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Abstract: Shallow foreshores in front of coastal dikes can reduce the probability of dike failure due
to wave overtopping. A probabilistic model framework is presented, which is capable of including
complex hydrodynamics like infragravity waves, and morphological changes of a sandy foreshore
during severe storms in the calculations of the probability of dike failure due to wave overtopping.
The method is applied to a test case based on the Westkapelle sea defence in The Netherlands,
a hybrid defence consisting of a dike with a sandy foreshore. The model framework consists of the
process-based hydrological and morphological model XBeach, probabilistic overtopping equations
(EurOtop) and the level III fully probabilistic method ADIS. By using the fully probabilistic level
III method ADIS, the number of simulations necessary is greatly reduced, which allows for the
use of more advanced and detailed hydro- and morphodynamic models. The framework is able to
compute the probability of failure with up to 15 stochastic variables and is able to describe feasible
physical processes. Furthermore, the framework is completely modular, which means that any
model or equation can be plugged into the framework, whenever updated models with improved
representation of the physics or increases in computational power become available. The model
framework as described in this paper, includes more physical processes and stochastic variables in the
determination of the probability of dike failure due to wave overtopping, compared to the currently
used methods in The Netherlands. For the here considered case, the complex hydrodynamics like
infragravity waves and wave set-up need to be included in the calculations, because they appeared
to have a large influence on the probability of failure. Morphological changes of the foreshore
during a severe storm appeared to have less influence on the probability of failure for this case. It is
recommended to apply the framework to other cases as well, to determine if the effects of complex
hydrodynamics as infragravity waves and morphological changes on the probability of sea dike
failure due to wave overtopping as found in this paper hold for other cases as well. Furthermore,
it is recommended to investigate broader use of the method, e.g., for safety assessment, reliability
analysis and design.

Keywords: probabilistic modelling; foreshore; infragravity waves; wave overtopping; morphological
changes; safety assessment
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1. Introduction

In recent years, Building with Nature solutions (soft solutions, such as sand nourishments) are
increasingly considered as an alternative in flood protection, see e.g., Van Slobbe et al. [1]. These soft
solutions are considered as a supplement to the usual hard measures (dikes, coastal structures).
Three types of soft defences can be distinguished [2]. Here, one of these types is considered: a hybrid
defence, more specifically a dike with a shallow sandy foreshore. This dike-foreshore system is a
combination of a traditional dike and a nourished foreshore, consisting of a body of sand, possibly
covered with vegetation. The foreshore reduces the loads on the dike. The dike remains part of the
defence. A hybrid defence really is a combination in which both parts are of importance in the flood
protection. Constructing a sandy foreshore in front of a dike can be a method to decrease the failure
probability. However, the uncertainty in the morphological development of these foreshores leads to
uncertainty with respect to their contribution in protection against flooding. The morphological stability
of a foreshore during extreme conditions is not well-known. Furthermore, the influence of infragravity
waves generated on the foreshore on the wave overtopping and failure probability is largely unknown.
Increasing interest in soft solutions of dike managers, as well as local inhabitants (getting a nice beach),
makes it interesting to investigate the contribution of foreshores to flood protection further.

The risk management and optimization of coastal structures have gained much attention the last
years. In order to optimize a design, the uncertainties need to be taken into account as detailed
as possible, by using probabilistic approaches. However, currently these approaches are often
deterministic or semi-probabilistic. For example, the currently used methods in the Netherlands
to determine the probability of dike failure due to wave overtopping only include a few stochastic
variables and use a model to determine the wave hydrodynamics that does not include infragravity
waves or morphological changes. By using a full-probabilistic approach, the risks could potentially be
further reduced and the designs further optimized, see e.g., Wainwright et al. [3].

During a storm, several processes occur at a dike-foreshore system. Wave energy is dissipated
on the foreshore by wave breaking, which causes a shift in the wave spectrum from the peak
frequency to the lower frequencies due to the generation of infragravity waves, see e.g., Symonds et al.;
Longuet-Higgins & Stewart [4,5]. The breaking waves also lead to erosion of the foreshore. Finally,
if water levels and wave heights are large enough, wave overtopping may occur over the dike. Hence,
the generation of infragravity waves, morphological changes of the foreshore and wave overtopping
are important aspects in the design of dike-foreshore systems.

Infragravity waves are generated by groups of wind induced waves, and are sometimes called long
waves or surfbeat in the surf zone. Infragravity waves are known to be important on dissipative beaches
and for run-up [5]. Typical infragravity wave periods range from 25–30 s to 250–300 s [6]. As previous
studies on dike-foreshore systems [4,7] indicated that wave energy dissipation causes a shift in the wave
spectrum from the peak frequency to the lower frequencies (due to generation of infragravity waves),
instead of the wave peak period, the Tm−1,0 wave period was recommended as a measure in these
situations to calculate the wave run-up or wave overtopping [8–10]. This period is defined as Tm−1,0 =
m−1/m0, with mk being the kth moment of the wave spectrum. The period is commonly used in coastal
structure design [11], and the use of the Tm−1,0 wave period is incorporated in manuals like the EurOtop
manual [12]. Furthermore, it was found, that on high foreshores where intense breaking occurs, the wave
set-up becomes important for the wave run-up and overtopping as well [13].

Roeber & Bricker [14] showed that during Typhoon Haiyan, at the town of Hernani,
the Philippines, an infragravity wave steepened into a tsunami-like wave that caused excessive damage
and casualties. The fringing reef present near the town protected the community from moderate storms,
but increased flooding during this extreme event. Typical for these reef environments is a very short
wave-breaking zone over a steep reef face, which releases the bound infragravity waves with little
energy loss. This indicates that it can be important to include the infragravity waves in the design of
dike-foreshore systems.
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For this paper, the failure mechanism wave overtopping was chosen, because it is one of the most
important failure modes of dike-foreshore systems. The overtopping discharge depends on the wave
conditions at the toe, slope geometry, and the existing freeboard. The most commonly used equations
to describe wave overtopping are the ones from EurOtop [12].

Suzuki et al. [7] concluded that beach nourishments do not always reduce the wave overtopping
discharge, due to set-up and generation of bores and infragravity waves. Van Gent & Giarrusso [15]
found that for foreshores characterized by a bar, trough and terrace in front of a dike, the contribution
of low frequency energy to the total wave energy could reach 30%. It has to be noted that most of
the previous studies did not include the wave directional spreading, because they were based on
physical flume model tests. However, the wave directional spreading can have a large influence on the
generation of infragravity waves and the wave period [11].

Bakker & Vrijling; Madsen et al. [16,17] give extensive descriptions of many of the different
available probabilistic calculation methods. The Joint Committee on Structural Safety [18] proposed
a level-classification of probabilistic calculation methods for the reliability of an element (now ISO
2394:2015). Here, level I methods do not calculate failure probabilities, but use partial safety factors.
Level II methods linearize the limit state function in the design point and approximate the probability
distribution of each variable by a standard normal distribution. Level III methods or fully probabilistic
methods calculate the probability of failure by considering the probability density functions of all variables.

Previous research considering probabilistic methods was often focused on different processes
and failure mechanisms than wave overtopping (e.g., [19–22]). Furthermore, the previous research
mostly considered only a few stochastic variables, with simple 1D empirical or numerical models
and probabilistic methods like Monte Carlo Simulation, which require a large number of simulations
(e.g., [19–23]).

Overall, probabilistic methods have been applied to coastal dikes and dunes, but not yet to the
issues studied in this paper. Hence, a method which includes the influence of complex hydrodynamics
such as infragravity waves, and morphological changes of a sandy foreshore on the probability of
dike failure due to wave overtopping does not yet exist. Therefore, the main goal of this paper is
to develop a framework to calculate the probability of sea dike failure due to wave overtopping,
taking into account the morphological changes of the foreshore and complex hydrodynamics like
infragravity waves. Furthermore, the goal is to determine the influence of using a process-based
model with complex hydrodynamics versus using a calculation rule, and to determine the influence of
morphological changes of the foreshore on the probability of failure due to wave overtopping for the
here considered case.

First, the case study location is described (Section 2.1), then the choice and validation of the
model framework are discussed (Section 2.2). Next, the input of the probabilistic calculations is briefly
described (Section 2.3). After that, the results are given (Section 3), followed by a discussion (Section 4).
The paper ends with several conclusions (Section 5).

2. Materials and Methods

2.1. Case Study Description

The configuration that is considered in this paper is roughly based on the hybrid sea defence at
Westkapelle, on the coast of Walcheren in The Netherlands, see Figure 1. The measured bathymetrical
transect 1832 from 2009 is shown in Figure 2. The average crest height of this dike is 12.6 m+NAP
(Normaal Amsterdams Peil, Dutch ordnance level). This means that it is a very large dike, as extreme
surge levels considered are around 5 m+NAP [24], and therefore the crest freeboard under design
conditions is still more than 7 m. The average slope is around 1:8, and the revetment of the outer slope
consists of asphalt above a berm and rubble stone penetrated with mastic asphalt below this berm.
The berm is located around 7.5 m+NAP. In 2002, research indicated that (e.g., due to climate change)
the design conditions should be increased [25]. The expected wave overtopping discharge during the
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new design conditions exceeded the acceptable level of 0.1 ls−1m−1 (return period of 1:4000 years).
As the landward slope of the dike consists of bare sand, a larger discharge than 0.1 ls−1m−1 could
not be accepted [12]. In 2008, it was decided to strengthen the dike with a foreshore with a volume of
2.5 million cubic meter of sand in front of the dike. The initial height and width of the foreshore were
approximately 4 m+NAP and 75 m respectively, with an average foreshore slope of approximately
1:17. During normal conditions, this gives a dry beach in front of the dike.
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Figure 1. The Netherlands, with the coast of Walcheren indicated (left). The Westkapelle sea defence,
with the bathymetrical transects indicated (right). Transect 1832 is shown in red.

The profile used in the calculations is loosely based on the 2009 bathymetric survey transect 1832
at the Westkapelle sea defence, see Figure 2. Instead of the local crest height at transect 1832, the mean
crest height of the Westkapelle sea defence is used, being 12.6 m+NAP. Furthermore, the bathymetry is
simplified to two line sections based on the average slope (a horizontal beach and a foreshore slope),
to be able to easily compare a situation without and with a foreshore. This simplification of the profile
means that the volume of sand might not be completely equal to the actual foreshore at Westkapelle.
A schematization of the Westkapelle sea defence is justified for this study, because the goal of the
paper is to determine a framework which can include the influence of the complex hydrodynamics
and cross-shore morphological changes during severe storms on the probability of failure.
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2.2. Set-Up and Validation of Model Framework

The set-up of the framework is explained in more detail in this subsection. Because a single model
that includes all the different relevant processes does not exist, a model framework is developed,
in which different models are combined. In this study we use a combination of XBeach in surfbeat mode,
to cope with the morphodynamic and hydraulic behavior, the EurOtop formulae on wave overtopping,
and the probabilistic method Adaptive Directional Importance Sampling (ADIS). It combines accuracy
in the modelling of processes with computational efficiency. The morphological changes that are
considered here are the dominant short term storm morphological changes. The present paper builds
on the work of Den Bieman et al. [21], who first combined ADIS and XBeach, to perform a dune erosion
safety assessment.

2.2.1. Hydro- and Morphodynamics: XBeach and h/2-Assumption

XBeach is chosen to model the hydrodynamics and morphological changes. In surfbeat mode,
XBeach can include the short wave height transformation, the wave set-up, the infragravity wave
transformation and the morphological changes. It is mainly chosen for its inclusion of the infragravity
waves and morphological changes, and its proven skill. XBeach is a nearshore numerical model
used to assess the coastal response during storm conditions, and has been extensively calibrated
and validated [26,27] (also refer to www.xbeach.org). XBeach is a coupled phase-averaged spectral
wave model for sea swell and non-linear shallow water model for infragravity waves. It combines
stochastic and deterministic approaches. XBeach solves the phase-averaged wave action equation.
XBeach uses a form of the dissipation formula for wave breaking according to Roelvink [28] and a
roller energy balance, which is coupled to the wave action balance, by Reniers et al. [29]. For the low
frequency and mean flows, the shallow water equations are used. XBeach models sediment transport
by a depth-averaged advection diffusion equation by Galappatti & Vreugdenhil [30]. The equilibrium
sediment concentration is calculated by the sediment transport formula of Soulsby & Van Rijn [31].

A commonly used rule of thumb for gentle foreshore slopes is the simple h/2-assumption,
where the wave height Hm0 is half the water depth h. The assumption does not include the complex
hydrodynamics such as infragravity waves or wave set-up, nor does it include morphological changes.
Also, changes in wave period are not calculated by the model. The h/2-assumption was compared
with XBeach 1D without the infragravity wave forcing for several situations. The models showed
good agreement. The h/2-assumption calculation rule is used in this paper, to compare to the results
of XBeach surfbeat, which does include both the complex hydrodynamics like infragravity waves,
and morphological changes of the foreshore.

Even though XBeach has already been extensively validated, an additional validation was
performed specifically for the case considered here, in Oosterlo [32]. The XBeach hydrodynamics were
validated for this study by using the flume experiments of Van Gent [9] on which the EurOtop wave
overtopping formula for ξm−1,0 > 7 was based. XBeach showed good skill in predicting the Hm0 and
Tm−1,0. For a more detailed description of the validation, refer to Oosterlo [32].

In the modelling framework, the incoming waves are separated from the total wave signal as
computed by XBeach by the method of Guza et al. [33]. For each hour of storm data, during which
the boundary conditions are regarded as being constant, the wave spectra are calculated. From these
spectra the wave height (Hm0) and wave period (Tm−1,0) at the dike toe are determined, which are
used as input for the overtopping calculations.

2.2.2. Wave Overtopping: EurOtop

Because XBeach cannot be used to calculate small overtopping discharges as the ones considered
in this paper [34], the EurOtop (first edition) formulae [35] are chosen to model the wave overtopping
discharge, because they are the most commonly and extensively used wave overtopping formulae,
and because they form a set of equations that can be used for all types of wave breaking conditions and

www.xbeach.org
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slopes. The EurOtop [35] equations were based on a large set of measured data from different model
tests in small and large scale as well as in wave flumes and wave basins. Furthermore, the EurOtop [35]
formulae are the only formulae that include the infragravity waves in any way, by using the Tm−1,0

wave period. In the recent 2016 second edition [12], some equations have been updated. For sloping
structures, where the freeboard is at least half the wave height, the differences between the first edition
EurOtop [35] formulae and the new ones is quite small. For that reason one may also continue to use
the first edition EurOtop [35] formulae in such a situation [12]. Because the previous is always the case
for the situations considered in this paper, the equations of the first edition of EurOtop [35] are still
used here. A brief description of the used EurOtop [35] equations is given in Appendix A.

In the modelling framework, the resulting wave parameters at the toe of the dike are entered
into the EurOtop [35] equations, together with the freeboard, main wave direction, slope of the dike
(average slope = 1:8) and roughness of the slope (for asphalt γf = 1.0 [12]), with which the wave
overtopping discharge is calculated for each hour of the storm. The wave overtopping discharges
during the storm are then compared and the largest one is used further in the ADIS calculation of the
limit state function (see next subsubsection).

2.2.3. Probabilistic Calculation Method: Adaptive Directional Importance Sampling

Using limit states, it is possible to define a reliability function or limit state function. The general
form of a limit state function is, e.g., Madsen et al. [17]):

Z = R− S (1)

in which R indicates the strength parameters and S the load parameters. In the limit state, the limit
state function Z is equal to 0. Failure occurs if Z ≤ 0. The goal of the probabilistic calculations is to
find the probability of failure and the corresponding design point. The design point is the point on the
limit state function (Z = 0) with the largest probability density [17].

Adaptive Directional Importance Sampling (ADIS), a level III or fully probabilistic method,
is chosen as the probabilistic calculation method, because ADIS can be used for small probabilities of
failure, medium numbers of random variables, non-normal distributed variables, non-linear limit state
functions, discontinuously shaped failure spaces, statistically dependent and independent stochastic
variables and limit state functions, and multiple limit state functions [36]. But, most importantly,
ADIS greatly reduces the number of calculations necessary, with respect to crude Monte Carlo
Simulation. This means that more stochastic variables, more complex limit state functions and
more detailed (hydrodynamic and morphological) models can be included, which include more
physical processes, and can handle more complex cross-shore profiles and storm situations.
Den Bieman et al. [21] used ADIS in combination with XBeach to perform a dune erosion safety
assessment. The ADIS implementation in the OpenEarth toolbox [37] is used here.

ADIS is based on directional sampling, where directions are randomly sampled from standard
normal space. With a chosen random direction, a line search algorithm is used, which searches the
limit state Z = 0 in that direction, see Figure 3. When the limit state is reached or when the limit state
cannot be found, a next random direction is chosen.

ADIS uses an adaptive response surface (ARS), a (simpler) function which approximates the
limit state function and reduces the computational effort required. The response surface is useful,
because it has a simple analytical solution, as opposed to the computationally more demanding XBeach
computation. ADIS uses a second order polynomial as response surface. The second order polynomial
is able to mimic the actual limit state function close enough in all but the most strongly non-linear
of limit states [21]. If the root-mean-squared error between the adaptive response surface and the
limit state function is small enough, the response surface is accepted and used instead of the limit
state function, which reduces the computation time. The adaptive response surface is updated with
information that comes available from the XBeach evaluations.
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The importance sampling part of ADIS is expressed in the use of the β-sphere, see also Figure 3
(after Den Bieman et al.; Grooteman [21,36]). The reliability index β (= Φ−1(1 − Pf), with Φ indicating
a standard normal distribution) is a commonly used probabilistic measure of safety, in addition to
the probability of failure Pf. The value of β indicates the shortest distance from the origin to the
failure space. The β-sphere limits the area of the sampling domain for which XBeach calculations are
performed, based on a certain β-value. The β-sphere is used when an adaptive response surface with a
good fit has been found. In that case, the adaptive response surface is used instead of the limit state
function, but still a small number of XBeach (limit state function) evaluations will be made to maintain
precision. These XBeach evaluations are performed for the most important points, i.e., the points inside
the β-sphere, the points that have a small β-value (and a large contribution to the probability of failure).
Hence, the β-sphere defines the area that is excluded from the sampling domain, which reduces the
number of exact XBeach limit state simulations needed. Thus, the response surface is applied in
the areas outside of the β-sphere, and inside the sphere, the real limit state function using XBeach
calculations is used. For a more extensive description of ADIS, refer to Grooteman [36].

The performance of Monte Carlo Simulation (MCS), FORM and ADIS was compared for the
case considered here in Oosterlo [32]. The results showed the same patterns as the comparison and
validation that was done in Grooteman [36]: MCS requires a very large number of limit state function
evaluations, the number of evaluations needed for FORM and ADIS are of the same order of magnitude,
with FORM requiring somewhat more evaluations. For a more detailed description of the comparison,
refer to Oosterlo [32].

Within ADIS, an accuracy of 95% and a confidence level of 20% are set, which means that the
actual probability of failure lies with 95% certainty within 20% difference of the calculated probability
of failure. The default ADIS response surface fitting method is used, together with the default margins
of the β-sphere (see Grooteman [36]). The minimum number of sampled directions is set to 50,
the maximum is set to 1000. In general, the limit state function that is used for wave overtopping
is defined as Z = qcrit − q, with qcrit a critical wave overtopping discharge depending on the type
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of layer and quality of the layer on the landward slope of the dike. For Westkapelle, this limit is
0.1 ls−1m−1, which was taken as a constant in the calculations. The probabilistic methods showed to
have difficulties with fitting to this function. Therefore, the limit state function that is used for this
paper is changed into Z = log(qcrit) − log(q), which has a much smoother behavior. This is consistent
with the logarithmic dependence of q on the hydraulic parameters as indicated in the EurOtop [12]
equations. Choosing this different limit state function showed to have no influence on the resulting
probabilities of failure. The complete set-up of the model framework is schematically presented in
Figure 4.
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Figure 4. Model framework, using ADIS, XBeach and EurOtop to calculate the probability of dike
failure due to wave overtopping.

2.3. Input of Probabilistic Calculations

This subsection describes the input, e.g., water levels and waves, that was used for the probabilistic
calculations. The XBeach surfbeat models that were used for the calculations include the long waves,
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the short waves on the wave group scale, flow, sediment transport and morphological changes.
The Kingsday MPI version of XBeach (see www.xbeach.org) was used in combination with cyclic
boundary conditions on the lateral boundaries (see e.g., Roelvink et al. [38]). A 1D-model was used,
with a rectilinear grid with variable grid cell sizes, ranging from 40 m (offshore) to 1 m (near the
coast). The bathymetrical profile with an indication of the stochastic elements is given in Figure 5.
The bathymetrical profile runs to approximately −10 m+NAP. The profiles were extended to a depth
of −20 m+NAP with a slope of 1:50 to remove boundary effects.
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Figure 5. The cross-shore profile, with the locations where the stochastic variables of Table 1 act on,
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Where possible, the default XBeach settings were used, with the exception of the stochastic model
parameters as discussed below and as given in Table 1. For a more detailed description of the XBeach
models and settings that were used, refer to Oosterlo [32].

For this paper, 15 stochastic variables were chosen, as given in Table 1. The names of the parameters
are given in the first column, the second column gives the symbols. A distinction is made between
three categories of uncertainties according to Van Gelder [39]. The third column gives the distribution
type and parameters of the distribution, where N(µ;σ) indicates normal distributed, L(λ;ζ) lognormal
distributed, and W(ω;ρ;α;σ) indicates a Weibull distribution, and U(a;b) a uniform distribution.
The references to the parameters and distributions are given in column four, the fifth column gives a
tag to each parameter, which indicates at which location the parameter acts (see Figure 5).

Table 1. Stochastic variables as used in the probabilistic calculations and their accompanying
probability distributions.

Description Parameter Distribution Reference Location

Model uncertainty

XBeach wave breaker index [-] γ N(0.54;0.054) [28] C

XBeach calibration factor wave skewness in
sediment transport [-] facSk L(−1.024;0.29) [40] C

XBeach calibration factor wave asymmetry in
sediment transport [-] facAs L(−2.14;0.29) [40] C

www.xbeach.org
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Table 1. Cont.

Description Parameter Distribution Reference Location

Model uncertainty

EurOtop coefficient ξm−1,0 < 5 [-] C1 N(4.75;0.5) [35] D

EurOtop coefficient ξm−1,0 < 5 [-] C2 N(2.6;0.35) [35] D

EurOtop coefficient ξm−1,0 > 7 [-] C3 N(−0.92;0.24) [35] D

EurOtop coefficient zero freeboard [-] C4 N(1;0.14) [35] D

Inherent uncertainty: Time

Storm duration [s] tstorm L(3.94;0.34) [41] A

Maximum water level [m] zs,max W(ω,ρ,α,σ) [42] A

Wave height [m] Hm0
N(0;0.6), related to
zs (see main text) [42] A

Wave period [s] Tp
N(0;1), related to

Hm0 (see main text) [42] A

Wave directional spreading [-] s U(1.5;10) A

Location tidal peak relative to surge peak [s] ϕ U(−ttide/2;ttide/2) A

Inherent uncertainty: Space

Sediment size [m] D50 L(−8.12;0.15) [43] B

Manning friction factor [sm−1/3] n U(0.01;0.03) [44] B

2.3.1. Boundary Conditions

The probability distributions that are used in the safety assessments for the Dutch dune coast
(Dutch Hydraulic Boundary Conditions 2006 for dunes, Rijkswaterstaat; Steetzel et al. [24,42]) are
used in this paper for the water level, wave height and wave period (see also Den Heijer et al. [45]).
These omnidirectional statistics are valid for the −20 m+NAP depth contour. In these statistics,
the water level, significant wave height and wave peak period are correlated, as is further explained
below. The parameters of the distributions are given for several measurement stations along the Dutch
coast in Steetzel et al. [42]. To determine the parameter values at an arbitrary location, interpolation
is used between the two closest measurement stations and the location of interest. For Westkapelle,
these stations are Vlissingen and Hoek van Holland. An example of the resulting hydraulic boundary
conditions with a return period of 1000 year−1 is presented in Figure 6.

For the maximum water level reached during a storm h, the conditional Weibull distribution of
Steetzel et al. [42] was used. The wave height Hm0 is correlated with the water level, as for a given
surge level, different wave heights can occur, due to the effects of wind speed, wind direction and
wind duration. It was found that this correlation could be approximated by a normal distribution with
a mean of 0 and a standard deviation of 0.6 m [46]. The relation between surge level and wave height
was taken from Steetzel et al.; Weerts & Diermanse [42,46] and uses several statistical parameters
as given in Table 2. The wave period Tp is correlated with the wave height. A normal distribution
with a mean of 0 and a standard deviation of 1.0 s was used for the relation between wave peak
period and significant wave height, according to Stijnen et al. [47]. The statistical parameters of the
conditional Weibull distribution for the water level, and the equations describing the relation between
water level and wave height, and wave height and wave period for Westkapelle are given in Table 2.
For an overview of the equations and the statistical parameters at all the measurement stations, refer to
Steetzel et al. [42].
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Figure 6. Hydraulic boundary conditions during a storm. The top plot shows the total water level
(solid black line), composed of the tide (dashed blue line) and surge (dashed red line). The middle
plot shows the significant wave height (solid black line) and this wave height divided into one-hour
sections (dashed blue line). The bottom plot shows the same for the wave peak period. Here, the tidal
peak coincides with the surge peak. Storm shape based on Steetzel et al. [42].

Table 2. Statistical parameters for water level, wave height and wave period during a storm [42]. α is a
shape parameter [-], ω is a threshold above which the conditional Weibull function is valid [m], σ is a
scale parameter [m] and ρ is the frequency of exceedance of the threshold level ω [year−1]. a [m], b [-],
c [-], d [m] and e [-] are statistical parameters. α [s] and β [sm−1] are statistical parameters as well. All
parameters taken from Steetzel et al. [42].

Water Level

Station ω [m] ρ [year−1] α [-] σ [m]
Vlissingen 2.97 3.91 1.04 0.280

Hoek van Holland 1.95 7.24 0.570 0.0158

Wave Height

Station a [m] b [-] c [-] d [m] e [-]
Vlissingen 2.40 0.35 0.0008 7 4.67

Hoek van Holland 4.35 0.60 0.0008 7 4.67

Wave Period

Station α [s] β [sm−1]
Vlissingen 3.86 1.09

Hoek van Holland 3.86 1.09

The storm duration tstorm is given as a lognormal distribution to prevent negative values from
occurring. The surge profile is composed of a tidal effect and a surge effect. For this paper, an adjusted
version of the formula from Steetzel [48] was made, with a random phase of the tide at the moment of
the maximum surge, see also Figure 6:

zs(t) = h0 + ĥa cos

(
2π(t− tstorm

2 )

ttide
+ φ

)
+ ĥs cos

(
π(t− tstorm

2 )

tstorm

)2

(2)

where h0 is the mean water level [m] (here set to zero), ha is the tidal amplitude [m], t the time [s],
ttide the duration of the tide [s], ϕ the time shift in the occurrence of the maximum tidal water level
opposed to the maximum surge level [s], hs the surge amplitude [m] and tstorm the storm duration [s].
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The tidal signal at Westkapelle was schematized as an M2-tide (principal lunar semi-diurnal),
with the same amplitude as the in reality occurring maximum spring tide water level, 2.15 m+NAP,
and a cycle duration of 12.42 h. No spring-neap tidal cycle was included in the calculations. tpeak was
set to half the storm duration tstorm. Thus, the maximum surge level coincides with a random phase of
the tide level, because of the uniform distribution of ϕ. The variation of the significant wave height and
wave peak period during the storm was modelled by the equations of Steetzel [48], see also Figure 6
for the profile.

Data for several measured storms at the measurement station Europlatform (from Rijkswaterstaat,
www.waterinfo.rws.nl) were analyzed to determine the probability distribution of the wave directional
spreading. A uniform distribution with parameters 1.5 and 10 was chosen for the directional spreading
parameter s [-] (for the definition of the parameter, refer to Roelvink et al.; Longuet-Higgins et al. [44,49]),
based on the minimum and maximum values during the measured storms.

A normal distribution was chosen for the wave breaker index γ, based on Roelvink [28]. For the
XBeach sediment transport calibration parameters facAs and facSk (refer to the XBeach manual [44]
for the description), the lognormal distributions according to Van Thiel de Vries [40] were taken.
The parameters representing the inherent uncertainty in space were the sediment size D50 and Manning
bed friction factor n, modelled with a lognormal and uniform distribution, respectively (according to
Vrouwenvelder et al.; Roelvink et al. [43,44]).

A sensitivity analysis was performed to determine the importance of the 15 stochastic variables
that were chosen. For a detailed description of the sensitivity analysis, refer to Oosterlo [32]. With the
results of the sensitivity analysis, the 15 parameters were divided into subsets, where set 1 consists of
the parameters with the largest influence on the wave overtopping, and set 4 of the parameters with
the smallest influence:

• Set 1, Offshore conditions, 3 stochastic variables: zs, Hm0, Tp.
• Set 2, Model and wave parameters, 7 stochastic variables: C1, C2, C3, C4, γ, n, s.
• Set 3, Storm parameters, 2 stochastic variables: tstorm, ϕ.
• Set 4, Morphological parameters, 3 stochastic variables: D50, FacAs, FacSk.

3. Results

This section gives a description of the probabilistic (ADIS) calculations that were performed
with the framework and their results. The influence of the complex hydrodynamics, model and
wave parameters, time of the peak of the storm, morphological changes and probabilistic method are
described in the sub-sections below.

Table 3 shows an overview of the different probabilistic (ADIS) calculations that were performed
with the framework and their results. The table gives the type of hydrodynamic (and morphological)
model that was used (column 2), which physical processes were included (columns 4–8), and the
resulting number of stochastic variables that were applied (column 3,5–8). Moreover, the resulting
probability of failure Pf and the reliability index β are given (columns 9,10), as well as the number of
simulations necessary and the calculation duration in days (columns 11,12).

Table 3. Overview of the different probabilistic (ADIS) calculations that were performed with the
framework and their results.

Calc.
no. [-]

Type of
Model

No. of
Stoch.
Vars.

Complex
Hydrodyn.

Set 1,
Offsh.
Cond.

Set 2,
Model
Params

Set 3,
Tide,

Storm

Set 4,
Morph.

Changes
Pf [year−1] β [-]

No. of
Simulations

[-]

Calc.
Duration

[days]

1 h/2 3 X 2.3 × 10−8 5.47 23 0.004
2 XB 1D 3 X X 1.6 × 10−5 4.15 112 1
3 XB 1D 10 X X X 2.9 × 10−4 3.45 341 1
4 XB 1D 12 X X X X 1.2 × 10−4 3.67 391 5
5 XB 1D 15 X X X X X 5.3 × 10−4 3.27 484 7
6 XB 2D 3 X X 1.6 × 10−6 4.66 43 1

www.waterinfo.rws.nl
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To determine the influence of using a process-based model with complex hydrodynamics
compared to a calculation rule, calculations 1 and 2 were performed and will be compared.
To determine the influence of including the model and wave parameters as stochastic variables,
calculations 2 and 3 will be compared. To determine the influence of including the storm duration and
time of the peak of the storm, calculations 3 and 4 will be compared. The influence of morphological
changes of the foreshore on the probability of failure due to wave overtopping is determined by
comparing calculation 4 and 5.

To determine the influence of the wave directional spreading (short-crested waves), an extra
calculation was performed with XBeach 2D and the three offshore conditions as stochastic variables
(calculation 6), which is compared to calculation 2.

To determine the added value of using the advanced and fully probabilistic method ADIS as well,
the calculated probabilities of failure by the framework were compared to an approach where the same
probability exceedance value for each of the stochastic parameters is used (not in table), see Section 3.6.

3.1. Influence of the Complex Hydrodynamics

The results of calculations 1 and 2 are shown in Figure 7, comparing the calculation rule
h/2-assumption (solid lines) with the process-based model XBeach (dashed lines). The figure shows
the results of calculations at the (closest to the) design point. The top plot shows the development of
the significant wave height for both situations (blue lines), as well as the low-frequency part of the
wave height (green) and wave set-up (black) for XBeach. The bottom plot shows the water levels (blue)
and the cross-shore profile (green). The title of the figure gives the conditions offshore and at the toe of
the dike for both situations. Note that not the whole profile is visible, but rather the part from −500 m
to 100 m relative to the toe of the dike. Using XBeach leads to a much larger failure probability than
when the h/2-assumption is used (factor 103, see Table 3). The dominant parameter in the calculation
with the h/2-assumption was the water level, which was very large (7.33 m+NAP), see Figure 7. As can
be seen from Figure 7, approximately the same amount of wave overtopping occurs for much less
extreme hydraulic conditions (a water level that almost 2 m lower), when including the complex
hydrodynamics. The difference in offshore wave height was not as large as for the water level (6.25 m
versus 6.09 m). However, the wave set-up in XBeach leads to a somewhat larger wave height at the toe.
The main difference lies in the wave period. Offshore, the difference is almost negligible, but due to
the inclusion of the wave period transformation and generation of infragravity wave energy, the wave
period at the toe is much larger with XBeach. The severe wave breaking on the foreshore leads to a
transfer of wave energy to the lower frequencies, which increases the Tm−1,0 wave period strongly
(10.50 s versus 42.82 s, see Figure 7). Hence, compared to a calculation rule, using a process-based
model that includes complex hydrodynamics like wave set-up, infragravity waves and wave period
transformation leads to larger wave heights and much larger wave periods at the toe of the dike.
The ratio between the high frequency and low frequency wave heights at the toe (Hm0,HF/Hm0,LF) as
calculated by XBeach 1D is only 0.5 in this case. The infragravity waves have a significant contribution
to the total wave energy in this 1D case with foreshore. Thus, it can be concluded that it is of importance
to include these hydrodynamic processes for these kinds of situations with severe wave breaking on
a shallow foreshore. This means that a complex hydrodynamic model is necessary, which further
necessitates an efficient probabilistic model.

3.2. Influence of the Model and Wave Parameters

The inclusion of the model and wave parameters as stochastic (10 stochastic variables, calc. 3) leads
to a probability of failure that is approximately 20 times larger than the calculation with only stochastic
offshore conditions (calc. 2), see Table 3. Hence, the influence is much smaller than the influence of
including the complex hydrodynamics such as infragravity waves. The results of calculations 2 and 3
are shown in Figure 8, again showing the calculations in the design point. As can be seen in the figure,
a lower water level with approximately the same offshore wave conditions leads to the same amount
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of wave overtopping in the calculation with 10 stochastic variables, compared to the situation with
3 stochastic variables. The main difference lies in the breaker index γ which is now a stochastic variable.
In the design point, the value for this parameter was higher (0.63 versus 0.54 for the deterministic value).
This larger breaker index leads to less wave breaking (larger maximum wave height Hmax at incipient
breaking) and thus larger wave heights at the toe of the dike and more wave overtopping. The difference
in probability of failure shows that it can be important to include more stochastic variables than just the
offshore conditions. Again, a large wave set-up and strong generation of infragravity wave energy is
visible. As a result of this, the Tm−1,0 wave periods at the toe are again quite large. The ratio between
the high frequency and low frequency wave heights at the toe (Hm0,HF/Hm0,LF) as calculated by XBeach
1D is only 0.4 in this case. This again shows that it is of importance to include hydrodynamic processes
like infragravity waves and wave set-up in the calculations.
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3.3. Influence of the Storm Duration and Time of the Peak of the Storm

The next step was to include the storm duration tstorm and time of the peak of the storm ϕ as
stochastic variables, leading to a calculation with 12 stochastic variables (calc. 4). Including these
parameters as stochastic led to a probability of failure that was approximately 2 times smaller than
the calculation with 10 stochastic parameters (calc. 3), see Table 3. Hence, the influence of including
these parameters is rather small. The reduction in probability of failure can be explained by the time
of the peak of the storm relative to the tide. When this parameter is considered as deterministic,
it is assumed that the maximum surge occurs at the same moment as tidal high water. When this
parameter is considered stochastic, the moment of maximum surge does not necessarily correspond
to the moment of the maximum tidal water level, which reduces the probability of failure. The rest
of the stochastic parameter values in the design point of the calculations with 10 and 12 stochastic
parameters corresponded almost exactly, which explains the small difference in probability of failure.
The small difference in probability of failure shows that for this case, the storm duration and time of
the peak of the storm can be neglected as stochastic variables.

3.4. Influence of Morphological Changes

The inclusion of morphological changes of the foreshore during a storm and the corresponding
three extra stochastic variables led to a failure probability that was somewhat larger (factor four higher
with morphological changes included, see Table 3). The extra stochastic variables, compared to the
calculations described in the previous subsections, increased the number of calculations necessary to
reach a converged probability of failure. This is a direct result of the inclusion of more parameters,
which enlarges the search space (more dimensions).

Figure 9 presents the results of the simulations without morphological changes with 12 stochastic
variables (calc. 4) and with morphological changes with 15 variables (calc. 5) at the design point.
The top plot shows the development of the total significant wave height (blue), the low frequency part
of the wave height (green) and set-up (black). The bottom plot shows the water level (blue) and the
cross-shore profile at the beginning of the storm (green) and end of the storm (black). The inclusion of
morphological changes leads to a somewhat larger probability of failure of about a factor four, as can
be seen in Table 3. This change is not very large when compared to the influence of the complex
hydrodynamics as infragravity waves and wave set-up for the case considered here. Due to the
erosion of the foreshore, the wave dissipation becomes less, which gives larger wave heights at the
toe of the dike (2.05 m versus 1.77 m). However, the transfer from high frequency wave energy to
the lower frequencies becomes less as well, which gives a smaller Tm−1,0 wave period (38.85 s versus
51.58 s). In this case, the effects of the difference in wave height and wave period almost cancel
one another out. This leads to the small difference in probability of failure, despite the quite large
differences in the bathymetry due to erosion of the foreshore. Concluding, for this case, the inclusion
of the morphological development of the foreshore and related stochastic variables only led to small
differences in the probability of failure.

3.5. Influence of Wave Directional Spreading

To determine the influence of the wave directional spreading (short-crested waves), an extra
calculation was performed with XBeach 2D and the three offshore conditions as stochastic variables
(calc. 6), which is compared to XBeach 1D (calc. 2).

As shown in the previous subsection, rather large amounts of low-frequency energy and Tm−1,0

wave periods are found at the toe of the dike when using a 1D simulation. The 1D XBeach calculations
can be considered as a wave flume, with long-crested waves without directional spreading. This causes
a stronger forcing of the infragravity waves compared to a situation with directional spreading.
In reality, wind waves in extreme storms are short-crested. Therefore, an extra calculation was
performed with XBeach 2DH with the same three stochastic parameters. With a 2D simulation,
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the wave directional spreading is included. Thus, the main differences between a 1D and 2D
simulation lie within the fact that the 1D simulation does not include the wave directional spreading
(hence, long-crested waves), which the 2D simulation does (hence, short-crested waves). For the
2D model, in the alongshore direction, a section of 1 km was modelled with grid cell sizes of 50 m.
The wave directional information was solved in 10 degree bins, spanning 110 degrees (55 degrees to
both sides of shore normal). Note that the mean wave angle in all simulations was shore-normal and
that we use the methodology of Roelvink et al. [34] to resolve the propagation of wave groups in the
model domain. The results are shown in Figure 10.
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The calculated probabilities of failure are 1.6 × 10−5 for the 1D case and 1.6 × 10−6 for the 2D
case, a difference of a factor 10. The lower probability of failure as found for the 2D case can be
explained by the forcing of the infragravity waves, which is less than in the 1D case, because the 2D
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XBeach calculations include the wave directional spreading. This leads to less low-frequency energy
and therefore a smaller wave period at the toe (15.83 s versus 42.82 s), which results in less wave
overtopping. For instance Hofland et al. [11] show as well that the generation of low-frequency wave
energy is decreased by the directional spreading. With the inclusion of the wave directional spreading,
the results of a 2D simulation are more realistic compared to a 1D simulation, since wind waves in
extreme storms are short-crested (see also e.g., Van Dongeren et al. [50]). The ratio between the high
frequency and low frequency wave heights at the toe (Hm0,HF/Hm0,LF) is 1.6 for the 2D case (compared
to 0.5 for the 1D case). Thus, even in 2D the infragravity waves have a significant contribution to the
total wave energy.

3.6. Influence of the Probabilistic Method

The influence of using the level III probabilistic method ADIS on the number of simulations
necessary was determined before in Section 2.2.3., as well as in Den Bieman et al.; Grooteman [21,36].
An indication of the added value of using this level III method can be gained by comparing the ADIS
results with probabilistic calculations that use the same probability exceedance value for each of the
stochastic parameters. This means that the stochastic parameters are considered as fully correlated.
This was done for XBeach 1D with the three offshore condition parameters (water level, wave height
and wave period) as stochastic variables. The results are given in Table 4. It can be seen that a difference
of a factor 12.5 in the probability of failure is found between ADIS and the fully dependent estimate.
Hence, when using a level III fully probabilistic approach, a lower probability of failure and a lower
required crest height of the dike are found. It can be imagined, that if more stochastic variables would
be included in this comparison, the difference between the estimate and the advanced probabilistic
approach would be even larger. Thus, using ADIS in the design of dike-foreshore systems can lead to
lower required crest levels.

Table 4. Comparison of the probabilities of failure as calculated with ADIS and as calculated with
an approach that uses the same probability exceedance value for each of the stochastic parameters
(fully correlated). Results for XBeach 1D with the three offshore parameters as stochastic variables.

Calculation Offshore zs
[m+NAP]

Offshore
Hm0 [m]

Offshore
Tp [s]

Toe Hm0
[m]

Toe
Tm−1,0 [s]

Pf

[year−1]
β [-]

XBeach 1D fully correlated 5.16 6.32 11.74 1.84 46.62 2 × 10−4 3.54
XBeach 1D ADIS 5.46 6.09 11.11 1.81 42.82 1.6 × 10−5 4.15

4. Discussion

The calculation duration of some of the probabilistic calculations was rather large, in the order of a
day without morphological changes (either 1D or 2D), in the order of a week (1D) with morphological
changes, on 8 nodes with 16 GB of RAM. For this paper, the calculations with large numbers of
stochastic variables and morphological changes were only performed with XBeach 1D. With the
current computational capacities, using XBeach 2D and including the morphological changes in the
probabilistic framework is not feasible in an engineering context yet, but it is for an academic context.
As shown before, for the present case the morphological response has a relatively small influence
on the failure probability. As the morphological response is expected to become lower when using
a 2D calculation with short-crested waves, this will further decrease the influence of morphology
on the failure probability, a consequence of the decreased infragravity wave height. With increasing
computational power, the feasibility of XBeach 2D will likely increase in the future. As well, a possible
measure could be to use a morphological acceleration factor in XBeach. Also, recently, a prediction
formula for the Tm−1,0 on mildly sloping shallow foreshores was determined [11]. This equation can
be used for simple cross-shore profiles and could be implemented in the model framework to save
calculation time for such cases. For more complex cross-shore profiles, XBeach will remain necessary.



J. Mar. Sci. Eng. 2018, 6, 48 18 of 22

In the calculations with morphological changes, XBeach created a characteristic storm profile
with an offshore bar, the foreshore itself was largely eroded. As mentioned before, XBeach has been
extensively calibrated and validated [26,27]. However, even if the calculated offshore bar height
would not be completely correct, this would hardly affect the wave conditions at the toe and related
overtopping discharge. Van Gent & Giarrusso [15] found that the wave conditions at the toe of the
structure are hardly affected by the level of the offshore bar (and/or trough), but are strongly affected
by the level of the foreshore.

As mentioned before, the focus of this paper is on the dominant short term storm morphological
changes, not on the long term changes by the daily climate. The bathymetrical profile after the
storm with conditions corresponding to the parameter values in the design point was compared to
the bathymetrical profiles at Westkapelle 1 year after construction of the foreshore and 5 years after
construction of the foreshore. The morphological changes of the ‘design point storm’ were much larger
than the changes by the daily climate after five years. This does not mean that the after-storm erosion
profile of a pre-storm situation with a foreshore without much sand in it is the same as the erosion
profile for a pre-storm situation with much sand in the foreshore. For maintenance, this means that the
design foreshore profile should be maintained as much as possible. Furthermore, it is expected that
the role of short term (storm) changes of the foreshore become more important when the foreshore is
designed smaller (less sand in the profile). Finally, these findings are case-specific. At other locations,
there may be more or less dynamic behavior, and also the ratio between the erosion by daily and storm
conditions can vary.

Much of the validation for wave overtopping was performed in wave flumes (1D, no directional
spreading), which inherently includes the stronger forcing of the infragravity waves, like in XBeach
1D. As was shown, a large part of the difference in the results between 1D and 2D XBeach was caused
by differences in the Tm−1,0 wave period at the toe and uncertainties in the sensitivity of the EurOtop
equations with respect to this wave period. Since the Tm−1,0 wave period is very sensitive to the low
frequencies, it is unclear if this wave period is still applicable for situations with large amounts of
low frequency energy, such as the ones considered in this paper. Treating the complex combination of
infragravity wave energy and wind wave energy with a single parameter as the Tm−1,0 wave period
might be an oversimplification, however the Tm−1,0 wave period is the wave period that is currently
used in all the most commonly used wave run-up and wave overtopping equations. A new equivalent
slope concept was determined for wave overtopping at shallow foreshores in Altomare et al. [51] and
could be considered a first step. However, still more research is required to be able to validate the
influence of the infragravity waves on wave overtopping, for this case, as well as for other cases.

5. Conclusions

This paper presented a probabilistic model framework which is capable of including complex
hydrodynamics like infragravity waves and morphodynamics of a sandy foreshore in the calculation
of the probability of sea dike failure due to wave overtopping. The method was applied to a test
case loosely based on the Westkapelle sea defence, a hybrid defence consisting of a dike with a
sandy foreshore. Moreover, the influence of the physical processes like infragravity waves and
morphological changes on the probability of dike failure due to wave overtopping were determined.
By using the fully probabilistic level III method ADIS, the number of simulations necessary is greatly
reduced, which allows for the use of more advanced and detailed hydro- and morphodynamic models.
The framework is able to compute the probability of failure with up to 15 stochastic variables and to
describe feasible physical processes. Furthermore, the framework is completely modular, which means
that any model or equation can be plugged into the framework, whenever updated models with
improved representation of the physics or increases in computational power become available.

The model framework as described in this paper, includes more stochastic variables in the
determination of the probability of dike failure due to wave overtopping compared to the currently
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used methods in the Netherlands, where also infragravity waves or morphological changes are
not included.

Including a process-based hydrodynamic model led to much larger failure probabilities for
the hybrid defence considered in this paper (factor 103). This difference was mainly caused by
the difference in wave period at the toe of the dike, which is not accounted for by the simple
calculation. Hence, this indicates that it can be important to include the complex hydrodynamics such
as infragravity waves and wave set-up for these kinds of situations.

The inclusion of 7 extra stochastic model and wave parameters led to a probability of failure that
was approximately 20 times larger than the calculation with 3 offshore condition stochastic parameters.
The influence is much smaller than the influence of including the complex hydrodynamics such as
infragravity waves, but the difference in probability of failure shows that it can still be important to
include more stochastic variables than just the offshore conditions in the calculations. Furthermore,
for this case the storm duration and time of the peak of the storm have a negligible influence as
stochastic variables.

The inclusion of the morphological changes led to a failure probability that was only somewhat
larger (factor 4) for the case considered here (relative to e.g., the much larger influence of the complex
hydrodynamics that was found). Hence, for this case, the influence of the morphological changes of
the foreshore on the failure probability was not that large. In this case, the effects of the difference in
wave height and wave period at the toe almost cancelled one another out.

More research is required to be able to validate the influence of the infragravity waves on
wave overtopping, for this case, as well as for other cases, especially in connection to short-crested
waves. The results of a 2D simulation are more realistic compared to a 1D simulation, see also
e.g., Van Dongeren et al. [50], as wind waves in extreme storms are short-crested. The long-crested
waves in XBeach 1D create a stronger forcing of the infragravity waves. With the current
computational capacities, a 2D calculation and including the morphological changes in the level
III probabilistic framework is not feasible in an engineering context yet, but it is for an academic
context. With increasing computational power, the feasibility will likely increase in the future.

Using the framework offers more insight into the physics, and can be used to determine the
contribution of foreshores to flood protection. It is recommended to apply the framework to other cases
as well, to determine if the effects of complex hydrodynamics as infragravity waves and morphological
changes on the probability of sea dike failure due to wave overtopping as found in this paper hold
for other cases as well. Furthermore, it is recommended to investigate broader use of the method,
e.g., for safety assessment, reliability analysis and design.
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Appendix A. EurOtop (2007) Equations

The EurOtop [35] equations use the (fictitious deep water) surf similarity parameter, defined as:

ξm−1,0 =
tan α√

Hm0/Lm−1,0
(A1)

where α is the average structure slope [degrees], Hm0 is the significant wave height [m] and Lm−1,0 is
the deep-water wave length [m]. The equations that are used for this paper are given by:
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q√
gHm03

=
0.067√

tan α
γbξm−1,0 exp

[
−C1

Rc

ξm−1,0Hm0γbγ f γβγv

]
(A2)

with a maximum of
q√

gHm03
= 0.2 exp

[
−C2

Rc

Hm0γ f γβ

]
(A3)

to be used for gentle dike slopes and ξm−1,0 < 5, with q the average overtopping discharge [m3 s−1 m−1],
g the gravitational acceleration [ms−2], Rc the crest freeboard [m], γf a correction factor for roughness
and permeability [-], γb a correction factor for a berm [-], γβ a correction factor for oblique wave
attack [-], γv a correction factor for a vertical wall on top of the crest [-]. The reliability is described by
assuming the coefficients C1 = 4.75 and C2 = 2.6 to be normal distributed with a standard deviation
of 0.5 and 0.35 respectively. The different correction factors are described in more detail in [12].
Furthermore, for shallow and very shallow foreshores (ξm−1,0 > 7):

q√
gHm03

= 10C3 exp

[
− Rc

Hm0γ f γβ(0.33 + 0.022ξm−1,0)

]
(A4)

in which C3 is normal distributed with a mean of −0.92 and a standard deviation of 0.24.
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