u
′′
j

∂Ũi

∂xj
+
〈
S(Ik)

ukuk

〉
+
〈
u′′Ik,ku

′′
Ik,kS(Ik)

m

〉
. (7.2)

Near the injector, the dissipation profile is then almost entirely governed by the

two-way coupling term
〈
S(Ik)

ukuk

〉
and for the creation of an inlet profile for dissi-

pation in dispersed two-phase flows, this source terms is the dominant term. In
the discussion of the fluid phase results, the effects of the modification of the inlet
conditions for turbulence dissipation will be briefly discussed.

Since mean temperature and temperature variance profiles are also available
at the inlet, part of the droplets must already have evaporated. The configura-
tion of the injector (see Figure (7.1)) makes this possible. An inlet profile for the
independent scalar (mixture fraction and its variance) is needed.

The first approach was to construct the mixture fraction profile Z̃ at the inlet
in such a way as to match the inlet temperature profile. The temperature variance
is assumed to depend only on the variance in mixture fraction, although varia-
tions in strain rate may have a significant effect on the temperature variance. A
Gaussian distribution can be used to initialise the Monte Carlo particles in such a
way that the mean inlet temperature and temperature variance profiles matched
the measured temperature and variance. However, as will be discussed in section
7.3.1, this may not be the best choice of inlet profile. Instead, it is assumed that
the carrier gas coming directly out of the injector contains already a small amount
of vaporised fuel gas. The mixture fraction Z is imposed homogeneously over all
the computational gas particles in the cells near the inlet. It is also assumed that
some mixing has already occurred and that the mixture fraction in the outer cells
is lower than the mixture fraction at the centreline.

7.2.3 Tabulated chemistry approach

A flamelet lookup table is used to obtain the thermochemical properties of the gas
phase as a function of the mixture fraction Z and strain rate a, see Figure (7.2).
The flamelet table was generated using the methanol mechanism of Lindstedt and
Meyer [94] and the programs CHEM1D (Eindhoven university) and FLAME (Delft
university). In general, the strain rate is an independent variable, but in the simu-
lations presented here, the strain rate used was set to a constant value of a = 1001

s
.
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Figure 7.2: Temperature as function of mixture fraction for different strain rates.
Burke-Schumann flame sheet is added for comparison.

The enthalpy of the evaporated methanol fuel entering the gas phase is assumed
to correspond to the enthalpy at a wet bulb temperature of Twb = 335K, which is
slightly below the boiling temperature of liquid methanol (Tboil = 338K). Near the
spray injector, droplets may have vaporised before having reached the wet-bulb
temperature. However, the difference in enthalpy (−6.26 · 106 J

kg
for methanol at

300K versus −6.21 · 106 J
kg

for methanol at 330K) is small enough to neglect. The
initial temperature of the gas phase was assumed to be 400K and the initial pres-
sure 1 atm. Karpetis [73] recalls that the Raman spectrometry used to measure
temperature is not accurate for low temperatures (Tg < 600K). However, the mea-
sured 400 K seems a better starting point then inlet conditions at room temperature
due to the large heat release of the spray flame.

The Lagrangian mixing model used in the simulations was the Interaction by
Exchange with the Mean (IEM) mixing model.

7.2.4 Dispersed phase

For the dispersed phase, experimental data on several droplet size classes were
available. Data on three droplet size classes have been processed for simulation
purposes, which are the size classes 20, 40 and 60 µm, with bandwidths of ±2µm.
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The droplet size class [0-8] µm which was used to characterise the gas phase has
been used to initialise the smallest droplet size class in the simulations. 9 droplet
size classes were used in the simulations. The first two size classes are [0-8] and
[8-15] µm, the other classes each have a bandwidth of 10 µm, starting from [15-25]
and ending with [75-85] µm. The total liquid mass flux, which can usually be mea-
sured directly with a mass flow meter with high accuracy, can also be retrieved by
integration of the velocity and droplet number density over the inlet area. Usu-
ally, the integrated liquid mass flux is lower than the exact liquid mass flux, be-
cause not all droplets are taken into account in the measurements. Especially with
high droplet number densities, the discrepancy can be significant [174]. The small
discrepancy encountered in these measurements are corrected by multiplying the
volume fraction profiles for the different droplet classes in such a way, that the
profile for mean inlet droplet diameter is not altered, the droplet number density
profile is not increased too much and the integrated liquid mass flux matches the
directly measured mass flux.

The liquid droplets have an initial temperature of Tp = 298 K, which is imposed
on all droplets entering the computational domain. The droplet temperature is not
allowed to exceed the boiling temperature of liquid methanol. 30 computational
gas-phase particles per cell were used and 5 computational liquid-phase particles
per class per cell were used (which means a total of 45 computational liquid-phase
particles per cell). Numerical simulations with 25 computational gas particles and
3 computational droplets per class were compared with simulations where 50 gas
particles and 6 droplets per class were used. The difference between these simu-
lations was small. Iteration averages are used to decrease statistical errors. The
iteration averaging method described by Naud [117] was used. Iteration averages
were obtained starting with averaging over 500 iterations and then increasing the
number of iterations by 100 until iteration averaging was performed over 2000 it-
erations. So during the first 2600 iterations, iteration averaging was performed
over 500,600,700 and 800 iterations.

A local timestepping method [114] was used for the gas phase and the liquid
phase with timesteps between ∆t = 1.0 · 10−3s and ∆t = 1.0 · 10−8s.

The total number of timesteps used was 20,000, which took approximately two
days on a 3 GHz 64 bit single processor.

7.3 Results for the continuous phase

In this section all continuous phase results are presented. In each of the figures, the
radial profiles at 4 different axial locations downstream of the injector are shown.
The first radial profile shown at 0.1D are the imposed inlet conditions and are
shown in order to get a better impression of the evolution of the flow properties.
The measurements of the smallest droplet size class are used here to represent the
gas phase and are indicated in the graphs by solid dots. All simulation results are
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Case Source terms interface velocity
(a) [-] [-]
(b) SUi

,Suiuj
,Sǫ Crowe

Sm, Up,iSm, u
′′
i u

′′
jSm,Sǫm

(c) SUi
,Suiuj

,Sǫ Ahmadi et al.
Sm, Up,iSm, u

′′
i u

′′
jSm,Sǫm

(d) SUi
,Suiuj

,Sǫ,Π
(fp)
ij Crowe

Sm, Up,iSm, u
′′
i u

′′
jSm,Sǫm

,Π
(m)
ij

Table 7.2: The source terms that are taken into account in the different simulations.

depicted by lines. The effects of two-way coupling on the continuous phase results
is shown first. Each plot contains four lines representing different settings for the
two-way coupling models. The solid line represents the simulation results without
any two-way coupling (case (a)). The dashed line represents the simulation results
with two-way coupling in the momentum equation, the Reynolds stress equation
and the equation for turbulence dissipation (case (b) and case (c)), for both the
presence of the particles as mass transfer source terms. The difference between
models (b) and (c) is that in model (b), the two-way coupling source terms

〈
Suiuj

〉

are evaluated according to the analysis of Ahmadi et al. , explained in section 3.4.1,
and in model (c), the velocity of the fluid at the interface is determined using the
analysis of Crowe, which was explained in the same section.

The correction to the pressure rate of strain presented in chapter 3 is included
in case (d). The conditions for the different cases are presented in table (7.3). For
all cases, the inlet profile for turbulence dissipation was modified by the presence
of the liquid phase using equation (7.2). For the case without two-way coupling,
this was not possible as the increase in turbulence dissipation leads to Reynolds
stress values close to zero, causing numerical stability issues to occur. Therefore
the inlet profile for dissipation was not altered due to two-way coupling in case
(a).

When the source terms for mass transfers are used, the pressure correction al-
gorithm (PISO) [121] is modified by these source terms to correctly take into ac-
count the momentum transfer due to vaporisation.

In Figure (7.3), the radial profiles of axial velocity Ũf are shown. The velocity
profiles have a typical bell-shape with a centreline velocity that is decreasing with
axial distance from the injector. Close to the injector there is a marked depression
near the centreline. This depression slowly diminishes further downstream and it
has disappeared completely at x = 2D. The computed axial velocity profiles all
show a reasonable agreement with the experimentally measured values. The ax-
ial velocity at the symmetry axis is however overpredicted by all simulations that
include two-way coupling. The axial velocity of the liquid phase is lower than

the axial velocity of the gas phase, so including the source terms S(I)
Ui

will lead
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Figure 7.3: Radial profiles of mean gas phase axial velocity Ũf(r). Symbols: exper-
imental data of smallest droplets. Lines: simulation data.

to a lower value of axial velocity (and will in fact underpredict the axial velocity)
at the centreline, where the highest droplet number density occurs. This effect is
(over)compensated by the source term for mass transfer through the modification
of the pressure and by satisfying the continuity equation (the pressure correction
algorithm). A correction factor to the drag coefficient in case of vaporising droplets
was proposed by Chiang [14] and discussed in section 5.4.1, together with correc-
tions for the Nusselt and Sherwood number. The correction to the drag coefficient
is implemented by using the Schiller-Naumann correlations on the right hand side
of eq. (5.22) and the Ranz-Marshall correlations for the Nusselt and Sherwood
numbers are replaced by eq. (5.24, 5.25). The simulation results for the axial ve-
locity of the gas phase including these correction factors are shown in Figure (7.4).
The numerical results show a significant improvement of the predictions of the ax-
ial velocity when compared to the results shown in Figure (7.3). The axial velocity
is much lower and shows a good agreement with the experimentally measured
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Figure 7.4: Radial profiles of mean gas phase axial velocity Ũf(r). Symbols: exper-
imental data of smallest droplets. Lines: simulation data.

axial velocity profiles at all downstream axial locations. The two way coupling
source terms SUi

and Up,iSm in the momentum equation and Sm in the pressure
correction equation balance each other and the net effect is very small compared
to case (a), where no two way coupling source terms were taken into account. A
small improvement can be observed when two way coupling is taken into account.

From this point on, the simulation results including the correction factors of
Chiang will be shown and discussed.

Figure (7.5) shows the gas phase radial velocity Ṽf . The radial velocity shows
a steep linear increase with radial distance from the centreline. Further down-
stream, the linear increase slowly weakens. The experimentally observed values
for the radial velocity remain much higher than the numerical results and espe-
cially downstream of the injector the discrepancy between numerical and exper-
imental results remains large. From the numerical simulations it is clear that the
details of the two-way coupling terms have little to no effect on the mean axial and
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Figure 7.5: Radial profiles of mean gas phase radial velocity Ṽf(r). Symbols: ex-
perimental data of smallest droplets. Lines: simulation data.

radial velocity profile. A different explanation for the bad predictions of the radial
velocity has to be found.

Radial gas phase velocity results: analysis of the suitability of vaporising droplets
as tracer particles. The simulated results for radial velocity profiles shown in
Figure (7.5) do not agree well with the experimentally measured values. In the
experiment, the radial velocity shows a linear behaviour with a very steep slope.
This radial velocity is more typical for ballistic particles than for a gaseous flow.
The radial velocity of the continuum phase is able to follow the experimentally
observed velocity profile close to the centreline but drops to much lower values
for larger radial distances.

An explanation for this discrepancy is that the droplet size class used to rep-
resent the gas phase (the [0-8] µm droplets) is not a good indicator for the radial
velocity of the actual gas phase away from the centreline. Figure (7.6) shows a
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Figure 7.6: Radial profiles of mean gas phase radial velocity Ṽf(r). Symbols: ex-
perimental data. Lines: simulation data.

comparison between the measured radial velocity of the gas phase, the simulated
radial velocity of the gas phase and the simulated radial velocity of the droplets in
the size class [0-8] µm. The figure clearly shows that the computed radial velocity
of the smallest droplets agrees very well with the experimentally observed values
of radial velocity. Note that the experimentally measured values are in fact the
measured radial velocities of the smallest droplets.

An explanation for this is as follows: a tracer liquid particle originally situated
in the spray region will have a large positive radial velocity and it will therefore
move away from the centreline. A fluid particle situated outside of the spray re-
gion has a much lower radial velocity. However, the velocity of this fluid particle
cannot be measured since the flow surrounding the spray region does not contain
any particles. The velocity measurements near the edge of the spray are biased
due to the conditional measuring of tracer particles coming from the spray region.

Another explanation for the discrepancy is that vaporising particles do not
have time to relax to the gas phase as their vaporisation time is shorter than their
relaxation time.

A criterion for the suitability as tracer particles of vaporising droplets is that
the droplet lifetime should be larger than the droplet relaxation time: tp

τp
> 1. A

simple analysis shows that the following criterion has to be fulfilled by the tracer
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Figure 7.7: Radial profiles of gas phase axial Reynolds stress ũ′′f u
′′
f (r). Symbols:

experimental data of smallest droplets. Lines: simulation data.

particles:

tp
τp

= 8
Sc

Sh
ln(1 +BM)−1 > 1. (7.3)

The main factor determining the suitability as tracer particles is the Spalding mass
transfer rate (or actually the temperature, since temperature will determine BM as
well as the actual value of the Schmidt number Sc(T )).

Reynolds stresses of the gas phase Figures (7.7)-(7.9) show the Reynolds stress

components ũ′′u′′, ṽ′′v′′ and ũ′′v′′. Compared to the simulations without two-way
coupling the Reynolds stress profile shows a large depression at the centreline,
followed by a pronounced peak at the location of the spray edge. The peaks are
less pronounced further downstream of the injector. Close to the injector, the peak
values lie above the predictions without two-way coupling and the depression is
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Figure 7.8: Radial profiles of gas phase radial Reynolds stress ṽ′′f v
′′
f (r). Symbols:

experimental data of smallest droplets. Lines: simulation data.

lower than the prediction without two-way coupling. Further downstream, the
peak values decrease more rapidly than the minimum values and at 4D down-
stream of the injector, the Reynolds stress predictions with two-way coupling are
lower than the predictions without two-way coupling. The ’full’ two-way cou-
pling case where the modification of the pressure rate of strain is also taken into
account shows smaller, less pronounced peak values and slightly lower minimum

values for the axial component ũ′′u′′, but the radial component ṽ′′v′′ is larger. When
the mass source terms are also taken into account, all radial profiles predict higher
values for the Reynolds stresses. Vaporisation clearly enhances turbulence in these
simulations. In all simulations, the constant value of Cǫ3 = 1.80 was used in the
model constant for the two-way coupling source term in the transport equation for
the turbulence dissipation. Using a lower value for Cǫ3 does increase the value of
the Reynolds stresses near the centreline, but this is the case for the axial Reynolds

stress ũ′′u′′ as well as the radial Reynolds stress ṽ′′v′′. The radial Reynolds stresses
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Figure 7.9: Radial profiles of gas phase shear stress ũ′′f v
′′
f (r). Symbols: experimental

data of smallest droplets. Lines: simulation data.

are strongly overpredicted for smaller values of the model constant and the over-
all performance does not improve. The vaporisation fluctuations, present in the
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Reynolds stress equations, have a large influence on the numerical results. Ne-

glecting the terms
〈
u′′I,iu

′′
I,jS(I)

m

〉
−ũ′′i u′′j

〈
S(I)

m

〉
and keeping only

〈
u′′I,iu

′′
I,jS(I)

m

〉
(so we

neglect fluctuations in the source term for mass transfer), results in much higher
values of the Reynolds stresses. This effect can be seen for the axial Reynolds
stresses in Figure (7.10). Case (a) and case (b) are as before, but the dash-dotted
line is now a simulation similar to case (b) but neglecting the vaporisation fluctu-
ations in the Reynolds stress equations.

In chapter 3, an exact model taking into account the effect of mass transfer on
the turbulence dissipation was introduced. Case (d) has been replaced in Figure
(7.10) by a simulation similar to case (b), but instead of using the exact source term
for mass transfer in the equation for turbulence dissipation, a model source term
is used. So in the equation for the turbulence dissipation, the exact source term

〈
S(I)

ǫm

〉
= ǫ
〈
S(I)

m

〉
. (7.4)

is replaced by a source term similar to what is used to take into account the effect
of the presence of particles:

〈
S(I)

ǫm

〉
= Cǫ3

ǫ

ũ′′ku
′′
k

〈
u′′I,iu

′′
I,jS(I)

m

〉
. (7.5)

In equation (7.5), the same modelling constant Cǫ3 that was used to evaluate〈
S(I)

ǫ

〉
is being used. It is clear from Figure (7.10) that neglecting the fluctuations

in the vaporisation rate leads to an overestimation of the Reynolds stresses near
the centreline starting immediately after the injector and continuing throughout
the domain. Since this source term represents in a way the effect of fluctuations
of the vaporisation rate, it can be concluded that vaporisation fluctuation are not
negligible and may even be important in turbulent spray flames. In order to ob-
tain the ’exact’ model (7.4) -exact in the sense that no extra modelling constant
is introduced- it is assumed that the gradients of the Reynolds stresses and va-
porisation are uncorrelated. We immediately obtain the final ’exact’ model when
fluctuations in the vaporisation rate are neglected and therefore the ’exact’ model
may not perform very well. When model equation (7.5) is used instead of (7.4),
the long-dashed lines in Figure (7.10) are obtained. The difference between the
two models is not very large and diminishes further downstream. Still, it seems
that the model based on the classical approach performs slightly better than the ex-
act model derived in this thesis. However, since the exact model knows no model
constants and because the use of a gradient hypothesis to obtain equation (7.5) is
not entirely justifyable, it makes more sense to keep using equation (7.4) in favour
of equation (7.5).

7.3.1 Temperature profiles

Figure (7.11) shows the radial profiles of mean temperature. In the experiment, a
peak temperature of approximately 1650 K was measured at the centreline of the
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Figure 7.10: Radial profiles of gas phase axial Reynolds stress ũ′′f u
′′
f (r). Symbols:

experimental data of smallest droplets. Lines: simulation data.

spray flame. In the simulations, the same peak temperature is predicted but at a
small distance from the centreline. Due to the evaporative cooling and the abun-
dance of fuel vapour, the temperature in the core of the spray drops to around
1000 K. This is precisely what is described by the group combustion regimes of
Chiu [22]. The rms of temperature fluctuations in Figure (7.12) show a large un-
derprediction of the temperature fluctuations. This can be caused by the way the
fuel vapour is distributed to the gas phase. Instead of distributing the fuel vapour
homogeneously over all gas particles in a finite volume cell, the fuel vapour is
distributed in such a way that it feeds a peak in the pdf of mixture fraction at sat-
uration conditions. Figures (7.11)-(7.12) also show the mean temperature and the
rms of temperature fluctuations for a simulation with homogeneous fuel vapour

distribution. The results show no improvement in T as well as
√
T ′′T ′′.

The variance of mixture fraction is influenced by the choice of Lagrangian mix-
ing model. For the IEM model, it has been shown that extra source terms taking
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Figure 7.11: Radial profiles of mean temperature. Symbols: experimental data.
Solid line: simulation data for mean temperature. broken line: simulation data for
conditional mean temperature 〈T |Z ≤ cz〉.

into account the presence of (vaporising) particles appear in the mixing model.
The dominant effect however is the two-way coupling source terms arising in the
transport equation for turbulence dissipation, directly influencing the mixing time
scale. The general effect of two-way coupling is a faster return to the mean, there-
fore decreasing the mixture fraction variance.

It is interesting that the mean temperature in the Karpetis has its peak tem-
perature at the centreline, whereas the numerical simulations show a decrease in
temperature at the centreline. The decrease in temperature at the centreline can
be explained by two mechanisms. First of all, the droplet vaporisation process
extracts heat from the gas phase, which is expressed in equation (3.69) by the par-
ticle source term at the right-hand side. Secondly, the fuel vapour entering the gas
phase will increase the local mixture fraction to a value far above the stoichiomet-
ric value near the injector. The temperature drops due to oxygen deprivation and
fuel saturation. The measured mean temperature does not show these two mech-
anisms, although the correct maximum temperature as well as the broadness of
the temperature profile is measured correctly. The magnitude of the temperature
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Figure 7.12: Radial profiles of gas phase rms of temperature
√
T ′′T ′′(r). Symbols:

experimental data. Lines: simulation data.

fluctuations is also remarkable, and Karpetis and Gomez attribute this behaviour
to two reasons:

1. turbulent mixing, which generally leads to non-Gaussian, bi-modal pdf’s in
the temperature field [10], automatically leading to a large variance.

2. intermittency behaviour due to the presence of particles, which is a common
phenomenon in spray flames.

Karpetis and Gomez do remark that the Raman thermometry measures tempera-
ture only if the probe is not disturbed by the presence of droplets. It is a form of
conditional averaging, conditional on the absence of particles. Because the vapour
from liquid particles does not mix instantaneously, the fuel vapour concentration
in the neighbourhood of a particles is higher and the temperature in a region with
vaporising droplets is lower. It is possible, and Karpetis and Gomez certainly make
this clear in their paper, that this conditional averaging can have a significant in-
fluence on the measured temperature. Gas samples in the high temperature region
of the pdf of temperature were systematically taken, and samples containing liq-
uid particles, and therefore (with high probability) in a high mixture fraction, low
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Figure 7.13: Conditional averaged pdfs of temperature (left) and mixture fraction
(right)

temperature part of the pdf, were rejected. This conclusion was partly based on
the measurements of the emissions of CH* radicals, which can be considered an
indicator for the presence of a flame sheet. The CH* emissions at the centreline are
practically zero, indicating that the probability of presence of a flame is low at the
centreline.

Figure (7.13) shows the pdf of temperature and mixture fraction at the centre-
line at x = 0.5D downstream of the injector. The mixture fraction pdf shows that
there is a peak near the saturation conditions. The vapour distribution algorithm
[117] feeds the peak at saturation in the mixture fraction pdf. Fluid particles re-
ceive fuel vapour according to their saturation rate: the fluid particle closest to
saturation receives fuel vapour first until it reaches saturation, then the next fluid
particle that is closest to saturation, etc. In this algorithm an artificial correlation
between fluid and dispersed phase particles is created. Computational gas parti-
cles which already have some fuel vapour can be seen as ’close’ to a liquid fuel
particle, thus receiving more vapour.

Karpetis and Gomez report a 90% rejection rate when taking temperature sam-
ples, due to the presence of liquid particles disturbing the measurements. We
could try to mimic the experimental conditions of Karpetis computing a condi-
tional mean temperature, conditional on the absence of liquid particles. A compu-
tational gas particle which has a fuel vapour mass fraction close to saturation con-
ditions indicates the presence of a liquid particle. We will therefore reject the 90%
of the weighted computational gas particles with the highest mass fraction. The re-
sulting conditional mean temperature profile at x = 0.5D downstream of the injec-
tor is shown in Figure (7.11). Indeed, the temperature at the centreline rises signifi-
cantly when conditional samples are taken and even in this rather crude approach
used here, there is a significant improvement of the numerical results towards the
experimentally measured temperature profiles and the explanation of conditional
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sampling seems plausible. In this light, it is also interesting to know that tempera-
ture measurements in other spray flames, e.g. McDonell and Samuelsen [103], do
show temperature profiles with a local minimum at the centreline.

The problems associated with the measurement of temperature profiles in a
spray flame make it difficult to draw solid conclusions for this test case. However,
the discussion of Karpetis and Gomez, as well as measured temperature profiles
in other spray flame experiments, lead to the conclusion that the most probable
profile for the (unconditional) mean temperature is the profile obtained with the
simulations, with a local minimum temperature on the symmetry axis.

7.4 Results of the dispersed phase

In this section, the results of the dispersed phase simulations will be discussed
and compared with experimental data. Data for three different size classes are
available for the velocity and velocity fluctuations. The size class that was used
to represent the gas phase velocities is also plotted in the figures presented in this
section, as well as the simulation results for this size class. The simulations pre-
sented here are the simulations for the full two-way coupling case (d), where the
source terms for exerted particle forces and vaporisation are taken into account, as
well as the modification of the pressure rate of strain.

Figure (7.14) shows the measured axial velocity of the dispersed phase for the
droplet size classes [0-8], [18-22] and [58-62] µm (black dots) as well as the sim-
ulation results for the droplet size classes [0-8], [15-25] and [55-65] µm (lines). In
the previous section, the emphasis has been on assessing the importance of dif-
ferent contributions of particle interaction. Here, the results of the full two-way
coupling simulations are shown and no comparison is made between different
two-way coupling models. Although the behaviour of the smallest droplet size
classes may be influenced by the different two-way coupling terms, the larger size
classes are mainly influenced by the dispersion model (in our case: the model for
for the fluctuating velocity seen u′s). It can be seen that there is a good agreement
with the experimental data close to the injector at x = 0.5D, but further down-
stream the velocity profiles are broader then in the experiment, which is due to a
higher spreading of the spray. The radial velocity profiles shown in Figure (7.15)
are in good agreement with the experimental data at all downstream locations,
although the numerical results are a little bit more ’noisy’ further downstream.
Most droplets have already vaporised between 2-4 injector diameters downstream
of the injector and long time statistics are needed to obtain smooth mean velocity
profiles in this region.

Figures (7.16) and (7.17) show the radial profiles of the Reynolds stresses ũ′′pu
′′
p(r)

and ṽ′′pv
′′
p(r). It is interesting to see that near the centreline the Reynolds stresses

of the dispersed phase are reduced significantly in the numerical simulations,
whereas the experimental data does not show such strong decrease in turbulence
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Figure 7.14: Radial profiles of mean droplet axial velocity Ũp for three different
size classes. Symbols: experimental data. Lines: simulation data.

levels near the symmetry axis. This could be due to the omission of the two-way
coupling terms in the model for the fluctuating velocity seen or it might be due to
too strong turbulence dissipation levels.

Figures (7.18) and (7.19) show the radial profiles of the arithmetic mean diam-
eter d10(r) and the droplet number density Np(r) at several axial distances down-
stream of the injector. Simulations with several droplet vaporisation models (dis-
cussed in chapter 2) showed only small differences between the results. Only the
results for the vaporisation model of Miller et al. [108] and the classical rapid mix-
ing model are shown here for case (d). There is a good agreement for the droplet
number density at all axial locations downstream of the injector. The width of the
spray is a little larger in the experiment, which is caused by the grid resolution
near the injector. An even smaller grid will correct this.

The droplet diameter is however overpredicted near the centreline. In the ex-
periment, the droplet size remains at an almost constant level of 30µm, whereas
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Figure 7.15: Radial profiles of mean droplet radial velocity Ṽp for three different
size classes. Symbols: experimental data. Lines: simulation data.

in the simulations, the droplet diameter rises immediately after the injector to a
value of 40µm. The droplet diameter then remains at this level throughout the
spray region.

A possible explanation is that the droplet size distribution used in the simula-
tions does not match the size distribution in the experiments, i.e. in the experiment
there were more large droplets. Another explanation is that in the smaller droplet
size classes, some droplets vaporise so fast that they vaporise completely from
their current sizeclass in a single timestep and skip the lower size classes. The
lower size class is under-represented and the droplet diameter rises.
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Figure 7.16: Radial profiles of droplet normal stress ũ′′pu
′′
p for three different size

classes. Symbols: experimental data. Lines: simulation data.

Figure 7.17: Radial profiles of droplet normal stress ṽ′′pv
′′
p for three different size

classes. Symbols: experimental data. Lines: simulation data.
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Figure 7.18: Radial profiles of the droplet mean diameter d10. Symbols: experi-
mental data. Lines: simulation data.

Figure 7.19: Radial profiles of the droplet number density Np
[droplets]

cm3 . Symbols:
experimental data. Lines: simulation data.
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7.5 Turbulence modulation by Kolmogorov lengthscale sized par-

ticles

The Kolmogorov lengthscale was estimated in [75] to be η ≈ 30µm. The mean
arithmetic droplet diameter near the spray injector is also around d10 ≈ 30µm.
It can be expected that droplets with a lengthscale smaller than the Kolmogorov
lengthscale have different effects on turbulence than droplets with a lengthscale
that is larger than the Kolmogorov lengthscale. Analytical studies by Druzhinin
and Elghobashi [43, 44] have indeed shown that in isotropic turbulence, the par-
ticle turbulence modulation depends on the particle size with respect to the Kol-
mogorov length scale η. Their studies show that when the particles are smaller
than the Kolmogorov lengthscale, dp < η, the particles will increase the turbulent
kinetic energy and the turbulence dissipation rate of the continuum phase. For
particle sizes of the order of the Kolmogorov lengthscale dp ≈ η, the turbulent
kinetic energy decreases. A quick investigation of the transport equations of tur-
bulent kinetic energy and dissipation rate equation (3.32) and (3.35) shows that the
source term due to the presence of particles can have a positive or a negative sign,
depending on the slip velocity |Us −Up| between the particle and the fluid. No
mechanism is present that takes into account the particle diameter with respect to
the Kolmogorov lengthscale. In fact, in the derivation of the particle equation of
motion the assumption is made that the particle diameter is smaller than the Kol-
mogorov lengthscale [67] and no such mechanism can be present. A more general
particle-turbulence interaction theory is needed to capture the effect mentioned by
Druhzinin, Elghobashi and others, but this falls outside the scope of this thesis.

In this context it is worthwhile to mention that the effects of vaporisation on
the turbulence dissipation is very clear in that it will always increase dissipation.

7.6 Conclusions and recommendations

The simulation results for this spray flame are encouraging. There was a good
agreement with the experimental data for most of the measured properties. The
disagreement with the mean temperature and temperature variance was exten-
sively discussed in section 7.3.1 and can be attributed to either conditional mea-
suring (as was also suggested by Karpetis) or to a vaporisation interaction effect
that has not been taken into account in the simulations presented in this chapter.
In our model as presented in chapter 5 the influence of the surroundings of the
droplet is determined by the velocity seen, composition seen and the temperature
seen. Fluctuations in the velocity are included in the model, but fluctuations in
the composition and temperature have been neglected. In chapter 2 the group
combustion concept predicted a lower vaporisation rate. Less fuel enters the gas
phase and the gas mixture will generally be more lean. This could result in higher
temperatures.
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Karpetis already showed that mass transfer is a dominant effect in the spray
flame [75]. Indeed, only when the two-way coupling effects due to mass transfer

are taken into account through the incorporation of all effects of S(I)
m in the simu-

lations it is possible to realise such strong axial and radial velocities that they are
comparable to the measured values. Moreover, the corrections of found by Chi-
ang for the Nusselt and Sherwood number as well as the corrections to the drag
coefficient due to mass transfer are extremely important and crucial to obtain good
predictions in this mass transfer dominated spray flame.

Still, there is plenty of room for improvement and the following points deserve
to be considered in future work:

1. Karpetis and Gomez [73] mention that intermittency is a common phenom-
ena in turbulent spray flames. To properly take intermittency into account
the turbulence dissipation (or equivalently turbulence frequency) has to be
considered as a fluctuating variable and the velocity-frequency-composition
PDF should therefore be considered.

2. The present model uses the fluctuating velocity seen and a mean temperature
seen. Generalisation to a fluctuating temperature seen is possible using the
information in the continuum phase pdf.

3. The flamelet approach used here is based on only a single strainrate, a =
1001

s
. A lookup table in which the strain rate is a second independent vari-

able (together with mixture fraction) can be created. The strain rate experi-
enced by flamelets in turbulent flow can be calculated from the turbulence
frequency using relationships given in [123]. This will have an effect on the
simulation results for the gas phase temperature near the injector, since there
the strain rate will have the largest variations.

4. Related to the previous item, a lookup table based on a single phase flamelet
approach can be replaced by a spray flamelet approach. The work of Gutheil
[61, 62] may be of use in further developments in this direction.

5. Since the correction factors due to vaporisation had such an impact on the
performance of the numerical simulations, a correction factor to the drag
coefficient proposed by Chiu [21] for interacting particles in a turbulent flow
might be considered to see if this leads to further improvements.

6. The experimental data used in this chapter also has room for improvement.
The velocity profiles at the first measurement plane at x = 1.27 mm down-
stream of the injector are discontinued at r=4 mm and one needs to speculate
on the possible continuation of the data for r > 4 mm. An experiment with
more complete radial profiles would leave less to the creativity of the mod-
eller. The study of an additional, but similar experiment like the methanol
spray of Mcdonell and Samuelsen [103] will be very useful.
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Concluding remarks

In this thesis, a hybrid Finite Volume - Monte Carlo method has been proposed to
compute turbulent reacting dispersed two phase flows. Some progress in the de-
velopment of turbulence modelling of two phase flows has been made, but many
aspects still remain to be investigated. In this last chapter we review some inter-
esting achievements and mention some open problems.

The Eulerian mean transport equations were derived and a modification of the
model for the pressure rate of strain - a classical turbulence closure problem - has
been proposed. This modification takes into account the effect of the presence
of particles and the effect of mass transfer (vaporisation) on the pressure rate of
strain. The model has been derived in such a way that it is easy to incorporate
in existing codes since no additional information is needed to evaluate the extra
two-way coupling terms with respect to the original ’classical’ two-way coupling
terms. Simulation results have shown that this term is not negligible in turbulent
non-vaporising sprays as well as in turbulent spray flames and can give small
improvements of the predictions of turbulence quantities.

The consistency between the Lagrangian turbulence model and second mo-
ment closures was investigated and the Langevin model has been extended to take
into account the modification of the turbulent flow by the presence of particles
as well as by mass transfer due to vaporisation. The extension of the Langevin
model to take into account these two-way coupling effects implies a modification
of the result of Kolmogorov for the first order Lagrangian structure function. The
extension of the model allows to use the modifications to the pressure rate of strain
in PDF simulations. The practical implementation of this model poses some diffi-
culties since additional information is needed to distribute the two-way coupling
source terms over the computational fluid particles. In this sense, more informa-
tion is embedded in the Langevin model than is present in the Eulerian transport
equations.

The influence of vaporisation fluctuations on the Reynolds stresses was taken
into account and this turned out to have a noticeable influence on the predictions
of the Reynolds stresses in the karpetis spray flame.

A model that takes into account the modification of the turbulence dissipation
due to vaporisation was proposed. The attractive feature of this model is that no
modelling constant is introduced and it is in that sense more ’exact’ than other
models that were proposed in the literature. Small differences between the models
were found in favour of the classical model, but a more thorough study needs to
be performed in order to assess its general performance.

151



152 Chapter 8. Concluding remarks

Additionally, it was shown how the closure of the triple correlations, either
by the Daly Harlow (gradient diffusion) approximation or by a model that is ten-
sorially invariant, can be extended to multiphase flow problems including mass
transfer. It still remains to be investigated how influential these modifications are
but since the details of the model for the triple correlations in single phase flows
are generally not very important, it can safely be assumed that two-way coupling
modifications to the triple correlations are negligible.

Micro-mixing models are also affected by the presence of vaporising particles,
but this also remains a theoretical observation in this thesis.

The details of the droplet vaporisation models studied in the beginning of the
thesis do not seem to play a dominant role in turbulent spray flames. Many effects
like Saffman lift, radiation and internal circulation can be neglected. However, va-
porisation corrections to the drag coefficient and also the Nusselt and Sherwood
number are important and necessary in order to obtain a good agreement with
experimental data.

A very challenging topic to pursue in future work is the extension of the dis-
persion model based on a Generalised Langevin Model instead of the Simplified
Langevin Model.

In a more theoretical approach towards the problems encountered in particle
turbulence interaction one might consider reviewing the Kolmogorov theories
and extend the results found in this thesis for the first order Lagrangian structure
function to higher order structure functions and the turbulence energy spectra.
These theoretical exercises might be important in the derivation of Large Eddy
models for multiphase flows and give more insight in the numerical results of
Direct Numerical Simulations.

It has been reported in the literature that in turbulent spray flames, intermit-
tency might play an important role. Another improvement therefore is to extend
the pdf method to a velocity-composition-frequency pdf and investigate the in-
fluence of the two-way coupling terms on the equation for the turbulence fre-
quency.

As to the aspect of group combustion an important remark needs to be made.
In the literature, two (often implicit) definitions of group combustion exist. In one
definition, group combustion is presented according to the original idea of Chiu
[23] that in non-dilute droplet clouds vaporised fuel gas will quench the chemi-
cal reactions, causing the droplet cloud to have a colder centre with vaporising
droplets. In this sense, group combustion is completely understood since it is due
to the enthalpy drop and the excess fuel vapour (or mixture fraction) that this phe-
nomena occurs.

A different view on group combustion which was also developed by Chiu
[18] is that in dense sprays, the presence of neighbouring droplets will influence
droplet vaporisation, as well as droplet drag, etc. The classical vaporisation laws
for isolated droplets are not valid anymore. In this sense, group combustion can
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actually be seen as a hydrodynamic interaction problem and a one-point pdf ap-
proach is insufficient to describe this. Spray flames with such dense regions will
most likely also have non-negligible collision and coalescence rates and this has
to be incorporated simultaneously in numerical simulations. Proper experimen-
tal data of denser sprays are needed to evaluate the performance of the derived
models in such cases.

Some restrictions of the model presented in this thesis are that it is in the first
place suited mainly for steady state spray flames. Variable time stepping and
smoothing by time averaging are important to obtain accurate iteration averaged
mean turbulence quantities from the model. We also have to adhere to the lim-
itations of the second moment closure model and we have limited ourselves to
certain classes of flame structures by using the flamelet approach.

In this light, the use of pdf methods in combination with large eddy simula-
tions (and considering filtered density functions) is an interesting topic to pursue
in future research. Closure problems will remain, but they will be of a different
nature than the closure problems discussed in this thesis.

Many challenges still lie ahead of us.



154 Chapter 8. Concluding remarks



APPENDIX A

Ito calculus

A.1 Analytical expression for Us

Integration schemes for stochastic differential equations follow a slightly different
procedure compared to standard Riemann integration [81] because the stochas-
tic nature of the equations violates local integrability. An important result from
stochastic calculus is the Ito theorem, saying that if Xt is an Ito process given by

dXt = Udt+ V dBt (A.1)

and g ∈ C2([0,∞) × R), then

Yt = g(t, Xt) (A.2)

is again an Ito process and

dYt =
∂g

∂t
dt+

∂g

∂x
dXt +

∂2g

∂x2
(dXt)

2. (A.3)

With the above Ito formula, we can evaluate d(exp(− t
Ti

)Us,i) (note that we as-

sume that Gij = 1
Ti
δij) as in equation (5.49):

d(exp(− t

Ti

)Us,i) = − 1

Ti

exp(− t

Ti

)Us,idt+ exp(− t

Ti

)dUs,i. (A.4)

If the stochastic equation for the velocity seen is multiplied by exp(− t
Ti

) and if we
substitute (A.4) into the result, we obtain

d(exp(− t

Ti

)Us,i) = exp(− t

Ti

)Cidt+ exp(− t

Ti

)
∑

j

σijdWj(t). (A.5)

We now take the integral of this expression:

∫ t

t0

d(exp(− t

Ti

)Us,i)) =

∫ t

t0

exp(− s

Ti

)Cids+

∫ t

t0

exp(− s

Ti

)
∑

j

σijdWj(s). (A.6)

and we obtain:

exp(− t

Ti

)Us,i(t) − exp(− t0
Ti

)Us,i(t0) = −TiCi

[
exp(− t

Ti

) − exp(− t0
Ti

)

]

+

∫ t

t0

exp(− s

Ti

)
∑

j

σijdWj(s), (A.7)
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which leads to the final analytical expression for the velocity seen:

Us,i(t) = Us,i(t0) exp(
∆t

Ti
) − TiCi

[
1 − exp(

∆t

Ti
)

]

+ exp(
t

Ti
)

∫ t

t0

exp(− s

Ti
)
∑

j

σijdWj(s), (A.8)

A.2 Evaluation of the covariance matrix

Using the Ito isometry [120], we obtain the following equality for the second order
moments:

〈(
∑

j

gj(t)

∫ t

t0

fj(s)dW (s)

)2〉
=

∑

j

g2
j (t)

∫ t

t0

f 2
j (s)ds (A.9)

+ 2
∑

j<k

gj(t)gk(t)

∫ t

t0

fj(s)fk(s)ds.

In the general case where we have a full matrix Bij and Gij , the second term on
the right hand side will give a nonzero contribution. Since we will only solve the
orthogonally transformed equation, Bij and Gij are diagonal and we will not have
these terms. We can now evaluate the variance of the stochastic part of equation
(A.8), which will be needed to evaluate the stochastic contributions of the exact
solution of the stochastic system of equations:

γi(t) =
∑

j

σij

∫ t

t0

exp(
1

Ti
(t− s))dWj(s), (A.10)

which results in:

〈
γ2

i (t)
〉

=
∑

j

σ2
ij

−Ti

2

[
1 − exp(2

∆t

Ti
)

]
. (A.11)

Similar expressions can be found for the other variances and covariances.
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1983.

[58] H.W. Ge. Probability density modeling of turbulent non-reactive and reactive spray
flows. PhD thesis, University of Heidelberg, 2006.

[59] M.G. Giridharan, D.S. Crocker, J. Widmann, and C. Presser. Issues related to
spray combustion modeling validation. AIAA 39th aerospace sciences meeting
& exhibit, pages AIAA 2001–0363, 2001.

[60] G. Gouesbet and A. Berlemont. Eulerian and Lagrangian approaches for
predicting the behaviour of discrete particles in turbulent flows. Progress in
Energy and Combustion Science, 25:133–159, 1999.

[61] E. Gutheil. Structure and extinction of laminar ethanol-air spray flames.
Combustion Theory and Modelling, 5:131–145, 2001.

[62] E. Gutheil and W.A. Sirignano. Counterflow spray combustion model-
ing with detailed transport and detailed chemistry. Combustion and Flame,
113:92–105, 1998.

[63] R. Hadef and B. Lenze. Measurements of droplet characteristics in a swirl
stabilized spray flame. Experimental thermal and fluid science, 2005.

[64] K. Hanjalic and B.E. Launder. A Reynolds stress model of turbulence and its
applications to thin shear flows. Journal of Fluid Mechanics, 52:609–638, 1972.

[65] D.C. Haworth and S.B. Pope. A generalized Langevin model for turbulent
flows. Physics of Fluids, 29:1026–1044, 1986.



162 BIBLIOGRAPHY

[66] G. Hetsroni. Particles-turbulence interaction. International Journal of Multi-
phase Flow, 15(5):735–746, 1989.

[67] J. O. Hinze. Turbulence, 2nd edition. McGraw-Hill, 1975.

[68] A.T. Hjelmfelt and L.F. Mockros. Motion of discrete particles in a turbulent
fluid. Appl. Sci. Res., 16:149–161, 1966.

[69] C. Hollmann and E. Gutheil. Flamelet modeling of turbulent spray diffu-
sion flames based on a laminar spray flame library. Combustion Science and
Technology, 135:175–192, 1998.

[70] R.T. Imaoka and W.A. Sirignano. A generalised analysis for liquid-fuel
vaporisation and burning. International Journal of Heat and Mass Transfer,
48:4342–4353, 2005.

[71] R.T. Imaoka and W.A. Sirignano. Vaporisation and combustion in three-
dimensional droplet arrays. Proceedings of the Combustion Institute, 30:1981–
1989, 2005.
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