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Summary

The goal of StructuralComponents is to allow an engineer to quickly compose an early-stage structural concept

and immediately analyse its performance. In a sense, it represents an opportunity in the gap between rough

hand calculations and expensive analysis models (see Figure 1-a). At a high level, the tool follows the method of

the Conceptual Story (Coenders, 2011): the idea of a design justification in the form of a narrative combining

analytical methods and computer tools with reasoning and thought models, in an attempt to deal with

imprecision and uncertainty (see Figure 1-b).

Figure 1: a) The gap between hand calculations (image courtesy of Wagemans), and

b) the Conceptual Story (image courtesy of Coenders, 2011).

This thesis represents the third in a series of MSc theses on StructuralComponents (Breider, 2008; and Rolvink,

2010). Both previous theses allowed the user to create a structural concept using the parametric and associative

design (‘PAD’) paradigm using GenerativeComponents (Bentley, 2013) and Rhino Grasshopper (McNeel, 2013),

respectively. The prototype implementations would structurally analyse the user’s model as it was being created

and give immediate performance feedback. This thesis proposes its own prototype implementation with similar

functionality, and further incorporating new concepts.

The general problem definition, of providing more adequate earl-stage design tools and dealing with

imprecision and uncertainty, forms a guiding principle throughout this thesis. It is accompanied by specific

problem statements that inform the thesis objectives (see Section 1.3): a limited adherence to formal research

on design in engineering; a limited versatility of the super-element method for analysis; and the restriction of

the previously plugin-based software architecture. To address theses, the three objectives for this thesis are:

Bringing the StructuralComponents concept in adherence with the characteristic design cycle and

increase emphasis on the synthesis phase, i.e. the generation of design alternatives.

Allowing structural versatility beyond the previously used super-element method by developing a Finite
Element Method Analysis engine.

Removing external software and device dependencies by reimplementing the tool using a client–
server software architecture.

CONCEPT AND METHODOLOGY

The major goal of the reimplemented system is an increased emphasis on design generation and exploration.

To achieve this, it relies on a system of abstraction: a system of automatic generation of design variants and

subsequent interactive visualisation and exploration of the resulting performance data. This system lets the user

define measurable performance metrics, and uses data to show which parameters yield a good solution.

The proposed system alternates between composition and abstraction phases. During the composition phase,

the user synthesises a solution to the design problem: they compose a PAD design concept out of various

functional components. During the abstraction phase, they analyse the full potential of the solution: they

abstract over the parameters to assess alternative solution instances. The transition from composition to
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abstraction features the definition of metrics which indicates the performance of a solution. The transition back

features the deduction of the most promising parameter ranges.

Figure 2: The various visusalisation types: parallel coordinates, frequency histogram,

and various scatter plots.

The analysed data resulting from an abstraction is ready to be explored. A number of visualisation types are

proposed which allow fairly deep exploration against acceptable ease of implementation (see Figure 2, also

Section 3.2.3). The parallel coordinates plot is well-suited to visualise high-dimensional data, and serves as an

overview. The frequency histogram shows data distribution. The scatter plot shows pairs of values as points on a

plane, and can be adorned with metric sensitivity indicators, parameter relationship contours, and proximity to

constraints.

FINITE ELEMENT ANALYSIS

The system incorporates a built-in Finite Element Method (‘FEM’) analysis engine. Its core algorithms employ

the Cholesky decomposition matrix solving algorithm (Davis, 1996), employing typical stiffness matrix sparsity

for more efficient computation. It further employs Reverse Cuthill-McKee node numbering to optimise matrix

bandwidth (Cuthill & McKee, 1969).

The engine performs three-dimensional static analysis. In its prototype implementation it supports simple bar

and beam element, though it is written with extensibility in mind. Further features of the engine include both

rigid and flexible point, line, and plane constraints; user-defined element stiffnesses; and linear and torque

forces.

SOFTWARE ARCHITECTURE

Figure 3: A class diagram showing the nested MVC architecture: simple CRUD

operations for parametric and associative modelling, and job scheduling for

solution and analysis.

The architecture of the software system can roughly be summarised as a two-part nested MVC (Model-View-

Controller; see Appendix C) structure. Looking at the class diagram (see Figure 3, also Section 5.1), starting

from the right, the system involves FEM analysis of a structural model generated by solving a parametric and

associative design (‘PAD’) model definition. This part of the program is computationally intensive, and is

therefore structured as an asynchronous job queue. Moving to the left, the system provides interaction by

allowing the manipulation of the PAD resources through a REST API (Representational State Transfer; Fielding,

2000). This part of the program consists of an relatively ordinary object-relational model with CRUD (Create,

Read, Update, Delete; see Appendix C) operations, and implements asynchronous job queue pattern

(Richardson, 2007) for PAD solution jobs.
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Figure 5: A flow chart showing the two basic

interactions with the system: CRUD operations on

PAD resources and scheduling solution jobs.

Figure 4: A sequence diagram showing CRUD manipulation and asynchronous

scheduling operations.

The way the system works is shown by its sequence

diagram (see Figure 4) and the accompanying flow

chart (see Figure 5). Interactions with the user are

represented by the red arrows on the left side. The

top-most sequence represents the CRUD operations

on the PAD resources through the REST API. This

sequence is likely repeated several times for different

resources as the user is busy creating the parametric

and associative model.

The second sequence from the top represents the job

scheduling operation. In the REST style, this takes the

form of creating a job resource. The creation of the

job schedules a series of asynchronous of

computational tasks on a pool of worker queues,

which will eventually complete. The created job itself

can be polled periodically to check whether it has

completed.
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1 Introduction

At a high level, the goal of StructuralComponents is to guide and capture the early-stage, conceptual design

process in structural engineering. That is, it is a tool that allows the engineer user to build a structural concept.

It tries to augment and complement the intelligence and creativity of the engineer. Simultaneously, it strives to

capture that process and its decisions, and act as an information container for the resulting design. At this high

level, the tool follows the method of the Conceptual Story (Coenders, 2011): the idea of a design justification in

the form of a narrative combining analytical methods and computer tools with—importantly—reasoning and

thought models, in an attempt to deal with imprecision and uncertainty.

The high-level idea of StructuralComponents is given shape by a series of MSc theses and PhD-level research

projects, which all revolve around parametric and associative design (“PAD”) modelling tools with integrated

structural analysis. This MSc thesis is the third in the series, following Breider (2008) and Rolvink (2010). Rolvink

is working on a doctoral thesis, “Enhancing building safety assessment by computation”, further developing the

idea itself and incorporating methods of assessing structural integrity. Related to this research is the doctoral

research of Coenders (2011)—which revolves around establishing a comprehensive infrastructure consolidating

many previously existing and new concepts around the concepts of parameters and association.

The specific issues addressed in this thesis are threefold. First is the previously underdeveloped adherence to

the available theory on the engineering design process, specifically its early stage. Second, the lack of general

applicability of the employed super-element method of analysis. Third, the plugin-based (see Appendix C)

software architecture, which acts restrictively from the perspective of information sharing and the overall goal of

acting as a container for the captured design process.

This thesis is accompanied by a prototype software application. This prototype implements the proposed

solutions to the defined problems to a degree necessary for their illustration and evaluation. The prototype

presents a solution exploration concept which uses automatic parameter variation and data analysis. It is further

reimplemented as multiple applications separated along a client–server architecture. The server application

incorporates the PAD solver and the integrated FEM analysis engine.

1.1 Background

The research around StructuralComponents is based on the ideas proposed in the research around Structural

Design Tools (Coenders & Wagemans, 2005; Coenders, 2008).

1.1.1 STRUCTURAL DESIGN TOOLS

The approach that originated from the research around Structural Design Tools (“SDT”) identified the

insufficient suitability of common CAD and analysis software to support the design process as a whole. The

research reveals that while the design process does include the analysis and production stages that such

software supports, it actually extends further into unsupported areas. The proposed ideas concern the goals of

new design-suitable software, and its scope and development principles.

The SDT approach proposes that software packages should ultimately serve the engineer by providing support

in design justification in order to inspire confidence. From this perspective, packages should be transparent and

allow the engineer user to easily define, review and edit design solutions.

From a technical perspective, the SDT approach proposes that individual packages should strive to serve a few

purposes well, rather than trying to encompass the entire design process. To this end, packages should use

transparent methods and open data structures in order for its output to be compatible with and easily carried

over to other packages, built for other purposes.
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1.1.2 HISTORY

From its inception, StructuralComponents has revolved around creating software tools that use PAD modelling

to let the user define the logic of a structural design. The tools simultaneously analyse the performance of the

resulting structure to give immediate feedback using an information dashboard. Both previous theses were

accompanied by prototype tools that accommodate the early-stage design process through the distinct phases

of creation, analysis, and presentation.

2008 VERSION

Breider identified a problem stemming from difficult communication and the incompatibility of tools between

different building industry disciplines. This thesis attributed the problems to the ongoing specialisation of these

disciplines into separate professions, each with their specialised methods and tools. Specifically, Breider argued

that in early-stage communication, the tools of the structural engineer were unable to work as fast as the

methods of the architect. He proposed the combination of PAD modelling and schematic structural analysis

methods as a solution.

Figure 1.1: The modelling and dashboard interface of StructuralComponents 1.0

(image courtesy of Breider, 2008).

The prototype accompanying this thesis was a plugin for the Bentley GenerativeComponents (Bentley, 2013)

software package. The package itself provided a PAD modelling interface with mathematical and geometrical

modules, to which the prototype added a specialised structural module. The plugin was accompanied by a

dashboard from which performance results could be read visually.

In conclusion, Breider upholds the choice for PAD modelling, which enables quick and easy composition of a

structural concept. He further states that (near) real-time analysis is essential for design efficiency, and notes the

specific value of comparing multiple structural variants, or load variants within the same model. Finally, he

recommends implementing more structural versatility, and that additional effort be put into the dashboard and

its visualizations.

2010 VERSION

Rolvink continued with the high-level objective of creating tools for the early conceptual design stage. She

incorporated the Conceptual Story and the shifting balance between design freedom and availability of

information, arguing that the tool would bring information to earlier stages, enabling better decisions at a time

when the design is less constrained. She pointed to the gap between simple rules-of-thumb calculations and

complex analysis as an opportunity for tools like StructuralComponents.
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Figure 1.2: The modelling and dashboard interface of StructuralComponents 2.0

(image courtesy of Rolvink, 2010).

The prototype accompanying this thesis was written as an independent analysis library and separate bridge

libraries for plugging into and visualising results in any suitable third-party software package. A bridge library is

implemented to an advanced degree to plug into the Rhino Grasshopper (McNeel, 2013) package (see Figure

1.2). The analysis library implements an engine based on the super-element method (Steenbergen, 2007).

Rolvink restates the goal of the tool as augmenting and complementing the engineer. She stresses the

importance of allowing for simple and efficient models, with a degree built-in design knowledge, and a focus on

key drivers of a design concept. Rolvink states a broader objective of incorporating the research in a multi-

disciplinary framework, and recommends including multi-criteria optimisation methods.

1.2 Problem definition

As described in the previous, the ongoing research around StructuralComponents revolves around creating

more suitable structural design tools for the early-stage design process. This thesis proceeds under the

umbrella of this general problem definition, which will be further described in the next section. On a concrete

level, this thesis specifically addresses further the identified problems of adherence to design theory, general-

purpose analysis and restrictions of the previous software architecture. These are described in the section after

the next.

1.2.1 GENERAL PROBLEM DEFINITION

Figure 1.3: The Conceptual Story, envisioned as a structure basing a justification on

pillars of early-stage methods and tools which each deal with imprecision (image

courtesy of Coenders, 2011).
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As argued and referenced in the preceding, the general problem that the ongoing StructuralComponents

project revolves around is:

The software tools available to the designing structural engineer insufficiently support the
structural design process, and specifically its early stage.

On a high level, the approach taken to solve this problem follows the strategy of the Conceptual Story (“Story”).

The Story is (as defined) the idea of a design narrative based on a justification that combines the methods and

tools available at the conceptual design stage. The term ‘narrative’ acknowledges the uncertainty and

imprecision at this stage. It represents the goal of defining a design in such a way that it establishes an early

qualitative framework that still encompasses the quantitative decisions of later, more certain stages. The

referred methods and tools are reasoning, thought models, simplifications, schematisations, cases, scenarios,

models, and analysis (see Figure 1.3).

Figure 1.4: The impact of decisions is generally largest in the early-stage design

process, while information is still lacking. This is reversed in later stages, which

translates to higher costs (image courtesy of Coenders, 2011; in turn adapted from

MacLeamy, 2004).

Figure 1.5: There exists a gap between simple rules-of-thumb methods and

complex analysis software (image courtesy of Wagemans).

The Story addresses the problem of designing with early-stage uncertainty and imprecision. At this stage,

information is still largely lacking, while the decisions made here have a large impact on the eventual outcome

of the process (see Figure 1.4). The lack of information is to be expected, but could be improved by suitable

software tools at this stage. The imbalance is reflected in the gap between simple rules-of-thumb methods and

complex analysis software (see Figure 1.5). Similarly, it is reflected in the way CAD software is suited to produce

the outcome of a design process, but not necessarily its early stages. These imbalances pose opportunities for

improvement.

1.2.2 SPECIFIC PROBLEM DEFINITIONS

REGARDING DESIGN THEORY

The MSc theses preceding this thesis followed the high-level views on structural design put forward by the work

of Coenders and Wagemans (2005, 2008). However,—
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The StructuralComponents tool lacks adherence to formal research on design in engineering
and closer views on the design process.

From various publications on the topic of early-stage design processes in general, and those in engineering

specifically (see Chapter 2), it can be distilled that design is generally an iterative process, each iteration of

which is a cycle involving phases of generating new solutions, and assessing their performance. It can be argued

that there is a characteristic design cycle, which in the early stage clearly shows a strong emphasis on the

generation, or synthesis phase. This emphasis is insufficiently reflected in the previous implementations of the

tool.

REGARDING ANALYSIS METHODS

Figure 1.6: The super-element method is well-suited for specific designs, but not for

general-purpose analysis. To come closer to the goal of general applicability, the

inclusion of true general-purpose methods can be considered as a first step, at the

initial cost of ease of modelling.

As described, the previous theses proposed an analysis system based on the super-element method. Though

efficient, the method is limited to specific building types—tall structures, as previously implemented. Both

theses include a recommendation for more structural versatility in further research, alluding to the following fact:

The previously-used analysis engine base on the super-element method has limited versatility
and cannot be easily extended to other building typologies.

This method schematises a structural model as a series of large elements, each of which model the behaviour of

a larger building part. For example, a building with an outrigger would consist of the lower and upper core

elements, an outrigger element, and facade elements, each with specific behaviour (axial, bending, shear).

While this method is fast and accurate, only a limited number of building types can be properly schematised for

it (see Figure 1.6; the previous research focused on tall buildings).

REGARDING SOFTWARE ARCHITECTURE

The software architecture of the previous prototypes was designed for use as a plugin for other software

packages. It serves its purposes well, but is entirely dependent on the host software.

The previous plugin-based software architecture is restrictive in light of the Conceptual Story
and the Structural Design Tools approach.

The previously used host software can handle open data structures, and to a certain extent provides

transparency within its plugin architecture, and through additional documentation. But, being closed-source,

such transparency is limited, as is flexibility beyond the rigidly defined plugin architecture. Furthermore, the

software runs on workstations, raising issues of scale. On the other hand, in spite to these issues the tool should

continue to work in combination with specialised software packages, most of the functionality of which this tool
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should likely never wish to copy.

1.3 Objectives

Based on the previously-defined problem definitions, a number of objectives were set. Regarding the

overarching general problem definition, the general objective of this thesis is:

To further improve the StructuralComponents approach to the early-stage design process.

Such a high-level objective may be too non-specific to be achieved practically, or judged on its merits.

However, it exists to guide decisions of the further, tangible objectives. These are based on the specific

problem definitions.

In this early stage, it it proposed that in exploring possible design solutions, only low precision is required.

Instead, this stage requires high flexibility. Later stages may determine the performance of a specific solution,

but this stage should focus on seeking a solution for a desired performance. This stage, more than those

following later, requires creativity and generation under limited constraints.

AN INCREASED EMPHASIS ON THE SYNTHESIS PHASE

It is proposed to further emphasise the synthesis phase, in which design solution alternatives are created. The

parametric and associative design (“PAD”) modelling paradigm is deemed suitable for this purpose, and it is

proposed to extend it with an abstraction system. That is, a system of automatic parameter variation around the

input of the user to contextualise the choices using statistical analysis and data visualisation.

THE DEVELOPMENT OF A FINITE ELEMENT METHOD ANALYSIS ENGINE

It is proposed to develop a Finite Element Analysis (“FEA”) engine for the general-purpose analysis cases to

which the super-element method is not suitable. To fit within the scope of this thesis, this engine will practically

be limited to linear wireframe models with axial bar and Euler-Bernoulli bending elements. It will further make

use of stiffness matrix symmetry and sparsity in order to accelerate computation.

THE REIMPLEMENTATION AS A CLIENT–SERVER SOFTWARE ARCHITECTURE

It is proposed to separate the functionality of the prototype software along a client–server divide. The server

prototype contains the FEA engine, and additionally a PAD solver. It will be accessed through an REST-style

HTTP API.
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2 Design theory

The rationale for many of the choices and much of the reasoning of this thesis lies within the available research

on design theory, especially that on design in engineering. Design is a very broad and complex topic, and

accordingly has many definitions, plenty of which are conflicting. Although this thesis deals exclusively with the

narrower topic of design within the engineering discipline, various conflicting views still remain. However, it is

not the goal of this thesis to develop or unify these theories.

An effort has been made to put forward an internally harmonious collection of views on design theory. Section

2.1 discusses the views individually and attempts to show their coherence. Section 2.2 presents a number of

maxims which form the guiding principles for the implementation choices of this thesis. To provide the

argumentation for those choices, the following chapters will explicitly mirror the relevant aspects with the

presented maxims.

2.1 Views on design in engineering

A collection of views has been chosen in service of the thesis argumentation. Obviously, this collection is only a

subset of the entire body of design theory. The choices were made to serve the thesis requirements itself, as

governed by the direction of the preceding theses and the newly introduced concepts. Views will exist that

invalidate part of the argumentation, which will be discussed to a certain extent, where relevant, in the following

chapters.

2.1.1 SYSTEMS DESIGN AND MANAGEMENT OF CONSTRAINTS

Among the various views, the common view of the design process is that its goal is to try to find the best

solution satisfying a certain problem. This wording pertains to the view of Systems design (Chapman, 2001),

which has specific definitions for the terms solution and problem. Similarly, the term best carries much implied

meaning, as does the critical verb to find. The problem will generally be uniquely defined in terms of ambition,

environment and financials (Dorst, 1995).

Figure 2.1: Solutions are sets of decisions and have variable value beyond merely

satisfying requirements.

In the Systems design view, a solution is a set of decisions or choices (see Figure 2.1). A problem is a set of

requirements and constraints. The problem can be satisfied by multiple solutions, of which satisfaction is easily

verifiable. Importantly, some solution will have greater value beyond the point of satisfaction than others.
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The opposition of negotiable versus
non-negotiable constraints is used here
for simplicity, fully realising that in
reality aspects will always remain
negotiable to a certain extent (except
perhaps laws of nature). Non-negotiable
constraints may therefore be
interpreted as practically non-
negotiable, i.e. difficult and expensive
to change.

Box 2.1: A further note on

negotiability

Figure 2.2: The design process involves gradually transforming negotiable

constraints into non-negotiable constraints

Another view sees design as the management of constraints (Dini,

2009; see Figure 2.2). The design process starts with a few non-

negotiable constraints, which specify the requirements. Furthermore,

there is a large number of negotiable constraints. The design process

involves the gradual reduction of this negotiability by way of making

decisions (simplifying negotiability as either existing or not; see Box

2.1).

The two views complement each other. The solution in the former is

analogous to the set of non-negotiable constraints in the latter.

Systems design puts forward the condition (satisfying the problem),

while the management of constraints suggests the process (each state

in the reduction process). The former introduces alternative solutions, while the latter contains differently

negotiated states.

In combination, the two views suggest a process starting at the non-negotiable initial requirements state. This

state represents both the design problem and the trivial solution which satisfies by definition. However, it is

trivial since it rephrases the problem but is otherwise unspecified. The next state is further specified: it is more

detailed in its negotiated decisions. But it exists alongside alternative states that are specified to the same

extent, but different in its negotiations.

The example of a building illustrates the combined view. The problem requires a building with certain

characteristics, like some imagined capacity. The trivial solution is the question rephrased as an answer

—’building which satisfies X capacity?’ as ‘building satisfying X capacity’, building being a monolithic

concept. A second state redefines the first—’building consisting of components A and B satisfying X

capacity’, where building is no longer monolithic but consisting of components. A third state redefines it

again—’building consisting of components A, in turn consisting of components A1 and A2, etc…’.

Each subsequent stage consists of a wider array of possible alternative states, each negotiated differently, each

specified to a further extent than the previous stages. As decisions are made, the scope of subsequent

decisions is limited. Meanwhile, the set of requirements expands. The end product is a series of decisions

forming a solution of non-negotiable constraints that specify an identity, the left-over integrity of the concept.
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Understood in terms of structural engineering, decisions relate to concepts such as structural layout,

topology and member sizing. The initial set of requirements cover concepts such as loads, architectural

shape or floor area ratio. Further requirements will be introduced during the design process, such as material

stresses or geometry clashes.

Returning to the example of the building, the product of the design process is a building satisfying the

capacity X. One level down, the overall structure and architecture (which form the building) satisfy the

capacity, and their own requirements. Another level down, the core and floor substructures together (which

form the overall structure), together with the facade and routing concepts (which form the overall

architecture), satisfy the capacity, the second-level requirements, and the new requirements at their own

level.

The idea of the Conceptual Story has been a topic of the theses preceding this one (Breider, 2008; Rolvink,

2010; Coenders, 2011). It is the overarching narrative of a design solution on a high level, covering all the major

design decisions but leaving many of the low-level details to be resolved in later stages. This relates directly to

the solution states described above, of which each iteration is a further specification of those preceding it.

The design story is the solution state at the end of the early stages of the design process. It must be a solution

that satisfies the problem, but which will only minimally clash with detail decisions later on in the process. That

is, early decisions must leave enough room for sensible detail solutions. The narrative is formed by the body of

assumptions, logic, calculations and experiments underlying the solution, which together form its justification

(see also Figure 1.3).

The abstract design problem in structural engineering falls in the category of problems for which no known

efficient way to find a good solution exists (Chapman, 2001), but for which it is relatively trivial to assess whether

an individual solution is good. Problems in this category are referred to as NP-complete problems, and the

complex and creative human decision-making process has proven very valuable in tackling them (Wigderson,

2009).

2.1.2 ITERATION IN DESIGN

The sequence of solutions states described in the previous section already alludes to the strongly iterative

nature of the design process. Iteration is defined as cycles of proposal, testing and modification of an evolving

design (Smith, 1998). Activities within a cycle can loosely be categorised as analysis, performance evaluation; or

synthesis, alternatives generation.

The scale of a cycle can vary greatly in complexity and time length, although reductions in scale are often

advanced by decomposing a problem into smaller pieces. As iterations progress, the duration of synthesis

activities tends to decrease while the duration of analysis activities increases. This emphasis shift mirrors the shift

in influence of design decisions, which is high early on but decreases along with the level of detail, and cost of

making changes, which starts out low but strongly increases along with complexity (see also Figure 1.4).

The iterative nature of the design process can be both evolutionary and revolutionary. In the evolutionary sense,

the process mirrors optimisation (Simon, 1955) in that it deterministically searches for an ever better solution in

light of an established objective measure. In the revolutionary sense, the process continually overhauls the

solution, redefining it on a deeper level of detail as the interdependent subcomponents constituting previous

components.

2.1.3 CHARACTERISTICS OF EXPERT DESIGN PROCESS

One specifically broad study has revealed a range of common characteristics of expert design process (Sims-

Knight, 2005). That is, these are characteristics of the individual processes its successful practitioners. Most of
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these characteristics assume a high degree of repetition, pointing towards iteration as a key aspect of design.

Taking time to understand the problem: Much care goes into meeting with clients and repeatedly

discussing the interpretation of the design brief and outcome scenarios until confidence is gained into

the true goals.

Frequent testing: Right from the start, quick sketch designs are produced in order to eliminate unfruitful

directions early. Throughout the process, the performance of intermediate solutions is frequently

assessed.

Creating alternative concepts from the beginning: Breadth in options is often preferred to depth in one

specific solution. There is an understanding that there will be multiple satisfying solutions.

Considering feasibility and trade-offs: Continuing from the alternative concepts principle, there is an

understanding that additional objectives will come into play when considering the feasibility and trade-

offs of and between multiple solutions.

Using both top-down and opportunistic decision-making: There is a realisation that at times it is

appropriate to follow a structured approach to design, from a top-down perspective. However, at other

times it is more appropriate to opportunistically deal with the situation at hand and temporarily avoid

structure.

Considering components’ interrelations: It is understood that a system consists of multiple

components, which are variously interrelated. Interrelations lead to complexity and it is often

advantageous to compartmentalise the problem early to reduce their total number.

Reviewing and reflection in terms of requirements: The performance of solutions is continually brought

back to the design requirements and objectives in order to avoid losing sight of the goals.

Prototyping: The design process is structured around continuous prototyping to ensure that

performance of a solution always remains assessable.

2.1.4 QUALITIES OF THE DESIGNING ENGINEER

In contrast to the characteristics of the expert design process, another study reveals the success-promoting

personal qualities of the designing engineers themselves (Fricke, 1996).

Good spatial imagination: Continually being able to keep track of spatial layout and the spatial

interrelations between components in the mind, before producing a directly assessable spatial

representation.

Routine sketching: Naturally extending spatial imagination, obtaining a sense of layout and

interrelations through representation of the design object when imagination falls short.

Solid engineering knowledge: Solid knowledge in the engineering field at hand, and typically in the

broader context of related sciences.

High heuristic competence: The ability to derive dependable symbolic meaning in cursory observations

in anticipation of more essential properties of a design that are more difficult to determine.

Analysis of the design goals is a specifically critical part of the process. Problems will often be formulated

incompletely or excessively problems, respectively with present but unstated or over-emphasised or

conflictingly described requirements. In summary, tactics for successful goal analysis are:

Thoroughly scrutinising 1the problem structure: Uncovering the full set of requirements for

incompletely formulated design problems, focusing on the structure of the problem, and making these

requirements concrete.

Summarising the information: Reducing the full list requirements of extensively formulated design
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problems to the essential set through summarising, abstracting, prioritising, and disregarding (esp.

subjectively over-emphasised objectives).

Not suppressing solution ideas: Taking note of early ideas formed before the objectives are finalised,

and later returning to them for reassessment.

The search for solution, too, is critical. Three main strategies that can be observed here are excessive expansion

of the search space, balanced search, and narrowly restricted search. In summary, tactics that for successful

solution search are:

Varying alternatives at least for the main functions: Creating alternative solutions on principle, avoiding

being satisfied by an initial idea. However, generating too many alternatives proves unsuccessful.

Generating and reducing alternatives in a balanced manner: Expansively searching for variant

solutions, but eliminating alternatives again when impeded by a lack of oversight. However, reducing to

an unreasonably restrictive extent proves unsuccessful.

Evaluating solutions frequently and according to their level of abstraction: Assess the performance of

variant solutions often, but only in accordance with their level of concreteness, without getting lost in

considering vaguely specified details.

2.1.5 CONFLICTING CONSTRAINTS AND MULTI-DISCIPLINARITY

The preceding sections have already implied that multiple constraints will typically apply to a design problem.

Conflicting requirements have also been mentioned. Often, imposed design constraints will conflict others, in

which case no solution will exist that fullfills every requirement to the full extent. In many cases, there will not

exist a solution that satisfies even all constraints and requirements. Such cases call for compromising solutions.

The aspects of a design problem are often distributed over a multitude of disciplines. Design decisions often

originate from the perspective of one discipline, based on an a performance benefit within that perspective. On

its own, one perspective will only consider local aspects if there is an indication of local performance benefit.

Such local benefit will typically be maximised to available resources. Wherever an aspects plays no role in local

benefit, the possibility of global benefit (or benefit elsewhere) will not be considered.

Especially in the preliminary design it is both critical and still possible to coordinate the process such that global

benefit is not overlooked (Klein, 2006). Available strategies to achieve this include rearranging components to

untangle disciplines and minimise shared resources, and locally incentivising globally beneficial design aspects.

As the design process moves on and decisions become more detailed, standard and established ways will

become more prevalents and less opportunity remain to coordinate local aspects in service of global benefit.

The preliminary design stage ideally explores the problem space and finds global benefit early. It establishes a

sufficiently untangled intermediary design solution that allows subsequent local optimisation to the extent that

it does not influence global benefit.

2.2 Characteristic design cycle and maxims

Based on the preceding sections, a characteristic design cycle was distilled (see Figure 2.5), based on which a

total of nine maxims of design theory were defined. It is proposed that the implementation decisions leading to

a design tool, this being the product of this thesis, should reflect these maxims. They were established to be

relevant to computational design tools only, an so do not aim to cover the design process as a whole. The

maxims are subdivided in three categories of three maxims each, respectively concerning the inherent nature of

the design process, strategies that promote its success, and tactics that promote its success.

In the following, the term ‘tool’ refers to a computational design tool for structural engineering, such as
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Figure 2.5: The characteristic design cycle: the early

stage design process shows an emphasis on and high

influence of synthesis (red), a de-emphasis on and

low required precision of analysis (green); inference

phases are found throughout the cycle.

StructuralComponents. Regarding the nature of

design, the following maxims are proposed:

The design process is iterative: a tool should

capture the iterative process as a succession of

evolving designs—perhaps not every trivial

change but certainly those moments where a

design decision was made to focus on one

solution and forego another.

Each iteration in the design process consists of

phases of synthesis, analysis, and inference:

a tool should provide means to both generate

design solutions and measure their

performance, as well as make explicit what are

the key aspects driving the design.

There is a shift in emphasis of iterations in the

design process from synthesis to analysis: a

tool focusing on the early stage of the process

should emphasise the rapid generation of

alternatives design solutions, to be analysed

quickly using simple, perhaps less accurate methods.

Regarding strategies that promote success in the design process, the following maxims are proposed:

Multiple alternative solutions to a design problem should be considered: a tool should allow the easy

generation of design alternatives, to be evaluated simultaneously so that their performance can be

compared.

Alternative solutions should be generated and eliminated in a balanced manner: a tool should

encourage its user to make quick progress while also providing trust that no potentially good solutions

were missed.

Solutions to a design problem should be evaluated frequently: a tool should provide the means to

continuously evaluate the performance of solutions, to test whether they meet the requirements.

Regarding tactics that promote success in the design process, the following maxims are proposed:

Indicators of solution performance should be encoded into heuristics in terms of the problem
requirements: the tool should provide a method to declare what indicates good performance, to be

encoded in heuristic performance functions which can be evaluated directly.

When appropriate, there should be opportunistic deviations from a top-down design process: a tool

should make it easy both to make the changes required to explore accidental ideas, and also to track

back if and when such ideas prove unsuccesful.

Solutions should frequently be imagined, sketched, or prototyped according to complexity

requirements: a tool should provide visualisations and impressions of design solutions that closely

resemble their real-world counterparts, in order to quickly evaluate performance at a glance without

explicit mathematical definitions.
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3 Concept and methodology

This thesis proposes modifications to the StructuralComponents design system, of which the major goal is an

increased emphasis on design exploration. The modified system primarily relies on automatic generation of

design variants and subsequent interactive visualisation of the resulting performance data. It prioritises

exploration of the problem over accuracy of the solutions. It contains a design methodology based on posing

measurable questions at each iteration, to which the data must provide an answer.

ADHERENCE TO THE CHARACTERISTIC DESIGN CYCLE

The proposed system alternates between composition and abstraction phases. During the composition phase,

users synthesise a solution to the design problem: they compose a parametric design concept out of various

functional components. During the abstraction phase, they analyse the full potential of the solution: they

abstract over the parameters to assess the design’s many value-substituted manifestations. The single design

solution intuitively created in composition is viewed broadly, over the possible range of its parameters, in

abstraction.

The composition and abstraction phases transition back and forth through inference phases. These phases are

characterised by reasoning and deduction, relating the proposed design solutions and obtained performance

data back to the problem constraints and requirements. The transition from composition to abstraction features

the definition of metrics from which the value of a solution can be derived. The transition back features the

deduction of the most promising parameter ranges, and the decision to refine and explore further—or to track

back, if the desired performance is not found.

After the second inference phase, where the decision is made to refine or to track back, the system once again

transitions to a new composition phase. This phase again segues into inference (defining metrics), then

abstraction, and lastly back to inference (deducing potential). This repeating sequence follows the cyclical and

iterative nature of the design process. Each new iteration might feature exploration of solutions in a new

direction, or refinement of a direction showing promise. The resulting process shows a clear path from the last

solution back to the initial problem statement, along the dead-end branches of rejected alternatives.

IMPLEMENTATION PROPOSAL AND PROTOTYPE

In terms of user interaction and use cases, the system firmly leaves the designing engineer responsible and in

charge. It strives for full transparency in its inner workings and generated data, making use of the intuitively

understood parametric and associative modelling paradigm and generating alternatives only within user-

defined ranges. It is decidedly unintelligent with regard to supporting the design process, following the

“garbage in, garbage out” principle of allowing both the sensible designs of the experienced designer or the

meaningless results of uninformed input.

In terms of implementation, a prototype of the system was built along a client-server separation between user

interface and computation. The separation yields greater potential regarding both usage on the client side, and

performance on the server side. It must be noted that the client-server separation sacrifices the simplicity of the

previous StructuralComponents prototypes. However, it ultimately allows multiple and weaker user applications

and devices to take advantage of more powerful server hardware and infrastructure. Furthermore, it offers the

beneficial network effects of centrally collecting design data for various problems.

OVERVIEW

The proposed system strives to adhere to the interpretation of design theory described in this thesis’

introductory chapters. This chapter attempts to make the case for that adherence and gives the arguments for

further implementation choices. Section 3.2 provides the theoretical background for the implementation
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choices detailed in Section 3.3. The theory and implementation of the structural analysis contained within the

system, and the software and system architecture shaping it are respectively dealt with in the following two

chapters.

3.1 Theory

Design in engineering, at its core, entails the basic problem of finding a good solution to a given requirement,

according to a certain set of metrics, respecting another set of boundary conditions. It could be seen as a

virtually free-form process with an ambiguous end goal, built on foundations and assumptions that often change

during the process itself. The performance of its resulting solutions is easy to assess, though the paths to those

results are not usually laid out clearly ahead (Chapman, 2001).

The design process as a whole shares these characteristics with one of its possible subprocesses, optimisation.

For that reason, it is common to see tools being equating optimisation with the design process itself. This may

be fully justifiable in many cases, but least likely in that of the early, conceptual stage. Where the goal and

product of optimisation is the final solution to the design problem, that of the conceptual stage is exploration of

the problem space and familiarisation with the possible design solutions it holds.

A good aim for the designing engineer during the conceptual stage is to gain a broad overview of the

collection of possible solutions (Fricke, 1996), while many details of and surrounding the design remain

unknown; many design considerations remain ambivalent, not easily expressed in numerical values; many

competing metrics exist together, and priorities remain unclear.

A good aim is to get familiar with the various parameters that govern a possible solution’s behaviour: to see

how they are individually related, how they influence the metric, and how close they come to crossing any

boundary conditions. The goal and products of the early, conceptual stage of systems design should not be a

final solution, but the insights gained on the path towards one, having travelled down and backed out of various

branches.

3.1.1 SYNTHESIS: PARAMETRIC AND ASSOCIATIVE MODELLING

As was the case with previous iterations of the StructuralComponents project, the system proposed in this thesis

is based on the parametric and associative modelling paradigm. This paradigm revolves around the modelling

of design objects—geometrical, structural, or otherwise—through the visual composition of a network of

parametric logic. In essence composing a family of visual programming languages, and generally adhering to

the flow-based programming paradigm, the various examples of the parametric and associative modelling

paradigm available within the architectural and engineering industries have become increasingly prevalent over

the last decade.

3.1.1.1 Background and related work

Often cited as the origin of the term parametric and associative design is the early work on

GenerativeComponents (Aish, 2005). Predating that work by some years are some explorations into the

paradigm and computer-aided engineering methods in automotive and aerospace engineering (e.g. Aspettati,

2001; Ledermann, 2005). More recently, the paradigm has garnered success in the form of the Grasshopper 3D

plugin for Rhino (McNeel, 2013). Furthermore, this thesis is part of the PhD dissertation NetworkedDesign

(Coenders, 2011), which similarly proposes a design system encompassing parametric and associative

modelling.

The parametric and associative paradigm closely resembles the flow-based programming paradigm in

computer science (sometimes referred to as dataflow programming) in concept and typically in representation.

This paradigm itself is described as “a programming language that defines applications as networks of ‘black-
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Both map and reduce are known as such in e.g. Clojure,
Erlang, Python, Javascript; both are included under different
names in e.g. C# and C++. Furthermore, these functors
represent the core components of big data solutions such as
Google MapReduce and Apache Hadoop.

Box 3.1: Typical functional programming functors.

box’ processes, which exchange data across predefined connections [and] can be reconnected endlessly […]

without having to be changed internally” (Morrison, 1994). In similar terms (and simplified), parametric and

associative models are defined as series of transformative components, through which a stream of input data

flows and is transformed to output data.

The concept is related to the map and reduce higher-

order functions familiar from functional programming

(see Box 3.1; these are hereafter called functors to

avoid confusion with other functions). The map

functor takes an arbitrary transformative function and

a list as input, and returns a list of the results of that

function having been applied to each individual

element in the list. The reduce functor similarly takes a function and a list, and additionally (and optionally) an

initial value. This functor proceeds to apply the function to each subsequent list element and its own previous

result, accumulating the list elements into a single return value.

Forming an example of a map functor is the operation of doubling each number in a list. Forming an

example of a reduce functor is the operation of summing up each number in a list. Together, in

mathematical terms, using the input list of numbers ,

In terms of data flow, the operation resembles the sequence of states

Representing these operations visually the resemblance to both a parametric and associative model

definition and a flow-based programming diagram should be evident (see Figure 3.1).

Figure 3.1: A visual representation of the described map-reduce operation

Design systems implementing the parametric and associative modelling paradigm generally feature a network

of branching and conjoining data flows, a library of program objects which constitute the flowing packets of

data, and model manipulation through the addition and removal of components and connections. In terms of

advantages, as listed by Coenders (2011), these systems model the logic that generates models as opposed to

modelling the models themselves, are flexible with regard to change, and provide insight by decomposing

design logic to its essential arguments.

3.1.1.2 Argumentation for use

In terms of the proposed maxims which should be reflected in the computational design tool described in this

thesis, the parametric and associative modelling paradigm provides primarily strategic advantages. Some

caveats should be noted with regard to the tactical maxims.

[1, 2, 3]

reduce(g(y, z) = y + z, map(f(x) = 2 × x, [1, 2, 3], 0)
= reduce(g(y, z) = y + z, [2, 4, 6], 0) = 12.

[1, 2, 3] (input)
→ [2 × 1, 2 × 2, 2 × 3] = [2, 4, 6] (mapped)

→ ((0 + 2) + 4) + 6 = 2 + 4 + 6 = 12 (reduced)
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Repeated here for clarity, the strategic maxims are:

(IV) considering alternative solutions;

(V) balanced generation and reduction of alternatives;

(VI) frequent evaluation;

and the tactical maxims:

(VII) heuristics as performance indicators;

(VIII) opportunistic deviations from a top-down design process;

(IX) frequent imagination, sketching, or prototyping.

The modelling paradigm is inherently generative—i.e. generates a design solution based on a network of logic.

Obviously with regard to parameter variations, this nature makes the paradigm suited to the rapid generation of

alternative solutions (IV). A single instance of a logic network can be used to generate wholly different solutions

depending on the input parameters. One level of abstraction up, the paradigm similarly allows relative ease in

the reconfiguration of its defined associations by reconnecting components.

As the paradigm is also inherently computational, its set of basic components can easily be used to further

transform generated object properties into metrics for immediate evaluation (VI). Such a step—though its

success requires a certain level of engineering knowledge from the user—allows the establishment of

performance heuristics (VII). In the example of stress unit checks, the value and purpose of such metrics is self-

evident. In more complex examples, where the available information may be limited, the designing engineer

may find opportunities to express forward notions about actual performance as indicative metrics.

Benefitting from the generative nature itself and from the heuristic possibilities of the computational nature, the

paradigm may enable a degree of balanced generation and reduction of alternative solutions (V). In support of

this, additional facilities would be required for comparison of generated output, such as visualisations.

Some caveats must be noted with regard to the remaining tactical maxims. As noted by Davis (2011), it is not

always possible to make quick changes to a parametric and associative model. Decomposing a design concept

into its generative logical components is a top-down process. Changing some aspects of it—especially when

those changes must be made in the middle or even at the start of a logic network—can be difficult, and may

lead to other unforeseen changes. This may inhibit the proposed opportunistic deviations from a top-down

design process (VIII), when the changes leading to those deviations cannot be made at the end of the logic

network.

Similarly, the indirect modelling of the paradigm—i.e. modelling the logic, not the model itself—and associated

decomposition step of a concept into logic components is not always easy and may not always be done at a

whim. When this is the case, this indirection may remove the intuitive manipulation of a tactile and responsive

sketch or prototype (IX). The paradigm may enable the user to logically construct an imagined design object,

but may equally inhibit the user from making quick intuitive changes.

3.1.2 ANALYSIS: FINITE ELEMENT MODELLING

The analysis phase serves to measure the performance of solutions through simulation. Although in the early

stage of the design process there is an emphasis on synthesis, or solution generation, it is important to

determine whether those solutions satisfy requirements. Still, the analysis in this phase is not generally required

to be highly accurate. An inaccurate, roughly estimated indication of performance will often suffice.

For the purpose of this thesis, a custom Finite Element Method analysis engine was developed. The theory
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behind the engine is broad, and is accordingly discussed separately in Chapter 4.

3.1.3 INFERENCE: ABSTRACTIONS, COMBINATORICS & PROBABILTY, AND VISUALISATION

The inference phases serve to allow the designing engineer to attain knowledge about problem requirements

and what they imply for the possible solution. In these phases, the engineer will determine which parameters

are essential to, and what performance constitutes success of a solution. Furthermore, these phases will feature

continuous checks of the performance of generated design solutions against the requirements.

SOLUTION SPACE

A specific choice for a design parameter can be thought of as a point on its respective domain of possible

values. By extension, a specific combination of choices out of a set of design parameters—that is, a solution—

can be thought of as a point on the total domain spanning all possible combinations. This domain will be

referred to as the problem or design space—the former in the sense of opportunities for exploration, the latter

in the sense of known regions.

Figure 3.2: One solution in problem space

One perspective of this space—and its namesake—is that of an Euclidean space. In this perspective, each

parameter corresponds to a physical dimension: two parameters form a plane and three form a volume.

Furthermore, a design solution corresponds to a point on this plane or in this volume (see Figure 3.2). This

spatial representation of the various design possibilities lends itself especially well to intuitive understanding—

thanks to human spatial awareness (Victor, 2011)—and interactive manipulation—the goal of this thesis.

It is common to start the design process with a single starting solution of a set of interesting parameters (Fricke,

1996)—that is, for example, a point in the imaginary volumic design space of three parameters. Leaving two of

the parameters fixed, the design problem can initially be explored by varying the remaining parameter; the

design space explored along a single line. Using a computable metric that forms a good base for comparison,

the various points along the line can assigned a value. Collectively, these values form a single broad, assessable

view of a certain aspect of the design space.

ABSTRACTIONS

The transition from the concrete solution to the broad, collectively assessable view of the design space with

respect to a free parameter constitutes an abstraction. Similar abstractions are possible between the broad view

of a single parameter to that of multiple—in Euclidean spatial terms, transitions from linear to planar, or from

planar to volumic.
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Figure 3.3: Various abstractions in problem space

Abstraction entails stepping from the narrow to the broader view, and back down to the narrow view—or

possibly another. It allows for insights to be gained into the influence of a parameter on the metric, or the rate

of change in that influence as the result of another.

Figure 3.4: Parameter relationships

Figure 3.5: Metric sensitivity and constraint proximity

Looking at a single parameter, abstraction will reveal the course of the metric over the parameter’s domain.

Similarly for two parameters, but maintaining a constant value for the metric, abstraction will further reveal how

they are related. Computing the metric values around a known point, the normalised vectors of parameter

change will reveal the metric’s directional sensitivities.

Through abstraction, insights can be gained into a metric’s sensitivity to free parameters—the rate of change,

the high points and the low—and consequently into the causes for the particular (un)suitability of individual

solutions.

This thesis is based on an assumption that the best (see Box 3.2) method to gain these insights is use the

intuition of the user as a starting point and reinforce it by verifying and contextualising using adjacent design

space data. This assumption is further based on the premise that the user is best (see Box 3.2) knowledgeable

about the problem, such that his or her intuitive guesses lead to sensible variations and consequently sensible

data. However, it is proposed that by quickly verifying and contextualising an automatic system can inspire

confidence and further exploration.

Verification can refer to the assertion that some particular requirement is or is not met for some design solution
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The first use of the term best ‘best’ is
understood as the most suitable trade-
off between feasibility in terms of ease
of implementation and effectiveness in
terms of correctly achieving the desired
results in most cases.

The second use of the term ‘best’ is
understood as better suited to start
exploring the problem in the right place
using intuition than the heuristics
underpinning any automatic system
could feasibly be.

Box 3.2: ‘Best’

Sawilowsky contrasts the Monte Carlo
simulation and method, the latter using
purely statistical methods without
simulation—e.g. computing an area by
randomly placing points and counting
those inside.

Box 3.3: Monte Carlo simulation

(or parameter combination). That is, verification could be a passing

unit check, asserting for example that a certain structure displacement

is still acceptable. Verification can also refer to the assertion that an

expected trend, relation or sensitivity does or does not exist. For

example, it can confirm an anticipated inverse relation between the

stiffness of an outrigger and that required of a building core.

Contextualisation can mean something like the latter, though it can

further show that a particular trend, relation or sensitivity is dependent

on yet another parameter. Referring back to the outrigger–core

example, it can reveal that the bending stiffness relation further

depends on the axial stiffness of the facade column. In this last case,

such a dependency can pose an interesting new avenue for

exploration in a next step.

3.1.3.1 Combinatorics & probability

The proposed system involves automatic variation around the parameter values specified by the user.

Consequently, two important aspects of the system are the mechanism responsible for choosing these

variations, and the considerations that should go into interpreting the resulting data. An important part of this

interpretation is the visual representation (or visualisation) of the data itself, which is dealt with separately in the

next section. This section will first discuss the variation mechanism in terms of its goals, the theory behind it, and

the resulting implementation choices. Next, it will discuss how the data that is generated by the mechanism

relates back to specific insights about the input parameters.

INTRODUCTION

The ultimate goal of the overall system is to provide insights into the

influence of design parameters on a solution. That is, for example, how

the parameters of a design solution are related, how sensitive the

design goal is to parameter changes, or how close a certain solution is

to some requirement constraint. This is done by deriving such

properties from the data resulting from repeated simulation using

automatically varied parameter values. In that sense, this mechanism is

a Monte Carlo simulation as defined by Sawilowsky (2003; see also Box 3.3).

Figure 3.6: a) A single parameter value combination, and b) multiple parameter

value combinations (non-stochastic)

Starting with a composed model, the user controls the simulation by defining a certain initial set of parameter

values (see Figure 3.6-a) and the extent to which these may be varied (see Figure 3.6-b), in addition to some

arbitrary performance metric. The system then repeatedly samples varying combinations of parameter values
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Polynomial: the problems described
here are polynomial in nature, though
users may manually define other
relationships—e.g. exponential.

Smart: here the term ‘smart’ is used for
deriving properties deterministically and
‘dumb’ for doing the same using
simulation. This follows the assertion
that the smart approach would
generally be computationally less
expensive.

Box 3.4: ‘Polynomial’ and

‘smart’

and runs these as input values through a simulation. Finally, the measured performance metric values are

analysed, the desired properties computed, and returned to the user for inspection. Should the user decide to

adjust a parameter, the process is repeated with new samples.

Clearly, for the range of problems currently targeted by

StructuralComponents, the properties that this system proposes to

derive from simulation data are in truth deterministic (Chapman, 2001).

That is, in general the relationship between a solution’s performance

metric and either of its significant parameters is somehow polynomial

(see Box 3.4, ‘Polynomial’), and could be derived exactly. However, it

is exceedingly difficult to create a system that uses the smart approach

(see Box 3.4, ‘Smart’) and still covers all occurring problem cases. The

dumb approach naturally does—approximately, assuming sufficient

sample size—using statistical methods.

As with any general-purpose system, there is no guarantee that

applying this system to an arbitrary specific design cases will yield

sensible results. To an extent, statistical analysis can be used to ensure that some conclusion follows logically

from a set of data. However, whether that conclusion is sensible depends on whether the data, and by

extension the simulation model, is sensible to begin with. This system attempts to provide a measure of

statistical soundness, and additionally—to a limited extent—qualifies results when mixing discrete and

continuous input. Beyond that, it leaves any judgment of the physical soundness of a model up to the user.

STRUCTURED AND STOCHASTIC VARIATION

Perhaps the simplest mechanism of automatic variation would combine the values at constant intervals in one

parameter range with values in another. For example, it would produce a hundred combinations of between 90

and 110 meters building height and between 1.3 and 1.7 core depth-to-width ratio, which parameters might be

deemed essential by the engineer (assuming constant values for secondary parameters—building geometry,

materials, load, etc.). Such a structured approach to variation should immediately reveal patterns concerning the

relation between these parameters, such that they are likely visible on any bivariate plot.

Such structured variation serves to illustrate how the problem of automatic variation relates to the basics of

combinatorics. The complete set of combinations consists of the leaves of a decision tree with a number of

levels equal to the number of considered parameters. In the example, sets of values (e.g. 90, 100 and 110m

height; 1.3, 1.5 and 1.7 ratio—although, the sample sizes would need to be higher in practice) are chosen and

then permutatively combined:

the tree root branches out into the possible height values to form the intermediary nodes of the first level

(90m high, 100m high, 110m high);

the intermediary nodes again branch out into the possible depth-to-width ratio values (90m high, 1.3

ratio; 90m high, 1.5 ratio; etc.).

The expected patterns resulting from structured variation can, on the other hand, also work restrictive. It is

unlikely that the results evenly or entirely span their possible output range. This might be a problem from a

standpoint of sensitivities and proximity to constraints, which require unbiased data. Another approach that

would solve this issue is to use stochastic sampling, according to some probability distribution (see Figure 3.7).

This can still be done in a structured way, combining the limited sets of stochastically sampled parameter

values, or in a completely unstructured way, sampling new values for each combination.
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Figure 3.7: Structured and unstructured sampling

Another aspect to consider, regardless of whether sampling happens in a structured or stochastic manner, is the

sampling distribution. The structured sampling example mentioned sampling from a range at constant intervals.

The stochastic sampling equivalent would be sampling from a uniform distribution. An obvious alternative

would be sampling stochastically or at predefined but variable intervals from a normal distribution.

3.1.3.2 Visualisation

A full assessment of available information visualisation theory falls outside the scope of this thesis. It should

suffice to outline the principles of Tufte, who is an often-cited popular scholar on the subject, and provide some

supporting and contrary positions by a few others. Importantly, the theory and principles discussed here will

focus on the context of interactive software application graphics, and an audience of engineers with a

presumed understanding of data and spatial relations.

GRAPHICAL EXCELLENCE

Tufte (1983) summarised the goal of visually displaying data, or quantitative information, in his concept of

“graphical excellence, [which] gives the greatest number of ideas in the shortest time with the least ink in the

smallest space”. Visualisation serves to show data in such a way as to induce thought about its substance by

way of making it coherent and encouraging comparison, while avoiding distortion. People are generally ill-

equipped to understand large sets of numerical data when viewed as text. Visualisation enables someone to

assess such data by engaging their visual pattern recognition.

Ideally, a graphic makes data coherent by showing it in its entirety and clustered—or not—around essential

parameters. It should show different levels of detail to communicate both global trends and local subtleties. It

enables or even encourages comparison by showing different data sets together, either in the same context or

scaled and shifted to overlap. Graphics can show relationships between parameters and even provide a spatial

language to think about and discuss expectations and check whether those match the data.

Graphics and visualisation can also easily distort data and suggest trends and correlations that do not exist. In

general, small datasets (one or a few numbers) are best represented numerically, instead of graphically. When

the choice is made to use a graphic, Tufted refers to its integrity and explains related concepts by listing

examples of common mistakes:

proportionality—exaggerating (or understating) a data measure in graphics (Tufte defines the lie

factor—the shown-effect-to-effect ratio—and cites common exaggerations of two to five over the

acceptable 1.05);

normalization—for example not adjusting currency for inflation in time series, or showing building top

deflection independent of height (data often depends on its context—two data points out of context

cannot be compared);

dimensionality—for example representing population size as circles or floor area as bars (numbers have

both magnitude and order—difference in diameter is not the same as difference in area);
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labelling—using labels to hide facts, such as axes not starting at zero (labels may tell the whole truth, but

visuals can still convey a different impression).

There is also the concept of data–ink ratio, or the ratio between graphical elements that carry data and those

that don’t (‘ink’ should be interpreted in the abstract sense when discussing computer graphics, where no actual

ink is involved). Non-data ink can misrepresent data by distracting from or drowning it. Blasio and Bisantz (2002)

find that high data–ink ratios improve reading accuracy, and to a lesser degree interpretation speed.

Purely illustrative elements—e.g. such as found in newspapers and other publications for non-technical

audiences—will be left out of consideration[^deco]. Decoration on data elements, such as shape outlines,

shadow or 3D effects, or skeuomorphic embellishments (such as the ubiquitous speed gauge), but also plot

area outlines and dense grids are usually better omitted (even though it is found that ‘useless’ decoration does

improve long-term recall of the information contained within a graphic; Bateman, 2010).

Figure 3.8: a) A bar chart with unnecessary decorative effects and colouring, a

superfluous box and grid, external labelling, and a misleading axis offset; b) the

same chart with an high data-ink ratio using multifunctional labelling (axis extents

and positional labels) and bars (proportional, with tick lines).

Efforts to increase the ratio can also reinforce the data, such as when an axis also conveys a value range or

distribution, when shapes are shaded instead of outlined, or when labelling is made multifunctional (see Figure

3.8). Within reason, the data–ink ratio should be as high as possible.

DASHBOARDS

More specific to this thesis and its primary function for data graphics is the theory behind software dashboard

design. Building upon Tufte (which mainly target printed publications) Few (2006) sets out a dozen or so

principles as ‘pitfalls’, to be avoided. Those dealing with aesthetics and accuracy are ignored here, while useless

decoration is discussed above. Other pitfalls can be explained succinctly: exceeding the boundaries of a

computer screen; displaying excessive detail or precision; or ineffectively highlighting what is important.

Important pitfalls that merit further explanation are:

Figure 3.9: a) The pie-chart can convey relationship meaning through position and

adjacency, but makes similar values look equal; b) the histogram shows differences

clearly. In both cases, the exact values could be more easily read from a table.

A common mistake is choosing inappropriate graphic types to convey data (e.g. like line graphs,
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histograms, scatter plots, pie charts, and other ‘widgets’). Sometimes graphics variety is introduced just

for the sake of it (conveying unintended meaning), other times for the sake of immediate appeal

(‘flashiness’ at the cost of clarity). Each type conveys a different idea, which should match the intent: a pie

chart might suggest parts of a whole, but inaccurately; a histogram will highlight even small differences,

but doesn’t show relationships (see Figure 3.9).

Figure 3.10: Large elements positioned towards the top-left demand most of the

attention; positioning smaller elements to the left of, or ‘before’ large elements

spreads attention more evenly.

Another important consideration is the arrangement of graphics on the dashboard. Bateman (2010)

shows that much higher attention is paid to the top and left areas than the bottom and right. Obviously

higher attention is paid to larger and more prominent graphics. These phenomena can be exploited to

bring the most important data to the front (important information large and in the top-left). Or, it can be

used to spread attention out evenly over the available surface (small graphics in the top-left, larger ones

off to the bottom-right; see Figure 3.10).

Figure 3.11: Green, orange and red colours category colours convey qualities such

as ‘good’ or ‘bad’, which may be unintended; category colours in labelled

histograms are redundant, but do allow the eye to easily follow line graphs.

Colour must be used carefully. Using false-colour coding is prevalent in engineering (e.g. to show

high/low or compressive/tensile stress), but has led to a strong subconscious ‘green is good, red is bad’-

association. Introducing similar colours to differentiate ordinals or categories can convey unintended

meaning (and may be redundant if properly labeled; see Figure 3.11). Colour blindness may call for

brightness differences in addition to hue. Light backgrounds are less stressful, while dark backgrounds

allow for higher contrast and better highlighting of important data.

Graphics should convey context in addition to the data itself. It must be clear whether a lone number is

good or bad, safe or unsafe. Likewise, it is easy to convey an unintended maximum or minimum by

choosing the wrong graphic (e.g. the speed gauge, which implies a ‘dangerous maximum’ that may not

exist). Labelling, axes, and grids can help here, but preferably in a way that preserves the data–ink ratio.

3.2 Implementation

This thesis puts forward an interactive tool based on an abstraction mechanism to allow the designing engineer

to explore a problem or design space. In terms of the design cycle, it proposes a typical iteration as an initial

synthesis phase and a subsequent analysis phase. The former features model composition and simultaneous

deduction of essential parameters followed by the formulation of a metric based on those. The latter involves
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performance computation and simultaneous steering towards meaningful areas in the design space. Each

iteration revolves around posing a measurable question to which the data gathered throughout the problem

space must provide an answer.

IMPLEMENTING THE CHARACTERISTIC DESIGN CYCLE

The synthesis phase consists of composition and deduction. Composition refers to the composition of

computable logic, forming a parametric and associative model as described profusely in the preceding theses,

and further expanded on here. Deduction refers to the deduction of which parameters are essential to the

composition and a measurable metric as a function of those parameters, based on which a value can be

ascribed to the composition.

The analysis phase consists of data gathering, visualisation and steering. Data gathering refers to the

computation of the metric for various stochastically chosen value combinations for the set of essential

parameters, the results of which are then presented in some meaningful way through visualisation. Steering

refers to the navigation through the problem space, specifying points of interest for finer analysis and to form a

basis for further investigation in successive iterations.

SYNTHESIS, ANALYSIS, AND INFERENCE SUBSYSTEMS

As implemented, the system relies on parametric and associative modelling of the design composition through

the familiar box-and-wires metaphor. This will be referred to as the synthesis subsystem. As its implementation

is familiar, Section 3.2.1 only discusses it briefly; software implementation choices are found in Chapter 5. The

synthesis system features structural components which form the input for a Finite Elements-based analysis

engine, which will be referred to as the ‘analysis’ subsystem. Its implementation is very detailed, so it will be

discussed only briefly in Section 3.2.2; its full implementation is discussed in Chapter 4.

Built on top of the modelling system is a system of user-driven, semi-automatic stochastic abstraction. This will

be referred to as the ‘inference’ subsystem, and takes cues from the user’s parameter choices and stochastically

varies them to generate a multitude of design solutions that are analysed simultaneously. The resulting data is

then analysed and presented to the user through various visualisations. This system goes beyond the isolated

performance results of the single solution to yield the abstracted broad view of the design space. The range of

stochastic variation is left as a choice for the user, and visualised alongside the resulting range of the metric to

yield a system of design by bandwidth.

COMPUTATION IN THE EARLY STAGE DESIGN PROCESS

At the early stage, readily available analytical power heavily outweighs the complexity of the typical problems of

the first exploratory forays into a problem space. Theses problems are commonly tacked using a combination of

simple schematisations, tules of thumb and intuition in the form of generalised experience. The analysis

component of this process is relatively small and lends itself well to parallelisation. Although analysis is not in

itself the object of performance improvement, the implementation proposes to exploit its features in order to

automate calculations in a system of semi-stochastic abstraction, thereby reducing the interruptions of

calculation and allowing greater attention for composition and exploration.
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3.2.1 SYNTHESIS: PARAMETRIC AND ASSOCIATIVE MODELLING

Figure 3.12: The synthesis subsystem makes use of the boxes-and-wires paradigm

of parametric and associative design modelling

The synthesis subsystem makes use of parametric and associative design (“PAD”) modelling. The system

features structural components with basic building blocks like nodes and elements, and smarter compositions

like trusses and building sections. The components are connected together, and to input parameters, forming a

generative, directed data flow graph. The graph deterministically maps its input to output. Each generated

result with unique parameter values constitutes a unique solution.

As part of the abstraction system—the implementation of which is discussed in Section 3.2.2—the modelling

system features two special designations: parameters can be designated as essential, and components can be

designated as a metric or a constraint. The essential parameters form the set of parameters for which the values

are automatically varied, based on a given sampling distribution. Both metrics and constraints are the

components for which the output values are collected, metrics determining a solution’s scores and constraints

its validity.

The system uses a custom-developed PAD engine which makes use of the boxes-and-wires paradigm. The

engine has a limited feature set (one-directional, non-looping), which resembles familiar software that uses the

same paradigm. Accordingly, its functional details are not discussed here. Relevant details about its software

implementation are discussed in Chapter 5.

3.2.2 ANALYSIS: DESIGN EXPLORATION

The analysis subsystem makes use of a Finite Element Method analysis engine that was custom-developed for

this thesis. Its theoretical background and functional implementation choices are discussed at length in Chapter

4. Its software implementation choices are discussed in Chapter 5.

3.2.3 INFERENCE: DESIGN EXPLORATION

The analysis phase results in a large number of solutions, each associated with value sets for both the input

parameters and the output metrics.

3.2.3.1 Solution space

Coming back to the solution space analogy, each solution’s set of input values represents a coordinate, and its

set of output values its performance. All results represent a region of solutions whose performance—in the form

of its output values—is now known. However, presuming arbitrary problems, the location and shape of the

solutions regions will also be arbitrary. A distance between solutions in one dimension may be small or large

depending on what the parameter represents. As such, comparing values is difficult.

NORMALISATION ACCORDING TO DISTRIBUTION
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Figure 3.13: a) Normalisation according to value distribution, and b) distribution-

normalised solution space

One solution to this problem is normalisation, i.e. establishing a common base within which values can be

compared. A simple method is to normalise using the distribution of a value over all results (see Figure 3.13-a).

Each input value is already associated with a given distribution, based on a mean and a variance, from which it

was sampled. Output values may be distributed arbitrarily, but their same mean  and variance  can be

computed from the total number  of solution output values  using the simple formulae:

Using the mean and variance of a value, its actual normalisation can be done using the simple formula:

Normalisation results in the distribution-normalised solution space where the solutions region is centered at the

origin and shaped more or less spherical (or rectangular, depending on sampling method; see Figure 3.13-b). In

the context of a distribution, a solution will now become average or an outlier. Comparison between two

arbitrary values becomes a comparison between average values, or an average value and an outlier, or two

outliers, etc.

3.2.3.2 Data analysis

Having established a common base of comparison, the normalised data can already be represented in

overview, such as in simple visualisations like parallel coordinates or scatter plots (more on those in Section

3.2.3.3). The solutions can be enumerated over, and for every solution, its associated input parameters and

output metrics are known. However, the reverse—finding which solutions are (approximately) associated with

some set of input parameters or output metrics—remains difficult.

Finding a solution approximately associated with a certain value set constitutes a nearest-neighbour search. In

the naive implementation, this is an  operation: it takes in the order of  comparisons to find the correct

solution (in reality, exactly  comparisons, as each solution must be checked). Derivative operations, such as

sorting, querying, or continuous interpolation, are similarly expensive.
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Hyperplane: the concept of a
hyperplane is the generalisation of a
regular 1-D line in 2-D space, or a 2-D
surface in 3-D space, to a -D
surface in -D space.

General position implies that e.g. in 3-
D space no line (or 1-D flat) contains 3
points (no 3 points are collinear), or in -
D space no -D flat contains 
points. With stochastic sampling of
input parameter values, this will be the
case with sufficiently high probability.

Simplex: the concept of a simplex is the
generalistion of a triangle in 2-D space,
or a tetrahedon in 3-D space, to a
geometric shape with  vertices in 
-D space.

Circum-hypersphere: the concept of a
circum-hypersphere is the
generalisation of a circumcircle in 2-D
space, or a circumsphere in 3-D space,
to higher dimensional -D space. The
circum-hypersphere uniquely
circumscribes (touches the vertices of) a 
-simplex.

Box 3.5: ‘Hyperplane’, ‘general

position’, ‘simplex’, and ‘circum-

hypersphere’

PARTITIONING AND TESSELATION

Figure 3.14: a) An example -D tree partitioning, b) represented in space, and c)

Delaunay tessellation represented in space of the points 

.

For sorting and querying operations, one solution to reduce

computational cost is to precompute a spatial partitioning. Many such

partitioning schemes are available, but for this thesis the -D tree (for 

-dimensional tree; Bentley, 1975) scheme was chosen for its ease of

implementation and fit (it works best when the number of points  is

much larger than the number of dimensions , ). This is a binary

tree partitioning scheme which associates each node with a data point

and splits further nodes along the hyperplanes (see Box 3.5) in

successive dimensions (see Figure 3.14-a,b). I.e., it will iteratively

choose a splitting point  (ideally the median) and partition each

further data point  (all with associated values ) into

one of two sets  and  on both sides of the hyperplane through

value  where  and  is the depth of the associated

node (which increases from  at the root node):

For interpolation, a solution to reduce computational cost is to

compute a continuous tessellation of the data points, on which each

the output metric values for each arbitrary point can be interpolated

from its surrounding vertices. Once more, many tessellation schemes

are available, but for this thesis the Delaunay tessellation was chosen

for its ease of implementation. This tessellation creates the unique

(assuming general position, see Box 3.5; De Berg, 2008) non-

overlapping and gapless piecewise continuum of -simplices (see Box

3.5) with vertices at the data points, that satisfy the Delaunay criterium that no point is inside the circum-

hypersphere (see Box 3.5) of any of the simplices (see Figure 3.14-c). I.e., it will create a tessellation  of -

simplices with vertices at data points  constituting the set  such that no point  is inside any of the

simplices of .
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COMPUTING METRIC SENSITIVITY

Figure 3.15: A visual representation of the sensitivity of a metric to a in two

parameters

The sensitivity of a metric function is its rate of change in some arbitrary parameter direction. I.e., the change 

of metric value  along some arbitrary vector  with  a change in parameter value ,

relative to that of a center point . The change can be derived by comparison with the point at the other end

of vector . As this point is unlikely to exist, and surrounding points unlikely to lie exactly on the vector , the

change must be interpolated using some weighting function :

where . The weighting function might reduce the weight for values for points that lie more or

less orthogonal to the vector, or completely discount those for points that in the opposite direction. It should

be chosen based on the data density surrounding the center point, and applied consistently whenever

comparing sensitivity for multiple directions.

COMPUTING PARAMETER RELATIONSHIPS

Figure 3.16: A visual representation of the relationship between two parameters

with regard to a third metric

The relationship between parameters with regard to a metric is represented by the shape of the region in

solution space where the metric values are constant (see Figure 3.16). I.e., the region around the set of points 

, of which each point  has variable input parameter values  but a constant metric value 

 (and  if there are more parameters that are not being considered

in the relationship). As with sensitivity, it is unlikely that there will be points with a metric value at exactly , and

so the points  in  must be interpolated. This interpolation uses the tessellation, computing the unweighted

average point  between the set  of intersection points of the -simplex edges that cross the  plane 

 for each of the set of -simplices :
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where  and  is some reference point (likely with metric value ). This set of points includes

points whose proximity to  may be due to the influence of other parameters, which may duly be discounted

using a weighting function.

COMPUTING CONSTRAINT PROXIMITY

The constraint proximity of a solution is that solution’s proximity to solutions that are invalid with regard to a

constraint. Is is computed similarly to sensitivity, although now it considers the weighted-average distance to

the set of invalid points :

where .

3.2.3.3 Data visualisation and exploration

Once the data is computed and analysed, it is ready to be explored. A number of visualisation types are

proposed which allow fairly deep exploration against acceptable ease of implementation.

Figure 3.17: An example of a parallel coordinates plot

The first proposed visualisation type is the parallel coordinates plot. This visualisation displays  parallel axes

for each of the .$ dimensions of a data point. Then, it plots a polyline for each solution along its coordinate

points on the axes, creating a series of diagonal lines spanning between the axes. This visualisation is well-

suited to visualise high-dimensional data, as it isn’t inherently constrained by the dimensionality of the display

medium (Inselberg, 1985). The plot can display both input parameter and output metric values together, but

should somehow be differentiated to avoid confusion.

Figure 3.18: An example of a frequency distribution plot

The second proposed visualisation is the frequency distribution plot. This is a histogram plot of which the bar

length is determined by the frequency with which solutions fall within the bar’s value domain. Assuming

sufficiently large data sets, the plot will reflect the distribution given for the input parameter values, and clearly

show how metric output values are distributed (perhaps uniform or normal, as the input, but possibly more

insightful, e.g. multiple peaks). The frequency distribution plot lends itself well to being overlaid on the axis of

the parallel coordinates or scatter (see below) plots.
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Figure 3.19: An example of a) an unadorned scatter plot visualisation, b) an overlaid

metric sensitivity wind rose, and c) an overlaid constraint proximity (for an overlaid

parameter relationship, see Figure 3.16)

The third proposed visualisation type is the scatter plot. This visualisation uses pairs of values as coordinates to

plot points on a plane (normalised according to Section 3.2.3.1; see Figure 3.19-a). Further properties can

subsequently be represented by the symbol, colour, or size of the points, which will show trends at a glance

(gradients will be clearly be visible as e.g. shifting colours). The scatter plot can additionally be adorned by

visualisations of the computed properties described in Section 3.2.3.2.

Metric sensitivity: The difference in metric value is computed in several directions around a known

solution. This results in an overview of metric sensitivity as expressed in rate of change per direction,

visualised as radial positive and negative vector fields (colour represents positive of negative rate of

change, magnitude represents rate magnitude; see Figure 3.19-b).

Parameter relationship: Metric values are computed for several combinations of parameters, and an

approximate continuous field is extrapolated and intersected with a target value. This results in a

parameter relationship as expressed in the set of parameter combinations that result in the same target

metric value (see Figure 3.19).

Constraint proximity: The distance to surrounding invalid solutions is computed in several directions

centered around a known solution. The results are then averaged and inverted, resulting in single evasive

direction away from constraints (see Figure 3.19-c).

INTERACTIVE EXPLORATION

Beyond the visualisation types, which allow exploration through static imagery, it is proposed that an

interactivity layer be implemented. Such interactivity could provide control over which plots are shown and

which value pairs are being compared. It could provide control over axes domain, inversion, and location, or

over data filters to show only subsets of all solutions. Interactivity could also allow control over the abstraction

settings themselves, in order to make input parameter distribution adjustments and request computation of

new or additional data points.

As an example, what follows is a brief overview representing the proposed interactivity (see Figure 3.20):

The parallel coordinates (“PC”) plot would serve as the user’s starting point after the successful

computation of an abstraction. It shows all input parameters and output metrics (differentiated),

normalised according to distribution. The user might rearrange or adjust axes to compare different value

pairs, and perhaps filter out invalid solutions.

The user might choose to further inspect a pair. The PC plot will move off to one side, where every axis

other than the inspected pair of axes would be hidden. On either side of the single-field parallel

coordinates plot, frequency distribution histograms are drawn giving immediate insight into where values

cluster together.
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Adjacent to the parallel coordinates plot, taking up much of the display, a scatter plot would be drawn.

Unadorned at first, with only the natural gradients in the data showing. The user might choose to inspect

sensitivity, and a wind rose is drawn around a reference point set at the origin. The point might be

moved around, redrawing the rose at each location.

After further inspection, the user might choose to refine some parameter, and shift another. After a

moment, a new data set is generated and exploration begins again.

Figure 3.20: An overview of the proposed interactive exploration: the parallel

coordinates plot forms the starting point, from which a values pair can be further

inspected
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4 Finite element analysis

4.1 Overview

The Finite Element method is a specific approach to numerically solving a continuous system that is governed

by a partial differential equation. This equation, commonly referred to as the governing equation, is the product

of a range of equations that model a real-world material. Ultimately, these equations describe the relationship

between the material properties and its behavior as a response to external action.

The finite element method falls under the general class of numerical solution methods referred to as the

Galerkin method, which revolves around a relaxation of the formal equation governing the problem. The formal,

or strong form of the equation must hold absolutely, at every point within the problem domain. The Galerkin

method only requires it to hold on the domain boundaries and cumulatively, summed up over the entire

domain. It puts forward an approximate solution and assumes that if that solution holds cumulatively it is a good

model of the exact solution.

The specific approach taken in the Finite Element method is the systematic discretization and search for

polynomial trial functions, which allows it to be implemented as a software program. Specifically for structural

engineering, analysis using the Finite Element method typically follows the following steps:

1. Discretization into elements that are governed by the strong form of known ordinary differential

equations modeled after physical characteristics.

2. For every type of element, derivation of the weak formulation of the governing equation over the

element’s subdomain.

3. For every element, numerical integration over the element domain resulting in a linear system of

equations.

4. Assembling the global system by superposing the various element systems, typically transformed from

local to global space, according to shared degrees of freedom.

5. Imposing Dirichlet boundary conditions (constraints) that prescribe solution function values and

effectively eliminate degrees of freedom from the system, and Neumann constraints that prescribe forces

and effectively preclude the trivial solution. Depending on the implementation, those Neumann

conditions that themselves depend on the solution, such as spring constraints, are rewritten into the

system of equations.

6. Solving the system of equations, typically using common numerical matrix solution methods. In the

majority of cases, depending on the handling of constraints in the previous step, the final matrix can be

symmetrical.

7. Post-processing the solution to compute relevant engineering values, such as continuous displacement

and element force approximations between nodes, typically transformed back to local element space.

This chapter will cover these steps and the mathematical theory behind them, as they have been implemented

within the structural analysis framework that is part of thesis.

4.2 Theory

At the core of the finite element method is the model of the material that is being analyzed. This model takes

the form of a partial differential equation that governs the material behavior. This governing equation can be

seen as the combination of three equations, commonly referred to as the kinematic, constitutive, and

equilibrium relationships. Respectively, these equations define the relationships between space and

displacement, displacement and force, and the equilibrium between forces.
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At a given coordinate , the change of internal stresses  is in equilibrium with the external forces  that are

applied there. This internal stress is constitutively related through some ratio  to the local strains , which in

itself is a kinetic measure of the change in local displacement . In formula, this yields a typical governing

equation

Throughout this section, the theoretically and conceptual explanation of the finite element method will be

interwoven with the example of its application to the model of a simple bar under axial load. At the end of the

section a summary is given for a similar derivation for an Euler-Bernoulli beam.

The kinematic, constitutive, and equilibrium equations also govern the simple bar element. As the

element only extends in one direction, its kinematic relationship follows from the expression of strain

along that direction. The relation should hold for each infinitesimal slice of the bar, yielding

As the simple bar has a constant cross section area over its length, this can be incorporated in its

constitutive relationship,

Lastly, from the fact that each infinitesimal slice of the bar should be in equilibrium, it follows that

Combining the three equations yields the strong form of the differential equation governing the simple

bar,

Box 4.1: The derivation of the weak form from the strong form

The strong form of an element’s governing equation is a differential equation that can be solved numerically

using the Galerkin method of weighted residuals. This method discretizes the domain of the problem into one

or more disjoint subdomains separated by boundaries and subsequently employs test and weighting functions

to approximate the exact solution over the discretized domains.

x ∇σ p
D ε

∇u

∇σ(x) + p(x) = ∇(Dε(x)) + p(x) = ∇(D∇u(x)) + p(x) = 0.

ε(x) = = .lim
∂x→0

∂u(x)
∂x

du(x)
dx

σ(x)A = N(x) = EAε(x).

−N + q(x)∂x + N + ∂N(x) = 0 ⇒ + q(x) = 0∂N(x)
∂x

+ q(x) = = 0.lim
∂x→0

∂N(x)
∂x

dN(x)
dx

EA = EA (x) + q(x) = 0.u(x)d2

dx2
u″
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The method is not applied directly to the strong form of the governing equation, which is typically a partial

differential equation. Instead, the equation is converted to its weak form by first multiplying it by an arbitrary

weighting function and then integrating over its domain. This yields the weak form of the governing equation,

typically of the form

The weighting function can be understood as a virtual displacement. The integration employs the fact that if the

strong form holds at every point in its domain, it must also hold cumulatively, over its entire domain. In physical

terms, the weak form of the governing equation is equivalent to energy. Specifically, it is a measure difference

between internal and external work, or the energy contained within the domain, which must be minimal to

approximate equilibrium.

The Galerkin method is based on the assumption that if a test solution holds cumulatively, it is a good

approximation of the exact solution. The extent to which this assumption holds true depends on the soundness

of the discretization and test and weighting functions.

The method ultimately employs equivalent parameterized coefficient series  as substitution functions

for the test and weighting functions that represent the solution and virtual displacement. These functions

effectively convert the problem to an ordinary differential equation problem that is numerically stable and

approximately equivalent to the partial problem.

The strong form of the governing equation of the bar element is first multiplied by a virtual

displacement, the product of which is subsequently integrated over the domain  of the bar,

yielding

This integration is then separated by parts, reducing the order of the derivative by explicitly defining

the boundary  of the bar (where  is the vector normal to the boundary—or the signed

scalar, in the case of the one-dimensional simple bar). This then yields the weak for of the governing

equation,

The Galerkin method can now be used solve the problem numerically. To this end, the test and

weighting functions dependent on the coordinate  are substituted by approximations, each consisting

of a coefficient series of shape functions,

NB. Part of the boundary term, , is similarly substituted by a coefficient series, but shall from

this point simply be represented by .

Substituting these series approximations into the weak form of the governing equation yields

[∇(D∇u(x)) + p(x)]δu(x)dΩ = 0.∫Ω

(x)Σiciϕi

[∇(D∇( (x))) + p(x)] × (x)dΩ = 0.∫Ω
Σjuj Σiciϕi

Ω = ( , )x1 x2

[EA (x) + q(x)]δu(x)dΩ = 0.∫Ω
u″

Γ = { , }x1 x2 n

[nEA (x)δu(x) + [−EA (x)δ (x) + q(x)δu(x)]dΩ = 0.u′ ]Γ ∫Ω
u′ u′

x

u(x) = (x) + (x) + ⋯ + (x) = (x),u1ϕ1 u2ϕ2 urϕr Σjujϕj

δu(x) = (x) + (x) + ⋯ + (x) = (x).w1ϕ1 w2ϕ2 wrϕr Σjwjϕj

nEA (x)u′

Fi

(x) + [−EA (x) (x) + q(x) (x)]Ω = 0.ΣiwiFi ϕi |x=Γ ∫Ω
Σjujϕ′

j Σiwiϕ′
i Σiwiϕi
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Since  occurs in every term, and  is arbitrary, the above equation can be separated into 

independent equations, each with a single unknown . For each  in , omitting  and

rearranging to isolate the term containing the unknown yields

or, in shorter form, .

Box 4.2: The application of boundary conditions to the weak form resulting in the

solvable differential equation

From the Galerkin approximation of the weak form of the governing equation—and in particular from its shorter

form—it should become immediately apparent that the method results in a system of equations that can be

represented as a linear equation involving what is commonly called the stiffness matrix, as evident in the

progression

It should be noted that in the above systems that the independent variable  stands for a set of independent

variables , that the test function parameters  could be any arbitrary set of degrees of freedom 

, and that the stiffness term  varies for every type of element. As such, the Galerkin method

represents a general solution method using discretized elements that lends itself to a wide range of partial

differential equation problems. Following a series of steps similar to those used to derive the simple bar system

of equations in the example, equivalent systems can be derived for various other elements.

The finite element method is a specific application of the Galerkin method that uses systematic discretization of

the problem domain and selection of shape functions. These shape functions form the basis for the Galerkin

coefficient series test and weighting functions used in the approximate solutions. They are parameterized to

depend on a finite set of degrees of freedom, and somehow correspond to one of them on select boundaries—

through direct equality or equality of a derivative.

The simple bar is a one-dimensional problem with two nodes. The weak form of its governing equation

features the first-order derivative of the shape functions on the left-hand side, and no derivatives on

the right-hand side. Consequently, the problem calls for two shape functions of C1-continuity, of the

systematic coefficient polynomial form

The values of the coefficients follow from the Neumann boundary conditions, which hold that the

shape function corresponding to a particular node must have be 1 at the corresponding coordinate,

and 0 at the other. Thus,

and

Substituting the coefficients in the shape functions results in

Σiwi wi n
ui i 1, 2, … , n Σiwi

[ EA (x) (x)Ω] = q(x) (x)dΩ + (x) ,Σj ∫Ω
ϕ′

i ϕ′
j uj ∫Ω

ϕi Fi ϕi |x=Γ

=Kij uj fi

[ ∇ (x) ∇ (x)dΩ] → → KuΣj ∫Ω
ϕi Dij ϕj uj Kij uj

x
, , …x1 x2 ui

, , …u1 u2 Dij

(x) = + x.ϕi ci1 ci2

( ) = ( ) = ( ) = ( )c11
c12 [ ]1

1
0
l

−1 (0)ϕ1
(l)ϕ1

[ ]1
1

0
l

−1 1
0

1
l

1
−1

( ) = ( ) = ( ) = ( )c21
c22 [ ]1

1
0
l

−1 (0)ϕ2
(l)ϕ2

[ ]1
1

0
l
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1

1
l

0
1

( )(x) = [ ]( ),  and (x) = ( )ϕ1
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1
l

1
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−1
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1
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ϕ2

′ 1
l

−1
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These functions can now by substituted into the left-hand side of the weak form to derive the stiffness

matrix,

Box 4.3: The shape function integration resulting in the axis-aligned bar element

stiffness matrix

The individual terms of the stiffness matrix are ultimately computed using some form of numerical integration. In

the case of simple elements, this is often done prior to the analysis, using individual parameterized element

matrices that depend on the element geometry and properties.

Often, complex element geometry is further parameterized to a natural coordinate system with domains

ranging from -1 to 1 for all dimensions. These natural, or isoparametric coordinates are related to real

coordinates through the Jacobian matrix  and its determinant . Integrating over the

isoparametric geometry is generally a lot faster than integrating over the complex geometry itself.

Individual element stiffness matrices are usually computed within a coordinate system local to the element itself.

The element matrices are subsequently transformed and permuted using relatively simple symmetric matrix

multiplication operations, before they are summed up to form the global stiffness matrix. This assembly process

can ultimately be summed up as

The fully assembled global stiffness matrix is generally not invertible—at least not in the static case. The system

must first be constrained in space. This requires the application of any number of Dirichlet boundary conditions

to eliminate fixed degrees of freedom. Once the system is sufficiently constrained, it can be solved using some

type of numerical matrix solution method.

Analogous to the simple bar element, the Euler-Bernoulli beam element again follows the

establishment of the governing equation, the conversion to its weak form, the exposition of right-hand

side boundary conditions, and the final computation of the local element stiffness matrix. The

kinematic relation, assuming that the cross-section always remains perpendicular to the beam axis, and

that  so that ,

and

The constitutive relationship, which once more follows from Hooke’s law stating that , must hold

for each infinitesimal longitudinal slice of the beam in vertical and lateral directions, giving

Multiplying by the eccentricity  from the beam axis and the equivalent width of the beam , and

integrating over the height of the beam  yields

EA = [ ]
⎡

⎣

⎢⎢⎢⎢

(x dx∫x
ϕ′

1 )2

(x) (x)dx∫x
ϕ′

2 ϕ′
1

(x) (x)dx∫x
ϕ′

1 ϕ′
2

(x dx∫x
ϕ′

2 )2

⎤

⎦

⎥⎥⎥⎥
EA
l

1
−1

−1
1

J(x) = d (x)/dfi xk j

K = .ΣiZT
i KiZi

v(x) ≪ 1 sin v(x) ≈ v

( ) = ( ) = ( ),lim
∂x→0

1
∂x

∂v(x)
∂u(x, y)

1
dx

dv(x)
du(x, y)

θ(x)
ε(x, y)

u(x, y) = yθ(x).

σ = Eε

σ(x, y) = Eε(x, y) = E = E = Eκ(x)y.du(x, y)
dx

ydθ(x)
dx

y δz(y)
H

M(x) = yδz(y)σ(x, y)dy = Eκ(x) δz(y)dy = EIκ(x).∫H ∫H
y2
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The equilibrium relationship states that each infinitesimal slice of the beam in longitudinal direction

must on the one hand be in vertical force equilibrium,

and on the other hand be in moment equilibrium around the lateral axis on a point on the beam axis

on the right side of the infinitesimal slice, assuming that ,

Combining the various relationships yields the strong form of the governing equation for the Euler-

Bernoulli Beam,

The weak form is once more obtained by multiplying the strong form by a virtual displacement 

and then integrating over the domain ,

For the beam element, the integration is separated by parts twice to recover the boundary terms  for

both force and moment Neumann boundary conditions. Subsequent substitutipn with the appropriate

weight and trial functions, assuming that  and , yields

The second-order derivative on the left-hand side calls for shape functions with -continuity, and thus

third-order polynomials. The right-hand side Neumann boundary conditions are independent, calling

for two shape functions per node. They require that the first shape function for each node must be 1 on

the coordinate corresponding to the node and zero on the other, while its derivatives must be zero on

both. The second shape function must be zero for both coordinates, while its derivative must be 1 on

the corresponding coordinate and zero on the other. Combining everything ultimately results in the

left-hand stiffness matrix,

Box 4.4: The stiffness matrix derivation for the two-node Euler-Bernoulli element

−V(x) − q(x)∂x + V(x) + ∂V(x) = 0

li = = q(x),m∂x→0
∂V(x)

∂x
dV(x)

dx

∂ = 0lim∂x→0 x2

−M(x) + V(x)∂x + ½q(x)∂ + M(x) + ∂M(x) = 0x2

li − = − = V(x).m∂x→0
∂M(x)

∂x
dM(x)

dx

−EI + q(x) = −EI (x) + q(x) = 0.v(x)d4

dx4
v⁗

∂v(x)
Ω

[−EI (x) + q(x)]∂v(x)dx = 0.∫Ω
v⁗

Γ

n(x)EI (x) =Σjcjϕ‴
j Fi n(x)EI (x) =Σjcjϕ″

j Ti

[ EI (x) (x)dx] = q(x) (x)dx + (x) + (x) .Σj ∫Ω
ϕ″

i ϕ″
j vj ∫Ω

ϕi Fi ϕi |x=Γ Tiϕ′
i |x=Γ

C2

EI (x) (x)dx = .∫L
ϕ″

1 ϕ″
j

EI
l3

⎡

⎣

⎢⎢⎢⎢

12
6l

−12
6l

6l
4l2

−6l
2l2

−12
−6l
12
−6l

6l
2l2

−6l
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⎤

⎦

⎥⎥⎥⎥
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4.3 Model declaration

NODES

As the atomic part in a finite element system, the node is located in -dimensional space, and is associated with

any number of degrees of freedom, each of which themselves is an -dimensional value. In physical terms,

taking the example of a three-dimensional truss, a node is located at a location , and its associated

degree of freedom is the displacement .

FORCES

A force is applied to a degree of freedom, and forms the perturbing energy for which it is the analysis’ goal to

ultimately find an equilibrium state of the system’s degrees of freedom {MATH}.

CONSTRAINTS

In mathematical terms, a boundary constraint forms a counteraction to a certain displacement in a degree of

freedom. The counteraction is equivalent to an external force proportional to the inverse product of a deviation

and the constraint’s stiffness property. This stiffness may range anywhere between zero and infinity, yielding the

expression

where  is the equivalent force vector,  is the stiffness property, and  is the deviation. Depending on the

constraint properties, the latter may be unequal to, but still a function of the displacement  itself.

Figure 4.1: Point, line and plane constraints, resp. constraining 3, 2 and 1 degrees

of freedom

In physical terms, again taking the three-dimensional truss as an example, a constraint’s counteraction will be

proportional to the inverse product of its stiffness and (also see Figure 4.1):

in the case of a point constraint, a deviation equal to the total displacement—effectively fixing the

degree of freedom in space;

in the case of a line constraint, a deviation equal to the component of the displacement orthogonal to

the line direction—effectively constraining the degree of freedom parallel to the line direction;

in the case of a plane constraint, a deviation equal to the component of the displacement parallel to the

plane normal—effectively constraining the degree of freedom orthogonal to the plane normal.

A (less than infinite-stiffness) constraint results in displacement-dependent force terms on the right-hand side

vector in the global linear system. These can be expressed the product of a stiffness matrix and the

displacements . Because of the dependence, these constraint stiffness matrices must be incorporated into

the global stiffness matrix, . As such, these constraints can be considered equivalent to single-node

elements (see Box 4.5).

N
M

(x, y, z)
( , , )ux uy uz

= −fc kcuc

fc kc uc

u

uKk

K + ΣKk,i
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The element equivalence becomes apparent from the stiffness matrix of the point constraint, which

counteracts deviation from a point (including only the relevant portions of the displacement vector):

The same stiffness matrix for the line constraint, which counteracts deviation from a line along , is

And finally for the plane constraint, which counteracts deviation from a plane normal to ,

Box 4.5: The finite-stiffness constraint stiffness matrices

As the stiffness property of a constraint increases and approaches infinity, the deviation will approach zero and

the constraint will become rigid. Effectively this means that in the case of deviation normal to a plane,

displacement will be constrained to that plane. It will be constrained to a line in the case of deviation

orthogonal to that line, or constrained to a point in the case of deviation from that point. Unfortunately, as large

variations in stiffnesses (or more precisely, large variations in stiffness matrix elements) cause numerical

instability, it is not practical to represent (commonly occurring) rigid constraints this way.

To circumvent numerical issues, it may be realised that in mathematical terms a rigid constraint reduces the

dimensionality of the degree of freedom it acts upon. And with that, it reduces the number of linearly

independent equations that constitute the linear system. Consequently, this allows the elimination of one or

more equations by incorporating linear combinations of them into other equations. In terms of the stiffness

matrix, the elimination is achieved through a series of unipotent (or elementary row-addition) matrix operations

of the form , where  implies a product series and  is a matrix of the form

In the case of a rigid plane constraint, the dimensionality of the degree of freedom is reduced to two. In the

case of a rigid line constraint, it is reduced to one. In the case of a rigid point constraint, it is reduced to zero. In

these cases, the number of linearly independent equations in the whole system is reduced by one, two and

three, respectively. For the derivation of the elementary matrix operations that achieve these reductions, see

{APP X}.
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ELEMENTS

Elements span nodes, and as such create a dependency between the individual nodes’ degrees of freedom

through which a change in one degree of freedom will directly translate to a proportional change in the other.

The discretization into element is the central concept in the finite element method, and as such the element

stiffness matrix has already been covered in the section on the method’s theory.

As previously mentioned, it is common practice to derive a parameterized element stiffness matrix offline, prior

tot analysis. This only leaves the fast computation of the final local element stiffness matrix using its properties

and geometry for the analysis itself, and its rotation and permutation into the global matrix.

Element stiffness matrix rotation, which nominally follows the form , can be done quickest using a

block-based method. In this method, each block of which the sum of the products of the various stiffness

relations and associated orientation vectors’ outer products

As an example, the stiffness matrix for the simple bar element rotated to global coordinates is

Box 4.6: The element stiffness matrix of the bar element in the global coordinate

system

4.4 Stiffness matrix assembly

In terms of implementation, an intermediary step of the finite element method generally involves solving a

matrix, often referred to as the stiffness matrix. The global stiffness matrix which describes the system as a

whole is a summation of its constituent elements’ individual stiffness matrices, permuted in such a way that its

local degrees of freedom correspond to their global counterparts. This summation process is referred to as

stiffness matrix assembly, and is mathematically expressed as

where  is the global stiffness matrix and each  is the permuted matrix of element . Each  is the

symmetrical permutation expressed in the binary permutation matrix  of the global element stiffness matrix 

. Each  in turn is the symmetric rotation to the global coordinate systems expressed in the rotation matrix

 of the local element stiffness matrix .

4.5 Cholesky decomposition

As size increases, solving a matrix rapidly becomes a computationally expensive operation. The various

algorithms that are in common use are all of cubic complexity with regard to matrix size. That is, they have an

algorithmic complexity (i.e. the number of arithmetic operations) of , where  is the number of equations in

the system (i.e. the number of rows in the matrix).

Using Cholesky decomposition or factorization to solve a positive-definite symmetric matrix involves computing

the Cholesky factor, which is the lower-triangular matrix of which the product of it and its transpose is equal to

the initial matrix. The system of equations  with given positive-definite matrix  thus has a Cholesky

factor  which satisfies . Consequently,  or—with the introduction of  as an intermediary
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result—  and . Using the factor, it becomes trivial to compute , involving

consequently a lower and an upper triangular matrix solution.

It should be noted that the Cholesky decomposition, with its fill-in, is best suited to linear structures. Its benefits

are diminished with circular structures, that do not have a clear beginning or end, or star-shaped structures, that

contain a multitude of lobe-like protrusions around a central connecting core.

4.5.1 IMPLEMENTATION

STORAGE

During the solution process, the stiffness matrix and force and solution vectors are entirely held in memory. Its

elements are stored separately in a diagonals array and an off-diagonals, or envelope array. Exploiting the

symmetry of the stiffness matrix, only the lower half of the envelope is stored, in row-major order (i.e.

contiguously per row, one row after another; see Figure 4.2).

Figure 4.2: The separated diagonals and row-major symmetric envelope storage

scheme.

Since stiffness matrices are commonly sparse (i.e. have many zero elements), this sparsity can be further

exploited to store only the portions of the matrix rows starting from the first non-zero element. An additional

indices array is now required to define rows’ starting point in the envelope array (see Figure 4.3). In this scheme,

the zero elements after the first non-zero will still be stored. Further savings could be achieved by eliminating

these as well, but anticipating fill-in from the decomposition algorithm (i.e. the algorithm will turn zero elements

into non-zero elements), this complicates matters greatly, and it was opted to accept the inner sparsity.

Figure 4.3: The same storage scheme as above, now exploiting sparsity to store the

the non-zero portions of the envelope (and inner zeros, in anticipation of fill-in).

LOWER TRIANGULAR MATRIX SOLUTION

The lower triangular matrix solution algorithm solves a system of equations of the form  or ,

where  is a lower triangular matrix of size n. Disregarding any sparsity, the kernel loop of the algorithm takes

the form

Employing sparsity using the bandwidth of each of the matrix rows, the kernel loop is rewritten as

Lx = y y = bLT x = b = ( bA−1 LT)−1L−1

Lx = b x = bL−1

L

for i in [0, n)

← .xi
( − )bi x0…iLi,0…i

Li,i

for i in [0, n)
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For a total of  loops, with each loop taking  arithmetic operations, this algorithm amounts to 

operations. Employing sparsity, this becomes an upper limit, while the general case complexity will be a fraction

of that.

Figure 4.4: The progressive (optionally in-place) lower-solve algorithm access

pattern.

This algorithm uses a straightforward access pattern (see Figure 4.4). It starts at the beginning of both the matrix

and the vector arrays, and moves through each row, diagonal, and vector element in storage order. For every

iteration , the algorithm reads from the entire current matrix row  and its diagonal element , as well

form as the solution vector up to the current element  and the right-hand side vector’s current element .

Then, it only writes to the current solution vector element . This pattern, with one write at the end of the

iteration and no reads from previous right-hand side vector elements, allows the algorithm to efficiently run in-

place.

CHOLESKY FACTORISATION

The Cholesky factorisation algorithm computes a factor matrix  for a positive-definite symmetric matrix  such

that . Disregarding sparsity first like before, the kernel loop of the algorithm takes the form

where  in the first step in the kernel is the computed factor up to, but not including, row . This step uses

the lower triangular matrix solution algorithm described above for the matrix solution that computes the off-

diagonal factor row.

Again, employing sparsity using the bandwidth of the matrix rows, the kernel loop is rewritten as

For a total of  loops, with each loop taking around  arithmetic operations, this algorithm amounts to 

 operations, but again a fraction of that when employing sparsity.
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Figure 4.5: The progressive (optionally in-place) factorisation algorithm access

pattern, which uses its partial factor in the lower-solve algorithm at every iteration.

This algorithm also starts at the beginning of the matrix envelope and diagonal arrays (see Figure 4.5). Its first

iteration  only computes the first diagonal element . Subsequent iterations use the above lower-solve

algorithm to compute the current row  from the partial factor up to that iteration . Thus, these

iterations all follow the access pattern described for that algorithm, reading from the current and previous rows

and writing back to the current. The final step of an iteration reads from the just-solved row to write to the

current diagonal . Since both the lower-solve algorithm and this last step can be run in-place, so can this

factorisation algorithm as a whole.

UPPER TRIANGULAR MATRIX SOLUTION

The upper triangular matrix solution, which forms the last step in the positive-definite symmetric matrix solution,

solves a system of equations of the form . Disregarding any sparsity, the kernel loop of the algorithm

takes the form

where it should be noted that the solution vector is computed iteratively, instead of sequentially.

Again, employing sparsity using the bandwidth of the matrix rows, the kernel loop is rewritten as

For a total of  loops, with each loop taking around  arithmetic operations, this algorithm amounts to _ 

 total operations, but again a fraction of that when employing sparsity.

Figure 4.6: The iterative in-place upper-solve algorithm access pattern.

This algorithm departs from the straightforward access pattern of the previous to and starts at the end of the

matrix envelope and diagonal, and solution vector arrays (see Figure 4.6). This algorithm naturally runs
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iteratively, starting with the right-hand side vector  as the initial solution vector . Subsequently, the algorithm

reads from the current matrix column  and diagonal , and the current solution vector element  to

update  at every iteration . This access pattern allows the algorithm to use a lower triangular matrix storage

scheme, but forces it to run in-place (or otherwise requires an initial copy step).

4.5.2 NODE NUMBERING

The number of computational operations per equation can vary greatly depending on the solution algorithm,

and the way it is implemented. This is where node numbering plays an important role.

In addition to being symmetric, the matrices that are solved in the finite element tend to be sparse. That is, an

overwhelming majority of the—off-diagonal—elements are zero. In mathematical terms, given that each

element is at the intersection of a row and a column, and that each row and each column relates to one of the

system’s degrees of freedom, a zero off-diagonal element implies that the the two related degrees of freedom

are independent of each other. In physical terms, it implies that one related displacement does not directly—

though usually still indirectly—translate to another.

In terms of computational cost, an arithmetic operation involving a zero element counts as any other. But given

that it involves a zero element the result is already known to be zero as well. Ultimately, the goal of node

numbering is to populate a matrix in such a way that as much of these operations can be avoided as possible.

This can reduce the computational cost of solving a sufficiently sparse matrix by an order of magnitude.

(REVERSE) CUTHILL-MCKEE

Different numbering strategies are suitable to different matrix solution algorithms. In the case of Cholesky

decomposition, where it is known that the Cholesky factor matrix will have the same bandwidth profile as the

corresponding triangular half of the original matrix, the foremost goal is to reduce what is referred to as ‘fill-in’.

Fill-in is the occurrence of non-zero elements in the factor where there were none in the original matrix. The

elements in the factor contain summations of the multiplied elements of two preceding rows, which may contain

non-zero elements even when the element in the target position in the original matrix is zero. Fill-in is

guaranteed to only occur after the original row’s first non-zero element, and as such will not alter the original

profile.

Figure 4.7: Node degree, partitions and eccentricity

A suitable node numbering is attained using the so-called (Reversed) Cuthill-McKee (1969) family of algorithms

(the reversed variant usually results in better fill-in). In pseudocode, the algorithm goes through the following

steps:

c x
U0…i,i Ui,i xi

x0…i i
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The above algorithm contains two unexplained references, to root node suitability and node degree. The latter,

the degree of a node, is proportional to the number of nodes adjoining that node. With regard to the former, a

suitable root node is loosely defined as a node with high eccentricity. The eccentricity of a node is proportional

to the maximum number of nodes between that node and any of the others.

Logically, a most suitable root node would be any nodes with highest eccentricity, the search for which is an

optimization problem. For many cases, there will only be a small performance difference between the most

suitable root node and another with relatively high suitability. For the general case, it is more important to find a

relatively suitable root node in a short time. The following algorithm has proven to reliably meet these goals,

yielding a decently suitable root node in relatively short time.

It should be evident that the above algorithm can prematurely yield a non-optimal root node upon

encountering a local optimum. In the general case, however, these nodes will still result in sufficiently slim

matrices that its speed becomes an increasingly important factor.

4.6 Post-processing

After solving the reduced linear system, an additional number of post-processing steps is required to compute

the full, non-reduced system. These steps involve restoring the eliminated displacements, then computing the

eliminated reaction forces, and finally computing the element forces.

DISPLACEMENTS

As implemented, the vector resulting from the solution of the reduced stiffness matrix–force vector problem is

not yet the final displacement vector. This is due to the way in which the rigid constraints were applied, where

linearly dependent equations were eliminated resulting in the associated displacements to be set to zero. These

eliminated displacements must be restored (except for the case of the point constraint, where the

displacements remain zero). This is trivial, since by definition the eliminated displacements are linear equations

of the remaining ones.

To restore the eliminated equations, the elementary matrix operations that were first applied to the stiffness

matrix and force vector must be applied to the solution vector (or reduced displacement vector)  in reverse.

This operation takes the form  (see also {SECTION 4-3c} on constraints application, and

Appendix A on the derivation thereof).

1. Let U be the set of unnumbered nodes
2. Let  be a suitable root node in nc U(note 1)

3. Let N be a list initially containing only nc
4. While U is not empty

i. Let A be the subset of U adjacent to nc

ii. Move nodes from A to N in order of increasing degree (note 2)

iii. Let  be the next numbered node in Nnc
5. Number the nodes of N in reverse order

1. Let  be any node in Unr
2. While no root node has been found

i. Let  be the partition (i.e. set) containing only P0 nr
ii. For increasing i, while unpartitioned nodes remain

a. Let  be the set of nodes adjacent to those in Pi Pi−1
iii. Let the eccentricity  of  be the number of partitionser nr

a. If  is lower than previous eccentricities, yield er nr
b. Else, let  be the the highest-degree node in nr Pe

ur

u = ( )( )ΠiUi ΠiUT
i ur
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REACTION FORCES

As implemented, the force vector that is used to solve the displacements is reduced to contain only the known,

applied forces. The full force vector also contains the reaction forces at the constrained nodes, and is trivial to

compute once the final displacement vector is known. First considering the case with rigid constraints only, this

computation involves multiplying the non-reduced global stiffness matrix with the non-reduced displacement

vector, .

When finite stiffness (spring) constraints are applied, their associated reaction forces must additionally be

computed by summing up their associated stiffness matrices and multiplying the result with the non-reduced

displacement vector, .

ELEMENT FORCES

Element forces are trivially computed by individually multiplying the elements’ associated stiffness matrices

(rotated, permuted into the global coordinate system) with the non-reduced displacement vector, 

 This force vector can be easily rotated to align with the element’s local coordinate

system using the inverse rotation .

4.7 Validation

The FEA solver will be validated using four structural models: two bar models, the elements of which have only

axial stiffness, and two beam models, the elements of which additionally have flexural and torsional stiffnesses.

The first pair of cases validates the extension bar element, using a simple single-bar model and a full truss

model. The second pair validates the extension, flexion and torsion beam element, using a simple single-beam

cantilever model and a full frame model. The simple cases are validated by rules of thumb, while the complex

cases are validated by comparison with the analysis results of the certified structural analysis software package

GSA (Oasys, 2013).

Each model will be solved twice: once aligned with the , , and  axes of the cartesian coordinate system, and

once aligned with the , , and  axes of a rotated coordinate system. Obviously, the resulting solution

vectors should be (triplet-wise) rotated, but equivalent (and the invariants equal). A 3-vector in the global

coordinate system  is related to its rotated coordinate system counterpart  through the identity  (e.g.

), which uses the transpose  of the rotation matrix :

For each of the validation cases, the same randomly rotated coordinate system defined by the rotation matrix 

was used in addition to the global coordinate system (rounded off to six significant digits):

ISOLATED DISPLACEMENT MODES

The following validation cases are chosen to validate both relatively simple unit models with unit forces

affecting various degrees of freedom, and more complex cases involving a multitude of forces. However, in

order to ascertain that the analysis is correct in principle, it is important to validate each element’s individual

displacement modes.

A displacement mode corresponds to an displacement  with exactly one displaced degree of freedom , or 
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λûj j

λ = λ^ i i,j 47



, where  when  and  otherwise (see Figure 4.8). An element has exactly one

displacement mode for each of its degrees of freedom. Each unit displacement mode  corresponds to a

unique combination of external forces  (i.e. it corresponds a column of the element stiffness matrix).

Validation requires that an element constrained to allow displacement only for the appropriate degree, to which

the isolated corresponding force is applied, elicits the appropriate reaction forces. The solver satisfies the

requirement.

Figure 4.8: Unit displacement modes for (the minor-axis flexural modes are omitted)

4.7.1 EXTENSION BAR

The first validation case is a simple extension bar model. This case validates the extension bar element and the

fixed and parallel displacement constraints, as well as the nodal force.

Figure 4.9: The axis-aligned and rotated extension bar models

The model consists of one extension bar element (see Figure 4.9), rigidly constrained (with respect to

displacement) at the origin of the coordinate system, with a unit length of , aligned with and constrained at

the far end along the  vector. Its axial stiffness  is . A single force  is applied to the far end of the

bar, with a magnitude of , directed along the bar axis away from the origin.

The displacement at the far end of the bar follows from the simple rule of thumb:

Obviously, the same value must result from the rotated analysis in its local coordinate system, which can be

related to the un-rotated coordinate system using :

Such a result indeed follows from the solver (see {TABLE ii-3-2-7-1}), validating it at least for this simple case.
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Axis-aligned 1.0 0.0 0.0

Rotated 0.953463 0.095346 0.286039

Table 4.1: Solver results for the extension bar model

4.7.2 TRUSS

In addition to the simple extension bar model, a larger truss model is used to validate the interaction between

multiple bar elements, and the orthogonal constraint.

Figure 4.10: The truss model

The model consists of a horizontal prismatic three-dimensional truss, supported at its extremes and loaded by

distributed downward member (gravity) forces and a single downward force acting on the middle node (see

Figure 4.10). Again, the model is analysed both in the axis-aligned and rotated coordinate systems. Where the

previous simple case was validated using rules of thumb, this case is validated by comparison with results from

GSA, found in Appendix B.

4.7.3 CANTILEVER BEAM

The first of the second pair of validation cases is a simple cantilever beam model. This case validates the Euler-

Bernoulli flexion and torsion beam element and the fixed displacement and rotation constraint, as well as the

element force and nodal torque.

Figure 4.11: The axis-aligned and rotated cantilever beam models

The model consists of one cantilever beam (see Figure 4.11), rigidly constrained (with respect to displacement

and rotation) at the origin of the coordinate system, with a unit length of , aligned with the  vector. Its

major stiffness axis is aligned with the  vector, and its minor stiffness axis is aligned with the  vector. Its major

and minor bending stiffnesses  and  are  and , respectively. Its torsional stiffness  is .

Two forces  and , and a torque  are applied to the free end of the beam, the forces with a unit magnitude

of , and the torque with a unit magnitude of . Two additional distributed forces  and  act along

the full length of the beam, both with a unit magnitude of . Both pairs of forces are directed
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perpendicular to the major and minor stiffness axes (and the beam axis), respectively. The torque revolves

around the beam axis.

The displacement and rotation at the free end of the beam follows from simple rules of thumb:

where the sign of the last rotation is due to the right-handed convention of the coordinate system. Obviously,

the same values must result from the rotated analysis in its local coordinate system, which can be related to the

un-rotated coordinate system using :

These same values follow from the solver (see Table 4.2), validating it at least for this simple case.

 

Axis-aligned 0.0 0.229167 0.458333 1.0 -0.666667 0.333333

Rotated -0.154504 0.153796 0.463748 0.95379 -0.612087 0.520759

Table 4.2: Solver results for the cantilever beam model

4.7.4 FRAME

In addition to the simple extension bar model, a larger truss model is used to validate the interaction between

multiple beam elements.

The model consists of a vertical prismatic three-dimensional frame (see Figure 4.12), supported at its base and

loaded by distributed downward member (gravity) forces, and lateral forces at the top. Again, the model is

analysed both in the axis-aligned and rotated coordinate systems. Again, this case is validated by comparison

with results from GSA, found in Appendix B.
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Figure 4.12: The frame model
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5 Software architecture

5.1 Overview

Figure 5.1: The client-server architecture.

The implemented software system accompanying this thesis is architected as a client–server separated

application (see Figure 5.1). The server-side system handles finite element analysis and computation, and

central parametric and associative model manipulation and storage. The client-side system (the implementation

of which falls outside the thesis scope) would provide the user interface.

The next subsections describes the full system, fully detailing the server-side system and summarising the role

of a fictitious client-side system. Subsequently, it describes two use cases that illustrate the way users would

interact with the system. After that Sections 5.2, 5.3, and 5.4, give further detail of the server-side system, as

referenced from the overview.

Frequent use is made of domain-specific software concepts, patterns, and terminology. These are explained in

Appendix C.

5.1.1 SERVER-SIDE SYSTEM OVERVIEW

Figure 5.2: A comprehensive class diagram showing the nested MVC architecture (a

♦-diamond prefix indicates an interface; parentheses—possibly in stacked classes—

indicate a collection of classes).

The server system is architected in the object-oriented paradigm, following the model–view–controller

separation of roles. The overall system is a nesting of subsystems separated by the MVC separation. Three

distinct subsystems can be identified, each of which in turn is similarly separated (see Figure 5.2; from right to

left): the solving subsystem, the modelling subsystem, and the application interface subsystem.

The following overviews give brief descriptions of the role of each subsystem, and how they are related. They

refer to more detailed descriptions given in Sections 5.2, 5.3, and 5.4.

SUBSYSTEMS OVERVIEW

Solving subsystem

The first and primary subsystem is the solving system (see Figure 5.3, which is a detail of Figure 5.2), which

handles the primary computational function of the system and consists of:
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Figure 5.3: Class diagram showing the solving

subsystem (and its relation to the modelling

subsystem).

Figure 5.4: Class diagram showing the modelling

subsystem (and its relation to the application

interface subsystem).

(model) the finite-element analysis (‘FEA’)

engine and its associated mathematical and

geometrical libraries;

(view) the parametric and associative design

(‘PAD’) modelling graph, and specifically its

Solution class which represents an instance of a

PAD model definition with a concrete set of

input parameters and resulting output;

(controller) the parametric and associative

solver engine which interprets the PAD logic to

translate and route its input into the FEA engine and the resulting output back into the logic.

The FEA engine solves a structural model, which itself consists of entities like elements and nodes, and forces

and constraints, all of which rely on vector and matrix computations. Various geometrical entities, such as lines

and points, help position the structural entities in space. Each of these entities neatly contains its own logic, and

all are therefore implemented in strict object-oriented fashion. This logic is presumed to be self-evident here.

The design of the FEA engine itself was described in detail in Chapter 4; the associated mathematical and

geometrical libraries are briefly discussed in Section 5.4.

The solution resource contains and conveys the user input and computed output of a PAD graph instance. It

represents the outcome of applying the logic described by a PAD model to user-defined input. In the simple

case, the input may consist of a combination of parameter values that deterministically corresponds to a

combination of specified output values. Abstractions, as described in Chapter 3, are achieved by defining the

parameters as probability distributions, stochastically sampling a large number parameter value combinations

form these distributions, solving the PAD graph instance for each of these combinations, and analysing and

interpolating the outcome data to form outcome probability distributions.

The PAD solver system is described below using a sequence diagram, and in further detail in Section 5.2.2.

Modelling subsystem

The Solution class, which fulfills the view role in the

primary system as described above, is part of the

secondary modelling subsystem (see Figure 5.4),

which defines the PAD graph and handles its

associated manipulations. the classes of which

themselves are functionally separated along an MVC

separation:

(model) the hierarchical object-relational

model, consisting of several related object

types that together form the non-looping,

directed PAD graph according to the boxes-and-wires model (described in Section 5.2.1);

(view) the application interface which allows manipulation of the PAD graph (see next heading);

(controller) the per-model interface implementations which interpret the manipulations and the

associated storage and serialisation-related helper classes (the latter described in Section 5.2.3).

The primary function of this subsystem is to allow manipulation of the PAD graph through CRUD (‘create–read–

update–delete’) operations, which is described below using the sequence diagram. As mentioned, the

controller role is fulfilled primarily by model extensions, which implement the resource model interface.

Although these are extensions of the same classes which fulfil the model role, the extension pattern separates

these concerns out (over multiple source files), while avoiding the overhead and complexity of an extra layer of
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Figure 5.5: Class diagram showing the interface

subsystem.

Each CRUD manipulation (e.g. reading a definition, creating
a model or a parameter, updating an input, deleting a
connection) requires an API interaction. Using cURL to send
HTTP requests, these interactions might be:

$ curl -X GET /definition/<id>
$ curl -X POST -d @model.json /definition/<id>
$ curl -X POST -d @parameter.json /model/<id>
$ curl -X PUT -d @input.json /input/<id>
$ curl -X DEL /connection/<id>

In this example, cURL is used as the client; other clients
would interact with the server by generating and
exchanging the same HTTP requests.

controller classes.

Application interface subsystem

Finally, the view role of the second system is fulfilled

by the third interface subsystem (see Figure 5.5),

which functions as the application interface, or API.

This API is designed in the REST architectural style,

following a subset of API design guidelines which

establish a loosely-coupled interface with goals in

mind such as component independence, scalability,

and flexibility. The REST API relies on a built-in

HTTP/TCP server (described in detail throughout

Section 5.4).

SEQUENCES OVERVIEW

Figure 5.6: A comprehensive sequence diagram showing the (semi-)synchronous

CRUD and asynchronous scheduling operations following API request from a client.

CRUD manipulations

The way the system works is shown by its sequence

diagram (see Figure 5.6). Interactions with the user

are represented by the red arrows on the left side.

The top-most sequence represents the CRUD

operations on the PAD resources through the REST

API. This sequence is likely repeated several times for

different resources as the user is busy creating the

parametric and associative model. Each client-side

interaction, such as creating a component, or

connecting two components together, is followed by

a manipulation of the relevant server-side data
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Box 5.1: CRUD manipulations using (simplified) cURL

to generate HTTP requests with JSON data.

objects. This sequence runs more or less

synchronously (i.e. it returns more or less immediately

with results).

PAD and FEA computation jobs

The second sequence from the top represents the job scheduling operation. In the REST style, this takes the

form of creating a job resource. A REST identifier of the resource is returned immediately, through which its

status can be polled periodically. Simultaneously, the creation of the job resource results in the scheduling of a

computation job on a queue, which will be asynchronously executed in due time.

Each job consists of solving the PAD model given a set of input parameters, which in turn involves FEM analysis

and eventually returns a set of solution values. Once the job completes, its outcome is post-processed,

analysed, and finally made available on the job resource, updating its status and allowing access on subsequent

polls (represented by the bottom sequence).

Concurrency and parallelisation

The system is designed with multiple jobs (i.e. multiple PAD solutions, each with different sets of input

parameters) in mind. As such, an effort was made to accelerate computation by making use of multi-threading

processors. To start, portions of jobs (such as PAD solving), as well as the pre- and post-processing of batches

of jobs, run concurrently. Overall, however, the nature of the computations demands that each individual job

runs more or less serially, so that high efficiency is gained by running a multitude of jobs in parallel.

5.1.2 CLIENT-SIDE SYSTEM OVERVIEW

Implementing a complete client-side application (‘client’) to interact with the server-side application (‘server’)

described above expressly falls outside the scope of this thesis. That is, while parts of a possible client were

implemented in service of illustrating the overall system, it was not a goal of this thesis to integrate those in a

complete application. What follows here is a brief discussion of the roles of a client, and the ways in which it

interacts with the server.

The role of the client within the overall system is to act as the user interface, and provide the user experience. In

narrow terms, the user activities and thus the interactions that the client should enable are modelling and

exploration (in terms of the design cycle, synthesis and analysis, resp.; see Chapter 2). A third user activity is

defining the problem’s essential parameters and performance metrics (inference). More trivial activities which

will receive no further discussion are standard application activities like file management (loading and saving),

etc.

Modelling

Figure 5.7: Three mockups of possible modelling user interfaces: a) visual boxes–

and–wires graph canvas; b) hierarchical, collapsable tree; c) representational text

editing.

Modelling (synthesis) follows the directed-graph paradigm of interconnected parameters and components. As

such, a visually very literal possible user interface is the boxes-and-wires model, where the user drags

components and parameters onto a canvas, and subsequently drags between their outlets to create
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connections between them (familiar from e.g. Grasshopper 3D; see Figure 5.7–a). Another interface could be

the collapsable hierarchical tree (familiar from e.g. outliners or file systems). Possible text-based interfaces could

be direct editing of the JSON or XML representations of the PAD graph, or even an interpreted scripting

language.

Common to all these possible interfaces is the translation of view models into the API-specified representation

of a graph object, and the subsequent communication (or transfer) of that representation to the server, where

the equivalent object is created, updated, or deleted.

Essential parameters and the metric

A client would have to provide a user interface to define essential parameters (which the abstraction system

could vary), and metrics (the outcomes of which the abstraction system would compute). Parameters may be

defined as distribution type (e.g. uniform or normal), a mean and variance. Metrics may be defined as direct

values of the PAD graph (e.g. a nodal displacement) or a function thereof (e.g. a unity check of a nodal

displacement divided by the maximum allowed displacement). This could be implemented property editing

forms (e.g. pulls-down menus or input fields), or more visually (e.g. positioning a distribution on a scale by

dragging).

Exploration

Data exploration could at its simplest be implemented as series of value tables. However, data visualisations on

a comprehensive dashboard would be much more insightful. Such visualisation techniques and the user’s

interactions with the dashboard are described at length in Section 3.1.3.2 and Section 3.2.3.3.

Miscellaneous

The following is a list of miscellaneous points that serve to further illustrate capabilities enabled by the client–

server separation:

During the modelling phase, after each manipulation, clients may schedule a solver job and receive back

feedback illustrating what a change in logic brought on in a solved instance.

Some client may implement continuous polling to check if an object was externally changed, enabling

collaboration.

Full or partial models (such as a truss model, or a high-rise story section) may be stored in a central

library, allowing users to share work.

To show the potential of a client-server software architecture, a prototype interface of a client

implementation for a mobile device was implemented (see Figure 5.8). The prototype was implemented

for an iPad device, and allows the manipulation of a PAD graph, where the user drags objects onto a

canvas and connections between them using a touch interface.

Figure 5.8: An prototype for an iPad client was developed to show the potential of

a client-server software architecture, allowing a touch interface to PAD modelling.
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5.1.3 USE CASES

To further illustrate how the system works, two use cases are presented. The purpose of these is to define the

intended users (termed actors) and their objectives in working with the system. In order to establish continuity,

the same use cases are used that were previously described by Rolvink (2010). These illustrate normal use, and

adaptation for future purposes. Appendix D describes how the use cases are designed and the template of how

they are reported.

USE CASE 1: COMPOSITION AND DEFINITION OF A CONCEPTUAL STRUCTURAL DESIGN

This use case describes how a structural engineer can compose and define a conceptual structural design using

StructuralComponents 2.0. The goal is to build a model for a tall building structure, assess its behaviour, and

adapt the parameters until it fits the design criteria (taken literally from Rolvink, 2010).

An engineer with a pre-specified structural design problem starts a client application that is connected

to the server, starts a new PAD definition, and is presented with the modelling interface. She defines a

model, which synchronises with the server, giving her immediate feedback. At one point content with

the model, the engineer defines some essential parameters and a metric or two, which she judges are

representative of a design goal.

The engineer switches over to the exploration interface, which prompts a computation job on the

server. Dashboard graphs are populated with incoming solution data, which interactively let the

engineer explore different regions of the solution space. Accepting one particular solution, the

engineer switches back to the modelling interface again. She keeps some parts of the model and

refines other parts, starting a new iteration with a better insight into the problem.

Box 5.2: The narrative for the first use case.

The actor in this use case is a designing structural engineer (‘engineer’). The assumptions made in this use case

are listed below:

a server instance is up and running, and waiting for interactions;

the engineer has a working client application on their device;

the engineer has basic knowledge of PAD modelling and of the client application;

the engineer has a design specification detailing goals and requirements.

The course of events in this use case is:

1. ♦ The engineer starts the client application, which automatically recognises the broadcasted server.

2. ♦ The engineer starts a new PAD definition, and is presented with the modelling interface.

3. The engineer manipulates (e.g. creates, changes) a PAD graph object (e.g. a parameter, a component).

4. The engineer observes an indication that the manipulation was synchronised and accepted by the server.

5. ♦ The engineer observes an immediate-feedback change in the PAD graph instance (e.g. a change in a

3D model; repeat steps 3–5 a number of times).

6. The engineer defines two or three essential parameters and one or two metrics which they judge are

representative of a design goal.

7. The engineer switches over to the exploration interface, which prompts a computation job on the server.

8. The engineer observes as the dashboard graphs are populated with incoming solution data.

9. The engineer interacts with the graph to explore different regions of the solution space (as they reach
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not-yet-computed regions, corresponding jobs are prompted on the server; repeat steps 8-9 a number of

times).

10. ♦ The engineer accepts one particular solution, which prompts the application to switch over to the

modelling interface again, showing the same model (greyed out).

11. ♦ The engineer indicates which parts of the model are to be kept, and refines the other parts (repeat

steps 3–11 a number of times).

12. ♦ The engineer is left either with a design that achieves the objectives and a sense of the right

parameters.

Alternately, the engineer may at some points have found that the requirements could not be achieved. At this

point, they might first have gone back one or more iterations to attempt another solution. In the worst case,

they might have concluded that the requirements could not be achieved.

The obvious issue with this use case is that some of the advanced client-side interactions have not been

implemented, and the corresponding steps are therefore partly speculative (indicated with a diamond: ♦).

USE CASE 2: ADAPT AND EXTEND THE SYSTEM FOR FUTURE DESIGN PURPOSES

This use case describes how the users of the toolbox can implement new design and analysis methods in the

toolbox.

Some structural design problem requires a non-standard adaptation of the system. As a first attempt,

an engineer (with help of a researcher) emulates the desired functionality using standard components,

and exposes the solution as a library model. It is determined that the solution works and a validation

shows that it yields correct results.

However, the engineer concludes that the solution takes the server too long to compute. Together

with the researcher, she approaches a computational specialist with the specification of the solution

and the objective of improved performance. The specialist implements a native assembler to replace

the library model, which is again validated and made available for use.

Box 5.3: The narrative for the second use case.

The actors in this use case are a structural engineer (‘engineer’), a researched in the field of structural

engineering (‘researcher’), and a computational design specialist (‘specialist’). The assumptions made in this

use case are as in the previous case, and further listed below:

the engineer has a design specification requiring additional, non-standard functionality;

the engineer has expressed the additional requirements to the researcher, who has come up with a

possible solution;

the specialist has deep knowledge of the system and is capable of extending it with new functionality.

The course of events in this use case is:

1. The engineer, with help of the researcher, emulates the desired functionality using standard components,

and exposes the solution as a library model (following steps similar to those of the first case).

2. The engineer observes that the solution works, the researches validates it correctness, but they conclude

that it takes the server too long to compute.

(Outside the system) the engineer and researcher approach the specialist with the specification of a

better-performing solution.
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3. The specialist implements a native assembler to replace the library model, and observes acceptable

performance.

4. The engineer and researches again verify that the solution works.

5. The engineer uses the new assembler in the design problem.

Alternately, the performance of the library model solution can be deemed acceptable at step 2, at which point

steps 3–4 can be skipped (unless the solution is observed to affect the system, at which point the specialist can

decide to implement the native assembler after all).

The same issues apply as for the previous case. This case deals less with the core functionality of the system,

but illustrates the possibilities when standard functionality is somehow found insufficient.

Figure 5.9: PAD engine class diagram: the modelling subsystem allows PAD graph

manipulation. It serves as view to the solving subsystem, which computes

instantiated design solutions by solving the graph.

Figure 5.10: PAD engine solving sequence diagram (the vertical time scale is

abstract: it indicates sequence durations, though not to exact proportions).
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Figure 5.11: PAD engine operational flow chart.

5.2 Parametric and associative engine

The parametric and associative design (‘PAD’)

modelling engine is functionally divided over two

subsystems: the modelling subsystem and the solving

subsystem (introduced in Section 5.1; also see the

class diagram of Figure 5.9). The modelling

subsystem consists of the class hierarchy that

describes and stores PAD model graphs and allows

their manipulation. The solving subsystem takes a

graph and uses it to compute instantiated design

solutions from given input values (further detailed in

Section 5.2.2).

As seen in the flow chart in Figure 5.11, any

interaction with either of the systems starts with the

creation, update, or deletion of an object. In the case

of all object classes except the Solution, such an

interaction forms a CRUD manipulation of a PAD

graph. For example, a Definition object may be read,

or a Connection object may be created (see also Box

5.4-a). The result of these operations is returned

immediately (see the “Update graph/return result”

box in the flow chart). Section 5.2.1 gives a full description of the graph object classes and their properties.

The creation of, or an update to a Solution object (see also Box 5.4-b) prompts the scheduling of a PAD solution

job (see the “Schedule solution job” box in the flow chart; also see the top-left “schedule” operation in the

sequence diagram in Figure 5.10). A Solution object is given zero or more Parameter objects and one or more

solvables (i.e. Component or Modifier objects). It is additionally given abstraction settings for each Parameter

object, such as mean and variance. A solution job will first sample input values for its Parameters, then

concurrently run a number of PAD solvers, and finally upon finishing store the analysed results to the Solution

object. Section 5.2.2 gives a full description of the solver architecture.

a) Retrieving the Definition:

$ curl -X GET /definitions/<id>

Might result in a response:

HTTP 1.1 200 OK
...
{
  "uri": "/definitions/<id>",
  "alias": "Example definition",
  "models": [...],
  "meta": {
    "author": <name>,
    "creation": <date>
  }
}

b) Creating a Solution:

{
  "abstractions": [{
    "parameter": "/parameters/<id>",
    "mean": 3.14159,
    "variance": 2.61803
  }],
  "solvables": ["/components/<id>"],
  "count": 100
}
$ curl -X POST -d @- /components/<id>

Might result in a response:

HTTP 1.1 201 Created
Location: /solutions/<id>

Box 5.4: Two interaction examples using (simplified) cURL and JSON: a) reading a

Definition object, and b) scheduling (creating) a Solution job (object; the latter

returns a Location which can be polled for status changes).
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Figure 5.12: a) The graph object class hierarchy tree,

and b) a box-and-wires representation (the

Connection class can be seen to laterally connect the

Component, Modifier, and Parameter classes).

5.2.1 GRAPH OBJECTS AND HIERARCHY

The parametric and associative (‘PAD’) model is

represented a non-looping, directed graph (see

Figure 5.12-a). The graph-level object is named a

Model. Each graph node is represented by a solvable,

i.e. by either a Component, a Modifier, or a

Parameter object. Each graph edge is represented by

a Connection object, which connects two solvable

objects through Input and Output objects. One or

more Model objects are grouped together in a

document-level Definition object.

The hierarchy of objects follows a tree structure,

which runs orthogonal to the graph direction (see

Figure 5.12-b). That is, its leaves leaves are laterally

connected. The tree structure has five basic

successive levels. Each class has at least two

properties: type and URI, and may further optionally

have a human-readable alias property. In addition,

some classes may have a subtype property. The role of each class, and the additional related properties, is

described below in order of hierarchy level (more detailed descriptions can be found along with the complete

API documentation in Appendix E):

1. Definition: Document-level object which contains one or more Model objects. The Definition

additionally keeps typical document metadata such as creation and modification date stamps, author

names, etc.

2. Model: Represents the PAD graph describing a design concept, which can be solved to generate an

instantiated design solution. The Model contains solvable objects, of which the Component object can

itself contain another Model object.

3. A solvable object classes forming a node in the graph:

Component: Atomic element of logic that maps input to output. Has a combinator type to

determine cartesian input combinations (short list, long list, and cross list). The Component class has

two possible subtypes:

Assembler: Interface to a pre-compiled piece of logic, procedurally described in native source

code (e.g. the sum assembler adds numbers together, the unit-vector assembler computes the

unit-length vector and original magnitude of another vector, the beam assembler computes an

FEA beam from nodes and a section profile; see Appendix E for an overview).

Model: Encapsulates a Model object (for the purpose of graph readability and re-use).

Parameter: Contains the user-provided input values: either numbers or strings (no difference is

made between integers or floating point numbers), either single or multiple values (e.g. comma-

separated). Abstractions will multiply the given values (or assume 1 if no value is given).

Flow modifier: Modifies dimensionality of value streams of incoming connections. Contains

downstream connections. Can be one of five subtypes:

Pass (default): does nothing (combines multiple connections);

Fold: converts individual values into an array (multiple arrays for multiple connections);
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Figure 5.13: The solver and Solver interfaces

Reentrancy signifies that a subroutine can continue after it
is interrupted during execution. Often, this is due to
independence of global state. Another thread calling the
same function constitutes an interruption, necessitating
reentrancy for multi-threaded execution.

Box 5.5: ‘Reentrancy’

Flatten: converts an array (or more, for multiple connections) of values into single values;

Merge: converts arrays (for multiple connections) of values into one;

Collect: converts arrays (for multiple connections) of values into single values.

4. An outlet contained within a solvable object:

Input: Provides value access into (and out of) the object. Can have a modifier property, which

modifies value streams of incoming connections (cf. Modifier object). Contains upstream (towards

the back of the directed graph) connections.

Output: Provides value access out of the object. Receives connections from downstream (towards

the front of the directed graph) nodes.

5. Connection: Connects two outlet objects (and thus their solvables, i.e. graph nodes) together to allow

value flow, forming an edge in the graph.

5.2.2 SOLVING

As mentioned, the creation of or an update to a

Solution object forms the starting point of a solution

job. The Solution object controls a number of solver

object. At the starting of execution of a solution job,

the object asynchronously populates its solvers with

sampled input parameter values. Then, it directs them

to solve for the results of the solvable objects.

The solvers contain the main logic through which a

PAD graph is solved. They schedule solvable objects

for updates and serve as storage for the resulting

output. In this way, a solver determines the model

solution strategy and order. Solvable objects are

implemented to contain only logic data, and

specifically no computed values. The graph is

expected to be immutable during the solution process. This architecture is reentrant (see Box 5.5), allowing

multiple solvers to share the same instantiated logic model using different input parameters.

A solver class object communicates with solvable objects through a common interface, which is implemented

differently for each kind of object. The interface consists of an update method and a dependencies getter.

Intermediate results are stored on the solver object itself, and injected into the solvables’ update methods.

THE CONCURRENT STACKLESS SOLVER

The one solver that has been implemented has two important characteristics: it is concurrent, and it is stackless.

Concurrency refers to the fact that graph nodes are updated simultaneously whenever possible, making good

use of modern multi-core hardware (see Box 5.7). Stacklessness refers to the fact that the logic model is not

traversed in one single call stack, but a more complex strategy is used that allows for larger models (or

inversely, more efficient memory use; see Box 5.8).

The solver keeps a list with a count for every graph node requiring an update. The list at first only contains the

solvables that the solver received at initialisation (or reset), typically near the back of the graph. The solver will

attempt to solve these, but will typically fail as the results of upstream solvables are not yet available. The

upstream solvables will be pushed onto the list, prompting their update attempts (see the first loopback in

Figure 5.14).
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Figure 5.14: A detail of the solver-related sequences

from the previous sequence diagram.

The solver will continue to attempt to update

solvables further upstream until it encounters one for

which the input values are available (typically a

Parameter object, at the graph front; or in the middle

if data from previous solutions has not yet been

invalidated). When an update succeeds, the list count

for any dependent solvables will be decreased (they

will be popped, see the second loopback), and

updates will be prompted whenever a count reaches

zero. Box 5.6 gives a simple example.

For concurrency, the solver implementation makes

use of both serial and concurrent queue types. The

serial queue (the green queue in Figure 5.14) is used

for tasks that need to be synchronised, such as

pushing solvables on the update list (which is not

thread-safe, meaning that behaviour is undefined

when multiple threads attempt to place objects on

the list at the same time). Storing and retrieving

cached update results is also done on the serial

queue.

i. Solver attempts to update sum component

Solver attempts to retrieve pass modifier values

Fails; component counter is set to 1

ii. Solver attempts to update pass modifier

Solver retrieves both parameter values

Update executes and succeeds
Component is popped, counter set to 0

iii. Solver attempts to update sum component

Solver retrieves modifier values

Update executes and succeeds
No dependencies to pop; callback

Box 5.6: Example of the solver strategy in operation.

Figure 5.15: Concurrent solver implementation: short-running tasks are serial

queue-bound, while long-running tasks are concurrent queue-bound

The concurrent queue (the red queue) is controlled from the serial queue to actually update solvables (see also

Figure 5.15). These tasks generally run some order of magnitudes longer than the serial tasks, resulting in great

gains in solver speed when executed at the same time. When the update is done (successfully or not), the item

calls back to the serial queue to store the results and prompt further updates.

It is important to note that each solver instance will have its own queues, allowing multiple instances to run

alongside one another, possibly sharing the same logic model. On top of the individually concurrent solvers,

these additional concurrency gains result in very fast and highly scalable parametric and associative solver code.
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Concurrency is achieved through the use of so-called queues, which are an abstraction layer over

classic multi-threading. Work items can be placed on one of two types of queues, from where they will

at some point be executed. Serial type queues execute items one after another, making sure that an

item has finished before executing the next. Concurrent type queues execute items simultaneously

whenever resources are available (but still on a first-in, first-out basis).

Box 5.7: Serial and concurrent type queues

The call stack is the stack of function contexts that is being created for each subsequent function call.

When a function is called, a context is created which holds the local variables and external variable

references. When a function is called from within another function, the context for the new function is

stacked onto the current context. With extensive function nesting, the call stack will grow higher, until it

finally outgrows the memory available. Contrast with a more complex stackless strategy, which does

not simultaneously keep multiple levels in memory.

Box 5.8: Stacked and stackless calling

5.2.3 REPRESENTATION AND SERIALISATION

The PAD graph objects, as well as the Solution object, need to be communicated to and from the server, as

well as saved for persistence and later retrieval. For this, the objects need to be serialised, for which in turn they

need to be represented in a serialisable format. The system contains a number of helper classes for loading and

saving data from and into system memory.

The serialisable representation forms the translation layer between memory objects and any serial format. It

consists of only the information contained within, stripped of any algorithmic logic and implementation details.

This information is represented using raw numbers and strings, and their hierarchy using basic collection data

structures, such as sequences (arrays) and key-value maps (dictionaries, or map tables).

Two serial formats are supported: XML and JSON (the latter is used before in the text for examples). Both are

document-type, typically saved to the file system, as opposed to record-type formats typically found in SQL-like

databases. Database persistence falls outside the scope or requirements of this thesis, and therefore remains

unimplemented. For the XML format, only loading is implemented, as it is best suited to be created directly by

the user as a raw file. The JSON format is fully implemented as it is best-suited for server communication using

the REST API (see Section 5.4).
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<example format="XML">
  <keyword>Full-featured</keyword>
  <keyword>Widely supported</keyword>
</example>

XML stands for eXtensible Markup Language (W3C, 2013), a markup language being any system for

distinguishably annotating text with meta-level semantics—i.e. annotations that contain meaning about

the text they accompany. As such, is is designed to be both human- and machine-readable, very full-

featured, and widely supported.

{
  "example": "JSON",
  "keywords": [
    "simple",
    "concise"
  ]
}

JSON stands for JavaScript Object Notation (JSON, 2013), and is derived from the JavaScript

programming language syntax. As such, valid JSON can be evaluated directly by any JavaScript

interpreter, to which it owes much of its popularity. JSON is a simple notation system with limited

features, but concise and very easily parsed.

Box 5.9: JSON and XML definition and examples

Full specifications for both file-type formats can be found in the API reference in Appenfix E.

5.3 Values

Figure 5.18: A sequence diagram detailing the interactions between different parts

of the values subsystem.

The solving subsystem results in the generation of values inside the compiled functions of assemblers. ‘Values’

here refers to the objects that are instantiated from the PAD logic, such as numbers, vectors, or FEA elements.

An assembler (see Section 5.2.1) typically takes values of one type as input and of another type as output. For
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Dictionary matrix: the dictionary form (in the case of
matrices sometimes referred to as the triplet form) stores
the location and value of matrix elements in one-
dimensional arrays, and assumes zero elements for any
missing locations.

Envelope matrix: a modified from the compressed sparse
row form, the symmetric compressed sparse row-major
envelope form deduplicates symmetric elements, storing an
integer index array which describes the envelope structure
(the non-zero bandwidths to the diagonal), an envelope
array with the off-diagonal matrix elements, and a separate
diagonals array for quick access.

Box 5.11: ‘Dictionary matrix’ and ‘envelope matrix’

example, a sum assembler may take numbers as input and give the added- and subtracted-together result as

output. A line assembler may take a series of points as input and give a series of line segments as output.

As the complete PAD graph is traversed, typically ever more complex values are created (see the sequence

diagram in Figure 5.18). Specifically for the process of creating a structural FEA model (see Box 5.10 for an

example), vectors and numbers are used to create forces and constraints, which are used to create nodes, which

are used to create elements, which are used to create the structural model. The structural model itself, in turn,

makes use of the mathematical matrix and vector libraries to assemble and solve the stiffness matrix given a

force vector, after which point the displacements and member forces become available.

As an example, the assembly of a cantilever beam can be considered, (see Figure 4.11). Disregarding

the third dimension, this beam would be rigidly constrained (supported) on one side and free on the

other, were it would be loaded with a force. The supported node would be constructed with the rigid

constraint and no forces, while the other would be constructed with the force. Subsequently, both

nodes would be using in combination with a section profile to construct the element, which would then

form the entire model. At this point, the model may be solved, resulting in its displacement vector and

member forces.

Box 5.10: Example assembly process for a single-element cantilever beam model.

All values are immutable, and two values with the same properties are considered equal. This avoids looping

dependencies while maintaining downstream integrity. This section describes the logic contained within the

various values classes, respectively from the mathematical, geometrical and structural categories. All arithmetic

and computation has been implemented using 64-bit, double-precision floating point numbers (at a slight loss

of performance, though offset by the use of hardware-accelerated DSP—Digital Signal Processing—and MAC—

Multiply-Accumulate—functions). The following sections list the main values classes

5.3.1 MATHEMATICAL

Used mainly in the FEA engine described in the

previous chapter, the two implemented mathematical

values classes are the vector and the matrix. A

number of helper classes are implemented, such as

those representing the main elementary matrix

operations (permutation, multiplication, and addition).

Both the vector and the matrix are implemented as

class clusters, with an abstract class acting only as

interface, and a number of specialised variant

concrete classes providing actual implementations.

For example, the full-fledged arbitrary-length vector

class is accompanied by a three-element vector (i.e. 3D vector), which is used far more frequently and allows

optimised operations in those cases.

Importantly, both the vector and matrix class provide sparse and symmetric implementations, which are

optimised to use the non-zero elements in both storage and in operations. The sparse vector implementation

uses the dictionary form, which only uses non-zero elements (see Box 5.11). The sparse matrix implementation

is a symmetric compressed sparse row-major envelope matrix (see Box 5.11), which uses only the elements

starting from each row’s first non-zero element. This type is neither the fastest and most compressed, nor the

easiest to implement, but provides a good trade-off between both.
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Figure 5.19: A flow chart detailing the process of

assembling a structural model.

5.3.2 GEOMETRICAL

Extensive geometrical capabilities fall outside the scope of this thesis, but a certain set of classes was

implemented. Some of these, such as the point and the line, were implemented out of necessity, as structural

classes inherit from these. Others, such as the circle and other simple shapes, were implemented to aid in the

assembly of simple structures. The geometrical classes implement basic utility methods, e.g. to find the point

on a line closest to an arbitrary point in space, or the point on a line at a certain unit parameter, etc.

5.3.3 STRUCTURAL

Chapter 4 on Finite Element Analysis described the

structural analysis algorithms implemented as part of

this thesis. This section describes their actual object-

oriented implementation, which encapsulates the

distinct FEA concepts into separate structural values

classes. In order of assembly (see Figure 5.19), the

values classes implementing the FEA engine are

listed below.

The Force class inherits from a Vector. It

contains exactly six members, one for each

global degree of freedom. The two groups of

three members are independent, the first three

being the vector elements corresponding to

the Cartesian force components, and the last

three to those of the torque.

Multiple concrete Constraint classes are

actually implemented behind an abstract base

class interface. Each constraint either

constrains a node’s displacement or rotation (for simplicity, both will be referred to as ‘displacement’).

The one exception is a conflated constraint, which represents any arbitrary combination of one of the

other constraints, each of which either (see Figure 4.1):

fully constrains a node in place;

when given a stiffness, constrains a node with a force inversely proportional to its displacement;

when given a direction vector, constrains a node to displacement either parallel to a line or normal

to a plane;

when given both a stiffness and a direction, constraints a node to with a force inversely proportional

to its deviation either parallel to a line or normal to a plane.

The Node class inherits from a Point class, having coordinates in Cartesian space. In addition, any

number of forces and constraints may be applied to it.

The Section class encompasses all element stiffness logic (currently limited to a double-symmetric,

isotropic bar or beam). It may be given any arbitrary stiffness configuration (e.g. axial, minor- and major-

flexural, torsional), or its stiffnesses may be retrieved from a library (e.g. a “unit”, “HE300B”, or

“CHS300x12” section).

The Element class forms the core FEM concept (the logic is there to support any element type, but only

bars and beams are implemented). It is composed of any number of nodes and a section. For

convenience, a force may also be applied to it to represent a distributed load (which is automatically

converted to nodal forces).
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The Model class is composed of any number of elements, and implements the FEM solution logic

(currently limited to linear-elastic analysis only). That is, it handles matrix assembly and pre- and post-

processing (e.g. node numbering, constraints application and displacement derivation), although the

actual solution is handled by the Matrix class.

5.4 Networking and the REST API

An important part of any distributed software system is the communication between its various components.

Over the past few decades, all kinds of technologies have been developed that enable systems to exchange

information. On the software side, various communications protocols have been standardised and widely

implemented and are readily available as operating system-level libraries (e.g. urllib  in Python, cURL  in

PHP, NSURLRequest  in Objective-C/Cocoa). For applications’ networking functionality, an interface is

needed between available libraries and application-specific logic.

As its communications protocol, the StructuralComponents system uses HTTP over TCP. As the architectural

style for its interface (its API), it uses the REST style. A brief summary of these terms and their implications is

given in Box 5.12; a more detailed description is given in Appendix F.

REST stands for Representational State Transfer (Fielding, 2000). It is a style (a software pattern) rather

than an implementation, and might be implemented on any underlying transfer protocol. REST

prescribes manipulations to resources through the transfer of representations of the resource, rather

than communicating an intention. For example, updating a resource by sending its updated

representation, rather than telling the server which properties to update. This philosophy, supported

by the so-called REST constraints, constitutes a flexible and robust interface.

HTTP stands for HyperText Transfer Protocol (Berners-Lee, 1991). It was invented for the

WorldWideWeb project and currently underpins much of the internet. It revolves around client

requests identifying certain resources to which servers respond with a status code and the requested

resource data. Nominally, the server only responds to requests, and does not itself initiate

communication.

TCP stands for Transmission Control Protocol (DARPA, 1981). Its specifics are not relevant within the

scope of this thesis, so it suffices to state that the protocol emphasises reliability and data integrity over

transmission speed and latency.

Box 5.12: Explanation of the REST, HTTP, and TCP terms and implications.

5.4.1 REST API AND RESOURCES IMPLEMENTATION

Figure 5.20: A sequence diagram detailing the interactions between different parts

of the networking subsystem.

The implemented REST API consists of two main classes: the API class handles the main HTTP logic and
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Figure 5.21: A class diagram detailing the networking

subsystem.

configuration, listens for incoming connections, and

routes requests to the appropriate resources; the

Resource class, in turn, wraps around any model class

that implements the Resource interface, handles

resource-specific configuration, and translates and

forwards a request to its model’s pertinent class

methods. Figure 5.21 shows a class diagram

illustrating the class relations.

The API class is largely based on a fully functional

third-party open source routing HTTP server

implementation (Hanson, 2008). The implementation

is lightweight and fast, though not necessarily designed for use as a web server on the scale of Apache (2013)

or nginx (NGINX, 2013). As such scale falls outside the scope of this thesis, it is left here as a recommendation

that the implementation should prove adequate when used in combination with a load-balancing proxy—in

which case the independence of a full-scale web server might well be considered a benefit.

As mentioned, the Resource class wraps around a model class—i.e. around one of the parametric-associative

logic classes (and the Solution class, implementing the asynchronous job queue REST pattern; Richardson,

2007). A resource is added to the API for each model class, along with configuration options such as which

protocol interactions are supported and whether the resource is available as a collection (versus only ever

referred to by another resource). Upon an incoming request, the resource forwards a protocol-agnostic

translation to its Resource class.

The Resource class interface allows the model classes to implement the interface access logic themselves. In the

general case, this involves retrieving the identified resource object and translating it to a transmittable

representation, or translating a sent representation data to a memory object. For the parametric-associative

logic classes, these translations make use of the described (de)serialisation functionality. The interface methods

also specify the result of a request and handle failure cases (to the extent where it is relevant to the scope of this

thesis).

Appendix E shows the full API specification, including accepted data formats and the implemented resource

endpoints.

70



Creating the pi  parameter:

$ curl -X POST --data\
'{"type":"parameter","alias":\
"pi","values":[3.14159]}'\
/model/<id>

Creating the mult  input for the
n * pi  component:

$ curl -X POST --data\
'{"type":"input","name":"mult",\
"modifier":"collect"}'\
/component/<id>

Creating the connection to the pi
parameter:

$ curl -X POST --data\
'{"type":"connection","from":\
"@pi"}' /input/<comp-id>-mult

Box 6.1: API interactions to create

the model, using cURL and JSON.

6 Example

To serve as an example of the system proposed in this thesis, this chapter describes how it would be used to

approach an actual design problem. The problem revolves around a building which must be realised with a

circular floor plan and a certain nett floor area.

6.1 First iteration: building height and dimensions

The first iteration serves to find rough dimensions of the building, and starts with the following information:

Problem: dimensions (height and radius) must be found for the building.

Information: The following requirements and rule-of-thumb quantities are relevant:

Minimum nett floor area: 

High-rise space efficieny (Sev, 2009): 

Leasing depth: 

Floor-to-floor height: 

The nett floor area of a floor follows simply from the given efficiency

ratio. The ratio can be used in the formula , where  is

the number of floors,  is the efficiency ratio, and  is the

building radius. This formula contains two unknowns, and thus will

likely yield a range of combinations that result in the required floor

area. Having to gain insight into these combinations yields an

opportunity for an abstraction.

The same nett floor area also follows from the given leasing depth.

The depth can be used in the formula , where 

 is the leasing depth. This formula also contains two

unknowns, and will consequently be used in the abstraction as well.

Figure 6.1 shows a PAD graph that models the problem using both

formulae; Box 6.1 shows a selection of API interactions to create the

PAD model; Appendix G gives its full JSON representation.

Figure 6.1: The PAD graph for the first iteration. The (green) parameters ‘n’ nad ‘r’

are designated as essential parameters; the right-most (blue) components ‘by phi’

and ‘by dr’ are designated as performance metrics.

In order to run an abstraction on the model, the last step is to create a solution resource. The solution

designates essential parameters (in this case the parameters representing the unknown variables  and —

green in the Figure). For each essential parameter, it designates abstraction settings (the sampling mean  and
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Creating the solution:

$ curl -X POST --data '{"type":\
"solution","abstractions":[{\
"parameter":"@n","mean":60,\
"variance":400},{"parameter":\
"@r","mean":25,"variance":49}],\
"metrics":["/comp/<id>",\
"/comp/<id>"]}' /model/<id>

Box 6.2: API interaction to create the

solution, using cURL and JSON.

variance , in this case  and  for , and 

and  for ). Finally, it designates performance metrics (in this

case the components ‘by phi’ and ‘by dr’ representing the formulae—

blue in the Figure).

Box 6.2 shows the API interaction to create the solution job; Figure 6.2

shows the resulting abstraction visualisatons (parallel coordinates and

valid/invalid scatter plot). The abtraction shows a clear trade-off

scenario. At this point, a user of the system might explore the

visualisations: first by comparing different values and adjusting domains, then by adjusting the abstraction

sampling distributions, and finally by tweaking the model and reiterating. For now, it might be assumed that this

first iteration results in a choice for  (and thus the total height ), and 

.

Figure 6.2: The abstraction (with 1000 computations) shows a clear trade-off

scenario, where floor space can be realised either by height or by width.

σ2 = 60μn =σn 2 202 n = 25.0μr
=σr 2 7.02 r

n = 75 H = n ∗ x = 75 ∗ 4 = 300m
r = 26.0m
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7 Discussion

The objectives of this thesis were set in Chapter 1, based on the preceding general and specific problem

definitions (respectively concerning the StructuralComponents project as a whole and the opportunities for this

thesis). All progress made in this thesis served to advance either of the three specific objectives. This section

discusses the degree to which these objectives were achieved, and the remaining limitations.

The specific objectives were guided by the general objective of “further improving the StructuralComponents

approach to the early-stage design process”. This objective is too general to meaningfully discuss its

satisfaction. Accordingly, it will be left to the satisfaction of the above-mentioned specific objectives to give a

measure of the success regarding the general objective.

As noted in Rolvink (2010), “it is not enough, just to develop new and advanced technologies. […] The

use of these technologies requires a change in current working methodologies and the engineer needs

to innovate in order to use and understand the new technologies.” It is unclear that this ‘change’ has

happened, although there indications that the use parametric and associative (and related) tools is

becoming more prevalent in the AEC industry.

Rolvink further notes that to gain confidence in new (software) systems, and have the ability to adapt

these to the unique requirements of every project, a certain amount of software and programming

skills is important. The proposed implementation of this thesis makes use of even lower-level

technologies. In cases where the user is exposed to these (e.g. when writing assemblers, which involves

extending the C codebase; or when building custom a client, which involves direct interaction with the

REST API), such a skill recommendation arguably becomes even more important.

Box 7.1: As an aside, notes on software design tools in general

7.1 Regarding the increased emphasis on the synthesis phase

The first specific problem concerned the lack of the previous tools’ adherence to the formal research on design

in engineering, which highlights a significant emphasis on alternatives generation in the early stage of the

design process. Accordingly, the first objective proposed to incorporate “an increased emphasis on the

synthesis phase” (see Section 1.3).

The proposed abstraction mechanism, i.e. the automatic stochastic variation of selected essential input

parameters, each combination of which leads to a solution alternative with selected performance metrics,

strives to give the user an awareness of the sensitivity of the metrics to the parameters, the parameter

relationships, and the proximity of parameter combinations to the problem constraints.

The sensitivity of performance metrics to input parameters indicates in which direction parameter

changes will have the most (or least) effect. It helps to find better (or worse) solutions, and can

intuitively be perceived at a glance using the wind rose visualisation in the scatter plot, or from the

directions of lateral lines in the parallel coordinates plot. Exploring the solution space guided by

positive sensitivity most resembles optimisation.

The relationship of input parameters indicates which parameter combinations have similar

performance according to some metric. It helps to find a parameter’s role in the system, reveal

opportunities for cheap gains, or indentify multiple non-dominant solutions when searching for an

optimum. The interpolation visualisation reveals such parity at a glance.

The proximity of solutions to problem constraints indicates in which direction parameter changes

come closer to constraints, which is a measure of risk and flexibility in later stages. Clearly

highlighting invalid solutions in both the scatter plot and the parallel coordinates plot reveals the
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proximity at a glance.

The parametric and associative design (“PAD”) modelling paradigm has already proven to be successful

in previous theses. It is used here again to provide the modelling capabilities of the system.

Achievements

The proposed abstraction mechanism is built on the parametric and associative design modelling paradigm that

previously proved successful. It involves the automatic stochastic variation of selected essential input

parameters. Each combination of parameters leads to a solution alternative with selected performance metrics.

The aggregate data of the abstraction can subsequently be explored, in principle by eye through the various

proposed visualisations.

As a whole, the abstraction system provides the opportunity for a detailed view and awareness of the design

problem at hand. This conclusion follows from the assumed sensibility of user input, from the tested correctness

of the analysis results, and from the proven strength of data visualisation. As implemented, the system concerns

the sensitivity of the metrics to the parameters, the parameter relationships, and the proximity of parameter

combinations to the problem constraints.

Limitations

As mentioned, the abstraction system assumes sensibility of user input. To a degree, any design system might

have to make that assumption. Correct and sound methods and processes will accept ‘bad’ input and return

‘bad’ output (cf. the ‘garbage in, garbage out’ principle). Still, ‘good’ input might also lead to ‘bad’ output, for

example when false correlations are shown, or output patterns can be recognised that in reality originate from

input patterns. The current implementation gives little measure of the statistical soundness of an abstraction.

7.2 Regarding the developed Finite Element Method Analysis engine

The second specific problem concerned the limitations of the super-element method-based analysis engine,

and the difficulty in extending it to building typologies other than tall structures. Accordingly, the second

objective proposed to “develop a Finite Element Analysis (‘FEA’) engine” (see Section 1.3) to serve as a basis

for a more versatile building composition system.

The custom-developed FEA engine provides the previously recommended structural modelling

versatility, although it does come at the cost of ease of modelling. It is light-weight and fast, making use

of sparse linear solving algorithms. It supports rigid and spring constraints, both nodal and element

forces, and bar, bending, and torsion elements, and is extensible with further types.

Due to the Finite Element Engine, the versatility objective is arguably met. Most of the type of

problems targeted by StructuralComponents (“SC”) can be schematised as wireframe models, and

beyond that even plate elements can be emulated.

The term versatility could be contested. It can be argued that an ability of an engineer to schematise

a problem as simple rules of thumb makes those rules of thumb versatile at a low cost of complexity.

As used in the above point, the term refers to the more accurate structural models allowed by an

FEA engine. It can express nuances in a schematisation that rules of thumb cannot.

From the above points, it becomes apparent that the versatility of the analysis method comes at a

cost of ease of modelling. Constructing a complex model, perhaps using bars and beams to emulate

plate elements, will likely be a very time-consuming exercise, which goes against the overall goals of

SC. Part of this problem can be alleviated by providing built-in shortcuts which model composite

building parts in the hardcoded PAD layer, or even as a compiled assembler, to an extent removing

the need to model individual elements. It could also be argued that more complex problems are

simply not what SC is intended for.
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The engine supports wireframe elements (axial bar, flexural beam, and torsional beam), in a fully 3D

modelling environment. It further supports both rigid and spring constraints, constraining either or

both displacement and rotation, possibly along a direction or on a plane. It supports normal and

torque forces, applied either to the nodes themselves or to the elements.

The developed engine exploits the typical sparsity of structural stiffness matrices, resulting in a light-

weight code base and relatively fast performance. At its mathematical core, the engine was built to

be extensible and to allow additional plate or volume element types (not implemented). The pre-

and post-processing steps can also be extended to allow additional load application and stress

analysis methods.

Achievements

The custom-developed FEA engine provides the previously recommended structural modelling versatility. It is

light-weight and fast, making use of sparse linear solving algorithms. It supports rigid and spring constraints,

both nodal and element forces, and bar, bending, and torsion elements, and is extensible with further types.

Limitations

The increased modelling versatility comes at a the cost of ease of modelling. To an extent, the previously

allowed complexity of structural models can still be approximated by built-in composite building parts. Further,

ease of modelling forms a user interface problem, to be solved by a client implementation.

As the engine is custom-developed, it is very limited in functionality compared to available software packages,

both commercial and open-source. This is purely a result of limited resources, the engine being a one-person

development, and not the main subject of this thesis. The choice to custom-develop an engine was primarily

made for its educational value. The development itself has yielded many valuable insights in analysis engine

and software system architecture and numerical computation.

7.3 Regarding the reimplementation as a client–server software architecture

The third specific problem concerned the restrictions of the plugin-based software architecture of the previous

versions of the tool. Accordingly, the third objective proposed the “reimplementation of the tool [as stand-

alone applications, functionally separated] along a client–server divide”.

The reimplementation of the tool as a stand-alone client-server software architecture provides the full

data structures openness, full transparency, flexibility, and scalability that the previous implementations

lacked. The server-side prototype implementation provides the functionality and speed required by the

abstraction mechanism, without limiting the capabilities of an (unimplemented) client application.

The server component that was implemented for the tool provides a RESTful API, which fully support

the open data structures principle of the Structural Design Tools strategy. Transparency, inasmuch as

it does not stem from access to the source code, is provided by documentation.

Access to the source code guarantees full control regarding further development. The source code

repository can be forked and fully modified to extend its functionality. Beyond that, the PAD library

models provide directly accessible customisation.

As implemented, the prototype provides the functionality required by the overall goals of

StructuralComponents, and by the abstraction mechanism specifically. It includes the finite analysis

engine, as well as a custom-developed parametric and associative solver, with its mathematical,

geometrical, and structural libraries, and data analysis methods, in addition to the API component.

The client-server architecture ensures that system performance is largely independent of the client

device. The implemented prototype already employs parallel processing wherever possible, clearly

identifying and supporting opportunities for scaling by spreading out computation over multiple
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machines.

In contrast to the full-featured server prototype, a light client prototype was implemented. Its

primary goal is to demonstrate the system in action, as well as serve as an implementation of the

data visualisation techniques. However, no effort was spent on basic application features, making

the prototype suitable only for highly prepared demonstrations.

Achievements

The reimplementation of the tool as a stand-alone client-server software architecture provides further data

structures openness, transparency, flexibility, and scalability than the previous implementations. The server-side

prototype implementation provides the functionality and speed required by the abstraction mechanism, without

limiting the capabilities of any client application.

Limitations

The client-server architecture is a step towards better performance capabilities. However, such an architecture is

complex, and the source code less accessible for users with limited programming knowledge. This limited

accessibility might be a major hinderance to the extensibility of the system (in spite of there being far fewer

technical limitations).

The system no longer uses the Rhino and Grasshopper (or GenerativeComponents) software packages that

Rolvink (2010) and Breider (2008) relied upon. Although this removes a dependency, it also poses a hinderance

as these packages are (relatively) widely known and understood, provide easy visualisation and integration with

other CAD software, and contain many useful built-in geometry algorithms. It should be noted that an

implementation integrated with these packages is possible, but remains unimplemented.
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8 Conclusions and recommendations

The previous chapter discussed the initial objectives for this thesis, the degree to which they were achieved,

and the limitations that were uncovered in the approach taken. The following section will concisely state the

conclusions that were drawn in the process, and the final section will give a number of recommendations for

further research and development.

8.1 Conclusions

From the preceding, the following conclusions are drawn (in order of occurence):

Figure 8.1: The proposed system of abstraction computes variations around user-

specified parameter and provides a view into and possible awareness of the

specifics of the problem through interactive visualisations.

The system of abstraction achieves the emphasis on the early-stage synthesis phases through the

automatic generation of design alternatives. The alternatives are generated from parameter variations

based on user-defined value ranges. The alternatives are scored by user-defined performance metrics.

The system takes a naive approach of alternatives generation, computing only what the user commands,

many times. It does not use any black-box method to automatically narrow searches or optimise based

on some performance function. Such exploration is left completely to the user.

Interactive data visualisations allow exploration of the abstraction results, ultimately providing insights in

such properties as performance sensitivity, parameter relationships, and constrain proximity (see Figure

8.1).

A full Finite Element Analysis engine provides the previously-recommended structural modelling

versatility and schematisation accuracy, but at the cost of ease of modelling. Furthermore, as it is custom-

written the FEA engine might prove too limited, compared to third party-developed engines.

Figure 8.2: The proposed system (and its prototypes) is functionally separated along

a client-server software architecture.

The separation of system functionality along a client-server architecture (see Figure 8.2), yields openness,

transparency, flexibility, and scalability by implementing a common and widely-supported interface, and

decoupling user interface from analysis logic and computation.

{TODO: ‘negatieve puntjes’ in discussie?}

The complexity of the client-server architecture and its current implementation details are beyond the
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easy comprehension of a large portion of the intended target audience (the designing structural

engineer). This complexity is hidden when using standard functionality, but poses a problem when

considering extending the tool.

The loss of integration with a software package such as Rhino Grasshopper (which, it must be noted, is

not proposed, but follows from constraints in time and scope) reduces usability, easy visualisation, and

integration with CAD software.

8.2 Recommendations

REGARDING THE INCREASED EMPHASIS ON THE SYNTHESIS PHASE

Data and statistics—The techniques proposed for the abstraction system are first steps in a direction. It

is recommended that more effort be spent on improvement of these techniques and the development of

further functionality:

better measures for determining the statistical soundness of an abstraction;

automatically adjusting dataset (sample) size based on e.g. statistical soundness or density of

solutions;

further data-derived properties, in addition to the sensitivity, relationship, and proximity measures.

PAD system—the feature set of the prototype PAD engine implementation is limited, as only

functionality used for the demonstration of the tool was developed. It is recommended that effort be

spent on improvement and extension:

development of many more component assemblers (both geometrical, structural, and composite

building parts);

further development of the PAD library models feature to serve as a warehouse where users can

share and rate models;

development of script components using a high-level language like JavaScript or Python, which

would allow easier customisation.

REGARDING THE DEVELOPED FINITE ELEMENT METHOD ANALYSIS ENGINE

Functionality—Many improvements could be made to the prototype FEA engine implementation.

Assuming further development of the custom FEA engine (instead of adopting a third-party engine; see

point below), it is recommended that effort be spent on:

nodal releases, which would allow the user to determine which forces are transferred between

adjoining elements, and allow more building types (or safe time on approximation of releases using

other features);

higher-dimensional or higher-node elements, in addition to the engine’s currently only supported

extension bar and Euler-Bernoulli/torsion beam wireframe elements (the core computation routines

were written in such a way that higher-dimensional or higher-node elements are supported, but

none were implemented);

concurrency programing or hardware acceleration of floating point computations, which could

dramatically improve analysis speed.

Third-party solution—of all technical subsystems, the FEA engine exists among the most mature

commercially (or otherwise) available counterparts. While StructuralComponents doesn’t currently place
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extreme demands on the engine, it seems unlikely that a custom solution would remain a valid option for

very long. It is recommended that effort be spent on finding a suitable third-party engine.

REGARDING THE REIMPLEMENTATION AS A CLIENT–SERVER SOFTWARE ARCHITECTURE

Client application—This thesis proposes a client-server application architecture, but only discusses the

prototype implementation of a server application in depth. The reason for this focus is that most of the

essential components and subsystems are on the server side.

A small prototype client application was written to demonstrate the essence of the tool. However, it is

recommended that for the purpose of further demonstrations and research, more effort be spent on a

fully featured client application:

core application systems such as document management (i.e. loading and saving);

versioning (c.f. Git or Subversion) to track changes through the iterations of a design;

fully three-dimensional model visualisation;

further visualisation and interactivity techniques;

integration with or exchange methods for common CAD software packages;

investigation into connectivity, caching, or client-side execution.

Cross-platform—In order to develop the prototype implementation discussed in this thesis more

quickly, a degree of platform dependency was introduced. The core parts of the prototype were written

as C functions and subroutines. However, for application structure much of it is wrapped in an object-

oriented fashion. It is recommended that the platform-dependent parts be rewritten to be platform-

agnostic.

It is important to note that much of the concurrency programming makes use of the open-source

libdispatch library, which was released near the beginning of this thesis. One major platform

implementation is available (for the Apple OS X operating system). A number of emerging Linux

implementations are available, but they remain only partially complete and their robustness unproven. It

is recommended that either an adequate cross-platform implementation be found, or another

concurrency programming framework be used.

Scaling—The client-server separation enables scaling up of the computationally intensive subsystems

independent of client devices. The proposed system is envisioned to be used by multiple users (for

example public or company-wide clusters), but the prototype implementation was not developed with

such scale in mind. The application runs on a single machine, and includes all separate subsystems. It is

recommended to:

rewrite the server application such that it can communicate with instances running it on other

machines, and share computation jobs as a cluster;

refactor parts into separate dedicated applications for some of the subsystem, each running on

different machines (suitable subsystem would be those for FEM analysis, PAD solving, and data

analysis, as well as HTTP handling and database storage);

replace the HTTP protocol with a more complex, but faster streaming protocol (one option would be

the UDP protocol; another would be WebSockets over TCP).

Testing and error handling—For the prototype implementation, only the FEA engine is covered by unit

and integration tests (and only to a certain extent). Proper error handling was almost entirely omitted. For

continued development, it is recommended that effort be spent both on further test coverage and

proper (avoiding crashes, helpful to users) error handling.
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A Derivation of constraint elementary matrix operations

A.1 Point constraint

A.2 Line constraint
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A.3 Plane constraint

REGULAR
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ALTERNATIVE
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B FEA validation

B.1 Truss

i x y z dx dy dz

1 2.5 1 0.5 -52.4136 0 -39.0511

2 2.5 1 -0.5 -52.4136 0 -33.925

3 2 0 0 26.3592 -61.1987 -33.0956

4 1.5 1 0.5 -47.2875 -114.99 -31.4104

5 1.5 1 -0.5 -47.2875 -118.017 -34.0497

6 1 0 0 5.48278 -153.746 -26.3106

7 0.5 1 0.5 -34.1765 -181.607 -23.5502

8 0.5 1 -0.5 -34.1765 -183.559 -26.1894

9 0 0 0 -26.2068 -187.952 -19.5256

10 -0.5 1 0.5 -18.2371 -183.559 -12.8617

11 -0.5 1 -0.5 -18.2371 -181.607 -15.5009

12 -1 0 0 -57.8964 -153.746 -12.7406

13 -1.5 1 0.5 -5.12612 -118.017 -5.00145

14 -1.5 1 -0.5 -5.12612 -114.99 -7.6407

15 -2 0 0 -78.7728 -61.1987 -5.95556

16 -2.5 1 0.5 0 0 -5.12612

17 -2.5 1 -0.5 0 0 0

Table B.1: FEA engine nodal displacement results
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B.2 Frame

i x y z dx dy dz dxx dyy dzz

1 0.5 5 0.5 33.4203 -32.4931 -0.0243926 -0.0246555 -1.33227e-14 -9.97878

2 -0.5 5 0.5 33.4691 -22.5069 -0.0243926 -0.0246555 -8.88178e-15 -10.0281

3 0.5 5 -0.5 33.4203 -32.4931 0.0243926 0.0246555 -2.62013e-14 -9.97878

4 0.5 4 0.5 23.5478 -30.7869 -0.0086174 -0.0150258 -3.19744e-14 -9.59154

5 -0.5 5 -0.5 33.4691 -22.5069 0.0243926 0.0246555 -1.11022e-15 -10.0281

6 -0.5 4 0.5 23.565 -21.2131 -0.0086174 -0.0150258 -7.10543e-15 -9.62159

7 0.5 4 -0.5 23.5478 -30.7869 0.0086174 0.0150258 -2.95319e-14 -9.59154

8 0.5 3 0.5 14.4646 -26.6867 -0.00184755 -0.00951722 -4.04121e-14 -8.39715

9 -0.5 4 -0.5 23.565 -21.2131 0.0086174 0.0150258 -1.22125e-14 -9.62159

10 -0.5 3 0.5 14.4683 -18.3133 -0.00184755 -0.00951722 -8.88178e-16 -8.41618

11 0.5 3 -0.5 14.4646 -26.6867 0.00184755 0.00951722 -3.04201e-14 -8.39715

12 0.5 2 0.5 6.97734 -20.1867 0.000890126 -0.00757732 -1.19904e-14 -6.39908

13 0.5 0 0.5 0 0 0 0 0 0

14 -0.5 3 -0.5 14.4683 -18.3133 0.00184755 0.00951722 -2.22045e-15 -8.41618

15 -0.5 2 0.5 6.97556 -13.8133 0.000890126 -0.00757732 -3.55271e-15 -6.41424

16 -0.5 0 0.5 0 0 0 0 0 0

17 0.5 2 -0.5 6.97734 -20.1867 -0.000890126 0.00757732 -1.4766e-14 -6.39908

18 0.5 1 0.5 1.88872 -11.2871 0.00215944 -0.00628379 -3.77476e-15 -3.60017

19 0.5 0 -0.5 0 0 0 0 0 0

20 -0.5 2 -0.5 6.97556 -13.8133 -0.000890126 0.00757732 -4.66294e-15 -6.41424

21 -0.5 1 0.5 1.8844 -7.71292 0.00215944 -0.00628379 -1.33227e-15 -3.61274

22 0.5 1 -0.5 1.88872 -11.2871 -0.00215944 0.00628379 -6.71685e-15 -3.60017
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23 -0.5 1 -0.5 1.8844 -7.71292 -0.00215944 0.00628379 -2.60902e-15 -3.61274

24 -0.5 0 -0.5 0 0 0 0 0 0

Table B.2: FEA engine nodal displacement results

89



C Software concepts and patterns

The software framework behind this thesis is primarily written using the object-oriented software paradigm,

where program logic is encapsulated within distinct objects. This logic consists of program data and the

algorithms that manipulate it. Objects retain references to their respective portions of the data, and implement

the algorithms in associated methods.

Importantly, objects declare the ways in which its encapsulated logic can be accessed externally, and no

assumptions need to be made about how anything is handled internally. This yields modular code, where an

underlying implementation can be completely replaced by another (presumably better-performing) one, without

the necessity to modify any external code.

Objects can be passed around to carry their encapsulated data and logic over to anywhere in the program,

without ever requiring that assumptions are made as to how its declared methods are implemented, but only

promising that they are. As such, different objects interact with one another on one level of complexity and

combine to form the internal components of more complex objects, and ultimately the complex behaviour of a

program.

An object is generally one of multiple members of a class. Classes are the collection of program code that

implements the logic and determines the behaviour of the instantiated objects. Classes themselves behave like

objects to the extent that they are similarly passed around and implement class methods which manipulate

class-level data. Classes are related in a tree structure where lower classes extend the common behaviour of

higher classes to perform a specialised role.

The object-oriented paradigm is a collection of software patterns—recurring manners of implementing program

logic. Described above, examples of patterns are data and method referencing, encapsulation, and class

inheritance. Far more patterns have been employed to implement the framework, the most important of which

are described below.

INTERFACES

Implicitly or explicitly, objects of different classes can implement common methods. This fact makes it possible

to use different objects to perform the same role. Implementing a set of expected methods implicitly is known

as duck-typing, named after the phrase “if it walks like a duck, and it quacks like a duck, then it’s a duck”. In

software, the concept is that if any given object behaviour is expected, and that expectation is met, the object

fulfils the role.

In order to make the implementation explicit, an object can be described as adhering an interface. An interface

is like a class in that it describes behaviour, but does not have instantiations of itself. The primary benefit of

explicitly adhering to an interface is that classes can be automatic type-checked, reducing the chance of human

error.

EXTENSION

Class extension allows additional class behaviour to be defined at any arbitrary location in the program code.

This is useful primarily for extending the behaviour of framework objects, which cannot be modified themselves.

But it is also useful for grouping common behaviour of different complex objects together in one place—such

as when making various classes adhere to the same set of behaviours. This grouping can provide benefits

(primarily for the programmer) like avoiding code repetition and quick look-up and comparison.

SINGLETONS

Singleton classes give wide access to a single instance object shared by different parts of program logic. Such
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classes can be employed whenever the object-oriented concept of a class with multiple instances is not a

natural fit. These cases occur where the logic revolves around some central resource, such as a central register

that keeps track of multiple objects. Only a single such object is required, and access to it must be guaranteed

to ultimately access the same shared resource.

MODEL–VIEW–CONTROLLER

The model–view–controller pattern prescribes class categories, their typically associated roles and behaviours,

and the boundaries and relationships between them. These prescriptions can be employed in designing the

classes that form a program component. Model classes contain the primary program data, and typically provide

access to the methods that manipulate it. View classes form the infrastructure through which the data enters

and leaves the program. Controller classes form the link between model and view classes, and determine how

events in one translate to modifications in the other.

DELEGATION

Objects can delegate part of the actual implementation of some of their functionality to other objects. This

pattern usually occurs in complex objects that consist of several component objects. The complex parent object

employs a reusable component object to act as wrapper around some functionality, but implements the core of

that functionality itself. For example, a controller can employ a button view to listen for the user event of

pressing the button, but itself implement what happens when the event occurs.

PLUGIN

A plugin is a software module that runs within a another software package, which provides a plugin

programming interface for the purpose of allowing extending its own base functionality.
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D Use case methodology (#d)

NB. This text is taken from Rolvink (2010).

Use cases are often performed during software development in order to be sure that the software does what it

is required to do. A use case describes the interaction between one or more (external) actors and the system

under consideration, represented as a sequence of simple steps, in order to achieve a certain goal. An actor in

this case is someone who exists outside the system under study, whereby the system is treated as black-box

(“Use case”, Wikipedia: The Free Encyclopedia).

The primary goals of the use cases given in this chapter are to present different basic examples of how

StructuralComponents functions and to determine various scenarios which are likely to happen. The use cases

capture who does what with the system, for what purpose, without dealing with the internal design of the

system.

According to use case terminology, it has been avoided to implement user interfaces into the use case under

consideration. The next sections therefore only show UML diagrams of possible workflows within

StructuralComponents.

The use cases described in this chapter all follow the template given in Table D.1.

1. Use case

name

Use case identifier, written in verb-noun format, and should be clear enough to

understand what the use case is about.

2. Description Short description of the use case and goals to be achieved by the use case.

3. Actors
Description of the actors who interact with the system under consideration and are

involved in this use case.

4. Assumptions
List of all the assumptions necessary that must be true for the use case to terminate

successfully.

5. Course of

events

Steps between actor and goals that are necessary to achieve the goals given in the

description.

6. Alternatives

(optional)
Any variations in the course of events in the use case.

7. Issues

(optional)
List of issues that remain to be solved.

Table D.1: Template for use case design.
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E Parametric and associative API

Data formats

All objects can be parsed from either XML- or JSON-formatted data, encoded using the UTF-8 unicode

character set. Response data from the REST API will always be JSON-formatted.

In the case of XML data, object types are inferred from element names. JSON data is expected to contain a

root-level key-value pair with key type  and string value analogous to the XML element name. As a general

rule, untyped data will be invalid and remain unparsed.

All objects are referred to using a Unique Resource Identifier (URI), designated by the XML attribute name or

JSON key-value pair key uri . Objects may additionally be given a human-readable alias, designated by the

attribute or key alias . The alias only carries semantic machine meaning in special cases.

Throughout this document parentheses ( (...) , either with the ellipsis or containing text) will act as

placeholders. The expected format and type of the actual data can be deduced from the text between the

parentheses (such as “any string” or a regular expression) or from the accompanying documentation text.

DEFINITION

The root-level definition object represents an iteration in the design process, encapsulating a parametric and

associative model of logic. It contains one ore more models. Multiple models will be semantically related, for

example as alternative solutions in an iteration in the design process. The definition further contains typical

document metadata such as date stamps, author names, etc.

XML:

<definition
  alias="(any string)"
  meta-(key)="(any meta value)">
  (...)
</definition>

JSON:

{ “type”: “definition” “alias”: “(any string)” “meta-(key)”: (any meta value) “models”: [(…)] }

Contents (XML) / models  (JSON): (...)

The system expects content elements (XML) or models -array objects (JSON) of one type: model

meta-(key) : (any meta value)

Definition can carry arbitrary values referred to by meta-(key)  keys. These can be used to attach

data such as date stamps or author names to the definition. The values can be of any representable type,

such as a number, a string, an array, an object, or null . The meta values do not carry semantic

machine meaning.

MODEL

The model object represents a design solution. In simple terms, it contains the individual pieces of logic that

together form the solution. The objects themselves can recursively contain additional models, each with its own
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pieces of logic. As such, the model object forms one level of logic in a bigger parametric and associative

model.

XML:

<model
  alias="(any string)">
  (...)
</model>

JSON:

{
  "type": "model",
  "alias": "(any string)",
  "objects": [(...)]
}

Contents (XML) / outlets  (JSON): (...)

The system expects content elements (XML) or objects -array objects (JSON) of three types:

component , parameter , modifier

COMPONENT

The component, the namesake of this series of theses, is the atomic element of logic in the parametric and

associative model. It maps input values to output values in the way a simple arithmetic addition operation maps

input numbers to an output sum. Various components can be strung together to create more complex

mappings in the way the addition operation can be combined with a multiplication. Multiple component types

exist, each described below.

Components contain a combinator object which prepares the input values for mapping. All components take

arrays as input, and perform the actual mapping on element pairs. Combinators are responsible for choosing

the element pairs. The short-list and long-list combinators pair each respective element pair together, up to the

end of the shortest array or the longest array, respectively. The cross-list combinator pairs creates pairs of each

possible combination of elements (the resulting set of pairs is knowns as the Cartesian product).

Assembler component

The assembler component acts as the interface to a pre-compiled piece of logic, contained within an assembler

object or function. These pieces of logic are encoded into the system through native programming code. {APX

X} lists the full list of available assemblers, their required (and optional) input, and their available output.

Model component

The model component acts as the interface to a another model object contained within. Its inputs and output

can be connected to both from the objects in the same model as the component, and from the objects in the

model contained within the component. The model component encapsulates complex logic into a single

component, for the purpose of readability and re-use.

XML:
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<component
  type="(assembler|model)"
  combinator="(short|long|cross)"
  assembler="(any assembler name string)"
  alias="(any string)">
  (...)
</model>

JSON:

{
  "type": "component",
  "component-type": "(assembler|model)",
  "combinator": "(short|long|cross)",
  "assembler": "(any assembler name string)",
  "alias": "(any string)",
  "model": (any model object),
  "outlets": [(...)]
}

Contents (XML) / outlets  (JSON): (...)

The system expects content elements (XML) or outlets -array objects (JSON) of four types: input ,

output , assembler  (for assembler-type component and XML only), model  (for model-type

component and XML only)

type  (XML) / component-type  (JSON): “(assembler|model)”

Component objects have a subtype in addition to their component  type, designated in XML by a

type  attribute and in JSON by a component-type  pair. In both cases, the value must be either

assembler  or model . If omitted, the subtype will be inferred from the presence of an assembler or

model pair or attribute (or content element).

combinator : “(short|long|cross)”

Components have a combinator object, designated by a combinator  attribute or pair with one of the

string values short , long , or cross  (for a long-list, short-list, or cross-list combinator,

respectively). If omitted, the long  value will be assumed as default.

assembler  (for assembler-type component only): (...)

Assembler-type components can contain an assembler, represented as an assembler  attribute or

pair, or for XML as an assembler  element with name attribute , with string value from the

assembler names listed in {APX X}.

model  (for model-type component and JSON only): (...)

Model-type components can contain a model, represented as described for the model  type above, or

by URI. For XML, the model object is expected as content of the component element.

PARAMETER

Parameters contain the user’s input in the form of numbers, strings, or some complex types. Parameters have

abstraction settings (although these are separated out into Solution objects). These settings determine how the

system will generate variations of the contained values in order to abstractions (e.g. the settings might define a

probability function from which variations are stochastically sampled).
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XML:

<parameter
  type="value"
  alias="(any string)">
  (...)
</model>

JSON:

{
  "type": "parameter",
  "parameter-type": "value",
  "alias": "(any string)",
  "values": [(...)]
}

Contents (XML) / values  (JSON): (...)

Comma-separated numbers (XML) or array of numbers (JSON), or a series element (XML) or object

(JSON).

type  (XML) / parameter-type  (JSON): “value”

Currently only value -type parameters are supported. Can be omitted.

FLOW MODIFIER {#E-1E {#E-1F}}

Flow modifiers (‘modifiers’), which can be of the type ‘pass’, ‘fold’, ‘flatten’, or ‘merge’. Modifiers manipulate the

dimensionality of the value flow depending on the type (note that the order of connections matters):

Pass modifiers let the value flow pass through without manipulation, but combine multiple connections

into one.

Fold modifiers take individual values form the flow and return them in an array, and in the case of

multiple connections will return multiple arrays.

Flatten modifiers take arrays from the flow and return the combined individual array elements,

combining the elements of multiple connections together.

96



Merge modifiers take arrays from the flow and return the merged arrays, again combining the elements

of multiple connections together.

Collect modifiers conveniently combine the pass and fold modifiers in order to cover the common case

of collecting separate flat flows into a single collection flow.

It should be noted that several combinations of value dimensionalities exist that do not logically fit a functional

operation. For example, a flow of individual (no-dimensional) values cannot be further flattened. An flow of array

(one-dimensional) values could theoretically be further folded (to become two-dimensional, i.e. arrays of arrays,

or higher), though the result of that may not have any logical application. As implemented, some of these

combinations may throw program exceptions, the handling of which is purposefully left outside of the scope of

this thesis.

XML:

<modifier
  type="(pass|fold|flatten|merge|collect)"
  from="(URI string)"
  alias="(any string)">
  (...)
</modifier>

JSON:

{
  "type": "modifier",
  "modifier-type": "(pass|fold|flatten|merge|collect)",
  "from": "(URI string)",
  "alias": "(any string)",
  "connections": [(...)]
}

Contents (XML) / connections  (JSON): (...)

The system expects content elements (XML) or connections -array objects (JSON) of one type:

connection  (incoming only)

type  (XML) / modifier-type  (JSON): “(pass|fold|flatten|merge|collect)”

Modifiers have a subtype designated by a type  attribute (XML) or modifier-type  pair (JSON)

with one of the string values pass , fold , flatten , merge , or collect  (for a pass, fold,
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flatten, merge, or collect modifier, respectively). If omitted, the pass  value will be assumed as default.

from : (URI string)

Modifiers can have a from  attribute or pair to represent a single connection instead of having a list of

incoming connections, with a URI value equal to the from  attribute or pair value of the equivalent

incoming connection. If given both a from  attribute or pair and a list of connections, the list will be

ignored.

INPUT

Input contain and modify downstream connections. Inputs can be connection-type inputs, which additionally

accept upstream connections. Connection inputs additionally contain a modifier to manipulate the incoming

value flow as described in the section on modifiers. Inputs can also be value-type inputs, in which case they

contain the user directly (these are equivalent to a connection input connected to a parameter with the same

values).

XML:

<input
  (name|alias)="(any string)"
  type="(connections|values)"
  modifier="(pass|fold|flatten|merge|collect)"
  from="(URI string)">
  (...)
</input>

JSON:

{
  "type": "input",
  "(name|alias)": "(any string)",
  "input-type": "(connections|values)",
  "modifier": "(pass|fold|flatten|merge|collect)",
  "from": "(URI string)",
  "connections": [(...)],
  "values": [(...)]
}

Contents (XML) / (connections|values)  (JSON): (...)

The system expects content elements (XML) or connections -array objects (JSON) of one type:

connection  (incoming only), comma-separated numbers (XML) or array of numbers (JSON), or a

series element (XML) or object (JSON).

(name|alias) : “(any string)”

Inputs have a name (which is equal to their alias) designated by a name  (or alias ) attribute of pair.

If the input is contained within an assembler-type component, the name must correspond to one of the

input names expected by the assembler. If the input is contained within a model-type component or a

modifier, the name is optional and may be arbitrary.

type  (XML) / input-type  (JSON): “(connections|values)”

Inputs have a subtype designated by a type  attribute (XML) or input-type  pair (JSON) with one

of the string values connections  or values  (for a connections or values input, respectively). If
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omitted, the subtype will be inferred from the presence of values , connections , or from  pair

(JSON only).

modifier : “(pass|fold|flatten|merge|collect)”

Inputs can have a built-in modifier designated by a modifier  attribute or pair with one of the string

values pass , fold , flatten , merge , or collect  (for a pass, fold, flatten, merge, or

collect modifier, respectively). If omitted, the pass  value will be assumed as default.

from : “(URI string)”

Inputs can have a from  attribute or pair to represent a single connection instead of having a list of

incoming connections, with a URI value equal to the from  attribute or pair value of the equivalent

incoming connection. If given both a from  attribute or pair and a list of connections, the list will be

ignored.

OUTPUT

Outputs accept upstream connections.

XML:

<output
  (name|alias)="(any string)"
  from="(URI string)"
  modifier="(pass|fold|flatten|merge|collect)">
  (...)
</output>

JSON:

{
  "type": "output",
  "(name|alias)": "(any string)",
  "from": "(URI string)",
  "modifier": "(pass|fold|flatten|merge|collect)",
  "connections": [(...)]
}

Contents (XML) / connections  (JSON): (...)

The system expects content elements (XML) or connections -array objects (JSON) of one type:

connection  (incoming from model of model-type component only)

(name|alias) : “(any string)”

Outputs have a name (which is equal to their alias) designated by a name  (or alias ) attribute of

pair. If the output is contained within an assembler-type component, the name must correspond to one

of the output names expected by the assembler (if omitted, the “default” output is assumed). If the input

is contained within a model-type component or a modifier, the name is optional and may be arbitrary.

from  (contained within a model-type component only): “(URI string)”

Outputs contained within a model-type component can have a from  attribute or pair to represent a

single connection instead of having a list of incoming connections, with a URI value equal to the from

attribute or pair value of the equivalent incoming connection. If given both a from  attribute or pair
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and a list of connections, the list will be ignored.

modifier  (contained within a model-type component only): “(pass|fold|flatten|merge|collect)”

Outputs contained within a model-type component can have a built-in modifier designated by a

modifier  attribute or pair with one of the string values pass , fold , flatten , merge , or

collect  (for a pass, fold, flatten, merge, or collect modifier, respectively). If omitted, the pass

value will be assumed as default.

CONNECTION

Connections simply connect an output to a downstream input, and have no additional semantics.

XML:

<connection
  from="(URI string)"/>

JSON:

{
  "type": "connection",
  "from": "(URI string)"
}

from : “(URI string)”

Connections have a from  attribute or pair referencing the connection origin by URI (an outlet object,

or a component, parameter, or modifier object in which case the default output is implied).

Resource paths and methods

The GET  methods of the various resources additionally support the following URL-encoded parameters:

(shallow|level|deep) : true  (or empty, as flag)

Determines the depth of the returned resource representation ( level  is the default, and can be

omitted; if multiple parameters are included shallow  takes precedence over level , which takes

precedence over deep ):

shallow : includes only the resource’s own properties, and uses URIs to refer to any resources

contain within.

level : includes the resource’s representation, and recursively the representations of contained

resources, up to a ‘sensible’ extent (otherwise, uses URIs).

deep : includes full representations of the resource itself and recursively of any contained

resources.

(lean|fat) : true  (or empty, as flag)

Determines the scope of the returned resource representation ( lean  is the default, and can be

omitted; if both parameters are included, lean  takes precedence over fat ):

lean : omits redundant properties that could be inferred from other properties.
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fat : includes all redundant properties.

pretty : true  (or empty, as flag)

Determines that returned resource representation is ‘pretty-printed’, using indentation (two spaces) for

human readability.

In all cases where representation data is submitted to the API (i.e. using PATCH , PUT , and POST

methods) it is recursively traversed to create or modify any content objects from the included representations as

well.

The various methods will return the following return codes:

200 OK : Successful GET ; the response will contain data.

201 Created : Successful POST ; the response will contain the URI of the newly created resource as

the value of the Location  header (but no data).

204 No Content : Successful PUT , PATCH , or DELETE ; the request was handled successfully

as sent, though returns no data.

400 Bad Request : The request was received and resolved to its destination, but was there found to

be invalid.

404 Not Found : The request was received but could not be resolved to its destination.

500 Server Error : The server encountered an unexpected error; no data is returned.

It should be noted that URIs are always generated by the server. URIs sent by the user will be ignored, and the

newly created or modified resource will not be resolvable from that URI.

COMMON

All resources share the following common path and methods:

Individual: **`/api/(singular resource noun)/(URI)

GET : Returns a representation of the resource.

PATCH : Modifies the properties of the resource included in the representation.

PUT : Replaces the resource’s properties with those of the representation.

DELETE : Deletes the resource (warning: this cannot be undone).

DEFINITION

Collection: /api/definitions

GET : Returns the full list of definitions (pagination not supported at this time).

POST : Creates a new definition  object from the representation.

Individual: /api/definition/(URI)

POST : Expecting a model representation (or URI), adds the newly created (or referenced, in the

case of a URI) model to the definition.

MODEL
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Collection: /api/models

GET : Returns the full list of library models.

POST : Creates a new re-usable library model from the representation.

Individual: /api/model/(URI)

POST : Expecting a component, parameter, or modifier representation (or URI), adds the newly

created (or referenced, in the case of a URI) resource to the model.

COMPONENT

Individual: /api/component/(URI)

POST : Expecting a input or output representation (or URI), adds the newly created (or referenced,

in the case of a URI) object to the component.

PARAMETER

Individual: /api/parameter/(URI)

POST : Expecting a connection representation (or URI), adds the newly created (or referenced, in

the case of a URI) connection to the parameter.

MODIFIER

Individual: /api/modifier/(URI)

POST : Expecting a connection representation (or URI), adds the newly created (or referenced, in

the case of a URI) connection to the modifier.

INPUT

Individual: /api/input/(URI)

POST : Expecting a connection representation (or URI), adds the newly created (or referenced, in

the case of a URI) connection to the input.

INPUT

Individual: /api/output/(URI)

POST : Expecting a connection representation (or URI), adds the newly created (or referenced, in

the case of a URI) connection to the output.

CONNECTION

Individual: /api/connection/(URI)

(As specified under the common paths and methods above.)
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F Discussion on networking technologies and implications

F.1 Communications protocol: HTTP/TCP

Depending on the requirements of an application, any of a plethora of communications protocols may be most

suitable for its networking layer. Aspects which must be considered include performance (in the sense of

transfer speed), reliability (packet loss), and logistics (routes). Long-running, interactive communications will

benefit from different aspects than discrete, unchanging communications. Applications that aim to be widely

deployed must rely on aspects like general availability, contrasted with localised applications which are free to

focus on specialised aspects.

Importantly, the choice of communications protocol is also resource-constrained, as their implementation costs

likely differ. Consequently, there is always a trade-off between specialised demands and costs. In this light, a

suboptimal choice may often be good enough.

The communications types—and consequently the sets of requirements—for the StructuralComponents client-

server system primarily follow its interactions with the user. It most prominently features two separate types of

interactions:

logic manipulation—where the user retrieves or changes a piece of parametric-associative logic, such as

a component or a connection;

parameter variation—where the user interactively varies the value or values of a parameter, notably by

dragging a slider.

The first of the two interaction types is oriented around the parametric-associative logic objects, and is

contained within separate user actions. The user might for example load a definition, change a component

property, or make a new connection. These are discrete actions, with comparatively long spans of time between

them, for which it is important that they are communicated reliably and in their entirety.

The second of the two interaction types is more dynamic. For example, as the user slides a parameter value up

or down, the system must repeatedly solve the logic based on the new value and send back the result. These

are continuous actions, for which it is more important that results are returned quickly but a certain degree of

loss is acceptable—since a lost piece of information will quickly be replaced by another.

It will be clear that these two interactions pose different sets of network protocol requirements. For the software

implementation of this thesis, both will make use of HTTP over TCP. This protocol is an optimal choice for the

first type of interaction oriented around objects, although suboptimal for the second, streaming interaction.

HTTP stands for HyperText Transfer Protocol (Berners-Lee, 1991). It was invented for the

WorldWideWeb project and currently underpins much of the internet. It revolves around client

requests identifying certain resources to which servers respond with a status code and the requested

resource data. Nominally, the server only responds to requests, and does not itself initiate

communication.

TCP stands for Transmission Control Protocol (DARPA, 1981). Its specifics are not relevant within the

scope of this thesis, so it suffices to state that the protocol emphasises reliability and data integrity over

transmission speed and latency.

Box F.1: HTTP and TCP

The HTTP/TCP protocol suits the first type of interaction well due to its reliability and ease of implementation.

Reliability is important since the data carrying interaction semantics—e.g. a number value, or a string identifying
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some property—is not naturally redundant. That is, any data integrity error will likely change those semantics

and yield unexpected results. In simple terms, the protocol ensures that data is either received fully or not

received at all—using a combination of retrying, rerouting, and checking completeness.

The HTTP protocol was not designed for the second, streaming type of interaction. It is one-way, has

comparatively large data overhead, does not provide any methods of dynamically throttling transmission rate,

and many of its features are simply not required. However, due to the protocol’s wide availability, many

solutions are available that work around the issues and in a rudimentary way enable it to handle streaming

communications in spite of its shortcomings. Consequently, the protocol was deemed good enough for the

purposes of this thesis.

For the sake of completeness, further investigation into a specialised, streaming protocol such as UDP or

WebSocket will be left as a recommendation (see Section 7.2).

F.2 Communications interface: REST

While data formats and transmission are generally handled by the system libraries implementing the underlying

networking protocol, there always remains a translation step between these libraries and application logic.

Different sets of requirements determine the suitability of a particular architectural style or framework for such a

communications interface than for a protocol. Whereas important aspects for the latter include performance,

reliability, and integrity, the main consideration for the communications interface is whether to transfer intention

or state.

As a side note, it should be stated that in the case of retrieving a resource from a server, there are few

difference between interface styles. In simple terms, all styles will require the resource to be somehow

identified and subsequently return a copy. It is primarily when data is being sent to the server that the

differences will become apparent.

After retrieving a representation of a record out of a database, a client may wish to somehow alter it. When

transferring intention, the client would proceed to identify the record, indicate what is being altered, and send

the new value. The server would interpret the intention and make the actual change. In many cases,

identification of the resource is unnecessary as the server has kept track of what was first retrieved. This

interface style resembles the object-oriented programming style of calling an object’s method.

As an alternative to transferring intention, the client might itself change the retrieved representation and

subsequently send it back to the server. The act of sending it back would itself signify that there is an alteration,

and the server would proceed to replace the database record with the newly represented version.

The former, intention-transfer style has a range of readily available implementations, such as SOAP (Simple

Object Access Protocol; W3C 2000). The latter, state-transfer interface style is pioneered by ReST

(Representational State Transfer; Fielding, 2000). Both of these can use HTTP as their transfer protocol, and

generally have extensive—often system-provided—libraries to generate an interface to suit application logic.

Both interface styles mentioned have their merits, and both have demonstrated wide applicability. Certainly for

the requirements of this thesis, both styles would suffice. While it might be investigated which of the two would

ultimately be more suitable, this falls outside the scope of this thesis. Instead, following an IT industry adage

that says “unless you have a definitive reason to use SOAP use REST” (Francia, 2010), the choice was made to

use implement this thesis using a RESTful style.

REST AND ITS INTERFACE DESIGN CONSTRAINTS

REST (Representational State Transfer) is generally described as a style of interface architecture. Many software

libraries exist that facilitate implementation, but any interface that adheres to the style philosophies, encoded as
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the REST Constraints, is considered RESTful. REST was first introduced by Fielding (2000), who described it as a

generalisation of the pre-existing HTTP protocol and its underlying philosophies. As such, the style was

modelled on, but also enveloped the way the way the World Wide Web (“web”) already worked.

Of the six REST Constraints, three are relevant to the scope of this thesis. For the sake of completeness, the full

list of constraints is client-server, stateless, cacheable, layered system, code on demand, and uniform interface.

Cacheability refers to the possibility of clients storing previously retrieved data to increase performance. The

layered system constraint ensures that REST interactions can be routed over the heterogeneous internet

infrastructure. Code on demand refers to the retrieval of executable code from the server. These constraints are

important, but not directly relevant tot his thesis—in contrast to the following list:

The client-server architecture separates the various concerns of a distributed system. The client is not

concerned with such things as data storage, or (specific to thesis) computationally expensive parametric-

associative logic resolution. The server is not concerned with user interface and data presentation. This

strict separation prohibits assumptions to be made, increasing modularity and portability.

Stateless communication requires that each request to the server is self-contained, and can be

interpreted without the need to make assumptions. Similarly, server responses contain the full extent of

information required to interpret the new state. This again increases modularity and portability, and

ensures that the system is scalable—as any second machine can at any time pick up from previous

interaction.

The uniform interface constraint limits the scope of interactions to whatever is naturally provided by the

underlying transfer protocol. In the (most common) case of HTTP, this restricts REST interaction to

revolve around URIs and the following (sub)set of verbs:

GET: Retrieve the resource at the specified URI.

PUT/PATCH: Update the resource at the specified URI (respectively in full or in part).

POST: Create a new resource under the specified URI (which can be a collection of, or an existing

resource that has a to-many relationship with the posted resource type).

DELETE: Delete the resource at the specified URI.
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G Example JSON listings

The following JSON listings represent the parametric and associative definitions, using the API specification of

Appendix E, of the examples found in Chapter 6.

{ "type": "definition",
  "models": [{
    "objects": [
      { "type": "parameter", "alias": "n"},
      { "type": "parameter", "alias": "r"},
      { "type": "parameter", "alias": "pi", "values": [3.14159]},
      { "type": "parameter", "alias": "phi", "values": [0.7]},
      { "type": "parameter", "alias": "dr", "values": [11]},
      { "type": "component",
        "alias": "r^2",
        "assembler": "exponent",
        "inputs": [
          { "name": "base", "from": "@r"}
        ]},
      { "type": "component",
        "alias": "n * pi",
        "assembler": "product",
        "inputs": [
          { "name": "multiplications",
            "modifier": "collect",
            "connections": [
              { "from": "@n"},
              { "from": "@r"}
            ]}
        ]},
      { "type": "component",
        "alias": "d - dr",
        "assembler": "sum",
        "inputs": [
          { "name": "additions", "modifier": "fold", "from": "@r"},
          { "name": "subtractions", "modifier": "fold", "from": "@dr"}
        ]},
      { "type": "component",
        "alias": "(r - dr)^2",
        "assembler": "exponent",
        "inputs": [
          { "name": "base", "from": "@{d - dr}"},
        ]},
      { "type": "component",
        "alias": "r^2 - (r - dr)^2",
        "assembler": "sum",
        "inputs": [
          { "name": "additions", "modifier": "fold", "from": "@{r^2}"},
          { "name": "additions", "modifier": "fold", "from": "@{(r - dr)^2}"},
        ]},
      { "type": "component",
        "alias": "total by phi",
        "assembler": "product",
        "inputs": [
          { "name": "multiplications",
            "modifier": "collect",
            "connections": [
              { "from": "@phi"},
              { "from": "@{n * pi}"},
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              { "from": "@{r^2}"}
            ]}
        ]},
      { "type": "component",
        "alias": "total by dr",
        "assembler": "product",
        "inputs": [
          { "name": "multiplications",
            "modifier": "collect",
            "connections": [
              { "from": "@{n * pi}"},
              { "from": "@{r^2 - (r - dr)^2}"}
            ]}
        ]}
    ]
  }]
}
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