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Preface 

The Geomatics Synthesis Project (GSP) 2015 is a nine-week long project 

undertaken by second year Master students of Geomatics. The project gives the 

students the opportunity to take part in a real world project with strict time 

constraints.  

This year's GSP general topic focuses on Explorative Point Clouds meaning 

exploring ways to use the point cloud data directly. Three teams were divided and 

three approaches were developed. Each team is assigned to a company, which 

provides use cases to the group. This team is assigned to research new possibilities 

in the use of terrestrial point clouds. This terrestrial point cloud is offered by 

Cyclomedia, that offers its services as high resolution georeferenced cyclorama 

images. 

Point clouds hold a lot of information, that is, in a lot of cases, not optimally used. 

These point clouds are now mostly used to make 3d models, while the points, and 

all their valuable information they hold, are wasted. In this research, we research 

and suggest an approach to get more information out of the point cloud data, 

creating new use cases and more opportunities for re-use. 

In this approach, we aim at enriching the data with extra information that is of 

value for engineers, policy makers and can help in the optimization of our city 

designs that are getting more affected by changing and more extreme weather 

conditions. By adding this extra information, we aim at prioritizing the use of these 

valuable point clouds, as this hard information with a very high resolution, and 

offers us new opportunities to understand, interpret and design the human 

environment in a more effective, cost efficient and innovative way. 

 

  



4 | P a g e  
 

 
  



5 | P a g e  
 

Table of Contents 
 

 ................................................................................................................ 1 

Preface ..................................................................................................... 3 

List of abbreviations ................................................................................. 12 

Abstract .................................................................................................. 14 

Acknowledgements ................................................................................... 15 

Chapter 1: Executive Summary .................................................................. 16 

1. Introduction ................................................................................. 16 

2. Data collection .............................................................................. 17 

3. Pre-processing .............................................................................. 17 

3.1. Non-ground filtering ................................................................. 17 

3.2. Relevant classes ...................................................................... 17 

3.3. Point cloud indexing ................................................................. 17 

3.4. Geometrical properties of the neighbourhood .............................. 17 

3.5. Colour spaces transformation .................................................... 18 

4. Point cloud labelling ....................................................................... 18 

4.1. Point based classification .......................................................... 18 

4.2. Region based classification ........................................................ 19 

4.2.1. Unsupervised classification .................................................. 19 

4.2.2. Supervised classification ..................................................... 20 

4.2.3. Smoothing ........................................................................ 20 

5. Conclusions & recommendations ..................................................... 20 

5.1. Conclusions............................................................................. 20 

5.2. Recommendations ................................................................... 21 

Chapter 2: Introduction ............................................................................ 22 

1. Problem description ....................................................................... 22 

2. Application and objectives .............................................................. 23 

2.1. Road extraction from point clouds .............................................. 23 

2.2. The use for surface infiltration capacity analysis .......................... 24 

Chapter 3: Literature overview................................................................... 26 

1. Point Cloud Data Acquisition ........................................................... 26 

1.1. Laser scanning techniques ........................................................ 26 

1.2. Image based techniques ........................................................... 26 

1.3. Acquisition methods ................................................................. 27 



6 | P a g e  
 

2. Non-ground filtering ...................................................................... 28 

2.1. Point Data Abstraction Library (PDAL) ........................................ 28 

2.2. LAStools ................................................................................. 28 

2.3. Multiscale Curvature Algorithm .................................................. 29 

3. Point cloud indexing ...................................................................... 29 

4. Nearest Neighbour Search .............................................................. 31 

4.1. K -nearest search .................................................................... 31 

4.2. Range based search ................................................................. 32 

4.3. kNN and radius search combination ........................................... 32 

5. 3D features characteristics ............................................................. 33 

5.1. Principal Component Analysis .................................................... 33 

5.2. Estimating normals .................................................................. 33 

5.3. General direction of the normals ................................................ 34 

6. Geometrical local surface properties ................................................ 35 

7. Colour information ........................................................................ 36 

7.1. Additive and subtractive colour space ......................................... 37 

7.2. HSV colour space ..................................................................... 38 

7.3. HSI colour space ..................................................................... 39 

7.4. CIE spaces .............................................................................. 40 

8. Segmentation methods .................................................................. 42 

8.1. 3D Hough transform ................................................................ 42 

8.2. Random sample consensus (RANSAC) ........................................ 42 

8.3. Region Growing ....................................................................... 43 

9. Classification methods ................................................................... 44 

9.1. 3d feature extraction and selection ............................................ 44 

9.2. Classification approaches .......................................................... 45 

9.2.1. Point-based classification methods ....................................... 45 

9.2.2. Region-based classification methods ..................................... 45 

Chapter 4: Methodology ............................................................................ 50 

1. Methodology ................................................................................. 50 

1.1. Point cloud acquisition and generation ........................................ 50 

1.2. Point cloud pre-processing ........................................................ 51 

1.2.1. Filtering parameters and requirements ................................. 52 

1.2.2. Predefine the relevant classes .............................................. 52 

1.3. Point cloud processing .............................................................. 52 

1.3.1. Indexing parameters and requirements ................................. 53 



7 | P a g e  
 

1.3.2. Segmentation parameters and requirements ......................... 53 

1.3.3. Classification parameters and requirements ........................... 53 

1.3.4. Labelling parameters and requirements ................................ 53 

1.4. Validation ............................................................................... 53 

1.5. End product ............................................................................ 54 

Chapter 5: Implementation ....................................................................... 55 

1. The acquired point cloud ................................................................ 55 

2. Non-ground filtering ...................................................................... 55 

3. Importing the data ........................................................................ 60 

3.1. xyz reader .............................................................................. 60 

3.2. Liblas ..................................................................................... 60 

4. Data structures ............................................................................. 60 

5. Spatial index ................................................................................ 61 

6. Colour spaces transformations ........................................................ 61 

6.1. RGB to HSV ............................................................................ 62 

6.2. RGB to CIELab ........................................................................ 63 

6.3. RGB to CIELuv ........................................................................ 65 

7. Training samples ........................................................................... 67 

7.1. Definition of classes ................................................................. 68 

7.2. Colour classification attributes ................................................... 69 

7.3. Geometrical classification attributes ........................................... 71 

8. Point cloud labelling: Point based methods ....................................... 72 

8.1. H, S and V values, minimum and maximum ................................ 72 

8.2. H, S and V values, mean and 2 * standard deviation .................... 73 

8.3. Cie-LAB values, mean and 2 * standard deviation ........................ 75 

8.4. CIELab a value, mean and 2 * standard deviation ........................ 77 

8.5. SVM classifier .......................................................................... 79 

8.6. Decision Tree .......................................................................... 81 

8.7. Concluding point based methods ............................................... 82 

9. Point cloud labelling: Region based methods ..................................... 82 

9.1. Unsupervised merging based on colour similarity ......................... 85 

9.2. Supervised Classification ............................................................. 87 

9.2.1. Training samples ................................................................ 87 

9.2.3. Classification result ............................................................ 90 

9.2.4. Evaluation ......................................................................... 91 

9.2.5. Machine learning classification ............................................. 92 



8 | P a g e  
 

9.2.6. Smoothing algorithm .......................................................... 93 

10. The viewer ................................................................................... 99 

Conclusions ............................................................................................103 

References .............................................................................................108 

Appendix A - Project management and process ...........................................114 

Appendix B - Python code.........................................................................128 

Appendix C - Media Outreach ....................................................................139 

 

 

  



9 | P a g e  
 

List of figures 
 

Figure 1 Scanning Techniques Left: Time-of-flight, Right: Triangulation .......... 26 

Figure 2 Structure from motion; multiple overlapping images ........................ 27 

Figure 3 Schematic overview of the parameters taken into consideration by the 

algorithm of Axelsson ............................................................................... 29 

Figure 4 The kD-tree (left) and the adaptive kD-tree (right) .......................... 30 

Figure 5 Example of an octree for the indexing of a point cloud (Own illustration)

 .............................................................................................................. 30 

Figure 6 The octree .................................................................................. 31 

Figure 7 KD-tree radius search ................................................................... 32 

Figure 8  Principle of octree radius search.................................................... 32 

Figure 9 A neighbourhood around a point in a point cloud .............................. 33 

Figure 10 PCA finds an orthogonal basis that best represents a given data set . 34 

Figure 11 Left, before changing the general direction. Right: after changing the 

general direction. Source: Olga Sorkine, 2013 ............................................. 35 

Figure 12 Local Surface Properties calculated from the eigenvalues ................ 36 

Figure 13 Left: Additive colour space, Right: Subtractive colour space ............ 37 

Figure 14 RGB colour space in 3d cube........................................................ 37 

Figure 15 The HSV colour space in a cylindrical model .................................. 38 

Figure 16 The HSI colour space .................................................................. 39 

Figure 17 Hyper-plane .............................................................................. 47 

Figure 18 Non-linear data in linear feature space .......................................... 47 

Figure 19 Left: Hyper-plane and margin, Right: finding the optimal Hyper plane

 .............................................................................................................. 48 

Figure 20 Multiclass SVM with linear kernel .................................................. 48 

Figure 21 Decision Tree for point cloud classification ..................................... 49 

Figure 22 The data acquisition at the faculty of Architecture .......................... 51 

Figure 23 The obtained point cloud ............................................................. 55 

Figure 24 All the used las-files for input (boxes) and the polygon intersecting these 

files(blue lined polygon). ........................................................................... 56 

Figure 25 Clipped stereo point cloud, 3,413,935 points. ................................ 56 

Figure 26 The command line output for the filtering ...................................... 57 

Figure 27 The outputted non-ground points: 1,557,942 points ....................... 57 

Figure 28 The outputted ground points: 1,855,993 points. ............................ 58 

Figure 29 All the used LiDAR-files for input (boxes) and the polygon intersecting 

these files (blue lined polygon). ................................................................. 58 

Figure 30 The clipped LiDAR point cloud. ..................................................... 59 

Figure 31 The UML diagram of the data structure used for the classification of the 

point cloud .............................................................................................. 61 

Figure 32 The original point cloud in the RGB space ...................................... 62 

Figure 33 The H value of the HSV colour space coloured differently according to 

the angle ................................................................................................. 63 

Figure 34 The V value of the HSV colour space coloured in greyscale .............. 63 

Figure 35 The L axis of the CIELab colour space represented as grayscale ....... 64 

Figure 36 The a axis of the CIELab colour space represented from green to red 65 



10 | P a g e  
 

Figure 37 The b axis of the CIELab colour space represented from blue to yellow

 .............................................................................................................. 65 

Figure 38 The L axis of the CIELuv colour space represented as grayscale ....... 66 

Figure 39 The u axis of the CIELuv colour space represented as grayscale ....... 66 

Figure 40 The v axis of the CIELuv colour space represented as grayscale ....... 67 

Figure 41 The different sample classes ........................................................ 67 

Figure 42 Classes on use ........................................................................... 68 

Figure 43 Classes on material .................................................................... 68 

Figure 44 A distribution of the ‘hue’ attribute in the different classes. ............. 70 

Figure 45 A distribution of the ‘saturation’ attribute in the different classes. .... 70 

Figure 46 A distribution of the ‘value’ attribute in the different classes. ........... 71 

Figure 47 Point based labelling based on minimum and maximum HSV values . 72 

Figure 48 Part of the training samples for grass ........................................... 73 

Figure 49 Point based labelling based on mean and 2 * standard deviation ...... 75 

Figure 50 point based labelling based on mean and 2 * standard deviation ...... 76 

Figure 51 The distribution of the CIE - a value for the different classes ........... 77 

Figure 52 Point based labelling based on mean and 2* standard deviation on the 

A value ................................................................................................... 78 

Figure 53 Point based labelling from the SVC classifier .................................. 80 

Figure 54 Point based labelling from the decision tree ................................... 81 

Figure 55 How error in the region growing on curvature and normals occurred 84 

Figure 56 The variation of the colours in one scene....................................... 84 

Figure 57 The presence of over-segmentation in the results of the region growing 

algorithm ................................................................................................ 85 

Figure 58 The results of the region merging algorithm .................................. 87 

Figure 59 The merged road ....................................................................... 87 

Figure 60 The training samples for the supervised classification ..................... 88 

Figure 61 The distribution of the training samples for the cycle path ............... 89 

Figure 62 The distribution of the training samples for the tiles ....................... 89 

Figure 63 The distribution of the training samples for the road ....................... 90 

Figure 64 The distribution of the training samples for the grass ...................... 90 

Figure 65  The results of the supervised classification per class ...................... 91 

Figure 66 The result of the machine learning classification ............................. 93 

Figure 67 The smoothing result on the road ................................................. 94 

Figure 68 The smoothing result on the tiles, cycle path and grass .................. 95 

Figure 69 The smoothing result on the unknown class ................................... 96 

Figure 70 Other parts of the whole point cloud selected ................................ 97 

Figure 71 A different selection of point cloud ................................................ 98 

Figure 72 The unknown class of the scene ................................................... 98 

Figure 73 The cycle path and grass ............................................................. 99 

Figure 74 The road and the tiles of the scene ............................................... 99 

Figure 75 The potree viewer for the classified scene ....................................101 

Figure 76 Calculations using the potree viewer ............................................102 

Figure 77 The schematic overview of the developed workflow .......................106 

 

  



11 | P a g e  
 

List of Tables 
 

Table 1 The colour table of the HSV colour model ......................................... 39 

Table 2 The .xyz reader ............................................................................ 60 

Table 3 The .las reader ............................................................................. 60 

Table 4 Number of points per class sample .................................................. 67 

Table 5 The different classes in for the HSV and CIELab colour spaces ............ 69 

Table 6 The geometrical properties of the different classes ............................ 71 

Table 7 The confusion matrix for the H, S and V values, mean and 2 * standard 

deviation ................................................................................................. 74 

Table 8 The confusion matrix for the CIELab values, mean and 2 * standard 

deviation ................................................................................................. 77 

Table 9 The confusion matrix for the CIE a value, mean and 2 * standard deviation

 .............................................................................................................. 78 

Table 10 SVC Parameters .......................................................................... 79 

Table 11 The confusion matrix for the SVC classifier ..................................... 80 

Table 12 Confusion matrix for the decision tree ............................................ 82 

Table 13 The confusion matrix for the supervised classification ...................... 92 

Table 14 The errors of omission, commission and mapping accuracy for the 

supervised classification ............................................................................ 92 

Table 15 The evaluation of the smoothing algorithm ..................................... 94 

Table 16 The errors of omission and commission for the smoothing algorithm .. 94 

  



12 | P a g e  
 

List of abbreviations 

2D   Two Dimensional 

3D   Three Dimensional 

AMN   Associative Markov Networks 

ASCII   American Standard Code for Information Interchange 

Avg   Average 

BIM   Building Information Model 

BK-City  Faculty of Architecture Technical University Delft 

CGP   Ground Control Points  

CIE   Commission Internationale de l’Eclairage 

CRF   Conditional Random Fields 

DEM   Digital Elevation Model 

GNSS   Global Navigational Satellite System 

GPS   Global Positioning System 

GSP   Geomatics Synthesis Project 

HD   High Definition 

HSI   Hue Saturation Intensity 

HSV   Hue Saturation Value 

INS   Internal Navigation System 

kD-Tree  k Dimensional tree 

k-NN   k Nearest Neighbours 

LAS   Log ASCII Standard 

LAZ   Log ASCII Zip 

LiDAR   Light Detection and Ranging 

MCC   Multiscale Curvature classification 

NE   North-East 

NW   North-West 

PCA   Principal Component analysis 

PCL   Point Cloud Library 

PDAL   Point Data Abstraction Model 

RANSAC  RANdom SAmple Consensus 

RGB   Red Green Blue 

SE   South-East 

SIC   Surface Infiltration Model 

Std   Standard Deviation 

SVM   Support Vector Machine 

SW   South-West 

TIN   Triangular Irregular Network 

WKT   Well Known Text 

 

  



13 | P a g e  
 

 

  

  



14 | P a g e  
 

Abstract 

Growing possibilities in the use and cheaper techniques and methods in the 

acquisition of point clouds, rapidly developed the use and production of point 

clouds. These point clouds consist out of millions of points, and can therefore be 

qualified as big data. Difficulties in the processing of these point clouds lead to a 

transformation of the points into a model, resulting that the raw information is not 

used anymore. The aim of this research is to develop and investigate techniques 

that create added value to these point clouds, by adding extra class information, 

also described as a label, to these points. We therefore formulated the following 

research question: How can a point cloud be semantically enriched by providing a 

labelling process using geometrical properties and colour values? The focus while 

answering this question lies with labelling a coloured point cloud, created by a 

mobile mapper of Cyclomedia, whereby only the ground points are labelled with: 

Grass, Road, Cycle Path or Tiles (Footpath). 

While investigating such a research topic several methodologies were tested for 

their value. However, not all of them were able to provide the required output. In 

addition to that, working makes it necessary to test different indexing techniques. 

To create classes or in other words, labels, different classification methods, point 

based and region based, are described and tested.  

This research shows that a region growing algorithm, based on curvature, the point 

normals, and colometrical properties, in combination with training samples gives 

the best results, with a mapping accuracy of 92% for road, 77% for cyclepath, 

80% for tiles and 99% accuracy for grass. These result can be further improved 

by our developed smoothing algorithm. 
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Chapter 1: Executive Summary 

1. Introduction 

In today’s technologically driven era, the terms position and location are highly 

affecting our lives. In addition to that, the introduction of virtual earths and street 

view applications have well shifted our perception of geo-information from 2D 

towards 3D. This shift was also affected by new technologies like LiDAR that 

automated the generation of 3D city models. LiDAR technologies within a decade 

matured leading to the use of point clouds into everyday applications. But despite 

the immense amount of information hidden inside a point cloud, its information in 

today’s city modelling paradigm is often not exploited to its best potential. In the 

majority of today’s projects, point clouds get thrown away after 3d models are 

created. These point clouds are for a lot of users too big to handle, and therefore 

not easily replaced by traditional data sources like surveying. However, it is 

foreseen that with the increasing power of mobile devices like smartphones or 

tablets and their browsers, those days of insufficient computing power are coming 

to an end. It is therefore relevant to explore ways to utilise the point cloud data 

directly. 

 

Cyclomedia, a specialist in capturing, processing and visualising the urban 

environment by using cyclorama images, is the project client of this research. For 

Cyclomedia, the road is the central object for its data collection and, therefore, 

investigating the ways to extract road information from point clouds is central for 

this research. In addition to that, the road structure in a city can be very useful in 

extracting other features, like: buildings, traffic signs, vegetation or cars. Besides 

road extraction, the aim is to label point clouds with their function or composite 

material. These labels can help in order to create certainty about surface 

conditions, such as the surface infiltration capacity (SIC). A SIC map of an urban 

area could be very useful input for evidence-based urban design of water-

sensitive/ low-impact neighbourhoods and water management schemes for 

reducing flood vulnerability.  

 

In this research, the aim is to create a workflow that results in a dataset that will 

help urban planners, urbanists and road- and city maintenance organisations in 

doing their jobs better and more efficient. In other words, the aim is at enriching 

the data with class labels, giving it added value and new user possibilities. The 

central question in this research is therefore: How can a point cloud be 

semantically enriched by providing a labelling process using geometrical properties 

and colour values? 

 

The executive summary is organised as following. Section 2 describes the Data 

collection equipment and process. Section 3 describes the pre-processing workflow 

that together with the workflow presented in Section 4 was proven to give the best 

results for street level extraction. The summary ends with section 5 where general 

conclusions and recommendations for this project are given. 
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2. Data collection 

The data collection for this project is performed by Cyclomedia’s mobile mapper 

system. The system used was their newly developed prototype system with LiDAR, 

five cameras and a combination of GNSS receiver and INS system to establish the 

position of the car. The LiDAR scanner used was the Velodyne HDL 32 that has 32 

channels and catches 700,000 points per second with ± 2 cm accuracy. The 

horizontal field of view of the scanner is 360°. The five cameras, on the other 

hand, together produce 360° panorama images. These images are used in the 

process of stereo-imaging to create the point cloud, and to provide the LiDAR point 

cloud with colour. In this project, only the stereo imaging point cloud is used which 

contains points with a three-dimensional position calculated through the 

observation of a point by multiple images. 

 

3. Pre-processing 

3.1. Non-ground filtering 

Point clouds contain rich information about the scene that they were obtained 

from. However, not all information is relevant for all applications. In the case 

examined in this project, the focus area lies on the ground surface. This means 

that the non-ground points (buildings, trees, cars) should be removed from the 

dataset. After investigating several algorithms, the non-ground filtering process 

offered in LAStools was proven to produce the best results.  

 

3.2. Relevant classes 

Designing a workflow that would extract the road information and its surroundings 

first requires the definition of the application relevant classes. In this case road 

extraction and materials focused on street level are examined. The most relevant 

subcategories are: Grass, Road, Cycle path and Footpath. Those categories 

represent how humans interpret the street level. For more specific applications, 

(e.g. the surface infiltration capacity), where the composition of materials is 

needed, a specialist would benefit from a classified point cloud with the classes 

asphalt, grass and tiles. 

 

3.3. Point cloud indexing 

Since point clouds from their nature are big data, quick access to the points can 

be incorporated by applying a spatial index. After comparing octrees and kD-trees, 

the kD-tree data structure turned out to provide the most balanced structure and 

the quickest access to the neighbouring points of each point. The reason for this 

is that the kD-tree makes use of a 1D distance comparison for indexing whereas 

in the case of an octree 3D distance calculations are needed. 

 

3.4. Geometrical properties of the neighbourhood 
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The nearest neighbours are used to calculate 3D features for every point, because 

geometrical information of one specific point does not provide much information 

on its own. However, if a neighbourhood of the point is analysed, much can be 

understood with the geometrical patterns. 

 

These geometrical properties of a point's neighbourhood can be calculated with 

the principal component analysis (PCA). PCA can be used to estimate the 

eigenvalues which can be used to infer different measures, like linearity and 

planarity, that describe the regions’ properties. The only measures that are 

eventually used in our algorithm are the normal and the curvature. Other 

researched geometrical properties of a point's neighbourhood, like planarity, 

scattering or the sum of the eigenvalues, are not sufficient to make a distinction 

between already horizontal planes. 

 

3.5. Colour spaces transformation 

Applications for point clouds have been greatly extended since the introduction of 

colour in them. This is because humans can correlate colours to semantics and 

thus infer a great amount of relevant information. The colour information of the 

point cloud is therefore used to cluster points together that possibly belong to the 

same class. However, the RGB colour space that is easy interpreted by a human, 

possesses a lot of difficulties in computer vision since colour differences are not 

uniform. Therefore, more uniform colour spaces namely, HSV, HSI and CIE were 

investigated. Those spaces transform the highly correlated RGB values to less 

correlated components. The results of those colour transformations were tested 

for their applicability in distinguishing between the different classes in later stages.  

 

4. Point cloud labelling 

Labelling a point cloud in this research means getting those parts out of the point 

cloud necessary for assessing a certain task. Training data is used to make it 

possible to label, classify,  parts of a point cloud. This training data, samples, are 

manually selected clusters of points with a known class. In choosing the right 

samples, it is important to pick various regions and clusters of points that show 

inconsistencies in colour, compared to the overall class. Experience showed that 

these variations in training data increased the classification results. 

In order to identify the method that produces the best outcome, gets the necessary 

parts out of the point cloud most accurate,  two methodologies were investigated: 

a point based and a region based classification method.  

 

 

4.1. Point based classification 

The point based method investigates whether it is possible to label a point cloud 

by only utilising the colour properties of each individual point. Point based labelling 

is only possible if samples for each class are available. From these samples, the 

range of the colour value in HSV or CIELab is determined, by calculating the 
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minimum and the maximum value for each class. Next, it is checked if the colour 

properties for every individual point are either between the minimum and 

maximum of each component per class or between the mean minus or plus 2 

sigmas. Machine learning algorithms were also tested on point properties. 

Although some promising results came from these classifications, point based 

methods were proven to be error prone since a lot of colour inconsistencies are 

present in the point cloud. CIELab, in general, gave the best distinction but the 

accuracy assessment for point based methods proved to be not sufficient.  

 

4.2. Region based classification 

Region based classification schemes take the neighbourhood properties of the 

points into consideration. These properties of the individual point are used to 

determine if neighbouring points hold the same properties, and belong to the same 

region or class, or not. The neighbourhood properties that are used are curvature, 

which gives an indication of the smoothness of the underlying surface, the normal, 

which is the vector that is perpendicular to the points region and the colour and 

colour distance. 

 

To grow a region, a seed point is chosen, and all neighbouring points are tested if 

they hold similar values on certain properties, if they do, and therefore belong to 

the same class, the points are added to the region. This process is then repeated 

for all new points in that region, until no newer points are found that belong to 

that region.  

 

In the applied region growing algorithm, a low curvature threshold is used, 

because the majority of the classes are found inside the same plane, therefore 

raising the curvature threshold leads to under-segmentation. Under-segmentation 

means that two different classes are labelled as one. While, when a surface is 

divided into really small surfaces, you can call this over-segmentation. Under-

segmentation happened with curvature thresholds over 0.001. The decision was 

made that over-segmentation is more acceptable than under-segmentation. 

Intentionally causing over-segmentation is, at least in theory, much simpler to 

correct than under-segmentation, since human intervention cannot be avoided in 

the second case. 

 

4.2.1. Unsupervised classification 

 

The previously caused over-segmentation of the region growing algorithm is 

tackled by a merging algorithm that is based on colour similarity. The main idea is 

that the small regions (with points less than 5000) that are formed in the region 

growing algorithm, are merged with their neighbouring regions that have the most 

similar colour. The colour similarity is compared by calculating the euclidean 

distance of the components of the CIELab space, excluding the L component that 

represents lightness. The most similar region is the one with the lowest value. The 

result shows more relevant regions. However, there are still cases of over-

segmentation and even under-segmentation, where two classes are labelled as 

one.  
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4.2.2. Supervised classification  

 

The supervised approach to classifying a point cloud requires a set of training 

sample data that have labels associated with them. This sample data comes from 

a scene and is selected with prior knowledge about the scene. This means that, 

for the area of interest of this project, samples are collected that belong to the 

road, cycle path, tiles and grass. 

 

The different classification methods that are tested can roughly be subdivided in 

two categories: First, Gaussian processes, which assume that the class properties 

are Gaussian distributed, and a class gets assigned to a point or a region with the 

highest probability. Second, machine learning algorithms, that are implemented 

by making use of the python module sklearn, that allows classification through 

simple vectorised training samples and data. From these training samples, a 

decision space is created and used to classify the regions or points. The output of 

the Gaussian process is most satisfactory, with a mapping accuracy of 92% for 

road, 77% for cyclepath, 80% for tiles and 99% accuracy for grass. The sklearn 

module didn’t give satisfactory results, as a lot of points, that don’t belong to one 

of the predefined classes, are assigned a class. This is caused by the functioning 

of the algorithm, that is written in such a way that each point or every region gets 

assigned to the class with the highest score, even if it is very unlikely that this 

class should be assigned. 

 

4.2.3. Smoothing 

 

To tackle the errors of omission and commision, a smoothing algorithm is 

developed. This method is based on image smoothing filters that remove noise. 

The algorithm traverses all points in the classified point cloud. For every point it 

checks its k nearest neighbours and calculates what is the most frequent class 

among these neighbours. Next, the point gets reclassified if the original 

classification differs from the outcome of the smoothing algorithm. This process 

offers both a visual and an accuracy advantage to the final result. 

 

5. Conclusions & recommendations 

5.1. Conclusions 

From the outcomes of this research, it becomes clear that a region-based 

supervised classification using training samples is the best way to distinguish 

between the contextually relevant classes. This is because the colour information 

of the point cloud is often times less accurate than the positional information. 

The colours of our point cloud show some differences in relation to reality and 

therefore unsupervised schemes present over-segmented results. Furthermore, 

over-segmentation with unsupervised classification can be the result of shadow 

and water on surfaces, which then appear darker, worn out colours of the 
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road/cycle path markings, different materials of tiles and other noise in general. 

To work around those inaccuracies, training samples can be provided. This way a 

supervised classification captures all appearances of a class whereas an 

unsupervised classification would create different regions. However, during the 

project, the researchers realised that one training sample per class is not 

sufficient. Therefore, the user has to provide the best combination of training 

samples per scene that will not be excessive in number and amount, but 

representative enough of the colours present. Finally, extending the method to 

other areas can be succeeded, but only if the provided training samples are 

representative. 

 

5.2. Recommendations 

The following recommendations are provided as future work for the project. 

Recommendations one and two are based on difficulties and inefficiencies in the 

manually picking of training samples. The third recommendation is a solution for 

the difficulties we faced in the region growing on colour values.  

1. Explore the possibilities to match the regions with land use maps.  

2. Provide the positional information of the mapping vehicle/device with 

(each part of) the point cloud.  

3. Radiometrically enhance the cyclorama images before the point cloud 

creation.  

Future work can be found in relating the point clouds, in particular the 

semantically labelled parts, to over simplified models of reality mostly utilised 

today by scientists.  
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Chapter 2: Introduction 

Data acquisition of point clouds can be done by both laser scanners and high 

accurate georeferenced images. It can be said that scanning is embattled with the 

much older technique of creating point clouds with photogrammetry. Scanners 

provide a product in just one step, creating the point cloud by photos is much more 

complex but also much cheaper (Geodatapoint, 2013). 

The point clouds that are generated with these techniques, consist out of a big set 

of points. These point collections give the possibility to create geometric correct 

representations of objects and landscapes (Hmida et al., 2013). Furthermore, the 

possibility of processing dense point clouds in an efficient and cost-effective way, 

creates a lot of possibilities in different fields such as topographic, industrial or 

cultural heritage (Vosselman and Maas, 2010). Point clouds therefore are datasets 

which become more popular every day with more and more uses in the urban 

environment, such as collecting information about building facades, street 

furniture etc.  

However, despite their popularity, point clouds are usually not used to their full 

potential. Usually, these datasets are transformed and translated into models, 

such as 3D BIM models, while the original point cloud dataset is deleted (van der 

Spek and Verbree, 2015). Not using the raw point cloud, means throwing away a 

lot of valuable information. The scope of this research is to carry out operations 

on a raw dataset, whereby the richness of the data is optimally used and the use 

of the point cloud optimized. 

This report is organized as follows: Chapters Introduction focuses on the problem 

description, the application and objectives. Chapter Literature Overview contains 

a relevant literature overview. Then, chapter Methodology will focus on the 

methodology used in this research. Chapter Implementation will describe the 

implementation of the literature and the used methods.  Next, we conclude with 

our findings, followed by recommendations for future work. As an addition the 

project management and process are recorded in Appendix A, the developed 

python code is recorded in Appendix B. The report ends with the Media Outreach 

Strategy in Appendix C. 

 

1. Problem description 

The human brain is capable of interpreting point clouds by using and combining 

information about the scene, the point attributes, memory and by recognizing 

shapes and identifying objects. Computers, on the contrary, do not have this broad 

and intelligent spectrum of additional information and interpretation as humans 

do. Therefore, the recognition and interpretation of these point clouds by 

computers is considered hard. Different authors recognize these problems and aim 

at semantically labelling and recognizing objects in point clouds by using and 

combining different rules (Xiong et al., 2011, Shapovalov et al., 2010, Vosselman 

and Maas, 2010, Hmida et al., 2013).  

This research aims at creating a methodology to create a dataset with semantically 

labelled points. Together, these labelled points create a scene that is better 
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interpretable by computers and can be used in analysis of the human environment. 

Therefore, the research question is:  

How can a point cloud be semantically enriched by providing a labelling process 

using geometrical properties and colour values? 

In order to answer this research question, the following sub questions have to be 

answered:  

 How can a point cloud be indexed? 

 How can the non-ground points be filtered out? 

 What subcategories of ground are important? 

 How can subcategories be classified? 

 What is the best way to label a point cloud? 

 

2. Application and objectives 

Point clouds hold a lot of information, information that is often not used. In this 

research, we aim at creating a workflow that results in a dataset that will help 

urban planners, urbanists and road- and city maintenance organisations. The raw 

data that is used comes from Cyclomedia. Cyclomedia aims at delivering a product 

to support decision makers and urban planners, as they state on their website: 

“CycloMedia Technology Inc. utilizes analytic measurement software technology in 

conjunction with 360-degree panoramic imagery (HD-Cycloramas) to help 

planning departments better analyse and understand their cities” 

(Cyclomedia.com, 2015). The end product, meaning the semantically enriched 

data, will help other parties and organisations to do their work more efficient and 

in a more precise way. 

This chapter describes the analyses of the customer demand for the enriched data. 

For this, two different use cases are described. The first use case covers the 

extraction of pre-specified features from a point cloud, whereby the road is the 

main subject. Other classes could be: vegetation (grass), tiles (footpath) and cycle 

path. Secondly, enriching the point cloud with data for further analysis is 

described. This use case focuses on providing data for water retention calculations, 

surface infiltration capacity analysis (SIC), and flood risk analysis, specifically 

flooding caused by heavy rainfall, as described by Lee (2013). 

 

2.1. Road extraction from point clouds 

Niemeyer et al. (2014) recognize the problem in object extraction from point 

clouds: "There are different types of objects such as buildings, low vegetation, 

trees, fences, and cars that can be found in a small local neighbourhood, which 

makes it difficult to extract them reliably. In order to handle this problem, research 

often focuses on the extraction of a single object type, i.e. buildings, roads, and 

trees". The road can be used as guiding object in the search of other objects, in 

other words: identifying the road as main object in the urban environment gives 

the possibility to identify other materials and objects around the road. 

The extraction of the road surface has been a subject of research for the past 

years. Different approaches have been tested and described. Smadja et al. (2010) 

use curve fitting through parts, or through one scan line, to find the road surface. 

(Boyko and Funkhouser, 2011) use additional data, like topographic maps. Other 
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research aims at recognizing objects near the road, like signs, lights (Landa and 

Prochazka, 2014) or road markings (Yang et al., 2012). Only few use raw point 

data to find the road surface. Geosignum, a Dutch start up, managed to 

automatically extract roads from point cloud data, as they state on their website: 

"changes in the existing road alignment geometry, road curvature and cross-slopes 

can be automatically calculated and mapped. In addition to this, road surfaces and 

road edges-lines can be automatically extracted in a very short time for further 

analysis or a new engineering design". However, Geosignum does not publish 

about the techniques they use (Geosignum, 2015). 

Roads are one of the main objects that are to be recognized by our algorithm, as 

It represents one of the most present and important structures in urban or 

manmade landscapes. Thereby, roads can form a basis for further feature 

extraction, as a lot of (urban) objects are situated near roads. Thereby, road 

maintenance companies can use the point cloud, because the extraction of weak 

spots, holes and bumps can be done more effective, efficient, and precise and with 

lower error than when it is done manually. 

 

2.2. The use for surface infiltration capacity analysis 

Lee (2013) states that: "Effective urban water management requires certainty 

about surface conditions such as the surface infiltration capacity (SIC). A SIC map 

of an urban catchment area could be a useful input for evidence-based urban 

design of water-sensitive/low-impact neighbourhoods and multi tiered water 

management schemes for reducing flood vulnerability". Thereby she states that: 

"methods for mapping SIC are underdeveloped". Lee used multispectral images 

for the classification of the earth surface. This approach has some scale and 

accuracy problems, as the roughness, caused by mixed pixels, of images does not 

allow small scale object or material detection. Other analysis mainly focuses on 

the geological properties and water infiltration capacity of certain types of soil 

(Bean et al., 2004). 

Our way of analysis allows for analysis on the now smallest scale, while upgrading 

to a higher scale should be possible with the use of Cyclomedia's mobile mappers. 

Lee (2013) analysed and described the properties that heavily affect the water 

retention capacity of urban soils. She identified six parameters that affect the 

water retention capabilities: 

1. Surface cover void ratio (water-penetrable surface area reduced by siltation 

over time).  

2. Surface material (affecting adsorption). 

3. Surface roughness (including soil crusting, affecting flow resistance and 

overall SIC). 

4. Subsurface hydraulic conductivity, where the sub-grade layer with the 

lowest conductivity is limiting. 

5. Subsurface compaction (measured by bulk density or void ratio and 

indicated by use and age relationships). 

6. Subsurface antecedent soil moisture, or how wet is the soil already. 

 

Thereby, the fluid viscosity, the hydraulic gradient and temperature also play a 

major role in how the water interacts with the earth’s surface. 
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The current used technique is inaccurate as the information is derived from 

topographical maps. Thereby, the classes that are currently used are mostly not 

usable for SIC analysis, as they represent the use of a certain area, and not the 

material. The parameters that we expect can be calculated by LIDAR data are: the 

surface material including the surface cover void ratio and the surface roughness. 

Even with LiDAR, not all the needed information can be extracted for accurate SIC 

analysis, but it is an improvement as the former techniques were less precise and 

less sufficient.  

The scale of the analysis will, in first place, be kept small. Extending the technique 

to higher scales should be possible. Thereby, the research will in the first place be 

limited to surface material detection. Although vegetation, like trees and bushes, 

plays a major role in SIC analysis, non-ground vegetation will not be mapped in 

this research. 
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Chapter 3: Literature overview 

1. Point Cloud Data Acquisition 

Laser scanning is an emerging technology in the field of surveying that provides 

“rapid and detailed acquisition of a surface in terms of a set of points on that 

surface, the so called point cloud” (Shekhar and Xiong, 2008). The systems that 

are used to acquire the point clouds use non-contact techniques. Point clouds can 

be obtained to describe surfaces both on land and offshore.  

 

1.1. Laser scanning techniques 

The two ways for acquiring a point cloud is light transit time estimation and 

triangulation (Vosselman and Maas, 2010). A light wave travels through a specific 

medium in a given velocity. For this reason, the time difference of the light 

travelling from the source sensor to the reflective surface and back is good 

estimator of the distance measurement. The systems that utilize this concept are 

known as time-of-flight systems. It is also possible to use phase measurement 

techniques as an indirect measure of the time-of-flight. The second way is 

triangulation. This method utilises the cosine law by emitting a laser beam on a 

reflective surface and observing the position of this beam from an observation 

point (usually a camera) at a known distance. In the figure provided by (Vosselman 

and Maas, 2010) the previous techniques are schematically presented in Figure 1. 

Each one of these techniques have their own trade-offs, advantages and costs. 

 

 
Figure 1 Scanning Techniques Left: Time-of-flight, Right: Triangulation  

Source: Vosselman and Maas, 2010 

 

1.2. Image based techniques 

Another point cloud acquisition technique emerging in the last decade is generating 

dense point clouds out of images. This image-based point cloud generation is 

based on stereo photogrammetry which compares to the human vision and the 

principle of parallax. If a point is observed by different viewpoints in different 

images, the three-dimensional position of the point can be then computed. This 

gave emerge to "Structure-from-motion" (Westoby et al., 2012) a low-cost 

photogrammetric method that generates 3D point clouds by without any a-priori 

knowledge of the camera calibration and position. All the parameters are calculated 
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by image matching techniques. The object can finally be positioned in space by 

applying a 3D similarity transformation using Ground Control Points (GCPs). This 

is achieved by acquiring multiple overlapping images (Figure 2) of the feature of 

interest. This process has some advantages compared to the LiDAR technique in 

that it captures the colour and thus the point cloud is provided with context. 

Several projects have utilised this technique including Photo-tourism (Snavely et 

al., 2006), documentation of monuments etc. Several open source 

implementations exist like Bundler (Snavely et al., 2006), VisualSFM (Wu, 2013), 

but also several commercial software have been developed e.g. Agisoft PhotoScan, 

Pix4D, 123D Catch etc.  

 

 
Figure 2 Structure from motion; multiple overlapping images 

Source:   Westoby et al., 2012 

 

1.3. Acquisition methods 

The acquisition of points can be performed with the following methods: 

 Tachymetry: This method does not provide point clouds in the sense defined 

before but with this technique points of interest are measured. The accuracy 

provided is high.  

 Terrestrial Laser Scanning: If a dense and accurate point cloud has to be 

obtained for a small area, this method is the most appropriate.  In order to 

cover the whole area defined, multiple scans might need to take place. 

 Mobile Mapping: This technique is mostly used for larger areas. Laser 

scanners and cameras with the combination of GPS and INS systems are 

mounted on cars which obtain data from highways and roads. The data from 

the mobile mapping can be acquired in two modes (Vosselman and Maas, 

2010, p. 293): the stop-and-go mode where the vehicle makes short stops 

to scan the area, and the on-the-fly mode where the vehicle obtains the 

data without stopping.  

 Airborne Laser Scanning: This technique is done from airplanes or 

helicopters which are mounted with a laser scanner system that measures 

the distance between the scanner and the ground and a GPS and INS system 

which acquires the position and orientation of the aircraft. This method is 

used to acquire Digital Elevation Models (DEM). 
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2. Non-ground filtering 

 

The different data that is captured by the laser scanning or image based method 

include buildings, vegetation, city furniture, bare ground etc. Especially bare 

ground identification and thus non- ground points filtering has been a quite difficult 

task (Zhang et al., 2003). Different concepts for extracting the bare ground points 

have been investigated through the years. In Sithole and Vosselman (2004), four 

different filtering concepts for airborne methods have been compared: Slope 

based, block minimum, surface based filters and segmentation algorithms. Since 

many algorithms have been developed, choosing the one that suits our needs can 

be rather challenging. According to (Korzeniowska et al., 2014) the decision for 

choosing the right algorithm is based on processing time, the complexity of 

adjusting the different parameters, and the verification of the accuracy of the final 

result. In the next section, the different filtering methods available in commercial 

and open source software will be evaluated in relation to the Synthesis Project 

requirements. 

 

2.1. Point Data Abstraction Library (PDAL) 

The PDAL is a library suitable for reading, manipulating and writing point cloud 

data (Butler and Gerlek). PDAL in its capabilities provides a bridge to the Point 

Cloud Library (PCL) by providing processing pipelines. To use the PCL the user 

must have installed both PDAL and PCL. So, taking advantage of the command-

line capabilities of PDAL, the progressive morphological filter by Zhang et al. 

(2003) is tested. The algorithm detects non-ground measurements from LIDAR 

data by gradually increasing the window sizes of morphological filters and by using 

an elevation difference threshold that depends on the elevation variation of the 

specific terrain being filtered. 

 

2.2. LAStools 

LAStools by Martin Isenburg is “a collection of highly-efficient, scriptable tools with 

multi-core batching that process LAS, compressed LAZ, Terrasolid BIN, ESRI 

Shapefiles, and ASCII” (LASTools, Accessed on 18/09/2015). In the collection of 

LAStools, lasground is contained. Lasground is a tool for bare earth extraction. It 

belongs to the method of progressive densification (Pfeifer and Mandlburger, 2009) 

and specifically is a variation of the algorithm developed by Axelsson (2000). 

According to the algorithm, the bare ground is identified by progressively 

densifying a sparse TIN with the laser point cloud. For a point to be classified as 

bare ground, it must be within a certain threshold of a minimum distance from the 

triangle it is contained in and the angle relative to the triangle (Figure 3).  
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Figure 3 Schematic overview of the parameters taken into consideration by the algorithm 

of Axelsson 

 

2.3. Multiscale Curvature Algorithm 

The Multiscale Curvature Algorithm for Classifying Discrete Return LiDAR in 

Forested Environments (Evans and Hudak, 2007). According to the paper, this 

algorithm was developed, and is therefore best fit for forested areas. 

 

3. Point cloud indexing 

Spatial indexing has always been an issue for data accessing and querying, even 

within the 2D space. A spatial index is used to efficiently perform a spatial 

selection. Not having an index means a sequential traversal of all the data within 

a file or database in order to check a spatial criterion (van Oosterom, 1999, p. 

385). When working with large amounts of data, as in the case of point clouds, 

this is inefficient and requires a lot of processing power and time.  

The kD-tree, a main memory data structure, is a first option for the indexing of 

point clouds (van Oosterom, 1999, p. 386). A kD-tree can store points of any 

dimension K. A 2-dimensional example is shown in Figure 4. The kD-tree 

recursively divides the space using a root-leaf structure. The root corresponds to 

the complete spatial area and the leafs represent the resulting areas of the split. 

If an area is not split any further it becomes an end-leaf. In turns, the area is split 

on the X- and Y- axis. For the 3D case the Z-axis is also included.  

Two main variants of the kD-tree exist. In the first case a point from the dataset 

is used to split the area, resulting in a tree where every internal node represents 

a point, see Figure 4. On the left. There are different ways of constructing this type 

of kD-tree because we can use any node and any axis for splitting. Another option 

is to split the space, not on a point, but where the division results in two point sets 

with the same amount of points (approximately). This is also known as an adaptive 

kD-tree (Figure 4, right). The advantage is that the tree stays balanced. A balanced 

tree can be build faster and is more efficient, although it is hard to keep the tree 

balanced while inserting points (van Oosterom, 1999, p. 386). A third possibility 

is to split the area on points within the dataset, but in addition calculate the median 

of the points for splitting. This will also result in a balanced tree, but it will take 

more time to build than when random points are chosen. 
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Figure 4 The kD-tree (left) and the adaptive kD-tree (right) 

Source: van Oosterom 1999, (p. 386) 

 

In the 2-dimensional space quadtrees and R-trees are mostly implemented and 

used (van Oosterom, 1999, pp. 391, 394). An R-tree groups features hierarchically 

according to their location. This is done using bounding boxes. A Quadtree on the 

other hand, recursively divides the space in four quadrants. The area’s in a 

quadtree are then enumerated in a fixed order (NW, NE, SE, SW for example), and 

then represented in the tree. If all of these areas uniformly represent the same 

value, or satisfy a certain condition like a maximum amount of points, the area is 

not subdivided again and the leaf becomes a node.  

 

 
Figure 5 Example of an octree for the indexing of a point cloud (Own illustration) 

 

The 3d version of the quadtree is called the octree. It adds an extra dimension z, 

which is the height. It is a commonly used spatial index for storing data of 3-

dimensions in point cloud processing. An octree subdivides a 3d volume (R3), the 

bounding box of the point cloud, into eight disjoint “cubes” (octants) filled with 

points, over and over again until each “cube” consists a defined number, or less, 

of points. The root of the octee is the “cubic” which holds all points of the point 

cloud. The leaves, or endnotes, of the tree hold a maximum predefined number of 

points. See Figure 5. 
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Just like the KD-tree, the octree and the quadtree are based on the root and leaf 

structure. See Figure 6. Using an octree is efficient for resolving multiple issues. 

An octree can store a raw point cloud, it ought to be fast in performing operations 

and is memory efficient (Elseberg et al., 2011).   

 

Performing spatial operations is very similar for the quadtree, octree and kD-tree: 

Starting at the root, it is recursively checked if a node (subspace) intersects with 

the search range. If there is no intersection the leaf is no longer traversed. For the 

kD-tree this means that every intersecting point is reported. For the adaptive kD-

tree, quadtree and octree this means that only in the intersecting end-leafs it has 

to be checked if points are included in the search range (van Oosterom, 1999, p. 

392). 

 

 
Figure 6 The octree  

Source: Mäntylä, 1987 

 

 

4. Nearest Neighbour Search 

A point cloud is just a collection of points. However, a lot of information can be 

derived from a point cloud by applying certain algorithms. Most of these operations 

and algorithms that are performed on a point cloud, like: pattern recognition, 

object recognition, data-clustering, function approximation and vector 

quantization, are based on nearest neighbours information (Lai et al., 2007). As 

explained before, point clouds are huge datasets and therefore often decomposed 

in subdivisions (indexing). Nearest neighbour searches are therefore often based 

on these decompositions of the underlying space (Sankaranarayanan et al., 2007). 

Different methods for the decomposition of space and several options in calculating 

nearest neighbours lead to several possible combinations.  

Three variants of nearest neighbour search can be distinguished, whereby a 

different number of neighbour-points are selected:  The K-nearest neighbours 

search, the range based search and the K-nearest search within a certain radius 

(Elseberg et al., 2012, Sankaranarayanan et al., 2007). 

 

4.1. K -nearest search 

Searching for K-nearest neighbours within a point cloud means that for every point 

the k-nearest neighbours are found. K, the amount of neighbours that has to be 
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found depends on the application. Finding the k-nearest neighbours is useful when 

a certain amount of neighbours is required for each point of the point cloud 

(Elseberg et al., 2012, Sankaranarayanan et al., 2007). 

 

4.2. Range based search 

The range based search means that all neighbours within a certain radius 

for a query point  are retrieved:  

 

4.3. kNN and radius search combination 

A combination of the two techniques can result in a retrieval of the k Nearest 

Neighbours within a certain radius (Elseberg et al., 2012). 

Most of the libraries employ the kD-tree for nearest neighbour searches (Elseberg 

et al., 2012). kD-trees avoid unnecessary computations by making use of a tree 

structure, whereby, if traversing the tree, a direction is given as a Boolean until 

the subdivision of space intersects with the predefined sphere. (Behley et al., 

Kammerl and Muja, 2011). An example of a kD-tree radius search is depicted in 

Figure 8. 

 

 
Figure 7 KD-tree radius search 

Source: Kammerl and Muja, 2011 

 

A nearest neighbour search can also be done by an octree. It allows a fast indexing 

and therefore it is easy to traverse quickly to the deepest 

nodes  (Sankaranarayanan et al., 2007). Starting at the root, the octree is 

recursively traversed to investigate if octants overlap a search radius/sphere. Only 

when intersection occurs, the leaf is further traversed. For each intersecting end 

node, all points need to be tested against the search range (sphere) (Behley et al., 

Kammerl and Muja, 2011).  Figure 9 depicts a quadtree search but the same 

principle applies.  

 
Figure 8  Principle of octree radius search 

Source: Kammerl and Muja, 2011 
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5. 3D features characteristics  

Point clouds consist of millions of points distributed on the scene. Information 

about a specific point thus does not provide much information on its own. However, 

if a neighbourhood of points is investigated much can be said about the geometrical 

patterns. The space that is taken around a point is called a neighbourhood and the 

points around it, its k-neighbours (Figure 9).  

 

 
Figure 9 A neighbourhood around a point in a point cloud 

Source: Rusu, 2010 

 

5.1. Principal Component Analysis 

Dealing with data that have more than 2D can be rather difficult for the human 

brain to interpret. This is also the case for 3D data, like point clouds. In order to 

solve this deficiency of the human brain, an alternative should be seeked which is 

for example to represent the 3D data to 2D, and thus drop a dimension. Principal 

Component Analysis is a classical technique for finding low-dimensional 

representations which are linear projections of the original interrelated data.  

 

The transformation to this lower dimension is performed by transforming the 

original correlated data to a different set of variables, called the principal 

components, which are uncorrelated and in which the first variable retain most of 

the variation present at the original data. The computation of those principal 

components reduces the whole problem to an eigenvalue-eigenvector problem for 

a symmetric matrix (Jolliffe, 2002). For points in 2D space, PCA finds the best 

approximating line (Figure 10, left) that minimises the square distances. For points 

in 3D space PCA finds the best approximating space (Figure 10, right). 

 

5.2. Estimating normals 

The orientation of a local neighbourhood in the whole scene is a very important 

estimate in many applications like light shading and visual effects (Rusu R. B., 

2010). This orientation is found by determining the normal of the plane that best 

describes the neighbourhood. 

In three-dimensional geometry a normal is a vector that is perpendicular to the 

tangent plane of a surface given a point P at that surface. Calculating the normals 

of a surface is most of the times a trivial calculation. In contrast to this case, in 

point clouds, because of the fact that they are an approximation of a surface, the 

calculation of the normals is not a straightforward method. Two ways that this 

information can be acquired are (Point Cloud Library (PCL)): 
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 Create a surface from the acquired point cloud using meshes and then obtain 

the surface normal from the mesh.  

 Use a neighbourhood to infer the surface normals, which is a least squares 

plane fitting estimation problem (Figure 10). 

 

 
Figure 10 PCA finds an orthogonal basis that best represents a given data set 

Source: Olga Sorkine, 2013 

 

Since explorative point clouds investigate methods to work with point cloud 

without making a model as an intermediate step, the second option is explored for 

the rest of the project.  

 

An insight into the local characteristics of the neighbourhoods are given from the 

Covariance matrices, which mathematically describe how neighbourhoods 

dispersed around their centroid. Given a point in a certain 

neighbourhood in the point cloud, the centroid of of the nearest neighbors is 

computed as .The calculation of the normal is then based on the analysis 

of the eigenvalues and the eigenvectors of the covariance matrix 

of the neighbourhood , 

which is described as: , 

, Where is the number of 

neighbouring points of 𝑝𝑖 , 𝜆𝑗 is the -th eigenvalue of the covariance matrix, and 

the -th eigenvector (Rusu R. B., 2010). Finally, the plane normal n is the 

eigenvector of  with the smallest eigenvalue . 

 

5.3. General direction of the normals   

The importance of the normals was mentioned in the previous section. However, 

the PCA method has no mathematical method for solving the sign of them. 

Therefore, the signs assigned are not consistent over a point cloud (Rusu, 2010). 

Rusu (2010) in his work mentions that if the viewpoint of the point cloud is known 
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this problem becomes trivial, as we consistency can be checked by the checking if 

the calculated normal satisfies the following:  

 
If this is not the case, then just changing the sign to the opposite solves the 

problem. This is depicted in Figure 11.   

 

 
Figure 11 Left, before changing the general direction. Right: after changing the general 

direction. Source: Olga Sorkine, 2013 

 

The methodology of these sections is summarised in the following pseudocode. 

 
For each point in the point cloud 

Find k-nearest neighbours 
Find the centroid of the neighbourhood 
Calculate 3x3 the covariance matrix  of the neighbourhood 
Calculate the eigenvalues from the covariance 
Find the eigenvector with the smallest eigenvalue (normal) 
Calculate the vector from the point to the view point and call it dir 
If the dot product of the normal with the dir is <0: 

Change the sign of the normal 

 

6. Geometrical local surface properties 

The eigenvalues calculated with the PCA method are used to infer different 

measures that describe a surface. Eigenvalues are thus used for feature extraction. 

The eigenvalues, defined as λ1,i,  λ2,i, λ3,i whereby λ1,I  ≥ λ2,I ≥ λ3,i  ≥ 0, are 

described as the two recent approaches in selecting individual neighbourhoods. 

Within these approaches 3 other main dimensionality features are described which 

can be used within the classification: linearity (Lλ,i), planarity (Pλ,i),  and scattering 

(Sλ,i) (Weinmanna et al., 2015). The other 3d features that are described in 

Weinmanna et al. (2015) are omnivariance (Oλ,i), anisotropy (Aλ,i), eigenentropy 

(Eλ,i), the sum of the eigenvalues (∑λ,i),  and change of curvature(Cλ,i). These 

features can be found by using the normalized eigenvalues: 𝑒𝑖 =
𝜆𝑖

∑𝜆⁄   (Weinmann 

et al., 2014). The description of each property is given in the following lines. 

 

 Curvature: “For a plane, the curvature is the absolute value of the rate of 

change of the angle of inclination of the tangent line with respect to distance 

along the curve” (James & James, 1992). The curvature using PCA can be 
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calculated by the ratio between the minimum eigenvalue and the sum of the 

eigenvalues. This approximates the change of curvature in the 

neighborhood of a point p (Rusu, 2010). 

 Linearity: The feature of linearity is used to investigate whether a set of 

points can be modeled by a 3D line. An example where this characteristic 

could be used is for the extraction of powerlines (Waldhauser, et. al., 2014). 

 Planarity: The planarity feature is used to describe the smoothness of a 

surface (Waldhauser, et. al., 2014). 

 Scattering: The feature of scattering investigates the sphericity of a 

neighbourhood. 

 Omnivariance: The feature of omnivariance describes how a neighbourhood 

of points spread inhomogeneously across a 3D volume (Waldhauser, et. al., 

2014).  

 Anisotropy: Anisotropy is a measure which is higher if the eigenvectors differ 

a lot. Anisotropic operations have the potential to discriminate between 

orientated and non-orientated objects, as oriented objects have a higher 

anisotropy (Oude Elberink and Maas, 2000).  

 Eigenentropy: The feature of eigenentropy a provides a measure of the 

order or disorder of 3D points within the covariance ellipsoid (Weinmann, 

et. al., 2014) 

 Sum of eigenvalues: The sum of eigenvalues describes the total variation 

which is the sum of the squared distances of the points of a neighbourhood 

from their centroid (Jolliffe, 1986). 

 

The mathematical expression of the previous properties in terms of the three 

eigenvalues from PCA is given in Figure 12. 

 
Figure 12 Local Surface Properties calculated from the eigenvalues 

Source: Weinmann et al., (2014) 

 

 

7. Colour information 

Colour is an important property in recognizing and distinguishing different objects. 

The human eye is able to sense and distinguish colour by a group of cells, called 



37 | P a g e  
 

cones. Those cones are located at the back of the retina and each one of them is 

sensitive to a different wavelength: red, green and blue. This kind of vision is called 

trichromatic vision. Since colour description is subjective for every human, 

scientists have developed mathematical systems for describing colour, called 

colour spaces. Some of those systems are based on the human colour perception 

capabilities and others on the physical properties of colour for example the 

intensity values.  

 

Acquiring point clouds can be done with or without colour. Points within a coloured 

point cloud hold their colour in the three dimensions red, green and blue (RGB) 

colour model. Therefore, exploring the different colour spaces is an important part 

of this research.  

 

7.1. Additive and subtractive colour space 

Additive colour scheme is based on the fact that colour is created by mixing (thus 

adding) different light of a particular wavelength emitted from differently coloured 

light sources. This is opposed to the subtractive colours where light is removed 

from the various ranges of the visible spectrum (Choudhury, 2014). The additive 

and subtractive colours are explained in Figure 13. 

 
Figure 13 Left: Additive colour space, Right: Subtractive colour space 

 

The additive colours or the RGB colour space is dependent on the intensity of colour 

and can be represented in a 3d cube (Cheng et al, 2001; Sapkota, 2008; Sareen 

et al, 2010;  (Figure 14). Each corner point represents a value of red, green and 

blue components. All colours can be created by a unique combination of these 

three “main” colours. 

 

 
Figure 14 RGB colour space in 3d cube  
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Source: Sareen et al, 2010 

 

RGB colours are mainly used in display devices, it is therefore suitable for colour 

display. RGB though is according to Cheng et al (2001), not suitable for colour 

segmentation and analysis because there is a very high correlation among the red, 

green and blue components therefore Cheng et al (2001) mentioned that it is 

impossible to see if two or more colours are similar based on their distance in RGB 

space.  

 

Since the RGB colour values are not profound suitable for segmentation based on 

colour another colour space which facilitates easier automated comparison and 

matching algorithm’s, an alternative for the RGB model, is necessary.  

 

7.2. HSV colour space 

An alternative to the RGB model is the HSV data model. HSV stands for: hue, 

saturation and value. HSV is a cylindrical model (Figure 15), whereby “hue” 

corresponds to the angle around central vertical axis, the distance from the axis 

to the side corresponds to “saturation” and the distance along the axis corresponds 

to lightness, or “value”. This colour space facilitates the easier comparison of 

colour, as individual colours can be distinguished by combining 2 value ranges. 

 

 
Figure 15 The HSV colour space in a cylindrical model 

Source: http://bit.ly/1PeK7jx 

 

The hue represents basic colours, and is determined by the dominant wavelength 

in the spectral distribution of light wavelengths. The saturation is a measure of the 

purity of the colour, and signifies the amount of white light mixed with the hue. 

The value represents the brightness of a certain colour. The colour table of the 

HSV colour model is show in Table 1. This table shows that, for example, black can 

be recognized by the “value” and red, green and blue by combining “hue” and 

“saturation”. 

In order to create a HSV value for every point from an RGB value, the following 

formula is used: 
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Table 1 The colour table of the HSV colour model 

source: mehrarodgers.files.wordpress.com 

 
 

 

7.3. HSI colour space 

The HSI is a color space that stands for hue (H), saturation (S), and intensity (I). 

It is a system that is more intuitive to the way the human eye perceives colour 

(Cheng et al, 2001). This makes this colour space very good for image processing 

techniques. The way the HSI colour space represents colour is presented in Figure 

16 Cheng et al (2001) argues that in a segmentation algorithm the hue component 

can be the only parameter applied. This is especially useful when the scene has 

non-uniform illumination levels such as shades. Besides this, they argue, that it is 

computationally less intensive than the 3D RGB space. 

 
Figure 16 The HSI colour space 
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Source: http://bit.ly/1PeLej0 

 

In order to create a HSI value for every point from an RGB value, the following 

formula is used: 

 
 

7.4. CIE spaces 

The CIE is a system that represents colour according to the human visible system 

and is thus based on additive colours.  The colours in this space are specified by 

performing measurements with a spectrophotometer. Any colour in this colour 

space is specified by three values (X,Y,Z), where Y represents luminance. There 

are two colour spaces based on CIE, the CIELuv and CIELab. The conversion from 

RGB to CIEXYZ is a linear transformation:  

 

 
where M is a 3x3 matrix depending on the RGB colour space that is currently used. 

The most common RGB matrices are listed in Rucelindbloom (s.a.). From this 

equation the CIELuv and CIELab can be then be calculated.  

 

For CIELab this is done with the following equation (Ford & Roberts, 1998), where 

X0,Y0 and Z0 are the colours of standard white or illuminant. 

 
 

In this case the white is considered as (255,255,255) which corresponds to the 

d65 illuminant and the white of the average daylight. This illuminant is mostly used 

in the sRGB color space. 

 

http://chart.googleapis.com/chart?chs=60&cht=tx&chl=$/left( /begin{matrix}
   X  //
   Y  //
   Z  //
/end{matrix} /right)%3DM/cdot /left( /begin{matrix}
   R  //
   G  //
   B  //
/end{matrix} /right)$


41 | P a g e  
 

For CIELuv the transformation is done with the following equation (Ford & Roberts, 

1998), where X0,u0 and v0 are the colours of standard white. 

 

 

 
 

For segmentation algorithms the CIE spaces have the advantage that the 

differences between colours can be assessed as easily as calculating the euclidean 

distance (Luccheseyz & Mitray, 2001).  
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8. Segmentation methods 

A point cloud is a rich source of information. However, extracting information from 

it can be rather challenging. Therefore, in one of the first steps a point cloud 

segmentation process needs to take place. The idea behind point cloud 

segmentation is to cluster points that share common characteristics into 

homogeneous regions. The segmentation of point clouds originates from the 

segmentation of 2D images, which has been studied and understood for many 

decades. Segmenting point clouds has been rather difficult. Therefore, many 

algorithms have been developed the last years. In the next sections, some of the 

most commonly used algorithms are presented.  

 

A taxonomy of 3D point cloud segmentation techniques is described in Nguyen & 

Le (2013): 1. Edge based methods, 2. Region based methods, 3. Attributes based 

methods, 4. Model based methods and 5. Graph based methods. Edge based 

methods are used to detect boundaries in point clouds and from those boundaries 

to segment regions. Region based methods take into advantage of the 

neighbourhood of the points, in order to divide the point cloud into regions of 

similar properties. Attribute based methods segment the point cloud by taking into 

account the attributes of the point cloud. Model based techniques use geometrical 

shapes like cones, cylinders, planes, spheres and they group points according to 

these. The points that belong to one particular shape are part of one segment. 

Finally, graph based methods where a point cloud is considered as a graph in which 

the vertices are the point cloud points and the edges connect pairs of vertices. In 

the following sections the most well-known segmentation methods will be shortly 

described. 

8.1. 3D Hough transform 

The 3D Hough transform (Vosselman & Dijkman, 2001) belongs to the attribute 

based segmentation methods and detects planar surfaces in point clouds. In the 

3D Hough transform every 3D point defines a surface. Coplanar points are then 

defined by checking whether the surfaces intersect at a point. The plane is then 

defined by the coordinates of that intersection point. The next step includes 

verifying that the points belong to the neighbourhood. This can be done by the k-

NN algorithm or by using voxels. Finally, the plane parameters are optimized by 

performing least squares adjustment. Many variants of this algorithms have been 

developed through the years. An overview of those variants can be found in 

Borrmann, et al. (2011). The most apparent disadvantage of this algorithm is the 

fact that not all objects are planar. 

 

8.2. Random sample consensus (RANSAC) 

The RANSAC algorithm is a general algorithm developed for computer vision by 

Bolles & Fischler (1981) that fits models to the data, even when there are gross 

errors present. One of the use of the RANSAC algorithm is on point cloud 

segmentation. The algorithm works by using minimal sets which is the minimum 

number of points that are needed to to approximate a shape. This shape is then 

tested with the rest of the points to determine how many of them are described 

well by this shape. The algorithm is then repeated until the shape describes an 
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acceptable amount of points and then the rest of points are tested from the 

beginning (Schnabel, et al., 2007). The advantages of this algorithm lie in its 

simplicity, extensibility and that it can be performed to a dataset containing a lot 

of noise. 

 

8.3. Region Growing 

Region growing belongs to the surface based segmentation techniques. This 

method tries to group points that satisfy a spatial proximity characteristic and a 

similarity criterion. The region growing algorithm is divided into two steps: first, 

detection of a seed and second, the actual growing.  

 

A seed is a point that it is known that it belongs to a segment. The seed detection 

step tries to look for nearby points that belong to the same plane. Whether two 

points belong to the same plane can be realised by comparing the smoothness, 

i.e. the curvature. This is the method presented in Rabbani, et al., (2006). The 

authors used the surface normals and the approximation of the curvature by the 

residuals. The pseudocode of the method, which is also used by the point cloud 

library is as follows: 

 
Sort the point cloud according to the curvature value and initialise an Available points 
list. 
Until this available point list is empty: 
 initialise a region and a seeds set 
 Take the point P with the minimum curvature 

Append the point P at the seeds set and the region set 
Remove point P from the available points 
For every seed, find its neighbours: 
 remove the current seed form the seed list 

  For each of the neighbours 
if the angle between the normal of the seed and that point is less than 
a threshold value.  

  add the point to the current region 
if the neighbours curvature value is less than a threshold,  

add the point to the list of seeds 
If the seeds set has no more seeds, the region has grown and the algorithm is repeated from 

the beginning. 

 

The algorithm presented controls the degree of segmentation by imposing two 

different thresholds: the curvature threshold and the angle threshold. It is up to 

the user to define the thresholds according to the structure of the scene. This, 

actually, is the disadvantage of the algorithm. It needs to be fine-tuned each time. 

Automatic estimation of the parameters is yet not possible.  

 

Apart from purely geometrical information to be used as a similarity measure, like 

the normals, also, non-geometrical characteristics can be used. Nowadays, point 

clouds come with RGB colours and, therefore, colour similarity could be used to as 

a decision parameter to whether a point belongs to a region or not. Zhana et al., 

(2009) adjusted the algorithm of Rabbani, et al., (2006) to use colour similarity 

instead of normals and curvature. The roughly segmented regions are then merged 

into bigger ones by, again, using colour similarity as a measure. The colour space 

that was used to calculate the colourimetrical distance was RGB.  As with all the 
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region growing algorithms, the thresholds need to be adjusted to the scene and, 

for this reason, one fits all threshold has yet to be defined. 

 

9. Classification methods 

Once the segmentation is done, features have been calculated, the next step is 

the classification.  

 

Apart from the quality of the segments from the segmentation, the classification 

algorithm used for labelling the segments, is important for the accuracy of the 

different surfaces detection. The performance of a classifier is data and site 

specific, it is therefore critical to identify beforehand the appropriate classifier for 

the task (Zang et al. 2013).   

 

Different workflows in the process of feature extraction and machine learning have 

extensively been researched. Although, most of these works focus on the different, 

separate steps in the feature extraction of point clouds, and not on the whole 

workflow (Weinmanna et al., 2015). Thereby, a lot of research focusses on object 

recognition and feature extraction, and less on the classification, semantic labelling 

of individual points or regions (Xiong et al., 2011, Shapovalov et al., 2010, Hmida 

et al., 2013, Vosselman and Maas, 2010). Even though point cloud classification is 

to be an interesting topic in the field of data processing, because it is a precondition 

of many applications (Zhang et al., 2013). 

 

There exist two basic alternatives for classifying a point cloud (Rusu and Cousins; 

Ramiya et al., 2014): 

1. Define different classes of surface or object types and classify each point 

separately (point-based). 

2. Define different regions through segmentation and region growing based on 

geometric properties and then assign all points within a region to one class 

(region-based). 

 

Both approaches have their advantages and disadvantages. But even though the 

point-based classification might outperform the region-based classification (Rusu 

and Cousins), the technique most used is the region-based classification because 

it gives more realistic results, has better quality through incorporating context 

information from neighbours, it needs less manual labor and it is less time 

consuming (Ramiya et al., 2014). 

 

In Weinmann et al. (2015) and Weinmann et al. (2014) it is argued that point 

cloud classification approaches in literature mainly consider the different 

components independently from each other and that it would be most desirable to 

use the components of neighbourhood search, feature extraction and classification 

in conjunction for an improved result. 

 

9.1. 3d feature extraction and selection 
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Geometric features are mainly used for assigning a semantic label, a class, to 

individual points or points within a region. Besides geometric features also colour 

values are used for classification. Chapter 5 and 6 explain the mainly used 3d 

geometric features for classification, the features used in this project and the 

chapters give examples on how to calculate those values, geometrical and colour. 

 

9.2. Classification approaches 

Once the usable geometrical and colour values are calculated a classification of 

points within the point cloud can be done through several approaches (Weinmann 

et al., 2014).  

 

9.2.1. Point-based classification methods 

Point-based classification methods are done through analyzing features of one 

single point of a point cloud inherent to the point cloud such as distance from the 

ground or planarity. 

Algorithms belong to the point-based classifications are the labelling algorithm and 

the multi-scale curvature classification (Zhang et al., 2013). These classification 

methods are in general and also in this case mostly done on elevation, are time 

consuming and need a lot of human interaction (Ramiya et al., 2014). The 

labelling algorithm - Labels each point based on the elevation  and slope. the 

elevation and slope of each class needs to be mathematically defined from training 

data (Sahn and Sampath, 2005). The multi-scale curvature classification 

(MCC) - Is an algorithm that operates through assigning classes to points based 

on their curvature value. Points belong to different classes when one point exceeds 

a certain threshold and another point does not (Tinkham et al., 2011).   

 

9.2.2. Region-based classification methods 

Region-based classification algorithms are to classify pre-defined regions, 

segments, or are to classify points while instantly growing a region with the points 

with the same geometrical properties. A region-based classification is especially 

effective on urban area’s where many edges and thus different segments are found 

(Zhang et al., 2013). Several region-based classification algorithms which classify 

points and create regions are the Associative Markov Networks and the Conditional 

Random Fields. Region-based classification methods which classify pre-defined 

segments are the K-Nearest Neighbour Classifier, Naive Bayes and the Support 

Vector Machine. Also the assignment of segments to classes can be done through 

a decision tree or bayesian probability. 

 

The Associative Markov Networks (AMN) - is a graphical model for point cloud 

classification which models the spatial interactions within the point cloud. The 

associative markov network is an undirected graph in which the nodes are 

represented by random variables . An edge defines the interaction 

between variables of surrounding nodes. These  variables are complementary to 

the predefined classes, labels. Each node and each edge has a potential, these 

potentials reveal that for a given point/segment some classes, some labels, are 

more likely to be assigned that others (numerical score). The conditional 

probability is expressed as:  

http://www.codecogs.com/eqnedit.php?latex=N
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(Wang et al., 2012, Kabali et al.,). An disadvantage of the AMN is that it is 

restricted through the assumption that features of nodes are independent from 

conditions of other nodes.  

 

The Conditional Random Fields (CRF) - Provides a framework for classification 

represented by a graph of nodes and edges. Each point within a point cloud can 

be considered a node, edges link adjacent nodes. in the case of labelling points of 

a point cloud each 3d point will be assigned a label based on the training data. The 

posterior of the CRF is modelled by: 

 
Where , which is the neighbourhood of node , is represented by the edges 

linked to this node. The potential is computed for each node and each edge by: 

and . The potential of each node links the data to the class 

labels where the potential of each edge represents the dependencies of a node on 

its adjacent nodes.   turns the potentials into probability values.  (Niemeyer 

et al., 2012). 

 

The K-Nearest Neighbour classifier (KNNC) - Means finding the nearest 

neighbour of a known point in instance space and labelling the unknown instance 

with the same class label as the known point. This algorithm does not make 

assumptions on the distribution of the data. Training data for a KNNC needs to 

consist of a set of vectors, points, which have certain geometrical properties and 

colour values and class labels associated with these vectors, points. The testing 

data is unlabelled data. A simple scenario: is the point to be labelled. the closest 

point to is point which has the label of Grass. If point has the same geometrical 

properties as point it will get the same label als point ; Grass (Sutton, 2012).  

The Naive Bayes - Is a simple technique based on Bayes theorem. It is a 

classification with strong autonomous assumptions between features. It does not 

consider possible correlations between features. The Naive Bayes is a probabilistic 

classifier that finds for every point the probability to be classified in a certain class, 

based on the prior and the likelihood. It only requires a small amount of training 

data to estimate parameters necessary for the classification.   

To predict the class of an input sample (a point cloud segment)   

with certain attributes(features) the largest posterior probability is 

calculated: 

 
Then the independent condition is written as:  

 
These formulas estimate the probability of a class and attributes for a certain input 

sample. The predicted score of a certain class is derived from:  

http://www.codecogs.com/eqnedit.php?latex=x
http://www.codecogs.com/eqnedit.php?latex=Ni
http://www.codecogs.com/eqnedit.php?latex=ni
http://www.codecogs.com/eqnedit.php?latex=Ai/left(X,yi/right)
http://www.codecogs.com/eqnedit.php?latex=Iij/left(X,yi,yj/right)
http://www.codecogs.com/eqnedit.php?latex=Z/left(x/right)
http://www.codecogs.com/eqnedit.php?latex=x
http://www.codecogs.com/eqnedit.php?latex=y
http://www.codecogs.com/eqnedit.php?latex=x
http://www.codecogs.com/eqnedit.php?latex=y
http://www.codecogs.com/eqnedit.php?latex=y
http://www.codecogs.com/eqnedit.php?latex=x
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The result is determined by the class with the highest predicted score, a point 

cloud segment is labelled as the class with the highest predicted score for this 

segment (Wu and Lin, 2011).  

 

The Support Vector Machine (SVM) -  Is a widely used classification method 

within the remote sensing community which considers training samples 

where one sample belongs to two classes.  The 

training samples are non-linearly mapped to a high dimension feature space. The 

SVM finds a hyper-plane, a linear decision surface, which divides the set of training 

data in a way where all the points with the same label are on the same side of the 

hyper-plane. The idea is that the SVM finds the most optimal hyper-plane 

in a high dimensional feature space (Figure 17)(Cortes and Vapnik, 

1995; Samadzadegan et al.).  

 

 
Figure 17 Hyper-plane 

(Cristiani, 2001) 

 

The SVM is in general a linear classifier, but in order to classify non-linear data the 

solution can be to map the data into a feature space where they are linearly 

separable (Figure 18).  

 
Figure 18 Non-linear data in linear feature space 

(Critstiani, 2001) 

 

Around each hyper-plane a mistake bound, a margin, exist between the hyper-

plane and the nearest point (Figure 19)(Cristiani, 2001). This is used when more 

than one hyper-plane can fit between the different classes. The hyper-plane which 

leaves the maximum margin from both classes is set to be the optimal hyper-plane 

(Figure SX)(Cortes and Vapnik, 1995). 
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Figure 19 Left: Hyper-plane and margin, Right: finding the optimal Hyper plane     

(Cristiani, 2001)  

 

Furthermore, SVM’s operate in a kernel induced feature space. Important in a SVM 

is the kernel parameter, the effectiveness of the SVM depends on this selection of 

kernel, a soft margin parameter and the kernels parameter. This last parameter 

defines the structure of the high dimensional feature space. Usually these 

parameters are selected by trying a finite number of values and select those which 

provide the least error. A common choice is a gaussian kernel which has just one 

parameter . Each combination of a kernel parameter and a soft margin 

parameter is checked using cross validation. The classification then is done using 

the selected parameters (Cortes and vapnik, 1995; Samadzadegan et al.).  

 

Multiclass SVM: Since the SVM is a binary classification method but for remote 

sensing applications several classes are usually of interest. To solve this problem 

this multiclass problem is to be reduced to multiple binary classification problems. 

It is possible to build binary classifiers which divide the data between one label 

and the rest, as it is possible to build binary classifiers which divide the data 

between every pair of classes (one-versus-all and one-versus-one) (Figure 20). 

The one-versus-all method with an X amount of classes composes X SVM models 

which can categorize the samples into samples from one class and samples of the 

remaining classes (Samadzadegan et al.).   

 

 
Figure 20 Multiclass SVM with linear kernel 

 

The decision tree - Uses a tree as a predictive model, whereby observations of 

the geometrical values of a point cloud segment lead to the conclusion about this 

segment.  It uses a classification scheme to do this, a hierarchical structure that 

is accompanied by descriptive information. Algorithms to create a decision tree 

work top-down, where each geometrical or colour value separately and one by one 
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guides the point cloud segment through the scheme, eventually classifying it 

(Figure 21). The classification scheme gives the segment and its class a 

meaning.  (Rokach and Maimom).  

 

 
Figure 21 Decision Tree for point cloud classification 

 

The Bayesian probability - Is used to evaluate the probability of a hypothesis. 

The Bayesian probability specifies some prior probability, which is then updated in 

the light of new, relevant data (evidence), in our case geometrical properties of 

points and their surroundings. The Bayesian interpretation provides a standard, 

pre-defined set of procedures and formulae to perform this calculation (Wikipedia 

(3), 2015). In Bayesian probability, a weight is given to each variable (or attribute) 

and added up or multiplied by a pre-defined factor. The end score assigns the 

actual class to the pre-defined region, segment. 
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Chapter 4: Methodology 

1. Methodology 

This chapter will define the general research strategy that outlines the way in which 

this research is undertaken, also it will give requirements and parameters 

necessary for a successful end product. The type of processing that is needed is 

based on the process of how to get to the end product. This process is based on 

literature, the literature and the process is explained in the literature overview 

chapter. 

 

The processing of the point cloud begins with filtering and continues with indexing, 

segmentation, classification and labelling. All processing is as defined by the 

requirements of the project performed on the raw point cloud data. This means 

that no other geometries apart the points was used. For each step in the process 

of processing the raw point cloud requirements are set up which will be made clear 

in the next paragraphs.  

 

1.1. Point cloud acquisition and generation 

A point cloud of the faculty of architecture and its surroundings was planned to be 

acquired (Figure 22). This acquired point cloud is a product of the company 

Cyclomedia. Cyclomedia’s common products are cycloramas and a web-viewer to 

use. However, since recently Cyclomedia is exploring 3D geo-information and point 

clouds. The products they delivered to our team are two different kinds of point 

clouds, both acquired with the mobile device mounted on a car.  

 

The first point cloud, is a point cloud based on 360° high definition panorama 

images. The point cloud is obtained by a two-step approach. “First and initial point 

cloud is created by dense stereo matching based on a variation of the semi-global 

matching (SGM) in combination with Census transform and colour information. 

SGM uses pixel-wise matching (Hirschmüller, 2008). The point cloud is then 

filtered and turned into a triangle mesh using a method based on Labatut et al, 

(2007). Vertices from the resulting mesh are the points in the LAZ files” (Beers, 

2015). The accuracy of the obtained point cloud depends on the intersection angle 

and the accuracy of the panorama positioning. According to Beers (2015), 

Cyclomedia does not currently track accuracy information for each point in the 

pipeline. The processing time for the construction of this point cloud is 

approximately three hours. 

 

The second point cloud is from a prototype they recently developed, this point 

cloud is obtained by a LIDAR laser scanner. This new generation of Cyclomedia’s 

mobile mappers is equipped with the Velodyne HDL 32 lidar scanner, that has 32 

channels and catches 700,000 points per second with ± 2 cm accuracy. The Lidar 

scanner has a 360° horizontal field of view (Velodyne, 2015). The output of the 

device can be described as polar coordinates in 3D; 2 angles and a distance. By 

using the location and orientation of the IMU and the position derived with GNSS 

http://www.normalesup.org/~labatut/papers/iccv2007-efficient-multiview.pdf
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receivers, together with the relative position and orientation of the LiDAR device 

with respect to the IMU, the polar coordinates in the device frame can be 

transferred into a Cartesian world-frame. 

The Lidar point cloud does not contain colours in its raw format. In order to apply 

colour to the point cloud, the theoretical process is to “use the panorama closest 

to the LIDAR ray origin to colour the resulting point. There are a few additional 

rules to take the second or third best option if the point would be occluded by the 

recording vehicle itself. Otherwise, the algorithm currently makes no attempt to 

detect or mitigate the effects of occlusion. From this it is also clear that if the lidar 

points or origins are in the wrong location, the colouring can give the wrong 

results.” (Beers, 2015).  

 

Because 3D point clouds are still prototypes of Cyclomedia there is no cost 

indication of the acquisition. Both point clouds are delivered with colour, colour 

obtained from the high definition images. The only requirement that needs to be 

met for the acquisition of the point clouds is based on the weather. When raining 

the acquisition won’t be reliable, inaccurate, since water drops can reflect the laser 

which will give "floating" points, point that are not there in reality, in the point 

cloud. The point cloud was obtained on a day with rainy weather conditions due to 

the time constraints of the company.  

 

 
Figure 22 The data acquisition at the faculty of Architecture 

 

1.2. Point cloud pre-processing 

Both point clouds, in pieces delivered as different laz-files, contain points 

representing the whole faculty of architecture building and its surroundings. The 

research questions however only applies on a specific part of the point cloud; the 

road and its surrounding surfaces. Therefore the ground points must be filtered 

from the non-ground points. Filtering the ground and non-ground points must 
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answer to some requirements. These requirements are listed in the following 

subparagraph. 

 

1.2.1.  Filtering parameters and requirements   

 The filtering must delete most non-ground points in order to cope with the 

data, at least the filtering process must contain all the ground points. So the 

majority of the non-ground points must be filtered out 

 Ground points and non-ground points must be clearly defined. 

 The filtering must be based on these clearly defined ground and non-ground 

points. 

 The adjustment of these ground and non-ground parameters into the 

filtering must be straightforward. 

 Since several techniques for filtering exist, the best way for filtering the 

point clouds in this research must be defined. 

 

1.2.2.  Predefine the relevant classes  

To classify the points and give the correct label to each point first the relevant 

classes that needs to be labelled should be identified. Having a specific application 

in mind is very important when designing a process. In this case road extraction 

and materials focused on street level are examined.  

 

 The defined classes must be distinguishable. 

 The classes must cover important classes for the named applications. 

 All possible ground surfaces (around the faculty of architecture) must be 

defined. 

 

1.3. Point cloud processing 

Now that the point cloud is filtered to non-ground points and ground points the 

ground points can be labeled according to the predefined classes. Labelling the 

ground points can be done by two methods, either point based labelling or either 

region based labelling. To test whether method is better for labelling ground 

classes both, point based labelling and region based labelling, will be executed and 

compared. Point based labelling will be done by using colour values to distinguish 

classes and samples will be made to classify each point to give the correct label to 

the points. 

  

Region based labelling acquires a more detailed method. For this specific method 

the point cloud needs indexing to calculate the geometrical properties that will 

likely distinguish the different classes. Further region growing on geometrical 

properties and colour values that distinguish the classes will be used. To finally 

classify the obtained regions two choices are available: 

 Supervised: The regions will be classified based on samples, taken manually 

 Unsupervised: The regions will be classified according to the same 

geometrical properties and colour values 

Both these choices will be tested and examined on the regions and these methods 

will be compared to see the advantages and disadvantages. 
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1.3.1. Indexing parameters and requirements 

 The necessity of indexing the point cloud must be defined.  

 The used indexing method must be clearly defined and underpinned. 

 The indexing must be a fast process, even for point clouds containing 

millions of points.  

 With the defined indexing method it must be possible to define nearest 

neighbours for every point since all further processing is based on these 

nearest neighbours.  

 It must be possible, using the indexing structure, to calculate/define the 

geometrical properties of the point cloud to increase the ease of 

classification. 

 

1.3.2. Segmentation parameters and requirements 

 The segmentation method must be clearly defined using region growing. 

 Segments must be obtained that only contain one class. 

 Most segments must contain multiple points, otherwise those aren’t 

segments. 

 

1.3.3. Classification parameters and requirements 

 The classification method(s) must be clearly defined. 

 Samples, training data, of these defined ground surfaces must be taken 

from the point cloud.  

 The classification must be executed according to the training data of the 

predefined classes.  

 

1.3.4. Labelling parameters and requirements 

 Points must be enriched with semantics. 

 Spatial labels are derived from the context, in our case the built environment 

 Labels must be clear for the users or for a specific use case. 

 

1.4. Validation 

An important phase of the method, the project process, is validation. Validation is 

a process to test and control the steps of the project process. Validation is in this 

research needed to evaluate the reliability of the used method. The classification 

of points is an important matter within this research. Therefore, the assessment is 

performed within this process. A common way of assessing classification processes 

is by creating a confusion matrix. The confusion matrix is a table that summarises 

the correctly assigned points to each class in combination with the points 

misassigned to different classes. The errors presented in the confusion matrix are 

the errors of omission and commission. The errors of omission represent the points 

that should be of a particular class but are classified wrongly. The errors of 

commission, on the other hand, represent points that belong to another class but 

are classified as belonging to another. 

 

The semantic labelling and all its needed processing steps will in this research be 

done on just a small part of a much larger point cloud. Even if the used labelling 

method works on this small point cloud this does not guarantee that this method 
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will work on other parts of the larger point cloud of point clouds in general. 

Therefore, for the validation of the method it is necessary to test the used method 

also on other parts, on other point clouds.  

 

1.5. End product 

The end product of this research is to be a semantically enriched point cloud which 

holds information that can be used for road extraction and surface infiltration 

capacity analysis. There are two possible options for end products to be delivered 

to the end user. Either store all the points in one laz/xyz-file with the classification, 

or store each classification in separate laz/xyz-files. Both these methods have their 

advantages and disadvantages. If all the points are stored in one file the end-user 

has to download the whole file, even if the end-user only wants to see a specific 

category. Downloading the whole file will cost time and the interaction with 

massive point clouds is slow. On the other hand, if a user needs to download a lot 

of small files, one of those files can be easily lost. File management is therefore 

required. Because our application is made for specific use cases it is assumed to 

be better to store each class of the point cloud in a separate file.  

For the visualisation of the end product an open source program like Cloud 

Compare is used. Optionally the files can be loaded on a server and the point cloud 

can be viewed within a web browser from any location. The potree library 

(http://potree.org/), making use of webgl, can be used for this.  

Parameters and requirements: 

 The end product must be a semantically enriched point cloud. 

 The method used to get to the end product must be valid and applicable on 

other (terrestrial) point clouds.  
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Chapter 5: Implementation 

1. The acquired point cloud 

The Stereo Point Cloud of the faculty of Architecture and surroundings was 

delivered to the team on 16/9/2015. As can be seen from Figure 23, the point 

cloud is focused on the street level. The point cloud is however not without 

problems. It is possible that for specific areas, especially with high vegetation, the 

building facades are occluded. In addition to that, the roofs are in their majority 

missing. In the case study examined by this group, missing roof or façade 

information does not pose any issues as they are filtered out in the next stage. 

 

 
Figure 23 The obtained point cloud 

 

2. Non-ground filtering 

Since working with big data is not an easy issue even with today’s computer power, 

for testing purposes a small segment of the whole stereo point cloud is extracted 

at the beginning and will be further used to test the classification algorithms.  

 

To obtain a subset of the whole stereo point cloud around the faculty of 

architecture, the lasclip tool from the LAStools suite is used to process all the 

separate files at once. Lasclip takes LAS or LAZ files and a polygon as input (See 

Figure 24, blue lines), the files intersecting with the polygon are outputted. In this 

way only the points that are inside this polygon are stored and later merged to 

one file. The used polygon to make a selection is stored as a shapefile, and looks 

as follows in Well Known Text (WKT): 

 
POLYGON((594080.076999 5762420.870001, 594113.759998 5762465.878001, 

594086.458999 5762487.190001, 594045.535999 5762449.965003, 594080.076999 

5762420.870001)) 

The coordinates to make the polygon are obtained by selecting points in the total 

scene. The lasclip command line that is used is: 
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lasclip -lof [selection of the files] -merged -poly "Path\ClipSegment.shp" -odir "Output 

directory" -o "StereoMergedClip.laz" 

 

 
Figure 24 All the used las-files for input (boxes) and the polygon intersecting these 

files(blue lined polygon). 

 

The result of this process is a file containing 3,413,935 points (Figure 25). This file 

contains the whole scene with the buildings, cars, trees, road etc. However, not all 

information is relevant for all applications. In the case examined in this project, 

the focus area lies on the ground. This means that the non-ground points 

(buildings, trees, cars) need to be removed from the dataset.  To classify the 

previously clipped point cloud to ground points and non-ground points the 

lasground_new tool from the LAStools suite is used. This tool classifies the LAS or 

LAZ files imported into ground points and non-ground points by giving them a label 

(2 for the former and 1 for the latter) in each LAS file row. 

 
Figure 25 Clipped stereo point cloud, 3,413,935 points. 
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The following command is used to make this classification: 

 
lasground_new -i "Path\StereoMergedClip.laz" -offset 0.2 -odir " Output directory " -o 

"StereoGroundclassification.laz" 

 

where, offset represent the maximum offset in meters up to which points above 

the current ground estimate get included in the filtered output, odir the output 

directory and o the name of the output file. The command line output is shown in 

Figure 26, where it is stated that 1855993 points are ground points. This as 

explained before just adds a label to the current point cloud and does not actually 

create separate files. 

 

 
Figure 26 The command line output for the filtering 

 

Now that the classification is done the file can be split according to this 

classification using the lassplit tool from the LAStools suite. The lassplit splits the 

the inputted LAS and LAZ files according to some criteria defined. The command 

used to perform the splitting according to the ground and non ground classification 

is: 
lassplit -i " Path \StereoGroundclassification.laz" -by_classification -odir " Output 

directory " -o "StereoGround.laz" 

Which resulted in the division of the point cloud shown in Figure 27 & Figure 28.  

 

 
Figure 27 The processed non-ground points: 1,557,942 points 
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Figure 28 The outputted ground points: 1,855,993 points. 

 

The same process can be used to filter the LiDAR point cloud. Exactly the same 

polygon is used to clip the whole LiDAR point cloud (Figure 29). With the following 

LAStools command:  

 
lasclip -lof [selection of the files] -merged -poly "Path\ClipSegment.shp" -odir "Output 

directory" -o "LidarMergedClip.laz" 

 

The output is shown in Figure 30. In this figure it is visible that the point clouds 

are not aligned, because the same wall is on two positions. Therefore, the focus 

will lie on the stereo point cloud and not on the LiDAR point cloud for this project. 

 

 
Figure 29 All the used LiDAR-files for input (boxes) and the polygon intersecting these 

files (blue lined polygon). 
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Figure 30 The clipped LiDAR point cloud. 
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3. Importing the data 

The raw data provided by Cyclomedia are given in the .las or .laz format. The data 

provided are needed to be loaded inside Python. Two ways of doing this were 

investigated. Fist way includes transforming the las file to .xyz format and loading 

it as an ASCII file inside python. The second way includes using libLas, a library 

for reading and writing LAS format. In order to test the performance, the two 

readers were run using timers. The option used is the one that provides best 

performance.  

 

3.1. xyz reader 

The code presented in Table 2 the python implementation for the .xyz file reader. 

When running the file with a point cloud of 3,332,161 points the output in the 

correct list format is given in 11.7 seconds. 

 

Table 2 The .xyz reader 

def unpack_xyz(infile): 
   points_xyz = [] 
   for each in infile: 
       values = each.split(' ') 
       xyz = (float(values[0]), float(values[1]), float(values[2])) 
       points_xyz.append(xyz) 
   return points_xyz 

 

3.2. Liblas 

The code presented in Table 3 shows the python implementation for the .las file 

reader. The file module of liblas is imported and running with the same point cloud 

of 3,332,161 points the output in the correct list format is given in 56.5 seconds. 

 

Table 3 The .las reader 

from liblas import file 
 
def lasreader(fh): 
   infile = file.File(fh, mode='r') 
   coords = [] 
   for i in infile: 
       coords.append((float(i.x), float(i.y), float(i.z))) 
   return coords 

 

It can be thus be understood that using the .xyz file significantly increases the 

efficiency of the code. However, this format is not the most widely used one and 

transformation tools from .las to .xyz are needed. 

 

4. Data structures 

The algorithms developed for the classification of the point cloud depend on two 

data structures. A data structure is needed in order to organise the information of 

the unstructured point cloud provided in a relevant way. The data structure is 

composed of two objects: a point object and a region object (Figure 31). 
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A point object is an object that has the following attributes: index, coordinates, 

CIELab values, curvature, normal, neighbours, region, and RGB colour. A point is 

related to another point by having neighbours. The number of neighbours of a 

point is fixed and is k. In addition to that, a point can be the neighbour of zero or 

more other points. 

 

The region object is an object that has the following attributes: region number and 

list of points. Between a point and a region there is a composite relationship as a 

region cannot exist without a point. In addition to that, a point belongs to exactly 

one region and a region contains at least one point. 

 

 
Figure 31 The UML diagram of the data structure used for the classification of the point 

cloud 

 

5. Spatial index 

For quick access of the point cloud points a spatial index is applied to the process. 

The kD-tree applied to this case of 3D point sets is a 3D tree. A kD-tree, in 

comparison to an octree, can provide a balanced data structure and it is optimised 

for the k-nearest neighbours search.  

 

The kD-tree used for the process developed in this project is the cKDTree algorithm 

of the scipy.spatial module. This algorithm is an implementation of the algorithm 

of Maneewongvatana & Mount, (2001) in C and therefore provides faster nearest 

neighbours search. The same neighbourhood search without an index takes couple 

of hours since all the points (1.8 million) need to be traversed each time the k 

nearest neighbours for a point need to be found. With the k-D tree algorithm the 

construction and the neighbour search of all the point takes 20 seconds. 

 

6. Colour spaces transformations 

Colour information is an invaluable information for humans. Humans can interpret 

colours and through that assign semantics in milliseconds. Once a human looks at 

Figure 32, he/she immediately infers, the road, the grass, the tiles etc. Humans 

realise colour in the RGB colour space. For computer vision, however, the RGB 

space has a disadvantage, colour difference is not uniform. This means that two 
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very similar colours cannot be always be distinguished numerically as similar by 

comparing their RGB Euclidean distances. Therefore, different colour spaces 

needed to be evaluated for their value in segmenting the point cloud.   

 

 
Figure 32 The original point cloud in the RGB space 

 

6.1. RGB to HSV 

The HSV colour space is implemented in the python environment by utilising the 

colorsys module. The resulted transformation in the point cloud, except the 

saturation value, is depicted in the Figure 33 and Figure 34. The saturation is hard 

to visualise as it should be represented by different colour according to the hue 

angle.  

From the different hue values in Figure 33, there can be made a distinction 

between the classes grass, cycle path and, road and tiles. We, also, can observe a 

very strange situation on the road. This could be because of the existence of shade 

that makes the colours not homogeneous for this class.  
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Figure 33 The H value of the HSV colour space coloured differently according to the angle 

 

 
Figure 34 The V value of the HSV colour space coloured in greyscale 

 

The V represents the brightness. In Figure 34, we can observe that the classes 

cannot be easily be distinguished as the road has the same grey value as parts of 

the vegetation. The same is observed for the cycle path and parts of the pavement 

mostly because of the existence of the shade. 

 

6.2. RGB to CIELab 

The transformation from RGB to the CIELab is implemented in the python 

environment. The transformation is performed by applying the equations 

presented in section 6.4. with the value for the absolute white to be taken as 

(255,255,255) which corresponds to the d65 illuminant.  
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The resulted transformation is depicted in the following figures (Figure 35, Figure 

36, Figure 37). In Figure 35 one can very easily distinguish the tiles that are 

represented in the lightest grey. Vegetation has on the other hand the darkest 

grey value.  

 

 
Figure 35 The L axis of the CIELab colour space represented as grayscale 

 

In Figure 36, on the other hand, the differences become even more apparent. One 

can distinguish the grass, the bike lane, and the asphalt road and tiles. Distinction 

between asphalt road and tiles is however not possible in this case.  

 

Finally, in Figure 37 the grass is again easily distinguishable. The other classes 

seem more or less a mixture of colours and therefore would be hard to distinguish 

with this value. 
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Figure 36 The a axis of the CIELab colour space represented from green to red 

 
Figure 37 The b axis of the CIELab colour space represented from blue to yellow 

 

 

6.3. RGB to CIELuv 

For the transformation to the CIELuv space, the python-colormath module was 

imported into python. The three components (L,u,v) for the point cloud is depicted 

in Figure 38, Figure 39, Figure 40. From each component different objects can be 

distinguished. In Figure 38, as in the case of the CIELab, the vegetation and the 

tiles are the most easily distinguishable. In Figure 39 and Figure 40, the different 
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classes are no longer easily distinguishable. Therefore, the CIELuv will not be used 

for the classification.  

 

 
Figure 38 The L axis of the CIELuv colour space represented as grayscale 

 

 
Figure 39 The u axis of the CIELuv colour space represented as grayscale 

 



67 | P a g e  
 

 
Figure 40 The v axis of the CIELuv colour space represented as grayscale 

 

7. Training samples 

The method we use to semantically label the point is best captured by the definition 

of supervised classification, which is an algorithm that uses a known dataset (called 

the training dataset) to make predictions. The aim of supervised, machine learning 

is to build a model that makes predictions based on evidence in the presence of 

uncertainty (Mathworks, 2015). In other words, supervised learning is the machine 

learning task of inferring a function from labelled training data. The training data 

consist of a set of training examples (Wikipedia (A), 2015). In order to create our 

semantically labelled point cloud, we extracted our training data as separate 

different classes. The following classes are extracted from the point cloud: grass, 

tiles, cycle path (red asphalt) and road (black asphalt), as shown in Figure 41, with 

the number of points per sample class in Table 4. These sample sets are used to 

calculate all the different point classification attributes in our point cloud labelling 

algorithm, as described in earlier chapters.  

 

 
Figure 41 The different sample classes 

 

Table 4 Number of points per class sample 

 Tiles Grass Cycle path 

Red asphalt 

Road 

Black asphalt 

Number of points 45438 66294 139148 310934 
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7.1. Definition of classes 

In order to create classes for the two applications we aim for (discussed in chapter 

4), it was decided to create classes for use (Figure 42Figure 42 Classes on use) 

and classes for material detection (Figure 43). The use represents mostly how a 

human would firstly interpret the scene. He/ She would identify the road, the cycle 

path and the footpath (tiles). For more specific applications, (e.g. the surface 

infiltration capacity) where the materials are needed because of their different 

behaviour to water, the specialist would be in need for the asphalt area, the grass 

and the tiles. Therefore, a semantically enriched point cloud with different types 

of labels for the specific application should be provided.   

 

 
Figure 42 Classes on use 

 

 
Figure 43 Classes on material 
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7.2. Colour classification attributes 

In order to get statistics of four different classes in the point cloud, all RGB values 

are transformed (Table 5), using the formula in figure x, page x. Next a distribution 

is made for the different classes, which is shown in the Figure 44, Figure 45 and 

Figure 46.  

 

Table 5 The different classes in for the HSV and CIELab colour spaces  

  Hue Saturation Value Cie-L Cie-a Cie-b 

Cycle path Min 0 0,0526 59 55,2111 -57,4633 2,7727 

 Max 411,42 0,5897 156 82,4702 5,3931 4,8921 

 Avg 15,4 0,33 91,7 66,3081 -28,6104 27,4657 

 Std 32,2 0,07 12,6 7,4912 14,4717 9,4237 

Road Min 0 0,0101 1 0 -40,1297 -4,8109 

 Max 405 1 106 69,1864 25,3001 24,0775 

 Avg 119,1 0,05 67,6 58,0781 2,6113 10,5766 

 Std 125 0,028 6 4,8163 6,3889 4,57125 

Grass Min 0 0,0192 3 10,3818 -48,7278 -6,1960 

 Max 400 0,8571 184 84,5309 69,7676 35,9179 

 Avg 87 0,12 124,7 46,4062 32,8621 21,7082 

 Std 16,9 0,4 32,4 27,6225 33,5761 7,4386 

Tiles Min 0 0,0164 42 47,5838 -24,8339 10,1187 

 Max 400 0,3968 186 88,4162 11,8330 28,5078 

 Avg 29,7 0,53 57,9 74,6892 -1,5551 18,3044 

 Std 9,6 0,857 29,3 16,0538 3,5283 5,1541 
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Figure 44 A distribution of the ‘hue’ attribute in the different classes. 

 

 
Figure 45 A distribution of the ‘saturation’ attribute in the different classes. 
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Figure 46 A distribution of the ‘value’ attribute in the different classes. 

 

7.3. Geometrical classification attributes 

The geometric attributes, as described in Section 6 of the Literature Overview, are 

calculated for, 5, 9 and 20 nearest neighbours. As it becomes clear from Table 6, 

there are no clear distinctions between the geometrical attributes and therefore 

they are not sufficient to be used as the only criteria for the classification. This is 

because these attributes describe aspects that are not present in our scene. For 

example, the linearity characteristic is usually used to detect power lines which is 

not relevant in our application. In addition to that, the different classes belong to 

roughly the same plane and thus cannot be distinguished by just using geometrical 

properties. This leads that the investigation of colour information for labelling point 

clouds is the best alternative.   

 

Table 6 The geometrical properties of the different classes 
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8. Point cloud labelling: Point based methods 

Labelling a point cloud in this research means getting those parts out of the point 

cloud necessary for assessing a certain task. In this case it concerns the points of 

the point cloud belonging to the earth’s surface, or more explicit to the points 

belonging to the “earth’s” surface within cities. The perception of this research is 

that the “earth’s” surface within cities is categorized in black asphalt roads, tile 

roads, red cycle asphalt roads and grass. As explained in chapter XX classes are 

made from these categories of surface.   

 

Since it was unclear whether it was possible to label point cloud segments mainly 

based on colour a point based method was set up. The point based methods will 

check for every point within the point cloud if it belongs to a certain class due to 

its HSV or CΙΕ-Lab colour values. This can be done with minimum, maximum, 

mean and standard deviation but also with methods explained in the literature 

overview like the Support Vector Machine classifier and the decision tree.  

 

8.1. H, S and V values, minimum and maximum 

The training data are used to calculate the minimum and the maximum H, S and 

V value for every class.  Based on these values it is possible to assign the points 

each to a specific class.   

 

For every point in the point cloud it is checked through its H, S and V values 

whether it belongs to a certain class. When all points belonging to this class are 

extracted and written to a text file the explained process is repeated. This means 

checking all points again but now for another class. 

 

for each H-value in the list that contains all H-values of the points in the point cloud: 
check for one point if the H-value is between the min and max H value of a certain 
class. iff it is:  

check for the same point if the S-value is between the min and max S value 
of a certain class. if it is: 

check for the same point if the V-value is between the min and the 
max V-value of a certain class. if it is: 
append this point to a list 

write this list of points belonging to a certain class to a txt-file 

 

    
Cycle path Road  Grass Tiles 

 

Figure 47 Point based labelling based on minimum and maximum HSV values 
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This method is time consuming because all points within the point cloud are 

checked multiple times and the ranges that were checked were wide. The results 

were therefore not the expected quality. As is visualized in Figure 47 a lot of points 

are classified into several classes. The class grass for example contains points 

which actually belong to the classes cycle path, tiles and or road. 

 

A possible reason for this could be that the used training data consists colours that 

are that not only belong to one class but also occur in other classes, it might even 

be the case that this colour occurs more often in other classes. The Grass training 

data for example also contains parts that used to be grass but when acquiring the 

point cloud were “bare ground” (Figure gras). The colour of this bare ground is 

“grey” instead of the expected green and therefore is easily classified wrong or at 

least not as grass. To minimize the points that are wrongly classified due to 

different colours in the trainings data instead of using the minimum and maximum 

value, in the next method the mean and the standard deviation will be used to 

reduce the colour value ranges.  

 

 
Figure 48 Part of the training samples for grass 

 

8.2. H, S and V values, mean and 2 * standard deviation 

Since results of using the maximum and minimum HSV values were not accurate 

a next option is tried, instead of using the minimum and maximum HSV values, 

the mean plus and minus 2* the standard deviation is used as range in which the 

HSV values need to be in order to be labelled as a certain class. It is assumed that 

the values are Gaussian distributed (shown in figure xxx chapter of the training 

samples). This mean plus and minus 2 * standard deviation is a 95,5% range of 

all H, S and V values, the biggest outliers within the trainings data are therefore 

not taken into account anymore with the classification of the points. 
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For every class the mean H, S and V values and the standard deviation of each 

value are calculated from the training data. As the following pseudo code explains, 

for each point in the point cloud it is checked whether its H, S and V values lie 

within the range between the mean H, S and V values and 2 times the standard 

deviation.   

 

for each sample the H, S and V values are calculated and put in a list and the average and 
the standard deviation of these H, S and V values are calculated.  

check for each H value of each point if the H-value is between the average minus 2 
* the standard deviation and the average plus 2 * the standard deviation of a 
certain class. if so:  

check for the same point if its S-value is between the average minus 2 * 
the standard deviation and the average plus 2 * the standard deviation of a 
certain class. if it is: 

check for the same point if the V-value is between the average minus 
2 * the standard deviation and the average plus 2 * the standard 
deviation of a certain class. if it is: 
append this point to a list 

format this list 
write this list of points belonging to a certain class to a txt-file belonging to this 

class 

 

The results per class are shown in Figure 49. All classes contain less points and 

seem more precise than the results when using the minimum and maximum 

values. The classes now don’t contain much points that actually belong to other 

classes, but still the labels are not that precise and correct yet. Especially the 

classes Cycle path and Tiles contain points that should have been classified 

differently. The error of omission of the Tiles class shown in Table 7is therefore 

68% which led to a mapping accuracy of just 32%.  This table also shows a 

mapping accuracy of 77% for Road 73% for Cycle path and 69% for Grass. This 

means that only 77%, 73% and 69% of the points within Road, Cycle path and 

Grass are correctly classified. 

 

Table 7 The confusion matrix for the H, S and V values, mean and 2 * standard deviation 
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Besides the method using the minimum and maximum values from the training 

samples, this method is already promising in the field of labelling point clouds just 

on colour values even though the results could be even more precise.   

  

 
Cycle path 

 
Road 

 
Grass 

 
Tiles 

Figure 49 Point based labelling based on mean and 2 * standard deviation 

 

 

8.3. Cie-LAB values, mean and 2 * standard deviation 

In order to check whether Cie-LAB colour values are more accurate within 

classifying point clouds based on colours also a classification, labelling a point 

cloud, is done based on Cie-LAB values. 

 

for each sample the Cie L, A and B values are calculated and put in a list and the average 
and the standard deviation of these L, A and BV values are calculated.  
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check for each L value of each point if the L-value is between the average minus 2 
* the standard deviation and the average plus 2 * the standard deviation of a 
certain class. if so:  

check for the same point if its A-value is between the average minus 2 * 
the standard deviation and the average plus 2 * the standard deviation of a 
certain class. if it is: 

check for the same point if the B-value is between the average minus 
2 * the standard deviation and the average plus 2 * the standard 
deviation of a certain class. if it is: 
append this point to a list 

format this list 
write this list of points belonging to a certain class to a txt-file belonging to this 

class 

 

 
Cycle path 

 
Road 

 
Grass 

 
Tiles 

Figure 50 point based labelling based on mean and 2 * standard deviation 

 

When comparing to the method using the H, S, v values with the mean and 2 * 

standard deviation range, the results of using the CIELab values shown in Figure 

50 are less adequate. Instead of a Tiles class with a very small mapping accuracy 

of 32%, Using the CIElab colour values result in the classes Road, Grass and Tiles 

with an approximate mapping accuracy of just 37%, 23% and 20% even though 
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the same range of values is used (Table 8). This result therefore shows that using 

different colour spaces give different results.  

 

Table 8 The confusion matrix for the CIELab values, mean and 2 * standard deviation 

 Predicted classes 

A
c
tu

a
l 
c
la

s
s
e
s
  Road Cycle Tiles Grass Total 

Road 77786 1186 20223 2079 101274 

Cycle 0 16556 0 0 16556 

Tiles 69412 2258 24136 578 96384 

Grass 37040 216 3382 12761 53399 

Total 184238 20216 47741 15418  

 

 Omissions Commissions Mapping Accuracy 

Road 23% 105% 37% 

Cycle 0% 22% 82% 

Tiles 75% 24% 20% 

Grass 31% 5% 23% 

 

8.4. CIELab a value, mean and 2 * standard deviation 

When visualizing a histogram plot for the CIELab values (Figure 51) it is concluded 

that the A value distinguishes the classes grass and cycle path the most. Therefore, 

a classification is made based on only the A value, its mean and 2 * standard 

deviation. With this method it is checked whether only using the a-value is enough 

in distinguishing different parts of a point cloud.  

 

 
Figure 51 The distribution of the CIE - a value for the different classes 

 

for each sample the Cie L, A and B values are calculated and put in a list and the average 
and the standard deviation of these L, A and A values are calculated.  

check for each A value of each point if the A-value is between the average minus 2 
* the standard deviation and the average plus 2 * the standard deviation of a 
certain class. if so:  

append this point to a list 
format this list 

write this list of points belonging to a certain class to a txt-file belonging to this 

class 

 

The results, shown in Figure 52, should be most accurate for the Cycle path and 

Grass classes. Table 9 confirms on the one hand the high, as in 100%, mapping 

accuracy for the Cycle path class but on the other hand the low, as in 26%, 

mapping accuracy for Grass. So even though the cycle path is distinguished from 
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the point cloud with a very high accuracy, The Grass and other classes are not, 

using only the a-value therefore might not be most accurate.  

 

 
Cycle path  

Road 

 
Grass 

 
Tiles 

Figure 52 Point based labelling based on mean and 2* standard deviation on the A value 

 

Table 9 The confusion matrix for the CIE a value, mean and 2 * standard deviation 
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8.5. SVM classifier  

Apart from the self-made, range based, point based point cloud classification 

methods, the SVM classifier is easily implemented on point cloud data with known 

training data using the Python sklearn module. This module is a data mining and 

data analysis tool, built on NumPy, SciPy, and matplotlib.  

 

The SVM classifier uses several parameters in order to predict the class for each 

point (Table 10). Most of these parameters are already set within the sklearn 

method, just a few are adapted to get the best results. The adapted parameters 

are the kernel and the class weight for the Road. The class weight of the asphalt 

is set to two and the kernel is changed from ‘rbf’ to ‘poly’ so that the decision space 

can be formed by every imaginable shape.   

 

Table 10 SVC Parameters 

C Cache_size Class_weight Coefficient Degree 

Gamma Kernel Max_iter Probability Random_state 

Shrinking Tol Verbose   

 

The input of the SVC are two arrays, one with the H, S and V values and one with 

the classes. The algorithm creates a polygonal decision space, whereby the 

properties of the regions are used as classification criteria. The classification 

criteria are derived from samples taken from the scene. In the classification 

algorithm, the input is an array that holds 12 values: 

 The minimum of the L, a and b values. 

 The maximum of the L, a and b values. 

 The average of the L, a and b values. 

 The standard deviation of the L, a and b values 

The same 12 values of the different regions are used to calculate the probability 

that the region belongs to a certain class. 

 

The result of the SVC classifier is shown in Figure 53. It visualizes the fact that the 

grass and the road is classified above expectations but also that the cycle path 

also includes points that belong to grass and tiles also include points that belong 

to the asphalt road. But even though classes exist that contain points that should 

have been classified differently the accuracy of this classification method is quite 

high. Especially the Road class which almost contain none wrongly classified 

points, it has an approximately mapping accuracy of 92% (table SVM)   
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Cycle path 

 
Road 

 
Grass 

 
Tiles 

Figure 53 Point based labelling from the SVC classifier 

 

Table 11 The confusion matrix for the SVC classifier 
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8.6. Decision Tree 

Apart from the SVM classification the python sklearn module also contains a 

method for applying a decision tree classification. The sklearn module creates a 

model that predicts the value of a target variable by learning decision rules from 

the training samples. The decision tree function takes the same input as the SVC 

classifier, but does not create a multidimensional decision space. Instead, it makes 

a tree structure, whereby the algorithm traverses this tree and the leaf node, 

eventually classifying the points. 

 

The results of the decision tree classification seem in comparison with the SVM 

classification according Figure 54 are not satisfying. The Tiles and Road classes 

distinguished with the decision tree classification show a lot of points that are 

wrongly classified.  But even though figure DC visualizes the wrongly classified 

points, the mapping accuracy of the different classes are higher, they are 

approximately 85% for the Road, 74% for the Cycle path, 75% for Grass and the 

Tiles class has as expected the lowest accuracy, 57% (Table 12).   

 

 
Cycle path 

 
Road 

 
Grass 

 
Tiles 

Figure 54 Point based labelling from the decision tree 
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Table 12 Confusion matrix for the decision tree 

 

 
 

8.7. Concluding point based methods 

It can be said that the overall (mapping) accuracy of the point based classification 

methods is not outstanding due to training samples with multiple colours and a 

point cloud with a lot of colour inconsistencies. The methods compared conclude 

the decision tree classification as the best point based classification method. This 

method though uses harsh distinguishments while the boundaries between the 

classes are not that harsh. A problem with the point based methods is the fact that 

it is possible that one point is multiple times classified this means that one point 

could be classified as Grass but also as Tiles. Therefore within the omission and 

commision errors those points might be classified rightly while actually they are 

classified wrong, because it should not be possible to classify a point multiple 

times.  

 

9. Point cloud labelling: Region based methods 

Region based methods allow to first grow regions before classification, the grown 

regions are then the ones to be classified instead of the raw points used in the 

point based methods for point cloud classification.  

 

Region growing can be referred as an unsupervised classification method. It is 

called unsupervised because the user does not need to define anything about the 

classes, at least at the initial step. The region growing algorithm that is used in 

this project is a combination of the colour based segmentation algorithm of Zhana 

et al., (2009) and the algorithm of Rabbani, et al., (2006). The variation is found 

in the fact that the point cloud is first converted to a different colour space than 

the RGB and then according to those values colour similarity together with angle 

are the defining parameters to whether the point belongs to the region or not. The 

curvature value is also used to define more seeds for each region. Therefore, the 

algorithm is defined as follows: 

 
Sort the point cloud according to the curvature value and initialise an Available 
points list and a region list. 
For each point in the Available points list: 
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 If the point does not belong yet to a region: 
 initialise a region and a seeds set 
 Take the point P with the minimum curvature 

Append the point P to the seeds set and the region set 
Until the current seeds set is empty: 
 remove the current seed form the seed set. 

Find the neighbours of the seed using a kD-tree data structure 
  For each of the neighbours 

if the angle between the normal of the seed and that point 
is less than a threshold value and the single axis colour 
distance is within a threshold.  

  add the point to the current region 
if the difference between the curvature of the seed 
and its neighbour's is less than a threshold,  

add the point to the list of seeds 
 Add the region to the region list 
If the seeds set has no more seeds, the region has grown and the algorithm is 

repeated from the beginning. 

 

The designed algorithm is tested for its output for the test dataset that is part of 

the whole point cloud provided by cyclomedia. The thresholds used for the angle, 

curvature and colour difference were discovered after some testing with the point 

cloud. The thresholds that gave the best distinction between the classes are: 

 

angle 45 

curvature 0.001 

colour 0.2 

 

The explanation for such a low curvature threshold lies in the structure of the 

scene. The majority of the classes are found inside the same plane and therefore, 

raising the curvature threshold leads to under-segmentation. By under-

segmentation it is meant that two different classes are labelled as one. This was 

the case for curvature thresholds over 0.001. Therefore, decision was made that 

over-segmentation is more acceptable than under-segmentation. Over-

segmentation occurs when one surface is divided into really small surfaces. 

Intentionally causing over-segmentation is, at least in theory, much simpler to 

correct than under-segmentation, since human intervention cannot be avoided in 

the second case. In addition to that, lower thresholds will allow the same algorithm 

to work for the other scenes of the whole point cloud. Also, our test scene holds 

properties that created region growing errors, if only curvature and normals were 

used. As shown in Figure 55, the road is not always separated from the footpath 

(tiles) by curbs, resulting that the region growing algorithm created one region out 

of the road and the footpath (tiles). 
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Figure 55 How error in the region growing on curvature and normals occurred 

 

The over-segmentation in the point cloud, however, is not only caused by the low 

curvature threshold. It is mostly because of the colour changing very rapidly inside 

the scene. In reality those colour changes are non-existent. For example, in Figure 

56, the variation of the colour of the cycle path is shown. In this case, because the 

car shooted the pictures in a rainy day, the presence of water on the asphalt has 

a “graying” effect on the colour if viewed from a distance. Therefore, at the side 

where the car was driving, because the cycle path is being shooted from the short 

distance has no effect on the colour. However, the opposite side is more distant 

and thus affected by the presence of water.   

 

 
Figure 56 The variation of the colours in one scene 

 

In addition to the variations because of the rain, the shadow of the BK city building 

also causes differences in the colour. This is also visible in figure. The rest of the 

colours are also affected by same or similar reasons. All those reasons lead to the 

result of the region growing algorithm that are shown in the next Figure 57. It has 

to be noted that not all regions are visualised because they contain less than 100 

points. This means that there are even more smaller regions that compose one 

region. The merging of those smaller regions into semantically meaningful ones is 

the topic of the next sections.  
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Figure 57 The presence of over-segmentation in the results of the region growing algorithm 

 

9.1. Unsupervised merging based on colour similarity 

 

In this section, the over-segmentation that was created in the previous section by 

the region growing algorithm is tackled by creating a merging algorithm that is 

based on colometrical similarity. The main idea is that the small regions that are 

found in the region growing are merged with their neighbouring regions that have 

the most similar colour. This region merging process could be seen as a variation 

of the region growing process. 

 

For each small region, the neighbours of it are found by traversing the neighbours 

of the points that are present in the region. This, of course, means that there will 

be points that their neighbours are in the region currently being checked. However, 

the algorithm will take into consideration only the regions that are different from 

itself. 
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Having defined the neighbouring regions the colometrical distance is calculated 

with reference to the current region. The region that has the minimum distance is 

then the best candidate and the two regions are merged. If the newly created 

regions are again considered small, the algorithm recursively tries to merge more 

points to them. If the region is big enough, then the region has grown to a 

satisfactory level. The algorithm repeats until there is not a small region present 

in the scene.  

 

The colometrical distance is calculated as the euclidean distance of the components 

of the CIELab space. The L component, however, since it represents lightness is 

not taken into account due to the changing shadow conditions in the scene.  

 

The pseudocode of the merging algorithm is as follows: 

 
Input: a list {A} with all the regions 
Initialise a list {R} that will contain the regions to be merged 
Initialise a Set {N} that will contain all the region numbers smaller than a threshold 
Initialise a list {D} to keep track of the region numbers that are merged with other regions 
 
For each region in {A} that has less points than a specified threshold 
      Append the region to {R} 
      Add the region number to {N} 
While there are regions to be merged 

Initialise a Set {KN} that will hold the region numbers of the neighbours of the 
points in the current region that are not the current region itself 

      Take one region from {R}, append its region number to {D} and remove it from {N} 
For each point in the current region 
      For each neighbour of the point 
             Find the number of the region the neighbour belongs to 
               If the region number is different than that of the current region 
                      Add the region number to {KN} 
Find the region numbers that are in {KN} but not in {D} 
If this difference contains regions 

Find the colometrical distance of these regions with the current region 
The points of the current region are appended to the points of the region that 
has the most similar colour 
If this region is in {R} and contains more points than the threshold 
       Remove it from {R} and {N} and append it to {D} 

      Empty the points of the current region in {A} 
 

The results of the algorithm are presented in Figure 58. The threshold of what is 

considered a small region is taken to 5000 points. There is can be visible that the 

over-segmentation is reduced. The output, however, is not without faults. A closer 

inspection can show that parts of the grass are not returned from this method. 

This has to do probably with the fact that grass regions are composed from 2 or 

10 points each and the colour variation is very big. This would mean that the 

regions would never contain points more than the defined threshold. In addition 

to that, parts of the grass on the other side are merged with parts of the tiles. This 

leads now to under-segmentation. Finally, the cycle path although it is split in less 

regions, it still presents over-segmentation. Therefore, trying to find the best 

threshold that would maximise the cycle path merging and minimise the under-

segmentation between tiles and grass is not possible. The method, nevertheless, 

provides a good distinguish of the road, if some artifacts are ignored (Figure 59). 
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Figure 58 The results of the region merging algorithm 

 

 
Figure 59 The merged road 

 

9.2. Supervised Classification 

The supervised approach to classifying a point cloud, requires a set of training 

sample data that have labels associated with them, this sample data comes from 

a scene and is selected with prior knowledge about the scene. This means that, 

for the area of interest of this project, there are points that belong to the road, 

cycle path, tiles and grass. Those training data sets are then used to estimate 

parameters of the classifier that will be used. In the developed algorithm for this 

project, the distance to the parallelepiped classifier is used.  

 

9.2.1. Training samples 

 

Collecting training samples requires a good understanding of the scene. This step 

is performed by the user of the algorithm. This step is very important since without 



88 | P a g e  
 

representative samples the output might not be acceptable. The point cloud used 

for the process has some disadvantages that were discussed in the region growing 

algorithm: the colour values inside the scene have a big variation that does not 

correspond to reality. In order to tackle with these disadvantages, more samples 

were carefully taken. In Figure 60 the distribution of the samples is displayed.  

 

 
Figure 60 The training samples for the supervised classification 

 

9.2.2.  Classifier 

The samples collected in the previous step are statistically analysed for their mean 

and standard deviation of each component of the CIELab space. For each class the 

statistical distribution per sample is shown in Figure 61, Figure 62, Figure 63 and 

Figure 64. As it is easy to realise the values have a big variation range.  

Then assuming that the samples are Gaussian distributed the classifier for each 

sample is defined as 3 standard deviations from the mean. Therefore, for each 

sample an unclassified region belongs to a class if its mean colour value per 

component is between which corresponds to 99.7% 

confidence level. Such a high confidence level is needed because of the noise 

present in the data set. 

 

http://chart.googleapis.com/chart?chs=20&cht=tx&chl=/mu - 3/sigma/le avg /le /mu %2B 3/sigma
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Figure 61 The distribution of the training samples for the cycle path 

 

 
Figure 62 The distribution of the training samples for the tiles 
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Figure 63 The distribution of the training samples for the road 

 

 
Figure 64 The distribution of the training samples for the grass 

 

It is also defined that the samples per class are not combined into one big class. 

Because the colours per class have a big variation this would create the wrong 

statistical values. This reasoning of working could be considered as corresponding 

to the object based nearest neighbour classification used for image classification 

used in many commercial software like Trimble’s eCognition.  

 

9.2.3.  Classification result  

 

The classification algorithm designed is a collection of if… elif … else statements 

that compare per region the average component of the CIELab space with the 

limits defined by the 99,7% confidence level. If the average of the region is within 
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the limits of one of the samples, then the points of a region are given the 

appropriate classification. Of course, it is possible that for one region, the values 

are outside the limits of all the samples. In this case, this region is given the class 

unknown. The results of the supervised classification are displayed in Figure 65. 

Visually the results are quite representative. There are, however, misclassification 

problems that are present. For example, the road markings are misclassified as 

belonging to the tile class. This is caused because the colour information for those 

regions is the same as the tiles. Some artefacts are present in every class and 

cannot be completely avoided as no classification is 100% correct. To evaluate 

how well the classification performs an evaluation is performed in the next section.  

 

 
Figure 65  The results of the supervised classification per class 

 

9.2.4.  Evaluation 

The evaluation of the result created by the supervised classification is performed 

by creating the confusion matrix (Table 13 & Table 14). In general, we can see 

that the most omissions are present in the case of the cycle path and tiles. The 

most commissions are present in the case of the cycle path. The best classified 

class is the grass and then the road. 
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Table 13 The confusion matrix for the supervised classification 

 
 

Table 14 The errors of omission, commission and mapping accuracy for the supervised 

classification 

 
 

9.2.5.  Machine learning classification 

The merging of the regions is also tested using machine learning classification 

algorithms of the sklearn module in python. This Python module is described in 

earlier chapters, where individual points were classified, depending on their colour 

values. The algorithm creates a polygonal decision space, whereby the properties 

of the regions are used as classification criteria. The classification criteria are 

derived from samples taken from the scene. More information about the samples 

is provided in the next section. In the classification algorithm, the input is an array 

that holds 12 values: 

 The minimum of the L, a and b values. 

 The maximum of the L, a and b values. 

 The average of the L, a and b values. 

 The standard deviation of the L, a and b values 

 

The same 12 values of the different regions are used to calculate the probability 

that the region belongs to a certain class. 

 

The results of the machine learning algorithm are not satisfactory (Figure 66), this 

is caused by the absence of recognizing that regions do not belong to a class at 

all. Because some regions in the point cloud should not be assigned a class, as 

they don’t belong to that class. It is impossible to pre-define samples of regions 

for regions that should not be assigned, and therefore the sklearn machine learning 

classification algorithm classifies with some major errors.  

 

The developed algorithm is applied to the regions created in the region growing 

step, therefore, it is not a point-based method but a region-based one. The 

classification rules are based solely on the colour in the CIELab colour space.  
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Road 

 
Tiles 

Figure 66 The result of the machine learning classification 

 

9.2.6.  Smoothing algorithm 

 

To tackle the errors of omission and commission, a smoothing algorithm is 

developed for the supervised classification method. This method bears a 

resemblance on the smoothing algorithms applied to images in order to remove 

noise. The algorithm traverses the classified points, and for its neighbourhood it 

checks which is the most frequent class (road, tiles, cycle path, grass) among 

them. This most frequent class is then used to re-classify the point. This, of course, 

requires a result of adequate quality from the classification itself.  

 
Initialise a list {G} for each class 
For each point in the point cloud: 
         Initialise a counter for each class 
         For neighbour in the neighbourhood of the point 
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Check the classification of the neighbour and add one to the 
counter of its class 

          
         Find the most frequent class from the counters 
         Change the classification of the point to the most frequent 
Return all the classes 

 

The updated evaluation for the smoothing algorithm in comparison to the non-

smoothed situation is depicted in Table 15 and Table 16. It is apparent that, the 

errors of omission and commission are reduced in most of the cases. Only the error 

of omission for the cycle path persists. Overall, the result can be considered better 

not only in numbers but also visually in Figure 67, Figure 68 and Figure 69. 

 

Table 15 The evaluation of the smoothing algorithm  

 
 

Table 16 The errors of omission and commission for the smoothing algorithm 

 
 

 
Figure 67 The smoothing result on the road 
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Figure 68 The smoothing result on the tiles, cycle path and grass 
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Figure 69 The smoothing result on the unknown class  

 

9.3. The chosen method 

 

Having applied both point based and region based techniques in order to classify 

the scene, it is clear that the best result is derived from the supervised 

classification. This can be confirmed, also, by the evaluation with the truth data 

and the confusion matrix, where it was obvious that a very good distinction 

between the classes was present. In addition to that, the errors of omission and 

commission are not big, that is, the classes are not misclassified. Furthermore, 

with the smoothing algorithm it is possible to even more reduce the 

misclassification errors. 

However, the biggest disadvantage of this method lies in the fact that human 

involvement is unavoidable in this method. The success of the classification 

strongly depends on the experience of the user to identify the most representative 

samples for each class. This process at the beginning might be trial and error but 

at the end with the appropriate training of both the user and the algorithm the 

results can be really accurate. Finally, although human involvement is considered 

a disadvantage before, it might be the case that the result is more refined and 

satisfying the exact user needs compared to the unsupervised method where small 

regions persist or classes are mixed together. 

 

9.3.1. Applicability to other ground point scenes 

Since the method is designed for one part of the point cloud, the sub point cloud, 

it is also important to investigate whether it is applicable for other scenes in the 

total point cloud. 

 

In Figure 70 an overview of other parts of the point cloud is shown. The red circle 

shows the sub point cloud, which has some different colours than other parts of 

the point cloud. For example, the colour of the road is not for every scene the 

same. Therefore, the samples made for the specific test area are not applicable for 
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other parts of the point cloud. For each scene specific samples must be made to 

distinguish the pre-defined classes. Only the class ‘grass’ is not based on samples 

and is correct in the other scenes. 

 

If another part of the point cloud is extracted, see Figure 71, the same code and 

samples can be used to demonstrate that the samples are scene specific. The used 

part of the point cloud is the part indicated by the blue circle in Figure 70. The 

output is shown in Figure 72, Figure 73 and Figure 74. Here it is visible that the 

grass classification is still good. The road classification only gets the bus/tram road 

and not the road where the cars drive. The Tiles classification is quite good, but it 

also takes a part of the road. The classification of the cycle path only has some 

correct points and a lot of incorrect points, so it is therefore an incorrect 

classification. 

 

 
Figure 70 Other parts of the whole point cloud selected 
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Figure 71 A different selection of point cloud 

 

 

 
Figure 72 The unknown class of the scene 
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Figure 73 The cycle path and grass 

 

 
Figure 74 The road and the tiles of the scene 

 

9.3.2. Applicability to non-ground points 

 

Now that the method is tested for other scenes in the point cloud and is partially 

successful with using exact the same samples, it is also possible to use the same 

method to classify specific classes in the non-ground points. These non-ground 

points are the result of the filtered point cloud by using LAStools and were 

outputted in another file. Due to testing purposes two facades (Figure 75.1 and 

76.1) from the sub point cloud are selected using the software package 

CloudCompare.  

  The exact same method is used (region based supervised classification), but 

with new samples of only the stone parts in the scene. In this way it is possible to 

detect the windows. According to the samples the parts of the building that consist 

out of stone are classified (Figure 75.2 and 76.2). The remaining parts are 

classified as the windows (Figure 75.3 and 76.3). Also vegetation is classified 

(Figure 75.4 and 76.4), according to the old samples. These are either plants within 

the building, or the reflection of vegetation in the windows on the pictures. In this 

way the method used is also useful to classify non-ground points, e.g. for façade 

detection.   
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Figure 75 From top to bottom: 

1. Façade 1 

2. Stone 

3. Window 

4. Impact of vegetation 

 
Figure 76 From top to bottom: 

5. Façade 2 

6. Stone 

7. Window 

8. Impact of vegetation 
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10. The viewer 

For the visualisation of the semantically enriched two options were identified. The 

first option is that the user has a point cloud view in his/her personal computer, 

e.g. Cloud Compare. Therefore, this viewer can be used as a means to visualise 

the semantically enriched point cloud. The second option is providing the 

semantically enriched point cloud with a web browser. The potree library is 

(http://potree.org/), making use of webgl, can be used for this.  

 

For the purposes of this project a web viewer is created to cover a wide variety of 

users. Unfortunately, it is not possible to yet have a layer control panel and 

therefore the viewer depicts the different classes with different colour. The result 

is provided in Figure 77. In addition to viewing, the user can perform calculate 

lengths, areas and height profiles very easily (Figure 78).  

 

 
Figure 77 The potree viewer for the classified scene 
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Figure 78 Calculations using the potree viewer 
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Conclusions  

This last chapter concludes on the used techniques for semantically enriching a 

point cloud. In order to do so, the aim is to answer the research question: how 

can a point cloud semantically be enriched by providing a labelling process, using 

geometrical properties and colour values? This question is subdivided in smaller 

sub questions, that together form an answer on the research question. 

 

How can the non-ground points be filtered out? 

 

Filtering non-ground points can be challenging for urban point clouds acquired from 

the street level. This is mainly because many human constructions are present on 

the scene. In addition to that, terrestrial laser scanners can acquire millions of 

points in a short time period. In order to extract the ground points from the point 

cloud, the lasground_new tool from the LAStools suite is used. LAStools makes 

use of the progressive densification algorithm. The algorithm identifies ground 

points by progressively densifying a sparse TIN from the points. For a point to be 

classified as ground, it must be within the threshold of a minimum distance from 

the triangle that contains this point. This tool classifies the LAS or LAZ files 

imported into ground points and non-ground points by giving each point a label. 

Next, the point cloud is split on the recently added ground label, creating a ground 

point and non-ground point cloud. 

 

How can a point cloud be indexed? 

 

Point clouds are big data. For quick access and processing of the points in the point 

cloud, a spatial index is needed. After experimenting with the kD-tree and the 

octree, the kD-tree was proven faster and more efficient. This is because the kD-

tree creates a balanced data structure and it is optimised for the k-nearest 

neighbours search.  

 

What subcategories of ground are important? 

 

Having a specific application in mind is very important when designing a process. 

In this case road extraction and materials focused on street level are examined. 

Therefore, the most relevant subcategories of ground (thus classes) are: 

 Grass, or vegetation in general plays a crucial role in city analysis, urban 

planning, surface infiltration capacity analysis etc.. Vegetation is considered 

aesthetically important but also vital for the health of the city itself. 

Therefore, identifying the grass or the lack of grass in an urban environment 

can support urban planning decisions for a better life. 

 Road, is the kernel of the transportation system in cities. The extraction of 

road is an important feature for governments and planning authorities. It is 

relevant for safety reasons, for calculating its capacity, for identifying the 

water resilience of the city. In addition to that, the road is the main feature 

for further extraction of other ‘objects’. A part of the road is the Cycle path.  
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 Tiles (or footpath), are also important to identify, since they are the area 

that protects pedestrians from cars. Therefore, this information can be used 

to analyse where it is hard for pedestrians to walk, important points where 

pedestrians have to cross roads etc.  

 

How can subcategories be classified? 

 

Bridging the gap between raw information and semantics can be rather 

challenging. Therefore, a classification scheme needs to be developed in order to 

provide the relevant information according to the context. The use of colour in 

combination with geometrical properties in today’s laser scanning procedures can 

offer invaluable assistance in classifying objects. Within this research, different 

processes were tested for their relevance, namely the point based and region 

based classification methods.  

 

Using point based classification methods, the colour properties seemed to be a 

very good criterion to distinguish between the different classes. However, there 

can be some overlapping colour information that will lead to misclassification of 

the points. This overlapping colour information can be reduced to a level by 

utilising a colour space different from RGB. Therefore, CIElab, HSV and HSI were 

examined. Point based classification with colour properties is done through 

analyzing the colour values. This method checks whether a point belongs to a 

certain class due to its colour values, while comparing them to the colour values 

of carefully selected training samples representing the different classes. 

In using region based classification methods, neighbouring points, that hold the 

same geometrical and colour properties, are grouped together by the region 

growing algorithm. Next, these complete regions are used to give the points a label 

by comparing its properties to the properties of the selected trainings samples 

which represent the different classes. 

 

What is the best way to label a point cloud? 

 

In this research, where the application is surface based, the point based 

classification methods proved to be the less accurate even though the decision tree 

point based classification has a tolerable accuracy. This can be explained by the 

fact that a lot of colour inconsistencies are present in the point cloud, which makes 

it hard to classify all points correctly using just one sample for each class. Also a 

single point in the point cloud does not, or has less of a semantic meaning on its 

own and therefore it is the neighbourhood of the points that creates more valuable 

information and can smooth the colour inconsistencies. This contiguity is exploited 

by providing a segmentation technique that utilises both the geometrical and 

colour characteristics of the neighbourhood.  

 

However, in the majority of the scene, the different classes, or in other words 

objects, are located on the same plane (like the case of cycle path and road) and 

therefore no immediate distinction can be made between these properties. In 

addition to that, there are no major differences between the geometrical properties 

of the grown regions, that enable clear and straightforward labelling on the ground 
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points of the point cloud. It can also be the case that tiles and road overlap because 

they are on the same level, in order for freight trucks to be able to take the ramp 

and, therefore, it is not possible to region grow only by curvature and normals. 

Normals and curvature are therefore used to region grow, but not for directly 

labeling the point cloud. Hence, growing regions with CIElab colour values seemed 

the best option because of the differences between colours that can be assessed 

easily by calculating the euclidean distance of the CIELab components. 

 

From the outcomes of this project, it becomes clear that a region-based supervised 

classification using training samples is the best way to distinguish between the 

contextually relevant classes. This is because the colour information of the point 

cloud is often less accurate than the positional information. The colours of our point 

cloud show some differences in relation to reality and therefore unsupervised 

schemes present over-segmented results. Furthermore, over-segmentation within 

the unsupervised classification can caused by the existence of shadow and water 

on surfaces, which then appear darker, worn out colours of the road/cyclepath 

markings, different materials of tiles and other noise in general. To work around 

those inaccuracies, training samples can be provided. This way a supervised 

classification captures all appearances of a class whereas an unsupervised 

classification would create different regions. However, during the project, the 

researchers realised that one training sample per class is not sufficient. Therefore, 

the user has to provide the best combination of training samples per scene that 

will not be excessive in number and amount, but representative enough of the 

distinction of the classes present. Finally, extending the method to other areas can 

be successful, but only if the provided training samples are representative. The 

schematic overview of the final workflow is depicted in Figure 79. 

 

Finally, the best way to provide the labelled point cloud to its users depends on 

the application and the characteristics of the users of the product. For more 

inexperienced users, providing different las files for each class might be easier to 

visualise and understand. For more experienced users, one las file with the 

classification stored as an attribute might be more convenient and easier, and form 

a basis to build more applications on top of it.  

 

Recommendations 

 

Unsupervised classification of point clouds results in multiple regions which are 

similar on chosen properties. A disadvantage lies in the fact that no semantics is 

given to these regions, it is only known that they probably belong to the same 

feature or surface. It is up to the user to select what is relevant. To enrich such a 

result we propose to explore the possibilities to match the regions with land use 

maps of some sort. This mapping technique could have the possibilities to create 

maps with a very high resolution. 

 

Another interesting option is to provide the positional information of the mapping 

vehicle/device with (each part of) the point cloud. This way, the position can be 

matched with the processed regions, and for example, if we know that this position 
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relates to a car, we can assume that the concerning region is accessible with a car, 

i.e. we classify it as road. 

 

Finally, the colour based region growing would be greatly improved if some simple 

contrast and brightness enhancement techniques would take place before the 

generation of the point cloud from the cycloramas. This would minimise the 

shadowing problems and the quality of the colours present in the point cloud, 

leading to less training samples being needed per class. 

 

 
Figure 79 The schematic overview of the developed workflow 

 

Future work 

 

A next step would be to extend the workflow to fit a larger region like the 

Netherlands. In order to make this feasible ways of automatic sampling need to 

be investigated. This way the method of supervised classification as described in 

this research would be scalable.   

 

In the trend of explorative point clouds a next step could be to relate the point 

clouds, in particular semantically labelled parts of a point cloud to over simplified 

models of reality. For example, for the inspection of the road network the 

maintenance department would check a map (google maps), and by clicking on 

the map would retrieve the (most up-to-date) detailed point cloud that correlates 

to this area. In the case of an urban planner, this would mean that the point cloud 



107 | P a g e  
 

would be matched with the 3D models that currently exist, like the 3D model of 

the netherlands based on AHN2. A possibility would be to store the points in an 

octree structure and find intersections/overlaps with these over simplified models. 

The client/browser would then only retrieve the semantically relevant points, which 

is desirable since the processing power of the current equipment is still insufficient 

to work with the whole point cloud at once. 
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Appendix A - Project management and 

process 

A.1. The Team 

Adrie Rovers (Technical Manager), Irene de Vreede (Report Manager), Merwin 

Rook (Quality Manager), Stella Psomadaki (Coordinator) and Tim Nagelkerke 

(Communicator)  

 

A.2. Technical Requirements  

 

2.1. What is known? What is unknown? 

Table 1 The known and unknown requirements 

Known 

Software:  

 PostgreSQL and PostGIS (Making a (geo-)database) 

 Python (Programming) 

 CloudCompare (Processing & Visualizing point clouds) 

 FME (Process point clouds) 

 Google Drive (Sharing documents) 

Knowledge, information:  

 Data acquisition (Cyclomedia, pictures and lidar) 

 Importing .xyz files in Python 

Organisational: 

 The capabilities of the team members 

Unknown 

Software:  

 LAS tools 

 Python to PostGIS connection 

 Point cloud extension of PostGIS 

 Other “new” software applicable to the project, for handling point clouds.   

 Use of Point Cloud Library (http://pointclouds.org/) 

Knowledge, information: 

 The test area that is going to be used from the point clouds 

 The difference between the two point clouds provided by Cyclomedia 

 The data formats used by Cyclomedia 

 The attributes of the points of the provided point clouds 

 How to derive the area of the surface out of the points 

 The use of geometric properties of points in a point cloud 

 Indexing and clustering point clouds in Python or PostGIS 

 How to classify the different surfaces (grass, soil, road, stones, pavement 

etc.) 

 How to perform the labelling of the point cloud 

Organisational: 

http://pointclouds.org/
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 The schedule of the team members 

 

9.4. Identification and contact with stakeholders and experts 

 

Possible Clients 

Municipality of Delft, to automatically detect the road and urban surface and utilise 

it for maintenance purposes. 

City planners, in order to find weak spots in the city water management. 

Facilitair Management & Vastgoed TU Delft, to keep track of the facilities’ status 

around the campus. 

 

Domain Experts 

 

The main expert group is Cyclomedia. Cyclomedia performs the data acquisition 

using mobile mapping techniques and processes the data into a manageable 

format.  

Geosignum could give some basic advice about how to start the process.  

Geomatics Msc. personnel could provide their ICT and Geomatics expertise. 

 

9.5. MoSCoW prioritization 

 

MoSCoW is a method for assisting the team in understanding the priorities of the 

project. The letters stand for: 

 Must Have: A must have is a critical component of the software. If one of 

the must haves is missing, the project can be considered a failure. 

 Should Have: A should have is also important, but is not a necessary for the 

project. 

 Could Have: Could haves are desirable, but not necessary for the project. 

 Won’t Have this time: A won’t have is not planned in the schedule, and can 

be considered in further developments. 

 

The MoSCoW prioritisation for this project is depicted in Table 2. 

Table 2, The MoSCoW prioritisation 

MUST have this SHOULD have this if at all possible 

 Data gathering: data gathering is 

the most important task in the 

project, as the data forms the 

basis for our analysis. The data 

gathering involves the point 

cloud from the laser scanner and 

the point cloud from Cycloramas.  

 Filter the point cloud: separating 

the ground points from buildings, 

vegetation and other objects is 

one of the main goals of the 

project, as the ground points are 

 Cyclorama images. 
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the main objects of interest in our 

analysis. 

 Classify the point cloud: the 

classification of the point cloud 

means that point that have 

similar (geometri or colourc) 

properties are recognised and 

classified the same. 

 Semantically label the point 

cloud: the labelling of the points 

gives a meaning to the points and 

the point cloud.  

COULD have this if it doesn’t 

affect anything else 

WON’T have this this time but 

WOULD like in the future 

 Applying the labelling method on 

different point clouds to see if it 

is possible to apply this method 

for the whole of the Netherlands. 

 Identifying involved parties/ 

applications: in order to optimise 

the use of points, new 

stakeholders and their demands 

must be identified.  

 Applications: New applications 

help the demand and 

development of classification and 

labelling algorithms to develop 

and evolve. 

 A comparison of the two point 

clouds provided by Cyclomedia. 

 

 Database of the original point clouds. 

 Database design: the semantically 

labelled points should be stored, in 

order to disseminate the points to the 

actual users of the data.  

 Classification and labelling of non-

ground points. 

 Semantic point cloud viewer; In order 

to present and select the points and 

their semantics, a (web)viewer should 

be developed. This viewer should give 

users the possibility to show and 

select points on their semantic 

meaning. This could preferably be 

done in WebGL. 

 A website presenting the project’s 

results. 

 Calculations of the (expected) 

amount of sunlight in hours, in order 

to calculate exact heat effects. 

 The street surface of the whole of the 

Netherlands. 

 

9.6. Killer requirements 

 

A killer requirement is a requirement that, if it is not met, brings the whole project 

in danger. Identifying the killer requirements could lead to a steady project 

execution. 

 Processing power of personal laptops. 

 Obtaining the data on time. 

 A minimal accuracy of  the geometry and colour attributes of the point cloud 

in order to distinguish between classes. 

 Time limitation. 

 Programming language knowledge 
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9.7. Competitors evaluated 

 

A competitor can be defined as a party providing the same products or services as 

.XYZ solutions.  

The other synthesis project teams, all handling raw point cloud data for certain 

applications, are our competitors.  Although companies like GeoSignum are our 

main competitors. Geosignum is a small innovative startup company which 

provides an automatic feature extraction technology from LIDAR datasets. Feature 

extraction can be seen as a form of semantic labelling and therefore this company 

could provide the same service. The way they automatically extract features is 

done using only the geometric properties of the points within the point cloud, in 

this way the provided service is slightly different. 

Since processing the raw point cloud for certain applications is quite a new way of 

providing certain products or services, lots of research is taking place in this 

domain but not many companies already provides such products or services.  

 

9.8. Rich picture 

 

The rich picture represents a schematic view of the problem that will be solved 

during the project. The main factors that affect the problem are presented and 

their interactions are displayed. The rich picture of the project in this report is 

composed as follows (Figure 1): The team .XYZ is in the middle and is the basis 

for the whole view. The team members want to apply their knowledge obtained 

the last year to compose a project that will bring great value to the community. In 

addition to that, they want to have fun during the whole process. The coaches 

want and encourage the students to explore new ways to use point clouds as the 

main source of information. There are also the rules and the deadlines that need 

to be followed and the team has to deal with those time limitations. The 

competitors, just like team .XYZ want to make the best out of their product, 

eliminating the competition if possible. Three types of reports need to be made 

which have to cover specific points and be as clear as possible. The most important 

aspect is then the clients and users. This group of people want much as detailed 

information as possible, to save resources and solutions that are feasible in the 

everyday life. The media outreach, on the other hand, is interested in promoting 

new ideas and new scientific results. Cyclomedia (the data provider) is aiming at 

helping the education and to make their products more appealing to new kinds of 

users. To do this, they provide state of the art mobile mapping solution. Finally, 

the result of this project should be a user friendly and automated as possible. 
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Figure 1, The Rich Picture 

 

A.3. Project Plan 

The purpose of the project plan is to strategically define the process towards the 

completion of the project. The project plan takes place at the early stages of the 
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project to identify all the requirements, resources and time required for the 

execution of the work. Lack of a project plan might lead to the failing of the project. 

 

3.1. Organisational Breakdown Structure 

Prosperous project management requires detailed planning and an organized 

structure. When starting a project, tasks have to be identified and decisions have 

to be made of who will carry out the work. The Organisational Breakdown Structure 

(OBS) is a model which allows projects organisations to be broken down, providing 

a framework for project planning. This framework is created to reflect the strategy 

for managing various aspects of the project. Responsibilities within the project 

management will be defined for every team member. Team member tasks will be 

linked to the project management as well as to work packages defined within the 

Work Breakdown Structure (Section 5.2). The Organisational Breakdown Structure 

is presented in Figure 2. 

 

The team   

Adrie Rovers (Technical Manager), Irene de Vreede (Report Manager), Merwin 

Rook (Quality Manager), Stella Psomadaki (Coordinator) and Tim Nagelkerke 

(Communicator) 

 

Team tasks and functions 

 

Coordinator - Defines the Agenda, Leads meetings. 

Communicator - Defines the planning, Does the communication between the 

production team and client, Sets meetings between the project team and the client 

and or coaches. 

Quality Manager - Defines the overall work quality, Reviews the quality of delivered 

work. 

Report Manager - Defines report and document requirements, deals with the 

organisational aspects regarding the deliverable items.  

Technical Manager - Deals with technical aspects, Defines algorithms.  

The work packages as defined in section (5.2 and 5.3) are performed by all team 

members. This will ensure that the learning process has an equal effect to all team 

members and all members work equally throughout the project. Nevertheless the 

person first mentioned will be the final responsibility. 



120 | P a g e  
 

 
Figure 2, The Organisational Breakdown Structure 

 

3.2. Work Breakdown Structure 

 

The WBS is used to provide the team members a common view of the project 

scope. In other words, WBS is used to analyse the aim of the project according to 

its outcomes or deliverables. 
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Figure 3, The Work Breakdown structure 
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According to the common understanding of the project by the team members, the 

project is divided into 4 levels (Figure 2).  The first level represents the whole 

Project. The project is subdivided into the deliverables, the data gathering, the 

point cloud processing and, optionally, to the database design and application and 

parties identification. The deliverables represent the reports and other 

miscellaneous products.  

 

3.3. Work Package Descriptions 

 

A work package is highly related to the breakdown structure as defined in the 

previous section. The main goal of WPD is to define all steps that are important for 

the completion of a project. In the situation discussed in this report the packages 

presented, if combined with each other, form the complete project. Each work 

package is defined in Table 4 and are also followed with a specified deadline, as 

will be presented later in the GANNT chart. 

 

Table 4, Work Package Descriptions 

Work 

package 

Title Description Is 

needed 

for WP 

WP1 Data gathering Arrange the data acquisition with 

Cyclomedia and obtain the point cloud. 

output: Coloured LIDAR point cloud, 

coloured point cloud from 

photogrammetry, images/cycloramas. 

WP2 

WP3 

WP4 

WP2 Filter the point 

cloud 

Investigate ways to filter point clouds, 

split the ground points from the other 

points.  

output: A file with the ground points and 

a file with the other points. 

WP3 

WP4 

WP3 Classify the 

point cloud 

Determine ways to classify the ground 

points in different classes. The classes are 

formed with points that have similar 

properties, like: colour, normals and other 

geometric properties. 

output: classification of the ground 

points. 

WP4 

WP4 Semantically 

label point 

cloud 

Put semantics to the classified ground 

points. These semantics are based on the 

function of the points, like: road, grass or 

sidewalk. Other labels are based on the 

composition of the points material, like: 

asphalt, vegetation or pavement. 

(WP5) 

(WP7) 
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output: ground points with types, 

vegetation, road, pavement and water. 

WP5 Database 

design 

(optional) 

Design a database to store the 

semantically labelled point cloud and put 

it in the database. 

output: database with semantically 

labelled points. 

(WP7) 

WP6 Identifying 

involved 

parties/ 

applications 

(optional) 

With the enriched point cloud, more 

applications and people can benefit. This 

task focuses on identifying possible users 

of the enriched data. 

output: list of possible users/applications 

of the enriched point cloud. 

 

WP7 Applications 

(optional) 

To show the potential of the enriched 

point cloud an application listed in WP6 

will be executed. 

output: application. 

 

 

3.4. Project Logic Diagram 

 

The project logic diagram is a schematic representation of the sequence of 

activities that will take place in timeline restricted phases in order to produce the 

final product (Figure 4). In order to provide a logic diagram the project is divided 

in phases. This timeline restricted phasing of the project takes place after the 

identification of the WBS and the WPD. Phasing the project means that the project 

is broken down into smaller pieces which will be easier to handle. According to the 

experience gained during the first year of Geomatics the team estimated the effort 

that needs to be put in those packages. This resulted in a general (time-restricted) 

phasing that is explained in Table 5. 

 

Table 5, Project Phasing 

Phase Date  

(Start 

- End) 

Goal Deadline(s)/ 

Milestones 

1: requirements 

analysis and 

planning 

31/08 

- 

14/09 

During this phase the scope and 

the problem is identified. The data 

gathering will take place in 

cooperation with Cyclomedia. In 

addition to that, a detailed list of 

the project’s requirements is 

identified and the project planning 

takes place. 

Baseline 

Review (14-

09) 

2: Conceptual 

analysis, 

information 

14/09 

- 

28/09 

During this phase, the different 

algorithms that are utilised will be 

identified and reviewed for their 

Mid-Term 

Review (28-

09) 
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gathering and 

combination 

outputs. The algorithms aim, as a 

first step, at subdividing  the point 

cloud in chunks or blocks for 

easier processing and data 

handling. Next, the filtering of the 

non-ground data will take place. 

Finally classification algorithms 

will be reviewed. The possibilities 

to use colours as a classification 

parameter will be mostly 

investigated. At the end of this 

phase, the point cloud will be 

filtered and possibly also classified 

into the needed categories. 

3: Detailed 

analysis 

28/09 

- 2/11 

During this phase, the labelling of 

the point clouds will be researched 

and performed. This will then be 

followed by a case study on 

surface detection in an urban 

environment. Thereby, different 

classification and labelling 

methods will be tested. In this 

surface detection, the possibilities 

to use colours will be further 

investigated. 

Final Review 

(2-11) 

 

4: Final Review 

and Symposium 

 The final review will provide those 

who are interested with a 

complete and formal briefing on 

the whole project. The final review 

will include the process and 

results followed by details, 

conclusions and a statement of 

compliance with the 

requirements. 

The symposium will be the 

opportunity to present the 

completed project. 

Final Review 

(2-11) 

Symposium (6-

11) 

Report 

 

Within those four defined phases, several activities are planned. The activities are 

linked together forming a path through the different project phases until the final 

product. These activities will be visualised within the Logic diagram in Figure 4.    
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Figure 4, Logic diagram 

 

3.5. GANTT Chart 

The GANTT Chart (Figure 5). In a GANTT Chart the packages defined previously 

are displayed against the time factor. The deliverables are also displayed, in bold. 

 
Figure 5, The updated GANTT chart 
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Appendix B - Python code 

 

B.1.  Supervised classification with Smoothing 

 
import numpy as np, scipy.spatial as sp, matplotlib.pyplot as plt, timeit, 

math 

from scipy import linalg 

from sets import Set 

from color_analysis import * #Import our color_functions 

from neighbourhood_characteristics import * #Import function to calculate 

characteristic values of a point cloud 

from getStatistics import * #import sample statistics 

 

class Point(object): 

  __slots__ = ('index', 'xyz', 'lab', 'curv', 'normal', 'nn_indices', 

"region_number", 'rgb', 'c') 

  def __init__(self, index, xyz, lab, curv, normal, nn_indices, rgb): 

    self.index = index 

    self.xyz = xyz 

    self.lab = lab 

    self.curv = curv 

    self.normal = normal 

    self.nn_indices = nn_indices 

    self.region_number = -1 

    self.rgb = rgb 

 

class Region(object): 

  __slots__ = ('number', 'points', 'lab_avg') 

  def __init__(self, number, points, lab_avg): 

    self.number = number 

    self.points = points 

    self.lab_avg = lab_avg 

 

def unpack_xyz(infile): 

    points_xyz = [] 

    count = 0 

    for each in infile: 

        values = each.split(' ') 

        xyz = (float(values[0]), float(values[1]), float(values[2])) 

        rgb = (float(values[4]), float(values[5]), float(values[6])) # ----

-depends on RGB position----- 

        c,i,e = CIEXYZ(np.array([rgb[0]/255.0, rgb[1]/255.0, 

rgb[2]/255.0]).T) 

        l,a,b = CIELab(c,i,e) 

        dic[xyz] = ((l,a,b),rgb) 

        points_xyz.append(xyz) 

        count += 1 

    print "Total points in this scene: ", count 

    return np.array(points_xyz) 

 

def region_growing(l): 

    c_threshold = 0.001 #Curvature threshold 

    a_threshold = 45*math.pi/180 #Angle threshold 

    available_points = sorted(l, key=lambda x: x.curv) #Copy of point list 

(because list is mutable) 

    regions = [] 

    region_index = 0 
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    for point in available_points: 

        if point.region_number == -1: 

            point.region_number = region_index 

            current_region = Set([point]) 

            suma = point.lab[1] 

            sumb = point.lab[2] 

            sumL = point.lab[0] 

            current_seeds = Set([point]) 

            while len(current_seeds) != 0: 

                seed = current_seeds.pop() 

                seeds_nn_indices = seed.nn_indices 

                for index in seeds_nn_indices: 

                    n = all_points[index] 

                    if n.region_number == -1: 

                        #Calculate angle between normals: 

                        p = (seed.normal[0]*n.normal[0]) + 

(seed.normal[1]*n.normal[1]) + (seed.normal[2]*n.normal[2]) #Dot product of 

normal vectors 

                        q = math.sqrt((seed.normal[0])**2 + 

(seed.normal[1])**2 + (seed.normal[2])**2) * math.sqrt((n.normal[0])**2 + 

(n.normal[1])**2 + (n.normal[2])**2) #Length normal product 

                        if p/q > 1.0: #Make sure values are not bigger than 

1 (otherwise cos function doesn't work) 

                            p = 1.0 

                            q = 1.0 

                        if q < 0.00000001: 

                            q = 0.0001 

                        angle = math.acos(p/q) 

                        #dp = abs((seed.normal[0]*n.normal[0]) + 

(seed.normal[1]*n.normal[1]) + (seed.normal[2]*n.normal[2])) #Dot product 

of normal vectors 

                        if abs(seed.lab[1] - n.lab[1]) < 0.2 and angle < 

a_threshold: 

                            n.region_number = region_index 

                            suma = suma + n.lab[1] 

                            sumb = sumb + n.lab[2] 

                            sumL = sumL + n.lab[0] 

                            current_region.add(n) 

                            if abs(n.curv - seed.curv) < c_threshold: 

#abs(seed.curv - n.curv) < c_threshold: 

                                current_seeds.add(n) 

            l_region = len(current_region) 

            regions.append(Region(region_index, current_region, 

(sumL/l_region, suma/l_region, sumb/l_region))) 

            region_index += 1   

    return regions 

 

def smoothing(l): 

    g_list = [] 

    r_list = [] 

    c_list = [] 

    road_list = [] 

    t_list = [] 

    for point in l: 

        g = 0 

        r = 0 

        c = 0 

        road = 0 

        t = 0 

        for index in point.nn_indices: 

            n = all_points[index] 
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            if n.c == 'road': 

                road += 1 

            elif n.c == 'c': 

                c += 1 

            elif n.c == 't': 

                t += 1 

            elif n.c == 'g': 

                g += 1 

            elif n.c == 'r': 

                r += 1 

        maximum = max((g,'g'),(r,'r'),(c,'c'),(road,'road'),(t,'t')) 

        if maximum[1] == 'road': 

            road_list.append(point) 

        elif maximum[1] == 'c': 

            c_list.append(point) 

        elif maximum[1] == 't': 

            t_list.append(point) 

        elif maximum[1] == 'g': 

            g_list.append(point) 

        elif maximum[1] == 'r': 

            r_list.append(point) 

    return g_list, r_list, c_list, road_list, t_list 

 

if __name__ == "__main__": 

    timer1 = timeit.default_timer() #Start of processing 

    dic = {} #Declare global dictionary. Used to lookup RGB and LAB values 

after K-D tree indexing 

    File = open('StereoGroundclassification.xyz') 

    points = unpack_xyz(File) 

    File.close() 

    kdtree = sp.cKDTree(points) #Build K-D tree 

    n = 20 #Define size of local neighbourhood 

    nn_query = kdtree.query(kdtree.data, k=n, eps=0, p=2) #Find nearest 

neighbours, eps:exact search, p:euclidean distance 

    nn_indices = nn_query[1] #Neighbour indices in the K-D tree 

    nn = kdtree.data[nn_indices] #Retrieve neighbour values 

    nn_T = nn.transpose(0,2,1) 

    centroids = np.average(nn_T, axis=2).reshape(len(nn_T),3,1) 

    vectors = nn_T - centroids #Diff vectors (between neighbour points and 

centroid) 

    VP = np.array([594088, 5762450, 80]) #Viewpoint 

 

 

    all_points = [] 

    for i in range(len(kdtree.data)): 

        cov = np.cov(vectors[i]) #Covariance matrix 3x3 

        eig = linalg.eig(cov) #Eigenvalues and eigenvectors 

        #The plane normal n is the eigenvector of S with the smallest 

eigenvalue >>>> min(eig[0]) 

        normal = np.array(eig[1][np.where(eig[0] == min(eig[0]))[0][0]]) 

        if np.dot(normal, VP - kdtree.data[i]) < 0: #Check consistent 

global orientation 

            normal = (-1)* normal #Flip normal 

        l = sorted(eig[0].real, reverse=True) #Sorted eigenvalues 

(ascending) 

        C = characteristics(l) #Eigenvalue-based 3D features 

        #curvature_list.append(C) 

        xyz = kdtree.data[i] 

        all_points.append(Point(i, xyz, dic[tuple(xyz)][0], C, normal, 

nn_indices[i],dic[tuple(xyz)][1])) 
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    regions = region_growing(all_points) 

 

    

    cwd = os.getcwd() 

    path = cwd + "\Samples" 

    s = gatherStatistics(statistics(unpack(path, os.listdir(path)))) 

 

    for each in regions:        

        avea = each.lab_avg[1] 

        aveb = each.lab_avg[2] 

        aveL = each.lab_avg[0] 

 

           

        ## Samples for road 

        if ((s["Road"][0][0]<aveL<s["Road"][0][1] and 

s["Road"][0][2]<avea<s["Road"][0][3] and 

s["Road"][0][4]<aveb<s["Road"][0][5]) 

                or (s["Road"][1][0]<aveL<s["Road"][1][1] and 

s["Road"][1][2]<avea<s["Road"][1][3] and 

s["Road"][1][4]<aveb<s["Road"][1][5]) 

                or (s["Road"][2][0]<aveL<s["Road"][2][1] and 

s["Road"][2][2]<avea<s["Road"][2][3] and 

s["Road"][2][4]<aveb<s["Road"][2][5])): 

            for point in each.points: 

                point.c = 'road' 

 

        ##Samples for cyclepath                 

        elif ((s["Cyclepath"][0][0]<aveL<s["Cyclepath"][0][1] and 

s["Cyclepath"][0][2]<avea<s["Cyclepath"][0][3] and 

s["Cyclepath"][0][4]<aveb<s["Cyclepath"][0][5]) 

                or (s["Cyclepath"][1][0]<aveL<s["Cyclepath"][1][1] and 

s["Cyclepath"][1][2]<avea<s["Cyclepath"][1][3] and 

s["Cyclepath"][1][4]<aveb<s["Cyclepath"][1][5]) 

                or (s["Cyclepath"][2][0]<aveL<s["Cyclepath"][2][1] and 

s["Cyclepath"][2][2]<avea<s["Cyclepath"][2][3] and 

s["Cyclepath"][2][4]<aveb<s["Cyclepath"][2][5]) 

                or (s["Cyclepath"][3][0]<aveL<s["Cyclepath"][3][1] and 

s["Cyclepath"][3][2]<avea<s["Cyclepath"][3][3] and 

s["Cyclepath"][3][4]<aveb<s["Cyclepath"][3][5]) 

                or (s["Cyclepath"][4][0]<aveL<s["Cyclepath"][4][1] and 

s["Cyclepath"][4][2]<avea<s["Cyclepath"][4][3] and 

s["Cyclepath"][4][4]<aveb<s["Cyclepath"][4][5]) 

                or (s["Cyclepath"][5][0]<aveL<s["Cyclepath"][5][1] and 

s["Cyclepath"][5][2]<avea<s["Cyclepath"][5][3] and 

s["Cyclepath"][5][4]<aveb<s["Cyclepath"][5][5]) 

                or (s["Cyclepath"][6][0]<aveL<s["Cyclepath"][6][1] and 

s["Cyclepath"][6][2]<avea<s["Cyclepath"][6][3] and 

s["Cyclepath"][6][4]<aveb<s["Cyclepath"][6][5]) 

                or (s["Cyclepath"][7][0]<aveL<s["Cyclepath"][7][1] and 

s["Cyclepath"][7][2]<avea<s["Cyclepath"][7][3] and 

s["Cyclepath"][7][4]<aveb<s["Cyclepath"][7][5])): 

            for point in each.points: 

                point.c = 'c' 

 

        ##Samples for tiles          

        elif ((s["Tiles"][0][0]<aveL<s["Tiles"][0][1] and 

s["Tiles"][0][2]<avea<s["Tiles"][0][3] and 

s["Tiles"][0][4]<aveb<s["Tiles"][0][5]) 

                or (s["Tiles"][1][0]<aveL<s["Tiles"][1][1] and 

s["Tiles"][1][2]<avea<s["Tiles"][1][3] and 

s["Tiles"][1][4]<aveb<s["Tiles"][1][5]) 
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                or (s["Tiles"][2][0]<aveL<s["Tiles"][2][1] and 

s["Tiles"][2][2]<avea<s["Tiles"][2][3] and 

s["Tiles"][2][4]<aveb<s["Tiles"][2][5]) 

                or (s["Tiles"][3][0]<aveL<s["Tiles"][3][1] and 

s["Tiles"][3][2]<avea<s["Tiles"][3][3] and 

s["Tiles"][3][4]<aveb<s["Tiles"][3][5]) 

                or (s["Tiles"][4][0]<aveL<s["Tiles"][4][1] and 

s["Tiles"][4][2]<avea<s["Tiles"][4][3] and 

s["Tiles"][4][4]<aveb<s["Tiles"][4][5]) 

                or (s["Tiles"][5][0]<aveL<s["Tiles"][5][1] and 

s["Tiles"][5][2]<avea<s["Tiles"][5][3] and 

s["Tiles"][5][4]<aveb<s["Tiles"][5][5]) 

                or (s["Tiles"][6][0]<aveL<s["Tiles"][6][1] and 

s["Tiles"][6][2]<avea<s["Tiles"][6][3] and 

s["Tiles"][6][4]<aveb<s["Tiles"][6][5])): 

            for point in each.points: 

                point.c = 't' 

 

        # Green 

        elif avea < -2: 

            for point in each.points: 

                point.c = 'g' 

 

        ##The unknown class 

        else: 

            for point in each.points: 

                point.c = 'r' 

 

 

    print len(all_points) 

    g, r, c, road, t = smoothing(all_points) 

    print len(g), len(r), len(c), len(road), len(t) 

    fg = open("grassa3.xyz" , 'w') 

    fr = open("resta3.xyz", 'w') 

    fc = open("cyclea3.xyz", 'w') 

    froad = open("roada3.xyz", 'w') 

    ft = open("tilesa3.xyz", 'w') 

 

    fg1 = open("grass.xyz" , 'w') 

    fc1 = open("cycle.xyz", 'w') 

    froad1 = open("road.xyz", 'w') 

    ft1 = open("tiles.xyz", 'w') 

     

    for point in g: 

        fg.write(('%s %s %s %s %s %s\n' % 

(point.xyz[0],point.xyz[1],point.xyz[2],point.rgb[0],point.rgb[1],point.rgb

[2]))) 

        fg1.write(('%s %s %s %s %s %s\n' % 

(point.xyz[0],point.xyz[1],point.xyz[2],30,193,30))) 

    for point in r: 

        fr.write(('%s %s %s %s %s %s\n' % 

(point.xyz[0],point.xyz[1],point.xyz[2],point.rgb[0],point.rgb[1],point.rgb

[2])))     

    for point in c: 

        fc.write(('%s %s %s %s %s %s\n' % 

(point.xyz[0],point.xyz[1],point.xyz[2],point.rgb[0],point.rgb[1],point.rgb

[2]))) 

        fc1.write(('%s %s %s %s %s %s\n' % 

(point.xyz[0],point.xyz[1],point.xyz[2],226,32,32))) 

    for point in road: 
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        froad.write(('%s %s %s %s %s %s\n' % 

(point.xyz[0],point.xyz[1],point.xyz[2],point.rgb[0],point.rgb[1],point.rgb

[2]))) 

        froad1.write(('%s %s %s %s %s %s\n' % 

(point.xyz[0],point.xyz[1],point.xyz[2],28,27,27))) 

    for point in t: 

        ft.write(('%s %s %s %s %s %s\n' % 

(point.xyz[0],point.xyz[1],point.xyz[2],point.rgb[0],point.rgb[1],point.rgb

[2]))) 

        ft1.write(('%s %s %s %s %s %s\n' % 

(point.xyz[0],point.xyz[1],point.xyz[2],60,60,225))) 

         

    timer4 = timeit.default_timer() 

    fg.close() 

    fr.close() 

    fc.close() 

    froad.close() 

    ft.close() 

    print 'Done! (in', (timer4 - timer1)/60.0, 'minutes)' 

 

 

B.2. Get training samples statistics 

 
import os 

import numpy as np 

from color_analysis import * 

 

def unpack(path,filename): 

    lengte = len(filename) 

    L_end = [] 

    B_end = [] 

    A_end =[] 

    l1 = tuple() 

    a1 = tuple() 

    b1 = tuple() 

    files = [] 

    for each in range(lengte): 

        if filename[each].endswith(".xyz"): 

            files.append(filename[each]) 

            Llist =[] 

            Alist =[] 

            Blist =[] 

            minl = [] 

            points = open(path+ "//" + filename[each]) 

 

            for i in points: 

                splitted = i.split(' ') 

                R = float(splitted[3]) 

                G = float(splitted[4]) 

                B = float(splitted[5]) 

                [X,Y,Z] =  CIEXYZ(np.array([R/255.0,G/255.0,B/255.0]).T) 

                (L,a,b) = CIELab(X,Y,Z) 

                Llist.append(L) 

                Alist.append(a) 

                Blist.append(b) 

            L_end.append(Llist) 

            B_end.append(Blist) 

            A_end.append(Alist) 

    return L_end,A_end,B_end, files 
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def statistics(lst): 

    """Gets the samples and returns a list of lists with the name of the 

file and for each component of the Lab 

    color space the domain. 

 

    The list is structured as follows: 

 

    ["name.xyz",L_min,L_max,a_min,a_max,b_min,b_max] 

    """ 

    sublist = [] 

    for i in range(len(lst[3])): 

        sublist.append([lst[3][i],np.mean(lst[0][i])-

3*np.std(lst[0][i]),np.mean(lst[0][i])+3*np.std(lst[0][i]),np.mean(lst[1][i

])-

3*np.std(lst[1][i]),np.mean(lst[1][i])+3*np.std(lst[1][i]),np.mean(lst[2][i

])-3*np.std(lst[2][i]),np.mean(lst[2][i])+3*np.std(lst[2][i])]) 

    return sublist 

 

def gatherStatistics(l): 

    dic = {} 

    for i in l: 

        name = i[0].split('_') 

        if name[0] not in dic: 

            dic[name[0]] = [i[1:]] 

        else: 

            dic[name[0]].append(i[1:]) 

    return dic 

 

if __name__=="__main__": 

    #Path with the samples 

    cwd = os.getcwd() 

    path = cwd + "\\Samples\\" 

    s = statistics(unpack(path, os.listdir(path))) 

    print gatherStatistics(s) 

 

 

B.3. CIE-Lab transformations 

 
import numpy as np 

 

def f(t): 

    if t > 0.008856: 

        return t**(1/3.0) 

    else: 

        return 7.787*t + (16.0/116.0) 

 

def CIEXYZ(c): 

    a = [[0.4125, 0.3576, 0.1804],[0.2127, 0.7152, 

0.0722],[0.0193,0.300,0.9502]] 

    return np.dot(a,c) 

     

def CIELab(X,Y,Z): 

    y = f(Y/Y0) 

    L = (116*y)-16 

    a = 500*(f(X/X0)-y) 

    b = 200*(y-f(Z/Z0)) 

    return L,a,b 

 

white = np.array([1.0,1.0,1.0]).T 

X0,Y0,Z0 = CIEXYZ(white) 



135 | P a g e  
 

B.4. Geometrical Characteristics 

 
def characteristics(l): 

    """ 

    Calculate characteristic values of a point cloud. 

    Input: the eigenvectors in ascending order 

    Output: The charateristics 

    """ 

    S = l[0] + l[1] + l[2] #Sum of eigenvalues 

    e = [l[0]/S,l[1]/S,l[2]/S] #normalised eigenvalues 

 

    L = (e[0]-e[1])/e[0] #Linearity 

    P = (e[1]-e[2])/e[0] #Planarity 

    S = e[2]/e[0] #Scattering 

    O = (e[0]*e[1]*e[2])**(1.0/3.0) #Omnivariance 

    A = (e[0]-e[2])/e[0] #Anisotropy 

    E = -(l[0]*log(l[0])+l[1]*log(l[1])+l[2]*log(l[2])) #Eigenentropy 

    C = l[2]/S #Change of curvature 

    return C 

 

B.5. Unsupervised Classification with Merging algorithm 
 
import numpy as np, scipy.spatial as sp, matplotlib.pyplot as plt, timeit, 

math 

from scipy import linalg 

from sets import Set 

from color_analysis import * #Import our color_functions 

from neighbourhood_characteristics import * #Import function to calculate 

characteristic values of a point cloud 

 

class Point(object): 

  __slots__ = ('index', 'xyz', 'lab', 'curv', 'normal', 'nn_indices', 

"region_number", 'rgb', 'c') 

  def __init__(self, index, xyz, lab, curv, normal, nn_indices, rgb): 

    self.index = index 

    self.xyz = xyz 

    self.lab = lab 

    self.curv = curv 

    self.normal = normal 

    self.nn_indices = nn_indices 

    self.region_number = -1 

    self.rgb = rgb 

 

 

class Region(object): 

  __slots__ = ('number', 'points', 'l', 'lab_avg') 

  def __init__(self, number, points, l, lab_avg): 

    self.number = number 

    self.points = points 

    self.l = l 

    self.lab_avg = lab_avg 

 

def unpack_xyz(infile): 

    points_xyz = [] 

    count = 0 

    for each in infile: 

        values = each.split(' ') 

        xyz = (float(values[0]), float(values[1]), float(values[2])) 

        rgb = (float(values[3]), float(values[4]), float(values[5])) # ----

-depends on RGB position----- 
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        c,i,e = CIEXYZ(np.array([rgb[0]/255.0, rgb[1]/255.0, 

rgb[2]/255.0]).T) 

        l,a,b = CIELab(c,i,e) 

        dic[xyz] = ((l,a,b),rgb) 

        points_xyz.append(xyz) 

        count += 1 

    print "Total points in this scene: ", count 

    return np.array(points_xyz) 

 

def region_growing(l): 

    c_threshold = 0.0015 #Curvature threshold 

    a_threshold = 45*math.pi/180 #Angle threshold 

    available_points = sorted(l, key=lambda x: x.curv) #Copy of point list 

(because list is mutable) 

    regions = [] 

    region_index = 0 

    for point in available_points: 

        if point.region_number == -1: 

            point.region_number = region_index 

            current_region = [point] 

            lab_a = point.lab[1] 

            lab_b = point.lab[2] 

            current_seeds = Set([point]) 

            while len(current_seeds) != 0: 

                seed = current_seeds.pop() 

                seeds_nn_indices = seed.nn_indices 

                for index in seeds_nn_indices: 

                    n = all_points[index] 

                    if n.region_number == -1: 

                        #Calculate angle between normals: 

                        p = (seed.normal[0]*n.normal[0]) + 

(seed.normal[1]*n.normal[1]) + (seed.normal[2]*n.normal[2]) #Dot product of 

normal vectors 

                        q = math.sqrt((seed.normal[0])**2 + 

(seed.normal[1])**2 + (seed.normal[2])**2) * math.sqrt((n.normal[0])**2 + 

(n.normal[1])**2 + (n.normal[2])**2) #Length normal product 

                        if p/q > 1.0: #Make sure values are not bigger than 

1 (otherwise cos function doesn't work) 

                            p = 1 

                            q = 1 

                        angle = math.acos(p/q) 

                        #dp = abs((seed.normal[0]*n.normal[0]) + 

(seed.normal[1]*n.normal[1]) + (seed.normal[2]*n.normal[2])) #Dot product 

of normal vectors 

                        if abs(seed.lab[1] - n.lab[1]) < 0.2 and angle < 

a_threshold: 

                            n.region_number = region_index 

                            current_region.append(n) 

                            lab_a += n.lab[1] 

                            lab_b += n.lab[2] 

                            if abs(seed.curv - n.curv) < c_threshold: 

#n.curv < c_threshold: 

                                current_seeds.add(n) 

            l_region = len(current_region) 

            regions.append(Region(region_index, current_region, l_region, 

(lab_a/l_region, lab_b/l_region))) 

            region_index += 1   

    return regions 

 

def dist(x1,y1,x2,y2): 

    return (x1-x2)**2+(y1-y2)**2 
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if __name__ == "__main__": 

    timer1 = timeit.default_timer() #Start of processing 

    dic = {} #Declare global dictionary. Used to lookup RGB values after K-

D tree indexing 

    File = open('CIELab.xyz') 

    points = unpack_xyz(File) 

    File.close() 

    kdtree = sp.cKDTree(points) #Build K-D tree 

    n = 20 #Define size of local neighbourhood 

    nn_query = kdtree.query(kdtree.data, k=n, eps=0, p=2) #Find nearest 

neighbours, eps:exact search, p:euclidean distance 

    nn_indices = nn_query[1] #Neighbour indices in the K-D tree 

    nn = kdtree.data[nn_indices] #Retrieve neighbour values 

    nn_T = nn.transpose(0,2,1) 

    centroids = np.average(nn_T, axis=2).reshape(len(nn_T),3,1) 

    vectors = nn_T - centroids #Diff vectors (between neighbour points and 

centroid) 

    VP = np.array([-60906, 22449, 4300]) #Viewpoint 

 

 

    all_points = [] 

    for i in range(len(kdtree.data)): 

        cov = np.cov(vectors[i]) #Covariance matrix 3x3 

        eig = linalg.eig(cov) #Eigenvalues and eigenvectors 

        #The plane normal n is the eigenvector of S with the smallest 

eigenvalue >>>> min(eig[0]) 

        normal = np.array(eig[1][np.where(eig[0] == min(eig[0]))[0][0]]) 

        if np.dot(normal, VP - kdtree.data[i]) < 0: #Check consistent 

global orientation 

            normal = (-1)* normal #Flip normal 

        l = sorted(eig[0].real, reverse=True) #Sorted eigenvalues 

(ascending) 

        C = characteristics(l) #Eigenvalue-based 3D features 

        #curvature_list.append(C) 

        xyz = kdtree.data[i] 

        all_points.append(Point(i, xyz, dic[tuple(xyz)][0], C, normal, 

nn_indices[i], dic[tuple(xyz)][1])) 

    regions = region_growing(all_points) 

    THRES = 5000 

    regionsss = [] 

    numbersss = Set() #All regionnumbers smaller than threshold 

    for region in regions: 

        if region.l < THRES: 

            regionsss.append(region) 

            numbersss.add(region.number) 

    deleted_numbersss = [] 

     

    while len(regionsss) != 0: 

        x = Set() #Set with all the regionnumbers of the neigbours of all 

points that is not own region number 

        region = regionsss.pop() 

        numbersss.remove(region.number) 

        deleted_numbersss.append(region.number) 

        for point in region.points: 

            for i in point.nn_indices: 

                rn = all_points[i].region_number 

                if rn != region.number: 

                    x.add(rn) 

        xd = x.difference(deleted_numbersss) 

        if len(xd) != 0: 
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          distances = [] 

          for each in xd: 

              dis = 

dist(region.lab_avg[0],region.lab_avg[1],regions[each].lab_avg[0],regions[e

ach].lab_avg[1]) 

              distances.append((dis,each)) 

          rnmax = min(distances)[1] 

          regions[rnmax].points.extend(region.points) 

          regions[rnmax].l += region.l 

          if rnmax in numbersss and regions[rnmax].l >= THRES: #If region 

that is merged to is > threshold remove from this list 

              regionsss.remove(regions[rnmax]) 

              numbersss.remove(regions[rnmax].number) 

              deleted_numbersss.append(regions[rnmax].number) ###!!!! 

        regions[region.number].points = None 

         

    for region in regions: 

        if region.points != None: 

            f = open("output_" + str(region.number) + ".xyz", 'w') 

            for point in region.points: 

                f.write(('%s %s %s %s %s %s\n' % 

(point.xyz[0],point.xyz[1],point.xyz[2],point.rgb[0],point.rgb[1],point.rgb

[2]))) 

            f.close() 

     

    timer2 = timeit.default_timer() 

 

    print 'Done! (in', (timer2 - timer1)/60.0, 'minutes)' 
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Appendix C - Media Outreach 

 

C.1. Strategy 

An outreach to the media is in benefit for this Geomatics Synthesis Project, it’s 

purpose is to inform society on the context of the project and the outcome in order 

to improve the visibility of the TU Delft’s Geomatics program. This Geomatics 

Synthesis Project with it’s outcome should be most interesting for fellow Geomatics 

students and other students or organisations in the geomatics field with interest 

in point clouds. To inform this select few different kinds of media can be used. At 

first a presentation in which the whole project flow and conclusions are explained 

and visualised with the opportunity to ask questions to the researchers (The 

Geomatics Synthesis Symposium) is useful to reach the main target group related 

to the University.  Secondly publishing an article or a paper within a in the 

geomatics field notifiable magazine like GIM International Young Geo in Focus or 

GIS magazine will reach a larger group interested in Geo-information. Publishing 

in such magazines concern certain guidelines which have to be met. Publication in 

GIM International is for sure. GIS magazine is approached for possible publication. 

 

With this media outreach the idea is to communicate a certain message. This 

message, related to the results of the Geomatics Synthesis Project, is defined as 

to inform a wide variety of people that it is possible to semantically enrich large 

point clouds very accurate with the use of colour. Beside this main message the 

actual goal is to recall benefits of working with point clouds when they are 

semantically enriched.   

 

One of our major resources are the other groups, we have the same interest in 

reaching out with the results. Therefore, we decided to cooperate with the other 

groups in creating an outreach for the symposium, and together look for possible 

external speakers for the symposium. 

 


