

3 | P a g e

Preface

The Geomatics Synthesis Project (GSP) 2015 is a nine-week long project

undertaken by second year Master students of Geomatics. The project gives the

students the opportunity to take part in a real world project with strict time

constraints.

This year's GSP general topic focuses on Explorative Point Clouds meaning

exploring ways to use the point cloud data directly. Three teams were divided and

three approaches were developed. Each team is assigned to a company, which

provides use cases to the group. This team is assigned to research new possibilities

in the use of terrestrial point clouds. This terrestrial point cloud is offered by

Cyclomedia, that offers its services as high resolution georeferenced cyclorama

images.

Point clouds hold a lot of information, that is, in a lot of cases, not optimally used.

These point clouds are now mostly used to make 3d models, while the points, and

all their valuable information they hold, are wasted. In this research, we research

and suggest an approach to get more information out of the point cloud data,

creating new use cases and more opportunities for re-use.

In this approach, we aim at enriching the data with extra information that is of

value for engineers, policy makers and can help in the optimization of our city

designs that are getting more affected by changing and more extreme weather

conditions. By adding this extra information, we aim at prioritizing the use of these

valuable point clouds, as this hard information with a very high resolution, and

offers us new opportunities to understand, interpret and design the human

environment in a more effective, cost efficient and innovative way.

4 | P a g e

5 | P a g e

Table of Contents

 .. 1

Preface ... 3

List of abbreviations ... 12

Abstract .. 14

Acknowledgements ... 15

Chapter 1: Executive Summary .. 16

1. Introduction ... 16

2. Data collection .. 17

3. Pre-processing .. 17

3.1. Non-ground filtering ... 17

3.2. Relevant classes .. 17

3.3. Point cloud indexing ... 17

3.4. Geometrical properties of the neighbourhood 17

3.5. Colour spaces transformation .. 18

4. Point cloud labelling ... 18

4.1. Point based classification .. 18

4.2. Region based classification .. 19

4.2.1. Unsupervised classification .. 19

4.2.2. Supervised classification ... 20

4.2.3. Smoothing .. 20

5. Conclusions & recommendations ... 20

5.1. Conclusions... 20

5.2. Recommendations ... 21

Chapter 2: Introduction .. 22

1. Problem description ... 22

2. Application and objectives .. 23

2.1. Road extraction from point clouds .. 23

2.2. The use for surface infiltration capacity analysis 24

Chapter 3: Literature overview... 26

1. Point Cloud Data Acquisition ... 26

1.1. Laser scanning techniques .. 26

1.2. Image based techniques ... 26

1.3. Acquisition methods ... 27

6 | P a g e

2. Non-ground filtering .. 28

2.1. Point Data Abstraction Library (PDAL) .. 28

2.2. LAStools ... 28

2.3. Multiscale Curvature Algorithm .. 29

3. Point cloud indexing .. 29

4. Nearest Neighbour Search .. 31

4.1. K -nearest search .. 31

4.2. Range based search ... 32

4.3. kNN and radius search combination ... 32

5. 3D features characteristics ... 33

5.1. Principal Component Analysis .. 33

5.2. Estimating normals .. 33

5.3. General direction of the normals .. 34

6. Geometrical local surface properties .. 35

7. Colour information .. 36

7.1. Additive and subtractive colour space ... 37

7.2. HSV colour space ... 38

7.3. HSI colour space ... 39

7.4. CIE spaces .. 40

8. Segmentation methods .. 42

8.1. 3D Hough transform .. 42

8.2. Random sample consensus (RANSAC) .. 42

8.3. Region Growing ... 43

9. Classification methods ... 44

9.1. 3d feature extraction and selection .. 44

9.2. Classification approaches .. 45

9.2.1. Point-based classification methods 45

9.2.2. Region-based classification methods 45

Chapter 4: Methodology .. 50

1. Methodology ... 50

1.1. Point cloud acquisition and generation .. 50

1.2. Point cloud pre-processing .. 51

1.2.1. Filtering parameters and requirements 52

1.2.2. Predefine the relevant classes .. 52

1.3. Point cloud processing .. 52

1.3.1. Indexing parameters and requirements 53

7 | P a g e

1.3.2. Segmentation parameters and requirements 53

1.3.3. Classification parameters and requirements 53

1.3.4. Labelling parameters and requirements 53

1.4. Validation ... 53

1.5. End product .. 54

Chapter 5: Implementation ... 55

1. The acquired point cloud .. 55

2. Non-ground filtering .. 55

3. Importing the data .. 60

3.1. xyz reader .. 60

3.2. Liblas ... 60

4. Data structures ... 60

5. Spatial index .. 61

6. Colour spaces transformations .. 61

6.1. RGB to HSV .. 62

6.2. RGB to CIELab .. 63

6.3. RGB to CIELuv .. 65

7. Training samples ... 67

7.1. Definition of classes ... 68

7.2. Colour classification attributes ... 69

7.3. Geometrical classification attributes ... 71

8. Point cloud labelling: Point based methods 72

8.1. H, S and V values, minimum and maximum 72

8.2. H, S and V values, mean and 2 * standard deviation 73

8.3. Cie-LAB values, mean and 2 * standard deviation 75

8.4. CIELab a value, mean and 2 * standard deviation 77

8.5. SVM classifier .. 79

8.6. Decision Tree .. 81

8.7. Concluding point based methods ... 82

9. Point cloud labelling: Region based methods 82

9.1. Unsupervised merging based on colour similarity 85

9.2. Supervised Classification ... 87

9.2.1. Training samples .. 87

9.2.3. Classification result .. 90

9.2.4. Evaluation ... 91

9.2.5. Machine learning classification ... 92

8 | P a g e

9.2.6. Smoothing algorithm .. 93

10. The viewer ... 99

Conclusions ..103

References ...108

Appendix A - Project management and process ...114

Appendix B - Python code...128

Appendix C - Media Outreach ..139

9 | P a g e

List of figures

Figure 1 Scanning Techniques Left: Time-of-flight, Right: Triangulation 26

Figure 2 Structure from motion; multiple overlapping images 27

Figure 3 Schematic overview of the parameters taken into consideration by the

algorithm of Axelsson ... 29

Figure 4 The kD-tree (left) and the adaptive kD-tree (right) 30

Figure 5 Example of an octree for the indexing of a point cloud (Own illustration)

 .. 30

Figure 6 The octree .. 31

Figure 7 KD-tree radius search ... 32

Figure 8 Principle of octree radius search.. 32

Figure 9 A neighbourhood around a point in a point cloud 33

Figure 10 PCA finds an orthogonal basis that best represents a given data set . 34

Figure 11 Left, before changing the general direction. Right: after changing the

general direction. Source: Olga Sorkine, 2013 ... 35

Figure 12 Local Surface Properties calculated from the eigenvalues 36

Figure 13 Left: Additive colour space, Right: Subtractive colour space 37

Figure 14 RGB colour space in 3d cube.. 37

Figure 15 The HSV colour space in a cylindrical model 38

Figure 16 The HSI colour space .. 39

Figure 17 Hyper-plane .. 47

Figure 18 Non-linear data in linear feature space .. 47

Figure 19 Left: Hyper-plane and margin, Right: finding the optimal Hyper plane

 .. 48

Figure 20 Multiclass SVM with linear kernel .. 48

Figure 21 Decision Tree for point cloud classification 49

Figure 22 The data acquisition at the faculty of Architecture 51

Figure 23 The obtained point cloud ... 55

Figure 24 All the used las-files for input (boxes) and the polygon intersecting these

files(blue lined polygon). ... 56

Figure 25 Clipped stereo point cloud, 3,413,935 points. 56

Figure 26 The command line output for the filtering 57

Figure 27 The outputted non-ground points: 1,557,942 points 57

Figure 28 The outputted ground points: 1,855,993 points. 58

Figure 29 All the used LiDAR-files for input (boxes) and the polygon intersecting

these files (blue lined polygon). ... 58

Figure 30 The clipped LiDAR point cloud. ... 59

Figure 31 The UML diagram of the data structure used for the classification of the

point cloud .. 61

Figure 32 The original point cloud in the RGB space 62

Figure 33 The H value of the HSV colour space coloured differently according to

the angle ... 63

Figure 34 The V value of the HSV colour space coloured in greyscale 63

Figure 35 The L axis of the CIELab colour space represented as grayscale 64

Figure 36 The a axis of the CIELab colour space represented from green to red 65

10 | P a g e

Figure 37 The b axis of the CIELab colour space represented from blue to yellow

 .. 65

Figure 38 The L axis of the CIELuv colour space represented as grayscale 66

Figure 39 The u axis of the CIELuv colour space represented as grayscale 66

Figure 40 The v axis of the CIELuv colour space represented as grayscale 67

Figure 41 The different sample classes .. 67

Figure 42 Classes on use ... 68

Figure 43 Classes on material .. 68

Figure 44 A distribution of the ‘hue’ attribute in the different classes. 70

Figure 45 A distribution of the ‘saturation’ attribute in the different classes. 70

Figure 46 A distribution of the ‘value’ attribute in the different classes. 71

Figure 47 Point based labelling based on minimum and maximum HSV values . 72

Figure 48 Part of the training samples for grass ... 73

Figure 49 Point based labelling based on mean and 2 * standard deviation 75

Figure 50 point based labelling based on mean and 2 * standard deviation 76

Figure 51 The distribution of the CIE - a value for the different classes 77

Figure 52 Point based labelling based on mean and 2* standard deviation on the

A value ... 78

Figure 53 Point based labelling from the SVC classifier 80

Figure 54 Point based labelling from the decision tree 81

Figure 55 How error in the region growing on curvature and normals occurred 84

Figure 56 The variation of the colours in one scene....................................... 84

Figure 57 The presence of over-segmentation in the results of the region growing

algorithm .. 85

Figure 58 The results of the region merging algorithm 87

Figure 59 The merged road ... 87

Figure 60 The training samples for the supervised classification 88

Figure 61 The distribution of the training samples for the cycle path 89

Figure 62 The distribution of the training samples for the tiles 89

Figure 63 The distribution of the training samples for the road 90

Figure 64 The distribution of the training samples for the grass 90

Figure 65 The results of the supervised classification per class 91

Figure 66 The result of the machine learning classification 93

Figure 67 The smoothing result on the road ... 94

Figure 68 The smoothing result on the tiles, cycle path and grass 95

Figure 69 The smoothing result on the unknown class 96

Figure 70 Other parts of the whole point cloud selected 97

Figure 71 A different selection of point cloud .. 98

Figure 72 The unknown class of the scene ... 98

Figure 73 The cycle path and grass ... 99

Figure 74 The road and the tiles of the scene ... 99

Figure 75 The potree viewer for the classified scene101

Figure 76 Calculations using the potree viewer ..102

Figure 77 The schematic overview of the developed workflow106

11 | P a g e

List of Tables

Table 1 The colour table of the HSV colour model ... 39

Table 2 The .xyz reader .. 60

Table 3 The .las reader ... 60

Table 4 Number of points per class sample .. 67

Table 5 The different classes in for the HSV and CIELab colour spaces 69

Table 6 The geometrical properties of the different classes 71

Table 7 The confusion matrix for the H, S and V values, mean and 2 * standard

deviation ... 74

Table 8 The confusion matrix for the CIELab values, mean and 2 * standard

deviation ... 77

Table 9 The confusion matrix for the CIE a value, mean and 2 * standard deviation

 .. 78

Table 10 SVC Parameters .. 79

Table 11 The confusion matrix for the SVC classifier 80

Table 12 Confusion matrix for the decision tree .. 82

Table 13 The confusion matrix for the supervised classification 92

Table 14 The errors of omission, commission and mapping accuracy for the

supervised classification .. 92

Table 15 The evaluation of the smoothing algorithm 94

Table 16 The errors of omission and commission for the smoothing algorithm .. 94

12 | P a g e

List of abbreviations

2D Two Dimensional

3D Three Dimensional

AMN Associative Markov Networks

ASCII American Standard Code for Information Interchange

Avg Average

BIM Building Information Model

BK-City Faculty of Architecture Technical University Delft

CGP Ground Control Points

CIE Commission Internationale de l’Eclairage

CRF Conditional Random Fields

DEM Digital Elevation Model

GNSS Global Navigational Satellite System

GPS Global Positioning System

GSP Geomatics Synthesis Project

HD High Definition

HSI Hue Saturation Intensity

HSV Hue Saturation Value

INS Internal Navigation System

kD-Tree k Dimensional tree

k-NN k Nearest Neighbours

LAS Log ASCII Standard

LAZ Log ASCII Zip

LiDAR Light Detection and Ranging

MCC Multiscale Curvature classification

NE North-East

NW North-West

PCA Principal Component analysis

PCL Point Cloud Library

PDAL Point Data Abstraction Model

RANSAC RANdom SAmple Consensus

RGB Red Green Blue

SE South-East

SIC Surface Infiltration Model

Std Standard Deviation

SVM Support Vector Machine

SW South-West

TIN Triangular Irregular Network

WKT Well Known Text

13 | P a g e

14 | P a g e

Abstract

Growing possibilities in the use and cheaper techniques and methods in the

acquisition of point clouds, rapidly developed the use and production of point

clouds. These point clouds consist out of millions of points, and can therefore be

qualified as big data. Difficulties in the processing of these point clouds lead to a

transformation of the points into a model, resulting that the raw information is not

used anymore. The aim of this research is to develop and investigate techniques

that create added value to these point clouds, by adding extra class information,

also described as a label, to these points. We therefore formulated the following

research question: How can a point cloud be semantically enriched by providing a

labelling process using geometrical properties and colour values? The focus while

answering this question lies with labelling a coloured point cloud, created by a

mobile mapper of Cyclomedia, whereby only the ground points are labelled with:

Grass, Road, Cycle Path or Tiles (Footpath).

While investigating such a research topic several methodologies were tested for

their value. However, not all of them were able to provide the required output. In

addition to that, working makes it necessary to test different indexing techniques.

To create classes or in other words, labels, different classification methods, point

based and region based, are described and tested.

This research shows that a region growing algorithm, based on curvature, the point

normals, and colometrical properties, in combination with training samples gives

the best results, with a mapping accuracy of 92% for road, 77% for cyclepath,

80% for tiles and 99% accuracy for grass. These result can be further improved

by our developed smoothing algorithm.

15 | P a g e

Acknowledgements

The team would like to take the opportunity to thank the people that played a

substantial role during the development of this project.

We would like to thank the coordinator of the Synthesis Project, Stefan van der

Spek for organising the content of this year’s Synthesis Project. We would also like

to thank Wilko Quak for his invaluable input and tutorship during the development

of the methodology during those 9 weeks.

A special acknowledgement is to be given to Bart Beers for giving us this

opportunity to work with Cyclomedia’s products and for this willingness to answer

every question concerning the company and the processes used by them.

We are also grateful to Danbi Lee, a former Geomatics student, for providing us

with ideas and advice for the applications investigated in this project.

Last but not least, we would like to thank the coaches of the other teams Edward

Verbree, Martijn Meijers and Theo Tijssen for their inputs and ideas during the

reviews, as well as Robert Voûte for his insight about project management.

16 | P a g e

Chapter 1: Executive Summary

1. Introduction

In today’s technologically driven era, the terms position and location are highly

affecting our lives. In addition to that, the introduction of virtual earths and street

view applications have well shifted our perception of geo-information from 2D

towards 3D. This shift was also affected by new technologies like LiDAR that

automated the generation of 3D city models. LiDAR technologies within a decade

matured leading to the use of point clouds into everyday applications. But despite

the immense amount of information hidden inside a point cloud, its information in

today’s city modelling paradigm is often not exploited to its best potential. In the

majority of today’s projects, point clouds get thrown away after 3d models are

created. These point clouds are for a lot of users too big to handle, and therefore

not easily replaced by traditional data sources like surveying. However, it is

foreseen that with the increasing power of mobile devices like smartphones or

tablets and their browsers, those days of insufficient computing power are coming

to an end. It is therefore relevant to explore ways to utilise the point cloud data

directly.

Cyclomedia, a specialist in capturing, processing and visualising the urban

environment by using cyclorama images, is the project client of this research. For

Cyclomedia, the road is the central object for its data collection and, therefore,

investigating the ways to extract road information from point clouds is central for

this research. In addition to that, the road structure in a city can be very useful in

extracting other features, like: buildings, traffic signs, vegetation or cars. Besides

road extraction, the aim is to label point clouds with their function or composite

material. These labels can help in order to create certainty about surface

conditions, such as the surface infiltration capacity (SIC). A SIC map of an urban

area could be very useful input for evidence-based urban design of water-

sensitive/ low-impact neighbourhoods and water management schemes for

reducing flood vulnerability.

In this research, the aim is to create a workflow that results in a dataset that will

help urban planners, urbanists and road- and city maintenance organisations in

doing their jobs better and more efficient. In other words, the aim is at enriching

the data with class labels, giving it added value and new user possibilities. The

central question in this research is therefore: How can a point cloud be

semantically enriched by providing a labelling process using geometrical properties

and colour values?

The executive summary is organised as following. Section 2 describes the Data

collection equipment and process. Section 3 describes the pre-processing workflow

that together with the workflow presented in Section 4 was proven to give the best

results for street level extraction. The summary ends with section 5 where general

conclusions and recommendations for this project are given.

17 | P a g e

2. Data collection

The data collection for this project is performed by Cyclomedia’s mobile mapper

system. The system used was their newly developed prototype system with LiDAR,

five cameras and a combination of GNSS receiver and INS system to establish the

position of the car. The LiDAR scanner used was the Velodyne HDL 32 that has 32

channels and catches 700,000 points per second with ± 2 cm accuracy. The

horizontal field of view of the scanner is 360°. The five cameras, on the other

hand, together produce 360° panorama images. These images are used in the

process of stereo-imaging to create the point cloud, and to provide the LiDAR point

cloud with colour. In this project, only the stereo imaging point cloud is used which

contains points with a three-dimensional position calculated through the

observation of a point by multiple images.

3. Pre-processing

3.1. Non-ground filtering

Point clouds contain rich information about the scene that they were obtained

from. However, not all information is relevant for all applications. In the case

examined in this project, the focus area lies on the ground surface. This means

that the non-ground points (buildings, trees, cars) should be removed from the

dataset. After investigating several algorithms, the non-ground filtering process

offered in LAStools was proven to produce the best results.

3.2. Relevant classes

Designing a workflow that would extract the road information and its surroundings

first requires the definition of the application relevant classes. In this case road

extraction and materials focused on street level are examined. The most relevant

subcategories are: Grass, Road, Cycle path and Footpath. Those categories

represent how humans interpret the street level. For more specific applications,

(e.g. the surface infiltration capacity), where the composition of materials is

needed, a specialist would benefit from a classified point cloud with the classes

asphalt, grass and tiles.

3.3. Point cloud indexing

Since point clouds from their nature are big data, quick access to the points can

be incorporated by applying a spatial index. After comparing octrees and kD-trees,

the kD-tree data structure turned out to provide the most balanced structure and

the quickest access to the neighbouring points of each point. The reason for this

is that the kD-tree makes use of a 1D distance comparison for indexing whereas

in the case of an octree 3D distance calculations are needed.

3.4. Geometrical properties of the neighbourhood

18 | P a g e

The nearest neighbours are used to calculate 3D features for every point, because

geometrical information of one specific point does not provide much information

on its own. However, if a neighbourhood of the point is analysed, much can be

understood with the geometrical patterns.

These geometrical properties of a point's neighbourhood can be calculated with

the principal component analysis (PCA). PCA can be used to estimate the

eigenvalues which can be used to infer different measures, like linearity and

planarity, that describe the regions’ properties. The only measures that are

eventually used in our algorithm are the normal and the curvature. Other

researched geometrical properties of a point's neighbourhood, like planarity,

scattering or the sum of the eigenvalues, are not sufficient to make a distinction

between already horizontal planes.

3.5. Colour spaces transformation

Applications for point clouds have been greatly extended since the introduction of

colour in them. This is because humans can correlate colours to semantics and

thus infer a great amount of relevant information. The colour information of the

point cloud is therefore used to cluster points together that possibly belong to the

same class. However, the RGB colour space that is easy interpreted by a human,

possesses a lot of difficulties in computer vision since colour differences are not

uniform. Therefore, more uniform colour spaces namely, HSV, HSI and CIE were

investigated. Those spaces transform the highly correlated RGB values to less

correlated components. The results of those colour transformations were tested

for their applicability in distinguishing between the different classes in later stages.

4. Point cloud labelling

Labelling a point cloud in this research means getting those parts out of the point

cloud necessary for assessing a certain task. Training data is used to make it

possible to label, classify, parts of a point cloud. This training data, samples, are

manually selected clusters of points with a known class. In choosing the right

samples, it is important to pick various regions and clusters of points that show

inconsistencies in colour, compared to the overall class. Experience showed that

these variations in training data increased the classification results.

In order to identify the method that produces the best outcome, gets the necessary

parts out of the point cloud most accurate, two methodologies were investigated:

a point based and a region based classification method.

4.1. Point based classification

The point based method investigates whether it is possible to label a point cloud

by only utilising the colour properties of each individual point. Point based labelling

is only possible if samples for each class are available. From these samples, the

range of the colour value in HSV or CIELab is determined, by calculating the

19 | P a g e

minimum and the maximum value for each class. Next, it is checked if the colour

properties for every individual point are either between the minimum and

maximum of each component per class or between the mean minus or plus 2

sigmas. Machine learning algorithms were also tested on point properties.

Although some promising results came from these classifications, point based

methods were proven to be error prone since a lot of colour inconsistencies are

present in the point cloud. CIELab, in general, gave the best distinction but the

accuracy assessment for point based methods proved to be not sufficient.

4.2. Region based classification

Region based classification schemes take the neighbourhood properties of the

points into consideration. These properties of the individual point are used to

determine if neighbouring points hold the same properties, and belong to the same

region or class, or not. The neighbourhood properties that are used are curvature,

which gives an indication of the smoothness of the underlying surface, the normal,

which is the vector that is perpendicular to the points region and the colour and

colour distance.

To grow a region, a seed point is chosen, and all neighbouring points are tested if

they hold similar values on certain properties, if they do, and therefore belong to

the same class, the points are added to the region. This process is then repeated

for all new points in that region, until no newer points are found that belong to

that region.

In the applied region growing algorithm, a low curvature threshold is used,

because the majority of the classes are found inside the same plane, therefore

raising the curvature threshold leads to under-segmentation. Under-segmentation

means that two different classes are labelled as one. While, when a surface is

divided into really small surfaces, you can call this over-segmentation. Under-

segmentation happened with curvature thresholds over 0.001. The decision was

made that over-segmentation is more acceptable than under-segmentation.

Intentionally causing over-segmentation is, at least in theory, much simpler to

correct than under-segmentation, since human intervention cannot be avoided in

the second case.

4.2.1. Unsupervised classification

The previously caused over-segmentation of the region growing algorithm is

tackled by a merging algorithm that is based on colour similarity. The main idea is

that the small regions (with points less than 5000) that are formed in the region

growing algorithm, are merged with their neighbouring regions that have the most

similar colour. The colour similarity is compared by calculating the euclidean

distance of the components of the CIELab space, excluding the L component that

represents lightness. The most similar region is the one with the lowest value. The

result shows more relevant regions. However, there are still cases of over-

segmentation and even under-segmentation, where two classes are labelled as

one.

20 | P a g e

4.2.2. Supervised classification

The supervised approach to classifying a point cloud requires a set of training

sample data that have labels associated with them. This sample data comes from

a scene and is selected with prior knowledge about the scene. This means that,

for the area of interest of this project, samples are collected that belong to the

road, cycle path, tiles and grass.

The different classification methods that are tested can roughly be subdivided in

two categories: First, Gaussian processes, which assume that the class properties

are Gaussian distributed, and a class gets assigned to a point or a region with the

highest probability. Second, machine learning algorithms, that are implemented

by making use of the python module sklearn, that allows classification through

simple vectorised training samples and data. From these training samples, a

decision space is created and used to classify the regions or points. The output of

the Gaussian process is most satisfactory, with a mapping accuracy of 92% for

road, 77% for cyclepath, 80% for tiles and 99% accuracy for grass. The sklearn

module didn’t give satisfactory results, as a lot of points, that don’t belong to one

of the predefined classes, are assigned a class. This is caused by the functioning

of the algorithm, that is written in such a way that each point or every region gets

assigned to the class with the highest score, even if it is very unlikely that this

class should be assigned.

4.2.3. Smoothing

To tackle the errors of omission and commision, a smoothing algorithm is

developed. This method is based on image smoothing filters that remove noise.

The algorithm traverses all points in the classified point cloud. For every point it

checks its k nearest neighbours and calculates what is the most frequent class

among these neighbours. Next, the point gets reclassified if the original

classification differs from the outcome of the smoothing algorithm. This process

offers both a visual and an accuracy advantage to the final result.

5. Conclusions & recommendations

5.1. Conclusions

From the outcomes of this research, it becomes clear that a region-based

supervised classification using training samples is the best way to distinguish

between the contextually relevant classes. This is because the colour information

of the point cloud is often times less accurate than the positional information.

The colours of our point cloud show some differences in relation to reality and

therefore unsupervised schemes present over-segmented results. Furthermore,

over-segmentation with unsupervised classification can be the result of shadow

and water on surfaces, which then appear darker, worn out colours of the

21 | P a g e

road/cycle path markings, different materials of tiles and other noise in general.

To work around those inaccuracies, training samples can be provided. This way a

supervised classification captures all appearances of a class whereas an

unsupervised classification would create different regions. However, during the

project, the researchers realised that one training sample per class is not

sufficient. Therefore, the user has to provide the best combination of training

samples per scene that will not be excessive in number and amount, but

representative enough of the colours present. Finally, extending the method to

other areas can be succeeded, but only if the provided training samples are

representative.

5.2. Recommendations

The following recommendations are provided as future work for the project.

Recommendations one and two are based on difficulties and inefficiencies in the

manually picking of training samples. The third recommendation is a solution for

the difficulties we faced in the region growing on colour values.

1. Explore the possibilities to match the regions with land use maps.

2. Provide the positional information of the mapping vehicle/device with

(each part of) the point cloud.

3. Radiometrically enhance the cyclorama images before the point cloud

creation.

Future work can be found in relating the point clouds, in particular the

semantically labelled parts, to over simplified models of reality mostly utilised

today by scientists.

22 | P a g e

Chapter 2: Introduction

Data acquisition of point clouds can be done by both laser scanners and high

accurate georeferenced images. It can be said that scanning is embattled with the

much older technique of creating point clouds with photogrammetry. Scanners

provide a product in just one step, creating the point cloud by photos is much more

complex but also much cheaper (Geodatapoint, 2013).

The point clouds that are generated with these techniques, consist out of a big set

of points. These point collections give the possibility to create geometric correct

representations of objects and landscapes (Hmida et al., 2013). Furthermore, the

possibility of processing dense point clouds in an efficient and cost-effective way,

creates a lot of possibilities in different fields such as topographic, industrial or

cultural heritage (Vosselman and Maas, 2010). Point clouds therefore are datasets

which become more popular every day with more and more uses in the urban

environment, such as collecting information about building facades, street

furniture etc.

However, despite their popularity, point clouds are usually not used to their full

potential. Usually, these datasets are transformed and translated into models,

such as 3D BIM models, while the original point cloud dataset is deleted (van der

Spek and Verbree, 2015). Not using the raw point cloud, means throwing away a

lot of valuable information. The scope of this research is to carry out operations

on a raw dataset, whereby the richness of the data is optimally used and the use

of the point cloud optimized.

This report is organized as follows: Chapters Introduction focuses on the problem

description, the application and objectives. Chapter Literature Overview contains

a relevant literature overview. Then, chapter Methodology will focus on the

methodology used in this research. Chapter Implementation will describe the

implementation of the literature and the used methods. Next, we conclude with

our findings, followed by recommendations for future work. As an addition the

project management and process are recorded in Appendix A, the developed

python code is recorded in Appendix B. The report ends with the Media Outreach

Strategy in Appendix C.

1. Problem description

The human brain is capable of interpreting point clouds by using and combining

information about the scene, the point attributes, memory and by recognizing

shapes and identifying objects. Computers, on the contrary, do not have this broad

and intelligent spectrum of additional information and interpretation as humans

do. Therefore, the recognition and interpretation of these point clouds by

computers is considered hard. Different authors recognize these problems and aim

at semantically labelling and recognizing objects in point clouds by using and

combining different rules (Xiong et al., 2011, Shapovalov et al., 2010, Vosselman

and Maas, 2010, Hmida et al., 2013).

This research aims at creating a methodology to create a dataset with semantically

labelled points. Together, these labelled points create a scene that is better

23 | P a g e

interpretable by computers and can be used in analysis of the human environment.

Therefore, the research question is:

How can a point cloud be semantically enriched by providing a labelling process

using geometrical properties and colour values?

In order to answer this research question, the following sub questions have to be

answered:

 How can a point cloud be indexed?

 How can the non-ground points be filtered out?

 What subcategories of ground are important?

 How can subcategories be classified?

 What is the best way to label a point cloud?

2. Application and objectives

Point clouds hold a lot of information, information that is often not used. In this

research, we aim at creating a workflow that results in a dataset that will help

urban planners, urbanists and road- and city maintenance organisations. The raw

data that is used comes from Cyclomedia. Cyclomedia aims at delivering a product

to support decision makers and urban planners, as they state on their website:

“CycloMedia Technology Inc. utilizes analytic measurement software technology in

conjunction with 360-degree panoramic imagery (HD-Cycloramas) to help

planning departments better analyse and understand their cities”

(Cyclomedia.com, 2015). The end product, meaning the semantically enriched

data, will help other parties and organisations to do their work more efficient and

in a more precise way.

This chapter describes the analyses of the customer demand for the enriched data.

For this, two different use cases are described. The first use case covers the

extraction of pre-specified features from a point cloud, whereby the road is the

main subject. Other classes could be: vegetation (grass), tiles (footpath) and cycle

path. Secondly, enriching the point cloud with data for further analysis is

described. This use case focuses on providing data for water retention calculations,

surface infiltration capacity analysis (SIC), and flood risk analysis, specifically

flooding caused by heavy rainfall, as described by Lee (2013).

2.1. Road extraction from point clouds

Niemeyer et al. (2014) recognize the problem in object extraction from point

clouds: "There are different types of objects such as buildings, low vegetation,

trees, fences, and cars that can be found in a small local neighbourhood, which

makes it difficult to extract them reliably. In order to handle this problem, research

often focuses on the extraction of a single object type, i.e. buildings, roads, and

trees". The road can be used as guiding object in the search of other objects, in

other words: identifying the road as main object in the urban environment gives

the possibility to identify other materials and objects around the road.

The extraction of the road surface has been a subject of research for the past

years. Different approaches have been tested and described. Smadja et al. (2010)

use curve fitting through parts, or through one scan line, to find the road surface.

(Boyko and Funkhouser, 2011) use additional data, like topographic maps. Other

24 | P a g e

research aims at recognizing objects near the road, like signs, lights (Landa and

Prochazka, 2014) or road markings (Yang et al., 2012). Only few use raw point

data to find the road surface. Geosignum, a Dutch start up, managed to

automatically extract roads from point cloud data, as they state on their website:

"changes in the existing road alignment geometry, road curvature and cross-slopes

can be automatically calculated and mapped. In addition to this, road surfaces and

road edges-lines can be automatically extracted in a very short time for further

analysis or a new engineering design". However, Geosignum does not publish

about the techniques they use (Geosignum, 2015).

Roads are one of the main objects that are to be recognized by our algorithm, as

It represents one of the most present and important structures in urban or

manmade landscapes. Thereby, roads can form a basis for further feature

extraction, as a lot of (urban) objects are situated near roads. Thereby, road

maintenance companies can use the point cloud, because the extraction of weak

spots, holes and bumps can be done more effective, efficient, and precise and with

lower error than when it is done manually.

2.2. The use for surface infiltration capacity analysis

Lee (2013) states that: "Effective urban water management requires certainty

about surface conditions such as the surface infiltration capacity (SIC). A SIC map

of an urban catchment area could be a useful input for evidence-based urban

design of water-sensitive/low-impact neighbourhoods and multi tiered water

management schemes for reducing flood vulnerability". Thereby she states that:

"methods for mapping SIC are underdeveloped". Lee used multispectral images

for the classification of the earth surface. This approach has some scale and

accuracy problems, as the roughness, caused by mixed pixels, of images does not

allow small scale object or material detection. Other analysis mainly focuses on

the geological properties and water infiltration capacity of certain types of soil

(Bean et al., 2004).

Our way of analysis allows for analysis on the now smallest scale, while upgrading

to a higher scale should be possible with the use of Cyclomedia's mobile mappers.

Lee (2013) analysed and described the properties that heavily affect the water

retention capacity of urban soils. She identified six parameters that affect the

water retention capabilities:

1. Surface cover void ratio (water-penetrable surface area reduced by siltation

over time).

2. Surface material (affecting adsorption).

3. Surface roughness (including soil crusting, affecting flow resistance and

overall SIC).

4. Subsurface hydraulic conductivity, where the sub-grade layer with the

lowest conductivity is limiting.

5. Subsurface compaction (measured by bulk density or void ratio and

indicated by use and age relationships).

6. Subsurface antecedent soil moisture, or how wet is the soil already.

Thereby, the fluid viscosity, the hydraulic gradient and temperature also play a

major role in how the water interacts with the earth’s surface.

25 | P a g e

The current used technique is inaccurate as the information is derived from

topographical maps. Thereby, the classes that are currently used are mostly not

usable for SIC analysis, as they represent the use of a certain area, and not the

material. The parameters that we expect can be calculated by LIDAR data are: the

surface material including the surface cover void ratio and the surface roughness.

Even with LiDAR, not all the needed information can be extracted for accurate SIC

analysis, but it is an improvement as the former techniques were less precise and

less sufficient.

The scale of the analysis will, in first place, be kept small. Extending the technique

to higher scales should be possible. Thereby, the research will in the first place be

limited to surface material detection. Although vegetation, like trees and bushes,

plays a major role in SIC analysis, non-ground vegetation will not be mapped in

this research.

26 | P a g e

Chapter 3: Literature overview

1. Point Cloud Data Acquisition

Laser scanning is an emerging technology in the field of surveying that provides

“rapid and detailed acquisition of a surface in terms of a set of points on that

surface, the so called point cloud” (Shekhar and Xiong, 2008). The systems that

are used to acquire the point clouds use non-contact techniques. Point clouds can

be obtained to describe surfaces both on land and offshore.

1.1. Laser scanning techniques

The two ways for acquiring a point cloud is light transit time estimation and

triangulation (Vosselman and Maas, 2010). A light wave travels through a specific

medium in a given velocity. For this reason, the time difference of the light

travelling from the source sensor to the reflective surface and back is good

estimator of the distance measurement. The systems that utilize this concept are

known as time-of-flight systems. It is also possible to use phase measurement

techniques as an indirect measure of the time-of-flight. The second way is

triangulation. This method utilises the cosine law by emitting a laser beam on a

reflective surface and observing the position of this beam from an observation

point (usually a camera) at a known distance. In the figure provided by (Vosselman

and Maas, 2010) the previous techniques are schematically presented in Figure 1.

Each one of these techniques have their own trade-offs, advantages and costs.

Figure 1 Scanning Techniques Left: Time-of-flight, Right: Triangulation

Source: Vosselman and Maas, 2010

1.2. Image based techniques

Another point cloud acquisition technique emerging in the last decade is generating

dense point clouds out of images. This image-based point cloud generation is

based on stereo photogrammetry which compares to the human vision and the

principle of parallax. If a point is observed by different viewpoints in different

images, the three-dimensional position of the point can be then computed. This

gave emerge to "Structure-from-motion" (Westoby et al., 2012) a low-cost

photogrammetric method that generates 3D point clouds by without any a-priori

knowledge of the camera calibration and position. All the parameters are calculated

27 | P a g e

by image matching techniques. The object can finally be positioned in space by

applying a 3D similarity transformation using Ground Control Points (GCPs). This

is achieved by acquiring multiple overlapping images (Figure 2) of the feature of

interest. This process has some advantages compared to the LiDAR technique in

that it captures the colour and thus the point cloud is provided with context.

Several projects have utilised this technique including Photo-tourism (Snavely et

al., 2006), documentation of monuments etc. Several open source

implementations exist like Bundler (Snavely et al., 2006), VisualSFM (Wu, 2013),

but also several commercial software have been developed e.g. Agisoft PhotoScan,

Pix4D, 123D Catch etc.

Figure 2 Structure from motion; multiple overlapping images

Source: Westoby et al., 2012

1.3. Acquisition methods

The acquisition of points can be performed with the following methods:

 Tachymetry: This method does not provide point clouds in the sense defined

before but with this technique points of interest are measured. The accuracy

provided is high.

 Terrestrial Laser Scanning: If a dense and accurate point cloud has to be

obtained for a small area, this method is the most appropriate. In order to

cover the whole area defined, multiple scans might need to take place.

 Mobile Mapping: This technique is mostly used for larger areas. Laser

scanners and cameras with the combination of GPS and INS systems are

mounted on cars which obtain data from highways and roads. The data from

the mobile mapping can be acquired in two modes (Vosselman and Maas,

2010, p. 293): the stop-and-go mode where the vehicle makes short stops

to scan the area, and the on-the-fly mode where the vehicle obtains the

data without stopping.

 Airborne Laser Scanning: This technique is done from airplanes or

helicopters which are mounted with a laser scanner system that measures

the distance between the scanner and the ground and a GPS and INS system

which acquires the position and orientation of the aircraft. This method is

used to acquire Digital Elevation Models (DEM).

28 | P a g e

2. Non-ground filtering

The different data that is captured by the laser scanning or image based method

include buildings, vegetation, city furniture, bare ground etc. Especially bare

ground identification and thus non- ground points filtering has been a quite difficult

task (Zhang et al., 2003). Different concepts for extracting the bare ground points

have been investigated through the years. In Sithole and Vosselman (2004), four

different filtering concepts for airborne methods have been compared: Slope

based, block minimum, surface based filters and segmentation algorithms. Since

many algorithms have been developed, choosing the one that suits our needs can

be rather challenging. According to (Korzeniowska et al., 2014) the decision for

choosing the right algorithm is based on processing time, the complexity of

adjusting the different parameters, and the verification of the accuracy of the final

result. In the next section, the different filtering methods available in commercial

and open source software will be evaluated in relation to the Synthesis Project

requirements.

2.1. Point Data Abstraction Library (PDAL)

The PDAL is a library suitable for reading, manipulating and writing point cloud

data (Butler and Gerlek). PDAL in its capabilities provides a bridge to the Point

Cloud Library (PCL) by providing processing pipelines. To use the PCL the user

must have installed both PDAL and PCL. So, taking advantage of the command-

line capabilities of PDAL, the progressive morphological filter by Zhang et al.

(2003) is tested. The algorithm detects non-ground measurements from LIDAR

data by gradually increasing the window sizes of morphological filters and by using

an elevation difference threshold that depends on the elevation variation of the

specific terrain being filtered.

2.2. LAStools

LAStools by Martin Isenburg is “a collection of highly-efficient, scriptable tools with

multi-core batching that process LAS, compressed LAZ, Terrasolid BIN, ESRI

Shapefiles, and ASCII” (LASTools, Accessed on 18/09/2015). In the collection of

LAStools, lasground is contained. Lasground is a tool for bare earth extraction. It

belongs to the method of progressive densification (Pfeifer and Mandlburger, 2009)

and specifically is a variation of the algorithm developed by Axelsson (2000).

According to the algorithm, the bare ground is identified by progressively

densifying a sparse TIN with the laser point cloud. For a point to be classified as

bare ground, it must be within a certain threshold of a minimum distance from the

triangle it is contained in and the angle relative to the triangle (Figure 3).

29 | P a g e

Figure 3 Schematic overview of the parameters taken into consideration by the algorithm

of Axelsson

2.3. Multiscale Curvature Algorithm

The Multiscale Curvature Algorithm for Classifying Discrete Return LiDAR in

Forested Environments (Evans and Hudak, 2007). According to the paper, this

algorithm was developed, and is therefore best fit for forested areas.

3. Point cloud indexing

Spatial indexing has always been an issue for data accessing and querying, even

within the 2D space. A spatial index is used to efficiently perform a spatial

selection. Not having an index means a sequential traversal of all the data within

a file or database in order to check a spatial criterion (van Oosterom, 1999, p.

385). When working with large amounts of data, as in the case of point clouds,

this is inefficient and requires a lot of processing power and time.

The kD-tree, a main memory data structure, is a first option for the indexing of

point clouds (van Oosterom, 1999, p. 386). A kD-tree can store points of any

dimension K. A 2-dimensional example is shown in Figure 4. The kD-tree

recursively divides the space using a root-leaf structure. The root corresponds to

the complete spatial area and the leafs represent the resulting areas of the split.

If an area is not split any further it becomes an end-leaf. In turns, the area is split

on the X- and Y- axis. For the 3D case the Z-axis is also included.

Two main variants of the kD-tree exist. In the first case a point from the dataset

is used to split the area, resulting in a tree where every internal node represents

a point, see Figure 4. On the left. There are different ways of constructing this type

of kD-tree because we can use any node and any axis for splitting. Another option

is to split the space, not on a point, but where the division results in two point sets

with the same amount of points (approximately). This is also known as an adaptive

kD-tree (Figure 4, right). The advantage is that the tree stays balanced. A balanced

tree can be build faster and is more efficient, although it is hard to keep the tree

balanced while inserting points (van Oosterom, 1999, p. 386). A third possibility

is to split the area on points within the dataset, but in addition calculate the median

of the points for splitting. This will also result in a balanced tree, but it will take

more time to build than when random points are chosen.

30 | P a g e

Figure 4 The kD-tree (left) and the adaptive kD-tree (right)

Source: van Oosterom 1999, (p. 386)

In the 2-dimensional space quadtrees and R-trees are mostly implemented and

used (van Oosterom, 1999, pp. 391, 394). An R-tree groups features hierarchically

according to their location. This is done using bounding boxes. A Quadtree on the

other hand, recursively divides the space in four quadrants. The area’s in a

quadtree are then enumerated in a fixed order (NW, NE, SE, SW for example), and

then represented in the tree. If all of these areas uniformly represent the same

value, or satisfy a certain condition like a maximum amount of points, the area is

not subdivided again and the leaf becomes a node.

Figure 5 Example of an octree for the indexing of a point cloud (Own illustration)

The 3d version of the quadtree is called the octree. It adds an extra dimension z,

which is the height. It is a commonly used spatial index for storing data of 3-

dimensions in point cloud processing. An octree subdivides a 3d volume (R3), the

bounding box of the point cloud, into eight disjoint “cubes” (octants) filled with

points, over and over again until each “cube” consists a defined number, or less,

of points. The root of the octee is the “cubic” which holds all points of the point

cloud. The leaves, or endnotes, of the tree hold a maximum predefined number of

points. See Figure 5.

31 | P a g e

Just like the KD-tree, the octree and the quadtree are based on the root and leaf

structure. See Figure 6. Using an octree is efficient for resolving multiple issues.

An octree can store a raw point cloud, it ought to be fast in performing operations

and is memory efficient (Elseberg et al., 2011).

Performing spatial operations is very similar for the quadtree, octree and kD-tree:

Starting at the root, it is recursively checked if a node (subspace) intersects with

the search range. If there is no intersection the leaf is no longer traversed. For the

kD-tree this means that every intersecting point is reported. For the adaptive kD-

tree, quadtree and octree this means that only in the intersecting end-leafs it has

to be checked if points are included in the search range (van Oosterom, 1999, p.

392).

Figure 6 The octree

Source: Mäntylä, 1987

4. Nearest Neighbour Search

A point cloud is just a collection of points. However, a lot of information can be

derived from a point cloud by applying certain algorithms. Most of these operations

and algorithms that are performed on a point cloud, like: pattern recognition,

object recognition, data-clustering, function approximation and vector

quantization, are based on nearest neighbours information (Lai et al., 2007). As

explained before, point clouds are huge datasets and therefore often decomposed

in subdivisions (indexing). Nearest neighbour searches are therefore often based

on these decompositions of the underlying space (Sankaranarayanan et al., 2007).

Different methods for the decomposition of space and several options in calculating

nearest neighbours lead to several possible combinations.

Three variants of nearest neighbour search can be distinguished, whereby a

different number of neighbour-points are selected: The K-nearest neighbours

search, the range based search and the K-nearest search within a certain radius

(Elseberg et al., 2012, Sankaranarayanan et al., 2007).

4.1. K -nearest search

Searching for K-nearest neighbours within a point cloud means that for every point

the k-nearest neighbours are found. K, the amount of neighbours that has to be

32 | P a g e

found depends on the application. Finding the k-nearest neighbours is useful when

a certain amount of neighbours is required for each point of the point cloud

(Elseberg et al., 2012, Sankaranarayanan et al., 2007).

4.2. Range based search

The range based search means that all neighbours within a certain radius

for a query point are retrieved:

4.3. kNN and radius search combination

A combination of the two techniques can result in a retrieval of the k Nearest

Neighbours within a certain radius (Elseberg et al., 2012).

Most of the libraries employ the kD-tree for nearest neighbour searches (Elseberg

et al., 2012). kD-trees avoid unnecessary computations by making use of a tree

structure, whereby, if traversing the tree, a direction is given as a Boolean until

the subdivision of space intersects with the predefined sphere. (Behley et al.,

Kammerl and Muja, 2011). An example of a kD-tree radius search is depicted in

Figure 8.

Figure 7 KD-tree radius search

Source: Kammerl and Muja, 2011

A nearest neighbour search can also be done by an octree. It allows a fast indexing

and therefore it is easy to traverse quickly to the deepest

nodes (Sankaranarayanan et al., 2007). Starting at the root, the octree is

recursively traversed to investigate if octants overlap a search radius/sphere. Only

when intersection occurs, the leaf is further traversed. For each intersecting end

node, all points need to be tested against the search range (sphere) (Behley et al.,

Kammerl and Muja, 2011). Figure 9 depicts a quadtree search but the same

principle applies.

Figure 8 Principle of octree radius search

Source: Kammerl and Muja, 2011

33 | P a g e

5. 3D features characteristics

Point clouds consist of millions of points distributed on the scene. Information

about a specific point thus does not provide much information on its own. However,

if a neighbourhood of points is investigated much can be said about the geometrical

patterns. The space that is taken around a point is called a neighbourhood and the

points around it, its k-neighbours (Figure 9).

Figure 9 A neighbourhood around a point in a point cloud

Source: Rusu, 2010

5.1. Principal Component Analysis

Dealing with data that have more than 2D can be rather difficult for the human

brain to interpret. This is also the case for 3D data, like point clouds. In order to

solve this deficiency of the human brain, an alternative should be seeked which is

for example to represent the 3D data to 2D, and thus drop a dimension. Principal

Component Analysis is a classical technique for finding low-dimensional

representations which are linear projections of the original interrelated data.

The transformation to this lower dimension is performed by transforming the

original correlated data to a different set of variables, called the principal

components, which are uncorrelated and in which the first variable retain most of

the variation present at the original data. The computation of those principal

components reduces the whole problem to an eigenvalue-eigenvector problem for

a symmetric matrix (Jolliffe, 2002). For points in 2D space, PCA finds the best

approximating line (Figure 10, left) that minimises the square distances. For points

in 3D space PCA finds the best approximating space (Figure 10, right).

5.2. Estimating normals

The orientation of a local neighbourhood in the whole scene is a very important

estimate in many applications like light shading and visual effects (Rusu R. B.,

2010). This orientation is found by determining the normal of the plane that best

describes the neighbourhood.

In three-dimensional geometry a normal is a vector that is perpendicular to the

tangent plane of a surface given a point P at that surface. Calculating the normals

of a surface is most of the times a trivial calculation. In contrast to this case, in

point clouds, because of the fact that they are an approximation of a surface, the

calculation of the normals is not a straightforward method. Two ways that this

information can be acquired are (Point Cloud Library (PCL)):

34 | P a g e

 Create a surface from the acquired point cloud using meshes and then obtain

the surface normal from the mesh.

 Use a neighbourhood to infer the surface normals, which is a least squares

plane fitting estimation problem (Figure 10).

Figure 10 PCA finds an orthogonal basis that best represents a given data set

Source: Olga Sorkine, 2013

Since explorative point clouds investigate methods to work with point cloud

without making a model as an intermediate step, the second option is explored for

the rest of the project.

An insight into the local characteristics of the neighbourhoods are given from the

Covariance matrices, which mathematically describe how neighbourhoods

dispersed around their centroid. Given a point in a certain

neighbourhood in the point cloud, the centroid of of the nearest neighbors is

computed as .The calculation of the normal is then based on the analysis

of the eigenvalues and the eigenvectors of the covariance matrix

of the neighbourhood ,

which is described as: ,

, Where is the number of

neighbouring points of 𝑝𝑖 , 𝜆𝑗 is the -th eigenvalue of the covariance matrix, and

the -th eigenvector (Rusu R. B., 2010). Finally, the plane normal n is the

eigenvector of with the smallest eigenvalue .

5.3. General direction of the normals

The importance of the normals was mentioned in the previous section. However,

the PCA method has no mathematical method for solving the sign of them.

Therefore, the signs assigned are not consistent over a point cloud (Rusu, 2010).

Rusu (2010) in his work mentions that if the viewpoint of the point cloud is known

35 | P a g e

this problem becomes trivial, as we consistency can be checked by the checking if

the calculated normal satisfies the following:

If this is not the case, then just changing the sign to the opposite solves the

problem. This is depicted in Figure 11.

Figure 11 Left, before changing the general direction. Right: after changing the general

direction. Source: Olga Sorkine, 2013

The methodology of these sections is summarised in the following pseudocode.

For each point in the point cloud

Find k-nearest neighbours
Find the centroid of the neighbourhood
Calculate 3x3 the covariance matrix of the neighbourhood
Calculate the eigenvalues from the covariance
Find the eigenvector with the smallest eigenvalue (normal)
Calculate the vector from the point to the view point and call it dir
If the dot product of the normal with the dir is <0:

Change the sign of the normal

6. Geometrical local surface properties

The eigenvalues calculated with the PCA method are used to infer different

measures that describe a surface. Eigenvalues are thus used for feature extraction.

The eigenvalues, defined as λ1,i, λ2,i, λ3,i whereby λ1,I ≥ λ2,I ≥ λ3,i ≥ 0, are

described as the two recent approaches in selecting individual neighbourhoods.

Within these approaches 3 other main dimensionality features are described which

can be used within the classification: linearity (Lλ,i), planarity (Pλ,i), and scattering

(Sλ,i) (Weinmanna et al., 2015). The other 3d features that are described in

Weinmanna et al. (2015) are omnivariance (Oλ,i), anisotropy (Aλ,i), eigenentropy

(Eλ,i), the sum of the eigenvalues (∑λ,i), and change of curvature(Cλ,i). These

features can be found by using the normalized eigenvalues: 𝑒𝑖 =
𝜆𝑖

∑𝜆⁄ (Weinmann

et al., 2014). The description of each property is given in the following lines.

 Curvature: “For a plane, the curvature is the absolute value of the rate of

change of the angle of inclination of the tangent line with respect to distance

along the curve” (James & James, 1992). The curvature using PCA can be

36 | P a g e

calculated by the ratio between the minimum eigenvalue and the sum of the

eigenvalues. This approximates the change of curvature in the

neighborhood of a point p (Rusu, 2010).

 Linearity: The feature of linearity is used to investigate whether a set of

points can be modeled by a 3D line. An example where this characteristic

could be used is for the extraction of powerlines (Waldhauser, et. al., 2014).

 Planarity: The planarity feature is used to describe the smoothness of a

surface (Waldhauser, et. al., 2014).

 Scattering: The feature of scattering investigates the sphericity of a

neighbourhood.

 Omnivariance: The feature of omnivariance describes how a neighbourhood

of points spread inhomogeneously across a 3D volume (Waldhauser, et. al.,

2014).

 Anisotropy: Anisotropy is a measure which is higher if the eigenvectors differ

a lot. Anisotropic operations have the potential to discriminate between

orientated and non-orientated objects, as oriented objects have a higher

anisotropy (Oude Elberink and Maas, 2000).

 Eigenentropy: The feature of eigenentropy a provides a measure of the

order or disorder of 3D points within the covariance ellipsoid (Weinmann,

et. al., 2014)

 Sum of eigenvalues: The sum of eigenvalues describes the total variation

which is the sum of the squared distances of the points of a neighbourhood

from their centroid (Jolliffe, 1986).

The mathematical expression of the previous properties in terms of the three

eigenvalues from PCA is given in Figure 12.

Figure 12 Local Surface Properties calculated from the eigenvalues

Source: Weinmann et al., (2014)

7. Colour information

Colour is an important property in recognizing and distinguishing different objects.

The human eye is able to sense and distinguish colour by a group of cells, called

37 | P a g e

cones. Those cones are located at the back of the retina and each one of them is

sensitive to a different wavelength: red, green and blue. This kind of vision is called

trichromatic vision. Since colour description is subjective for every human,

scientists have developed mathematical systems for describing colour, called

colour spaces. Some of those systems are based on the human colour perception

capabilities and others on the physical properties of colour for example the

intensity values.

Acquiring point clouds can be done with or without colour. Points within a coloured

point cloud hold their colour in the three dimensions red, green and blue (RGB)

colour model. Therefore, exploring the different colour spaces is an important part

of this research.

7.1. Additive and subtractive colour space

Additive colour scheme is based on the fact that colour is created by mixing (thus

adding) different light of a particular wavelength emitted from differently coloured

light sources. This is opposed to the subtractive colours where light is removed

from the various ranges of the visible spectrum (Choudhury, 2014). The additive

and subtractive colours are explained in Figure 13.

Figure 13 Left: Additive colour space, Right: Subtractive colour space

The additive colours or the RGB colour space is dependent on the intensity of colour

and can be represented in a 3d cube (Cheng et al, 2001; Sapkota, 2008; Sareen

et al, 2010; (Figure 14). Each corner point represents a value of red, green and

blue components. All colours can be created by a unique combination of these

three “main” colours.

Figure 14 RGB colour space in 3d cube

38 | P a g e

Source: Sareen et al, 2010

RGB colours are mainly used in display devices, it is therefore suitable for colour

display. RGB though is according to Cheng et al (2001), not suitable for colour

segmentation and analysis because there is a very high correlation among the red,

green and blue components therefore Cheng et al (2001) mentioned that it is

impossible to see if two or more colours are similar based on their distance in RGB

space.

Since the RGB colour values are not profound suitable for segmentation based on

colour another colour space which facilitates easier automated comparison and

matching algorithm’s, an alternative for the RGB model, is necessary.

7.2. HSV colour space

An alternative to the RGB model is the HSV data model. HSV stands for: hue,

saturation and value. HSV is a cylindrical model (Figure 15), whereby “hue”

corresponds to the angle around central vertical axis, the distance from the axis

to the side corresponds to “saturation” and the distance along the axis corresponds

to lightness, or “value”. This colour space facilitates the easier comparison of

colour, as individual colours can be distinguished by combining 2 value ranges.

Figure 15 The HSV colour space in a cylindrical model

Source: http://bit.ly/1PeK7jx

The hue represents basic colours, and is determined by the dominant wavelength

in the spectral distribution of light wavelengths. The saturation is a measure of the

purity of the colour, and signifies the amount of white light mixed with the hue.

The value represents the brightness of a certain colour. The colour table of the

HSV colour model is show in Table 1. This table shows that, for example, black can

be recognized by the “value” and red, green and blue by combining “hue” and

“saturation”.

In order to create a HSV value for every point from an RGB value, the following

formula is used:

39 | P a g e

Table 1 The colour table of the HSV colour model

source: mehrarodgers.files.wordpress.com

7.3. HSI colour space

The HSI is a color space that stands for hue (H), saturation (S), and intensity (I).

It is a system that is more intuitive to the way the human eye perceives colour

(Cheng et al, 2001). This makes this colour space very good for image processing

techniques. The way the HSI colour space represents colour is presented in Figure

16 Cheng et al (2001) argues that in a segmentation algorithm the hue component

can be the only parameter applied. This is especially useful when the scene has

non-uniform illumination levels such as shades. Besides this, they argue, that it is

computationally less intensive than the 3D RGB space.

Figure 16 The HSI colour space

40 | P a g e

Source: http://bit.ly/1PeLej0

In order to create a HSI value for every point from an RGB value, the following

formula is used:

7.4. CIE spaces

The CIE is a system that represents colour according to the human visible system

and is thus based on additive colours. The colours in this space are specified by

performing measurements with a spectrophotometer. Any colour in this colour

space is specified by three values (X,Y,Z), where Y represents luminance. There

are two colour spaces based on CIE, the CIELuv and CIELab. The conversion from

RGB to CIEXYZ is a linear transformation:

where M is a 3x3 matrix depending on the RGB colour space that is currently used.

The most common RGB matrices are listed in Rucelindbloom (s.a.). From this

equation the CIELuv and CIELab can be then be calculated.

For CIELab this is done with the following equation (Ford & Roberts, 1998), where

X0,Y0 and Z0 are the colours of standard white or illuminant.

In this case the white is considered as (255,255,255) which corresponds to the

d65 illuminant and the white of the average daylight. This illuminant is mostly used

in the sRGB color space.

http://chart.googleapis.com/chart?chs=60&cht=tx&chl=$/left(/begin{matrix}
 X //
 Y //
 Z //
/end{matrix} /right)%3DM/cdot /left(/begin{matrix}
 R //
 G //
 B //
/end{matrix} /right)$

41 | P a g e

For CIELuv the transformation is done with the following equation (Ford & Roberts,

1998), where X0,u0 and v0 are the colours of standard white.

For segmentation algorithms the CIE spaces have the advantage that the

differences between colours can be assessed as easily as calculating the euclidean

distance (Luccheseyz & Mitray, 2001).

42 | P a g e

8. Segmentation methods

A point cloud is a rich source of information. However, extracting information from

it can be rather challenging. Therefore, in one of the first steps a point cloud

segmentation process needs to take place. The idea behind point cloud

segmentation is to cluster points that share common characteristics into

homogeneous regions. The segmentation of point clouds originates from the

segmentation of 2D images, which has been studied and understood for many

decades. Segmenting point clouds has been rather difficult. Therefore, many

algorithms have been developed the last years. In the next sections, some of the

most commonly used algorithms are presented.

A taxonomy of 3D point cloud segmentation techniques is described in Nguyen &

Le (2013): 1. Edge based methods, 2. Region based methods, 3. Attributes based

methods, 4. Model based methods and 5. Graph based methods. Edge based

methods are used to detect boundaries in point clouds and from those boundaries

to segment regions. Region based methods take into advantage of the

neighbourhood of the points, in order to divide the point cloud into regions of

similar properties. Attribute based methods segment the point cloud by taking into

account the attributes of the point cloud. Model based techniques use geometrical

shapes like cones, cylinders, planes, spheres and they group points according to

these. The points that belong to one particular shape are part of one segment.

Finally, graph based methods where a point cloud is considered as a graph in which

the vertices are the point cloud points and the edges connect pairs of vertices. In

the following sections the most well-known segmentation methods will be shortly

described.

8.1. 3D Hough transform

The 3D Hough transform (Vosselman & Dijkman, 2001) belongs to the attribute

based segmentation methods and detects planar surfaces in point clouds. In the

3D Hough transform every 3D point defines a surface. Coplanar points are then

defined by checking whether the surfaces intersect at a point. The plane is then

defined by the coordinates of that intersection point. The next step includes

verifying that the points belong to the neighbourhood. This can be done by the k-

NN algorithm or by using voxels. Finally, the plane parameters are optimized by

performing least squares adjustment. Many variants of this algorithms have been

developed through the years. An overview of those variants can be found in

Borrmann, et al. (2011). The most apparent disadvantage of this algorithm is the

fact that not all objects are planar.

8.2. Random sample consensus (RANSAC)

The RANSAC algorithm is a general algorithm developed for computer vision by

Bolles & Fischler (1981) that fits models to the data, even when there are gross

errors present. One of the use of the RANSAC algorithm is on point cloud

segmentation. The algorithm works by using minimal sets which is the minimum

number of points that are needed to to approximate a shape. This shape is then

tested with the rest of the points to determine how many of them are described

well by this shape. The algorithm is then repeated until the shape describes an

43 | P a g e

acceptable amount of points and then the rest of points are tested from the

beginning (Schnabel, et al., 2007). The advantages of this algorithm lie in its

simplicity, extensibility and that it can be performed to a dataset containing a lot

of noise.

8.3. Region Growing

Region growing belongs to the surface based segmentation techniques. This

method tries to group points that satisfy a spatial proximity characteristic and a

similarity criterion. The region growing algorithm is divided into two steps: first,

detection of a seed and second, the actual growing.

A seed is a point that it is known that it belongs to a segment. The seed detection

step tries to look for nearby points that belong to the same plane. Whether two

points belong to the same plane can be realised by comparing the smoothness,

i.e. the curvature. This is the method presented in Rabbani, et al., (2006). The

authors used the surface normals and the approximation of the curvature by the

residuals. The pseudocode of the method, which is also used by the point cloud

library is as follows:

Sort the point cloud according to the curvature value and initialise an Available points
list.
Until this available point list is empty:
 initialise a region and a seeds set
 Take the point P with the minimum curvature

Append the point P at the seeds set and the region set
Remove point P from the available points
For every seed, find its neighbours:
 remove the current seed form the seed list

 For each of the neighbours
if the angle between the normal of the seed and that point is less than
a threshold value.

 add the point to the current region
if the neighbours curvature value is less than a threshold,

add the point to the list of seeds
If the seeds set has no more seeds, the region has grown and the algorithm is repeated from

the beginning.

The algorithm presented controls the degree of segmentation by imposing two

different thresholds: the curvature threshold and the angle threshold. It is up to

the user to define the thresholds according to the structure of the scene. This,

actually, is the disadvantage of the algorithm. It needs to be fine-tuned each time.

Automatic estimation of the parameters is yet not possible.

Apart from purely geometrical information to be used as a similarity measure, like

the normals, also, non-geometrical characteristics can be used. Nowadays, point

clouds come with RGB colours and, therefore, colour similarity could be used to as

a decision parameter to whether a point belongs to a region or not. Zhana et al.,

(2009) adjusted the algorithm of Rabbani, et al., (2006) to use colour similarity

instead of normals and curvature. The roughly segmented regions are then merged

into bigger ones by, again, using colour similarity as a measure. The colour space

that was used to calculate the colourimetrical distance was RGB. As with all the

44 | P a g e

region growing algorithms, the thresholds need to be adjusted to the scene and,

for this reason, one fits all threshold has yet to be defined.

9. Classification methods

Once the segmentation is done, features have been calculated, the next step is

the classification.

Apart from the quality of the segments from the segmentation, the classification

algorithm used for labelling the segments, is important for the accuracy of the

different surfaces detection. The performance of a classifier is data and site

specific, it is therefore critical to identify beforehand the appropriate classifier for

the task (Zang et al. 2013).

Different workflows in the process of feature extraction and machine learning have

extensively been researched. Although, most of these works focus on the different,

separate steps in the feature extraction of point clouds, and not on the whole

workflow (Weinmanna et al., 2015). Thereby, a lot of research focusses on object

recognition and feature extraction, and less on the classification, semantic labelling

of individual points or regions (Xiong et al., 2011, Shapovalov et al., 2010, Hmida

et al., 2013, Vosselman and Maas, 2010). Even though point cloud classification is

to be an interesting topic in the field of data processing, because it is a precondition

of many applications (Zhang et al., 2013).

There exist two basic alternatives for classifying a point cloud (Rusu and Cousins;

Ramiya et al., 2014):

1. Define different classes of surface or object types and classify each point

separately (point-based).

2. Define different regions through segmentation and region growing based on

geometric properties and then assign all points within a region to one class

(region-based).

Both approaches have their advantages and disadvantages. But even though the

point-based classification might outperform the region-based classification (Rusu

and Cousins), the technique most used is the region-based classification because

it gives more realistic results, has better quality through incorporating context

information from neighbours, it needs less manual labor and it is less time

consuming (Ramiya et al., 2014).

In Weinmann et al. (2015) and Weinmann et al. (2014) it is argued that point

cloud classification approaches in literature mainly consider the different

components independently from each other and that it would be most desirable to

use the components of neighbourhood search, feature extraction and classification

in conjunction for an improved result.

9.1. 3d feature extraction and selection

45 | P a g e

Geometric features are mainly used for assigning a semantic label, a class, to

individual points or points within a region. Besides geometric features also colour

values are used for classification. Chapter 5 and 6 explain the mainly used 3d

geometric features for classification, the features used in this project and the

chapters give examples on how to calculate those values, geometrical and colour.

9.2. Classification approaches

Once the usable geometrical and colour values are calculated a classification of

points within the point cloud can be done through several approaches (Weinmann

et al., 2014).

9.2.1. Point-based classification methods

Point-based classification methods are done through analyzing features of one

single point of a point cloud inherent to the point cloud such as distance from the

ground or planarity.

Algorithms belong to the point-based classifications are the labelling algorithm and

the multi-scale curvature classification (Zhang et al., 2013). These classification

methods are in general and also in this case mostly done on elevation, are time

consuming and need a lot of human interaction (Ramiya et al., 2014). The

labelling algorithm - Labels each point based on the elevation and slope. the

elevation and slope of each class needs to be mathematically defined from training

data (Sahn and Sampath, 2005). The multi-scale curvature classification

(MCC) - Is an algorithm that operates through assigning classes to points based

on their curvature value. Points belong to different classes when one point exceeds

a certain threshold and another point does not (Tinkham et al., 2011).

9.2.2. Region-based classification methods

Region-based classification algorithms are to classify pre-defined regions,

segments, or are to classify points while instantly growing a region with the points

with the same geometrical properties. A region-based classification is especially

effective on urban area’s where many edges and thus different segments are found

(Zhang et al., 2013). Several region-based classification algorithms which classify

points and create regions are the Associative Markov Networks and the Conditional

Random Fields. Region-based classification methods which classify pre-defined

segments are the K-Nearest Neighbour Classifier, Naive Bayes and the Support

Vector Machine. Also the assignment of segments to classes can be done through

a decision tree or bayesian probability.

The Associative Markov Networks (AMN) - is a graphical model for point cloud

classification which models the spatial interactions within the point cloud. The

associative markov network is an undirected graph in which the nodes are

represented by random variables . An edge defines the interaction

between variables of surrounding nodes. These variables are complementary to

the predefined classes, labels. Each node and each edge has a potential, these

potentials reveal that for a given point/segment some classes, some labels, are

more likely to be assigned that others (numerical score). The conditional

probability is expressed as:

http://www.codecogs.com/eqnedit.php?latex=N

46 | P a g e

(Wang et al., 2012, Kabali et al.,). An disadvantage of the AMN is that it is

restricted through the assumption that features of nodes are independent from

conditions of other nodes.

The Conditional Random Fields (CRF) - Provides a framework for classification

represented by a graph of nodes and edges. Each point within a point cloud can

be considered a node, edges link adjacent nodes. in the case of labelling points of

a point cloud each 3d point will be assigned a label based on the training data. The

posterior of the CRF is modelled by:

Where , which is the neighbourhood of node , is represented by the edges

linked to this node. The potential is computed for each node and each edge by:

and . The potential of each node links the data to the class

labels where the potential of each edge represents the dependencies of a node on

its adjacent nodes. turns the potentials into probability values. (Niemeyer

et al., 2012).

The K-Nearest Neighbour classifier (KNNC) - Means finding the nearest

neighbour of a known point in instance space and labelling the unknown instance

with the same class label as the known point. This algorithm does not make

assumptions on the distribution of the data. Training data for a KNNC needs to

consist of a set of vectors, points, which have certain geometrical properties and

colour values and class labels associated with these vectors, points. The testing

data is unlabelled data. A simple scenario: is the point to be labelled. the closest

point to is point which has the label of Grass. If point has the same geometrical

properties as point it will get the same label als point ; Grass (Sutton, 2012).

The Naive Bayes - Is a simple technique based on Bayes theorem. It is a

classification with strong autonomous assumptions between features. It does not

consider possible correlations between features. The Naive Bayes is a probabilistic

classifier that finds for every point the probability to be classified in a certain class,

based on the prior and the likelihood. It only requires a small amount of training

data to estimate parameters necessary for the classification.

To predict the class of an input sample (a point cloud segment)

with certain attributes(features) the largest posterior probability is

calculated:

Then the independent condition is written as:

These formulas estimate the probability of a class and attributes for a certain input

sample. The predicted score of a certain class is derived from:

http://www.codecogs.com/eqnedit.php?latex=x
http://www.codecogs.com/eqnedit.php?latex=Ni
http://www.codecogs.com/eqnedit.php?latex=ni
http://www.codecogs.com/eqnedit.php?latex=Ai/left(X,yi/right)
http://www.codecogs.com/eqnedit.php?latex=Iij/left(X,yi,yj/right)
http://www.codecogs.com/eqnedit.php?latex=Z/left(x/right)
http://www.codecogs.com/eqnedit.php?latex=x
http://www.codecogs.com/eqnedit.php?latex=y
http://www.codecogs.com/eqnedit.php?latex=x
http://www.codecogs.com/eqnedit.php?latex=y
http://www.codecogs.com/eqnedit.php?latex=y
http://www.codecogs.com/eqnedit.php?latex=x

47 | P a g e

The result is determined by the class with the highest predicted score, a point

cloud segment is labelled as the class with the highest predicted score for this

segment (Wu and Lin, 2011).

The Support Vector Machine (SVM) - Is a widely used classification method

within the remote sensing community which considers training samples

where one sample belongs to two classes. The

training samples are non-linearly mapped to a high dimension feature space. The

SVM finds a hyper-plane, a linear decision surface, which divides the set of training

data in a way where all the points with the same label are on the same side of the

hyper-plane. The idea is that the SVM finds the most optimal hyper-plane

in a high dimensional feature space (Figure 17)(Cortes and Vapnik,

1995; Samadzadegan et al.).

Figure 17 Hyper-plane

(Cristiani, 2001)

The SVM is in general a linear classifier, but in order to classify non-linear data the

solution can be to map the data into a feature space where they are linearly

separable (Figure 18).

Figure 18 Non-linear data in linear feature space

(Critstiani, 2001)

Around each hyper-plane a mistake bound, a margin, exist between the hyper-

plane and the nearest point (Figure 19)(Cristiani, 2001). This is used when more

than one hyper-plane can fit between the different classes. The hyper-plane which

leaves the maximum margin from both classes is set to be the optimal hyper-plane

(Figure SX)(Cortes and Vapnik, 1995).

48 | P a g e

Figure 19 Left: Hyper-plane and margin, Right: finding the optimal Hyper plane

(Cristiani, 2001)

Furthermore, SVM’s operate in a kernel induced feature space. Important in a SVM

is the kernel parameter, the effectiveness of the SVM depends on this selection of

kernel, a soft margin parameter and the kernels parameter. This last parameter

defines the structure of the high dimensional feature space. Usually these

parameters are selected by trying a finite number of values and select those which

provide the least error. A common choice is a gaussian kernel which has just one

parameter . Each combination of a kernel parameter and a soft margin

parameter is checked using cross validation. The classification then is done using

the selected parameters (Cortes and vapnik, 1995; Samadzadegan et al.).

Multiclass SVM: Since the SVM is a binary classification method but for remote

sensing applications several classes are usually of interest. To solve this problem

this multiclass problem is to be reduced to multiple binary classification problems.

It is possible to build binary classifiers which divide the data between one label

and the rest, as it is possible to build binary classifiers which divide the data

between every pair of classes (one-versus-all and one-versus-one) (Figure 20).

The one-versus-all method with an X amount of classes composes X SVM models

which can categorize the samples into samples from one class and samples of the

remaining classes (Samadzadegan et al.).

Figure 20 Multiclass SVM with linear kernel

The decision tree - Uses a tree as a predictive model, whereby observations of

the geometrical values of a point cloud segment lead to the conclusion about this

segment. It uses a classification scheme to do this, a hierarchical structure that

is accompanied by descriptive information. Algorithms to create a decision tree

work top-down, where each geometrical or colour value separately and one by one

49 | P a g e

guides the point cloud segment through the scheme, eventually classifying it

(Figure 21). The classification scheme gives the segment and its class a

meaning. (Rokach and Maimom).

Figure 21 Decision Tree for point cloud classification

The Bayesian probability - Is used to evaluate the probability of a hypothesis.

The Bayesian probability specifies some prior probability, which is then updated in

the light of new, relevant data (evidence), in our case geometrical properties of

points and their surroundings. The Bayesian interpretation provides a standard,

pre-defined set of procedures and formulae to perform this calculation (Wikipedia

(3), 2015). In Bayesian probability, a weight is given to each variable (or attribute)

and added up or multiplied by a pre-defined factor. The end score assigns the

actual class to the pre-defined region, segment.

50 | P a g e

Chapter 4: Methodology

1. Methodology

This chapter will define the general research strategy that outlines the way in which

this research is undertaken, also it will give requirements and parameters

necessary for a successful end product. The type of processing that is needed is

based on the process of how to get to the end product. This process is based on

literature, the literature and the process is explained in the literature overview

chapter.

The processing of the point cloud begins with filtering and continues with indexing,

segmentation, classification and labelling. All processing is as defined by the

requirements of the project performed on the raw point cloud data. This means

that no other geometries apart the points was used. For each step in the process

of processing the raw point cloud requirements are set up which will be made clear

in the next paragraphs.

1.1. Point cloud acquisition and generation

A point cloud of the faculty of architecture and its surroundings was planned to be

acquired (Figure 22). This acquired point cloud is a product of the company

Cyclomedia. Cyclomedia’s common products are cycloramas and a web-viewer to

use. However, since recently Cyclomedia is exploring 3D geo-information and point

clouds. The products they delivered to our team are two different kinds of point

clouds, both acquired with the mobile device mounted on a car.

The first point cloud, is a point cloud based on 360° high definition panorama

images. The point cloud is obtained by a two-step approach. “First and initial point

cloud is created by dense stereo matching based on a variation of the semi-global

matching (SGM) in combination with Census transform and colour information.

SGM uses pixel-wise matching (Hirschmüller, 2008). The point cloud is then

filtered and turned into a triangle mesh using a method based on Labatut et al,

(2007). Vertices from the resulting mesh are the points in the LAZ files” (Beers,

2015). The accuracy of the obtained point cloud depends on the intersection angle

and the accuracy of the panorama positioning. According to Beers (2015),

Cyclomedia does not currently track accuracy information for each point in the

pipeline. The processing time for the construction of this point cloud is

approximately three hours.

The second point cloud is from a prototype they recently developed, this point

cloud is obtained by a LIDAR laser scanner. This new generation of Cyclomedia’s

mobile mappers is equipped with the Velodyne HDL 32 lidar scanner, that has 32

channels and catches 700,000 points per second with ± 2 cm accuracy. The Lidar

scanner has a 360° horizontal field of view (Velodyne, 2015). The output of the

device can be described as polar coordinates in 3D; 2 angles and a distance. By

using the location and orientation of the IMU and the position derived with GNSS

http://www.normalesup.org/~labatut/papers/iccv2007-efficient-multiview.pdf

51 | P a g e

receivers, together with the relative position and orientation of the LiDAR device

with respect to the IMU, the polar coordinates in the device frame can be

transferred into a Cartesian world-frame.

The Lidar point cloud does not contain colours in its raw format. In order to apply

colour to the point cloud, the theoretical process is to “use the panorama closest

to the LIDAR ray origin to colour the resulting point. There are a few additional

rules to take the second or third best option if the point would be occluded by the

recording vehicle itself. Otherwise, the algorithm currently makes no attempt to

detect or mitigate the effects of occlusion. From this it is also clear that if the lidar

points or origins are in the wrong location, the colouring can give the wrong

results.” (Beers, 2015).

Because 3D point clouds are still prototypes of Cyclomedia there is no cost

indication of the acquisition. Both point clouds are delivered with colour, colour

obtained from the high definition images. The only requirement that needs to be

met for the acquisition of the point clouds is based on the weather. When raining

the acquisition won’t be reliable, inaccurate, since water drops can reflect the laser

which will give "floating" points, point that are not there in reality, in the point

cloud. The point cloud was obtained on a day with rainy weather conditions due to

the time constraints of the company.

Figure 22 The data acquisition at the faculty of Architecture

1.2. Point cloud pre-processing

Both point clouds, in pieces delivered as different laz-files, contain points

representing the whole faculty of architecture building and its surroundings. The

research questions however only applies on a specific part of the point cloud; the

road and its surrounding surfaces. Therefore the ground points must be filtered

from the non-ground points. Filtering the ground and non-ground points must

52 | P a g e

answer to some requirements. These requirements are listed in the following

subparagraph.

1.2.1. Filtering parameters and requirements

 The filtering must delete most non-ground points in order to cope with the

data, at least the filtering process must contain all the ground points. So the

majority of the non-ground points must be filtered out

 Ground points and non-ground points must be clearly defined.

 The filtering must be based on these clearly defined ground and non-ground

points.

 The adjustment of these ground and non-ground parameters into the

filtering must be straightforward.

 Since several techniques for filtering exist, the best way for filtering the

point clouds in this research must be defined.

1.2.2. Predefine the relevant classes

To classify the points and give the correct label to each point first the relevant

classes that needs to be labelled should be identified. Having a specific application

in mind is very important when designing a process. In this case road extraction

and materials focused on street level are examined.

 The defined classes must be distinguishable.

 The classes must cover important classes for the named applications.

 All possible ground surfaces (around the faculty of architecture) must be

defined.

1.3. Point cloud processing

Now that the point cloud is filtered to non-ground points and ground points the

ground points can be labeled according to the predefined classes. Labelling the

ground points can be done by two methods, either point based labelling or either

region based labelling. To test whether method is better for labelling ground

classes both, point based labelling and region based labelling, will be executed and

compared. Point based labelling will be done by using colour values to distinguish

classes and samples will be made to classify each point to give the correct label to

the points.

Region based labelling acquires a more detailed method. For this specific method

the point cloud needs indexing to calculate the geometrical properties that will

likely distinguish the different classes. Further region growing on geometrical

properties and colour values that distinguish the classes will be used. To finally

classify the obtained regions two choices are available:

 Supervised: The regions will be classified based on samples, taken manually

 Unsupervised: The regions will be classified according to the same

geometrical properties and colour values

Both these choices will be tested and examined on the regions and these methods

will be compared to see the advantages and disadvantages.

53 | P a g e

1.3.1. Indexing parameters and requirements

 The necessity of indexing the point cloud must be defined.

 The used indexing method must be clearly defined and underpinned.

 The indexing must be a fast process, even for point clouds containing

millions of points.

 With the defined indexing method it must be possible to define nearest

neighbours for every point since all further processing is based on these

nearest neighbours.

 It must be possible, using the indexing structure, to calculate/define the

geometrical properties of the point cloud to increase the ease of

classification.

1.3.2. Segmentation parameters and requirements

 The segmentation method must be clearly defined using region growing.

 Segments must be obtained that only contain one class.

 Most segments must contain multiple points, otherwise those aren’t

segments.

1.3.3. Classification parameters and requirements

 The classification method(s) must be clearly defined.

 Samples, training data, of these defined ground surfaces must be taken

from the point cloud.

 The classification must be executed according to the training data of the

predefined classes.

1.3.4. Labelling parameters and requirements

 Points must be enriched with semantics.

 Spatial labels are derived from the context, in our case the built environment

 Labels must be clear for the users or for a specific use case.

1.4. Validation

An important phase of the method, the project process, is validation. Validation is

a process to test and control the steps of the project process. Validation is in this

research needed to evaluate the reliability of the used method. The classification

of points is an important matter within this research. Therefore, the assessment is

performed within this process. A common way of assessing classification processes

is by creating a confusion matrix. The confusion matrix is a table that summarises

the correctly assigned points to each class in combination with the points

misassigned to different classes. The errors presented in the confusion matrix are

the errors of omission and commission. The errors of omission represent the points

that should be of a particular class but are classified wrongly. The errors of

commission, on the other hand, represent points that belong to another class but

are classified as belonging to another.

The semantic labelling and all its needed processing steps will in this research be

done on just a small part of a much larger point cloud. Even if the used labelling

method works on this small point cloud this does not guarantee that this method

54 | P a g e

will work on other parts of the larger point cloud of point clouds in general.

Therefore, for the validation of the method it is necessary to test the used method

also on other parts, on other point clouds.

1.5. End product

The end product of this research is to be a semantically enriched point cloud which

holds information that can be used for road extraction and surface infiltration

capacity analysis. There are two possible options for end products to be delivered

to the end user. Either store all the points in one laz/xyz-file with the classification,

or store each classification in separate laz/xyz-files. Both these methods have their

advantages and disadvantages. If all the points are stored in one file the end-user

has to download the whole file, even if the end-user only wants to see a specific

category. Downloading the whole file will cost time and the interaction with

massive point clouds is slow. On the other hand, if a user needs to download a lot

of small files, one of those files can be easily lost. File management is therefore

required. Because our application is made for specific use cases it is assumed to

be better to store each class of the point cloud in a separate file.

For the visualisation of the end product an open source program like Cloud

Compare is used. Optionally the files can be loaded on a server and the point cloud

can be viewed within a web browser from any location. The potree library

(http://potree.org/), making use of webgl, can be used for this.

Parameters and requirements:

 The end product must be a semantically enriched point cloud.

 The method used to get to the end product must be valid and applicable on

other (terrestrial) point clouds.

55 | P a g e

Chapter 5: Implementation

1. The acquired point cloud

The Stereo Point Cloud of the faculty of Architecture and surroundings was

delivered to the team on 16/9/2015. As can be seen from Figure 23, the point

cloud is focused on the street level. The point cloud is however not without

problems. It is possible that for specific areas, especially with high vegetation, the

building facades are occluded. In addition to that, the roofs are in their majority

missing. In the case study examined by this group, missing roof or façade

information does not pose any issues as they are filtered out in the next stage.

Figure 23 The obtained point cloud

2. Non-ground filtering

Since working with big data is not an easy issue even with today’s computer power,

for testing purposes a small segment of the whole stereo point cloud is extracted

at the beginning and will be further used to test the classification algorithms.

To obtain a subset of the whole stereo point cloud around the faculty of

architecture, the lasclip tool from the LAStools suite is used to process all the

separate files at once. Lasclip takes LAS or LAZ files and a polygon as input (See

Figure 24, blue lines), the files intersecting with the polygon are outputted. In this

way only the points that are inside this polygon are stored and later merged to

one file. The used polygon to make a selection is stored as a shapefile, and looks

as follows in Well Known Text (WKT):

POLYGON((594080.076999 5762420.870001, 594113.759998 5762465.878001,

594086.458999 5762487.190001, 594045.535999 5762449.965003, 594080.076999

5762420.870001))

The coordinates to make the polygon are obtained by selecting points in the total

scene. The lasclip command line that is used is:

56 | P a g e

lasclip -lof [selection of the files] -merged -poly "Path\ClipSegment.shp" -odir "Output

directory" -o "StereoMergedClip.laz"

Figure 24 All the used las-files for input (boxes) and the polygon intersecting these

files(blue lined polygon).

The result of this process is a file containing 3,413,935 points (Figure 25). This file

contains the whole scene with the buildings, cars, trees, road etc. However, not all

information is relevant for all applications. In the case examined in this project,

the focus area lies on the ground. This means that the non-ground points

(buildings, trees, cars) need to be removed from the dataset. To classify the

previously clipped point cloud to ground points and non-ground points the

lasground_new tool from the LAStools suite is used. This tool classifies the LAS or

LAZ files imported into ground points and non-ground points by giving them a label

(2 for the former and 1 for the latter) in each LAS file row.

Figure 25 Clipped stereo point cloud, 3,413,935 points.

57 | P a g e

The following command is used to make this classification:

lasground_new -i "Path\StereoMergedClip.laz" -offset 0.2 -odir " Output directory " -o

"StereoGroundclassification.laz"

where, offset represent the maximum offset in meters up to which points above

the current ground estimate get included in the filtered output, odir the output

directory and o the name of the output file. The command line output is shown in

Figure 26, where it is stated that 1855993 points are ground points. This as

explained before just adds a label to the current point cloud and does not actually

create separate files.

Figure 26 The command line output for the filtering

Now that the classification is done the file can be split according to this

classification using the lassplit tool from the LAStools suite. The lassplit splits the

the inputted LAS and LAZ files according to some criteria defined. The command

used to perform the splitting according to the ground and non ground classification

is:
lassplit -i " Path \StereoGroundclassification.laz" -by_classification -odir " Output

directory " -o "StereoGround.laz"

Which resulted in the division of the point cloud shown in Figure 27 & Figure 28.

Figure 27 The processed non-ground points: 1,557,942 points

58 | P a g e

Figure 28 The outputted ground points: 1,855,993 points.

The same process can be used to filter the LiDAR point cloud. Exactly the same

polygon is used to clip the whole LiDAR point cloud (Figure 29). With the following

LAStools command:

lasclip -lof [selection of the files] -merged -poly "Path\ClipSegment.shp" -odir "Output

directory" -o "LidarMergedClip.laz"

The output is shown in Figure 30. In this figure it is visible that the point clouds

are not aligned, because the same wall is on two positions. Therefore, the focus

will lie on the stereo point cloud and not on the LiDAR point cloud for this project.

Figure 29 All the used LiDAR-files for input (boxes) and the polygon intersecting these

files (blue lined polygon).

59 | P a g e

Figure 30 The clipped LiDAR point cloud.

60 | P a g e

3. Importing the data

The raw data provided by Cyclomedia are given in the .las or .laz format. The data

provided are needed to be loaded inside Python. Two ways of doing this were

investigated. Fist way includes transforming the las file to .xyz format and loading

it as an ASCII file inside python. The second way includes using libLas, a library

for reading and writing LAS format. In order to test the performance, the two

readers were run using timers. The option used is the one that provides best

performance.

3.1. xyz reader

The code presented in Table 2 the python implementation for the .xyz file reader.

When running the file with a point cloud of 3,332,161 points the output in the

correct list format is given in 11.7 seconds.

Table 2 The .xyz reader

def unpack_xyz(infile):
 points_xyz = []
 for each in infile:
 values = each.split(' ')
 xyz = (float(values[0]), float(values[1]), float(values[2]))
 points_xyz.append(xyz)
 return points_xyz

3.2. Liblas

The code presented in Table 3 shows the python implementation for the .las file

reader. The file module of liblas is imported and running with the same point cloud

of 3,332,161 points the output in the correct list format is given in 56.5 seconds.

Table 3 The .las reader

from liblas import file

def lasreader(fh):
 infile = file.File(fh, mode='r')
 coords = []
 for i in infile:
 coords.append((float(i.x), float(i.y), float(i.z)))
 return coords

It can be thus be understood that using the .xyz file significantly increases the

efficiency of the code. However, this format is not the most widely used one and

transformation tools from .las to .xyz are needed.

4. Data structures

The algorithms developed for the classification of the point cloud depend on two

data structures. A data structure is needed in order to organise the information of

the unstructured point cloud provided in a relevant way. The data structure is

composed of two objects: a point object and a region object (Figure 31).

61 | P a g e

A point object is an object that has the following attributes: index, coordinates,

CIELab values, curvature, normal, neighbours, region, and RGB colour. A point is

related to another point by having neighbours. The number of neighbours of a

point is fixed and is k. In addition to that, a point can be the neighbour of zero or

more other points.

The region object is an object that has the following attributes: region number and

list of points. Between a point and a region there is a composite relationship as a

region cannot exist without a point. In addition to that, a point belongs to exactly

one region and a region contains at least one point.

Figure 31 The UML diagram of the data structure used for the classification of the point

cloud

5. Spatial index

For quick access of the point cloud points a spatial index is applied to the process.

The kD-tree applied to this case of 3D point sets is a 3D tree. A kD-tree, in

comparison to an octree, can provide a balanced data structure and it is optimised

for the k-nearest neighbours search.

The kD-tree used for the process developed in this project is the cKDTree algorithm

of the scipy.spatial module. This algorithm is an implementation of the algorithm

of Maneewongvatana & Mount, (2001) in C and therefore provides faster nearest

neighbours search. The same neighbourhood search without an index takes couple

of hours since all the points (1.8 million) need to be traversed each time the k

nearest neighbours for a point need to be found. With the k-D tree algorithm the

construction and the neighbour search of all the point takes 20 seconds.

6. Colour spaces transformations

Colour information is an invaluable information for humans. Humans can interpret

colours and through that assign semantics in milliseconds. Once a human looks at

Figure 32, he/she immediately infers, the road, the grass, the tiles etc. Humans

realise colour in the RGB colour space. For computer vision, however, the RGB

space has a disadvantage, colour difference is not uniform. This means that two

62 | P a g e

very similar colours cannot be always be distinguished numerically as similar by

comparing their RGB Euclidean distances. Therefore, different colour spaces

needed to be evaluated for their value in segmenting the point cloud.

Figure 32 The original point cloud in the RGB space

6.1. RGB to HSV

The HSV colour space is implemented in the python environment by utilising the

colorsys module. The resulted transformation in the point cloud, except the

saturation value, is depicted in the Figure 33 and Figure 34. The saturation is hard

to visualise as it should be represented by different colour according to the hue

angle.

From the different hue values in Figure 33, there can be made a distinction

between the classes grass, cycle path and, road and tiles. We, also, can observe a

very strange situation on the road. This could be because of the existence of shade

that makes the colours not homogeneous for this class.

63 | P a g e

Figure 33 The H value of the HSV colour space coloured differently according to the angle

Figure 34 The V value of the HSV colour space coloured in greyscale

The V represents the brightness. In Figure 34, we can observe that the classes

cannot be easily be distinguished as the road has the same grey value as parts of

the vegetation. The same is observed for the cycle path and parts of the pavement

mostly because of the existence of the shade.

6.2. RGB to CIELab

The transformation from RGB to the CIELab is implemented in the python

environment. The transformation is performed by applying the equations

presented in section 6.4. with the value for the absolute white to be taken as

(255,255,255) which corresponds to the d65 illuminant.

64 | P a g e

The resulted transformation is depicted in the following figures (Figure 35, Figure

36, Figure 37). In Figure 35 one can very easily distinguish the tiles that are

represented in the lightest grey. Vegetation has on the other hand the darkest

grey value.

Figure 35 The L axis of the CIELab colour space represented as grayscale

In Figure 36, on the other hand, the differences become even more apparent. One

can distinguish the grass, the bike lane, and the asphalt road and tiles. Distinction

between asphalt road and tiles is however not possible in this case.

Finally, in Figure 37 the grass is again easily distinguishable. The other classes

seem more or less a mixture of colours and therefore would be hard to distinguish

with this value.

65 | P a g e

Figure 36 The a axis of the CIELab colour space represented from green to red

Figure 37 The b axis of the CIELab colour space represented from blue to yellow

6.3. RGB to CIELuv

For the transformation to the CIELuv space, the python-colormath module was

imported into python. The three components (L,u,v) for the point cloud is depicted

in Figure 38, Figure 39, Figure 40. From each component different objects can be

distinguished. In Figure 38, as in the case of the CIELab, the vegetation and the

tiles are the most easily distinguishable. In Figure 39 and Figure 40, the different

66 | P a g e

classes are no longer easily distinguishable. Therefore, the CIELuv will not be used

for the classification.

Figure 38 The L axis of the CIELuv colour space represented as grayscale

Figure 39 The u axis of the CIELuv colour space represented as grayscale

67 | P a g e

Figure 40 The v axis of the CIELuv colour space represented as grayscale

7. Training samples

The method we use to semantically label the point is best captured by the definition

of supervised classification, which is an algorithm that uses a known dataset (called

the training dataset) to make predictions. The aim of supervised, machine learning

is to build a model that makes predictions based on evidence in the presence of

uncertainty (Mathworks, 2015). In other words, supervised learning is the machine

learning task of inferring a function from labelled training data. The training data

consist of a set of training examples (Wikipedia (A), 2015). In order to create our

semantically labelled point cloud, we extracted our training data as separate

different classes. The following classes are extracted from the point cloud: grass,

tiles, cycle path (red asphalt) and road (black asphalt), as shown in Figure 41, with

the number of points per sample class in Table 4. These sample sets are used to

calculate all the different point classification attributes in our point cloud labelling

algorithm, as described in earlier chapters.

Figure 41 The different sample classes

Table 4 Number of points per class sample

 Tiles Grass Cycle path

Red asphalt

Road

Black asphalt

Number of points 45438 66294 139148 310934

68 | P a g e

7.1. Definition of classes

In order to create classes for the two applications we aim for (discussed in chapter

4), it was decided to create classes for use (Figure 42Figure 42 Classes on use)

and classes for material detection (Figure 43). The use represents mostly how a

human would firstly interpret the scene. He/ She would identify the road, the cycle

path and the footpath (tiles). For more specific applications, (e.g. the surface

infiltration capacity) where the materials are needed because of their different

behaviour to water, the specialist would be in need for the asphalt area, the grass

and the tiles. Therefore, a semantically enriched point cloud with different types

of labels for the specific application should be provided.

Figure 42 Classes on use

Figure 43 Classes on material

69 | P a g e

7.2. Colour classification attributes

In order to get statistics of four different classes in the point cloud, all RGB values

are transformed (Table 5), using the formula in figure x, page x. Next a distribution

is made for the different classes, which is shown in the Figure 44, Figure 45 and

Figure 46.

Table 5 The different classes in for the HSV and CIELab colour spaces

 Hue Saturation Value Cie-L Cie-a Cie-b

Cycle path Min 0 0,0526 59 55,2111 -57,4633 2,7727

 Max 411,42 0,5897 156 82,4702 5,3931 4,8921

 Avg 15,4 0,33 91,7 66,3081 -28,6104 27,4657

 Std 32,2 0,07 12,6 7,4912 14,4717 9,4237

Road Min 0 0,0101 1 0 -40,1297 -4,8109

 Max 405 1 106 69,1864 25,3001 24,0775

 Avg 119,1 0,05 67,6 58,0781 2,6113 10,5766

 Std 125 0,028 6 4,8163 6,3889 4,57125

Grass Min 0 0,0192 3 10,3818 -48,7278 -6,1960

 Max 400 0,8571 184 84,5309 69,7676 35,9179

 Avg 87 0,12 124,7 46,4062 32,8621 21,7082

 Std 16,9 0,4 32,4 27,6225 33,5761 7,4386

Tiles Min 0 0,0164 42 47,5838 -24,8339 10,1187

 Max 400 0,3968 186 88,4162 11,8330 28,5078

 Avg 29,7 0,53 57,9 74,6892 -1,5551 18,3044

 Std 9,6 0,857 29,3 16,0538 3,5283 5,1541

70 | P a g e

Figure 44 A distribution of the ‘hue’ attribute in the different classes.

Figure 45 A distribution of the ‘saturation’ attribute in the different classes.

71 | P a g e

Figure 46 A distribution of the ‘value’ attribute in the different classes.

7.3. Geometrical classification attributes

The geometric attributes, as described in Section 6 of the Literature Overview, are

calculated for, 5, 9 and 20 nearest neighbours. As it becomes clear from Table 6,

there are no clear distinctions between the geometrical attributes and therefore

they are not sufficient to be used as the only criteria for the classification. This is

because these attributes describe aspects that are not present in our scene. For

example, the linearity characteristic is usually used to detect power lines which is

not relevant in our application. In addition to that, the different classes belong to

roughly the same plane and thus cannot be distinguished by just using geometrical

properties. This leads that the investigation of colour information for labelling point

clouds is the best alternative.

Table 6 The geometrical properties of the different classes

72 | P a g e

8. Point cloud labelling: Point based methods

Labelling a point cloud in this research means getting those parts out of the point

cloud necessary for assessing a certain task. In this case it concerns the points of

the point cloud belonging to the earth’s surface, or more explicit to the points

belonging to the “earth’s” surface within cities. The perception of this research is

that the “earth’s” surface within cities is categorized in black asphalt roads, tile

roads, red cycle asphalt roads and grass. As explained in chapter XX classes are

made from these categories of surface.

Since it was unclear whether it was possible to label point cloud segments mainly

based on colour a point based method was set up. The point based methods will

check for every point within the point cloud if it belongs to a certain class due to

its HSV or CΙΕ-Lab colour values. This can be done with minimum, maximum,

mean and standard deviation but also with methods explained in the literature

overview like the Support Vector Machine classifier and the decision tree.

8.1. H, S and V values, minimum and maximum

The training data are used to calculate the minimum and the maximum H, S and

V value for every class. Based on these values it is possible to assign the points

each to a specific class.

For every point in the point cloud it is checked through its H, S and V values

whether it belongs to a certain class. When all points belonging to this class are

extracted and written to a text file the explained process is repeated. This means

checking all points again but now for another class.

for each H-value in the list that contains all H-values of the points in the point cloud:
check for one point if the H-value is between the min and max H value of a certain
class. iff it is:

check for the same point if the S-value is between the min and max S value
of a certain class. if it is:

check for the same point if the V-value is between the min and the
max V-value of a certain class. if it is:
append this point to a list

write this list of points belonging to a certain class to a txt-file

Cycle path Road Grass Tiles

Figure 47 Point based labelling based on minimum and maximum HSV values

73 | P a g e

This method is time consuming because all points within the point cloud are

checked multiple times and the ranges that were checked were wide. The results

were therefore not the expected quality. As is visualized in Figure 47 a lot of points

are classified into several classes. The class grass for example contains points

which actually belong to the classes cycle path, tiles and or road.

A possible reason for this could be that the used training data consists colours that

are that not only belong to one class but also occur in other classes, it might even

be the case that this colour occurs more often in other classes. The Grass training

data for example also contains parts that used to be grass but when acquiring the

point cloud were “bare ground” (Figure gras). The colour of this bare ground is

“grey” instead of the expected green and therefore is easily classified wrong or at

least not as grass. To minimize the points that are wrongly classified due to

different colours in the trainings data instead of using the minimum and maximum

value, in the next method the mean and the standard deviation will be used to

reduce the colour value ranges.

Figure 48 Part of the training samples for grass

8.2. H, S and V values, mean and 2 * standard deviation

Since results of using the maximum and minimum HSV values were not accurate

a next option is tried, instead of using the minimum and maximum HSV values,

the mean plus and minus 2* the standard deviation is used as range in which the

HSV values need to be in order to be labelled as a certain class. It is assumed that

the values are Gaussian distributed (shown in figure xxx chapter of the training

samples). This mean plus and minus 2 * standard deviation is a 95,5% range of

all H, S and V values, the biggest outliers within the trainings data are therefore

not taken into account anymore with the classification of the points.

74 | P a g e

For every class the mean H, S and V values and the standard deviation of each

value are calculated from the training data. As the following pseudo code explains,

for each point in the point cloud it is checked whether its H, S and V values lie

within the range between the mean H, S and V values and 2 times the standard

deviation.

for each sample the H, S and V values are calculated and put in a list and the average and
the standard deviation of these H, S and V values are calculated.

check for each H value of each point if the H-value is between the average minus 2
* the standard deviation and the average plus 2 * the standard deviation of a
certain class. if so:

check for the same point if its S-value is between the average minus 2 *
the standard deviation and the average plus 2 * the standard deviation of a
certain class. if it is:

check for the same point if the V-value is between the average minus
2 * the standard deviation and the average plus 2 * the standard
deviation of a certain class. if it is:
append this point to a list

format this list
write this list of points belonging to a certain class to a txt-file belonging to this

class

The results per class are shown in Figure 49. All classes contain less points and

seem more precise than the results when using the minimum and maximum

values. The classes now don’t contain much points that actually belong to other

classes, but still the labels are not that precise and correct yet. Especially the

classes Cycle path and Tiles contain points that should have been classified

differently. The error of omission of the Tiles class shown in Table 7is therefore

68% which led to a mapping accuracy of just 32%. This table also shows a

mapping accuracy of 77% for Road 73% for Cycle path and 69% for Grass. This

means that only 77%, 73% and 69% of the points within Road, Cycle path and

Grass are correctly classified.

Table 7 The confusion matrix for the H, S and V values, mean and 2 * standard deviation

75 | P a g e

Besides the method using the minimum and maximum values from the training

samples, this method is already promising in the field of labelling point clouds just

on colour values even though the results could be even more precise.

Cycle path

Road

Grass

Tiles

Figure 49 Point based labelling based on mean and 2 * standard deviation

8.3. Cie-LAB values, mean and 2 * standard deviation

In order to check whether Cie-LAB colour values are more accurate within

classifying point clouds based on colours also a classification, labelling a point

cloud, is done based on Cie-LAB values.

for each sample the Cie L, A and B values are calculated and put in a list and the average
and the standard deviation of these L, A and BV values are calculated.

76 | P a g e

check for each L value of each point if the L-value is between the average minus 2
* the standard deviation and the average plus 2 * the standard deviation of a
certain class. if so:

check for the same point if its A-value is between the average minus 2 *
the standard deviation and the average plus 2 * the standard deviation of a
certain class. if it is:

check for the same point if the B-value is between the average minus
2 * the standard deviation and the average plus 2 * the standard
deviation of a certain class. if it is:
append this point to a list

format this list
write this list of points belonging to a certain class to a txt-file belonging to this

class

Cycle path

Road

Grass

Tiles

Figure 50 point based labelling based on mean and 2 * standard deviation

When comparing to the method using the H, S, v values with the mean and 2 *

standard deviation range, the results of using the CIELab values shown in Figure

50 are less adequate. Instead of a Tiles class with a very small mapping accuracy

of 32%, Using the CIElab colour values result in the classes Road, Grass and Tiles

with an approximate mapping accuracy of just 37%, 23% and 20% even though

77 | P a g e

the same range of values is used (Table 8). This result therefore shows that using

different colour spaces give different results.

Table 8 The confusion matrix for the CIELab values, mean and 2 * standard deviation

 Predicted classes

A
c
tu

a
l
c
la

s
s
e
s
 Road Cycle Tiles Grass Total

Road 77786 1186 20223 2079 101274

Cycle 0 16556 0 0 16556

Tiles 69412 2258 24136 578 96384

Grass 37040 216 3382 12761 53399

Total 184238 20216 47741 15418

 Omissions Commissions Mapping Accuracy

Road 23% 105% 37%

Cycle 0% 22% 82%

Tiles 75% 24% 20%

Grass 31% 5% 23%

8.4. CIELab a value, mean and 2 * standard deviation

When visualizing a histogram plot for the CIELab values (Figure 51) it is concluded

that the A value distinguishes the classes grass and cycle path the most. Therefore,

a classification is made based on only the A value, its mean and 2 * standard

deviation. With this method it is checked whether only using the a-value is enough

in distinguishing different parts of a point cloud.

Figure 51 The distribution of the CIE - a value for the different classes

for each sample the Cie L, A and B values are calculated and put in a list and the average
and the standard deviation of these L, A and A values are calculated.

check for each A value of each point if the A-value is between the average minus 2
* the standard deviation and the average plus 2 * the standard deviation of a
certain class. if so:

append this point to a list
format this list

write this list of points belonging to a certain class to a txt-file belonging to this

class

The results, shown in Figure 52, should be most accurate for the Cycle path and

Grass classes. Table 9 confirms on the one hand the high, as in 100%, mapping

accuracy for the Cycle path class but on the other hand the low, as in 26%,

mapping accuracy for Grass. So even though the cycle path is distinguished from

78 | P a g e

the point cloud with a very high accuracy, The Grass and other classes are not,

using only the a-value therefore might not be most accurate.

Cycle path

Road

Grass

Tiles

Figure 52 Point based labelling based on mean and 2* standard deviation on the A value

Table 9 The confusion matrix for the CIE a value, mean and 2 * standard deviation

79 | P a g e

8.5. SVM classifier

Apart from the self-made, range based, point based point cloud classification

methods, the SVM classifier is easily implemented on point cloud data with known

training data using the Python sklearn module. This module is a data mining and

data analysis tool, built on NumPy, SciPy, and matplotlib.

The SVM classifier uses several parameters in order to predict the class for each

point (Table 10). Most of these parameters are already set within the sklearn

method, just a few are adapted to get the best results. The adapted parameters

are the kernel and the class weight for the Road. The class weight of the asphalt

is set to two and the kernel is changed from ‘rbf’ to ‘poly’ so that the decision space

can be formed by every imaginable shape.

Table 10 SVC Parameters

C Cache_size Class_weight Coefficient Degree

Gamma Kernel Max_iter Probability Random_state

Shrinking Tol Verbose

The input of the SVC are two arrays, one with the H, S and V values and one with

the classes. The algorithm creates a polygonal decision space, whereby the

properties of the regions are used as classification criteria. The classification

criteria are derived from samples taken from the scene. In the classification

algorithm, the input is an array that holds 12 values:

 The minimum of the L, a and b values.

 The maximum of the L, a and b values.

 The average of the L, a and b values.

 The standard deviation of the L, a and b values

The same 12 values of the different regions are used to calculate the probability

that the region belongs to a certain class.

The result of the SVC classifier is shown in Figure 53. It visualizes the fact that the

grass and the road is classified above expectations but also that the cycle path

also includes points that belong to grass and tiles also include points that belong

to the asphalt road. But even though classes exist that contain points that should

have been classified differently the accuracy of this classification method is quite

high. Especially the Road class which almost contain none wrongly classified

points, it has an approximately mapping accuracy of 92% (table SVM)

80 | P a g e

Cycle path

Road

Grass

Tiles

Figure 53 Point based labelling from the SVC classifier

Table 11 The confusion matrix for the SVC classifier

81 | P a g e

8.6. Decision Tree

Apart from the SVM classification the python sklearn module also contains a

method for applying a decision tree classification. The sklearn module creates a

model that predicts the value of a target variable by learning decision rules from

the training samples. The decision tree function takes the same input as the SVC

classifier, but does not create a multidimensional decision space. Instead, it makes

a tree structure, whereby the algorithm traverses this tree and the leaf node,

eventually classifying the points.

The results of the decision tree classification seem in comparison with the SVM

classification according Figure 54 are not satisfying. The Tiles and Road classes

distinguished with the decision tree classification show a lot of points that are

wrongly classified. But even though figure DC visualizes the wrongly classified

points, the mapping accuracy of the different classes are higher, they are

approximately 85% for the Road, 74% for the Cycle path, 75% for Grass and the

Tiles class has as expected the lowest accuracy, 57% (Table 12).

Cycle path

Road

Grass

Tiles

Figure 54 Point based labelling from the decision tree

82 | P a g e

Table 12 Confusion matrix for the decision tree

8.7. Concluding point based methods

It can be said that the overall (mapping) accuracy of the point based classification

methods is not outstanding due to training samples with multiple colours and a

point cloud with a lot of colour inconsistencies. The methods compared conclude

the decision tree classification as the best point based classification method. This

method though uses harsh distinguishments while the boundaries between the

classes are not that harsh. A problem with the point based methods is the fact that

it is possible that one point is multiple times classified this means that one point

could be classified as Grass but also as Tiles. Therefore within the omission and

commision errors those points might be classified rightly while actually they are

classified wrong, because it should not be possible to classify a point multiple

times.

9. Point cloud labelling: Region based methods

Region based methods allow to first grow regions before classification, the grown

regions are then the ones to be classified instead of the raw points used in the

point based methods for point cloud classification.

Region growing can be referred as an unsupervised classification method. It is

called unsupervised because the user does not need to define anything about the

classes, at least at the initial step. The region growing algorithm that is used in

this project is a combination of the colour based segmentation algorithm of Zhana

et al., (2009) and the algorithm of Rabbani, et al., (2006). The variation is found

in the fact that the point cloud is first converted to a different colour space than

the RGB and then according to those values colour similarity together with angle

are the defining parameters to whether the point belongs to the region or not. The

curvature value is also used to define more seeds for each region. Therefore, the

algorithm is defined as follows:

Sort the point cloud according to the curvature value and initialise an Available
points list and a region list.
For each point in the Available points list:

83 | P a g e

 If the point does not belong yet to a region:
 initialise a region and a seeds set
 Take the point P with the minimum curvature

Append the point P to the seeds set and the region set
Until the current seeds set is empty:
 remove the current seed form the seed set.

Find the neighbours of the seed using a kD-tree data structure
 For each of the neighbours

if the angle between the normal of the seed and that point
is less than a threshold value and the single axis colour
distance is within a threshold.

 add the point to the current region
if the difference between the curvature of the seed
and its neighbour's is less than a threshold,

add the point to the list of seeds
 Add the region to the region list
If the seeds set has no more seeds, the region has grown and the algorithm is

repeated from the beginning.

The designed algorithm is tested for its output for the test dataset that is part of

the whole point cloud provided by cyclomedia. The thresholds used for the angle,

curvature and colour difference were discovered after some testing with the point

cloud. The thresholds that gave the best distinction between the classes are:

angle 45

curvature 0.001

colour 0.2

The explanation for such a low curvature threshold lies in the structure of the

scene. The majority of the classes are found inside the same plane and therefore,

raising the curvature threshold leads to under-segmentation. By under-

segmentation it is meant that two different classes are labelled as one. This was

the case for curvature thresholds over 0.001. Therefore, decision was made that

over-segmentation is more acceptable than under-segmentation. Over-

segmentation occurs when one surface is divided into really small surfaces.

Intentionally causing over-segmentation is, at least in theory, much simpler to

correct than under-segmentation, since human intervention cannot be avoided in

the second case. In addition to that, lower thresholds will allow the same algorithm

to work for the other scenes of the whole point cloud. Also, our test scene holds

properties that created region growing errors, if only curvature and normals were

used. As shown in Figure 55, the road is not always separated from the footpath

(tiles) by curbs, resulting that the region growing algorithm created one region out

of the road and the footpath (tiles).

84 | P a g e

Figure 55 How error in the region growing on curvature and normals occurred

The over-segmentation in the point cloud, however, is not only caused by the low

curvature threshold. It is mostly because of the colour changing very rapidly inside

the scene. In reality those colour changes are non-existent. For example, in Figure

56, the variation of the colour of the cycle path is shown. In this case, because the

car shooted the pictures in a rainy day, the presence of water on the asphalt has

a “graying” effect on the colour if viewed from a distance. Therefore, at the side

where the car was driving, because the cycle path is being shooted from the short

distance has no effect on the colour. However, the opposite side is more distant

and thus affected by the presence of water.

Figure 56 The variation of the colours in one scene

In addition to the variations because of the rain, the shadow of the BK city building

also causes differences in the colour. This is also visible in figure. The rest of the

colours are also affected by same or similar reasons. All those reasons lead to the

result of the region growing algorithm that are shown in the next Figure 57. It has

to be noted that not all regions are visualised because they contain less than 100

points. This means that there are even more smaller regions that compose one

region. The merging of those smaller regions into semantically meaningful ones is

the topic of the next sections.

85 | P a g e

Figure 57 The presence of over-segmentation in the results of the region growing algorithm

9.1. Unsupervised merging based on colour similarity

In this section, the over-segmentation that was created in the previous section by

the region growing algorithm is tackled by creating a merging algorithm that is

based on colometrical similarity. The main idea is that the small regions that are

found in the region growing are merged with their neighbouring regions that have

the most similar colour. This region merging process could be seen as a variation

of the region growing process.

For each small region, the neighbours of it are found by traversing the neighbours

of the points that are present in the region. This, of course, means that there will

be points that their neighbours are in the region currently being checked. However,

the algorithm will take into consideration only the regions that are different from

itself.

86 | P a g e

Having defined the neighbouring regions the colometrical distance is calculated

with reference to the current region. The region that has the minimum distance is

then the best candidate and the two regions are merged. If the newly created

regions are again considered small, the algorithm recursively tries to merge more

points to them. If the region is big enough, then the region has grown to a

satisfactory level. The algorithm repeats until there is not a small region present

in the scene.

The colometrical distance is calculated as the euclidean distance of the components

of the CIELab space. The L component, however, since it represents lightness is

not taken into account due to the changing shadow conditions in the scene.

The pseudocode of the merging algorithm is as follows:

Input: a list {A} with all the regions
Initialise a list {R} that will contain the regions to be merged
Initialise a Set {N} that will contain all the region numbers smaller than a threshold
Initialise a list {D} to keep track of the region numbers that are merged with other regions

For each region in {A} that has less points than a specified threshold
 Append the region to {R}
 Add the region number to {N}
While there are regions to be merged

Initialise a Set {KN} that will hold the region numbers of the neighbours of the
points in the current region that are not the current region itself

 Take one region from {R}, append its region number to {D} and remove it from {N}
For each point in the current region
 For each neighbour of the point
 Find the number of the region the neighbour belongs to
 If the region number is different than that of the current region
 Add the region number to {KN}
Find the region numbers that are in {KN} but not in {D}
If this difference contains regions

Find the colometrical distance of these regions with the current region
The points of the current region are appended to the points of the region that
has the most similar colour
If this region is in {R} and contains more points than the threshold
 Remove it from {R} and {N} and append it to {D}

 Empty the points of the current region in {A}

The results of the algorithm are presented in Figure 58. The threshold of what is

considered a small region is taken to 5000 points. There is can be visible that the

over-segmentation is reduced. The output, however, is not without faults. A closer

inspection can show that parts of the grass are not returned from this method.

This has to do probably with the fact that grass regions are composed from 2 or

10 points each and the colour variation is very big. This would mean that the

regions would never contain points more than the defined threshold. In addition

to that, parts of the grass on the other side are merged with parts of the tiles. This

leads now to under-segmentation. Finally, the cycle path although it is split in less

regions, it still presents over-segmentation. Therefore, trying to find the best

threshold that would maximise the cycle path merging and minimise the under-

segmentation between tiles and grass is not possible. The method, nevertheless,

provides a good distinguish of the road, if some artifacts are ignored (Figure 59).

87 | P a g e

Figure 58 The results of the region merging algorithm

Figure 59 The merged road

9.2. Supervised Classification

The supervised approach to classifying a point cloud, requires a set of training

sample data that have labels associated with them, this sample data comes from

a scene and is selected with prior knowledge about the scene. This means that,

for the area of interest of this project, there are points that belong to the road,

cycle path, tiles and grass. Those training data sets are then used to estimate

parameters of the classifier that will be used. In the developed algorithm for this

project, the distance to the parallelepiped classifier is used.

9.2.1. Training samples

Collecting training samples requires a good understanding of the scene. This step

is performed by the user of the algorithm. This step is very important since without

88 | P a g e

representative samples the output might not be acceptable. The point cloud used

for the process has some disadvantages that were discussed in the region growing

algorithm: the colour values inside the scene have a big variation that does not

correspond to reality. In order to tackle with these disadvantages, more samples

were carefully taken. In Figure 60 the distribution of the samples is displayed.

Figure 60 The training samples for the supervised classification

9.2.2. Classifier

The samples collected in the previous step are statistically analysed for their mean

and standard deviation of each component of the CIELab space. For each class the

statistical distribution per sample is shown in Figure 61, Figure 62, Figure 63 and

Figure 64. As it is easy to realise the values have a big variation range.

Then assuming that the samples are Gaussian distributed the classifier for each

sample is defined as 3 standard deviations from the mean. Therefore, for each

sample an unclassified region belongs to a class if its mean colour value per

component is between which corresponds to 99.7%

confidence level. Such a high confidence level is needed because of the noise

present in the data set.

http://chart.googleapis.com/chart?chs=20&cht=tx&chl=/mu - 3/sigma/le avg /le /mu %2B 3/sigma

89 | P a g e

Figure 61 The distribution of the training samples for the cycle path

Figure 62 The distribution of the training samples for the tiles

90 | P a g e

Figure 63 The distribution of the training samples for the road

Figure 64 The distribution of the training samples for the grass

It is also defined that the samples per class are not combined into one big class.

Because the colours per class have a big variation this would create the wrong

statistical values. This reasoning of working could be considered as corresponding

to the object based nearest neighbour classification used for image classification

used in many commercial software like Trimble’s eCognition.

9.2.3. Classification result

The classification algorithm designed is a collection of if… elif … else statements

that compare per region the average component of the CIELab space with the

limits defined by the 99,7% confidence level. If the average of the region is within

91 | P a g e

the limits of one of the samples, then the points of a region are given the

appropriate classification. Of course, it is possible that for one region, the values

are outside the limits of all the samples. In this case, this region is given the class

unknown. The results of the supervised classification are displayed in Figure 65.

Visually the results are quite representative. There are, however, misclassification

problems that are present. For example, the road markings are misclassified as

belonging to the tile class. This is caused because the colour information for those

regions is the same as the tiles. Some artefacts are present in every class and

cannot be completely avoided as no classification is 100% correct. To evaluate

how well the classification performs an evaluation is performed in the next section.

Figure 65 The results of the supervised classification per class

9.2.4. Evaluation

The evaluation of the result created by the supervised classification is performed

by creating the confusion matrix (Table 13 & Table 14). In general, we can see

that the most omissions are present in the case of the cycle path and tiles. The

most commissions are present in the case of the cycle path. The best classified

class is the grass and then the road.

92 | P a g e

Table 13 The confusion matrix for the supervised classification

Table 14 The errors of omission, commission and mapping accuracy for the supervised

classification

9.2.5. Machine learning classification

The merging of the regions is also tested using machine learning classification

algorithms of the sklearn module in python. This Python module is described in

earlier chapters, where individual points were classified, depending on their colour

values. The algorithm creates a polygonal decision space, whereby the properties

of the regions are used as classification criteria. The classification criteria are

derived from samples taken from the scene. More information about the samples

is provided in the next section. In the classification algorithm, the input is an array

that holds 12 values:

 The minimum of the L, a and b values.

 The maximum of the L, a and b values.

 The average of the L, a and b values.

 The standard deviation of the L, a and b values

The same 12 values of the different regions are used to calculate the probability

that the region belongs to a certain class.

The results of the machine learning algorithm are not satisfactory (Figure 66), this

is caused by the absence of recognizing that regions do not belong to a class at

all. Because some regions in the point cloud should not be assigned a class, as

they don’t belong to that class. It is impossible to pre-define samples of regions

for regions that should not be assigned, and therefore the sklearn machine learning

classification algorithm classifies with some major errors.

The developed algorithm is applied to the regions created in the region growing

step, therefore, it is not a point-based method but a region-based one. The

classification rules are based solely on the colour in the CIELab colour space.

93 | P a g e

Cycle path

Grass

Road

Tiles

Figure 66 The result of the machine learning classification

9.2.6. Smoothing algorithm

To tackle the errors of omission and commission, a smoothing algorithm is

developed for the supervised classification method. This method bears a

resemblance on the smoothing algorithms applied to images in order to remove

noise. The algorithm traverses the classified points, and for its neighbourhood it

checks which is the most frequent class (road, tiles, cycle path, grass) among

them. This most frequent class is then used to re-classify the point. This, of course,

requires a result of adequate quality from the classification itself.

Initialise a list {G} for each class
For each point in the point cloud:
 Initialise a counter for each class
 For neighbour in the neighbourhood of the point

94 | P a g e

Check the classification of the neighbour and add one to the
counter of its class

 Find the most frequent class from the counters
 Change the classification of the point to the most frequent
Return all the classes

The updated evaluation for the smoothing algorithm in comparison to the non-

smoothed situation is depicted in Table 15 and Table 16. It is apparent that, the

errors of omission and commission are reduced in most of the cases. Only the error

of omission for the cycle path persists. Overall, the result can be considered better

not only in numbers but also visually in Figure 67, Figure 68 and Figure 69.

Table 15 The evaluation of the smoothing algorithm

Table 16 The errors of omission and commission for the smoothing algorithm

Figure 67 The smoothing result on the road

95 | P a g e

Figure 68 The smoothing result on the tiles, cycle path and grass

96 | P a g e

Figure 69 The smoothing result on the unknown class

9.3. The chosen method

Having applied both point based and region based techniques in order to classify

the scene, it is clear that the best result is derived from the supervised

classification. This can be confirmed, also, by the evaluation with the truth data

and the confusion matrix, where it was obvious that a very good distinction

between the classes was present. In addition to that, the errors of omission and

commission are not big, that is, the classes are not misclassified. Furthermore,

with the smoothing algorithm it is possible to even more reduce the

misclassification errors.

However, the biggest disadvantage of this method lies in the fact that human

involvement is unavoidable in this method. The success of the classification

strongly depends on the experience of the user to identify the most representative

samples for each class. This process at the beginning might be trial and error but

at the end with the appropriate training of both the user and the algorithm the

results can be really accurate. Finally, although human involvement is considered

a disadvantage before, it might be the case that the result is more refined and

satisfying the exact user needs compared to the unsupervised method where small

regions persist or classes are mixed together.

9.3.1. Applicability to other ground point scenes

Since the method is designed for one part of the point cloud, the sub point cloud,

it is also important to investigate whether it is applicable for other scenes in the

total point cloud.

In Figure 70 an overview of other parts of the point cloud is shown. The red circle

shows the sub point cloud, which has some different colours than other parts of

the point cloud. For example, the colour of the road is not for every scene the

same. Therefore, the samples made for the specific test area are not applicable for

97 | P a g e

other parts of the point cloud. For each scene specific samples must be made to

distinguish the pre-defined classes. Only the class ‘grass’ is not based on samples

and is correct in the other scenes.

If another part of the point cloud is extracted, see Figure 71, the same code and

samples can be used to demonstrate that the samples are scene specific. The used

part of the point cloud is the part indicated by the blue circle in Figure 70. The

output is shown in Figure 72, Figure 73 and Figure 74. Here it is visible that the

grass classification is still good. The road classification only gets the bus/tram road

and not the road where the cars drive. The Tiles classification is quite good, but it

also takes a part of the road. The classification of the cycle path only has some

correct points and a lot of incorrect points, so it is therefore an incorrect

classification.

Figure 70 Other parts of the whole point cloud selected

98 | P a g e

Figure 71 A different selection of point cloud

Figure 72 The unknown class of the scene

99 | P a g e

Figure 73 The cycle path and grass

Figure 74 The road and the tiles of the scene

9.3.2. Applicability to non-ground points

Now that the method is tested for other scenes in the point cloud and is partially

successful with using exact the same samples, it is also possible to use the same

method to classify specific classes in the non-ground points. These non-ground

points are the result of the filtered point cloud by using LAStools and were

outputted in another file. Due to testing purposes two facades (Figure 75.1 and

76.1) from the sub point cloud are selected using the software package

CloudCompare.

 The exact same method is used (region based supervised classification), but

with new samples of only the stone parts in the scene. In this way it is possible to

detect the windows. According to the samples the parts of the building that consist

out of stone are classified (Figure 75.2 and 76.2). The remaining parts are

classified as the windows (Figure 75.3 and 76.3). Also vegetation is classified

(Figure 75.4 and 76.4), according to the old samples. These are either plants within

the building, or the reflection of vegetation in the windows on the pictures. In this

way the method used is also useful to classify non-ground points, e.g. for façade

detection.

100 | P a g e

Figure 75 From top to bottom:

1. Façade 1

2. Stone

3. Window

4. Impact of vegetation

Figure 76 From top to bottom:

5. Façade 2

6. Stone

7. Window

8. Impact of vegetation

101 | P a g e

10. The viewer

For the visualisation of the semantically enriched two options were identified. The

first option is that the user has a point cloud view in his/her personal computer,

e.g. Cloud Compare. Therefore, this viewer can be used as a means to visualise

the semantically enriched point cloud. The second option is providing the

semantically enriched point cloud with a web browser. The potree library is

(http://potree.org/), making use of webgl, can be used for this.

For the purposes of this project a web viewer is created to cover a wide variety of

users. Unfortunately, it is not possible to yet have a layer control panel and

therefore the viewer depicts the different classes with different colour. The result

is provided in Figure 77. In addition to viewing, the user can perform calculate

lengths, areas and height profiles very easily (Figure 78).

Figure 77 The potree viewer for the classified scene

102 | P a g e

Figure 78 Calculations using the potree viewer

103 | P a g e

Conclusions

This last chapter concludes on the used techniques for semantically enriching a

point cloud. In order to do so, the aim is to answer the research question: how

can a point cloud semantically be enriched by providing a labelling process, using

geometrical properties and colour values? This question is subdivided in smaller

sub questions, that together form an answer on the research question.

How can the non-ground points be filtered out?

Filtering non-ground points can be challenging for urban point clouds acquired from

the street level. This is mainly because many human constructions are present on

the scene. In addition to that, terrestrial laser scanners can acquire millions of

points in a short time period. In order to extract the ground points from the point

cloud, the lasground_new tool from the LAStools suite is used. LAStools makes

use of the progressive densification algorithm. The algorithm identifies ground

points by progressively densifying a sparse TIN from the points. For a point to be

classified as ground, it must be within the threshold of a minimum distance from

the triangle that contains this point. This tool classifies the LAS or LAZ files

imported into ground points and non-ground points by giving each point a label.

Next, the point cloud is split on the recently added ground label, creating a ground

point and non-ground point cloud.

How can a point cloud be indexed?

Point clouds are big data. For quick access and processing of the points in the point

cloud, a spatial index is needed. After experimenting with the kD-tree and the

octree, the kD-tree was proven faster and more efficient. This is because the kD-

tree creates a balanced data structure and it is optimised for the k-nearest

neighbours search.

What subcategories of ground are important?

Having a specific application in mind is very important when designing a process.

In this case road extraction and materials focused on street level are examined.

Therefore, the most relevant subcategories of ground (thus classes) are:

 Grass, or vegetation in general plays a crucial role in city analysis, urban

planning, surface infiltration capacity analysis etc.. Vegetation is considered

aesthetically important but also vital for the health of the city itself.

Therefore, identifying the grass or the lack of grass in an urban environment

can support urban planning decisions for a better life.

 Road, is the kernel of the transportation system in cities. The extraction of

road is an important feature for governments and planning authorities. It is

relevant for safety reasons, for calculating its capacity, for identifying the

water resilience of the city. In addition to that, the road is the main feature

for further extraction of other ‘objects’. A part of the road is the Cycle path.

104 | P a g e

 Tiles (or footpath), are also important to identify, since they are the area

that protects pedestrians from cars. Therefore, this information can be used

to analyse where it is hard for pedestrians to walk, important points where

pedestrians have to cross roads etc.

How can subcategories be classified?

Bridging the gap between raw information and semantics can be rather

challenging. Therefore, a classification scheme needs to be developed in order to

provide the relevant information according to the context. The use of colour in

combination with geometrical properties in today’s laser scanning procedures can

offer invaluable assistance in classifying objects. Within this research, different

processes were tested for their relevance, namely the point based and region

based classification methods.

Using point based classification methods, the colour properties seemed to be a

very good criterion to distinguish between the different classes. However, there

can be some overlapping colour information that will lead to misclassification of

the points. This overlapping colour information can be reduced to a level by

utilising a colour space different from RGB. Therefore, CIElab, HSV and HSI were

examined. Point based classification with colour properties is done through

analyzing the colour values. This method checks whether a point belongs to a

certain class due to its colour values, while comparing them to the colour values

of carefully selected training samples representing the different classes.

In using region based classification methods, neighbouring points, that hold the

same geometrical and colour properties, are grouped together by the region

growing algorithm. Next, these complete regions are used to give the points a label

by comparing its properties to the properties of the selected trainings samples

which represent the different classes.

What is the best way to label a point cloud?

In this research, where the application is surface based, the point based

classification methods proved to be the less accurate even though the decision tree

point based classification has a tolerable accuracy. This can be explained by the

fact that a lot of colour inconsistencies are present in the point cloud, which makes

it hard to classify all points correctly using just one sample for each class. Also a

single point in the point cloud does not, or has less of a semantic meaning on its

own and therefore it is the neighbourhood of the points that creates more valuable

information and can smooth the colour inconsistencies. This contiguity is exploited

by providing a segmentation technique that utilises both the geometrical and

colour characteristics of the neighbourhood.

However, in the majority of the scene, the different classes, or in other words

objects, are located on the same plane (like the case of cycle path and road) and

therefore no immediate distinction can be made between these properties. In

addition to that, there are no major differences between the geometrical properties

of the grown regions, that enable clear and straightforward labelling on the ground

105 | P a g e

points of the point cloud. It can also be the case that tiles and road overlap because

they are on the same level, in order for freight trucks to be able to take the ramp

and, therefore, it is not possible to region grow only by curvature and normals.

Normals and curvature are therefore used to region grow, but not for directly

labeling the point cloud. Hence, growing regions with CIElab colour values seemed

the best option because of the differences between colours that can be assessed

easily by calculating the euclidean distance of the CIELab components.

From the outcomes of this project, it becomes clear that a region-based supervised

classification using training samples is the best way to distinguish between the

contextually relevant classes. This is because the colour information of the point

cloud is often less accurate than the positional information. The colours of our point

cloud show some differences in relation to reality and therefore unsupervised

schemes present over-segmented results. Furthermore, over-segmentation within

the unsupervised classification can caused by the existence of shadow and water

on surfaces, which then appear darker, worn out colours of the road/cyclepath

markings, different materials of tiles and other noise in general. To work around

those inaccuracies, training samples can be provided. This way a supervised

classification captures all appearances of a class whereas an unsupervised

classification would create different regions. However, during the project, the

researchers realised that one training sample per class is not sufficient. Therefore,

the user has to provide the best combination of training samples per scene that

will not be excessive in number and amount, but representative enough of the

distinction of the classes present. Finally, extending the method to other areas can

be successful, but only if the provided training samples are representative. The

schematic overview of the final workflow is depicted in Figure 79.

Finally, the best way to provide the labelled point cloud to its users depends on

the application and the characteristics of the users of the product. For more

inexperienced users, providing different las files for each class might be easier to

visualise and understand. For more experienced users, one las file with the

classification stored as an attribute might be more convenient and easier, and form

a basis to build more applications on top of it.

Recommendations

Unsupervised classification of point clouds results in multiple regions which are

similar on chosen properties. A disadvantage lies in the fact that no semantics is

given to these regions, it is only known that they probably belong to the same

feature or surface. It is up to the user to select what is relevant. To enrich such a

result we propose to explore the possibilities to match the regions with land use

maps of some sort. This mapping technique could have the possibilities to create

maps with a very high resolution.

Another interesting option is to provide the positional information of the mapping

vehicle/device with (each part of) the point cloud. This way, the position can be

matched with the processed regions, and for example, if we know that this position

106 | P a g e

relates to a car, we can assume that the concerning region is accessible with a car,

i.e. we classify it as road.

Finally, the colour based region growing would be greatly improved if some simple

contrast and brightness enhancement techniques would take place before the

generation of the point cloud from the cycloramas. This would minimise the

shadowing problems and the quality of the colours present in the point cloud,

leading to less training samples being needed per class.

Figure 79 The schematic overview of the developed workflow

Future work

A next step would be to extend the workflow to fit a larger region like the

Netherlands. In order to make this feasible ways of automatic sampling need to

be investigated. This way the method of supervised classification as described in

this research would be scalable.

In the trend of explorative point clouds a next step could be to relate the point

clouds, in particular semantically labelled parts of a point cloud to over simplified

models of reality. For example, for the inspection of the road network the

maintenance department would check a map (google maps), and by clicking on

the map would retrieve the (most up-to-date) detailed point cloud that correlates

to this area. In the case of an urban planner, this would mean that the point cloud

107 | P a g e

would be matched with the 3D models that currently exist, like the 3D model of

the netherlands based on AHN2. A possibility would be to store the points in an

octree structure and find intersections/overlaps with these over simplified models.

The client/browser would then only retrieve the semantically relevant points, which

is desirable since the processing power of the current equipment is still insufficient

to work with the whole point cloud at once.

108 | P a g e

References

Axelsson, P. (2000) 'DEM generation from laser scanner data using adaptive TIN

models', International Archives of Photogrammetry and Remote Sensing,

33(B4/1; PART 4), pp. 111-118.

Bean, E. Z., Hunt, W. F., Bidelspach, D. A. and Smith, J. 'Study on the surface

infiltration rate of permeable pavements'. Proceedings of the American

Society of Civil Engineers and EWRI 2004 world water and environmental

resources congres, Salt Lake City, UT, USA.

Behley, J., Steinhage, V. and Cremers, A. B. 'Efficient Radius Neighbor Search in

Three-dimensional Point Clouds'.

Beers, B., (2015), personal contact about the procedures of Cyclomedia.

Bolles, R. C., & Fischler, M. A. (1981, August). A RANSAC-Based Approach to Model

Fitting and Its Application to Finding Cylinders in Range Data. In IJCAI(Vol.

1981, pp. 637-643).

Borrmann, D., Elseberg, J., Lingemann, K., & Nüchter, A. (2011). The 3D Hough

Transform for plane detection in point clouds: A review and a new

accumulator design. 3D Research, 2(2), 1-13.

Boyko, A. and Funkhouser, T. (2011) 'Extracting roads from dense point clouds in

large scale urban environment', ISPRS Journal of Photogrammetry and

Remote Sensing, 66(6), pp. S2-S12.

Butler, H. and Gerlek, M. 'PDAL-Point Data Abstraction Library. 2014', URL:

http://www.pdal.io/index.html.

Cheng, H.D., Jiang, X.H., Sun, Y. and Wang, J., (2001). Color image segmentation:

advances and prospects. Pattern Recognition, 34 (12): 2259-2281.

Cristiani, N. (2001) Support Vector and Kernel Machines. [online]

http://www.support-vector.net/icml-tutorial.pdf

Cortes, C. and V Vapnik (1995) Support Vector Network. Machine Learning, 20,

273-297. Kluwer Academic Publishers, Boston. Manufactured in The

Netherlands. Choudhury, A. K. R. (2014). Principles of Colour and

Appearance Measurement: Object Appearance, Colour Perception and

Instrumental Measurement. Elsevier.

Elseberg, J., Borrmann, D. and Nüchter, A. 'Efficient processing of large 3d point

clouds'. Information, Communication and Automation Technologies (ICAT),

2011 XXIII International Symposium on: IEEE, 1-7.

Elseberg, J., Magnenat, S., Siegwart, R. and Nüchter, A. (2012) 'Comparison of

nearest-neighbor-search strategies and implementations for efficient shape

registration', Journal of Software Engineering for Robotics, 3(1), pp. 2-12.

http://www.pdal.io/index.html
http://www.support-vector.net/icml-tutorial.pdf

109 | P a g e

Evans, J. S. and Hudak, A. T. (2007) 'A multiscale curvature algorithm for

classifying discrete return lidar in forested environments', Geoscience and

Remote Sensing, IEEE Transactions on, 45(4), pp. 1029-1038.

Ford, A., & Roberts, A. (1998). Colour space conversions. Westminster University,

London, 1998, 1-31.

Geosignum (2015) 'Geosignum website. [online] < http://geosignum.nl/ > (last

visited on september 21 2015) '.

Hirschmuller, H. (2005) Accurate and Efficient Stereo Processing by Semi-Global

Matching and Mutual. Information. IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), San Diego, CA, USA, June 20-26.

Hsu, C.W., Chang, C.C. and Lin, C.J. (2010) A practical guide to support vector

classification. Department of Computer Science, National Taiwan University,

Taipei. http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

James, R. C., & James, G. (19 92). The Mathematics Dictionary. Springer Science

& Business Media.

Jolliffe, I. T., (1986). Principal Component Analysis, Series: Springer Series in

Statistics, Springer, NY, 1986, ISBN 978-1-4757-1906-2.

Jolliffe, I. T., (2002). Principal Component Analysis, Series: Springer Series in

Statistics, 2nd ed., Springer, NY, 2002, XXIX, 487 p. 28 illus. ISBN 978-0-

387-95442-4.

Kabali, M., Stroila, M., Cho, J., Shaffer, E. and Hart, J.C., Robust Classification of

Curvilinear and Surface like Structures in 3D Point Cloud Data. University of

Illiniois Urbana-Champaign, NAVTEQ

Kammerl, J. and Muja, M. (2011) 'PCL :: Search, PointCloudLibrary. [online]

http://www.pointclouds.org/assets/rss2011/06_search.pdf'.

Korzeniowska, K., Pfeifer, N., Mandlburger, G. and Lugmayr, A. (2014)

'Experimental evaluation of ALS point cloud ground extraction tools over

different terrain slope and land-cover types', International Journal of

Remote Sensing, 35(13), pp. 4673-4697.

Labatut P. et al (2007) Efficient Multi-View Reconstruction of Large-Scale Scenes

using Interest Points, Delaunay Triangulation and Graph Cuts.

Lai, J. Z., Liaw, Y.-C. and Liu, J. (2007) 'Fast k-nearest-neighbor search based on

projection and triangular inequality', Pattern Recognition, 40(2), pp. 351-

359.

Landa, J. and Prochazka, D. (2014) 'Automatic Road Inventory Using LiDAR',

Procedia Economics and Finance, 12, pp. 363-370.

LASTools (Accessed on 18/09/2015) 'http://rapidlasso.com/'.

http://www.pointclouds.org/assets/rss2011/06_search.pdf%27
http://rapidlasso.com/%27

110 | P a g e

Lee, D. (2013) Mapping Urban Surface Infiltration Capacity: Segment-based land

cover classification with VHR imagery for urban water management and

design. TU Delft, Delft University of Technology.

Luccheseyz, L., & Mitray, S. K. (2001). Color image segmentation: A state-of-the-

art survey. Proceedings of the Indian National Science Academy (INSA-

A),67(2), 207-221.

Maneewongvatana, S., & Mount, D. M. (2001). On the efficiency of nearest

neighbor searching with data clustered in lower dimensions (pp. 842-851).

Springer Berlin Heidelberg.

Mäntylä, M. (1987) An introduction to solid modeling. Computer Science Press,

Inc., p. 1.

Mathworks (2015) Supervised learning. [online] <

http://nl.mathworks.com/discovery/supervised-learning.html > (last

visited on october 2, 2015)

Matti, E. K. and Nebiker, S. (2014) 'Geometry and Colour Based Classification of

Urban Point Cloud Scenes Using a Supervised Self-Organizing Map',

Photogrammetrie-Fernerkundung-Geoinformation, 2014(3), pp. 161-173.

Nguyen, A., & Le, B. (2013). 3D point cloud segmentation: A survey. In Robotics,

Automation and Mechatronics (RAM), 2013 6th IEEE Conference on (pp.

225-230). IEEE.

Niemeyer, J., Rottensteiner, F. and Soergel, U. (2012) Conditional Random Fields

for Lidar Point Cloud Classification in Complex Urban Areas. ISPRS Annals

of the Photogrammetry, Remote sensing and Spatial information Sciences,

Vol. 1-3, 2012.

Oude Elberink, S. and H. Maas, 2000. The use of anisotropic height texture

measures for the segmentation of airborne laser scanner data. IAPRS, vol.

33, part B3, Amsterdam, pp. 678- 684.

Pfeifer, N. and Mandlburger, G. (2009) 'LiDAR data filtering and DTM generation',

Topographic Laser Ranging and Scanning: Principles and Processing.

CRC/Taylor & Francis, pp. 307-333.

Point Cloud Library (PCL) - Estimating Surface Normals in a PointCloud: Available

at: http://bit.ly/1YQBvnc (Accessed: October 1, 2015).

Quora (2014) What are the differences between RGB, HSV and CIE-lab?

[online]https://www.quora.com/What-are-the-differences-between-RGB-

HSV-and-CIE-Lab

Rabbani, T., van den Heuvel, F., & Vosselmann, G. (2006). Segmentation of point

clouds using smoothness constraint. International Archives of

Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(5),

248-253.

111 | P a g e

Rokach, L. and Maimo, O. Decision Trees. Department of industrial engineering

Tel-Aviv University. [online]

http://www.ise.bgu.ac.il/faculty/liorr/hbchap9.pdf

Rusu R. B., 2010. Semantic 3d object maps for everyday manipulation in human

living environments. KI-Künstliche Intelligenz, 24(4)

Rusu, R. B. and Cousins, S. '3d is here: Point cloud library (pcl)'. Robotics and

Automation (ICRA), 2011 IEEE International Conference on: IEEE, 1-4.

Samadzadegan, F., Bigdeli, B. and Ramzi, P. Classification of Lidar data based on

Multi-Class SVM. Department of Geomatics Engineering, Faculty of

Engineering, University of Teheran, Iran.

Sankaranarayanan, J., Samet, H. and Varshney, A. (2007) 'A fast all nearest

neighbor algorithm for applications involving large point-clouds', Computers

& Graphics, 31(2), pp. 157-174.

Sapkota, P.P. (2008). Segmentation of Coloured Point Cloud Data. MSC Thesis.

International Institute for geo-information science and earth observation,

Enschede, Netherlands.

Sareen, K., KNOPF, G. & CANAS, R., 2010: Rapid Clustering of Colorized 3D

 Point Cloud Data for Reconstructing Building Interiors. ISOT 2010

 International Symposium on Optomechatronic Technologies, Toronto,

 Canada: 1–6.

Schnabel, R., Wahl, R., & Klein, R. (2007, June). Efficient RANSAC for point‐cloud

shape detection. In Computer graphics forum (Vol. 26, No. 2, pp. 214-226).

Blackwell Publishing Ltd.

Shan, J.; Sampath, A. Urban DEM generation from raw Lidar data: a labeling

algorithm and its performance. Photogramm. Eng. Remote Sensing 2005,

71, 217–226.

Shekhar, S. and Xiong, H. (2008) 'Light Detection and Ranging', Encyclopedia of

GIS, pp. 612-612.

Sithole, G. and Vosselman, G. (2004) 'Experimental comparison of filter algorithms

for bare-Earth extraction from airborne laser scanning point clouds', ISPRS

journal of photogrammetry and remote sensing, 59(1), pp. 85-101.

Smadja, L., Ninot, J. and Gavrilovic, T. (2010) 'Road extraction and environment

interpretation from Lidar sensors', IAPRS, 38, pp. 281-286.

Snavely, N., Seitz, S. M. and Szeliski, R. 'Photo tourism: exploring photo collections

in 3D'. ACM transactions on graphics (TOG): ACM, 835-846.

Sorkine, O., (2013): Normal Estimation in Point Clouds. 2D/3D Shape

Manipulation, 3D Printing.

http://www.ise.bgu.ac.il/faculty/liorr/hbchap9.pdf

112 | P a g e

Sutton, O. (2012) Introduction to k Nearest Neighbour Classification and

Condensed Nearest Neighbour Data Reduction. [online]

http://www.math.le.ac.uk/people/ag153/homepage/KNN/OliverKNN_Talk.

pdf

Tinkham, W.T.; Huang, H.; Smith, A.M.S.; Shrestha, R.; Falkowski, M.J.; Hudak,

A.T.; Link, T.E.; Glenn, N.F.; Marks, D.G. A Comparison of two open source

LiDAR surface classification algorithms. Remote Sens. 2011, 3, 638–649.

van Oosterom, P. (1999) 'Spatial access methods', Geographical information

systems, 1, pp. 385-400.

Velodyne Lidar (2015) HDL 32E. [online] < http://velodynelidar.com/ > (last

visited in november 13 2015)

Vosselman, G., & Dijkman, S. (2001). 3D building model reconstruction from point

clouds and ground plans. International Archives of Photogrammetry Remote

Sensing and Spatial Information Sciences, 34(3/W4), 37-44.

Vosselman, G. and Maas, H.-G. 2010. Airborne and Terrestrial Laser Scanning.

Whittles Publishing.

Waldhauser, C., Hochreiter, R., Otepka, J., Pfeifer, N., Ghuffar, S., Korzeniowska,

K., & Wagner, G. (2014). Automated classification of airborne laser scanning

point clouds. In Solving Computationally Expensive Engineering Problems

(pp. 269-292). Springer International Publishing.

Wang, G., Li, M. and Zhou, T. (2012) The automatic classification 3d point clouds

based associative markov network using context information. In: He, X. et

al. (eds), computer Informatics, Cybernetics and Applications, Lecture notes

in electrical engineering 107. Springer Science+Business Media B.V. 2012

Weinmann, M., Jutzi, B. and Mallet, C. (2014) 'Semantic 3D scene interpretation:

a framework combining optimal neighborhood size selection with relevant

features', ISPRS Annals of the Photogrammetry, Remote Sensing and

Spatial Information Sciences, 3, pp. 181-188.

Weinmanna, M., Schmidtb, A., Malletc, C., Hinza, S., Rottensteinerb, F. and Jutzia,

B. (2015) 'Contextual Classification of Point Cloud Data by Exploiting

Individual 3d Neigbourhoods', ISPRS Annals of Photogrammetry, Remote

Sensing and Spatial Information Sciences, 1, pp. 271-278.

Westoby, M., Brasington, J., Glasser, N., Hambrey, M. and Reynolds, J. (2012)

'‘Structure-from-Motion’photogrammetry: A low-cost, effective tool for

geoscience applications', Geomorphology, 179, pp. 300-314.

Wikipedia (A) (2015) Supervised learning. [online] <

https://en.wikipedia.org/wiki/Supervised_learning > (last visited on

october 5 2015)

Wu, C.C. and Lin, S.F. (2011) Efficient Model Detection in Point Cloud Data Based

 on Bag of Words Classification. Journal of Computational Information

 Systems 7: 12 (2011) 4170-4177

113 | P a g e

Wu, C., (2013) 'Towards linear-time incremental structure from motion'. 3D

Vision-3DV 2013, 2013 International Conference on: IEEE, 127-134.

Yang, B., Fang, L., Li, Q. and Li, J. (2012) 'Automated extraction of road markings

from mobile LiDAR point clouds', Photogrammetric Engineering & Remote

Sensing, 78(4), pp. 331-338.

Zhana, Q., Liangb, Y., & Xiaoa, Y. (2009). Color-based segmentation of point

clouds. Int Arch Photogrammetry, Remote Sens Spat Inf Sci, 38, 248-252.

Zhang, K., Chen, S.-C., Whitman, D., Shyu, M.-L., Yan, J. and Zhang, C. (2003)

'A progressive morphological filter for removing nonground measurements

from airborne LIDAR data', Geoscience and Remote Sensing, IEEE

Transactions on, 41(4), pp. 872-882.

Zhang, J., Lin, X. and Ning, X (2013) SVM-Based Classification of Segmented

Airborne LiDAR Point Clouds in Urban Areas. Remote Sens. 2013, 5, 3749-

3775

114 | P a g e

Appendix A - Project management and

process

A.1. The Team

Adrie Rovers (Technical Manager), Irene de Vreede (Report Manager), Merwin

Rook (Quality Manager), Stella Psomadaki (Coordinator) and Tim Nagelkerke

(Communicator)

A.2. Technical Requirements

2.1. What is known? What is unknown?

Table 1 The known and unknown requirements

Known

Software:

 PostgreSQL and PostGIS (Making a (geo-)database)

 Python (Programming)

 CloudCompare (Processing & Visualizing point clouds)

 FME (Process point clouds)

 Google Drive (Sharing documents)

Knowledge, information:

 Data acquisition (Cyclomedia, pictures and lidar)

 Importing .xyz files in Python

Organisational:

 The capabilities of the team members

Unknown

Software:

 LAS tools

 Python to PostGIS connection

 Point cloud extension of PostGIS

 Other “new” software applicable to the project, for handling point clouds.

 Use of Point Cloud Library (http://pointclouds.org/)

Knowledge, information:

 The test area that is going to be used from the point clouds

 The difference between the two point clouds provided by Cyclomedia

 The data formats used by Cyclomedia

 The attributes of the points of the provided point clouds

 How to derive the area of the surface out of the points

 The use of geometric properties of points in a point cloud

 Indexing and clustering point clouds in Python or PostGIS

 How to classify the different surfaces (grass, soil, road, stones, pavement

etc.)

 How to perform the labelling of the point cloud

Organisational:

http://pointclouds.org/

115 | P a g e

 The schedule of the team members

9.4. Identification and contact with stakeholders and experts

Possible Clients

Municipality of Delft, to automatically detect the road and urban surface and utilise

it for maintenance purposes.

City planners, in order to find weak spots in the city water management.

Facilitair Management & Vastgoed TU Delft, to keep track of the facilities’ status

around the campus.

Domain Experts

The main expert group is Cyclomedia. Cyclomedia performs the data acquisition

using mobile mapping techniques and processes the data into a manageable

format.

Geosignum could give some basic advice about how to start the process.

Geomatics Msc. personnel could provide their ICT and Geomatics expertise.

9.5. MoSCoW prioritization

MoSCoW is a method for assisting the team in understanding the priorities of the

project. The letters stand for:

 Must Have: A must have is a critical component of the software. If one of

the must haves is missing, the project can be considered a failure.

 Should Have: A should have is also important, but is not a necessary for the

project.

 Could Have: Could haves are desirable, but not necessary for the project.

 Won’t Have this time: A won’t have is not planned in the schedule, and can

be considered in further developments.

The MoSCoW prioritisation for this project is depicted in Table 2.

Table 2, The MoSCoW prioritisation

MUST have this SHOULD have this if at all possible

 Data gathering: data gathering is

the most important task in the

project, as the data forms the

basis for our analysis. The data

gathering involves the point

cloud from the laser scanner and

the point cloud from Cycloramas.

 Filter the point cloud: separating

the ground points from buildings,

vegetation and other objects is

one of the main goals of the

project, as the ground points are

 Cyclorama images.

116 | P a g e

the main objects of interest in our

analysis.

 Classify the point cloud: the

classification of the point cloud

means that point that have

similar (geometri or colourc)

properties are recognised and

classified the same.

 Semantically label the point

cloud: the labelling of the points

gives a meaning to the points and

the point cloud.

COULD have this if it doesn’t

affect anything else

WON’T have this this time but

WOULD like in the future

 Applying the labelling method on

different point clouds to see if it

is possible to apply this method

for the whole of the Netherlands.

 Identifying involved parties/

applications: in order to optimise

the use of points, new

stakeholders and their demands

must be identified.

 Applications: New applications

help the demand and

development of classification and

labelling algorithms to develop

and evolve.

 A comparison of the two point

clouds provided by Cyclomedia.

 Database of the original point clouds.

 Database design: the semantically

labelled points should be stored, in

order to disseminate the points to the

actual users of the data.

 Classification and labelling of non-

ground points.

 Semantic point cloud viewer; In order

to present and select the points and

their semantics, a (web)viewer should

be developed. This viewer should give

users the possibility to show and

select points on their semantic

meaning. This could preferably be

done in WebGL.

 A website presenting the project’s

results.

 Calculations of the (expected)

amount of sunlight in hours, in order

to calculate exact heat effects.

 The street surface of the whole of the

Netherlands.

9.6. Killer requirements

A killer requirement is a requirement that, if it is not met, brings the whole project

in danger. Identifying the killer requirements could lead to a steady project

execution.

 Processing power of personal laptops.

 Obtaining the data on time.

 A minimal accuracy of the geometry and colour attributes of the point cloud

in order to distinguish between classes.

 Time limitation.

 Programming language knowledge

117 | P a g e

9.7. Competitors evaluated

A competitor can be defined as a party providing the same products or services as

.XYZ solutions.

The other synthesis project teams, all handling raw point cloud data for certain

applications, are our competitors. Although companies like GeoSignum are our

main competitors. Geosignum is a small innovative startup company which

provides an automatic feature extraction technology from LIDAR datasets. Feature

extraction can be seen as a form of semantic labelling and therefore this company

could provide the same service. The way they automatically extract features is

done using only the geometric properties of the points within the point cloud, in

this way the provided service is slightly different.

Since processing the raw point cloud for certain applications is quite a new way of

providing certain products or services, lots of research is taking place in this

domain but not many companies already provides such products or services.

9.8. Rich picture

The rich picture represents a schematic view of the problem that will be solved

during the project. The main factors that affect the problem are presented and

their interactions are displayed. The rich picture of the project in this report is

composed as follows (Figure 1): The team .XYZ is in the middle and is the basis

for the whole view. The team members want to apply their knowledge obtained

the last year to compose a project that will bring great value to the community. In

addition to that, they want to have fun during the whole process. The coaches

want and encourage the students to explore new ways to use point clouds as the

main source of information. There are also the rules and the deadlines that need

to be followed and the team has to deal with those time limitations. The

competitors, just like team .XYZ want to make the best out of their product,

eliminating the competition if possible. Three types of reports need to be made

which have to cover specific points and be as clear as possible. The most important

aspect is then the clients and users. This group of people want much as detailed

information as possible, to save resources and solutions that are feasible in the

everyday life. The media outreach, on the other hand, is interested in promoting

new ideas and new scientific results. Cyclomedia (the data provider) is aiming at

helping the education and to make their products more appealing to new kinds of

users. To do this, they provide state of the art mobile mapping solution. Finally,

the result of this project should be a user friendly and automated as possible.

118 | P a g e

Figure 1, The Rich Picture

A.3. Project Plan

The purpose of the project plan is to strategically define the process towards the

completion of the project. The project plan takes place at the early stages of the

119 | P a g e

project to identify all the requirements, resources and time required for the

execution of the work. Lack of a project plan might lead to the failing of the project.

3.1. Organisational Breakdown Structure

Prosperous project management requires detailed planning and an organized

structure. When starting a project, tasks have to be identified and decisions have

to be made of who will carry out the work. The Organisational Breakdown Structure

(OBS) is a model which allows projects organisations to be broken down, providing

a framework for project planning. This framework is created to reflect the strategy

for managing various aspects of the project. Responsibilities within the project

management will be defined for every team member. Team member tasks will be

linked to the project management as well as to work packages defined within the

Work Breakdown Structure (Section 5.2). The Organisational Breakdown Structure

is presented in Figure 2.

The team

Adrie Rovers (Technical Manager), Irene de Vreede (Report Manager), Merwin

Rook (Quality Manager), Stella Psomadaki (Coordinator) and Tim Nagelkerke

(Communicator)

Team tasks and functions

Coordinator - Defines the Agenda, Leads meetings.

Communicator - Defines the planning, Does the communication between the

production team and client, Sets meetings between the project team and the client

and or coaches.

Quality Manager - Defines the overall work quality, Reviews the quality of delivered

work.

Report Manager - Defines report and document requirements, deals with the

organisational aspects regarding the deliverable items.

Technical Manager - Deals with technical aspects, Defines algorithms.

The work packages as defined in section (5.2 and 5.3) are performed by all team

members. This will ensure that the learning process has an equal effect to all team

members and all members work equally throughout the project. Nevertheless the

person first mentioned will be the final responsibility.

120 | P a g e

Figure 2, The Organisational Breakdown Structure

3.2. Work Breakdown Structure

The WBS is used to provide the team members a common view of the project

scope. In other words, WBS is used to analyse the aim of the project according to

its outcomes or deliverables.

121 | P a g e

Figure 3, The Work Breakdown structure

122 | P a g e

According to the common understanding of the project by the team members, the

project is divided into 4 levels (Figure 2). The first level represents the whole

Project. The project is subdivided into the deliverables, the data gathering, the

point cloud processing and, optionally, to the database design and application and

parties identification. The deliverables represent the reports and other

miscellaneous products.

3.3. Work Package Descriptions

A work package is highly related to the breakdown structure as defined in the

previous section. The main goal of WPD is to define all steps that are important for

the completion of a project. In the situation discussed in this report the packages

presented, if combined with each other, form the complete project. Each work

package is defined in Table 4 and are also followed with a specified deadline, as

will be presented later in the GANNT chart.

Table 4, Work Package Descriptions

Work

package

Title Description Is

needed

for WP

WP1 Data gathering Arrange the data acquisition with

Cyclomedia and obtain the point cloud.

output: Coloured LIDAR point cloud,

coloured point cloud from

photogrammetry, images/cycloramas.

WP2

WP3

WP4

WP2 Filter the point

cloud

Investigate ways to filter point clouds,

split the ground points from the other

points.

output: A file with the ground points and

a file with the other points.

WP3

WP4

WP3 Classify the

point cloud

Determine ways to classify the ground

points in different classes. The classes are

formed with points that have similar

properties, like: colour, normals and other

geometric properties.

output: classification of the ground

points.

WP4

WP4 Semantically

label point

cloud

Put semantics to the classified ground

points. These semantics are based on the

function of the points, like: road, grass or

sidewalk. Other labels are based on the

composition of the points material, like:

asphalt, vegetation or pavement.

(WP5)

(WP7)

123 | P a g e

output: ground points with types,

vegetation, road, pavement and water.

WP5 Database

design

(optional)

Design a database to store the

semantically labelled point cloud and put

it in the database.

output: database with semantically

labelled points.

(WP7)

WP6 Identifying

involved

parties/

applications

(optional)

With the enriched point cloud, more

applications and people can benefit. This

task focuses on identifying possible users

of the enriched data.

output: list of possible users/applications

of the enriched point cloud.

WP7 Applications

(optional)

To show the potential of the enriched

point cloud an application listed in WP6

will be executed.

output: application.

3.4. Project Logic Diagram

The project logic diagram is a schematic representation of the sequence of

activities that will take place in timeline restricted phases in order to produce the

final product (Figure 4). In order to provide a logic diagram the project is divided

in phases. This timeline restricted phasing of the project takes place after the

identification of the WBS and the WPD. Phasing the project means that the project

is broken down into smaller pieces which will be easier to handle. According to the

experience gained during the first year of Geomatics the team estimated the effort

that needs to be put in those packages. This resulted in a general (time-restricted)

phasing that is explained in Table 5.

Table 5, Project Phasing

Phase Date

(Start

- End)

Goal Deadline(s)/

Milestones

1: requirements

analysis and

planning

31/08

-

14/09

During this phase the scope and

the problem is identified. The data

gathering will take place in

cooperation with Cyclomedia. In

addition to that, a detailed list of

the project’s requirements is

identified and the project planning

takes place.

Baseline

Review (14-

09)

2: Conceptual

analysis,

information

14/09

-

28/09

During this phase, the different

algorithms that are utilised will be

identified and reviewed for their

Mid-Term

Review (28-

09)

124 | P a g e

gathering and

combination

outputs. The algorithms aim, as a

first step, at subdividing the point

cloud in chunks or blocks for

easier processing and data

handling. Next, the filtering of the

non-ground data will take place.

Finally classification algorithms

will be reviewed. The possibilities

to use colours as a classification

parameter will be mostly

investigated. At the end of this

phase, the point cloud will be

filtered and possibly also classified

into the needed categories.

3: Detailed

analysis

28/09

- 2/11

During this phase, the labelling of

the point clouds will be researched

and performed. This will then be

followed by a case study on

surface detection in an urban

environment. Thereby, different

classification and labelling

methods will be tested. In this

surface detection, the possibilities

to use colours will be further

investigated.

Final Review

(2-11)

4: Final Review

and Symposium

 The final review will provide those

who are interested with a

complete and formal briefing on

the whole project. The final review

will include the process and

results followed by details,

conclusions and a statement of

compliance with the

requirements.

The symposium will be the

opportunity to present the

completed project.

Final Review

(2-11)

Symposium (6-

11)

Report

Within those four defined phases, several activities are planned. The activities are

linked together forming a path through the different project phases until the final

product. These activities will be visualised within the Logic diagram in Figure 4.

125 | P a g e

126 | P a g e

127 | P a g e

Figure 4, Logic diagram

3.5. GANTT Chart

The GANTT Chart (Figure 5). In a GANTT Chart the packages defined previously

are displayed against the time factor. The deliverables are also displayed, in bold.

Figure 5, The updated GANTT chart

128 | P a g e

Appendix B - Python code

B.1. Supervised classification with Smoothing

import numpy as np, scipy.spatial as sp, matplotlib.pyplot as plt, timeit,

math

from scipy import linalg

from sets import Set

from color_analysis import * #Import our color_functions

from neighbourhood_characteristics import * #Import function to calculate

characteristic values of a point cloud

from getStatistics import * #import sample statistics

class Point(object):

 __slots__ = ('index', 'xyz', 'lab', 'curv', 'normal', 'nn_indices',

"region_number", 'rgb', 'c')

 def __init__(self, index, xyz, lab, curv, normal, nn_indices, rgb):

 self.index = index

 self.xyz = xyz

 self.lab = lab

 self.curv = curv

 self.normal = normal

 self.nn_indices = nn_indices

 self.region_number = -1

 self.rgb = rgb

class Region(object):

 __slots__ = ('number', 'points', 'lab_avg')

 def __init__(self, number, points, lab_avg):

 self.number = number

 self.points = points

 self.lab_avg = lab_avg

def unpack_xyz(infile):

 points_xyz = []

 count = 0

 for each in infile:

 values = each.split(' ')

 xyz = (float(values[0]), float(values[1]), float(values[2]))

 rgb = (float(values[4]), float(values[5]), float(values[6])) # ----

-depends on RGB position-----

 c,i,e = CIEXYZ(np.array([rgb[0]/255.0, rgb[1]/255.0,

rgb[2]/255.0]).T)

 l,a,b = CIELab(c,i,e)

 dic[xyz] = ((l,a,b),rgb)

 points_xyz.append(xyz)

 count += 1

 print "Total points in this scene: ", count

 return np.array(points_xyz)

def region_growing(l):

 c_threshold = 0.001 #Curvature threshold

 a_threshold = 45*math.pi/180 #Angle threshold

 available_points = sorted(l, key=lambda x: x.curv) #Copy of point list

(because list is mutable)

 regions = []

 region_index = 0

129 | P a g e

 for point in available_points:

 if point.region_number == -1:

 point.region_number = region_index

 current_region = Set([point])

 suma = point.lab[1]

 sumb = point.lab[2]

 sumL = point.lab[0]

 current_seeds = Set([point])

 while len(current_seeds) != 0:

 seed = current_seeds.pop()

 seeds_nn_indices = seed.nn_indices

 for index in seeds_nn_indices:

 n = all_points[index]

 if n.region_number == -1:

 #Calculate angle between normals:

 p = (seed.normal[0]*n.normal[0]) +

(seed.normal[1]*n.normal[1]) + (seed.normal[2]*n.normal[2]) #Dot product of

normal vectors

 q = math.sqrt((seed.normal[0])**2 +

(seed.normal[1])**2 + (seed.normal[2])**2) * math.sqrt((n.normal[0])**2 +

(n.normal[1])**2 + (n.normal[2])**2) #Length normal product

 if p/q > 1.0: #Make sure values are not bigger than

1 (otherwise cos function doesn't work)

 p = 1.0

 q = 1.0

 if q < 0.00000001:

 q = 0.0001

 angle = math.acos(p/q)

 #dp = abs((seed.normal[0]*n.normal[0]) +

(seed.normal[1]*n.normal[1]) + (seed.normal[2]*n.normal[2])) #Dot product

of normal vectors

 if abs(seed.lab[1] - n.lab[1]) < 0.2 and angle <

a_threshold:

 n.region_number = region_index

 suma = suma + n.lab[1]

 sumb = sumb + n.lab[2]

 sumL = sumL + n.lab[0]

 current_region.add(n)

 if abs(n.curv - seed.curv) < c_threshold:

#abs(seed.curv - n.curv) < c_threshold:

 current_seeds.add(n)

 l_region = len(current_region)

 regions.append(Region(region_index, current_region,

(sumL/l_region, suma/l_region, sumb/l_region)))

 region_index += 1

 return regions

def smoothing(l):

 g_list = []

 r_list = []

 c_list = []

 road_list = []

 t_list = []

 for point in l:

 g = 0

 r = 0

 c = 0

 road = 0

 t = 0

 for index in point.nn_indices:

 n = all_points[index]

130 | P a g e

 if n.c == 'road':

 road += 1

 elif n.c == 'c':

 c += 1

 elif n.c == 't':

 t += 1

 elif n.c == 'g':

 g += 1

 elif n.c == 'r':

 r += 1

 maximum = max((g,'g'),(r,'r'),(c,'c'),(road,'road'),(t,'t'))

 if maximum[1] == 'road':

 road_list.append(point)

 elif maximum[1] == 'c':

 c_list.append(point)

 elif maximum[1] == 't':

 t_list.append(point)

 elif maximum[1] == 'g':

 g_list.append(point)

 elif maximum[1] == 'r':

 r_list.append(point)

 return g_list, r_list, c_list, road_list, t_list

if __name__ == "__main__":

 timer1 = timeit.default_timer() #Start of processing

 dic = {} #Declare global dictionary. Used to lookup RGB and LAB values

after K-D tree indexing

 File = open('StereoGroundclassification.xyz')

 points = unpack_xyz(File)

 File.close()

 kdtree = sp.cKDTree(points) #Build K-D tree

 n = 20 #Define size of local neighbourhood

 nn_query = kdtree.query(kdtree.data, k=n, eps=0, p=2) #Find nearest

neighbours, eps:exact search, p:euclidean distance

 nn_indices = nn_query[1] #Neighbour indices in the K-D tree

 nn = kdtree.data[nn_indices] #Retrieve neighbour values

 nn_T = nn.transpose(0,2,1)

 centroids = np.average(nn_T, axis=2).reshape(len(nn_T),3,1)

 vectors = nn_T - centroids #Diff vectors (between neighbour points and

centroid)

 VP = np.array([594088, 5762450, 80]) #Viewpoint

 all_points = []

 for i in range(len(kdtree.data)):

 cov = np.cov(vectors[i]) #Covariance matrix 3x3

 eig = linalg.eig(cov) #Eigenvalues and eigenvectors

 #The plane normal n is the eigenvector of S with the smallest

eigenvalue >>>> min(eig[0])

 normal = np.array(eig[1][np.where(eig[0] == min(eig[0]))[0][0]])

 if np.dot(normal, VP - kdtree.data[i]) < 0: #Check consistent

global orientation

 normal = (-1)* normal #Flip normal

 l = sorted(eig[0].real, reverse=True) #Sorted eigenvalues

(ascending)

 C = characteristics(l) #Eigenvalue-based 3D features

 #curvature_list.append(C)

 xyz = kdtree.data[i]

 all_points.append(Point(i, xyz, dic[tuple(xyz)][0], C, normal,

nn_indices[i],dic[tuple(xyz)][1]))

131 | P a g e

 regions = region_growing(all_points)

 cwd = os.getcwd()

 path = cwd + "\Samples"

 s = gatherStatistics(statistics(unpack(path, os.listdir(path))))

 for each in regions:

 avea = each.lab_avg[1]

 aveb = each.lab_avg[2]

 aveL = each.lab_avg[0]

 ## Samples for road

 if ((s["Road"][0][0]<aveL<s["Road"][0][1] and

s["Road"][0][2]<avea<s["Road"][0][3] and

s["Road"][0][4]<aveb<s["Road"][0][5])

 or (s["Road"][1][0]<aveL<s["Road"][1][1] and

s["Road"][1][2]<avea<s["Road"][1][3] and

s["Road"][1][4]<aveb<s["Road"][1][5])

 or (s["Road"][2][0]<aveL<s["Road"][2][1] and

s["Road"][2][2]<avea<s["Road"][2][3] and

s["Road"][2][4]<aveb<s["Road"][2][5])):

 for point in each.points:

 point.c = 'road'

 ##Samples for cyclepath

 elif ((s["Cyclepath"][0][0]<aveL<s["Cyclepath"][0][1] and

s["Cyclepath"][0][2]<avea<s["Cyclepath"][0][3] and

s["Cyclepath"][0][4]<aveb<s["Cyclepath"][0][5])

 or (s["Cyclepath"][1][0]<aveL<s["Cyclepath"][1][1] and

s["Cyclepath"][1][2]<avea<s["Cyclepath"][1][3] and

s["Cyclepath"][1][4]<aveb<s["Cyclepath"][1][5])

 or (s["Cyclepath"][2][0]<aveL<s["Cyclepath"][2][1] and

s["Cyclepath"][2][2]<avea<s["Cyclepath"][2][3] and

s["Cyclepath"][2][4]<aveb<s["Cyclepath"][2][5])

 or (s["Cyclepath"][3][0]<aveL<s["Cyclepath"][3][1] and

s["Cyclepath"][3][2]<avea<s["Cyclepath"][3][3] and

s["Cyclepath"][3][4]<aveb<s["Cyclepath"][3][5])

 or (s["Cyclepath"][4][0]<aveL<s["Cyclepath"][4][1] and

s["Cyclepath"][4][2]<avea<s["Cyclepath"][4][3] and

s["Cyclepath"][4][4]<aveb<s["Cyclepath"][4][5])

 or (s["Cyclepath"][5][0]<aveL<s["Cyclepath"][5][1] and

s["Cyclepath"][5][2]<avea<s["Cyclepath"][5][3] and

s["Cyclepath"][5][4]<aveb<s["Cyclepath"][5][5])

 or (s["Cyclepath"][6][0]<aveL<s["Cyclepath"][6][1] and

s["Cyclepath"][6][2]<avea<s["Cyclepath"][6][3] and

s["Cyclepath"][6][4]<aveb<s["Cyclepath"][6][5])

 or (s["Cyclepath"][7][0]<aveL<s["Cyclepath"][7][1] and

s["Cyclepath"][7][2]<avea<s["Cyclepath"][7][3] and

s["Cyclepath"][7][4]<aveb<s["Cyclepath"][7][5])):

 for point in each.points:

 point.c = 'c'

 ##Samples for tiles

 elif ((s["Tiles"][0][0]<aveL<s["Tiles"][0][1] and

s["Tiles"][0][2]<avea<s["Tiles"][0][3] and

s["Tiles"][0][4]<aveb<s["Tiles"][0][5])

 or (s["Tiles"][1][0]<aveL<s["Tiles"][1][1] and

s["Tiles"][1][2]<avea<s["Tiles"][1][3] and

s["Tiles"][1][4]<aveb<s["Tiles"][1][5])

132 | P a g e

 or (s["Tiles"][2][0]<aveL<s["Tiles"][2][1] and

s["Tiles"][2][2]<avea<s["Tiles"][2][3] and

s["Tiles"][2][4]<aveb<s["Tiles"][2][5])

 or (s["Tiles"][3][0]<aveL<s["Tiles"][3][1] and

s["Tiles"][3][2]<avea<s["Tiles"][3][3] and

s["Tiles"][3][4]<aveb<s["Tiles"][3][5])

 or (s["Tiles"][4][0]<aveL<s["Tiles"][4][1] and

s["Tiles"][4][2]<avea<s["Tiles"][4][3] and

s["Tiles"][4][4]<aveb<s["Tiles"][4][5])

 or (s["Tiles"][5][0]<aveL<s["Tiles"][5][1] and

s["Tiles"][5][2]<avea<s["Tiles"][5][3] and

s["Tiles"][5][4]<aveb<s["Tiles"][5][5])

 or (s["Tiles"][6][0]<aveL<s["Tiles"][6][1] and

s["Tiles"][6][2]<avea<s["Tiles"][6][3] and

s["Tiles"][6][4]<aveb<s["Tiles"][6][5])):

 for point in each.points:

 point.c = 't'

 # Green

 elif avea < -2:

 for point in each.points:

 point.c = 'g'

 ##The unknown class

 else:

 for point in each.points:

 point.c = 'r'

 print len(all_points)

 g, r, c, road, t = smoothing(all_points)

 print len(g), len(r), len(c), len(road), len(t)

 fg = open("grassa3.xyz" , 'w')

 fr = open("resta3.xyz", 'w')

 fc = open("cyclea3.xyz", 'w')

 froad = open("roada3.xyz", 'w')

 ft = open("tilesa3.xyz", 'w')

 fg1 = open("grass.xyz" , 'w')

 fc1 = open("cycle.xyz", 'w')

 froad1 = open("road.xyz", 'w')

 ft1 = open("tiles.xyz", 'w')

 for point in g:

 fg.write(('%s %s %s %s %s %s\n' %

(point.xyz[0],point.xyz[1],point.xyz[2],point.rgb[0],point.rgb[1],point.rgb

[2])))

 fg1.write(('%s %s %s %s %s %s\n' %

(point.xyz[0],point.xyz[1],point.xyz[2],30,193,30)))

 for point in r:

 fr.write(('%s %s %s %s %s %s\n' %

(point.xyz[0],point.xyz[1],point.xyz[2],point.rgb[0],point.rgb[1],point.rgb

[2])))

 for point in c:

 fc.write(('%s %s %s %s %s %s\n' %

(point.xyz[0],point.xyz[1],point.xyz[2],point.rgb[0],point.rgb[1],point.rgb

[2])))

 fc1.write(('%s %s %s %s %s %s\n' %

(point.xyz[0],point.xyz[1],point.xyz[2],226,32,32)))

 for point in road:

133 | P a g e

 froad.write(('%s %s %s %s %s %s\n' %

(point.xyz[0],point.xyz[1],point.xyz[2],point.rgb[0],point.rgb[1],point.rgb

[2])))

 froad1.write(('%s %s %s %s %s %s\n' %

(point.xyz[0],point.xyz[1],point.xyz[2],28,27,27)))

 for point in t:

 ft.write(('%s %s %s %s %s %s\n' %

(point.xyz[0],point.xyz[1],point.xyz[2],point.rgb[0],point.rgb[1],point.rgb

[2])))

 ft1.write(('%s %s %s %s %s %s\n' %

(point.xyz[0],point.xyz[1],point.xyz[2],60,60,225)))

 timer4 = timeit.default_timer()

 fg.close()

 fr.close()

 fc.close()

 froad.close()

 ft.close()

 print 'Done! (in', (timer4 - timer1)/60.0, 'minutes)'

B.2. Get training samples statistics

import os

import numpy as np

from color_analysis import *

def unpack(path,filename):

 lengte = len(filename)

 L_end = []

 B_end = []

 A_end =[]

 l1 = tuple()

 a1 = tuple()

 b1 = tuple()

 files = []

 for each in range(lengte):

 if filename[each].endswith(".xyz"):

 files.append(filename[each])

 Llist =[]

 Alist =[]

 Blist =[]

 minl = []

 points = open(path+ "//" + filename[each])

 for i in points:

 splitted = i.split(' ')

 R = float(splitted[3])

 G = float(splitted[4])

 B = float(splitted[5])

 [X,Y,Z] = CIEXYZ(np.array([R/255.0,G/255.0,B/255.0]).T)

 (L,a,b) = CIELab(X,Y,Z)

 Llist.append(L)

 Alist.append(a)

 Blist.append(b)

 L_end.append(Llist)

 B_end.append(Blist)

 A_end.append(Alist)

 return L_end,A_end,B_end, files

134 | P a g e

def statistics(lst):

 """Gets the samples and returns a list of lists with the name of the

file and for each component of the Lab

 color space the domain.

 The list is structured as follows:

 ["name.xyz",L_min,L_max,a_min,a_max,b_min,b_max]

 """

 sublist = []

 for i in range(len(lst[3])):

 sublist.append([lst[3][i],np.mean(lst[0][i])-

3*np.std(lst[0][i]),np.mean(lst[0][i])+3*np.std(lst[0][i]),np.mean(lst[1][i

])-

3*np.std(lst[1][i]),np.mean(lst[1][i])+3*np.std(lst[1][i]),np.mean(lst[2][i

])-3*np.std(lst[2][i]),np.mean(lst[2][i])+3*np.std(lst[2][i])])

 return sublist

def gatherStatistics(l):

 dic = {}

 for i in l:

 name = i[0].split('_')

 if name[0] not in dic:

 dic[name[0]] = [i[1:]]

 else:

 dic[name[0]].append(i[1:])

 return dic

if __name__=="__main__":

 #Path with the samples

 cwd = os.getcwd()

 path = cwd + "\\Samples\\"

 s = statistics(unpack(path, os.listdir(path)))

 print gatherStatistics(s)

B.3. CIE-Lab transformations

import numpy as np

def f(t):

 if t > 0.008856:

 return t**(1/3.0)

 else:

 return 7.787*t + (16.0/116.0)

def CIEXYZ(c):

 a = [[0.4125, 0.3576, 0.1804],[0.2127, 0.7152,

0.0722],[0.0193,0.300,0.9502]]

 return np.dot(a,c)

def CIELab(X,Y,Z):

 y = f(Y/Y0)

 L = (116*y)-16

 a = 500*(f(X/X0)-y)

 b = 200*(y-f(Z/Z0))

 return L,a,b

white = np.array([1.0,1.0,1.0]).T

X0,Y0,Z0 = CIEXYZ(white)

135 | P a g e

B.4. Geometrical Characteristics

def characteristics(l):

 """

 Calculate characteristic values of a point cloud.

 Input: the eigenvectors in ascending order

 Output: The charateristics

 """

 S = l[0] + l[1] + l[2] #Sum of eigenvalues

 e = [l[0]/S,l[1]/S,l[2]/S] #normalised eigenvalues

 L = (e[0]-e[1])/e[0] #Linearity

 P = (e[1]-e[2])/e[0] #Planarity

 S = e[2]/e[0] #Scattering

 O = (e[0]*e[1]*e[2])**(1.0/3.0) #Omnivariance

 A = (e[0]-e[2])/e[0] #Anisotropy

 E = -(l[0]*log(l[0])+l[1]*log(l[1])+l[2]*log(l[2])) #Eigenentropy

 C = l[2]/S #Change of curvature

 return C

B.5. Unsupervised Classification with Merging algorithm

import numpy as np, scipy.spatial as sp, matplotlib.pyplot as plt, timeit,

math

from scipy import linalg

from sets import Set

from color_analysis import * #Import our color_functions

from neighbourhood_characteristics import * #Import function to calculate

characteristic values of a point cloud

class Point(object):

 __slots__ = ('index', 'xyz', 'lab', 'curv', 'normal', 'nn_indices',

"region_number", 'rgb', 'c')

 def __init__(self, index, xyz, lab, curv, normal, nn_indices, rgb):

 self.index = index

 self.xyz = xyz

 self.lab = lab

 self.curv = curv

 self.normal = normal

 self.nn_indices = nn_indices

 self.region_number = -1

 self.rgb = rgb

class Region(object):

 __slots__ = ('number', 'points', 'l', 'lab_avg')

 def __init__(self, number, points, l, lab_avg):

 self.number = number

 self.points = points

 self.l = l

 self.lab_avg = lab_avg

def unpack_xyz(infile):

 points_xyz = []

 count = 0

 for each in infile:

 values = each.split(' ')

 xyz = (float(values[0]), float(values[1]), float(values[2]))

 rgb = (float(values[3]), float(values[4]), float(values[5])) # ----

-depends on RGB position-----

136 | P a g e

 c,i,e = CIEXYZ(np.array([rgb[0]/255.0, rgb[1]/255.0,

rgb[2]/255.0]).T)

 l,a,b = CIELab(c,i,e)

 dic[xyz] = ((l,a,b),rgb)

 points_xyz.append(xyz)

 count += 1

 print "Total points in this scene: ", count

 return np.array(points_xyz)

def region_growing(l):

 c_threshold = 0.0015 #Curvature threshold

 a_threshold = 45*math.pi/180 #Angle threshold

 available_points = sorted(l, key=lambda x: x.curv) #Copy of point list

(because list is mutable)

 regions = []

 region_index = 0

 for point in available_points:

 if point.region_number == -1:

 point.region_number = region_index

 current_region = [point]

 lab_a = point.lab[1]

 lab_b = point.lab[2]

 current_seeds = Set([point])

 while len(current_seeds) != 0:

 seed = current_seeds.pop()

 seeds_nn_indices = seed.nn_indices

 for index in seeds_nn_indices:

 n = all_points[index]

 if n.region_number == -1:

 #Calculate angle between normals:

 p = (seed.normal[0]*n.normal[0]) +

(seed.normal[1]*n.normal[1]) + (seed.normal[2]*n.normal[2]) #Dot product of

normal vectors

 q = math.sqrt((seed.normal[0])**2 +

(seed.normal[1])**2 + (seed.normal[2])**2) * math.sqrt((n.normal[0])**2 +

(n.normal[1])**2 + (n.normal[2])**2) #Length normal product

 if p/q > 1.0: #Make sure values are not bigger than

1 (otherwise cos function doesn't work)

 p = 1

 q = 1

 angle = math.acos(p/q)

 #dp = abs((seed.normal[0]*n.normal[0]) +

(seed.normal[1]*n.normal[1]) + (seed.normal[2]*n.normal[2])) #Dot product

of normal vectors

 if abs(seed.lab[1] - n.lab[1]) < 0.2 and angle <

a_threshold:

 n.region_number = region_index

 current_region.append(n)

 lab_a += n.lab[1]

 lab_b += n.lab[2]

 if abs(seed.curv - n.curv) < c_threshold:

#n.curv < c_threshold:

 current_seeds.add(n)

 l_region = len(current_region)

 regions.append(Region(region_index, current_region, l_region,

(lab_a/l_region, lab_b/l_region)))

 region_index += 1

 return regions

def dist(x1,y1,x2,y2):

 return (x1-x2)**2+(y1-y2)**2

137 | P a g e

if __name__ == "__main__":

 timer1 = timeit.default_timer() #Start of processing

 dic = {} #Declare global dictionary. Used to lookup RGB values after K-

D tree indexing

 File = open('CIELab.xyz')

 points = unpack_xyz(File)

 File.close()

 kdtree = sp.cKDTree(points) #Build K-D tree

 n = 20 #Define size of local neighbourhood

 nn_query = kdtree.query(kdtree.data, k=n, eps=0, p=2) #Find nearest

neighbours, eps:exact search, p:euclidean distance

 nn_indices = nn_query[1] #Neighbour indices in the K-D tree

 nn = kdtree.data[nn_indices] #Retrieve neighbour values

 nn_T = nn.transpose(0,2,1)

 centroids = np.average(nn_T, axis=2).reshape(len(nn_T),3,1)

 vectors = nn_T - centroids #Diff vectors (between neighbour points and

centroid)

 VP = np.array([-60906, 22449, 4300]) #Viewpoint

 all_points = []

 for i in range(len(kdtree.data)):

 cov = np.cov(vectors[i]) #Covariance matrix 3x3

 eig = linalg.eig(cov) #Eigenvalues and eigenvectors

 #The plane normal n is the eigenvector of S with the smallest

eigenvalue >>>> min(eig[0])

 normal = np.array(eig[1][np.where(eig[0] == min(eig[0]))[0][0]])

 if np.dot(normal, VP - kdtree.data[i]) < 0: #Check consistent

global orientation

 normal = (-1)* normal #Flip normal

 l = sorted(eig[0].real, reverse=True) #Sorted eigenvalues

(ascending)

 C = characteristics(l) #Eigenvalue-based 3D features

 #curvature_list.append(C)

 xyz = kdtree.data[i]

 all_points.append(Point(i, xyz, dic[tuple(xyz)][0], C, normal,

nn_indices[i], dic[tuple(xyz)][1]))

 regions = region_growing(all_points)

 THRES = 5000

 regionsss = []

 numbersss = Set() #All regionnumbers smaller than threshold

 for region in regions:

 if region.l < THRES:

 regionsss.append(region)

 numbersss.add(region.number)

 deleted_numbersss = []

 while len(regionsss) != 0:

 x = Set() #Set with all the regionnumbers of the neigbours of all

points that is not own region number

 region = regionsss.pop()

 numbersss.remove(region.number)

 deleted_numbersss.append(region.number)

 for point in region.points:

 for i in point.nn_indices:

 rn = all_points[i].region_number

 if rn != region.number:

 x.add(rn)

 xd = x.difference(deleted_numbersss)

 if len(xd) != 0:

138 | P a g e

 distances = []

 for each in xd:

 dis =

dist(region.lab_avg[0],region.lab_avg[1],regions[each].lab_avg[0],regions[e

ach].lab_avg[1])

 distances.append((dis,each))

 rnmax = min(distances)[1]

 regions[rnmax].points.extend(region.points)

 regions[rnmax].l += region.l

 if rnmax in numbersss and regions[rnmax].l >= THRES: #If region

that is merged to is > threshold remove from this list

 regionsss.remove(regions[rnmax])

 numbersss.remove(regions[rnmax].number)

 deleted_numbersss.append(regions[rnmax].number) ###!!!!

 regions[region.number].points = None

 for region in regions:

 if region.points != None:

 f = open("output_" + str(region.number) + ".xyz", 'w')

 for point in region.points:

 f.write(('%s %s %s %s %s %s\n' %

(point.xyz[0],point.xyz[1],point.xyz[2],point.rgb[0],point.rgb[1],point.rgb

[2])))

 f.close()

 timer2 = timeit.default_timer()

 print 'Done! (in', (timer2 - timer1)/60.0, 'minutes)'

139 | P a g e

Appendix C - Media Outreach

C.1. Strategy

An outreach to the media is in benefit for this Geomatics Synthesis Project, it’s

purpose is to inform society on the context of the project and the outcome in order

to improve the visibility of the TU Delft’s Geomatics program. This Geomatics

Synthesis Project with it’s outcome should be most interesting for fellow Geomatics

students and other students or organisations in the geomatics field with interest

in point clouds. To inform this select few different kinds of media can be used. At

first a presentation in which the whole project flow and conclusions are explained

and visualised with the opportunity to ask questions to the researchers (The

Geomatics Synthesis Symposium) is useful to reach the main target group related

to the University. Secondly publishing an article or a paper within a in the

geomatics field notifiable magazine like GIM International Young Geo in Focus or

GIS magazine will reach a larger group interested in Geo-information. Publishing

in such magazines concern certain guidelines which have to be met. Publication in

GIM International is for sure. GIS magazine is approached for possible publication.

With this media outreach the idea is to communicate a certain message. This

message, related to the results of the Geomatics Synthesis Project, is defined as

to inform a wide variety of people that it is possible to semantically enrich large

point clouds very accurate with the use of colour. Beside this main message the

actual goal is to recall benefits of working with point clouds when they are

semantically enriched.

One of our major resources are the other groups, we have the same interest in

reaching out with the results. Therefore, we decided to cooperate with the other

groups in creating an outreach for the symposium, and together look for possible

external speakers for the symposium.

