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Preface

Artificial Intelligence is already revolutionising the world. With this thesis, I was able to combine my cu-
riosity for AI and my genuine fascination for things that fly. In my research, I try to synchronise the latest
advancement in bio-inspired intelligent methods, such as deep reinforcement learning and evolutionary
algorithms, to develop adaptive controllers that are robust to faults, disturbances and unexpected phe-
nomena. I am confident that my work will contribute towards safer autonomous systems and I hope to, at
some point in future, see them flying.

Continuing the effort of previous students and researchers in this field, the code developed as part of
this thesis has been made publicly available1.

By submitting this thesis, I am concluding a five-year journey of my life. Working to become an
Aerospace Engineer at TU Delft has inevitably shaped the way I learn and think. It has been a truly
unforgettable experience for which I shall thank many inspiring people that I have met along the way.
Among all of them, I would like to thank Erik-Jan van Kampen for his much-needed guidance throughout
my nine-month research. Your ability to always show a calm approach towards any seemingly unsolvable
problem inspired me. Also, by always making sure that I am spending my resources exploiting the most
important aspects, you led me to achieve what I now feel has been the perfect balance between learning
new topics and delivering relevant results.

This journey would not have been possible without the support of my friends made in Delft and Oradea,
alongside whom I learnt so much. We have shared both adventures and stressful work sessions, highs
and lows, and then debated all of them in endless discussions. I will always cherish these memories.

Thank you Casi for your continuous support, trust and encouragement. Without these, I would have
lost my confidence many times and I am more than grateful that you have never let that happen. Last
but not least, I would particularly like to thank my parents for devoting their entire attention and effort to
support me in achieving my goals.

This is all thanks to you. Mult,umesc!

1https://github.com/VladGavra98/SERL
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1
Introduction

The aviation sector has experienced an excellent safety record in recent decades, becoming the safest
means of long-distance transportation. Continuing an ever-lowering rate, the overall number of aviation
crashes decreased by 36% between 2018 and 2019 [1].

Despite this, the number of accidents involving ‘loss of control in flight’ is not decreasing at a compara-
ble rate. Improving the autonomy capabilities of aerospace systems in general, and of aircraft controllers
in particular, could cut the number of casualties even further. Arguably, autonomy shall strive to become
a reliable safety net acting at multiple levels of the aerospace industry.

Breakthroughs in intelligent control systems allow for increased autonomy and better human-machine
teaming. There is hope that modern techniques incorporating bio-inspired Artificial Intelligence (AI) could
enhance the safety, durability, autonomy, and performance of aerospace vehicles. Ultimately, a milestone
in achieving these goals concerns improving the way simulation-based flight control systems are able to
remain robust to real-life conditions such as faults, unmodeled dynamics and unforeseen disturbances [2,
3, 4].

Deep Reinforcement Learning
Reinforcement Learning (RL) is a framework that uses repeated rewarded interactions between an intel-
ligent agent and its environment to learn what it should do to perform the task better [5].

Historically, RL has first been applied to optimal flight control as Approximate Dynamic Programming
(ADP). This framework relies on online identification of a dynamics model and demonstrated robustness in
dealing with faults [6]. Also, it proved successful in controlling highly complex coupled systems such as the
F-16 fighter aircraft [7] due to its higher approximation power than other non-linear control methods such as
Incremental Non-linear Dynamic Inversion (INDI) or incremental backstepping (IBS) [2, 8]. Furthermore, it
proved capable of learning to control autonomous agents that can fly and perform tasks such as learning
acrobatic flight from human demonstration [9].

Recently, research in offline methods aims to improve performance by training longer offline in a simula-
tion environment. Harnessing deep neural networks as function approximators [10], Deep Reinforcement
Learning (DRL) has obtained mainstream popularity due to its ability to reach above-human-level perfor-
mance in complex tasks such as playing arcade games from images, driving autonomous cars or wining
against world-class players in strategy games [11]. Within the category of offline methods, the state-of-the-
art frameworks are currently mainly based on the following four algorithms: DDPG [12], TD3 [13], SAC
[14] and PPO [15].

Moreover, the DRL framework inherits the advances developed in the field of deep learning (DL). Es-
sentially, deep neural networks provide a relatively-sample efficient way to train highly non-linear functions
to approximate complex dynamics [5, 10]. Leveraging longer training times, DRL obtains state-of-the-art
performance in tasks considered difficult for more traditional control systems. These include reference
tracking in navigation [16, 17] and low-level attitude control in presence of faults [18] or disturbances [19]
without any prior knowledge of the environment or solution.

The offline model-free DRL methods prioritise performance, often learning policies that command ac-
tions with high levels of noise. By doing so, they aggravate the gap between simulation and reality,
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increasing the challenge of deployment on flight hardware [20]. Regularisation methods have been de-
veloped to inhibit the action noise when controlling multi-rotor vehicles [20]. The root cause of the noise
has yet to be extensively discussed.

In terms of the performed optimisation, DRL generically belongs to the class gradient-based methods
as the neural networks are trained by updating their parameters by stepping the gradient values back-
propagated from a loss function [10].

Neuro-evolutionary Algorithms
Biological evolution has been creating complex organisms capable of sustaining life in their own unique
way for billions of years [21]. This process is simulated by evolutionary algorithms. These gradient-free
methods iteratively optimise a set of control strategies, or population, by selecting the fittest (i.e., highest
scoring) individuals in each generation [22, 23]. Variation operators such as mutation and cross-over are
applied in each generation to explore new candidates or exploit already optimised solutions. Similar to
their use in DRL, the control policies can be approximated by neural networks. This is known as neural
evolution, an alternative to gradient-based optimisation [10, 24].

The Neuro-Evolution of Augmenting Topologies (NEAT) algorithm was one of the field’s early suc-
cesses, employing a novel graph-based technique to efficiently encode the values of neural network
weights [25, 26]. The same technique allowed neural networks to evolve with increasing size, essen-
tially optimising policies with minimal complexity [24]. This was especially effective in early applications
to RL tasks [27].

Within this category, a new paradigm referred to as novelty search, has emerged with the goal to
search for a set of individuals, maximally diverse with respect to the space of attainable behaviours [28,
29]. Branching from it, the quality-diversity method has become a compromise between the search for
both fitness and novelty [30]. It learns a maximally diverse repertoire of high-quality policies which are
stored in a map-like memory archive spanned by the resulting behaviours. The intelligent agent can
then select the best-performing control policy for its current task and condition either by estimating the
performance using a pre-defined model of the environment dynamics [31] or by learning online a locally-
accurate approximation of the world model [32, 33].

Evolutionary Algorithms have been proven successful when optimising highly non-convex functions
with sparse gradients by escaping local optima or saddle points [34, 35]. Moreover, they always produce
a locally optimised repertoire of behaviours mapped by control policies (e.g.robots walking in every di-
rection) that are relatively close to the global optimum [21]. This has already been applied to adaptive
robots [21], closing the gap between the ideal world of simulations and reality with unexpected conditions,
unpredictable or unmodelled phenomena, faults and failures [31, 36].

Hybrid Methods
For a long time, people have realised that the extraordinary adaptability of living species stems from
the effect of the self-development and learning mechanism of an individual combined with evolutionary
processes acting at the population level [37, 38]. Whiteson et.al. combine NEAT with an RL algorithm
to achieve sample-efficient reinforcement learning [39], whereas in [40] the authors use neural evolution
to improve exploration in stochastic domains. Last but not least, EAs have been used to optimise the
hyperparameters of DRL algorithms, in the field known as AutoRL [41].

Despite their evident achievements, both the aforementioned bio-inspired classes have their own draw-
backs [37]. Researchers had the idea of directly combining both frameworks in learning algorithms to
combat each other’s disadvantages [37, 42]. Hybrid algorithms incorporating evolutionary loops and re-
inforcement learning updates are a novel class of solution showing both higher sample efficiency and
enhanced performance in complex environments while benefiting from stable learning [43, 44].

Research Gap
In spite of the success of DRL algorithms in flight control and the demonstrated ability of population-based
methods to remain fault-tolerant and change-resistant, none of the hybrid ERL methods has been applied
to a flight control task or tested on faulty systems. The current research aims to fill this gap.

Section 1.1 discusses the research questions formulated to help bridge the gap, as well as the objective
associated with them. Then, Section 1.2 defines the scope in which these questions will be answered.
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1.1. Research Design
The present work aims to fulfil the following objective:

Improve robustness of fault-tolerant intelligent flight control by adapting a hybrid evolutionary
reinforcement learning framework to provide reference-tracking control for a high-fidelity model
of a fixed-wing aircraft.

Research Objective

As a means to reach the above goal, research questions and sub-questions have been identified. The
main research questions of the present work are split into two distinct blocks, namely “Method Feasibility”
and “Implementation and Robustness”.

Method Feasibility

Met-1 What are the requirements for intelligent fault-tolerant flight control?
Met-1.a What are the most critical faults a modern flight control system shall adapt to?
Met-1.b What are the limitations of intelligent flight controllers in dealing with system faults?

Met-2 What are the state-of-the-art offline hybrid methods combining deep reinforcement learning
and evolutionary algorithms?

Met-2.a What are the strengths and limitations of deep reinforcement learning?
Met-2.b What are the strengths and limitations of evolutionary algorithms?
Met-2.c Which hybrid methods are proposed in the field’s literature?
Met-2.d What benchmarks and corresponding metrics could be used to compare their control

performance?
Met-3 Which offline-trained hybrid framework is feasible to maximise the chosen metric for the con-

trol of a high-dimensional continuous system in the presence of faults?

The first question, Met-1, dives into the field of fault tolerance in aerospace control. As an answer to its
first sub-question, a set of fault cases is compiled by reviewing both industrial standards and the field
literature. Then, sub-question Met-1.b looks at how other intelligent control algorithms had already been
applied to fault-tolerant aerospace control tasks. By answering both sub-questions, the need for a fault-
tolerant controller and the identified limitations of current approaches will be translated into qualitative
requirements in terms of performance, data efficiency and robustness. The method currently developed
shall aim to pass those requirements.

Then, the focus moves to the bio-inspired frameworks used for intelligent control. More specifically, the
literature is reviewed to identify the state-of-the-art offline intelligent control methods that combine Deep
Reinforcement Learning and Evolutionary Algorithms. This is completed by first researching the strengths
and limitations of each framework as answers to sub-questionsMet-2.a andMet-2.b. Then, sub-question
Met-2.c is answered by reviewing the available hybrid methods and sub-question Met-2.d by identifying
a way to test the performance of such methods and benchmark their performance.

Within the first block, the final question relates the found intelligent control architectures to the task of
controlling a faulty system. Seeking an answer to question Met-3 implies showing that at least one hybrid
controller can be trained in simulation on a nominal task and robustly control the same system in presence
of faults. then, this method becomes the baseline algorithm to be built upon.

After the feasibility of a novel hybrid control method is shown, the focus shifts towards implementing
and improving its robustness for a relevant aerospace application. This process follows the second set of
research questions:
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Implementation and Robustness

Imp-1 What is a suitable system/platform to train and test the hybrid flight controller?
Imp-1.a What simplified model and which initial conditions can be used to train the controller

offline?
Imp-1.b What should be the architecture of the control loop, observation space and action

space?
Imp-1.c Which fault conditions should be evaluated during testing?

Imp-2 How can an offline learnt set of policies be efficiently and safely updated for online control of
the selected platform in presence of faults?

Imp-2.a What are the most promising ways to use safety information to improve average con-
troller performance with respect to the baseline hybrid framework?

Imp-2.b What is a sample-efficient method to select a well-behaving policy during online control
of the faulty system?

Imp-3 How does the hybrid approach compare to an intelligent control framework based on DRL in
terms of performance under faulty conditions?

Question Imp-1 deals with the system side of the control task. Whereas the answer to sub-question Imp-
1.a looks toward a simplified aircraft model and trim conditions, the second sub-question is concerned
with the architecture of the control loop and the state-action space. Finally, sub-question Imp-1.c seeks
to identify which fault cases from the answer to question Met-1 are to be modelled as test cases for the
developed controllers.

Next, the research investigates how the hybrid controller can be improved and used in a sample-
efficient manner. These challenges are directly addressed by the research question Imp-2, with its first
sub-question focusing on the possible improvements. Then, a key aspect to be researched is the pos-
sibility to select which policy, among the evolved population, will control the system. This raises the
sub-question Imp-2.b.

Last but not least, the hybrid framework will be compared to an intelligent controller trained by a state-
of-the-art DRL technique. To make them comparable, the two frameworks will be trained using the same
settings and tested against the same task of controlling the system in presence of the aforementioned
faults and conditions, tied to the answer to sub-question Imp-1.c. The comparative analysis is meant to
answer Imp-3, the final research question.

1.2. Scope of Research
The control tasks considered only concern offline continuous control. Starting from the preliminary anal-
ysis, the selected algorithms are trained and tested in a simulated environment. On one hand, testing
on real hardware poses additional difficulties such as sensor noise, environmental disturbances or other
unpredictable dynamics. On the other hand, a flight testing campaign is many orders of magnitude more
expensive and time-consuming than running simulations [3].

The preliminary analysis considers a simplified optimal control problem. Then, moving to the second
set of research questions, the rest of the results are related to the task of aircraft attitude control. Here,
the simulation environment for learning and evaluation considers continuous attitude control of a fixed-
wing aircraft model. The model with high-fidelity non-linear plant dynamics is compiled as a standard
Flight CAD package referred to as DASMAT [45]. It was designed by [45] within the Control & Simulation
department of the TU Delft Faculty of Aerospace Engineering to model the Cessna 500 aircraft. Later,
it has been improved by [46] through system identification on flight test data recorded on-board the PH-
LAB, the research aircraft jointly owned between the TU Delft Faculty of Aerospace Engineering and
Netherlands Aerospace Centre (NLR) 1.

1.3. Inter-field Terminology
In the next chapters, work from the fields of deep reinforcement learning, optimal control and neuro-
evolutionary algorithmswill be cited, reviewed and implemented. Onmultiple occasions, the same aspects

1https://cs.lr.tudelft.nl/citation/

https://cs.lr.tudelft.nl/citation/


might be referred to with different terminologies, depending on the method’s field of origin. Table 1.1 has
been compiled to limit the amount of confusion and more easily distinguish between the key terminologies
commonly used within each field.

Table 1.1: Differences in terminology and notation between the control, RL and EA communities.

Control Theory Deep Reinforcement Learning Neuro-evolutionary Algorithms

plant/system agent evolutionary agent
control law policy/actor individual
x,u s,a both
cost-to-go value function n.a.
objective, cost return,loss fitness, -
iteration trial/episode generation
model parameters/coefficients weights & biases genes (genome)
persistent excitation exploration variation operators

Notably, in control theory, one can either try to maximise an objective function (optimal control frame-
works) or minimise a cost or cost-to-go value. The EA approaches traditionally only consider the fitness
of individuals - a metric they aim to maximise.

1.4. Report Structure
The report consists of four parts. The first one, Part I, contains the Scientific Article which presents the
theoretical background, summarises the followed methodology and discusses the main results of this
thesis. Then, the second part covers the literature study and the preliminary analysis, which will review,
identify and verify a hybrid learning method for the task of fault-tolerant flight control.

Part III moves on and showcases additional results of the experimental studies: hyperparameter tuning
in Chapter 5, the impact of the safety-informed mutation operator in Chapter 6 and the aircraft’s simulated
time traces in the presence of faults and unseen flight conditions in Chapter 7. Afterwards, Chapter 8
describes a proof-of-concept for an online adaptation method for the evolved population of controllers.
Furthermore, Chapter 9 summarises the verification and validation process.

The report concludes with the fourth part, by reflecting on the research questions, their answers and
contributions in Chapter 10. Last but not least, Chapter 11 highlights the proposals made for future steps
in this line of research.
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Scientific Article
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Evolutionary Reinforcement Learning: A Hybrid Approach for
Safety-informed Intelligent Fault-tolerant Flight Control

V. Gavra∗ and E. van Kampen†

Delft University of Technology, P.O. Box 5058, 2600GB Delft, The Netherlands

Recent research in bio-inspired artificial intelligence potentially provides solutions to the
challenging problem of designing fault-tolerant and robust flight control systems. The current
work proposes SERL, a novel Safety-informed Evolutionary Reinforcement Learning algorithm,
which combines Deep Reinforcement Learning (DRL) and neuro-evolutionary mechanisms.
This hybrid method optimises a diverse population of non-linear control policies through both
evolutionary mechanisms and gradient-based updates. We apply it to solve the attitude tracking
task on a high-fidelity non-linear fixed-wing aircraft model. Compared to a state-of-the-art
DRL solution, SERL achieves better tracking performance in nine out of ten cases, remaining
robust against faults, changes in initial conditions and external disturbances. Furthermore, the
work shows how evolutionary mechanisms can balance performance with the smoothness of
control actions, a feature relevant for bridging the gap between simulation and deployment on
real flight hardware.

Keywords: Fault-tolerant Flight Control, Deep Reinforcement Learning, Evolutionary
Algorithms, Intelligent Control, Control Policy Noise.

I. Introduction

Aviation has experienced an excellent safety record in recent decades, its ever-lowering rate of crashes making it
the safest means of long-distance transportation in terms of the number of casualties. Despite this, the number

of accidents involving ‘loss of control in flight’ is not decreasing at a comparable rate [1]. Improving the autonomy
capabilities of aerospace systems in general and of aircraft controllers, in particular, could further cut the number of
air crashes. Arguably, autonomy shall strive to become a reliable safety net acting at multiple levels of the aerospace
industry.

Breakthroughs in intelligent control systems allow for increased autonomy and better human-machine teaming.
There is hope that modern techniques incorporating bio-inspired Artificial Intelligence (AI) could enhance the safety,
durability, autonomy, and performance of aerospace vehicles. Ultimately, a milestone in achieving these goals concerns
improving the way simulation-based flight control systems are able to remain robust to real-life conditions such as faults,
unmodeled dynamics and unforeseen disturbances [2–4].

Reinforcement Learning (RL) is a framework that uses repeated rewarded interactions between an intelligent agent
and its environment to optimise its control policy [5]. Its extension, Deep Reinforcement Learning (DRL) inherits
the advances from the field of deep learning (DL), which harvests the potential of deep neural networks (NNs) as
data-driven models [6]. It provides a relatively sample-efficient way to train highly non-linear functions to approximate
and control complex dynamics [5, 6]. These algorithms belong to the class gradient-based optimisation as the neural
networks are trained via gradient descent [6].

Training on advanced computational systems, DRL has shown above-human performance in complex tasks such as
strategy games [7, 8]. In flight control, it has obtained state-of-the-art performance in tasks considered difficult for more
traditional control systems without any prior knowledge of the environment or solution. These include reference tracking
in navigation using Deep Deterministic Policy Gradient (DDPG) [9] or Soft Actor-Critic (SAC) [10] and low-level
attitude control in the presence of faults [11] (using SAC) or disturbances using a Proximal Policy Optimisation (PPO)
agent [12]. The offline model-free DRL methods prioritise performance, often learning policies that command actions
with high levels of noise. By doing so, they aggravate the gap between simulation and reality, increasing the challenge
of deployment on flight hardware [13]. Regularisation methods have been developed to inhibit the action noise when
controlling multi-rotor vehicles [13]. The root cause of the noise has yet to be extensively discussed.

∗MSc. Student, Faculty of Aerospace Engineering, Control and Simulation Division, Delft University of Technology.
†Assistant Professor, Faculty of Aerospace Engineering, Control and Simulation Division, Delft University of Technology.
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A rival of gradient-based policy optimisation, an Evolutionary Algorithm (EA) takes inspiration from nature’s way of
drafting complex and diverse organisms capable of sustaining life [14]. It iteratively optimises a set of control strategies,
or population, by selecting the fittest (i.e., best performing) individuals in each generation and performing variations on
them [15, 16]. As frameworks based on the evolutionary structure, recent advances using Genetic Algorithms (GAs)
or Evolutionary Strategies (ES) made them attractive for continuous control tasks [14, 17]. Following this structure,
neural evolution optimises control policies parameterised by neural networks, an alternative to the gradient-based DRL
[18, 19].

Local optimisation by EAs results in a repertoire of behaviours, instead of a single policy. When evolving randomly
initialised non-linear policies, the repertoire can benefit from intrinsic diversity as each individual learns to solve the
task in a way novel from the other members of the population [14]. When deployed, the agent can then select the
best-performing control policy either by estimating the performance using a model of the environment dynamics [20] or
by learning online a locally-accurate approximation of the world dynamics [21, 22]. Such methods have been applied to
adaptive legged robots [14], validating the transfer of behaviours emerging from offline population-based optimisation
to real-life conditions.

Despite their evident achievements, both the aforementioned bio-inspired frameworks have their drawbacks. Gradient-
based DRL algorithms have brittle convergence properties, which are highly sensitive to the chosen hyperparameters
[23, 24]. They can also exhibit inefficient learning when faced with sparse gradients or deceptive optima (i.e., local
minima) in the loss landscape [25]. Whereas GAs and ES can overcome these problems, they are less sample-efficient
because they rely on generational updates of the entire population [26, 27].

Hybrid algorithms, incorporating evolutionary loops and reinforcement learning updates, show more stable learning
and increased performance in complex learning environments [28–30]. The historically first Evolutionary Reinforcement
Learning (ERL) algorithm, proposed by [24], trains a population of control policies in an evolutionary loop, periodically
infusing it with DRL information obtained from gradient updates. Whereas the algorithm aims at the best of both
worlds, the average performance of the entire population remains unstable due to spontaneous catastrophic forgetting
and it is sensitive to the hyperparameters [28, 30]. Multiple frameworks aim to correct this behaviour by using
more sample-efficient ES algorithms [31], incorporating safety-aware mutations [28, 32] or developing collaborative
mechanisms within the population [29].

Proximal Distilled Evolutionary Reinforcement Learning (PDERL) [28] benefits from a modular structure, which
combines a DDPG agent with a GA. It reduces the chance of catastrophic forgetting via proximal mutation and distillation
crossover, thus matching the state-of-the-art performance in terms of maximum return [28, 30].

The current paper has a threefold contribution. First, we develop and apply a novel hybrid and safety-informed
intelligent controller to the task of attitude tracking. Second, the paper shows that optimising a population of controllers
via both DRL and GAs provides significantly better fault tolerance and robustness to unseen flight conditions compared
to a state-of-the-art DRL-only approach. Lastly, we demonstrate that control policy noise can be alleviated by leveraging
the evolutionary mechanisms of the hybrid method, shining a light on the root causes of the noise phenomena.

II. Background
This section introduces the mathematical formalism of ERL by summarising the actor-critic RL, population-based

policy search concepts and the hybrid algorithm combining the two. Additionally, it presents the attitude control task
converted to a learning problem suitable for the ERL framework.

A. Deep Reinforcement Learning
Reinforcement Learning is a bio-inspired framework that uses repeated rewarded interactions between an intelligent

agent and its environment to learn an optimal control policy. The sequential decisions made by the agent within
the environment are modelled as a Markov Decision Process (MDP) formalised by P {s𝑡+1, 𝑟𝑡+1 | s𝑡 , a𝑡 , . . . , s0, a0} =
P {s𝑡+1, 𝑟𝑡+1 | s𝑡 , a𝑡 }, with state space S ⊂ R𝑛, action-space A ⊂ R𝑚, reward signal 𝑅 : S × A → R and probability
distribution of the stochastic state transition function P : S × A → S. The MDP, therefore, assumes collapsed
state-action history as the current state and action solely determine the next state and received reward [5, 33].

For deterministic policies, at each time step, the agent commands action a𝑡 ∈ A according to a deterministic
function of its state `(s𝑡 ) and observes the transition tuple T𝑡 = ⟨s𝑡 , a𝑡 , 𝑟𝑡 , s𝑡+1⟩. The sequence of transitions continues
until the agent reaches a terminal state, marking the end of an episode.

The return, defined as 𝑅𝑡 = lim𝑛→∞
∑𝑛

𝑘=0 𝛾
𝑛𝑟𝑡+𝑘 , represents the total accumulated reward expected from time 𝑡
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and discounted by 𝛾, bounded by (0, 1] for the summation to converge. Thus, the goal of the agent translates into
maximising 𝑅. The action-value function 𝑄(s, a) predicts the value of the return from the given state s when the agent
selects action a thereafter following policy ` [5].

Policy gradient methods frame the goal of maximising return as the minimisation of a loss function L(\), updating
a parametric approximation `(s)\ (with \ ∈ D\ ) of the optimal policy function `∗ (s). In contrast, value-based
frameworks approximate the state-action value function as 𝑄(s, a) ≈ 𝑄𝜙 (s, a) with 𝜙 ∈ D𝜙, iteratively updating it to
approximate the return value. Actor-critic methods combine policy and value function learning [5]. A state-of-the-art
method, Deep Deterministic Policy Gradient employs neural networks as function approximators for both the critic and
actor due to their intrinsic ability to learn complex non-linear dynamics from data [6]. DDPG, as a model-free RL
algorithm, can solve continuous control tasks in complex flight control [9].

Despite this, a common failure mode for DDPG stems from the overestimation bias of the Q-function [34] which
accumulates due to the recursive temporal difference updates. Over multiple updates, the error causes arbitrary
sub-optimal states to be associated with a high Q-value, resulting in inconsistent policy updates and divergent behaviour
[35]. The Twin-Delayed DDPG (TD3), developed by Fujimoto et al. [35], directly addresses the issue of Q-value
overestimation.

Sustained exploration within the state-action space is a necessary condition for learning the optimal policy. In TD3,
the behavioural policy explores during training by altering the actions selected by the actor, such that a𝑡 = `(s𝑡 ) + 𝜖
where 𝜖 ∼ N (0, 𝜎𝐼) is a sample of a zero-mean Gaussian distribution with deviation 𝜎, the magnitude of the exploratory
noise. In practice, the resulting action is clipped within the bounds admissible by the environment [35, 36]. After an
action is taken in the environment, the transition tuple T𝑡 is saved into a memory buffer D.

During training, the networks are updated by randomly sampling batches 𝐵 from the buffer D. The critic part trains
using recursive temporal difference updates, minimising the Mean Squared Bellman error (MSBE) from Eq. (1). TD3
learns two Q-functions (hence its name) and it takes the minimum of the two Q-values as targets in the MSBE loss - the
duelling critics trick. By involving the less optimistic value function as an optimisation target, the algorithm is less
prone to overestimation bias which has been shown to improve learning stability [35].

L𝑄 (𝜙, 𝐵) :=
1
|𝐵|

∑︁
T𝑡 ∈𝐵


©«
𝑄𝜙 (s𝑡 , a𝑡 ) −

(
𝑟𝑡 + 𝛾 min

𝑖=1,2
𝑄𝜙𝑖,targ

(
s𝑡 , atarg𝑡 (s𝑡 )

) )
︸                                       ︷︷                                       ︸

𝑦targ (𝑟 ,s𝑡+1 )

ª®®®®®®¬

2
𝜙 ∈ D𝜙 , \ ∈ D\ (1)

Concurrently, the actor learning translates into the minimisation of policy loss, defined by Eq. (2) as the negative of the
value estimate over one batch of states.

L` (\, 𝐵) := − 1
|𝐵 |

∑︁
s𝑡 ∈𝐵

min
𝑖=1,2

𝑄𝜙,𝑖 (s𝑡 , `\ (s𝑡 )) (2)

The target networks are separate copies of the actor and critic networks, parametrised within the same D𝜙 ,D\ spaces.
To ensure stability during learning, they are synchronised using a Polyak average of the parameters of the current
networks [36, 37].

TD3 also employs clipped target actions to train the target critic. Eq. (3) shows how the target-policy selected action
is corrupted by noise sampled from a zero-mean Gaussian distribution (the same used for off-policy exploration) but
clipped within

[
𝑐low = −0.5, 𝑐high = 0.5

]
as a form of regularisation. The resulting action is clipped again to lie within

the interval admissible by the environment.

atarget = clip
(
`\targ (s) + clip(𝝐 , 𝑐low, 𝑐high), alow, ahigh

)
, 𝝐 ∼ N(0, 𝜎𝐼) (3)

Lastly, the target policy network updates less frequently than the target critic network. Adding to the smoothening effect
of the Polyak update, delaying the policy updates further reduces the risk of divergence.

In DRL frameworks, the networks are updated by stochastic gradient descent (SGD), which requires the backprop-
agation of the loss functions’ gradients with respect to the networks’ parameters [6]. By doing so, the batch SGD
updates drive sample-efficient experience-based training. Despite this, local optima and saddle points in the policy loss
landscape alongside noisy or sparse gradient estimates impede long-term exploration and hinder learning [27].
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B. Evolutionary Algorithms
EAs are another bio-inspired alternative which, as a black-box local-search technique, iteratively improve a population

of control policies or individuals targeting a higher fitness value [38].
EAs are characterised by a standard underlying architecture: evaluate the episodic performance of each individual,

select the best-behaving individuals (fittest policies) and apply variational operators. A sub-class, Genetic Algorithms
(GAs) are derivative-free optimisation algorithms that aim to deliver a sufficiently accurate solution within a relatively
low computational time [39]. Having a modular structure, traditional GAs explore the solution space via two separate
means: crossover and mutation. Crossover combines a fraction of elites and mutation alters the non-elites, both
generating new offsprings to replace the least fit individuals.

In contrast to a gradient-based method, they do not have a tendency to find a local optimum but iteratively perform
local searches for the global optimal fitness [39]. Moreover, according to [40], GAs are suited for both non-Markov and
Markov decision processes, performing well in tasks that suffer from a lack of observability.

The selection operation is probabilistic according to the tournament selection method [29]. Solutions with higher
fitness values have a higher probability of being selected. One assumes higher fitness values to represent better solution
quality. With each generation, the average quality of the population improves, as well as the reward of the best actor,
called the population champion.

C. Hybrid Frameworks
Learning emerges from the trade-off between exploitation or quality-seeking and exploration, or novelty-seeking

[14, 41]. ERL, introduced by [24], is a class of hybrid methods that implements this trade-off as a combination of
off-policy DRL and GA. It evolves a population of 𝑁c control policies, applying selective pressure based on their
episode fitness. After each episode lasting 𝑇 time-steps, the individual’s fitness 𝐹𝑖 is defined via Eq. (4)

First, the GA part generates novel individuals, or offsprings through 𝐾-point crossover and Gaussian mutation. They
both act on the genome, the NN weights tensor flattened to a one-dimensional sequence. 𝐾-point crossover combines
genetic material from two policies by dividing their genomes into 𝐾 randomly sampled sections and simply swapping
them. The standard Gaussian mutation, showed by Eq. (5) samples the offspring policy weights \𝑜 from a Gaussian
distribution centred at the parent weights vector \𝑝 .

𝐹𝑖 :=
𝑇∑︁
𝑡=0

𝑟𝑡 , 𝑖 = 1, 𝑁 (4) \𝑜 ∼ N
(
\𝑝 , 𝜎𝑚𝑢𝑡 𝐼

)
(5)

Second, parallel to the genetic population, an actor-critic agent based on DDPG learns via gradient updates by randomly
sampling batches from the common memory buffer. Training is performed off-policy, as the actor and critic are updated
with information gathered by all the other policies. At a given number of generations, the RL actor is injected into the
population by cloning its weights in place of the least-fit genetic actor. Thus, ERL establishes a bidirectional transfer of
information [24, 28]. Whereas the shared memory buffer enhances exploration of the state space off-policy, the actor
synchronisation aims to decrease the sample-complexity of the neuro-evolution as the newly injected NN has been
updated more often via gradient-based optimisation [24, 30].

The hybrid agent sequentially evaluates all actors and stores the experienced transition tuples in a shared memory
buffer D (𝑁 ) B

{
T (𝑖)
𝑡 | 𝑖 = 1, 𝑁

}
. The superscript (N) refers to the size of the genetic population and will be later

dropped for brevity. Thus, the ERL agent’s shared buffer contains unordered exploratory traces of both GA and DRL
loops.

Whereas the DDPG actor uses zero-mean additive Gaussian noise to explore in the S ×A space, ERL combines this
with indirect time-independent exploration in the policy parameter space D\ [27, 42]. Crucially, since the distribution
of the weight-magnitude is not uniform across the network, the output of each layer is normalised to more evenly scale
the effect of the applied perturbations [42].

Directly extending the ERL method from [24], Proximal Distilled Evolutionary Reinforcement Learning (PDERL)
developed by Bodnar et. al. uses the same structure as ERL and a DDPG agent, but it proposes two novel genetic
operators, distillation crossover and proximal mutation which sample experiences from individual buffers of the genetic
actors [28]. They aim to counteract catastrophic forgetting caused by Gaussian mutation and 𝐾-point crossover applied
to a direct encoding of the network, a problem of the off-policy hybrid methods [28, 30, 32].
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1. Genetic memory buffer
To integrate both operators, PDERL uses a set of memory buffers with each actor possessing genetic memory D𝐺 .

The individual buffers store the ^ most recent experiences of each actor. Moreover, each personal buffer can store
experiences that span multiple generations which will be spread through the population by the variational operators.
The common buffer D shares experience with the genetic memories but does not necessarily equal the union of them.

2. Q-filtered distillation crossover
The operator selectively merges the behaviours of two elite policies based on their estimated Q-values, acting based

on the behavioural space learnt by the critic [28]. Essentially, offsprings inherit optimised behaviours from their parents
and not just the weights of the networks.

Consider two distinct parent policies `𝑥 and `𝑦 . An offspring policy `𝑜 is created and its buffer D𝑜 is filled with
^/2 experiences from both parents. Its weights \𝑜 are randomly initialised with the weights of one of the parents. Then,
the offspring actor is optimised to selectively imitate its parents’ actions for the sampled states. In general, this form of
imitation learning [43], ‘distils’ the behaviour of the parents into the offspring policy. The footprint (i.e., the number of
learnable parameters) of the resulting network is equal to the parents’. Thus, the footprint of each actor is kept constant.

Crossover combines two networks instead of one which introduces the problematic possibility of offspring’s
behaviour diverging from both parents. To account for it, PDERL introduces a cloning loss L (𝐶 ) which trains the
offspring `𝑜 to minimise the deviation from the parents’ behaviours over a batch 𝐵:

L (𝐶 )
` (\𝑜, 𝐵) :=

|𝐵 |∑︁
𝑖

∥`𝑜 (s𝑖) − `𝑥 (s𝑖)∥2 I𝑄 (s𝑖 ,`𝑥 (s𝑖 ) )>𝑄(s𝑖 ,`𝑦 (s𝑖 ))

+
|𝐵 |∑︁
𝑗

`𝑜 (
𝑠 𝑗

)
− `𝑦

(
s 𝑗

)2
I𝑄(s 𝑗 ,`𝑦 (s 𝑗))>𝑄(s 𝑗 ,`𝑥 (s 𝑗))

+ 1
|𝐵 |

𝐵𝐶∑︁
𝑘

∥`𝑜 (s𝑘)∥2 with 𝐵 ∼ D𝑜

(6)

The operator I selects the policy with a higher Q-value, biasing the offspring towards the estimated best-acting parent.
The last term of Eq. (6) performs 𝐿2-norm regularisation with the intention to optimise for less aggressive behaviours
(i.e., actions changing rapidly for marginally different states) [28].

Lastly, one still has to decide the elites whose weights are going to be crossed. The pairing metric 𝑑 : S → R from
Eq. (7) is the Euclidean distance between the average actions taken by the agents [28]. It takes a randomly sampled
batch of states from the parent’s genetic memory with P𝑥,𝑦 denoting the generic state-visitation probability distribution.

𝑑
(
`𝑥 , `𝑦

)
:= Es∼P𝑥

[`𝑥 (s) − `𝑦 (s)2
]
+ Es∼P𝑦

[`𝑥 (s) − `𝑦 (s)2
]

(7)

The probability of selecting a pair increases with the distance 𝑑
(
`𝑥 , `𝑦

)
between them. This distance-based selection

strategy incentives behavioural novelty, developing a diverse population. Given the distance metric definition, the
achieved novelty is acts across the space mapped by the actuator deflections.

3. Proximal mutation
Let one consider the parent to be mutated `𝑝 , parametrised by \𝑝 with genetic memory D𝑝 . The mutation operator

samples a batch of transitions 𝐵𝑀 and sums the policy gradient with respect to its parameters over the states within 𝐵𝑀 .
Eq. (8) computes the policy sensitivity 𝑠`𝑝

as the root of the squared gradient summed over the action space:

𝑠`𝑝
:=

√√√√ |A |∑︁
𝑘

( |𝐵𝑀 |∑︁
𝑖

∇𝜽`𝜽 (s𝑖)
)2

𝑘

, 𝐵𝑀 ∼ D 𝑝 (8)

Then, the sensitivity is used to scale the zero-mean Gaussian perturbation, the policy parameters being updated according
to \𝑜 ∼ N

(
\𝑝 ,

𝜎𝑚𝑢𝑡

𝑠
𝐼
)
. The higher the magnitude of the policy gradient with respect to a parameter, the smaller the

mutation step becomes. Essentially, sensitive NN parameters are perturbed less. After the scaled update, the resulting
offspring policy `𝑜 has its parameters \𝑜 within the proximity of its predecessor. Thus, the offspring’s behaviour is
expected to not diverge too much either.
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III. Methodology
This section introduces the attitude tracking task and then presents the framework of Safety-informed Evolutionary

Reinforcement Learning (SERL), an extension obtained by including the TD3 algorithm inside PDERL and accounting
for safety-related information in the mutation operator. Lastly, the training and evaluation scenarios are described.

A. Attitude Tracking
The simulation environment for learning and evaluation considers continuous attitude control of a fixed-wing

aircraft model. The model with high-fidelity non-linear plant dynamics is compiled as a standard Flight CAD package
referred to as DASMAT [44]. It was designed by [44] within the Control & Simulation department of the TU Delft
Faculty of Aerospace Engineering to model the Cessna 500 aircraft. Later, it has been improved by [45] through system
identification on flight test data recorded on-board the PH-LAB, the research aircraft jointly owned between the TU
Delft Faculty of Aerospace Engineering and Netherlands Aerospace Centre (NLR) ∗.

The model incorporates fixed-wing aerodynamics, propulsion and engine, resulting in a 6-DOF combined translational
and rotational nonlinear equations of motion for the rigid body aircraft, trimmed for the specific flight conditions. The
complete aircraft state x ∈ R12 is given by Eq. (9), where the longitudinal and lateral displacements 𝑋𝑒 and 𝑌𝑒 are
measured with respect to the trim point.

x = [𝑝, 𝑞, 𝑟, 𝑉𝑡𝑎𝑠 , 𝛼, 𝛽, \, 𝜙, 𝜓, 𝐻, 𝑋𝑒, 𝑌𝑒]⊤ (9)

The agent state vector s ∈ R7, defined by Eq. 11 retrieves observed information from the aircraft state at a sampling rate
𝑓𝑠 = 100 Hz, augmenting it with the current tracking error. The actions a𝑡 = `(s𝑡 ) ∈ R3 outputted by the behavioural
policy are fed as the input vector at the same frequency 𝑓𝑠. Defined by Eq. 10, the actor’s action corresponds to the
deflection of the elevator, aileron and rudder. The thrust control is delegated to an inner auto-throttle [11, 44] and the
trim tab and flap deflections are kept at zero. The control diagram from Fig. 1 shows the feedback loop between the
non-linear intelligent agent and the controlled plant.

a := [𝛿𝑒, 𝛿𝑎, 𝛿𝑟 ]⊤ (10) s := [\𝑒, 𝜙𝑒, 𝛽𝑒, 𝑝, 𝑞, 𝑟, 𝛼]⊤ (11)

To account for realistic physical limits of the actuators, the space A is restricted for each channel bounded to [−10°, 10°].
The ranges are within the admissible deflections of the modelled control surfaces [46].

The reference signals correspond to a random sequence of coordinated pitch-roll manoeuvres. Following from [11]
and [47], the \𝑟 and 𝜙𝑟 references are sequences of cosine-smoothed step signals with amplitudes uniformly sampled
from the ranges: [−25°, 25°] for pitch and [−45°, 45°] for roll. The latter is motivated by the values specified in the
CS-25 [48]. The range for pitch is based on the previous work of [11, 47, 49]. The sideslip reference remains at zero.

For learning, the control task is translated into an optimal control formulation with a continuous reward signal from
Eq. (12), taken from [11]. The reward function penalises the 𝐿1 norm of the clipped and scaled attitude tracking error.
The scaling factor c𝑟 = 6

𝜋
[1, 1, 4] accounts for the smaller magnitude of sideslip error.

𝑟𝑡 = −1
3
∥clip [c𝑟 ⊙ e𝑡 ,−1, 0] ∥1 with e𝑡 :=

[
\𝑟𝑡 − \𝑡 , 𝜙𝑟𝑡 − 𝜙𝑡 , 𝛽𝑟𝑡 − 𝛽𝑡

]⊤ (12)

At the end of each episode, the agent receives an additional sparse negative reward 𝑟𝑇 which penalises it proportionally
to the time frames left before the prescribed episode should have ended. In Eq. (13), the positive constant 𝐶𝑃 scales the
negative consequences of crashing early. Empirically, a value of 𝐶𝑃 = 20 is deemed appropriate.

𝑟𝑇 = −𝐶𝑃

Δ𝑡
(𝑇𝑚𝑎𝑥 − 𝑇) (13)

B. Learning Framework
The Safety-informed Evolutionary Reinforcement Learning referred to as SERL, extends PDERL by replacing the

DDPG actor-critic with Twin Delayed Deep Deterministic Gradient (TD3) and the proximal mutation operator with the
safety-informed mutation operator.

∗https://cs.lr.tudelft.nl/citation/
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Fig. 1 TD3 / SERL attitude control diagram.

1. Framework overview
SERL has a modular design, where each component can be developed separately. The additional argument (𝑁)

denotes the number of actors of the genetic population, with SERL(𝑁) having a total policy count of 𝑁 + 1 due to the
extra TD3 actor. Fig. 2 depicts the high-level overview of its components and the interaction between the RL agent
(blue), the GA loop (green) and the simulation environment (grey).

Directly improving on DDPG, TD3, a deterministic, offline and off-policy method, improves the sample complexity
and learning stability in continuous control [35, 50]. Its achievements and relatively uncomplicated structure made TD3
the leading candidate for the RL loop of the current SERL framework.

SERL uses two types of replay buffers. The shared buffer trains the RL agent in an off-policy manner but each actor
within the population has its own genetic buffer. The critics are feedforward neural networks with different shapes and
sizes than the genetic actors and TD3 policy, which have the same footprint.

Empirically, it has been observed that 𝑁 is the hyperparameter with the highest impact on training, directly altering
the balances between the GA and TD3 learning. A larger population increases the number of frames experienced
between RL updates and it reduces the number of transitions corrupted with exploratory noise. Thus, increasing the
genetic population limits the RL effort. At the same time, both the crossover and mutation operators become more
effective at developing novel behaviours once the genetic pool increases.

2. Safety-informed mutation
The hybrid algorithm structure offers the opportunity to develop either of the optimisation loops with overall

potential gains. However, to take into account existing safety-related domain knowledge, a safety-informed mutation
operator [32] is adopted.

Similarly to the proximal mutation, this safety-informed operator applies noise scaling proportionally to the inverse
of the policy gradient norm as previously shown in Eq. (8). The policy gradients are estimated on batches 𝐵𝐶 sampled
from the parent’s critical buffer D𝐶 ⊂ D. It contains the transition tuples associated with a high value of a cost function,
directly related to safety knowledge on the manoeuvre.

Eq. (14) defines the SERL critical buffer as a sub-set of transitions that cause the next-state angle of 𝛼 and 𝜙 approach
a set of simplified flight envelope bounds. These are marked by entering pre-stall dynamics at an angle of attack higher
than 11° or by having a roll angle larger than 60°, empirically observed to degenerate in an unstable spiral motion.

D𝐶 := {⟨s𝑡 , a𝑡 , 𝑟𝑡 , s𝑡+1⟩ ∈ D| 𝛼𝑡+1 ≥ 11° | | 𝜙𝑡+1 ≥ 60°} (14)

The safety-informed mutation overrides the effect of the proximal operator and directs exploration towards the less-
sensitive regions of the parameters space D\ . Essentially, the offspring’s genome will evolve less in the directions
that could result in unsafe behaviours. Nevertheless, since the operator scales the additive parameter noise, unsafe
exploration is only discouraged and not stopped so the resulting policies do not benefit from safety guarantees.

C. Optimisation for Policy Smoothness
To combat policy noise, the Conditioning for Action Policy Smoothness (CAPS) regularises the policy loss function

according to Eq. (15). Whereas the term L𝑇 aims for Lipschitz temporal continuity by minimising the 𝐿2 norm between
the current action and the next action, the spatial term L𝑆 penalises noise in system dynamics by ensuring a locally
consistent policy [13]. The regularisation weights, _𝑇 and _𝑆 , control the strength of the corresponding terms and
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Fig. 2 High-level overview of the SERL(𝑁) framework. Safety-informed mutation only considers the critical
transitions from the genetic memory. Solid single arrows show data flow and double arrows depict the sequential
feeding of information, as each actor within the population is evaluated separately inside the environment.
Inspired from [24, 28, 32].

can be tuned. During training, CAPS adds their weighted sum to the loss function from Eq. (2) and the SGD updates
propagate the effect of L terms. By doing so, the RL agent can learn a smoother control policy.

L𝑆 = ∥`\ (s) − `\ (s̃)∥2 with s̃ ∼ N(s, 𝜎𝐼)
L𝑇 = ∥`\ (s) − `\ (s𝑡+1)∥2

L (CAPS)
` = _𝑆L𝑆 + _𝑇L𝑇

(15)

Due to their inherent non-linearity, neural networks policies output action signals with spectral components in which
the input information is not readily visible. To objectively measure and compare the smoothness of different policies
following the same trajectories, the 𝑆𝑚 metric from Eq. (16) takes the frequency-weighted sum of the spectral amplitudes
of all actuating signals. The metric is inspired by the smoothness defined in [13] but with two key differences. Dividing
by the episode duration 𝑇 penalises shorter trails, hence 𝑆𝑚 reflects an average smoothness. The square root scales
down the relative smoothness, thus the unit of the 𝑆𝑚 metric is rad · Hz. Lastly, the negative sign ensures that higher 𝑆𝑚
corresponds to smoother actuating signals and the positive scaling constant 𝐶𝑆𝑚 (set to 10) makes the metric arbitrarily
comparable to the reward-based fitness term already defined in Section II.

𝑆𝑚 := −
𝐶𝑆𝑚

𝑇
·

√√√
2
𝑛

|A |∑︁
𝑎=1

𝑛/2∑︁
𝑘=1

(𝑆𝑎𝑎 [𝑘] · 𝑓𝑘)𝑎 (16)

The spectral amplitude 𝑆𝑎𝑎 [𝑘] = 1
𝑛
|𝐴[𝑘] |2 is estimated with the discrete Fourier Transform 𝐴[𝑘] of the actuating

signal 𝑎 ∈ A calculated via the Fast Fourier Transform (FFT). The spectral components are summed up to the discrete
equivalent of 𝑓𝑠/2, the Nyquist frequency of the actuator signal sampled at 𝑓𝑠 .
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While CAPS indirectly optimises spatial and temporal continuity, it is more difficult to objectively quantify action
smoothness in multi-dimensional spaces. Moreover, whereas RL learns from frames, SERL performs updates after
episodes are completed. Therefore, 𝑆𝑚 is not only used to evaluate the trained actors of both TD3 and SERL but also as
an additional fitness term for evolutionary selection.

For the training scenario described by Section III.D, the fitness is defined according to Eq. (4). Additionally, an
ablation study investigates the effect of CAPS regularisation in comparison to 𝑆𝑚 optimisation. The latter is obtained by
adding the 𝑆𝑚 term from Eq. (16) to the fitness function.

D. Training Task
For the training environment, the aircraft model is trimmed for steady straight symmetric flight at 𝑉𝑡𝑎𝑠 = 90 m/s and

𝐻 = 2, 000 m. The learning phase concerns repeated training epochs alternated with testing epochs at a user-specified
frequency. During learning, the maximum duration of one training episode is 𝑇𝑚𝑎𝑥 = 20 s, equivalent to 2, 000
agent-environment interactions. The training algorithm considers five agent-environment pairs, initialised with different
seeds, and periodically evaluates each TD3 actor and champion policy to compute their episodic return statistics.

For SERL, choosing the episode length is a trade-off between actors receiving enough samples to explore and the
training computational complexity. Longer episodes would increase the time required for the neuro-evolutionary loop.
Training either TD3 or SERL(10) for 1× 106 frames required approximately 200 min on 8 Intel Xeon E5-1620 3.50 GHz
CPU cores.

Most of the hyperparameters configure the TD3 agent, apart from the last five parameters which trace back to PDERL
settings. Among them, the mutation magnitude 𝜎𝑚𝑢𝑡 has the highest impact on exploration. The synchronisation rate
controls the generational frequency of copying the TD3 policy weights. Also, the outcome of population evaluations
dictates the champion so a large number of evaluations is more informative but also time-consuming. For SERL(50),
using fewer evaluations helps reduce the training time while the number of training steps has been proportionally
increased to account for the additional learning actors.

E. Evaluation Tests
The policies optimised by each agent are tested on multiple scenarios, listed in Table 2. They are selected from the

surveyed literature based on their relevance to flight systems, expected difficulty and possibility to be modelled within
the DASMAT framework with the described attitude control architecture.

The cosine-smoothed step references follow similar coordinated pitch-roll manoeuvres but the evaluation episodes
are longer, lasting 𝑇𝑚𝑎𝑥 = 80 s. Each test case loops through the same list of pseudo-random references generated
using three different seeds. Thus, each intelligent controller is evaluated on the same tasks to enable a fair comparison
between their tracking performance and smoothness.

In Table 2, the nominal scenario considers the same flight conditions as the training task and it serves as the
benchmark for the other cases to be compared against. The next six fault cases are based on the work of [11]. Simulating
the agent’s response with the controlled plant altered according to each of these cases investigates their fault-tolerant
capabilities.

Cases R1 and R2 consider two flight conditions with different dynamic pressure by changing the airspeed and
altitude from the trim setting used during training. Since the actuators and aircraft dynamics are affected by the dynamic
pressure, these tests benchmark the agent’s robustness to unseen flight regimes.

The last case tests the capacity to reject an external disturbance in the presence of realistic sensor models shown by
Table 3, obtained from [51]). The simplified disturbance is a vertical gust of wind whose velocity is specified by the
MIL-F-8785C specification [52].

The normalised Mean Absolute Error (nMAE) evaluates the tracking performance by averaging pitch, roll and
sideslip. The normalisation interval is [−25°, 25°] for the pitch and yaw channels whereas the sideslip error is normalised
by [−1°, 1°] as its response is expected to remain in the neighbourhood of zero.
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Table 1 Hyperparameters for the TD3, SERL(10) and SERL(50).

Parameter Name Symbol TD3 SERL(10) SERL (50)

Population size N - 10 50
Learning rate (actor, critics) 𝛼𝑎,𝑐 4.33 × 10−4 4.82 × 10−5 1.86 × 10−5

Discount factor 𝛾 0.99 0.99 0.99
Batch size |𝐵 | 64 86 256
Buffer size |D| 100,000 800,000 2,000,000
Actor hidden layers 𝑛𝑎

ℎ
3 3 3

Actor hidden sizes ℎ𝑎 (96, 96,96) (72,72,72) (72,72,72)
Critics hidden layers 𝑛𝑐

ℎ
2 2 2

Critics hidden size ℎ𝑐 (200,300) (200,300) (200,300)
Non-linear activation - ReLU tanh tanh
Exploratory noise magnitude 𝜎 0.33 0.29 0.23
Mutation magnitude 𝜎𝑚𝑢𝑡 - 2.47 × 10−2 6.27 × 10−2

Elite Fraction 𝑒 - 0.3 0.2
Genetic memory size ^ - 8,000 8,000
Population evaluations - - 5 3
Synchronisation rate - - 1 1

Table 2 Evaluation cases for fault-tolerance and robustness.

Identifier Title Description

- Nominal Trim condition unchanged from training: 𝐻 = 2, 000 m, 𝑉𝑡𝑎𝑠 = 90 m/s

F1 Iced Wings
Maximum angle of attack reduced by 30%
and the drag coefficient increased with 0.06

F2 Shifted Centre of Gravity Aircraft centre of gravity shifted aft by 0.25 m
F3 Saturated Aileron Aileron deflection clipped at ±1 deg
F4 Saturated Elevator Elevator deflection clipped at ±2.5 deg
F5 Broken Elevator Elevator effectiveness coefficient multiplied by 0.3 gain
F6 Jammed Actuator Rudder stuck at a deflection of 15 deg

R1 High Dynamic Pressure Trim condition at high dynamic pressure: 𝐻 = 2, 000 m, 𝑉𝑡𝑎𝑠 = 150 m/s
R2 Low Dynamic Pressure Trim condition at low dynamic pressure: 𝐻 = 10, 000 m, 𝑉𝑡𝑎𝑠 = 90 m/s
R3 Disturbance & Biased Sensor-noise Sensor models from Table 3, vertical wind gust of 15 ft/s acting for 3 s

Table 3 Gaussian noise sensor models identified from flight tests on the PH-LAB. The relevant observations
have been isolated from [51].

Observed Signal Unit Noise Magnitude Bias

𝑝, 𝑞, 𝑟 rad/s 4.0 × 10−7 3.0 × 10−5

\, 𝜙 rad 1.0 × 10−9 4.0 × 10−3

𝛼 rad 4.0 × 10−10 -
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IV. Results and Discussion
This section presents the results of learning, fault tolerance and initial condition robustness for both three distinct

agents: SERL(10), SERL(50) and TD3. It also discusses the effects of involving direct 𝑆𝑚 optimisation. If not specified
otherwise, the sample average and standard deviation are computed over 30 random evaluations generated from three
seeds. To verify whether the nMAE averages differed significantly, the t-test is used under the assumption of normally
distributed nMAE samples.

A. Learning Curves
The training curves from Fig. 3 depict the effect of policy learning by plotting the average episodic reward obtained

by each policy alongside the total number of time steps the policies expired interacting with the environment. Ultimately,
all agents converge towards returns, comparable to values reported by [11, 47, 49].

TD3 shows an initial advantage but suffers from unstable learning progress marked by spikes in standard deviation
followed by sudden drops in the return, referred to as catastrophic forgetting. In contrast, both SERL agents are
less sample efficient whereas their training progresses less erratically than TD3, and with a lower and monotonically
decreasing deviation.

SERL(50) requires five times more samples to reach a similar return - a direct drawback of the poorer sample
efficiency of genetic algorithms. SERL(10) learns with sample complexity comparable to the TD3 method as its
gradient-updated actor is more often selected among the elites. Thus within SERL, TD3 learning drives early-stage
learning, its elitism rate increasing up to 25% after 5 × 105 frames. Then, the rate of RL selection slowly decreases,
marking the switch to genetic mechanisms which allow for long-term performance.

Fig. 3 Learning curves of the TD3, SERL(10) and SERL(50) agents. The solid lines depict the average champion
return and the shaded area denotes one standard deviation, computed over 5 mono-seed evaluations. For the
TD3 agent, the champion is equivalent to the TD3 actor.

B. Fault-tolerancy
Despite validating the effect of training, learning curves do not paint a full picture of the control capabilities.

Figure 4 shows the fault-case evaluation performance of the champion policy of SERL(10) and SERL(50) alongside
the TD3-only agents trained in parallel to the population by the hybrid loop and the separately trained TD3. The
best-behaving SERL(50) actor significantly outperforms (𝑝 < 0.05) both the SERL(10) champion and the TD3-only
actor for all cases apart from the last two fault cases. Looking at F5 where SERL(50) obtains an nMAE score lower by
6.4% with 𝑝 = 0.1 > 0.05 whereas for F6, the TD3-only actor tracks the references better than the best of SERL(10) and
SERL(50) by 16.5% (𝑝 = 2 × 10−35 < 0.05) and by 6.1% (𝑝 = 8 × 10−13 < 0.05) respectively. In the last fault case,
the nMAE scores are significantly higher than the rest due to the large and relatively constant sideslip bias (see Fig. 6).

For both hybrid methods, the identified champion for each case obtains an average tracking error at least as good as
the TD3 actor trained alongside. In the case of a small population, the RL part drives the policy optimisation so the
TD3 actor is more often selected within the elites. This happens for the nominal scenario and for the faults F3, F4
and F6 respectively. The bar chart shows that, in the context of the current control tasks, training multiple non-linear
controllers benefit from the emerging diversity and can achieve higher tracking performance in almost all fault cases.

Next, F3 and F6 will be discussed, signifying the opposite ends on the relative performance spectrum.
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Fig. 4 Tracking nMAE error and its deviation for each fault case. The hatched bars correspond to the population
champion whereas the solid-coloured bars to the TD3 agent trained alone or within SERL.

1. Saturated Aileron (F3): downside of aggressive actions
Figure 5 depicts the responses of the SERL(50) champion and the TD3 actor when tasked to control a plant with a

clipped actuator, the third case from Table 2.
Large actuating bounds during training allow the policies to exploit them and control the system aggressively. In

Fig. 5, comparing the responses computed by the two actors, the 𝛿𝑎 commanded by the SERL(50) champion is always
within the saturation bounds. With a relatively calm response (i.e., low frequency and magnitude), the SERL(50)
champion is able to follow the roll and sideslip references with the same accuracy as in the nominal case. It obtains an
nMAE tracking error lower by 45% (𝑝 = 4 × 10−10 < 0.05) than its RL-only counterpart.

The TD3 actor behaves more aggressively across all actuating channels, with high-frequency commands and large
deflections. At 𝑡 = 20 s, the roll angle reference shifts from 3° to −3°, prompting the TD3 actor to command a high
aileron deflection. Since the simulated actuator is clipped, the TD3 actor pushes further, unaware of the fault. Thus, the
commanded 𝛿𝑎 spikes, approaching the lower bound of 𝛿𝑎𝑙𝑜𝑤 = −10°. Arguably, this unnecessary and sub-optimal
behaviour stems from a preference for aggressive actions learnt by the TD3 agent.

2. Jammed Rudder (F6): lost novelty
When dealing with a rudder stuck at 𝛿𝑟 = 15°, the genetic champions cannot match the error of the TD3-only agent.

Figure 6 shows the responses of the aircraft when controlled by the SERL(50) champion (top plots) and the TD3 actor
(bottom plots). One can argue that, when one channel is completely blocked, a significant amount of the behavioural
diversity, encoded by the evolved population, had been lost. Thus, training multiple NNs is less advantageous than
concentrating the frame-based learning updates on one single policy, as done by the TD3-only agent.

Also, while the SERL(50) champion tries to correct for the induced sideslip deviation, the TD3 actor does not. A
potential explanation stems from the stronger coupling between the rudder and aileron channel of the TD3-only policy.

C. Robustness
Previous works have shown robustness to the flight condition of a stochastic policy trained within a hierarchical

SAC architecture and exposed to one trim condition [11, 49]. Despite this, their outer loop controller observed the
altitude which offers partial information with respect to the dynamic pressure.
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Fig. 5 Evaluation time-traces of the SERL(50) champion (top) and TD3 (bottom) policy with their corresponding
nMAE and 𝑆𝑚metric for the damaged aileron (F3). The aileron saturation limit is shown as a separate interrupted
line.

We tested the new TD3 and SERL agent’s robustness on two more extreme cases than the ones previously investigated.
As attitude controllers observe the attitude reference, the corresponding error and the attitude rate, they have no direct
knowledge of dynamic pressure. The bar chart from Fig. 7 shows the SERL(50) champion as the best-performing
controller.

High dynamic pressures would increase the effectiveness of all three control surfaces considered. This benefits both
of the SERL controllers, with the SERL(50) error deviation decreasing and the SERL(10) tracking the reference slightly
better (14.2% lower error with 𝑝 = 0.06 > 0.05). The TD3 actor experience the opposite, its R1 nMAE being higher by
35.4% (𝑝 = 1 × 10−7 < 0.05) than the nominal case. Again, the TD3 policy is more aggressive, a sub-optimal trait
when the controlled actuators become more effective.

Flying in low dynamic pressure makes the responses sluggish. Reacting to it proves problematic for all controllers
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Fig. 6 Evaluation time-traces of the SERL(50) champion (top) and TD3 (bottom) policy with their corresponding
nMAE and 𝑆𝑚 metric for the jammed rudder fault (F6). The real rudder deflection is shown as a separate
interrupted line.

and translates into a higher average tracking error and standard deviation. The SERL(50) champion sees an increase of
60.1% which is lower than the one reported by [49] for a less difficult task. In this case, the RL-only agent proves more
robust as its nMAE increases by 31.4%, the least among all three.

Lastly, adding biased noise does not significantly influence tracking performance. Moreover, the policies can reject
a 15 ft/s vertical wind gust. The SERL champion remains the same for the nominal case, hinting that, in contrast to the
faulty scenarios, genetic diversity is not necessary to achieve robustness to this atmospheric disturbance.

Overall, both SERL agents achieve relatively small changes in nMAE, comparable to the ones previously reported in
the literature. Thus, they remain robust to the change in initial flight conditions and external disturbances. The TD3
agent is less capable to reproduce its nominal performance once the conditions change. Nevertheless, the low dynamic
pressure case remains the hardest for all controllers, pointing towards the need for more development.
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Fig. 7 Average nMAE and standard deviation for SERL(10), SERL(50) and TD3 controller. Hatching
corresponds to the evaluation case.

D. Control Policy Smoothness
In the time traces shown by the previous sub-sections, a key difference surfaces when comparing the SERL and the

RL-only actors. The control policy smoothness is always lower for the TD3-trained controllers by at least one order of
magnitude. This is not only visible via the printed 𝑆𝑚 metric but also from the high-frequency components present in
the actuating signals.

The possibility to improve the population smoothness was investigated by doing an ablation study on fitness and
objective function. As described in Section III, one has two options to optimise for smooth control policy, namely using
CAPS and adding the 𝑆𝑚 term to the fitness function. Spectral components of the tracked reference signals are also
present in the actuating signal but simply subtracting their effect from the computed 𝑆𝑚 value is not readily possible.
Thus, using the same set of references for all agents enabled a valid comparison.

The scatter plot from Figure 8 compares the episodic return of the champion with the smoothness 𝑆𝑚 metric
averaged over the population. It shows the three intelligent agents (colour coded) with and without CAPS regularisation
and smoothness term in the fitness function (depicted via a different shape and outline). For SERL(50), the plots do not
show the cases that used CAPS as the overall impact of TD3 is insignificant.

Increasing the population size affects the performance and control smoothness at different scales. The SERL(50)
agent obtains a reward comparable with the CAPS-regularised TD3 and SERL(10) but it maintains a higher and almost
constant policy smoothness at 𝑆𝑚 = −5 ± 1 rad · Hz. With the highest performance at 𝑅 = −78.9 ± 21.3, TD3 suffers
from the high-frequency action noise already visible in the time traces, with an 𝑆𝑚 = −1500 ± 123 rad · Hz. The effect
of both CAPS and smooth fitness are visible, significantly shifting the 𝑆𝑚 metric towards the right.

As expected, adding the 𝑆𝑚 term to the fitness function improves the achieved control smoothness but it also
reduces the selective pressure for performance. Furthermore, when the TD3 actor is not regularised, it does not pass the
evolutionary selection step. While SERL(50) overcomes this issue, the small population of SERL(10) does not and its
top performance deteriorates. In its case, the optimisation is driven by the injected TD3 parameters, so not selecting
causes the returns to collapse to 𝑅 ≈ −380. The problem is only partially mitigated by using CAPS.

1. Smoothness distributions
The standard deviation provides an estimation of the spread of a probability distribution function. When the

distribution is not symmetric, the standard deviation can become misleading. To Investigate such limitations, the
histograms from Fig. 9 depict the distributions over the population of the tracking error and the policy control smoothness.
The statistics were taken for the SERL(50) actors evaluated on the nominal case.

The 𝑆𝑚 distribution shows large left-sided skewness. At the end of the training, the majority of policies within the
population are smooth while a few outliers remain noisy. As the TD3 policy is known to produce noisier actions, one
can expect the outliers to trace back to TD3-trained weights injected during synchronisation. As high smoothness does
not have to correlate with accurate tracking, these actors have so far survived the selection process. In spite of that, the
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Fig. 8 Champion return versus average smoothness for three agents trained with and without CAPS regularisa-
tion and a smoothness optimisation term.

Fig. 9 Distribution density function of the policy smoothness (left) and fitness (right) over the evolved population
at the end of training.

champion policy is among the least noisy individuals, hinting that the SERL(50) algorithm maintains smoothness as an
indirect form of elitism.

The left-hand side histogram shows a higher degree of symmetry in the nMAE distribution over the population.
During training, the progress of the champion is followed while the majority of genetic actors are still exploring. When
the champion has converged, there is no guarantee of others’ convergence, but, by not overfitting the training task, they
have preserved the accumulated diversity.

2. Causes
To explain the control noise phenomena, the current work presents the following three factors which have been

inferred from the aforementioned empirical ablation study and the surveyed literature:
1) Using (deep) neural networks as optimal policy function approximators: Multi-layered NNs have a significant

number of degrees of freedom (DOF), justifying their popularity in learning complex non-linear dynamics [6].
Depending on how and for how long they are trained, NNs can learn any frequency component within the training
signal. Without being biased towards them, this also includes the high-frequency components. Nevertheless, the
frequency responses and Fourier analysis of neural networks are not yet a well-researched field.

2) Exploiting environment dynamics: The simulation environment does not penalise high-frequency components
in the actuating signals as they are damped out by the aircraft dynamics. Hence, they are not present in the
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tracked states. At the same time, a real-life system with unideal actuators and friction would further reduce
the high-frequency comments. By not modelling such phenomena or penalising the noise via the reward or
fitness signals, the agents could learn it. In turn, this would eventually aggravate the already-present gap between
simulation and reality.

3) Exploratory strategy: As an off-policy learning framework, TD3 explores during training by adding zero-mean
Gaussian noise to the selected actions. Thus, the sampled transitions used by the SGD updates are already
corrupted by noise. The NNs could learn to overfit these noisy dynamics. Empirical evidence suggests that the
absence or damping of additive state-action exploratory noise can benefit the action smoothness. The analysis
presented by [13], has empirically shown that on-policy methods, e.g. PPO, or stochastic policy algorithms, such
as SAC, are less prone to train noisy control policies.

Whereas the first two factors are not directly generating action noise, they enable it. Thus, one can argue that the
developed TD3 controller learns less smooth policies in comparison to the SERL as a consequence of combining the
three aspects.

Previously, other works have circumvented the noise problem by using incremental control [11, 53] or low-pass
filtering of the action signal computed by the NN. These methods directly target the second factor. Similarly, using
simpler control architectures, such as a PID, or regularising the neural network, as done by CAPS, also reduces the
actuating noise since it diminishes the impact of the first factor.

Consequently, another hypothesis states that the neural evolution performed by the GA mitigates the impact of the
third factor. While state-action noise is required for off-policy exploration of the TD3 agent, SERL can explore the
policy parameter space, learning without generating noisy transitions. In parallel, the safe mutation operator biases
exploratory learning towards the non-critical regions of the state space. The resulting behaviours propagate through the
genetic population via distillation crossover which limits the development of aggressive behaviours via the 𝐿2-norm.
Thus, SERL can train in the large-population configuration without deteriorating the average control smoothness.

3. The smoothness-reward trade-off
Understating the trade-off between performance and action smoothness is relevant for bridging the gap between

simulation training and the deployment of hardware. Arguably, online low-pass filtering of the control commands can
mitigate the effects of noise. Despite this, they can have unpredicted consequences on the neural network controllers due
to their highly non-linear structure [13]. Thus, tuning the filters for multiple operating conditions might require real-life
testing [13]. Similarly, changing the training task to incremental control achieves a filtering effect. Unfortunately, it also
inherently increases the dimensionality of the learning space, hindering convergence and increasing the rate of failed
trials [11].

Looking back at Fig. 8, two distinct regions emerge. Sometimes, a certain degree of action noise could be tolerated.
Applications such as drone racing prioritise short-term performance and the small actuators can be replaced after the
competition in case of damage to the high-frequency commands. These vehicles might therefore benefit more from
controllers trained within the top-left configurations. In contrast, when the controllers are deployed on aircraft carrying
sensitive payloads, such as scientific instruments or passengers, performance might be sacrificed to ensure that smooth
commands are followed. For these applications is more appropriate to train agents in the right-hand region.

In both cases, the designer should have the opportunity to decide, but using SERL(50) achieved the best of both
worlds at the cost of proportionally longer training time.

V. Conclusion
This work combined two bio-inspired frameworks, DRL and EA, culminating in SERL, a safety-informed

Evolutionary Reinforcement Learning method that trains controllers on a non-linear fixed-wing aircraft model to provide
optimal attitude tracking. It uses an actor-critic RL structure with GA mechanisms. The TD3 algorithm improves
sample efficiency and stability of the learning. The GA population evolves through a novelty-seeking crossover operator
and safety-informed mutation that uses high-level domain knowledge about the flight envelope. With them, SERL
obtains parameter-space exploration adding to the off-policy state space exploration of TD3.

The current work empirically proved that, by adjusting the population size and then selecting the adequate training
time, SERL can balance performance and control smoothness. Moreover, off-policy exploration using unregularised
multi-layer neural networks was shown to aggravate the action noise phenomenon in simulation environments which
only prioritise tracking performance.
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Training a large controller population required proportionally more samples but achieved significantly higher fault
tolerance than the TD3 agent in five out of six evaluation cases. It also remained robust to flight conditions unencountered
during training and external disturbances in the presence of realistic observation noise. This demonstrated the benefit of
evolving a diverse population of controllers through distillation crossover and safety-informed mutations. Nevertheless,
when system faults collapse the offline-obtained diversity, the TD3 remains marginally superior.

A. Significance of Contributions
With the increasing popularity of artificial intelligence, research in control systems has the challenge and opportunity

to adapt and synchronise its state-of-the-art algorithms with novel bio-inspired intelligence methods.
Directly balancing the performance-smoothness trade-off and benefiting from its proven robustness, the offline

trained SERL agents can be more flexibly deployed on real-hardware applications. This represents a step towards
including artificial intelligence algorithms within autonomous fault-tolerant controllers, making them a safety net
applicable to safety-critical systems in general and to aircraft in particular.

B. Recommendations
Improve sample-efficiency: The hybrid methods suffer from poor sample efficiency. Ideally, such issues could be

targeted by improving the sample efficiency of either or both learning frameworks. On one side, the work of [47] shows
the opportunity to increase the training stability and efficiency of the RL agent by involving distributional critics. This
could potentially benefit large population searches which hinder the DRL convergence rate. On the other side, novel
evolutionary strategy algorithms, such as Covariance Matrix Adaptation [26], can replace the GA loop. For these
extensions, the control policy smoothness and the possibility to add it to the fitness function shall be closely investigated.

Online actor selection: Each actor has been trained to control the system. To select which one becomes the actual
behavioural policy, the decision problem can be formulated as short-term receding horizon optimisation. Online system
identification tools can be used to model the local dynamics and estimate each actor’s performance (or another desired
metric). Then, a new champion policy is selected and the behavioural policy is shifted towards it by either a hard or soft
update.

Flight-test Validation: Proving robustness to changes in flight conditions, system and sensor dynamics and external
disturbances, the work made valuable steps towards showing that SERL can provide attitude control on real systems.
Despite this, validating its use would require flight testing. Generally, the problem of validating neural networks as
controller policies is cumbersome due to their black-box nature, which lacks explainability.

6-DOF Flight Control: This work only targeted the attitude control task and trained in one flight condition. Previous
works have shown the opportunity to train 6-DOF controllers in a hierarchical manner. Achieving smooth control via
direct actuator commands and benefiting from episodic evolutionary learning, the present work opens a possibility
to circumvent the curse of dimensionality of 6-DOF control. Moreover, training such a controller on multiple points
sampled within the flight envelope can increase its performance in the low dynamic pressure regime.
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3
Literature Review

This chapter identifies from the field literature a hybrid algorithm that can optimise policies and verify on
a toy-problem control task their robustness against relevant fault cases.

It starts by presenting on a high-level the current approaches to fault-tolerant flight control, introduc-
ing the concepts of robust and adaptive control. Section 3.1 focuses on the main faults that such flight
controllers have to deal with, introducing the idea of using bio-inspired solutions to overcome some of
the challenges of intelligent control. Then, Section 3.2 introduces deep reinforcement learning as the first
bio-inspired class. The chapter will look at the basic principles, identify the state-of-the-art and comment
on the advantages and limitations that it poses. Section 3.3 will present the second class of methods, evo-
lutionary algorithms, and will focus on its applicability to optimise neural networks for fault-tolerant control
problems. Combining both frameworks, the novel field of hybrid learning methods emerges in Section 3.4.

3.1. Intelligent Fault-tolerant Flight Control
In general, a fault-tolerant controller would aim to remain performant according to a specific metric) when
controlling systems the presence of faults. Its architecture is designed to overcome failures of different
aircraft systems, errors in the signals from sensors or subsequent unpredicted phenomena. All of these
are commonly referred to as faults. Aiming to answer the first research question, namely Met-1, this
chapter identifies the most prevalent fault cases and provides an overview of the current approaches that
deal with them. Later sections will detail the promising concepts introduced by this chapter.

Whereas Section 3.1.1 introduces the modern approaches in robust and adaptive control and then
Section 3.1.2 compiles a list of faulty scenarios that a flight controller has to withstand.

3.1.1. Modern Robust and Adaptive Approaches
Fault tolerance is correlated to the frameworks of robust and adaptive control techniques. Therefore, one
should first look into what these two umbrella terms refer to. According to Lavretsky and Wise [4], a
robust controller is expected to perform ‘relatively’ well under the assumption of worst-case conditions.
In contrast, an adaptive controller would try to perform an online estimation of the process uncertainty
and then produce a control input to anticipate, overcome, or minimise the undesirable deviations from the
prescribed behaviour [4].

A successful approach to dealing with faults involves active adaptive flight control systems (FCS).
Such a fault-tolerant controller system (FTC) compares signals from both control and monitoring channels
to detect failures. This algorithm must be reliable enough to provide tolerance to sensor inaccuracies
and modelling errors to prevent false alarms, but sensible enough to detect failures on time. Figure 3.1,
adapted from [3], shows an example of such a flight control system. Here, the states of the aircraft and
the outputs of its subsystems are compared to reference values within a Fault Detection & Diagnosis
(FDD) block. The reference signals are obtained by feeding the recorded data into a model of the aircraft
dynamics which can be identified beforehand (offline) or during the flight (online). Once a fault is identified,
the diagnoser sends a command to the control ‘Reconfiguration mechanism’, a system that updates the
policy of the controller according to the identified fault case. In many modern aircraft, such systems are
usually implemented in the form of gain schedulers, adapting the gains of linear PID controllers [3].
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Figure 3.1: Generic fault-tolerant control scheme used within the FCS [3].

Besides controllers that can be adapted, modern systems also incorporate detailed procedures for
safety checks and hardware redundancy. This work will only focus on the software solutions which are
currently the subject of competitive industrial and academic research.

Nowadays, the state-of-the-art in field fault-tolerant flight control revolves around intelligent adaptive
methods. In addition to their adaptive properties, such controllers can be constructed to ‘learn’, or to ‘in-
telligently remember’ useful observed information. In most general terms, learning refers to remembering
and/or recognising certain patterns in the observations and acting based on prior knowledge [4]. One
can split them according to multiple taxonomies such as model-free or model-based, online and offline
learning. Furthermore, hybrid methods are developing, for example, consider an offline pre-trained model
which is then updated online. The detailed benefits of both sides from the above list of alternatives will
unveil themselves throughout the next chapters. This section serves as an overview of the current field’s
efforts, hopes and goals.

Artificial Neural Networks (ANNs) have seen a massive spike in popularity due to their success within
the deep learning framework [10]. Despite this, the idea of training a non-linear regression model, such
as a Neural Network (NN) is by no means new. As part of NASA’s Intelligent Flight Control System (IFCS)
program for F-15 program [47], pre-trained and online learning neural networks were flight tested on the
NASA IFCS F-15 test bench. The experiments validated the ability of the neural networks to predict the
stability parameters of the aircraft used for control.

More recently, techniques such as gain scheduling fuzzy logic control [48] have steadily developed
into popular approaches for controlling systems with faults. Historically, the standard methods try to first
identify the type of fault (the ’Diagnoser’ block from Figure 3.1 is responsible for this) and select a control
policy according to the specific fault. the underlying requirement is that the controller has to be trained on
as many fault cases as possible. When a new situation is encountered, the gain scheduler or fuzzy logic
operator can then interpolate between the known controllers. For example, [48] presents a hybrid archi-
tecture that uses an augmented Takagi-Sageno fuzzy controller in a reinforcement learning framework to
find control policies for partially unknown systems in presence of actuator faults. The method can also
extrapolate to combinations of known faults. It is able to perform in real-time but the recorded faults have
to fall within pre-defined bounds, thus greatly reducing its generalisability.

Both the aerospace and robotics literature seem to agree that the task of identifying the fault is not a
well-posed problem. Mathematically, such architectures cannot distinguish between faults in the systems
and modelling errors as both would cause mismatches between signals [21, 3]. Moreover, faults such as
icing or biased sensors are particularly difficult to detect or isolate [18]. In flight control, non-linear methods
such as Incremental Non-linear Dynamic Inversion (INDI) or incremental backstepping (IBS) alleviate the
need for the diagnosis step. The incremental part is responsible for the online identification of linear and
time-varying models of the aircraft dynamics, reducing the sensitivity to mismatches in the model [2, 8].
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Reinforcement learning (RL) is a popular learning-based approach to solving complex tasks. It has
been applied to flight control as Approximate Dynamic Programming. This framework is still reliant on
identifying a dynamic model online, but it demonstrated robustness in dealing with faults [6]. This proved
successful in controlling highly complex coupled systems such as the F-16 fighter jet aircraft [7] due to its
higher approximation power than other previously described non-linear control methods.

Recently, research has started focusing on offline methods which can significantly improve perfor-
mance by training longer in a simulation environment. Bio-inspired methods such as deep reinforcement
learning (DRL) remove the need for identifying the fault, moving towards model-free adaptive policies [19,
18, 16]. The intelligent controller trains by experiencing many simulated interactions between the system
and the environment. After training is completed offline, the controller can follow the converged policies,
hopefully dealing with the disturbances, faults and other unforeseen phenomena. Moreover, the DRL
framework inherits the advantages of modern deep learning techniques [10]. Essentially, they provide a
relatively-sample efficient way to train non-linear functions to approximate complex dynamics [5]. Lever-
aging longer training times, DRL obtains state-of-the-art performance in tasks considered difficult for more
traditional control systems [18, 19].

To better understand the reasoning behind model-free intelligent control, one shall look back at what
fault tolerance would require. An agent, be it a human pilot or a specific form of high or low-level AI within
the auto-pilot, has been trained to control the system in a nominal scenario. Once some damage is inflicted,
the dynamics of the system change. Does it still show any resemblance to the nominal system? Yes but in
a limited way. Now the agent has to adjust or adapt its behaviour to the new system. Unfortunately, the time
required to re-learn an entirely novel control policy is much longer than the one available. Thus, to avoid
imminent disaster, the controller shall efficiently use a sub-set of its prior knowledge and tweak its control
policy. Day-to-day empirical evidence has shown that humans and animals are creatively discovering
compensatory behaviours without being limited to a set of rigorously predefined rules or assumptions
about how damage may occur and how to compensate for each type of fault [3].

The AI-based controller can also benefit from a similar type of curiosity. In general terms, the machine
has to be able to deal with unforeseen circumstances. Within the machine learning community, this is
widely referred to as generalisability [10]. A generalisable learning method would translate into a control
algorithm capable to react once a new set of state-action pairs is fed through or unforeseen phenomena
appear. Ideally, its performance shall at most gracefully degrade in out-of-distribution conditions.

But implementations of intelligent controllers have their own challenges to be tackled. Section 3.2.4
will detail how DRL is implemented in flight control and Section 3.3.3 will present a few approaches to
using evolutionary algorithms to train a diverse repertoire of policies to adapt to faults.

3.1.2. Fault Cases
Before the phase of controller design, one shall first aim to isolate the corresponding faulty conditions that
the adaptive and/or robust controller has to be able to cope with.

In [3], a detailed historical analysis of air crashes has been conducted. The most critical failure cases
are identified as the probable scenarios that would be in the most severe accidents. The author considers
the rudder hardover, engine separation and total loss of hydraulics as the most critical failure cases. As
they are considered the most severe, these scenarios can be considered the extreme corners of a failure
envelope. Within the span of such an envelope, there are other cases that a fault-tolerant controller should
be able to deal with. The following list has been compiled after consulting multiple works that consider
aspects of designing fault-tolerant controllers:

1. Changed aerodynamic parameters (mainly lift and drag coefficients) [18]. For example, this can be
caused by icing which increases the skin friction drag and reduces the maximum lift attainable and
the stall angle by downshifting the lift curve [49].

2. Sudden change of centre of gravity (CG) location. Such fault case affects larger aircraft less than
smaller business jets or small unmanned aerial vehicles (UAVs).

3. Reduce control surface effectiveness. For a standard fixed-wing aircraft this implies that either the
rudder, the elevator or the ailerons are less effective due to, for example, damage or mechanical
friction [2].
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4. Faulty sensor recordings. Bias or increased noise in the sensor data can be highly detrimental to
state estimation and control [18].

5. Structural damage of a control surface which causes total loss of control for that actuator [18, 2].
6. Lack of control after an engine burst. The controller has to counteract large asymmetric moments

caused by the thrust differential [3].
7. *Undetected oscillatory failure at a frequency critical to the structure [50]. Such modes of vibration

are caused by aeroelastic effects such as flutter or by pilot-induced oscillations, a phenomenon
known from manual control. The fault-tolerant controller would aims to prevent the onset of such
oscillations, reducing the risk for future damage.

Lastly, multiple faults can occur, essentially combining two or even more categories from the list above.
Icing can affect the aerodynamic parameters of the aircraft but it can also reduce the effectiveness of
the actuators. Similarly, debris from an engine burst can inflict structural damage on the tail surfaces, as
happened during the United Airlines Flight UA232 accident [51]. The combination of multiple failure cases
would not only increase the severity but also make the control more difficult. One can argue that, in such
cases, preparing for each failure scenario would result in reduced control effectiveness [3].
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3.2. Deep Reinforcement Learning
This chapter presents the reinforcement learning methods, starting from its mathematical background in
dynamic programming andmoving towards their applications to state-of-the-art intelligent flight control. By
carefully considering their strengths and limitations, they will later become building blocks for the hybrid
framework developed throughout this research. Thus, this chapter contributes to the body of research
work by answering sub-question Met-2.b.

The chapter starts by providing a formal theoretical background in Section 3.2.1 and it moves towards
the more advanced topic of learning with function approximators in Section 3.2.2. Then, three state-of-the-
art algorithms are selected and described in Section 3.2.3. Section 3.2.4 will shift the perspective toward
the applicability of DRL to flight control problems. The chapter concludes with Section 3.2.5 by reflecting
on the advantages and disadvantages of reinforcement learning.

3.2.1. Background on Reinforcement Learning
Reinforcement learning (RL) is a machine learning framework directly inspired by the learning processes
of living beings. In the most general sense, it allows a programmed agent to interact with its environment
and learn ’what to do — how to map situations to actions — so as to maximise a numerical reward signal’
[5]. The learner neither knows nor is told beforehand what will happen when a certain action is taken.
By recursively iterating on its behaviour, it can eventually learn the correct actions that lead to its desired
goal.

Another perspective on reinforcement learning had been proposed by Bertsekas and Tsitsiklis and it
has roots in the field of operational research [52]. In comparison to the framework of Sutton and Barto,
the differences are subtle and mainly come from the authors’ backgrounds. Sutton and Barto aim to learn
by maximising rewards and talk about value functions [5] whereas Bertsekas and Tsitsiklis talk about cost-
to-go-functions, always moving towards the minimal cost [52]. This work will stick to the perspective of
Sutton and Barto as it is currently more established in the field of RL.

Basic concepts
Any RL task can be summarised as the trial of an agent to move from its initial state to the final state
while maximising a reward r provided by the environment. In the case of aircraft flight control, the task is
continuous so the final state or termination criterion is usually specifically defined for each task [53].

At each time-step, it selects an action at to move from its current state s to the future state s′. Once the
terminal state has been reached, the episode is completed and the sum of all rewards can be reported.
Figure 3.2 depicts the agent-environment interaction.

For the current problem, the learning agent is the flight-control control system and the environment
corresponds to the aircraft and the volume of air through which it flies.

Markov Decision Process
All approaches of RL place at their core the mathematical assumption of a fully-observable Markov Deci-
sion Process (MDP). To formalise the MDP, the literature defines the following functions and variables:

• S is the set of all valid states
• A is the set of all valid actions
• R : S ×A× S → R is the reward function, with rt = R (st, at, st+1)

• P : S × A → S is the state-transition (probability) function, with P (s′ | s, a) being the probability of
transitioning into the next state s′ from current state s by performing action a. The index t is usually
dropped for brevity.

In optimal control, a system is considered an MDP iff it obeys the Markov property: the current transition
only depends on the most recent state and action [54]. Hence, the memory of the previously observed
history of transitions collapses into the current state, as shown by Equation 3.1:

P {st+1, rt+1 | st, at, . . . , s0, a0} = P {st+1, rt+1 | st, at} (3.1)

Essentially, the Markov property ensures that the agent’s future can be fully explained by the present.
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Figure 3.2: The agent–environment interaction in the frame of a Markov decision process, the basic
exchange of information behind reinforcement learning.

There is a distinction between what the agent’s observation and state. Once the agent cannot fully deter-
mine its state from the observation, it is forced to carry or learn a model of its sensors. This belongs to
the more general framework of partially observable MDP (POMDP) [55]. The present RL formulation will
always be assumed that the agent’s state is entirely known from its observation.

Policy and trajectory
The policy µ can be seen as either the behaviour of the agent or the control law. In other words, it is a
rule that tells the agent what actions to take at its state. It can be deterministic or stochastic, denoted by
µ and π respectively:

at = µ(at) or at ∼ π(·|st). (3.2)
In this section, the policy will be denoted by π to align with the field’s literature which generally assumes a
stochastic policy distribution. Despite this, Section 3.2.3 will present algorithms that select actions based
on deterministic policies.

Subsequently, a trajectory Tn is an ordered sequence of n state-action pairs that an agent passes
through while following a policy:

Tn = (s0, a0, s1, a1, . . . , sn−1, an−1) (3.3)

Thus, the trajectory can be seen as the motion resulting from following one or more policies.

Reward function
The reward function R depends on the current state of the world, the action just taken, and the next state
of the world:

rt = R(st, at, st+1) (3.4)
As a possible simplification, the reward function is reduced to a dependence on the current state, rt =
R(st), or state-action pair rt = R(st, at).

Learning is enabled by maximising the cumulative reward over a trajectory starting at the current time-
stamp t, referred to as the return Rt. For continuous learning, the return is the infinite-horizon sum of all
rewards ever obtained by the agent, discounted by how far off in the future they are obtained:

Rt = lim
n→∞

(r + rt+1 + γrt+2 + . . .+ γnrt+n) = lim
n→∞

n∑
k=0

γnrt+k (3.5)
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The discount factor or rate γ from Equation 3.5 represents the confidence or interest in future events. A
value close to zero disregards future rewards whereas a high discount factor favours them. The intuition
is backed mathematically: the infinite-horizon sum of a series of rewards can converge if and only if the
series itself is convergent. This translates to the condition that:

lim
n→∞

γn · rt+n → 0 (3.6)

Which always happens for γ ∈ (0, 1). For episodic learning, the time does not approach infinity as any
episode ends after a number of steps or when the termination criterion has been reached. In practice, for
long leanings episodes, the above mathematical formalism still holds.

Value functions
To track the expected return obtained by following a policy, the concept of state value function is introduced
by Equation 3.7. It gives the expected return if you start in state s and always act according to policy π:

V π(s) = E [Rt | st = s] (3.7)

In a similar fashion, the state-action value function from Equation 3.8 records the expected return when
the agent starts in state s, takes an arbitrary action and then forever after acts following policy π. It is
important to note that at, the first action taken, does not have to be following policy π:

Qπ (st, at) = Eπ [Rt | st, at] (3.8)

Now, by using these two functions, one can try to find the optimal policy π∗. By following this policy, the
expected discounted return is maximised, yielding the optimal value functions in Equation 3.9:

Q∗(s, a) = maxπE [Rt | st = s, at = a] and V ∗(s) = maxπE [Rt | st = s] (3.9)

Lastly, the first action at has to be selected. As a direct result of the definition of Q∗ is known, one can
compute the optimal action, a∗(s), referred to as the greedy action:

a∗(s) = argmaxaQ
∗(s, a) (3.10)

Bellman optimality equation
Both the state and state-action functions can be defined recursively. By re-writing Equations 3.8 and 3.7
one obtains the Bellman optimality equations [5, 54]:

Q∗(s, a) = Es′∼P

[
r(s, a) + γ ·max

a′
Q∗ (s′, a′)

]
and (3.11)

Where P denotes the markovian state-transition function introduced at the beginning of this section. Es-
sentially, the value at the starting point is the reward you expect to get from being there, plus the value at
the next state.

Richard Bellman realised that this recursive consistency enables finding optimal policies for an MDP.
His insight became the fundamental building block of all RL algorithms [5].

Learning Methods
The literature distinguishes between three classes of methods that aim to solve the MDP: dynamic pro-
gramming (DP), Monte Carlo methods and temporal difference learning (TD). They all apply the Bellman
equation as an iterative update rule but DP and TD learn during the episode whereas Monte Carlo updates
are only done at the end of it. The difference between DP and TD learning comes from their dependency
on an available state-transition model with DP being model-based and TD considered model-free [5]. TD
learning represents the core of all the algorithms that will be explained in this chapter.

Temporal difference update
This class of model-free methods learns based on bootstrapping: they use values from previous iterations
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to bound the estimate of the current value. This iterative process is well-suited for control tasks. The
principle is to compute the error between the target and the current estimate of the value function and
increment the current estimate by this error factored by a learning rate α. Equation 3.12 dictates the
update of the value functions:

V (st)← V (st) + α [rt+1 + γV (st+1)− V (st)]

Q (st, at)← Q (st, at) + α [rt+1 + γ ·maxa′Q (st+1, a
′)−Q (st, at)]

(3.12)

In this case, the target is the optimal value functions given by Equation 3.9 and the TD-error corresponds
to the expression between square brackets. The action-state value function, also known as the Q-function,
is used for the off-policy update as it explicitly distinguishes between the greedy (optimal) action and the
actual executed action. This aspect will be discussed further in the next section.

The downside of TD methods is that, in order to guarantee convergence, all state-action pairs need
to be visited continually [5]. Thus, this becomes a necessary assumption for all reinforcement learning
methods that will be described in later sections.

With TD as a baseline for the update rule, RL algorithms can be built to learn the optimal solution.
In discrete state and action spaces, this is done with Q-Learning (using the Q update) or SARSA (using
the V update) [5]. These methods do not learn an explicit policy but only a value function and find the
action argument that maximises it. Similarly, the actor-critic algorithms described by Section 3.2.3 will
also incorporate the TD update.

Exploration and Exploitation
When the agent always chooses the greedy action, it will find a solution, but not necessarily the optimal
solution. The reason for this is that some state-action combinations have never been evaluated, as they
did not correspond to the highest value at that time. Exploration is explained as the need of the agent to
try out sub-optimal actions in its environment, as to increase its chances of escaping the local optima of its
current policy. At the core of learning from reinforcement signals, there is a trade-off between exploration
and exploitation [5].

But this trade-off goes beyond RL. One can realise that it is, by all means, present under different
names in other machine learning and optimal control frameworks. Mostly relevant for this work are ge-
netic algorithms. They explore via carefully designed mutation operators that alter the current population
of solutions while exploiting ‘good’ policies by combining them via crossover. Both will be detailed in
Chapter 3.3.

Last but not least, the trade-off is very much present in the daily learning endeavours of all leaving
species alike. Exploration is a synonym for the curiosity that drives living creatures to find out more about
their own environment. Sometimes, it causes negative effects, such as pain or time delay, with the hope
that exploration will return more useful experiences in the long run. Other times, one has to accept their
current situation and exploit the most out of it.

Following the previous discussion, RL distinguishes between two types of exploration. Any algorithm
will be based on one or the other. The key ideas behind these two ways are seen below:

Off-policy and on-policy learning

• Off-policy: evaluate or improve a policy different from that used to generate the action(s) for
the current state.

• On-policy: evaluate or improve the same policy currently used to make decisions.

Consequently, an off-policy setup for exploration enables learning from trajectories that are not nec-
essarily obtained under the currently followed policy. In general, it uses the greedy action to update the
Q-function while adding noise to the current executed action. During training, this exploratory noise may
lead to dangerous actions with catastrophically low returns. During the subsequent evaluation step, safety
is achieved by removing exploration noise. Finally, to enable off-policy learning, a finite-size memory or
replay buffer is used to store the trajectories and re-use random samples of the different behaviour poli-
cies.
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In contrast to the first class, on-policy methods such as Proximal Policy Optimisation (PPO) usually
introduce a bias when used with trajectories that are not obtained under the current policy or incorporate
a correction mechanism, such as importance sampling [15]. For them, exploratory behaviour is obtained
by adding noise to the selected action with the ϵ-greedy action being the straightforward way of doing
it since early classic RL algorithms such as SARSA [5]. Alternatively, they can sample directly from a
stochastic policy, as it is done by PPO [15]. Over the course of training, the policy typically becomes
progressively less random, as the update rule encourages it to exploit behaviours already seen to be
rewarding. Despite showing a more stable convergence, defined as the flattening of the learning curve
and diminished variance of the obtained reward, this may cause the policy to get trapped in local optima
[56].

Off-policy exploration is thus more sample efficient as they can achieve a higher reward faster by using
(and re-using) any experience. Despite this, they can suffer from poor policy convergence [5].

Once the hybrid methods based on evolutionary algorithms will be explained, the advantage of off-
policy learning will become substantial. These methods can still learn from past experiences acquired by
other agents (or individuals). Off-policy methods are thus the optimum candidates to be integrated into
the hybrid frameworks described in Chapter 3.4. Therefore, on-policy exploration is no longer discussed.

3.2.2. Learning With Function Approximators
The algorithms for exact value iteration require the storage of distinct return estimates for every state-
action pair in the Q-table. Similarly, the policy collects the actions followed in a list-like structure. Fur-
thermore, when the problem has some continuous states or actions (such is the case for aircraft control),
the required discretisation introduces additional errors. For the classic RL solutions, the resulting number
of state-action pairs increases exponentially with the dimensionality of the state-action space, requiring
more computational resources. Hindering the capacity of RL to scale up, this phenomenon is known as
the curse of dimensionality [5, 54].

To circumvent this problem, the policy and value can be approximated[57]. Reinforcement learning has
seen throughout time many possibilities to perform function approximation such as radial basis functions,
fuzzy logic systems, least-squares linear regressors and neural networks [57]. For their generalisation
power in high-dimensional control tasks, neural networks have become the modern state-of-the-art for
function approximators in reinforcement learning [11, 57, 10].

Artificial Neural Networks
Artificial neural networks (ANNs), also called feedforward neural networks, or fully-connected neural net-
works, have one goal: to approximate the function F that maps the recorded input-output pairs. For
example, for a classifier, y = F (x) maps an input x to a category or class y. A feedforward network
defines a parametrised mapping ŷ = fθ(x) and learns the value of the parameters θ that results in the
best function approximation, or smallest deviation between a set of samples from the y and ŷ distributions
[10]. These models are called feedforward because information flows through the function being evalu-
ated from x, through the intermediate computations used to define fθ (called hidden layers), and finally to
the output y.

In the context of reinforcement learning, ANN is a valid and popular surrogate for the Q-function and/or
the policy function [58]. For brevity, in this section, x and y will generically denote the NN’s input and output
vectors or tensors.

Field terminology
The term network comes from their mathematical representation. Typically, they are represented by com-
posing or chaining together many different functions. By adapting the example from [10], one can take
three functions f1(),f2(), and f3() connected in a chain, to build the mapping f(x) = f3(f2(f1(x))). In this
example, f1 is called the first layer or the input layer of the network, f2 is called the second layer or first
hidden layer, and f3 is the third or output layer. The total length of the chain gives the depth of the model.

Historically, the name ‘deep learning’ (DL) from deep reinforcement learning arose from this terminol-
ogy but, for the current work, they remain as a formal classification. Also, each hidden layer of the network
is typically vector-valued and the maximum dimensionality of these hidden layers determines the width of
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the model. Both the number of layers and their width is tuned as hyperparameters. Lastly, it is sometimes
relevant to consider the total number of neurons which is referred to as the model footprint.

The term ‘neural’ is loosely inspired by the neuroscientific view of the brain, used in an artificial envi-
ronment. Each element of the vector may be interpreted as playing a role analogous to an artificial neuron.
The similarity, although present, is limited and the neural networks should not be seen as models of the
biological brain.

Computational hidden unit
Going inside the model itself, neural networks are at their core a generalisation of a linear regression
created by stacking two or more such affine transformations with some kind of non-linear function, called
activation, in between [59]. The combination of the linear transformation and the non-linear activation
forms the computational unit (neuron); the building block of the network. Going back to the chain of
functions from above, any neuron fi() is described by:

fi (x) := gi
(
W⊤

i x+ bi
)

(3.13)

The weightsWi and bias terms bi are the neuron’s parameters to be optimised during training. For future
reference, the set of learnable parameters of the entire network is denoted with θ. As for the non-linearity
gi(), functions such as the sigmoid, hyperbolic tangent, rectified linear unit (ReLU) or exponential linear
unit (ELU) are all common choices supported in the mainstream libraries. Both ReLUs and ELUs alleviate
the vanishing gradient problem via the identity for positive values thus benefiting from numerical stability
during training [10]. Furthermore, [60] showed that ELUs enhance the training speed as they can map to
negative values. Throughout this research, the ELU activation was implemented, should the authors of a
particular algorithm had not required otherwise.

ReLU(z) = max{0, z} (3.14) ELU(z) =

{
z, z > 0

α · (ez − 1) , z ≤ 0
(3.15)

Loss function
Borrowing from optimal control, the fitted neural network is considered to be the one with the minimum
cost value over the available data set. Specialised loss functions enable training networks in asupervised
manner. The total cost function used to train a neural network is the sum of the losses over all the data
samples [10].

In deep reinforcement learning, the data sets are built from past experiences collected in a memory
buffer or sampled from the behavioural policy. Moreover, since RL learns based on temporal difference
updates, the approximators cannot be trained in the standard supervised manner and their loss values
have to be estimated differently. Section 3.2.3 will detail both how DRL accesses past interactions with
the environment and how the loss values are calculated.

The task of approximating the value and action functions of an agent represents a regression problem.
Therefore, training the function approximator corresponds to minimising the Mean Squared Error (MSE)
from Equation 3.16 with respect to the model parameters.

L
(
x(i), y(i), θ

)
=

1

|B|
∑
x∈B

l(x) = 1

|B|
∑
x∈B

(F (xt)− fθ(xt))
2 (3.16)

With |B| denoting the number of samples (input-output pairs) contained in the data batch B over which
the loss function is computed.

Usually, the cost function also incorporates a regularisation term that penalises the complexity of the
network. This is employed to improve the model generalisability by preventing it from overfiting the training
samples. For reinforcement learning applications, the network’s width and depth are typically small, in
the order of 102 neurons spanning at most 10 layers. Comparing this to modern deep models that train
billions of learnable parameters in hundreds of layers, it seems that RL does not (yet) fully benefit from
regularisation terms. Nevertheless, as the field evolves, some DRL algorithms use increasingly complex
neural networks and thus reinforcement learning regularisation remains an open research question [20].
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Backpropagation and parameter update
The deep learning frameworks are commonly referred to as gradient-based methods since they require
the gradient, or partial derivative, of the cost function with respect to each learnable parameter. One way
to achieve this efficiently is the backpropagation algorithm. Basically, starting from the output layer, the
partial derivatives of the cost functions are calculated and rolled back one layer at a time. This results in a
fast and memory-efficient way to train deep networks which are fully supported in deep learning modules
such PyTorch1 or TensorFlow2.

In this framework, the intrinsic core assumption states that the loss function shall be differentiable. This
is an essential condition for estimating gradients and back-propagating them during training. Nevertheless,
reinforcement learning practitioners have realised that the assumption is usually constraining when the
aim is to predict the future return of a state-transition pair. When the optimisation problem becomes too
complex (e.g., highly non-convex, non-smooth, non-differential, discontinuous, and NP-hard) the resulting
gradient signals are sparse and less informative thus damping the effectiveness of gradient-based learning
[61, 35]. Chapter 3.3 will detail another method to train the network’s parameters that can potentially
circumvent these issues.

First, the parameters are initialised randomly with small values that prevent saturation of the non-linear
activation functions. Algorithms such as Xavier initialisation use semi-empirical formulae to take care of
this step [62]. Then, during training, the gradient values are used to optimise the parameters according
to Equation 3.17. Most modern neural network models use adjusted implementations of the stochastic
gradient descent optimisation algorithm (SGD), such as the Adam optimiser [63, 29].

θk+1 = θk − α ·
1

|B|

|B|∑
i=1

∇θkL
(
x(i), y(i), θ

)
(3.17)

The network weights θ are updated iteratively with k denoting the current iteration step (or epoch) and α
the learning or optimisation rate. The learning rate hyperparameter directly influences the convergence
behaviour: a small α results in slow learning whereas a large value can cause divergent behaviour. Thus,
tuning it properly is a mandatory step during the algorithm design.

During training, the network parameters are moved towards a local minimum of the loss function.
Therefore, within deep reinforcement learning, gradient descent is considered efficient in exploiting local
information. Despite the advantage, convergence to local minima results more often than not in sub-
optimal performance in the global landscape. By comparing gradient-based learning to a random search
in the context of game playing and control tasks, [64] suggests that local optima, saddle points, and noisy
gradient estimates are all impeding learning.

Network architectures
Apart from the above-described feed-forward neural network, many other architectures prove useful in
different learning tasks. Convolutional neural networks have proven useful for processing data with strong
spatial correlations, such as visual data [65], whereas recurrent neural networks and attention mechanism
(usually incorporated in transformer models) exploit the sequential patterns in text, speech or dynamical
systems [66, 67].

The benefits of these specialised architectures arise in the big-data regime [10]. In RL in general and for
flight control in particular, it is difficult to collect millions of relevant samples in the agent’s experience buffer.
Furthermore, the current task of aircraft control does not require processing visual data or learning long-
time dependencies. For these reasons, the state-of-the-art DRL algorithms presented in this work involve
only relatively shallow feed-forward neural networks (at most 4 hidden layers). Moreover, the learning
shall be performed offline in a simulated environment to maximise the number of samples collected and
used. Section 3.2.4 will come back to the aspect of offline training.

Hardware acceleration
Training of deep neural networks benefits directly from heavily developed hardware such as Graphics

1https://pytorch.org/docs/stable/autograd.html [Visited on 01/05/2022
2https://www.tensorflow.org/api_docs/python/tf [Visited on 01/05/2022]

https://pytorch.org/docs/stable/autograd.html
https://www.tensorflow.org/api_docs/python/tf
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Processing Units (GPUs) or Tensor Processing Units (TPUs). During the forward and backward passes,
the batches of samples are stored as matrices or tensors, depending on the shape of the sampled feature
space). These hardware units are specialised in performing fast parallel multiplications of such data
structures, hence speeding up the training process [68].

Lastly, its unprecedented success in many complex tasks has helped DL reach the mainstream. While
the field is still maturing, it has built a strong, diverse and supportive international community both in
academia and industry.

Hyperparameter search
Deep reinforcement learning algorithms are known to show brittle convergence properties, highly depen-
dent on the settings used [14, 35, 42]. More specifically, the field’s literature agrees that the learning
performance of a particular DRL algorithm is strongly sensitive to changes in the specific hyperparam-
eters used. One set that achieves the optimum performance in one environment might converge to a
sub-optimal policy in another one. Thus, meticulous tuning of the learning rates or discounting factor,
exploration parameters and other method-specific settings becomes a necessary condition for each new
application.

Alternatively, it has been observed that a particular method can perform much better after extensive
tuning. Automated RL (AutoRL) frameworks, such as SEARL [41], provide ways for hyperparameter
optimisation to be performed automatically in an external, meta-learning, loop [69]. In practice, meta-
learning provides an increase in the algorithm’s sample efficiency at a cost of computational resources.

The preliminary phase of the current thesis aims to select a learning framework that performs well in the
task of fault-tolerant continuous control. That is why, during the preliminary phase, the resources allocated
for hyperparameter tuning are reduced. Nevertheless, a more extensive search for a well-performing set
will be conducted in the later stage for the selected application domain (see Part III). For the preliminary
analysis later described in Chapter 4 of this part, a performance margin is considered for the investigated
algorithms:

Performance Margin (preliminary analysis

Two or more DRL algorithms will be considered similar if and only if their final mean performance
is within 5% with the hyperparameters recommended by the designer of the algorithma.

aFor most DRL algorithms websites such as SpinningUP contain a set of recommended parameters. If not available,
the set from the original paper will be taken.

Whereas the performance gap aims to relax the performance comparison during the preliminary study.
More sophisticated methods of statistical analysis should be involved to make decisive conclusions but
this goes beyond the scope of the current work.

To allow others to replicate or reproduce the work, it is considered necessary to not only clearly report
the values of the hyperparameters but also document the tuning process [70]. Consequently, the perfor-
mance claims of authors that do not provide these details are harder or even impossible to verify. This
has been taken into account during the current literature study while selecting the relevant methods for
further analysis.

3.2.3. State-of-the-art DRL Algorithms
Now that the framework is introduced, one can take a look at the most relevant algorithms implemented in
the literature. As already mentioned, the task at hand concerns continuous control, so only the methods
appropriate for continuous state and action spaces are considered. Figure 3.3 inspired from [71] depicts
some of the most significant algorithms belonging to the DRL frameworks. Covering all methods and
frameworks that have been developed goes beyond the scope of the current work. An empty branch has
been added to Figure 3.3 to showcase that its overview is incomplete.

Notably, AlphaZero and MuZero were among the first mainstream successes of DRL. They managed

https://spinningup.openai.com/en/latest/spinningup/bench.html
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to beat the best human players in complex strategic games such as GO, Shogy and Starcraft3.

The current work aims to perform offline learning for fault tolerance. Therefore, the model-based
frameworks are less attractive as they are prone to overfitting the dynamics model [18, 31]. The right-
hand side of the three from Figure 3.3 is thus left out of the scope of future discussions.

As the goal of the current work is to find the synergy between reinforcement learning and evolutionary
processes, the hybrid implementations presented in Chapter 3.4 only consider off-policy control for its su-
perior efficiency in learning from past experiences. Therefore, the methods that use on-policy exploration
are not considered further, as the focus is on the off-policy algorithms. Lastly, the Hindsight Experience
Replay (HER) is applicable whenever there are multiple goals which can be achieved, e.g. achieving
each state of the system may be treated as a separate goal [72]. Any off-policy algorithm can benefit from
using HER so its implementation is left as a possible future step to improve the performance of the hybrid
frameworks described later.

The following sections will detail the DDPG with the DQN and Policy Gradient components and two of
its extensions, the TD3 and SAC algorithms.

Figure 3.3: Modern DRL algorithms visualised in a tree-like structure. The figure is adapted from [71].

Deep Deterministic Policy Gradient
Policy gradient methods frame the goal of maximising return as the minimisation of the loss function L(θ)
where θ symbolises the parametrised agent. A widely used policy gradient method is Deep Deterministic
Policy Gradient (DDPG) [12], a model-free RL algorithm developed for working with continuous high di-
mensional action spaces. It closely resembles the Q-learning approach of Deep Q-Networks (DQN) but
it follows a continuous policy. Both will be described below.

Deep Q-learning: First, the Q-function Q(s, a) is approximated by a parametrised function Qϕ(s, a)
which is differentiable with respect to its parameters ϕ.

3https://www.deepmind.com/blog/muzero-mastering-go-chess-shogi-and-atari-without-rules [Visited on
24/05/2022]

https://www.deepmind.com/blog/muzero-mastering-go-chess-shogi-and-atari-without-rules


3.2. Deep Reinforcement Learning 45

TheQ-networkQϕ trains via gradient descent with backpropagation but without supervision since there
are no ground truth labels. Essentially, the MSE loss from Equation 3.16 has to adapt to mirror the Bellman
optimality function from Equation 3.11. The new approximation loss is the mean squared Bellman error
(MSBE), calculated over the collected buffer of past transitions D:

L(ϕ,D) = E


Qϕ(s, a)−

(
r + γ(1− d)max

a′
Qϕ (s

′, a′)

)
︸ ︷︷ ︸

target value y(r,s′,d)


2 , (s, a, r, s′, d) ∼ D (3.18)

The term y(r, s′, d), represents the output of the target network and it is obtained from a forward pass.
Hinting toward the code implementation, d is a Boolean variable that stores the observed value of the
environment (or trail) termination criterion. Essentially, d is 1 (true) when s′ is the final state, incorporating
in the Q-function the knowledge that the agent receives no additional rewards in the future. This trick
enables a straightforward implementation of the algorithm.

Policy gradient learning: Since the policy is continuous, the greedy action selection from Equation 3.10
cannot be performed. The gradient policy part of DDPG aims to learn a deterministic parametrised policy
µθ(s) which returns the action that maximises Qϕ(s, a). To optimise the policy network, one can just
perform gradient ascent with respect to policy parameters, taking the Q-network estimate over the buffer
D as the objective function.

This idea was first introduced by the REINFORCE algorithm developed by [73] for on-policy iterations
but it has since also been applied to off-policy algorithms.

Similarly, the A2C and A3C algorithms also depicted in Figure 3.3, perform gradient ascent to directly
maximise the current performance (equal to the value function V (st)) and the advantage of the next action
A(at, st) = Q(at, st)− V (st) [74]. In general, the policy optimisation problem then becomes:

max
θ

E [Qϕ(s, µθ(s))] , s ∼ D (3.19)

Actor-critic structure: The previously described DQN’s target network was designed to learn to approx-
imate the Q-value function. This function shows how well the current policy will be performing, essentially
being a critic of it. Similarly, the learnt parametrised policy that performs the actions is named the actor.
A new actor step will let the critic update via the temporal difference bootstrapping. Consequently, the
updated critic is used to improve the policy. The cycle repeats at every iteration.

The DDPG algorithm concurrently learns a Q-function and a policy, so the standard taxonomy consid-
ers it an actor-critic method [5]. Now, the basic RL algorithm presented at the beginning of this chapter
can be updated for future reference. The actor-critic concept can be visualised in Figure 3.4.

Replay buffer : As already mentioned, sufficient exploration is necessary to combat inefficient learning
in the presence of sparse gradients or local minima of the loss function. The replay buffer D of the
reinforcement learning agent stores its past experiences in the form of (s, a, r, s′) tuples obtained from
the policies it followed. This ensures that the off-policy exploration can benefit from the previously learnt
behaviours, increasing the algorithm sample efficiency. The replay buffer is directly used to train the actor
and critic networks.

Target network: The actor and critic network parameters cannot be trained in the standard supervised
way. Looking at Equations 3.18 and 3.19, the objective value depends on the same parameters (i.e., θ
and ϕ) that one tries to train. This chicken-egg problem becomes unstable. The solution proposed is
to take a set of parameters which comes close to θ and ϕ, but with a time delay. This delayed network,
called the target network, will thus have to lag the main one [12]. The parameters of the target network
are denoted ϕtarg and θtarg respectively.

In DDPG-based algorithms, the target network is a version of the main network, updated at the same
time with it by low-passing its values with a Polyak average, firstly developed by [75] to improve the
convergence of iterative methods. This type of soft update introduces a delay in the updated parameters
[12]. In Equation 3.20, the soft-update rule is shown for a target function parameterised by θ:

θtarg ← ρθtarg + (1− ρ)θ (3.20)
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Figure 3.4: The agent–environment interaction with a parametrised actor-critic structure.

Where ρ ∈ (0, 1) is a hyperparameter of DDPG. Now, putting it all together, the final version of MSBE loss
for DDPG is shown by Equation 3.21:

L(ϕ,D) = E
[(
Qϕ(s, a)−

(
r + γ · (1− d) ·Qϕtarg

(
s′, µθtarg (s

′)
)))

)2
]

with (s, a, r, s′, d) ∼ D (3.21)

To better understand the exact steps followed by the algorithm, the pseudo-code from Algorithm 1 sum-
marises the implementation of its tricks.

Lastly, DDPG is an off-policy control algorithm as it trains a deterministic policy in an off-policy way.
Because the policy is deterministic, should the agent exploit it, it would not try a wide enough variety of
actions to even find possibly useful learning signals. To enhance exploration, Gaussian noise was added
to the selected actions at training time [12]. As shown by line 3 from Algorithm 1, the resulting actions are
then clipped within pre-define action bounds to ensure stability during the interaction with the environment.

DDPG is a common solution as it leverages some of the above-mentioned tricks to improve the sample
efficiency of learning but is considered notoriously challenging to use due to its extreme brittleness and
hyperparameter sensitivity. The following two algorithms add new tricks to combat these undesirable
characteristics.

Twin-delayed DDPG
A common failure mode for DDPG is that, after a certain number of training episodes, the learned Q-
function begins to dramatically overestimate Q-values, which then leads to the collapse of the exploited
policy [13]. Theoretical studies performed by [76] analytically proved that Q-learning suffers from an
overestimation bias. They argue that the greedy maximisation of a noisy Q-function estimate induces a
consistent overestimation even if the approximation noise is zero-mean.

Such inaccuracy will continue to increase due to the recursive nature of temporal difference learning
in which an estimate of the value function for one state is updated using the estimate of a subsequent
state. This means that using an imprecise estimate within each update will lead to an accumulation of
errors. Over multiple updates, the accumulated error can cause arbitrarily ’bad’ states to be estimated
with a high Q-value, resulting in sub-optimal policy updates and divergent behaviour [13].

The Twin Delayed DDPG (TD3), developed by [13], directly addresses the issue of Q-value overesti-
mation by clipping the outputs of the critic Q-network, smoothing the target policy and further delaying the
updates of the target actor-network. The algorithm is highlighted by the pseudo-code from Figure 2.
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Algorithm 1 Algorithm: Deep Deterministic Policy Gradient (DDPG)
Input: random policy network parameters θ, Q-function parameters ϕ, empty buffer D

1: Initialise the target critic and policy networks by the hard update: θtarg ← θ and ϕtarg ← ϕ
2: while not converged do
3: Observe current state s select clipped action a = clip(µθ(s) + ϵ, alow, ahigh) with ϵ ∼ N (0, σ)
4: Execute action a in environment
5: Observe new state s′, reward r and bool d indicating if the new state is terminal
6: Store experience as transition tuple (s, a, r, s′, d) in the replay buffer D
7: if d is True then:
8: Reset environment
9: end if

10: for iter in range(maxiter) do
11: Sample random transitions batch B = ((s, a, r, s′, d)) from D
12: Use batch to compute target value:

y(r, s′, d)← r + γ(1− d)Qϕtarg

(
s′, µθtarg (s

′)
)

13: Update critic by one step of batch gradient descent (shown by Equation 3.17) of the MSBE
loss from Equation 3.16:

ϕ← ϕ− αcritic · ∇ϕ
1

|B|
∑

(s,a,r,s′,d)∈B

(Qϕ(s, a)− y (r, s′, d))
2

14: Update policy by one step of gradient ascent:

θ ← θ + αactor · ∇θ
1

|B|
∑
s∈B

Qϕ (s, µθ(s))

15: Soft-update the target networks using Equation 3.20:

ϕtarg ← ρϕtarg + (1− ρ)ϕ
θtarg ← ρθtarg + (1− ρ)θ

16: end for
17: end while
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(Clipped) Dual Q-networks: Firstly, TD3 learns two Q-functions instead of one, thus the ‘twin’ name.
Then, it uses the smaller of the two Q-values to form the targets in the MSBE loss as shown by Equa-
tion 3.22 By involving the less optimistic value function as an optimisation target, the algorithm is less
prone to overestimation bias which was empirically shown to improve learning stability [13].

y (r, s′, d) = r + γ(1− d) min
i=1,2

Qϕi, targ (s
′, a′ (s′)) , (3.22)

Both Q-networks are trained according to the MSBE loss from Equation 3.21.

Target policy smoothing: Secondly, the actions used to train Qϕtarg are still based on the target policy,
µθtarg , but with clipped Gaussian noise added on each dimension of the action. After adding the noise, the
target action is clipped again to lie in the valid or safe action range, defined by the interval [aLow, aHigh)].
The sampled action thus becomes:

a′(s′) = clip
(
µθtarg(s

′) + clip(ϵ,−c, c), aLow, aHigh

)
, ϵ ∼ N (0, σ) (3.23)

In DDPG, if the Q-function approximator estimates an incorrect sharp peak for some actions, the policy
will incorrectly exploit that peak. In contrast to just clipping the selected action a (as done by line 4 of
DDPG), target policy smoothing can be seen as a form of regularisation.

Delayed policy updates: Lastly, empirical experiments suggest that learning failure can occur due to
the interplay between the actor and critic updates. Overestimation becomes a problem when the policy
is noisy or far from the optimum, and the policy will become poor if the critic’s estimate itself is inaccurate.
Thus, as the target networks help reduce the error over multiple Polyak updates, and policy updates on
high-error states cause divergent behaviour, then the policy network should be updated less frequently
than the critic network [13]. The pseudo-code from Figure 2 updates the policy in-between lines 15 and
18.

The delayed rate of updates, policy_delay, becomes a hyperparameter of TD3, always set to be higher
or equal to 2.

Soft Actor-Critic
The last state-of-the-art algorithm investigated is the Soft Actor-Critic (SAC) [14]. From Figure 3.3, SAC
is an off-policy algorithm based on DDPG.

SAC was developed roughly at the same time as TD3 and incorporates some of its tricks. More
specifically, SAC, DDPG and TD3 share the following:

1. All three learn Q-functions through MSBE minimisation, by regressing to a single shared target.
2. All update the target Q-networks by Polyak averaging from Equation 3.20 of the Q-network param-

eters over the course of training.
3. Both SAC and TD3 make use of the clipped dual target Q-network trick to combat the overestimation

bias of DDPG.

The most important extension from DDPG and TD3, which learn deterministic policies, is that SAC
optimises a stochastic one. Therefore, target smoothing is achieved by different means. While TD3
accomplishes smoothing by adding clipped random Gaussian noise to the next target actions, the noise
from that stochastic actor is sufficient to obtain a similar smoothing effect [14].

Entropy regularisation: A central feature of SAC is entropy regularisation. The policy is trained to
maximise a trade-off between the expected return and its entropy, the measure of policy randomness
given by Equation 3.24. One might see a direct link to the exploration-exploitation trade-off: increasing
entropy results in more exploration, which can improve performance in the long run by evading local
optima.

H(P ) = E
x∼p

[−log P(x)] (3.24)

With x denoting a random variable with probability distribution function P. In entropy-regularised reinforce-
ment learning, the agent essentially receives at one particular time step a bonus reward proportional to
the entropy of the policy at that time step. Looking back at the recursive Bellman update of Q(s, a) from
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Algorithm 2 Algorithm: Twin Delayed Deep Deterministic Policy Gradient (TD3) from [13] based on
[71]

Input: random policy network parameters θ, critics parameters ϕ1, ϕ2, empty buffer D
1: Initialise the target critics and policy network by hard update: θtarg ← θ and ϕtarg1,2 ← ϕ1,2
2: while not converged do
3: Observe current state s select clipped action a = clip(µθ(s) + ϵ, alow, ahigh) with ϵ ∼ N (0, σ)
4: Execute action a in environment
5: Observe new state s′, reward r and bool d indicating if the new state is terminal
6: Store experience as transition tuple (s, a, r, s′, d) in the replay buffer D
7: if d is True then:
8: Reset environment
9: end if

10: for iter in range(maxiter) do
11: Sample random transitions batch B = ((s, a, r, s′, d)) from D
12: Compute target action:

a′(s′) = clip
(
µθtarg(s

′) + clip(ϵ,−c, c), aLow, aHigh

)
, ϵ ∼ N (0, σ)

13: Compute target value over the batch using the most conservative critic:

y(r, s′, d)← r + γ(1− d) min
i=1,2

Qϕtarg,i

(
s′, µθtarg (s

′)
)

14: Update each critic by one step of batch gradient descent (shown by Equation 3.17) of the
MSBE loss from Equation 3.16:

ϕi ← ϕi − αcritic · ∇ϕ
1

|B|
∑

(s,a,r,s′,d)∈B

(Qϕ(s, a)− y (r, s′, d))
2 for i = 1, 2

15: Update policy by one step of gradient ascent:

θ ← θ + αactor · ∇θ
1

|B|
∑
s∈B

Qϕ (s, µθ(s))

16: if iter % policy_delay == 0 then:
17: Soft-update the target networks using Equation 3.20:

ϕtarg1,2
← ρϕtarg1,2 + (1− ρ)ϕ1,2
θtarg ← ρθtarg + (1− ρ)θ

18: end if
19: end for
20: end while
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Equation 3.12, the new entropy term is directly added to the expected return according to Equation 3.25:

Qπ(s, a) = E [R (s, a, s′) + γ (Qπ (s′, a′) + λH (π (· | s′)))] with s′ ∼ P, a′,∼ π
= E [R (s, a, s′) + γ (Qπ (s′, a′)− λlog π (a′ | s′))]

(3.25)

Here, the next actions are sampled from the current policy, and not from the replay buffer as done by
DDPG and TD3. The hyperparameter λ is known as the temperature factor that dictates the relative
importance of the entropy regularisation. Similarly to the discounted return, λ is always positive but lower
than 1 to ensure convergence.

Now, to train the regularised network, the MSBE loss function from Equation 3.18 is again assembled.
The target value y(r, s′, d) is estimated by Equation 3.26 using the minimum of the two clipped target
networks but with the entropy term included:

y(r, s′, d) = r + γ(1− d)
(
min
i=1,2

Qϕtarg,i
(s′, ã′)− λlog πθ(ã′|s′)

)
, with ã′ ∼ πθ(·|s′) (3.26)

Stochastic policy learning: The policy should, at each state, act to maximise the expected future
return plus the expected future entropy. Still, the optimisation looks similar to the problem defined by
Equation 3.19. Since for gradient-based learning the policy must be differentiable, the authors use an
already known technique in the form of the reparameterization trick. The action sample is drawn from
πθ(·|s) by computing a deterministic function of the state, policy parameters, and independent noise [18,
14]. Essentially, the original SAC implementation uses a Gaussian policy, taking an action according to
Equation 3.27:

a(s, ϵ) = tanh (µθ(s) + σθ(s)⊙ ϵ) , ϵ ∼ N (0, I) (3.27)

The tanh is a squashing function that bounds the sampled actions to a finite interval and the operator ⊙
represent an elementwise product of two vectors.

Finally, all the above steps are summarised by the pseudo-code from Figure 3.

3.2.4. DRL in Flight-control Applications
Among the first successful applications of RL to robotics, it was the application of Approximate Dynamic
Programming (ADP) used to control a small RC helicopter. The agent learned how to perform complex
manoeuvres such as aerobatic manoeuvres and recoveries [9]. Their experiments showed, for the first
time, the potential of RL to perform a complex task in robotics and flight control.

Online model-based learning
The ADP performs dynamic programming but incorporates function approximators that are learnt online.
This method requires a model of the agent dynamics to be known beforehand. Most often in flight control
or robotics, such models are not readily available. In [9], the authors implement a form of apprenticeship
learning to fit a physics-inspired dynamics model on data recorded during human-piloted flights.

Alternatively, methods such as Incremental ADP (iADP) alleviate the need for a globally accuratemodel
[7]. A highly non-linear system is approximated by a local, time-varying, incremental model, resulting in a
low computational complexity at the expense of generalisability.

Belonging to the class of actor-critic methods, the Incremental Global Dual-Heuristic Dynamic Pro-
gramming (iGDHDP) identifies the dynamic model online and uses two neural networks to approximate
the cost-to-go (i.e., Q-function) and the policy [6]. The method improves tracking precision in the vicinity
of the current state and remains robust to different initial states as Figure 3.5 from [6] shows. The task
concern the longitudinal control of a fixed-wing aircraft which, despite being a small state-action space, it
triggers highly non-linear plant dynamics.

For the current work, training is to be performed offline. Nevertheless, certain ideas from online meth-
ods can be used in a more relaxed form. In Chapter 4, the extension of online adaptation will be introduced.
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Algorithm 3 Algorithm: Soft Actor-Critic (SAC) from [14] based on [71]
Input: random policy network parameters θ, critics parameters ϕ1, ϕ2, empty buffer D

1: Initialise the target critics and policy network by hard update: θtarg ← θ and ϕtarg1,2 ← ϕ1,2
2: while not converged do
3: Observe current state s and sample action a ∼ πθ(·|s)
4: Execute action a in environment
5: Observe new state s′, reward r and bool d indicating if the new state is terminal
6: Store experience as transition tuple (s, a, r, s′, d) in the replay buffer D
7: if d is True then:
8: Reset environment
9: end if

10: for iter in range(maxiter) do
11: Sample random transitions batch B = ((s, a, r, s′, d)) from D
12: Compute target value over the batch using the most conservative critic and entropy regulari-

sation:
y (r, s′, d)← r + γ(1− d)

(
min
i=1,2

Qϕtarg,i
(s′, ã′)− λlog πθ (ã′ | s′)

)
, ã′ ∼ πθ (· | s′)

13: Update each critic by one step of batch gradient descent (shown by Equation 3.17) of the
MSBE loss from Equation 3.16:

ϕi ← ϕi − αcritic · ∇ϕ
1

|B|
∑

(s,a,r,s′,d)∈B

(Qϕ(s, a)− y (r, s′, d))
2 for i = 1, 2

14: Update policy (reparameterised according to Equation 3.27) by one step gradient ascent of the
entropy-regularised value function:

θ ← θ + αactor · ∇θ
1

|B|
∑
s∈B

(
min
i=1,2

Qϕi (s, ãθ(s))− λlog πθ (ãθ(s) | s)
)

15: if iter % policy_delay == 0 then:
16: Soft-update the critic target networks using Equation 3.20:

ϕtarg1,2
← ρϕtarg1,2 + (1− ρ)ϕ1,2

17: end if
18: end for
19: end while
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Figure 3.5: Angle of attack tracking of an online trained iGDHDP agent [6]
.

Offline learning
More recently, model-free offline DRL methods have been applied to flight control tasks. The hope is that
such methods could offer a way to tackle the course of dimensionality which inhibits learning for systems
with high dimensional state-action spaces.

PPO has been implemented by [19] to control the coupled dynamics of an unmanned small flying-wing
aircraft model. The training was performed offline in an episodic fashion and the reward functions were
designed to penalise the squared error with respect to reference signals To improve performance, the
initial conditions became increasingly more diverse and the reference signals more challenging to follow.
Compared to a PID controller, the PPO agent showed similar transient performance in tracking the pitch
and roll references whereas benefiting from a smaller steady-state error.

More importantly for the current work, the learnt policy was better able to adapt to wind disturbances
and turbulence [19]. As such adverse conditions were not part of the training set, the method showed
robustness, being able to generalise to unforeseen circumstances.

Off-policy methods have also become popular. In [16], DDPG is trained offline to control a small fixed-
wing UAV. The training set consisted of four different consecutive scenarios, each with 500 episodes, that
excite either the longitudinal, lateral or directional modes. Moreover, during each set, the allowable range
of one or two actuators was reduced which improved convergence. The simplified action space, despite
significantly speeding up the training, limits the precision of the learnt policies in tracking tasks with more
than one angle reference.

More advanced algorithms have been applied to both quadcopter and fixed-wing flight control tasks.
For example, the go-to-target task is solved in [17] by applying a SAC algorithm with neural inhibitors to
train a control policy to optimise the path of a simulated quadcopter. Furthermore, SAC showed promising
robustness while controlling a fixed-wing aircraft. In [18], a SAC-based controller was trained offline on
the coupled dynamics model of a small jet aircraft. The control architecture consists of two SAC agents
in a cascaded framework providing incremental control inputs. The inner-loop agent is trained to provide
actuating commands for the aircraft to follow reference signals in pitch, roll and side slip. The outer loop
corresponds to an altitude tracker which outputs a pitch signal for the aircraft to follow an altitude reference.
The control scheme is shown in Figure 3.6 from [18].

During training, the aircraft is in a nominal condition i.e., no faults have been inflected). After learning
from 106 rewarded interactions, the trained policy was able to withstand seven distinct faults and failures
such as jammed rudder, reduced aileron effectiveness, structural failure, icing, backward c.g. shift and
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Figure 3.6: Altitude and attitude cascaded controllers trained with hierarchical SAC agents. Retrieved
from [18].

corrupted sensor measurements [18].Figure 3.7 depicts the response of the agent to the case of a jammed
rudder. The failure takes place instantaneously at t = 10 s but the agents can successfully stabilise
the response whereas its tracking error degrades. Then, in the second half of the evaluation episode,
another controller engages. This one has been specifically trained on the system in the presence of the
aforementioned fault. Successfully commanding the faulty system to follow the references empirically
shows that the DRL offline controllers can indeed be extended to an online learning framework.

In general, the above-presented results serve as proof of the potential of state-of-the-art DRL to gener-
alise and remain robust. Despite this, two SAC controllers are needed to control the attitude and altitude
separately in a cascaded manner. Also, the incremental control architecture provides smoother action
commands which are degrading the convergence rate of offline learning.

Last but not least, other extensions that aim to improve sample efficiency include hierarchical DRL [77]
and curriculum learning [78]. While these updates would probably improve tolerance against faults, they
do not explicitly treat faulty situations.

Overall, online learning is sample efficient but it performs well only for a limited horizon. During offline
learning, the agent can explore more conditions to achieve robust policies. Nevertheless, in the context
of fault-tolerant flight control, the main challenge of intelligent controllers learnt offline is how well their
policies can generalise to possibly unexpected conditions encountered during flight.

Computational time
Where available, the sample complexity of the algorithms described so far in this section is in the order of
106 steps [16, 18]. The reported training times are in the range of a few hours on standard hardware. For
example, [19] took took ”about an hour” to train their PPO agent using an Intel i7-9700k CPU and an RTX
2070 GPU.

Despite their performance, the sample complexity of state-of-the-art DRLmethods is too high for online
learning. Modern DRL algorithms are usually trained offline to benefit from the hardware designed to
accelerate deep learning. Aircraft regulations make it harder for them to be equipped with GPUs or TPUs.
The small drones usually, although sometimes equipped with newer hardware, cannot provide the required
electrical power requested for prolonged periods.

The current work aims to involve offline training on accelerating hardware, so the above-mentioned
challenges are not directly constraining. Nevertheless, prospective future tests on real hardware require
that the computational constraints shall not be overlooked entirely.

3.2.5. Advantages and Limitations
This chapter presented the background behind reinforcement learning. It also detailed how non-linear
function approximators can be harnessed to scale up RL to complex, high-dimensional, continuous tasks
in continuous control. Three state-of-the-art algorithms were presented, namely DDPG, TD3 and SAC.
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Figure 3.7: Altitude tracking response of SAC agents for an aircraft with the rudder stuck at δr = −15◦
from t = 10 s (grey solid line). The reference signals are shown with red dashed and solid lines,

respectively, and control inputs with green solid lines. The agent trained on the faulty system starts at
t = 60 s. Retrieved from [18].

They leverage tricks such as the dual-critic structure, soft and delayed policy updates and entropy regu-
larisation to combat overestimation, enhance exploration and stabilise learning. Then, the focus shifted
towards the applications of DRL to flight control. Offline-trained controllers show large potential in terms
of generalisation but they require extensive simulation training.

To sum up, let one look back at the identified advantages and disadvantages of deep reinforcement
learning. To limit the generality of the discussion, the list of features and drawbacks is compiled whereas
targeting the task of fault-tolerant flight control with offline learnt policies.

Answering question Met-1.a, the advantages and disadvantages of RL methods are summarised be-
low:

+ The gradient-based optimiser steps for each batch of experiences recorded during the trial, enabling
continuous model-free learning over the entire life of the agent.

+ State-of-the-art DRL algorithms such as SAC and TD3 show robustness whereas performing com-
plex tasks in high-dimensional state spaces such as low-level UAV control for reference tracking.

+ Offline training of DRL algorithms benefits directly from heavily developed hardware (GPU, TPU)
and a strong, supporting international community both in academia and industry.

The main disadvantages are listed then:

– Intensive exploration is sample-inefficient. Slow learning is due to the presence of sparse gradients
or local minima of the loss function.

– Brittle convergence. Optimising a deep neural network critic and/or actor with gradient descent leads
to slow convergence of the Bellman optimality equation. The replay buffer is a vital trick but often
not sufficient.

– Convergence behaviour is highly sensitive to hyperparameters and to the control architecture.
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– Off-policy exploration can lead to unsafe behaviours being learned during training. Such behaviours
can become hard to account for in the frame-by-frame learning process.

The next chapter will introduce a new type of optimisation technique that aims to tackle some of these
disadvantages.
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3.3. Neuro-evolutionary Algorithms
Evolution is an alternative to reinforcement learning for iterative or incremental learning methods that aim
to solve complex control optimisation problems. The aim of this chapter is to describe the main methods
of implementing evolutionary algorithms and reason their advantages and limitations. By doing so, it
contributes to the body of research work, answering sub-question Met-2.c.

It starts by defining two standard frameworks, in the form of genetic algorithms and evolutionary strate-
gies, described by Section 3.3.1 and Section 3.3.1, respectively. Then, Section 3.3.2 brings forward the
concept of quality-diversity, an optimisation framework that encompasses many recent state-of-the-art
implementations of evolutionary algorithms. Moving towards relevant practical implementations, Sec-
tion 3.3.3 reviews a few methods of adapting evolutionary algorithms to cope with faulty systems. Lastly,
the chapter concludes in Section 3.3.4 by summarising the main advantages and disadvantages of using
evolutionary algorithms

3.3.1. Background on Evolutionary Algorithms
As a black-box optimisation technique, an evolutionary algorithm (EA) iteratively improves a population of
individuals based on a fitness function. Referring back to the taxonomy presented in the introduction by
Table 1.1, they would belong to the policy optimisation family. The fitness function is most often retrieved
from previously obtained rewards, so it does not quantify the benefit or value of future actions. It is
commonly neither learned nor updated during training so it shall not be seen as an equivalent of the critic
network.

Each EA has a few selected component steps. Whereas variations are usual and different frameworks
can combine, skip or add certain steps, most evolutionary algorithms are built on the same bare-bone
structure. An outline of a standard evolutionary algorithm has been adapted from [79] and it is shown
below:

Evolutionary Algorithm

1. Initialisation: randomly generate the initial population of individuals.
2. Evolution: repeat the following steps (generations) until the termination criterion is reached:

(a) Evaluate the fitness of each individual in the population
(b) Select the fittest individuals for reproduction (parents)
(c) Perform crossover andmutation operations to generate offsprings of the selected par-

ents
(d) Replace the least-fit individuals of the population with new individuals.

The termination criterion is usually defined as a maximum number of generations or as an expected
value of the fitness metric. This can be the maximum fitness within the population, formally referred to as
the elite, or the average fitness.

It is important to note that the evaluation step calculates fitness by looking at how the individual per-
formed over the entire generation. So, an EA is considered part of the broad class of Monte Carlo learning
methods. Whereas this makes EAs invariant to the frequency of actions and reward signals, it does not
allow for any in-life updates. Thus, the sparsity of the reward or fitness function is not going to deteriorate
their performance. Also, they do not need temporal discounting or any approximations of the value func-
tion. Despite this, the update over one generation does not correspond to one epoch of gradient descent.
Any subsequent comparison between the training process of an EA and an RL algorithm should be done
with caution [80].

Another significant aspect is that none of the EA’s steps explicitly need any gradient information. In
the literature, the terminology gradient-free is applied to such methods whereas, among others, deep
reinforcement learning belongs to the gradient-based class. The terminology might seem strict but it
allows concessions such as the hybrid methods that will be described in Chapter 3.4

In the review study from [81], the authors consider that evolutionary processes are suited for both
non-Markov and Markov decision processes. Also, they perform well in tasks that suffer from a lack of
observability. Lastly, the policy structures for which gradients are discontinuous or difficult to compute are
other drivers of evolution.
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Last but not least, individuals can be evaluated in parallel and little to no inter-actor communication is
needed. The capacity to parallelise the algorithm enables a higher computational efficiency by scaling to
large clusters [35, 29].

As mentioned, the above steps are followed by the vast majority of evolutionary algorithms. The fol-
lowing two sections will present two of the most popular and widely-used implementations of EAs: genetic
algorithms and evolutionary strategies.

Genetic Algorithms
Genetic Algorithms (GAs) are a class of derivative-free optimisation algorithms that aim to deliver a suf-
ficiently accurate solution within a relatively low computational time. As the first class of evolutionary
processes, genetic algorithms are attractive for searching through multidimensional, highly nonlinear non-
convex landscapes. In contrast to a gradient-based method, they do not have a tendency to find a local
optimum point but search for the global optimal fitness [79].

Genetic algorithms are, by default, domain-independent. Essentially, only the quality of the solution
and the simulation time will directly scale with the problem at hand. Despite this, by pouring from an
expert-knowledge base, the quality of the optimal solution could be improved. For example, this can be
done by involving a specific mutation operator that directs the randomness of the distribution, making it
biased towards a specific behaviour [64]. Both Sections 3.3.2 and3.4.1 will further elaborate on this idea.

Evolving neural-networks
For the current work, genetic algorithms are interesting as optimisers for a parameterised function ap-
proximator. The idea is not, by any means, new, as it dates back to 1993 when it was first introduced by
[82].

One of the most influential papers is the Neuro-evolution of Augmenting Topologies (NEAT) [26] which
was first proposed in 2002. The original NEAT algorithm aims to solve a reinforcement learning task. It
uses a genetic algorithm to optimise the structure and weights of a control policy. The network topology
is encoded by a connection graph in which the nodes correspond to the parameters (weights or biases)
and the edges are the operations performed with them [27].

NEAT became particularly successful due to its success in addressing the problem of performing
crossover networks with variable typologies [24, 25]. The trick is to historically mark the genes with an
innovation number that stores information on the historical origin of each gene in the population of neural
networks. Two genes with the same historical origin must represent the same structure (although possibly
with different weights as one can be more evolved), since they are both derived from the same ancestral
gene. This information is directly used when crossing over two-parent networks. Also, it prevented prema-
ture extinction of augmented structures through a mechanism called speciation: divide the population into
species such that similar topologies are in the same species. As this is essentially a topology-matching
problem, the authors argue that historical markings offer the most efficient solution [26].

To increase innovation, the genome (i.e., the set of genes) is mutated with a certain probability pre-
defined by the algorithm designer. NEAT performs this step in two ways: add a connection or add a
node. Novel genes are assigned new increasingly higher innovation numbers [26]. A typical value for the
mutation probability is around 0.7− 0.95 meaning that each individual has a chance of 70% to 95% to be
mutated during a generation.

Overall, NEAT managed to prove that GAs are valuable optimisers that can both optimise and train
neural networks for complex control tasks. At its time, the usual implementations of neuro-evolution were
typically too slow and so NEAT gained significant popularity [24, 25]. Thus, the novel tricks involved in
NEAT were very much needed. Despite still benefiting from them, more recent implementations of neuro-
evolution using GAs involve more simple encodings, mutation and crossover.

Recent adaptations
Algorithms such as the ones used by [64] consider a population of N networks, each encoded by a
parameter array θ still called genotypes). At every generation i, each network is evaluated, producing a
fitness score F (θi) as a function of its parameters.
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The best performing fraction parents are selected as elites which will crossover; their parameters will
be combined to form a new network (i.e., the offspring). A simple way to implement crossover is the
n-point operator: n indexes are picked randomly from the parent genome, and then the values located
in between each two selected points are swapped between the parents. Hence, the offspring will share
parameter values with both parents. This process can be improved by considering different ways to select
the parents [43, 83].

The non-elite population is mutated by applying additive Gaussian noise to the parameter vector:

θ′ = θ + σϵ where ϵ ∼ N (0, I)

Also, a fraction of the offspring obtained from crossover can also be mutated. The mutated individuals
then replace their predecessors so that the population size remains at N . The mutation magnitude σ and
both the elite and mutated fractions are user-defined hyperparameters.

Lastly, in contrast to NEAT, these new implementations keep the size of networks (width and depth) as
hyperparameters are tuned in an outer loop. This is in line with the gradient-based training frameworks
which only optimise the weights and biases during the actual training loop.

Evolutionary strategies
Evolutionary Strategies (ES) is a sub-category of EAs that apply the evolutionary steps to optimise a
vector of parameters that characterise the solution space. Because of that, they were directly involved
to optimise both the structure and parameters of function approximators such as NNs [84, 85]. The main
differences between ES and GA lie in the representation of the population and the types of evolution
operators. Whereas GAs originally used only binary strings, ES has always represented the parameters
by a set of real values. For more modern algorithms, this distinction is less applicable as there already
have been GAs implementations that also use a real-valued genome to encode the individual [64]. More
importantly, ES use mutation operators indirectly in their population-update step, in contrast to GA which
explicitly incorporates both crossover and mutation. Empirical studies have proposed that ES are easier
to implement and might be faster than GA for optimisation problems with relatively reduced dimensionality.

Within this class, the most widely known member is the Covariance Matrix Adaptation Evolution Strat-
egy (CMA-ES) [86]. This algorithm represents the population by a full-covariance multivariate Gaussian.
Benefiting from the general advantage of random-search algorithms, CMA is robust whereas searching
through a rugged fitness landscape, which can comprise discontinuities, (sharp) ridges, or multiple local
optima [34]. It is worth noting that, based on these advantages, CMA-ES has so far been extremely
successful in solving optimisation problems in spaces with low to medium dimensionality [23, 35].

For the current applications, ES and CMA are used to learn a parametrised control policy. The bare-
bones structure of a simplified CMA algorithm is visible in Figure 4 adapted by [35] directly from the
original implementation. Essentially, the algorithm follows steps similar to the EAs. First, it initialises the
population distribution pθ̄ as an isotropic multivariate Gaussian with mean θ̄ and fixed covariance σ2I. In
contrast to the most general versions of CMA, the isotropic distribution assumes an uncorrelated deviation
of the parameters.

With this in mind, one can rewrite the fitness function as a stochastic objective which has been blurred
by a Gaussian random variable. This surrogate objective is expected to be smoother than the original one
[35]. The new objective is given by Equation 3.28:

Eθ∼pθ̄
F (θ) = Eϵ∼N(0,I)F (θ + σϵ) (3.28)

The stochastic gradient ascent step can be approximated with a covariance-based update of θ:

∇θEϵ∼N(0,I)F (θ + σϵ) =
1

σ
Eϵ∼N(0,I){F (θ + σϵ) · ϵ} (3.29)

To improve the approximation, the number of samples n shall increase.

Overall, for each generation, the algorithm executes the following: sample the distribution and per-
turbed the parameters, evaluate the objective value of the population and update the parameters with a
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Algorithm 4 Algorithm: Simplified Covariance Matrix Adaptation (CMA) [35]
Input: Learning rate α, noise standard deviation σ, population size n,
initial policy parameters θ0

1: for t in range(max_epochs) do
2: Sample ϵi=1,..,n from N (0, I)
3: Compute fitness return of evaluation:

fi ← f(θ + σϵi) i = 1, .., n

4: Update policy via the approximated stochastic gradient ascent from Equation 3.29:

θt+1 ← θt + α · 1

nσ

n∑
i=1

fiϵi

5: end for

step proportional to the inverse of the covariance σ. After sampling from the random distribution, the last
step replaces the variation operators used by GAs.

Essentially, CMA uses a finite-difference-like estimation of the gradient. As CMA does not require an
analytical formula of the gradient, it will be considered a gradient-free optimisation algorithm [87, 35].

3.3.2. Quality-Diversity
So far, the optimisation presented considered a population of well-performing solutions but ultimately
aimed to select the offspring performing the best in the environment. Unfortunately, that can prove to limit
once the rules of the environment change or the agent is forced to behave differently. Due to reasons
common with RL frameworks, evolving strategies solely based on their current fitness might prove to be
insufficient to achieve the desired performance in the long-run [21, 31].

Case for novelty
In novelty search (NS), the idea is to completely ignore the reward or fitness function and only look for
increasingly novel solutions [28]. As a simple example, let’s consider a four-legged robot that should
learn how to walk. While learning the control policy, the first few trials will consist of the robot struggling
to move on the ground and failing to stand up. At that point, a novel behaviour would be to stand up. By
continuously targeting such novelty encourages, learning emerges in an indirect manner [21]. Conversely,
the exploration of the behaviour space is directly and explicitly rewarded.

Efficient exploration is always needed but never sufficient by itself. Also, completely neglecting any
fitness or reward metric can result in a time-consuming endeavour [29]. Starting from the idea of novelty
search, an algorithm that can explicitly balance the exploration of new behaviours and exploitation of
the high-performing ones is considered. This framework is known as quality-diversity search (QD). QD
has been formally defined by [30] as an ‘optimisation algorithm aiming to produce a large collection of
solutions that are both as diverse and high-performing as possible, which covers a particular domain,
called the space of behaviours‘.

More specifically, algorithms classified within the QD paradigm aim to uncover as many diverse be-
havioural niches as possible, but where each niche is represented by a candidate of the highest possible
quality (i.e., fitness) for that niche [29]. The obtained result maps behavioural space, illuminating it with
the best of all the diverse possibilities that exist [87, 88]. Overall, the balanced drive towards increasing
diversity with localised searches for quality can be seen as mirroring nature where, traditionally, species
face the toughest competition from within their own reign.

Behavioural space
In the framework of QD, a particularly key aspect is the definition of behavioural space. As explained
by [21], the experimenter has to select some subset of behavioural features that are of interest to form
a behaviour characteristic (BC) or behaviour descriptor [21]. The span of all BCs forms the behavioural
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Figure 3.8: Visualisation of algorithms performing (A) single-objective global optimisation, (B)
multi-objective optimisation aiming at discovering multiple optima and quality-diversity (C) that finds

many more solutions (up to three orders of magnitude), each one being the elite of its local
neighbourhood defined in some feature space of interest. For the current methods, the feature space

corresponds to the behavioural space. Figure retrieved from [90].

space. The selected set of BCs is not unique but a core assumption of QD states that all parts of the
behaviour space are considered equally important [21, 87, 29]. In that way, less performant behaviours
can still be exploited. Selecting a relevant set of characteristics becomes one of the main goals of the
experimenter who has now the opportunity to inject expert-level knowledge into the learning algorithm.
As it is directly relevant for any practical implementation, the design of BCs will be further detailed in
Chapter 4. Finally, a grid is placed over the behavioural space, dividing it into discrete niches or bins.
Then, the task of QD is to maximise a quality score (equivalent to the fitness) within every bin [87].

Formally, QD aims to find the solution to an extended version of the optimisation problem that has
been presented so far. Firstly, the QD objective function is designed to return both the fitness value of the
parametrised policy Fθ and its behavioural characteristic bθ [89, 29]:

fQD(θ)→ Fθ, bθ (3.30)

Then, one defined the behavioural space by B and aims to solve the following problem with respect to
control policy parameters θ:

∀b ∈ B θ∗ = argmax
θ
Fθ

s.t. b = bθ
(3.31)

The QD optimisation aims at finding each policy with behaviour b ∈ B that maximises the fitness value Fθ.
The set of policies that solve the optimisation is referred toM.For any, both their fitness and behaviour
characteristics are the direct results of following the control policy. In other words, the set of bθ describes
how the solutions solve the problem and fitness value fθ measures how well the solution performs [89].

For example, considering the control task of landing an aircraft, the fitness could be proportional to
consumed fuel (with a negative sign as one should aim to maximise fitness and reduce fuel) whereas the
behaviour characteristics would correspond to the vertical speed location along the runway at the moment
of touchdown.

Despite prioritising both novelties of the niches of policies and their performance, QD is different from
multi-objective optimisation. The relationship and distinctions between these problems are visible in Fig-
ure 3.8.

Multi-dimensional Archive of Phenotypic Elites
The field of QD shows a relatively large and still increasing popularity but most of the successful methods
trace back to the Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) algorithm first introduced
by [21] as a method to design a set of robust control policies for walking robots. The authors argue
that robots, aiming to learn to deal with damage while interacting in a complex environment, have to
adapt quickly and efficiently. Before the agent is deployed, it uses a novelty-search technique to create a
detailed map (called archive) of the space of high-performing behaviours (the elites). This map represents
the agent’s prior knowledge about what policies will result in which behaviour and their relative quality. For
this framework, the setM will include the elites found by the QD optimisation and stored in the archive.
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In their approach, once the robot is damaged, it uses this learnt prior archive of knowledge to guide a
trial-and-error search algorithm. The damage adaption part will be detailed further in Section 3.3.3. The
novelty of this approach stems from the lack of need for diagnosing online or anticipating the failure mode
[21]. The agent can access offline-learnt policies and compare their behaviour and quality, both stored in
the archive, enabling straightforward adaptation online trials.

Starting from the MAP-Elites algorithm, the quality-diversity framework has seen a recent spree of
improvements. The benchmark has been set by the MAP-Elites [21] and, so far, these developments
could be split into three categories:

1. Reduce the wall-clock time by parallelisation [91, 87, 92]
2. Improve sample efficiency [31, 93]
3. Combine with other frameworks, such as standard DRL (SAC, TD3), for higher-quality scores [94,

95].

The first category manages to show relevant progress as it usually leverages better computing resources
such as clusters of CPU, GPUs or TPUs, all of which have already proved beneficial to speed-up training of
deep neural networks [96, 68]. Despite this, it seems that none of the approaches from (2) and (3) provides
definitive results. Overall, there will always be a trade-off between the quality of the control policy (i.e.,
the achieved return) and the diversity of the learnt behaviours (the achieved behaviour characteristics or
skill sets).

Model-based frameworks such as [31] show a large benefit by reducing the number of environment
interactions by one or even two orders of magnitude. The downside comes from a reduced generalisation
power. When tested online on a real system with faults (a spider-like robot with one broken leg), the
offline learnt dynamics-aware policies performed poorly, showing a comparable success rate to a simple
(vanilla) QD algorithm. As the learnt dynamical model loses its validity once the system changes, its
inaccurate predictions deteriorate the controller’s performance. A potential solution, also hinted by the
authors of [31], would be to incrementally learn the model online, to fit the damaged system. This would
increase performance by using more samples from the robot-environment interaction. The aspect of
online adaptation will be further discussed in Section 3.3.3.

Covariance Matrix Adaptation for Map-Elites
Whereas MAP-Elites show a diverging search behaviour oriented toward multiple reasonably good solu-
tions, algorithms such as the stochastic optimiser CMA-ES (see Section 3.3.1) have the ability to rapidly
navigate the low-dimensional behavioural space, aiming for the global optimum or a solution within its
neighbourhood [34].

Leveraging the advantages of both, the algorithm developed by [87], takes the selection and branch-
ing from CMA-ES to optimise the solutions stored in the MAP-Elites archive. Essentially, the CMA-ME
(Covariance Matrix Adaptation for Multi-dimensional Archive of Phenotypic Elites) from [87] directly incor-
porates the trade-off between exploration and exploitation in the behavioural space. Moreover, the poor
scalability of the CMA (mentioned by [35] and [61]) is mitigated since the archive of behaviour always sits
in a low-dimensional manifold [21].

CMA-ME is essentially a round-robin scheduler for a population of emitters. Each of these is a CMA-ES
optimiser that searches through the behavioural space [87]. The pseudo-code of the CMA-ME is shown
below:

The routines generate_solution() and return_solution() correspond to the structure of the emitter in
use. Like CMA-ES, each emitter maintains a sampling mean, a covariance matrix and a parameter set
that contain additional CMA-ES-related parameters (e.g., evolution path). However, whereas CMA-ES
restarts its search based on the best current solution [34], emitters are differentiated by their rules for
restarting and adapting the sampling distribution, as well as for selecting and ranking solutions. The
paper proposes three types of emitters to drive the exploration according to a specific intrinsic motivation.
The optimising emitters use CMA-ES to sample solutions for maximal performance, It is the closest to a
standard CMA-ES but it restarts the sample mean and covariance from the location of an elite rather than
the fittest solution discovered so far [87]. Next, the random direction emitters favour solutions that are
as far as possible along a randomly generated direction in the B space, prioritising behavioural novelty.
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Algorithm: CMA MAP-Elites
Input: An evaluation function fQD() that returns a behaviour characteristic, fitness, and a desired

number of solutions N
Output: Generate N solutions storing the elites in the archive mapM

1: Initialise population of emitters E
2: for sol in range(N) do
3: Select emitter e from E which has generated the least solutions out of all emitters in E
4: θi ← generate_solution (e)
5: bi, Fi ← fQD(θi)
6: return_solution (ei, θi,bi, Fi)
7: end for

Lastly, the improvement emitters reward additions to the collection of elitesM (i.e., improve the current
elites but necessarily add new behaviours).

The algorithm design can harness the potential of each emitter type to specialise the optimisation
towards its goal: optimising emitters can accelerate the coverage whereas random direction emitters
might escape faster the neighbourhood of a local optimum [89].

Chapter 4 will show the results of training policies using the CMA-ME algorithm to control an agent in
a toy-like domain. Moreover, its robustness to system faults will be tested. The tests will only concern
offline learning and evaluation. Apart from them, the next section will look into possible ways to use the
archive of elite behaviours found by QD to enable online adaptation to damage.

3.3.3. Performance for Fault-tolerant Control
The QD algorithms have been proven successful in controlling damaged agents. The original paper of
Map-Elites trains the control policies offline, in a simulation environment [21]. Then, the framework uses
an Intelligent Trial & Error (ITE) routine, based on the Monte-Carlo tree search algorithm, to sequentially
evaluate the control policies on a real but damaged robot. Each evaluation updates the archive of be-
haviours, subsequently informing the next try. This method achieves an unprecedented performance on
real-hardware platforms, successfully bridging the gap between simulation and reality [21].

The work done by [21] showed for the first time the potential of using a repertoire of offline-trained poli-
cies to guide an online adaption to unforeseen circumstances and changes. The concept was developed
further by frameworks such as [31] which aim to speed up the offline training step by learning a model of
the agent-environment interaction or by [36] which perform QD optimisation hierarchically. These subse-
quent studies agree that the adaptation capabilities are directly linked to the behavioural diversity in the
repertoire. This idea was further investigated and expanded upon

Unfortunately, the online adaptation requires manual resets of the agent. Whereas this can be enabled
for walking robots, an aircraft cannot be put on hold to reset its controller. Thus, for the current application
of flight control, a reset-free algorithm is required for online adaptation. One such is implemented by [33]
to solve a navigation task for walking robots by splitting the route into multiple segments and evaluating
the policies on each segment.

The work was further expanded by [32] which uses the offline learnt behaviours as priors in a Bayesian
learning framework. Then, during the deployment of the real robot, a Gaussian process (GP) model learns
to transform the prior behaviours in such a way that the outcomes of policies followed by the real robot
match with the newly transformed behaviours. Essentially, it learns how to model the difference between
the state transitions recorded during the simulation and the ones observed online.

This framework provides a strong starting point to develop an online adaptation algorithm to select
a well-performing policy. Figure 3.9 (retrieved from [32] shows the basic idea behind repertoire-based
learning with online adaptation.

3.3.4. Advantages and Limitations
Throughout this section, both GA and ES have shown features useful for exploration within the pace
of solutions through crossover, mutation and fitness-based selection. As a direct application of an ES
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Figure 3.9: High-level visualisation of the repertoire-based learning in robotics. Retrieved from [32].

algorithm, QD benefits from the same advantages. It also provides a more intuitive way to visualise the
exploration-exploitation trade-off via the archive of behaviours.

The literature surveyed in this chapter showed that the EA framework is remarkably effective because:

+ Can optimise highly non-convex functions with sparse gradients by escaping local optima or saddle
points.

+ As evaluation assesses the performance of the individuals over a generation (i.e., no in-life evalu-
ation), they are invariant to action frequency and delayed rewards and do not require any type of
temporal discounting.

+ Will always generate locally optimised repertoires or populations of behaviours mapped by control
policies (e.g., robots walking in all directions) that are close to the optimum solution.

+ The agents can be parallelized to run and evolve as parallel workers. It allows for the use of large
clusters of CPUs, TPUs, and GPUs, which benefits the wall-clock time required during training.

These advantages make evolutionary algorithms particularly interesting for damage mitigation and recov-
ery in autonomous systems [21, 31, 36]. Furthermore, other successful applications proposed by the
literature are procedural content generation, aerodynamic design optimisation and scenario generation in
human-machine interaction. The current work will limit itself to the case of fault-tolerant control.

In spite of their convincing advantages, the methods belonging to the EA framework come with several
shortcomings:

– They can only update the entire population once the generation, or learning episode, has been
completed. Therefore they cannot benefit from the individual’s experiences and thus have reduced
sample efficiency.

– During the evaluation step, they require a high number of queries of the objective function.
– Poorer scaling to high dimensional spaces in comparison to gradient-based learning.
– The QD framework is specifically sensitive to the choice of behaviour characteristics, the low-

dimensional space of behaviours being strictly determined by the learning task at hand.

In conclusion, as a summary of the chapter, the two lists provide an answer to research question
Met-1.b. One might realise that the advantages and limitations of evolutionary and deep reinforcement
learning algorithms do complement each other. It might be possible to combine the two and maybe obtain
the best of both worlds. The next chapter will introduce a novel framework that builds upon this idea.
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3.4. Hybrid Methods
People have long recognised that the exceptional adaptability of the brains of living species results from
at least the combined effect of two phenomena. For starters, they are capable of learning from their
own life experiences. Second, biology has been assembling an ever-improving set of individuals through
evolutionary mechanisms. The successful genomes, in turn, are more capable of further learning, and
thus the loop continues. There is hope that the same two factors, combine in a hybrid AI method, will help
agents learn more performant and robust behaviours.

This chapter will look into the background, motivation and achievements of the methods belonging to
the hybrid class. They are commonly referred to as Evolutionary Reinforcement Learning (ERL). Thus,
the following sections will aim to answer questions Met-2.c and Met-3.c.

First, the historical first method and its results will be summarised in Section 3.4.1. Next, Section 3.4.2
will list the state-of-the-art extensions of the ERL framework. Then, Section 3.4.3 will detail the most
promising approach in the form of Proximal Distilled ERL and its results on the metrics available from the
surveyed literature.

3.4.1. Evolutionary Reinforcement Learning
Even before RL and EA had reached their current popularity, AI researchers realised that the adaptability
of living species stems from the effect of the self-development and the learning mechanism of an indi-
vidual combined with evolutionary processes acting at the population level [37]. This idea sparked the
interest of scientists who tried to replicate it in early AI research [38]. The early stepping stones paved
the way toward the two formal frameworks described in the previous chapter. Despite these independent
developments, research dedicated to the hybrid methods combining both evolutionary algorithms and
reinforcement learning has remained active according to [37].

The concept of evolutionary reinforcement learning is mentioned by [97] as a solution to the helicopter
hover task in a model-free manner. The authors use a neuro-evolutionary algorithm based on genetic
programming formulation to evolve a population of control policies for stable hovering. In contrast to the
title of the paper, a hybrid method is not involved.

In [39], NEAT is combined with Q-learning to achieve sample-efficient reinforcement learning whereas
[40] uses neural evolution to improve exploration in stochastic domains. Last but not least, EAs have been
used to optimise the hyperparameters of DRL algorithms, successfully improving their sample efficiency
[41].

Currently, these hybrid methods benefit from unprecedented momentum. It is mainly caused by the
same factors sustaining the rapid development of deep neural networks: parallelisation on accelerated
hardware and abundance of training data.

Recent approach
One of the main algorithms at the origin of the present wave of combining evolution and RL is Evolutionary
Reinforcement Learning, proposed by Khadka and Tumer in 2018 [42]. At the same time, the Genetic-
gated Networks (G2N) were published by [98] which harvest the benefits of gradient-free optimisation to
improve the training performance of deep neural networks via selective drop-out. The authors use these
networks as actors and critics in on-policy learning algorithms such as PPO. Their implementation failed
to gain traction in comparison to ERL which will be explained in the next section.

Methods within this novel family combine an evolutionary loop with a reinforcement learning loop. In
this work, the authors instantiate ERL by combining a standard GA with a DDPG agent. Any off-policy
reinforcement learner that belongs to the actor-critic taxonomy could be used but the current section will
limit itself to the algorithm used by [42]. Chapter 4 will comment on the future directions and extensions of
the presented hybrid frameworks, including the possibility of using other reinforcement learning algorithms.

ERL framework
Figure 3.10, inspired directly from the original ERL paper of Khadka and Tumer [42], shows the main steps
of the algorithm. To aid the discussion, they can also be followed below:
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1. Initialisation: population of identically sized NNs is initialised with random weights. In addition to
the actor population, one additional network (referred to as rlactor) is initialised alongside a critic
network.

2. Loop over generations until the total number of frames played is reached:
(a) Population Evaluation: the genetic population of actors (i.e., except the rlactor) are evaluated

by interactions with the environment and the experiences stored in the common memory buffer.
The fitness for each individual actor is computed as the cumulative sum of the undiscounted
reward received during that episode.

(b) Selection: based on their fitness, select a fraction of the population to survive, referred to as
the elites. The elite fraction is usually set between 0.1 to 0.3.

(c) Mutation: the non-elite actors are perturbed by mutating the parameters of the NNs with zero-
mean Gaussian noise.

(d) Train the RL agent: follow the steps of the DDPG algorithm to update the critic and rlactor
(see Section 3.2.3).
i. Sample transitions from the common experience replay buffer.
ii. Compute the output y(r, s′, d)of the critic network.
iii. Perform the gradient descent step on the MSBE loss.
iv. Update the parameters of rlactor by a gradient ascent step.
v. Polyak update the target networks [75].

(e) Synchronisation: the rlactor is injected into the population by changing the weakest individual.
The GA and RL loops can be directly identified. Whereas the GA enriches the memory buffer, the RL

actor is injected into the population at a specific rate.
Each individual within the population is parametrised by a neural network, encoded by a list of real

numbers. The order of the list is arbitrary but constant throughout the population. The encoding is similar
to the one described by Section 3.3.1.

Exploratory behaviour
Exploration is directly achieved by the variation applied to the actors via the mutation operator. During
mutation, the weights (genes) of the non-elite individuals are randomly perturbed by additive zero-mean
Gaussian noise. The strength of the noise is referred to as mutation magnitude and is one of the added
hyperparameters. At the same time, the rlactor still explores by adding zero-mean Gaussian noise to its
actions.

It is important to also note that, in contrast to more standard implementations of GAs, the first imple-
mentation of ERL did not include yet any crossover operator. The authors added the n-point crossover in
a future iteration of the method which has also been used during this thesis [42].

Experiences reuse
Apart from themutation operator, one of themain tricks the ERL algorithm introduces is the sharedmemory
buffer. It directly enables the information experienced during the evaluation of the step of evolution to be
exploited by the RL agent. In contrast to a standard EA which would extract the fitness metric from these
experiences and disregard them immediately, ERL retains them in the buffer and engages the rlactor and
critic to learn from them repeatedly using the gradient updates. This mechanism maximises the extraction
of information from each individual experience and thus it leads, according to the authors, to improved
sample efficiency.

Synchronisation
By periodically copying the weights of the rlactor into the genetic population, the information learned during
the episode is injected into the population. This is the core mechanism that enables the evolutionary
framework to directly leverage the information learned through gradient descent. The process of infusing
policy learned by the rlactor into the population also serves to stabilise learning and make it more robust
to deception (i.e., local optima). A well-performing policy will survive the evolutionary processes and
subsequently influence future generations. However, if the rlactor is less performant, it will simply be
discarded after the next evaluation.
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Figure 3.10: ERL high-level visualisation highlighting the EA’s population-based learning (purple) with
DRL’s gradient-based optimisation (blue). Adapted from [42] based on [37].

Results
The hybrid algorithm was tested on the continuous control environments available in the MuJoCo library,
hosted by the OpenAI gym [99]. The six control tasks represent industry-level benchmarks widely adopted
by the RL community. Their complexity in terms of action-space dimension and reward structure varies,
with Hopper and Swimmer-2d being the easiest ones and Ant-v2 the most challenging. In Figure 3.11,
ERL is compared to DDPG, a standard neuroevolutionary algorithm (referenced as EA in the plots) and
the state-of-the-art on-policy algorithm PPO [15].

One can see that, ERL can significantly outperform DDPG across all the benchmarks. Similarly,
ERL also consistently outperforms EA across all tasks apart from the Swimmer environment, where they
achieve similar performances. This environment encourages the agent to hold balance by continuously
giving a small constant reward. Since EA selects for episode-wide fitness, this specific reward signal cre-
ates a strong local optimum for a policy that simply survives by balancing while standing still. This is the
same behaviour EA converges to, hence its relatively high final performance [42].

Overall, the ERL algorithm manages to beat other state-of-the-art frameworks while its return con-
verges to a relatively low variance. This shows that the inherent idea behind is successful. Incorporating
gradient-based learning on the in-episode experiences with population-based evolutionary selection and
mutation will enhance performance.

3.4.2. Extensions of ERL
Despite its clear success, ERL has still limitations that should be addressed. Firstly, it has not fully solved
the scalability problem that GAs show. Secondly, whereas the gradient information from the RL agent can
significantly speed up the evolutionary search, the population of ERL still evolves using variation operators.
The mutation operator, acting on NNs directly encoded as lists of real numbers, can cause destructive
learning behaviours, hindering policy convergences [43, 100]. Thirdly, by not using crossover, non-elite
individuals might not pass their genes to the next generation.

In the past four years since ERL had first been published, multiple extensions have aimed to address
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Figure 3.11: Performance curves (average reward versus the number of training frames) on MuJoCo
continuous control benchmarks. The shaded area corresponds to a standard deviation calculated from

50 trials. Retrieved from [42, 37].

its limitations. They are summarised by Table 3.1 which compiles information from the original papers
(cited along with the algorithm name) and the review work done by [37]. All the works listed are very
recent. The first version of the ERL paper had been made available in 2018, whereas the last four works
have been published after the current study had started.

CERL is developed by the same authors as ERL and it uses a subset of collaborating DDPG actors
with shared memory space. In CERL, all actors are injected back into the population [44]. It also includes
a simple n-point-based crossover mechanism. Although improving the sample efficiency of ERL in all six
MuJoCo tasks, it does not address its main limitations. X-DDPG is another version of ERL that trains
several asynchronous DDPG actors but the buffers of the evolutionary agents are separated from the RL
buffers. Similarly to ERL, the most recent DDPG actor is injected into the evolutionary population at each
synchronisation time [101].

ESAC improves ERL by using the more developed SAC algorithm in place of DDPG and incorporates a
modified evolutionary strategy with scaled Gaussian mutation [102]. Despite this, it has the same higher-
level architecture as the one shown in Figure 3.10. The gain in performance of ESAC can be partially
attributed to the more efficient SAC agent, as a better RL algorithm is indeed expected to inject the actor
population with information of higher quality [100, 102].

Directly aiming to improve the stability of the evolutionary algorithm, CEM-RL combines a TD3 agent
trained on half the evolutionary population of actors with the CEM algorithm, a simplified variant of the
CMA-ES [56].

The PDERL extension directly targets the main concerns of ERL. The standard n-point-base crossover
is replaced by a distillation version: both parents join their personal replay buffers and crossover selects
the best experiences to fill the buffer of the offspring, before applying behavioural cloning to get a new
policy that behaves in accordance with the data in the buffer [43]. For mutation, they adopt a more
conservative Gaussian, similar to using a Gauss-Newton method to perform the policy gradient step [37].

Moving away from direct policy learning, EAS shows empirically that evolving the actions and collecting
them in an archive is an alternative to evolving policy networks [103]. The algorithm incorporates a TD3
agent and its final performance is similar to other TD3-based frameworks. Moreover, the algorithm was



3.4. Hybrid Methods 68

published after the current study started and it has neither received any peer reviews nor other citations.
Although interesting, due to its relative recency, it will not be used for the current work.

Via Supe-RL, the authors directly address the safety concerns of the learnt policies. They incorporate
a gradient-based mutation operator that should penalise exploratory trajectories that diverge from a safe
domain [100].

Lastly, SERL and SPDERL use the ERL and PDERL frameworks but replace the DDPG with a TD3
agent. They both rely on the trained critic network to become a surrogate model of the environment [104].
Using the surrogate makes the evaluation step faster and it can serve as an extension of all the other
frameworks presented so far.

Table 3.1: Review of the off-policy hybrid frameworks, ordered chronologically based on the date of first
publication. Inspired from [37].

Framework RL Agent EA Actor
Injection

Mutation Crossover Surrogate
Fitness

Dedicated
Buffer

ERL [42] DDPG GA 3 Gaussian 7 7 7

CERL [44] DDPG GA 3 Gaussian n-point 7 7

CEM-RL [56] DDPG CMA 7 ES update 7 7 7

PDERL [43] DDPG GA 3 Proximal Distillation 7 3

ESAC [102] SAC ES 3 AMT Gaussian n-point 7 7

X-DDPG [101] DDPG GA 3 7 7 7 3

Supe-RL [100] Rainbow GA 3 Gradient-based n-point 7 7

EAS [103] TD3 GA 3 Gaussian 7 7 7

SERL [104] TD3 GA 3 Gaussian n-point 3 7

SPDERL [104] TD3 GA 3 Proximal Distillation 3 3

Most of the papers above use the other algorithm for comparison to illustrate gains in performance or
learning stability. Aiming to draw a definitive conclusion on which algorithm performs the best under any
given condition is impossible. That is why, by following the argument of majority voting, PDERL and CEM-
RL raise above the other frameworks. They both tackle the initially observed limitations of ERL, achieving
state-of-the-art training performance on the MuJoCo tasks. Despite CEM-RL usually showing the edge,
PDERL only uses the slightly less developed DDPG algorithm [103]. It is expected that, by switching to a
TD3 implementation, PDERL can perform as well or even better than CEM-RL.

Last but not least, the ultimate goal is fault-tolerance so the training performance does not provide the
entire picture and, for this work, the preservation of safe behaviours is essential. As proved by [100], the
mutation operator has to be adjusted to obtain a safe-oriented exploration. Since CEM-RL is based on ES
which incorporates mutation only indirectly, the more direct proximal mutation operator used by PDERL
is considered more flexible and hence superior. Therefore, the PDERL algorithm will be further described
and implemented.

3.4.3. Preliminary Method
Proximal Distilled Evolutionary Reinforcement Learning (PDERL) is chosen as a promising framework.
Whereas it uses the same structure as ERL and a DDPG agent, it proposes two novel genetic operators.
These operators are designed to counteract catastrophic forgetting. Thus, they directly target the instability
caused by Gaussian mutation and n-point crossover applied to a direct encoding of NNs.

Genetic memory
First, To integrate both operators, PDERL uses an additional set of memory buffers, referred to as the
genetic memory. As part of the global genetic memory, each actor has its own memory buffer with size κ
that stores the most recent personal experiences, selected from the main memory buffer. Moreover, each
personal buffer can store experiences that span multiple generations.

The experiences stored in the genetic memory are spread through the population by the variational
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operators. Mutation passes the entire personal buffer whereas crossover fills the offspring’s memory by
joining half of the most recent experiences collected by its parents.

Q-filtered distillation crossover
PDERL selectively merges the behaviours of two elite policies into a new child policy based on their
estimated Q-values. In contrast to the n-point crossover of genes, this operator acts in the phenotype
space [43]. Essentially, offsprings inherit optimised behaviours from their parents and not just the weights
of the networks.

First, consider two distinct parent policies µx and µy. An offspring policy µz is created and its buffer
Dz is filled with κ/2 experience from both parents. its weights θz are randomly initialised with the weights
of one of the parents. Then, the child actor is optimised to selectively imitate its parents’ actions in the
sampled states. This form of Imitation Learning can also be seen as a more general type of policy distil-
lation since it aims to imitate or ’distil’ the behaviour of the parents into the child policy. In contrast to the
model distillation proposed by [105], the size of the resulting model is not smaller than any of the parents
as all actors within the population have the same footprint. Furthermore, the crossover operator combines
two networks instead of one which introduces the problematic possibility of offspring behaviours diverging
from both parents. To account for it, PDERL introduces a cloning loss LC which the policy µz is trained to
minimise over the batch of transitions BC :

L(C) =

BC∑
i

∥µz (si)− µx (si)∥2 IQ(si,µx(si))>Q(si,µy(si))

+

BC∑
j

∥µz (sj)− µy (sj)∥2 IQ(sj ,µy(sj))>Q(sj ,µx(sj))

+
1

BC

BC∑
k

∥µz (sk)∥2

(3.32)

The operator I always selects the policy with a higher Q-value, forcing the children to follow the best-acting
parent. The third term on the right-hand side of Equation 3.32 is an L2-norm regularisation that limits the
actions from becoming too aggressive. potentially, this term can be updated to directly account for unsafe
actions.

Lastly, one still has to decide which elites are going to generate the offspring. In PDERL, it is argued
that the best selection strategy is to pair individuals based on the distance between their expected actions.
Equation 3.33 defines the metric as the expected Euclidean distance between the actions taken by the
actors over a batch of states:

d (µx, µy) = Es∼ρx

[
∥µx(s)− µy(s)∥2

]
+ Es∼ρy

[
∥µx(s)− µy(s)∥2

]
(3.33)

With the ρx,y denoting the state-visitation probability distribution of each parent actor. In practice, the ex-
pectation operator is approximated over the states sampled from the genetic memories of the individuals.

The probability of selecting a pair increases with the distance between them. Therefore, it is expected
that a distance-based selection strategy incentives novelty. Consequently, since some fit individuals might
not be selected, the short-term performance of the population might suffer which is another trade-off
between exploitation and exploration.

Proximal mutation
ERL algorithms mutate the policies to explore the search space. Unfortunately, the risks of aggressive
mutations are two-folded: they might lead to unsafe actions being taken and they can destabilise learning.
If a reasonably well-performing policy is randomly perturbed, it might become impossible for it converges
again.

To limit the destructive effects, PDERL implements a safe mutation operator inspired from [106]. To
understand how they aim to achieve this, consider the actor to be mutated as µx parametrised by θx. The
mutation operator samples a batch of states BM from the genetic memory of the actor. By summing the



3.4. Hybrid Methods 70

Algorithm: Distillation Crossover
Input: selected parent policies µx, µy with buffers Dx,Dy

Output: Child policy µz with memory Dz

1: Add latest κ
2 transitions from Dx to Dz

2: Add latest κ
2 transitions from Dy to Dz

3: Shuffle Dz

4: Initialise the weights θz with the weights of one of the parents at random
5: for e in range(total_epochs) do
6: for iter in range(κ/BC) do
7: Sample transitions batch of size BC from Dz

8: Optimise θz to minimise LC using Adam
9: end for

10: end for

gradient of each dimension of the output action over these states, the sensitivity of the policy is computed
with Equation 3.34:

s :=

√√√√ |A|∑
k

(
BM∑
i

∇θµθ (si)k

)2

(3.34)

Where A represents the set of all possible actions. Then, the sensitivity is used to scale the zero-mean
Gaussian perturbation, the policy parameters being updated according to Equation 3.35:

θ′ ← θ +
ϵ

s
with ϵ ∼ N (0, σI) (3.35)

With σ being the mutation magnitude. The higher the magnitude of the policy gradient with respect to a
parameter, the smaller the mutation step becomes. Thus, sensitive parameters are perturbed less. After
the scaled update, the resulting policy µx′ has its parameters θ′ within the proximity of its predecessor.
Hence, it can be assumed that his behaviour will not diverge too much either.

For this mutation operator, safety strictly refers to the ability to converge to a policy during learning.
Oder aspects of safety are relevant, for example, [107] lists multiple works that offer a negative reward
signal proportional to the variance. These alternatives will be investigated in future work.

Figure 3.12 shows a high-level concept of how the genetic memory, distillation crossover and proximal
mutation add to the ERL-based algorithm from Section 3.4.1.

Comparison and discussion
Similar to ERL, PDERL had been bench-marked on the same MuJoCo control tasks as ERL. The PDERL
plots from Figure 3.13 mirror the ones shown by Figure 3.11 apart from the Reacher task (plot (c) of
Figure 3.11) which has been dropped. To showcase its performance, it is compared against state-of-the-art
algorithms: TD3, PPO and ERL. Moreover, two ablated versions of the framework are considered: PERL
only involves the proximal mutation and DERL performs the simple Gaussian mutation with distillation
crossover.

The works presented in this study usually rank methods based on the final performance of the best-
performing actor, the champion. For the current study, this metric would not draw a complete picture. By
taking safety into account, an estimation of theworst-case performance shall be used. The methods will
be compared by computing the final reward minus half the standard deviation for each evaluation case.

PDERL consistently scores better than the other algorithms. For the more simple environments, such
as Hopper and Swimmer, the performance differences to its ablated versions are within the performance
gap defined in Chapter 3.2 so the results can be considered similar. The more complex tasks (Ant and
Walker) show a better distinguishable hierarchy. In these two tasks, the worst-case performance of PDERL
raises above the average performance of almost all the other algorithms. Whereas TD3 matches it on
Walker2d, it is significantly over-scored in the Swimmer environment.
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Figure 3.12: High-level visualisation of Proximal Distilled Evolutionary Reinforcement Learning
(PDERL), highlighting the EA’s population-based learning (purple) with DRL’s gradient-based

optimisation (blue). The interrupted yellow line highlight the additional input/output connection that
PDERL uses on top of the standard ERL. Adapted from [43] based on [37].

It is worth mentioning, that TD3 matches PDERL on all environments apart from Swimmer. According
to [56], the Swimmer task provides deceptive gradient information which makes any pure RL framework
fail to converge. Out of all MuJoCo tasks, Swimmer is skipped by the papers providing the DRL state-of-
the-art [12, 13, 14].

Also, whereas both DERL and PERL perform better than ERL, PDERL is always at least as good as
the best out of these two. Both the distillation crossover and proximal mutation improve performance.

Furthermore, by looking at the difference between PERL and ERL, the authors prove empirically that
the policies mutated by additive Gaussian noise completely diverge from the behaviour of the parent.
These sudden and drastic changes in behaviour are a sign of catastrophic forgetting, proving that the
concerns about the undesirable effects of Gaussian mutation are not to be ignored.

PDERL consistently achievesmore stable performance. Its variance is lower than other state-of-the-art
algorithms with comparable rewards. This excludes PPO which generally converges towards the lowest
variance but its average performance is at best 30% lower. The authors again propose that the proximal
mutation operator has the largest effect on the improved robustness of the converged behaviour. As safety
is of paramount importance, robust behaviour is more than desirable.
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Figure 3.13: Performance curves of PDERL on MuJoCo continuous control benchmarks. The shaded
area corresponds to a standard deviation calculated from 30 trials. Retrieved from [43].

3.4.4. Conclusion
ERL trains in an evolutionary loop a population of control policies, periodically infusing it with new actors
trained by gradient-descent on the global experiences. Whereas the algorithm manages to combine the
best of both worlds, its limitations surface and multiple frameworks aim to correct them. By identifying
these frameworks, sub-question Met-2.c has been covered.

PDERL achieves high average performance in all control tasks used within the literature. More than
its performance compared to other state-of-the-art algorithms, the learnt controllers benefit from a low
variance over evaluation runs, showing robustness to changes in the initial conditions. This is achieved by
specifically reducing the chance of catastrophic forgetting via proximal mutation and distillation crossover.
The literature showed that this improves learning stability and worst-case performance. Moreover, the
effects of both operators are directly traceable which eases future exploration of possible improvements.
Due to its robust behaviour and the opportunity to easily upgrade it, it has been selected as the base
framework for the task at hand.

Crucially for the problem at hand, its fault-tolerance performance has yet not been investigated in
the literature. The extent to which the PDERL population of actors can generalise to an unforeseen
circumstance and remain robust to failures is to be tested. This will be the goal of the next chapter’s
preliminary analysis.



4
Preliminary Results

This chapter concerns itself with describing the implementation and testing of a preliminary hybrid ERL
framework tasked to solve a simple continuous control toy problem. It aims to verify the feasibility of
adopting a hybrid ERL algorithm for fault-tolerant control, based on the insights presented in Section 3.4.
Whereas a set of performance comparisons will be shown, the objective is to empirically verify the fea-
sibility of adopting such hybrid methods to solve the task at hand. Thus, the current chapter contributes
towards the research goal, answering the final question within the Method Feasibility set, namely, ques-
tion Met-3. Last but not least, exhaustive comparisons and trade-offs meant to identify the overall best
method reach beyond the scope of this work.

The policies are trained offline and then tested against two failure cases. AS PDERL uses a DDPG for
the reinforcement learning agent, the two were compared during training, in a comparable manner to what
is already available in the literature surveyed by Section 3.4. Also, the CMA-ME quality-diversity algorithm
developed by [87] was reproduced to have the behaviours resulting from PDERL compared against its
solution.

First, a simple continuous control environment is defined by Section 4.1 in the form of LunarLander.
Then, the offline training of PDERL, DDPG and QD is presented in Section 4.2. Then, Section 4.3 shows
the behaviours that the agent exhibits by following the learnt policies. Finally, Section 4.4 tests the perfor-
mance of the offline trained algorithms on a faulty.

Both training and testing are performed in Python using the PyTorch1 library. Following the descriptions
of the previous sections, the algorithms used are taken from the original papers’ GitHub repositories, which
are made publically available. For the QD algorithm, the core of the original repository has been made
available in the form of an open-source Python library called Pyribs 2 As the library benefits from more
extensive tests and better visualisation tools, it has been used for QD implementation.

4.1. Testing Environment
The algorithms are implemented on a continuous control benchmark, the LunarLander environment of-
fered within OpenAI Gym3. This environment is part of the testing toolbox for optimal control and RL
algorithms, being inspired by the set of classic arcade lunar landing games from the 70s. This environ-
ment was selected because it provides a continuous reward signal while being more complex than the
classic control tasks such as the inverted pendulum, the double pendulum or the cart-pole system. Also,
it is more simple than the MuJoCo tasks. Hence, it reduces the run-time to around one hour on a personal
machine in comparison to at least four hours needed for any MuJoCo environment.

The agent is a lander with three thrusters which are controlled to guide its landing on the lunar surface.
Figure 4.1 provides a visualisation of the environment, agent and the corresponding coordinate frame
used to define its state.

At the beginning of each trial, the lander spawns at a random location at top of the map. Its initial speed
is zero and its orientation is vertical. The relief of the lunar surface is also randomised. At each time step

1https://pytorch.org/docs/stable/index.html [Visited on 28/05/2022]
2https://pyribs.org/ [Visited on 25/05/2022].
3https://gym.openai.com/envs/LunarLander-v2/ [Visited on 10/04/2022]
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Figure 4.1: LunarLander environment and its coordinate frame.

during the trial, the agent can only use its three thrusters to control the landing. The goal is to land with
zero speed on the landing pad marked by the two yellow flags. The task has a finite time horizon as the
episode terminates after 1000 steps, irrespective of the outcome. Lastly, the environment is deterministic
since there is no stochasticity in the effects of actions or the rewards obtained.

State and action space
In this environment located at coordinates (0, 0), as illustrated in Figure 4.1. The entire information with
regards to its state is known from the observations available at each time step. Thus, the state is fully
observable.

st =
[
xt, yt, ẋt, ẏt, θt, θ̇t, lltouch, rltouch

]⊤
at =

[
Tmain
t , T lat

t

]⊤ (4.1)

The lander position is defined relative to the centre of the landing pad, with x pointed towards the left-
hand side of the environment and y pointing upwards. The lander’s orientation at time t is θt, taken as
counter-clockwise positive from the y-axis.

The first six states are continuous whereas the last two are discrete with lltouch and rltouch Booleans
that become 1 once the left or right landing gear touches the lunar surface. The action space is dimen-
sional, each component taking the following values:

• a0 = Tmain ∈ [−1.0, 1.0]: the thrust value of the main engine (middle one). It is operational for
a0 > 0, otherwise, it is set to idle.

• a1 = T lat ∈ [−1.0, 1.0]: controls the lateral engines. The right thruster fires for a1 ≤ −0.5 whereas
the left one when a1 ≥ 0.5. Otherwise, they are both set to idle.

Reward structure
The reward for moving from the top of the screen to the landing pad with zero speed is awarded between
100 and 140 points. If the lander moves away from the landing pad it loses the same reward as moving
the same distance toward the pad. The episode receives additional -100 or +100 points for crashing or
landing, respectively.

At each step, using the main thruster (i.e., the one in the middle) burns fuel so it returns −0.3 reward
points. Finally, a reward of +10 points can be offered for landing with one leg on the ground but this option
has not been used in the current tests to increase the importance of the continuously provided reward.

Empirical evidence shows that an episode score of 200 or more can be considered a solution since it
mimics human-level performance on the task.

Behavioural characteristics
The QD algorithm requires the behavioural space to be defined by the user. As there are many ways
to successfully land on the surface, the span behaviours can help the user understand how the system
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performs the task. By checking the behaviours, one can realise what is the outcome of following certain
policies and not only how successful they are.

For the current system, the behavioural characteristics are defined according to Equation 4.2 as the
horizontal coordinate and the vertical velocity at touchdown. If the episode ends before touchdown, the
final x and ẏ values are taken.

b = [ximpact, ẏimpact]
⊤ (4.2)

In spite of the current implementation of PDERL not using these behavioural characteristics, the same
values can be outputted by the algorithm. By doing so, one can compare the behaviours learnt by PDERL
and the ones optimised by QD.

4.2. Offline Training
Each of the algorithms has been trained offline for 0.8 · 106 frames each. This proved to be enough for
both of them to converge. The criterion chosen for convergence was that no performance metric was
changing by more than 2.5% (half the performance gap) between evaluations. The metrics recorded are
the average reward of the champion, average population reward, and policy loss ( the Q-value).

Set of hyperparameters
Where applicable, the same hyperparameters have been used. For DDPG, the optimal values for the
LunarLander environment were taken from the StableBaseline 34. these values are expected to be ex-
tensively tuned for this particular environment. The rest of the parameters were taken directly from the
original implementations [12]. For PDERL, the RL part shares the same parameters with DDPG whereas
settings of the evolutionary were also taken from the original paper [43]. Table 4.1 summarises the used
parameters.

Table 4.1: Hyperparameters for the DDPG and PDERL algorithms.

DDPG (both) GA (only PDERL)

Learning rate 0.7 Population size 30
Discount factor 0.98 Elite fraction 0.2
Batch size 128 Mutation magnitude 0.05
Buffer size 200,000 Mutation probability 0.9
Polyak rate 0.001 Population evaluations 3
Delayed start (frames) 10,000 Synchronisation rate 1
Actor hidden layers 2 Genetic memory size 8,000
Critic hidden layers 2 Champion evaluations 50
Actor hidden sizes (300, 400)
Critic hidden size (200,300)
Non-linear activation ELU

Training curves
Figure 4.2 shows the learning performance of both algorithms against the number of frames passed. Since
both algorithms use an RL loop, the amount of information learnt is directly dependent on the number of
frames experienced during taring.

Whereas DDPG only has one policy, the population of PDERL is depicted by taking the reward of the
population champion (solid line) and the average over the entire population (interrupted line). The curves
are similar to the performance figures from Sections 3.4.1 and 3.4.3, apart from the population average
which is not present in previous plots.

4https://github.com/DLR-RM/rl-baselines3-zoo/blob/master/hyperparams/ddpg.yml [Visited on 20/05/2022]

https://github.com/DLR-RM/rl-baselines3-zoo/blob/master/hyperparams/ddpg.yml
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One can see that both algorithms solve the task, converging in high rewards. PDERL has the edge
with a final reward higher by 5.6%, passing the performance gap of 5% set in Chapter 3.2. Its sample
efficiency is also higher, as the best-behaving actor consistently reaches rewards higher than 200 within
the first 180 · 103 frames. Moreover, the average over the population matches the performance of DPDG
within 1% difference. Despite this, the RL algorithm shows high variation over the runs, deviating from the
average by more than 25%.

Overall, PDERL is more stable. The parts of the plot where the standard deviation suddenly spikes
up are caused by changes in the incumbent champion. The champion is selected by seeing which policy
behaves the best over 3 evaluations of the population. Thus, sometimes the best individual is not correctly
identified. The frequency of evaluating the champion is much higher, currently being set to 50.

Figure 4.2: Offline training performance of DDPG and ERL algorithms. The shaded areas correspond to
the standard deviation taken over 50 evaluations of the champion. The first 100 frames are skipped for

better scaling of the reward axis.

Training QD
A direct comparison between QD and the other two training processes cannot be done. A generation
in EA does not correspond to one epoch of gradient descent. As it is based on the CMA-ES evolution-
ary algorithm, this framework does not learn directly from the individual frames but from the completed
episodes. Because of this, one should proceed with caution. Even for a linear policy, QD requires a much
higher number of episodes to illuminate the entire archive of behaviours. By adapting the settings from
the original paper to the LunarLander task, the number of episodes played during training is 50000. This
translates to an upper limit of 5 · 108 frames but in practice, the number varies depending on how fast
the agent manages to learn. The required number of frames is significantly higher than for the other two
algorithms. This might be expected since, even though the policies are linear (given by Equation 4.3), QD
learns a total of 2500 from them.

a =W · s (4.3)
The model footprint of each of these policies is 16, corresponding to the size of the weight matrixW . This
is a few orders of magnitude lower than the model footprint of the PDERL and DDPG actors. They use
multi-layered neural networks, and each of them contains more than 120000 learnable parameters.

Thus, training non-linear policies and stopping the QD algorithm at 106 frames will result in non-
converged behaviours. Moreover, the CMA-ME uses the emitters to fill the archive map iteratively with
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solutions increasingly better in terms of quality and diversity. It does not only evaluate an average episodic
reward and it cannot estimate its deviation. These differences make the QD equivalent of a performance
curve not comparable to the other two algorithms.

Nevertheless, it has been decided to keep the linear policies as, for the simple system at hand, they
still result in informative behaviours. Section4.4 will investigate the robustness of these policies against
system failures.

The QD implementation has no hyperparameters to tune apart from the number of iterations which
was taken as 400 as the original paper recommends a number in the order of 102 to 103 [87]. Lastly, the
improvement emitter was used as it offered the most balance between quality and novelty (refer back to
Section 3.3.2).

4.3. Repertoire of Behaviours
The QD optimisation results in an archive of elites which can be plotted along with the bi-dimensional
behavioural space. The same plot is built for the behaviours resulting from following the population of
policies trained with PDERL. One policy returns one behaviour which becomes one point on the map.
Figure 4.3 shows the two maps with the colour corresponding to the total reward of each policy.

Both maps show the benefit of policies that result in low vertical speed at impact. This insight is
expected because a higher is offered when the total final speed is zero. Moreover, touching-down closer
to the middle of the landing pad is useful but not required. When the lander touches the ground further
away from the pad, it can use its lateral thrusts to quickly move along the surface for a better reward.
Unfortunately, such behaviours are highly sensitive to the shape of the surface. If it is too bumpy, they
might not be able to arrive on the pad before the episode finishes.

On one hand, the QD plot offers insights concerning the global performance of behaviours. For the
nominal task, one can rather clearly identify the region within the behavioural space that corresponds to
higher performance.

On the other hand, PDERL only trains 30 policies so its behavioural map is sparse and it is fully
contained by the QD archive. After consulting the plots, one might argue that the ERL-inspired algorithm
samples a few of the best-behaving policies. Despite its reduced coverage, the quality of the PDERL
solutions is generally higher.

(a) PDERL behavioural archive. (b) QD behavioural archive.

Figure 4.3: Archive of elites plotted on the behavioural map. The reward and behaviour characteristics
are scaled accordingly, with the vertical axis being inverted. The left-hand map is contained by the

highlighted rectangular box from the right-hand plot.
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Figure 4.4: The average performance and deviation for the learned control policies tested on the
nominal systems and the faulty system. The vertical bars correspond to one standard deviation. QD is

shown separately since it is not directly comparable but still informative.

4.4. Robustness to Faults
To investigate the robustness of the ERL framework against system faults, the nominal LunarLander en-
vironment is altered. Taking inspiration from Chapter 3.1, the following cases are considered:

F1. Faulty sensor recordings: zero-mean Gaussian noise is added to observed (x,y) coordinates of
the lander.

F2. Actuator failure: the main thruster is ’broken’ by clipping its effective thrust to 75% of the maximum.
The fuel consumption stays the same, i.e, there are no changes to the reward function.

Then, the offline trained populations can now be subjected to the task of controlling the damaged
systems. For each fault case, the environment is reset for 100 trials. The results are plotted below in
Figure 4.4.

The population evolved through PDERL achieves the highest performance out of all three frameworks
and proved robust against both fault cases. Over both faults, it has a drop in the average return of less
than 18% and a decrease in its worst-case performance (average performance reduced by the deviation)
of 33%. Its worst-case reward in the presence of fault F2 even exceeds by 35% the average performance
obtained by the RL algorithm on the nominal system.

Despite showing comparable training performance, DDPG is highly sensitive to any changes done to
the environment or agent. This translate into a standard deviation of more than 110 for the nominal case.
DDPG can adapt to neither of the faults as its average return decreases to below 100 and the reward
variation remains significant.

The QD algorithm achieves a higher average reward for the DDPG agent for the nominal system but
the entire archive of controllers is heavily affected by the F2 fault. As QD only learns linear policies, it is
expected to be more sensitive to drastic changes in the controlled system, such as the broken engine. A
noisy observation of its position affects the average reward by less than 10%. Despite this, the standard
deviation increases from the nominal case by more than 53% for F1 and up to 113% for F2. Similar to the
DDPG agent, QD is not able to solve the task under the clipped thruster conditions.
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Changes in behaviour
From all three groups, it is clear that adding noise to the observed position is less problematic to deal with
than having the main actuator clipped. A potential explanation comes from the physics of the environment
and the relative severity of the faults. For all frameworks, a noisy state might mimic the effects of a
stochastic policy. It degrades the average performance but it improves the quality of a few selected
solutions 5. That translates into a lower average reward but a higher variation. At the same time, by
clipping the main engine, the lander falls faster.

The updated behavioural maps from Figure 4.5 depict the effect faults have on the agent’s behaviour.
The F1 fault seemingly shifts all behaviours in a random direction by amounts roughly correlated with
change in reward. Interestingly, F2 moves all behaviours towards higher ẏimpact whereas the other BC is
not significantly affected. It seems that the majority of policies cannot compensate for the less efficient
thruster. Despite this, the most successful one (coloured bright yellow in the figure) does not change its
behaviour significantly. This shows that a policy robust against this fault would keep the engine throttle at
lower levels and thus be affected less by the clipping function. For both plots, the region corresponding
to high rewards seems to change less in the behavioural space (i.e., shorter arrow lengths). This aspect
will be investigated more thoroughly in future work.

Two key insights can be drawn from looking at how the behaviours are affected. First, the behavioural
space is directly dependent on the system’s configuration. Once a fault is inflected, the behavioural
changes. Second, the behaviours that correspond to the highest reward have less sensitive character-
istics. In Figure 4.5, the behaviours that change the least have the higher rewards. Therefore, robust
behaviour will maintain its performance. This offers some intuition into why the repertoire-learning meth-
ods (see Section 3.3.3) can adapt to faults online by estimating how much the resulting behaviours would
change.

(a) Behaviours under noisy position estimation. (b) Behaviours with the main engine clipped.

Figure 4.5: Behaviours obtained by following the trained policies. The reward is scaled accordingly and
the arrows point from the nominal original behaviour characteristics (circles) to the current ones

(squares).

4.5. Conclusion of Preliminary Analysis
The chapter tested the feasibility of using a hybrid Evolutionary Reinforcement Learning framework for
fault-tolerant continuous control. Based on the literature surveyed in the previous chapters, Proximal
Distilled Evolutionary Reinforcement Learning was chosen as a candidate.

The benchmark used for implementation is the LunarLander, an open-source continuous control envi-
ronment. On one hand, this environment was selected because it offers a continuous reward signal. On
the other hand, it takes less time to train than in the industry-popular MuJoCo environments, making of-

5Stochastic policy algorithms benefit from the added exploration during training



fline training feasible for the computational resources at hand. The task is still complex enough to provide
a clear ranking between the algorithms at hand and allows for several faults to be inflected.

To compare the robustness, a worst-case scenario metric was defined as the average reward minus
half the standard deviation estimate. Both DDPG and PDERL were trained for the same number of frames
and their performance was evaluated on systems in the presence of faults. Two cases were considered,
inspired by the faults indefinite in Section 3.1, namely a noisy position observation and a clipped thruster.
Evaluated on the two faulty cases, PDERL showed a worst-case reward higher than the average DDPG
reward by 42% and 25%, respectively. Thus, the fault-tolerant capabilities of the hybrid method have
been empirically shown, answering questions Met-2.d and Met-3. Moreover, whereas linear policies can
control the agent under nominal conditions, the chapter shows that there is a performance benefit from
using non-linear function approximators at the expense of computational time.

Lastly, a quality-diversity algorithm, namely the CMA-ME, was trained in the same environment but
under different conditions. The algorithm generated an archive of linear policies that showed highly diverse
behaviours in solving the task. For this task, the behaviour was characterised by the horizontal coordinate
and vertical speed at impact time. From the resulting behavioural map, one could identify sectors of
behaviours that would, under nominal conditions, perform better than the rest. The population of actors
trained by PDERL could be seen as a subset of these well-behaving policies.

The behavioural maps were also used to identify the possible effects of faults. The final results pre-
sented in Section 4.4 showed empirically that the behaviours resulting from the best-performing policies
are less affected by the inflected faults. This result opens up the possibility of using the change in be-
havioural characteristics as a metric to select the most robust policies. The characteristics are system-
specific, so their potential utility for online adaptation will be investigated in future work.
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5
Hyperparameter Tuning

The hyperparameters are tuned using the Gaussian Process search routine offered by Weights&Biases1
which took the average population return as the metric to optimise for. The episodic return for each actor
agent is averaged over 5 evaluations from the same seed to account for the variation in return.

For each agent configuration, 10 sets of parameters are swept through. The set of parameters used
to tune the TD3 agent is visible in Figure 5.1 whereas Figures 5.2 and 5.3 show the tuning results for
the two SERL populations of 10 and 50 actors respectively. The bounds of each vertical axes show the
range corresponding to the hyperparameter. The chosen set is printed within the Methodology section
from Part I.

The present analysis provides evidence that hyperparameter tuning remains a necessary step of ERL
development. Looking at the two figures, one might realise that, although none of the parameters provides
a definitive effect on the learning performance, specific combinations seem beneficial. For both frame-
works, a large learning rate is more prone to diverge whereas a small one slows down learning. The
same is true for the hidden size as large neural networks can learn more complex behaviours but with
a lower convergence rate. For SERL, combining a large exploratory noise with drastic mutations could
increase the likelihood of catastrophic forgetting. Thus, it seems beneficial for learning performance to
use a balanced combination.

The preliminary analysis showed that N , the size of the genetic population, has the most significant
effects and should be considered separately. Hence, the two sweeps for SERL. Notably, it also impacts
the control policy smoothness, as it has been discussed in Part I. Subsequently, the learning rate, the size
of the memory buffer and the maximum number of training frames have to be adjusted proportionally to
the number of trained actors. During one generation, more actors would collect more experiences so the
buffer fills up more rapidly. To prevent the TD3 actor and critics from diverging, the gradient updates have
to be slowed down. Despite this, increasing the population size seems to improve the average over the
entire population but a statistical analysis to verify this claim has been left as a future recommendation.

Most of the hyperparameters trace back to the TD3 agent. Future research should aim at transferring
parameters first tuned on TD3 (which is a simpler task) and then scale them for SERL. It is also worth
considering that for larger population sizes the rate at which the TD3 actor is selected among the elites
is slimmer. Given that the elitism information dissipates more through the population, in such cases, it
becomes less relevant how well it behaves. Potentially, in the case of large population sizes, the TD3
hyperparameters become less relevant for the final performance whereas they can still affect the sample
efficiency.

Lastly, to increase the accuracy of the analysis, multiple sweeps over shorter ranges should be con-
sidered.

1Weights & Biases Documentation: https://docs.wandb.ai/guides/sweeps
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Figure 5.1: Parallel coordinates plot obtained from the sweep of selected TD3 hyperparameters. Each
configuration has been trained for 0.8 · 106 frames.

Figure 5.2: Parallel coordinates plot obtained from the sweep of selected SERL(10) hyperparameters.
Each configuration has been trained for 106 frames.
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Figure 5.3: Parallel coordinates plot obtained from the sweep of selected SERL(50) hyperparameters.
Each configuration has been trained for 2 · 106 frames.



6
Mutation Comparison

The contribution of the safety-informed mutation operator has been specifically adapted for the current
learning task so its relative contributions have been investigated in a comparative study. The present
section presents and discusses the results of this study. Section 6.1 looks at the global effect the mutation
operators have on learning. Then, Section 6.2 estimates the relative changes in the offspring policy safety
and performance over one generation.

In both sections, the tail probability p is calculated using the t-test and the null hypothesis is rejected for
p < 0.05. For both analyses, the SERL(10) configuration has been used with the same hyperparameters
as in Part I.

6.1. Effect on training curves
First, the effect of each mutation operator is recorded during training. One can consider the average re-
ward over the population of actors to be an indication of performance robustness. Thus, the time histories
of this average, recorded over the entirety of training, are to be compared.

The policy-parameter sensitivity s is calculated, as defined in Part I, over the samples from the critical
buffer of the respective policy. To stably compute it, the size of the individual’s critical buffer has to be
strictly larger than the mutation batch size. Depending on how ‘unsafe’, the initially randomised policies
are, collecting enough critical samples might require many evaluations. Empirically, it has been observed
that at the mark of 4 · 105 training frames, there are enough experiences stored by the critical buffer to
stably compute the parameter sensitivity value.

Figure 6.1 shows the evolution of the population average during training as affected by three mutation
operators with the same intensity σmut. By visually comparing the learning curves, one can see that both
sensitivity-based mutations consistently outperform the more simple Gaussian operator. Moreover, the
safety-informed mutation achieves better performance than both the proximal and the Gaussian mutation.
Nevertheless, the proximal mutation still obtains higher returns with respect to the normal mutation. Thus,
the safety-informed mutation contributes towards more stable learning which can be attributed to a lower
rate of actors forgetting due to a disruptive change in their parameters.

It is worth taking into account that a more performance-robust mutation can ultimately have a positive
effect on the maximum performance of the champion. Figure 6.2 shows the learning curves corresponding
to the best-behaving actor. Empirically, one can argue that safety-informed exploration directs learning
away from hard-to-learn-from experiences. In doing so, it develops policy functions with smoother loss
landscapes which would have a stable learning process. Such policies would benefit from enhanced
sample efficiency, converging towards better controllers than the ones that incorporate knowledge of the
unsafe region in an unbiased manner.

Nevertheless, the information from the unsafe experiences is still learnt in the TD3 actor-critic structure
from the gradient descent steps performed on transitions randomly sampled from the shared memory
buffer.
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Figure 6.1: Learning curves of the average over the actor population trained with each of the three
mutation operators. The reward statistics are calculated over 5 evaluation runs at each training step.

Figure 6.2: Champion learning curves for the three mutation operators. The reward statistics are
calculated over 5 evaluation runs at each training step.

6.2. Generation Statistical Analysis
Merely inspecting the learning curves does not provide enough insight with respect to the level at which
the safety-informed mutation accomplishes its goals. Namely, the operator shall reduce the chance of
catastrophic forgetting and pursuing unsafe behaviours.

The current analysis considers the effect of each mutation operator after one generation. Each actor
within the population mutates with each operator, resulting in three offspring. The reference signals used
to evaluate the parent and each offspring have been generated from the three seeds and are saved for
re-use. After evaluating the offspring, using Equation 6.1 one calculates the relative change in episodic
return and size of the critical buffer.

∆r/c =
offspingr/c − parentr/c

|parentr/c|
(6.1)

The distribution of the relative changes in return is plotted in Figure 6.3 and the size of the critical buffer
in Figure 6.4. The latter can also be understood as the relative change in the total number of unsafe
transitions recorded by the actors before and after mutation.
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Over one generation, the Gaussian mutation obtained a significantly larger performance gain than the
proximal (p = 6.3 · 10−10 < 0.05) and the safety-informed mutation (p = 7.08 · 10−6 < 0.05). The safety-
informed operator also has an average variation in performance that is better than the proximal operator
(p = 0.004 < 0.05).

When comparing the minima of each box plot from Figure 6.3, the most extreme loss in reward is
shown by the proximal operator. Meanwhile, the safety-informed mutation obtains the best worst-case
performance. As catastrophic forgetting is associated with a significant and negative score, the current
safety-informed operator reduces its chances compared to the Gaussian and proximal operators.

The Gaussian operator adds zero-mean symmetric parameter noise. Intuitively, it does not distin-
guish between transitions that can result in noisy or unsafe behaviours. The first box plot from Figure 6.4
confirms this intuition as the relative change number of unsafe transitions of the Gaussian mutation is
symmetrically distributed, with the average change close to zero (at 0.0018). The proximal mutation
penalises sudden shifts in the policy but it does not contain any domain knowledge. Still, it achieves
more conservative offsprings, with the critical buffer sizes lower on average than the Gaussian mutation
(p = 5.38 · 10−8 < 0.05).

Looking at the third box plot from Figure 6.4, injecting even rudimentary domain knowledge can im-
prove the safety of the offspring policy. The safety-informed offspring has a critical buffer reduced by more
than four times with respect to the Gaussian mutation and by 50% when compared to the proximal one.

To conclude, the analysis shows that, over one generation update, the safety-informed mutation has
statistically significant gains in terms of reducing unsafe transitions while limiting the chance of catastrophic
forgetting.
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Figure 6.3: Relative change in episode return after mutating. Statistics are
calculated for 10 actors over the same 30 trials. A negative score represents a

loss in performance after the update.

Figure 6.4: Relative change in the size of the critical buffer over episode
obtained after mutating. Statistics are calculated for 10 actors over the same

30 trials. A positive score corresponds to a less safe offspring.



7
Additional Evaluation Responses

In Part I, a comparative analysis between TD3, SERL(10) and SERL(50) was presented in terms of their
robustness against faults, unseen conditions and external disturbances. The present chapter lists the
additional time responses obtained during this analysis which have not been presented before. To enable
a straightforward visual inspection, the time histories plotted have been generated on the same reference
signals. They serve as an extension of the results presented and discussed by Part I and thus aim to
further document the difference between the control policies trained by SERL and TD3.

Table 7.1 shows the average performance values for the population average and the champion actor
when tested on the fault-tolerance and robustness evaluation scenarios.

Table 7.1: Evaluation nMAE and standard deviation for the TD3 and SERL(50) population on the ten
scenarios. The bold-faced values denote an nMAE significantly lower than the rest (p < 0.05).

Identifier Case TD3 Average SERL(50) Champion SERL(50)

- Nominal 7.43± 1.6% 6.55± 1.5% 4.14± 1.0%
F1 Iced Wings 7.89± 1.5% 7.59± 2.4% 4.73± 0.8%
F2 Shifted Centre of Gravity 7.41± 1.4% 7.87± 2.0% 4.80± 0.8%
F3 Saturated Aileron 7.52± 1.6% 6.55± 1.5% 4.14± 1.0%
F4 Saturated Elevator 8.04± 1.9% 7.07± 1.4% 4.74± 1.5%
F5 Broken Elevator 8.63± 1.9% 13.68± 6.2% 8.08± 1.3%
F6 Jammed Actuator 37.31± 0.5% 73.97± 21.3% 39.58± 0.9%

R1 High Dynamic Pressure 10.06± 0.8% 8.201± 3.3% 4.15± 0.5%
R2 Low Dynamic Pressure 11.53± 2.2% 11.36± 5.3% 6.68± 1.6%
R3 Disturbance & Biased Sensor-noise 7.13± 1.4% 6.94± 1.5% 4.74± 1.2%

Nominal conditions
The agents are tested using the same trim condition as during training, namely H = 2, 000 m, Vtas =
90m/s. The system’s responses, when controlled by the intelligent controllers, can be seen in Figure 7.1.

For the SERL population, the champion in nominal conditions corresponds to the one identified during
training even though the error metric. While during training the champion is identified via tournament
selection based on its undiscounted episodic return, in this case, the identification metric corresponds to
the highest nMAE which does not account for low sideslip values.

F1: Ice on wings
Ice developing on wings is a challenging fault as it evolves progressively which makes its detection more
difficult. As conservatively modelled by the F1 fault case, it results in a down-sift of the lift curve and an
increase in the skin friction drag coefficient. Here, the maximum angle of attack was reduced by 30% and
the drag coefficient increased by 0.06. Figure 7.2 shows the time histories obtained during an evaluation
episode by the SERL(50) champion (top plots) and the TD3 policy (bottom).
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Figure 7.1: Evaluation time-traces of the champion (top) and TD3 (bottom) policy with their
corresponding one-episode nMAE and Sm metric for the nominal case.

The champion is different from the nominal case. Despite this, it is controlling the modified plant
dynamics with a similar tracking error and it commands more negative elevator deflections. The TD3
actor shows, on average, the same change in behaviour but the high degree of action noise makes it less
visible in the time trace of the elevator deflection.

F2: Aft-shifted centre of gravity
Shifting the CG aft by 0.25 m pushes the aircraft closer to its static stability margin. Such dynamics are
still controllable via feedback control but the response can become unstable during pitch-up manoeuvres.

Looking at Figure 7.3, the SERL champion counteracts the longitudinal moment caused by the fault
with a positive elevator defection. By doing so, the SERL champion offers more accurate pitch tracking
with respect to the SAC actor trained by [18]. Meanwhile, the lateral responses remain comparable.

The fault is expected to preponderantly affect the longitudinal axis. Due to the non-linear coupling
present in the modelled dynamics and, subsequently, in the trained intelligent controller, its effects are
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Figure 7.2: Evaluation time-traces of the champion (top) and TD3 (bottom) policy with their
corresponding one-episode nMAE and Sm metric for the iced wings case (F1).

visible on all three control channels. After pitch-up or down manoeuvres, the elevator command signal
contains an oscillatory component, also traceable in the θ, q responses. This oscillation is then present in
the roll and sideslip channels but it eventually damps out. Nevertheless, its magnitude and frequency are
visibly lower than the oscillations present in the TD3 signals which suffer from the same action noise as
in the other cases.

F4: Saturated elevator
When faced with a low elevator saturation level, the controllers’ tracking performance deteriorates. Fig-
ure 7.4 shows the responses of the population champion and the TD3 actor when tasked to control the
aircraft with its elevator saturated at δe = ±2.5◦.

Comparing their responses, one can see that the commands computed by the SERL actor are more
often within the saturation bounds compared to the TD3 actions. Therefore, the champion can on average
better follow the pitch reference. As the trim elevator defection sits at δetrim = −1.43◦, the symmetric
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Figure 7.3: Evaluation time-traces of the champion (top) and TD3 (bottom) policy with their
corresponding one-episode nMAE and Sm metric for the aft-shifted centre of gravity case (F2).

saturation limits would affect more the negative commands, thus hindering steep pitch-up manoeuvres.
This effect is directly visible for both SERL and TD3 starting from t = 20 s.

Notably, the champion actor, in this case, is not one best-behaving actor in nominal conditions. The
latter uses the elevator more aggressively, which becomes sub-optimal for these faulty conditions. This
signals the relationship between the evolved diversity and the ability of the entire population to remain
robust against faults and changes.

F5: Broken Elevator
A partial loss of the horizontal surface can be caused by tail strikes during taking off. Such a fault triggers
a sharp and sudden decrease in longitudinal control effectiveness. The current evaluation case models
it by multiplying the elevator coefficients by a 0.3 gain. Figure 7.5 shows the aircraft responses when
controlled by the two agents.

Same a before, the TD3 actor behaves more aggressively across all actuating channels, with high-
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Figure 7.4: Evaluation time-traces of the champion (top) and TD3 (bottom) policy with their
corresponding one-episode nMAE and Sm metric for the saturated elevator case (F4).

frequency commands and large deflections. Whereas this has been considered an undesired phe-
nomenon for deployment on real hardware, it can become beneficial when dealing with less effecting
actuators. By comparing the plots from Figure 7.5, TD3 can better track the pitch reference in the
presence of a broken elevator.

The SERL(50) champion is incapable of following a high-pitch reference even with a maximum elevator
deflection of−10◦ (reached at t = 35 s) which significantly increases its nMAE. Furthermore, the non-linear
coupling proves detrimental as, at that time stamp, both the roll and sideslip axis are negatively affected.

Despite this, SERL still maintains better sideslip tracking which results in a marginally lower nMAE
than TD3.

R1: Trim at high dynamic pressure
Previous works have proved robustness to the flight condition of a stochastic policy trained within a hi-
erarchical SAC architecture and exposed to one trim condition [18, 108]. Despite this, their outer loop
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Figure 7.5: Evaluation time-traces of the champion (top) and TD3 (bottom) policy with their
corresponding one-episode nMAE and Sm metric for the partially broken elevator (F5).

controller observed the altitude which offers partial information with respect to the dynamic pressure. The
plots from Figure 7.6 depict the time responses for the high dynamic pressure trim at Vtas = 150 m/s and
H = 20, 000 m.

High dynamic pressure would increase the effectiveness of all three control surfaces. Thus, for the
same manoeuvre, the required deflections are smaller. This proves beneficial for the SERL controllers,
with the SERL(50) error deviation decreasing with respect to the nominal case. Moreover, the more
agile plant contributes to less smooth control actions being commanded. Again, the TD3 policy is too
aggressive, a highly sub-optimal trait when the controlled actuators become more effective.

R2: Trim at low dynamic pressure
For this case, the simulated aircraft starts the evaluation episode at H = 10, 000 m, Vtas = 90 m/s. In
general, flying under low dynamic pressure conditions makes the responses sluggish. Since all three
actuating channels become less effective, reacting to the change proves problematic for all controllers
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Figure 7.6: Evaluation time-traces of the champion (top) and TD3 (bottom) policy with their
corresponding one-episode nMAE and Sm metric for the high dynamic pressure trim (R1).

and translates into a higher average tracking error and standard deviation.

The plots of Figure 7.7 show the aircraft time responses. The RL-only agent remains more robust
(when compared to the nominal case) in high altitude conditions because it benefits from the sluggish
controllers. Despite this, it struggles to command the rudder, resulting in a relatively high sideslip error
which drives its nMAE lower than the SERL(50) champion.

Looking at the beginning of the top plots of each set from Figure 7.7, both actors initially pitch down
rapidly, by commanding positive elevator defections. This is done to align the aircraft pitch, initially high
due to the low-pressure trim setting, with the reference value which starts at zero. The SERL champion
only requires a quarter of the maximum deflection admissible whereas the TD3 actor maximises the actu-
ator.
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Figure 7.7: Evaluation time-traces of the champion (top) and TD3 (bottom) policy with their
corresponding one-episode nMAE and Sm metric for the low dynamic pressure trim (R2).

R3: Atmospheric disturbance and sensor noise
Figure 7.8 shows the system response in the R3 case which considers an external disturbance according
to MIL-F-8785C specification from [109] in the presence of realistic sensor noise, presented in Table 7.2
from [110]. The aircraft is subjected to a vertical wind gust of 15 ft/s lasting from t = 20 s to t = 23 s. As
for this trim condition, an angle of attack increase is expected to be more problematic than a decrease,
only an up-pointing gust has been considered.

Initially, the gust triggers a pitch-up motion and the SERL controller responds by instantaneously re-
ducing the negative elevator deflection by ∆δe ≈ 1◦. By doing so, it rejects the disturbance, pointing the
aircraft to return to the nominal pitch trajectory. Whereas the same behaviour is shown by TD3 (the top-left
plot from the bottom set of Figure 7.8), the change in elevator deflection is less significant in comparison to
the action noise. In this case, the SERL champion remains the same as for the nominal scenario, hinting
that, in contrast to most of the faulty cases, genetic diversity is not necessary to reject the atmospheric
disturbance.
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Interestingly, this nominal trajectory (see Figure 7.1) shows a negative offset with respect to the refer-
ence pitch. Thus, even though the additional increase in pitch due to vertical gust would have brought the
system closer to the reference trajectory, both controllers rejects it. A possible explanation stems from
the angle of attack being part of the observed features. Both SERL and TD3 see their sudden increase
as possibly ‘unsafe’, with the first being more prone to act against it due to the safety information encoun-
tered during evolution. Indeed, the SERL champion reduces the increase promptly and the TD3 actor
accommodates it.

Lastly, adding biased noise does not significantly influence tracking performance. After t = 23 s,
both controllers follow the reference with comparable tracking error as in the nominal case. As expected,
the action smoothness decreases but it does not change significantly as neither of the trained policies
amplifies the observation noise.

Figure 7.8: Evaluation time-traces of the champion (top) and TD3 (bottom) policy with their
corresponding one-episode nMAE and Sm metric when realistic sensor noise is applied and a 15 ft/s

vertical wind gust acts at t ∈ [20 s, 23 s] (R3).

Overall, the performance of SERL-trained policies gracefully degradeswhen dealing with off-distribution
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Table 7.2: Gaussian noise sensor models identified from flight tests on the PH-LAB. The relevant
observations have been isolated from [110].

Observed Signal Unit Noise Magnitude Bias

p, q, r rad/s 4.0× 10−7 3.0× 10−5

θ, ϕ rad 1.0× 10−9 4.0× 10−3

α rad 4.0× 10−10 -

conditions, improving on the behaviours previously reported in the literature. The TD3 agent is less ca-
pable to reproduce its nominal performance once the conditions change. Nevertheless, the low dynamic
pressure case remains the hardest for all controllers, pointing towards the need for such a trim setting to
be included during training.
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Adaptation via Online Selection

The hybrid framework generates an optimised population controller. Despite this, only one policy can
control the plant at one time. Thus, for the framework to be useful in practical applications, a rule shall be
designed to select which policy will control the system. The current chapter provides a proof of concept
for such an adaptation rule based on online system identification.

To avoid later confusion, throughout this chapter the ‘real’ system will refer to the non-linear model
within the DASMAT framework whereas the identified or modelled dynamics will correspond to the ones
identified online.

First, Section 8.1 summarises the overview of online adaptation, followed by Section 8.2 which de-
scribes the mathematical background of online system identification based on recursive least squares.
Then, Section 8.3 presents the proposed method of selection using the identified model. Lastly, Sec-
tion 8.4 tests the online identification and selection method on the attitude reference tracking control task
in the presence of a sudden fault.

8.1. Overview
One starts the adaptation process with the population of N controllers trained offline according to the
nominal training task. Initially, the nominal champion policy starts as the strongest candidate to act as the
first behavioural policy. As the in-flight conditions are different from the ones encountered during training,
the champion for one case is not guaranteed to be the same in other flight conditions or in the pres-
ence of unexpected faults. Hence, when deployed, the agent can increase its performance by switching
the behavioural policy to adapt to the encountered conditions. The current work transforms the discrete
decision-making into a receding horizon optimisation problem that requires online-learnt information about
the new conditions and dynamics.

A sample-efficient way to perform online model identification uses an incremental model estimated via
Recursive Least Squares (RLS). The incremental model provides a future estimate of the agent state to
be used for trajectory prediction over the receding time horizon. Estimating the trajectory of each actor
over the horizon and summing its reward can then inform the agent with respect to the best-behaving
individual. This locally-relevant new champion switches with the incumbent (if required), becoming the
new behavioural policy. Figure 8.1 presents, in high-level terms, the steps followed by the online adaption
algorithm.

For this approach, only the model is learnt online while the behavioural policy is merely selected among
the offline-trained controllers. The next section will further detail the model identification procedure.

8.2. Recursive Least Squares
While the aircraft system is continuous, the measured data are discrete samples. Given the high and
constant sampling rate, the nonlinear continuous dynamics can be distressed according to Equation 8.1:

xt+1 = f (xt, at)
yt = h (xt)

(8.1)
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Figure 8.1: High-level overview of the online adaption mechanism. The top simulation block
corresponds to the identified dynamics, whereas the bottom one symbolises the interaction between the

behavioural policy and the real world.

For modelling the aircraft system, perfect state observability is assumed which translates into h() becom-
ing the identity function. So the output vector becomes identical with a sub-set of the DASMAT state
(described by the Methodology section of the Part I):

y ≡ x = [p, q, r, Vtas, α, β, θ, ϕ, ψ,H ]
⊤ ∈ R10

The incremental model described by Zhou et. al. [111] uses a first-order Taylor series expansion to
express the change in the system state based on the incremental control action. It was previously used
in works on online adaptive flight control [6, 108]. Equation 8.2 depicts its state-update rule:

∆x̂t+1 = Ft−1∆xt +Gt−1∆at (8.2)

Where Ft−1 ∈ Rn×n is the system matrix and Gt−1 ∈ Rn×m the control effectiveness matrix. These time-
varying matrices are updated by the RLS estimator. Since the control input a ∈ Rm corresponds to control
surface deflection and x to the reduced aircraft state, for the current work n = 10 and m = 3.

The RLS identification procedure collects the previously measured M samples of the state and input
increments in the measurement matrix Xt from Equation 8.3 and the dynamics terms in the parameter
matrix Θt from Equation 8.4. For the current implementation, the number of samples was limited to the
previous step only, i.e.,M = 1.

Xt =

[
∆xt
∆at

]
∈ R(n+m)×M (8.3) Θt−1 =

[
F⊤
t−1

G⊤
t−1

]
∈ R(n+m)×n (8.4)

Then, the recursive update rule is given by Equation 8.5, with κ ∈ [0, 1] the forgetting factor, and it
uses knowledge on the covariance matrix Pt−1. The symmetric Pt matrix is a measure of the parameter-
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estimate covariance and is updated according to Equation 8.6 using the measurement innovation defined
by Equation 8.7.

Θt = Θt−1 +
Pt−1Xt

κ+X⊤
t Pt−1Xt

ϵt (8.5)

Pt =
1

κ

[
Pt−1 −

Pt−1XtX
⊤
t Pt−1

κ+X⊤
t Pt−1Xt

]
(8.6)

Lastly, the prediction innovation from Equation 8.7 is the difference between the state predicted by the
model and the measured one.

ϵt := ∆x⊤t+1 −∆x̂⊤t+1 = ∆x⊤t+1 −X⊤
t Θt−1 (8.7)

Before the RLS starts to identify the dynamics, measurement and parameter matrices are initialised with
zeros. The covariance starts with a scaled identity matrix since the method assumes no prior knowledge
of the parameter values.

During online adaptation, the recursive updates are based on the experience generated by the be-
havioural policy. The next section will detail how the behavioural policy is changed using the newly learnt
knowledge. Also, the implementation of the RLS identification was verified according to the procedure
described in Chapter 9.

8.3. Online Selection
Let one assume a population of N pre-trained actors which, on average, can control the system within a
given performance requirement. Following previous chapters, this section takes the SERL(50) population
which obtained an average nMAE of 6.55± 1.4% on the nominal tasks.

Using the RLS-identified model, the policies are played in the agent’s ‘imagination’. The RLS model
updates continuously throughout the entire episode based on the measurements of the real dynamics.
Every tplay = 2 s, the current version of the identified model is used to predict the trajectory of each actor
over a time horizon of th = 2 s. Assuming unlimited computational power, this is assumed to happen on
a separate thread from the computations of the behavioural policy which are thus not affected.

The reward summed over the prediction horizon becomes the actor’s return. The individual that has
the highest predicted return is then considered the predicted champion. This new champion replaces the
behavioural policy if and only if its return is higher than the incumbent’s by a margin of 50%.

Once admitted for switching, two methods have been proposed to update the behavioural policy ac-
cording to the new champion:

1. Hard switch: the champion parameters are copied in place of the parameters of the behavioural
policy NN. The copy is made at the instant of the switching time.

2. Soft switch: the new champion (c) becomes a target for the behavioural actor (b). The latter’s
parameters are progressively updated using the Polyak moving average from Equation 8.8 [75].

θb ← (1− ρ) · θb + ρ · θc (8.8)

With θb denoting the parameters of the behavioural policy and θc the parameters of the newly selected
champion actor. The Polyak coefficient ρ has a value of 0.05.

8.4. Adaptation to Faults
To test the fault-tolerance, a fault was inflected. As adaption has to be performed online, the scenario
considers a sudden aft-wards longitudinal shift in the aircraft CG by 0.25 m. Since the shift happens at
t = 20 s, a longer evaluation episode of T = 100 s has been considered. Figure 8.2 shows the results
of the two update methods alongside the case when there no online selection takes place. In the latter
scenario (i.e., top pair of plots), the nominal champion remains the behavioural policy for the entity of the
episode. The plots skip the lateral states as they are not directly affected by the longitudinal CG shift
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and, despite the observed non-linear coupling, they do not offer any further relevant insights about the
behaviour of the adaptation method.

Both methods of online adaptation track the reference signals better than when the agent does not
adapt. Their most notable contribution appears in the second half of the episode. After t = 50 s, a relatively
steep pitch-upmanoeuvre (marked by a higher pitch rate) combined with the reduced static stability margin
(caused by the shifted CG) triggers an undamped oscillatory behaviour. Whereas the nominal champion
policy is affected by it, both adaptation methods reduce this oscillation at different degrees.

Overall, the soft switch method achieves the best performance, lowering the nMAE by more than 20%
from the case when the nominal champion remains the behavioural policy. The soft switch also improves
the control policy smoothness, acting like a discrete low-pass filter in the policy parameter space which
translates to more gradual transitions in the action space.

Despite this, the middle and bottom plots show multiple erroneous switches, for example at t ≈ 83 s
(middle plot) and t ≈ 50 s (bottom plot). When the aircraft starts a new manoeuvre, the chance of exciting
previously unencountered dynamics raises which inevitably increases the parameter covariance. This
epistemic parameter uncertainty in the identified model transfers to the simulated trajectories and can
result in an overestimation of the actors’ reward, causing undesired switches. Whereas the short th and
the 50%margin for switching specifically aim to reduce the frequency of unwanted changes, they can still
occur.

This is considered an inherent limitation of the model identification method. Although sample efficient,
the incremental model identified by the RLS retains accuracy in the neighbourhood of the encountered
states. Thus, similar to the online RL methods, sufficient exploration of the state space enables better
performance. According to [6], RLS depends less on global exploration but it benefits from the condition
of persistent excitation. As no identification manoeuvres, such as the 3211, are specifically incorporated
in the experiment, the locally identified dynamics are accurate for a short amount of time.

Last but not least, the above tests show that the adaptation tool can correct its mistake by switching
back to another policy. In the pair of plots from Figure 8.2, the agent corrects for an erroneous selection
made at t ≈ 83 s, hard-switching to another policy at the next play-time. As the soft switch gradually
changes the behavioural policy, it dampens the impact caused by undesirable policy shifts due to reward
overestimation.

8.5. Conclusion and Future Extensions
The current chapter presented the design and testing of a proof-of-concept for online adaptation. The tool
incorporated Recursive Least Squares for fast online dynamics identification. The continuously-updating
RLSmodel was used for each tplay to play each actor over a receding prediction horizon of th. By summing
the predicted reward over the horizon, the policy with the highest expected return was chosen as the new
champion.

The chapter also presented two methods to switch the new champion with the incumbent behavioural
policy - the soft and hard switches. Both methods obtained better nMAE and enhanced smoothness than
the nominal champion when controlling a faulty aircraft. The soft switch method used a Polyak average
to gradually shift the behavioural policy towards the new champion. By doing so, it showed the best
tracking performance and the smoothest control signal. Thus, the test empirically proved the benefit of
model-based online adaptation via selection over no adaptation mechanism in a fault-tolerance scenario.

The above results are impactful since they contribute to the limited body of knowledge concerning
online population-based adaptation applied to flight control. Previous works either combined an offline
trained policy with online updating [108], or developed dynamics-aware population-based searches on
walking robots which benefit from relaxed safety constraints and can be easily rested in case the be-
havioural policy is incapable of fulfilling the task [33]

Following the above discussion, the present approach of adaptation via online selection could be
improved in future work by following either one of these two recommendations:

1. Uncertainty quantification: The RLS indication can be replaced with dynamics models that can
estimate the aleatoric and epistemic uncertainty (i.e. prediction uncertainty due to a lack of samples)
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Figure 8.2: Evaluation time-traces of the pre-selected champion of the nominal case (top) and the two
online switching schemes: hard (middle) and soft (bottom) with ρ = 0.05. At the time t = 20 s, the

aircraft’s centre of gravity suddenly moves aft by 0.25 m.

over the time horizon. Possible candidates are Gaussian Process regression, pre-trained distribu-
tional critic(s) or ensembles of regression models. By doing so, the mechanism for online adaptation
considers uncertainty and can select the policy which returns the best worst-case scenario. Despite
this, where RLS can reasonably learn locally accurate dynamics, the sample efficiency of a more
complex uncertainty-aware model is expected to deteriorate.

2. Safety-constraints on offline policies: The offline population can be tested against a set of safety
constraints. By doing so, one can identify and remove the potentially unsafe ones. These schemes
are not feasible for standard single-actor methods such as TD3 or SAC. Assuming the switching
method will not violate the safety bounds, the offline-trained and online-selected behavioural policy
could benefit from safety guarantees.

3. Monte Carlo Tree Search: At selection time, the agent has to take a discrete action within the finite
space of policies which can also be assumed to follow a (PO)MDP. After identifying an uncertainty-
aware prediction model with knowledge, one can exploit efficient probabilistic planners such as
Monte Carlo Tree Search (MCTS) [33]. They have already been successfully used to solve POMDPs
with stochastic transition functions [112]. This can lead to faster decision making in-between policies
which becomes relevant when a large repertoire of offline-learnt policies is available.
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Verification and Validation

Both the methodology and software tools used to generate the results are verified. This consisted of an
iterative process of unit and module testing, performed at multiple levels of abstraction.

The developed source code is written in Python, with the PyTorch, Numpy and Scipy packages used
within the training and testing scripts. Also, the Weight & Biases API has been adopted to log the training
statistics and perform hyperparameter sweeps. Apart from that, the DASMAT framework is available as
a Simulink model initialised by a MATLAB script.

For unit and module testing, the framework is split into three modules: the DASMATmodel, the PDERL
framework and the TD3 algorithm. The next three sections detail the unit testing procedure performed
to verify each part. Apart from them, the online model identification presented by Chapter 8 is verified in
Section 9.4

9.1. PDERL Implementation
Chapter 4 from Part II presents the implementation of the PDERL algorithm. Its goal is to prove the
possibility of using PDERL to train policies for a continuous control task and remain tolerant against faults.
For this purpose, the LunarLander environment served as a simplified problem to train a PDERL population
and evaluate the intelligent controller.

Following directly from the conclusions made within the above-mentioned chapter, both the PDERL
implementation and its ability to optimise a population of controllers are considered verified.

9.2. Learning Environment
As this module is wrapped inside the learning environment, the tests are performed pursuing a ‘black box’
approach. With this in mind, two tests have been completed.

First, the elevator channel is subjected to a positive step input while the aileron and rudder deflection
is kept at zero. The simulated time responses are visible in Figure 9.1. As expected, the aircraft initially
remain at the trim pitch but from t = 5 s, the positive elevator input δe = 0.5◦ causes a pitch-down motion
which subsequently triggers a slowly damped low-frequency oscillation, which corresponds to the phugoid
eigenmode.

Second, a set of three PID controllers have been tuned to track the pitch, roll and sideslip references
in nominal conditions (see the methodology section from Part I). Figure 9.2 depicts the time responses of
the tracked aircraft states.

The PID controllers can track both the pitch and roll reference with little overshoot. The constant βr = 0
reference is harder to follow due to present the asymmetric coupling. Despite this, the DASMAT-based
environment reacts to control actions in a smooth manner which follows the standard principles of flight
dynamics.

9.3. TD3 Learning Algorithm
The current TD3 implementation followed the algorithm developed by [13] and made publicly available on
the page: https://github.com/sfujim/TD3.

104

https://github.com/sfujim/TD3


9.4. Online Identification 105

Figure 9.1: DASMAT response to a step signal fed through the elevator channel.

To verify the implementation, the agent is trained on a simplified control task using the already-verified non-
linear aircraft model within the DASMAT framework. Whereas a similar methodology to the one described
in Part I has been followed, this test considers learning a pitch reference tracking task. Figure 9.3a shows
its corresponding control diagram. The agent shall learn to compute δe commands based on the pitch
error∆θ = θ−θr, and the longitudinal states [q, α, Vtas]⊤ observed from the aircraft state vector. Previous
actions or states are not considered, following the MDP assumption stated in Part I.

The reward function is scaled to account for the missing roll and sideslip channels and the reference
corresponded to randomly generated sequences of cosine-smoothed steps in pitch. The progress statis-
tics are subsequently logged. Figure 9.3b shows the average episodic return plotted against the number
of training frames encountered.

After 400, 000 learning frames, TD3 has converged, tracking the pitch reference with an episodic return
of R = −30± 6.6. Thus, the resulting tracking performance is comparable with the performance obtained
by a tuned PID controller and with one-third (due to pitch-only reward scaling) of the rewards obtained by
inner-loop SAC agents trained for attitude control in [18, 108, 113].

Therefore, one can conclude that the results of this test verify the implementation of both the TD3
agent and its training algorithm.

9.4. Online Identification
The online adaption method introduced by Chapter 8 includes a model identification step via RLS, which,
as part of the system identification process, has to be verified.

The current module test considers the same task presented in Chapter 8, namely aircraft control with
a sudden aft-shift of the CG. Figure 9.4 shows the normalised one-step ahead prediction innovations. For
this testing scenario, the behavioural policy corresponds to the pre-selected nominal champion policy.

The sudden backwards shift in the CG takes place at time t = 20 s. The fault is visible in Figure 9.4
as a spike in each of the nine innovations. At the time of the fault, the pitch rate estimation error is the
highest among all ten tracked states as the aircraft has already been performing a relatively steep nose-up
manoeuvre when the CG shift causes an additional positive pitch moment.

By visual inspection, the RLS prediction errors are small (i.e., comparable to machine precision) and
decreasing. Despite this, when new dynamics are excited some states become harder to predict. The
pitch-up manoeuvres cause the velocity to decrease faster than the predicted value. Similarly, the angle
of attack varies unpredictably.
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Figure 9.2: PID controllers for the pitch, roll and sideslip channels.

(a) Control diagram for pitch tracking. (b) Learning curve.

This behaviour is expected as RLS, using a recursive linear model, is only accurate in the neighbourhood
of the training samples. The RLS identification is thus verified only for short future predictions. Empirically,
it has been estimated that prediction horizons shorter than 3 s (coupled with frequent prediction times) are
advisable.

9.5. Validation
After the testing is completed, validation would aim to prove that the offline-trained actors can provide
attitude tracking on real-life aircraft systems.

First, the DASMAT framework used for simulation had already been validated by the work of [46].
Their experiments compared flight data obtained in the nominal pre-stall envelope with the output of the
simulation model. The results showed a relative root mean squared error (RMSE) of 8.38% and 12.65% for
longitudinal force and moment coefficients and 7.34% and 8.58% for the lateral ones. Thus, the modelled
representation within the DASMAT framework was validated for flight conditions that belong to the pre-stall
envelope. In the current thesis, the safety-informed genetic mutation specifically encourages the agent to
not explore outside this envelope.

Second, the robustness and fault tolerance tests raise confidence in the controller’s ability to deal with
real-life scenarios. Despite this, training and testing only considered a limited number of faults and flight
conditions. Moreover, the learning algorithms made the following simplifying assumptions: action selec-
tion and a partially observable MDP, no delays in actuator commands and sensor readings, ideal sensor
fusion, aircraft remaining in nominal and clean configuration during training and the idealised atmospheric



Figure 9.4: The normalised innovation of the RLS predictions. The model is updated continuously
throughout the episode and the aircraft CG is suddenly shifted aft at t = 20 s.

disturbance model.

Therefore, the results perform a necessary but unfortunately insufficient step towards validation.
Whereas they cannot and should not replace flight testing, such campaigns are costly and time-consuming
and, for fault-tolerance test cases, come with high safety risks. Ensuring a certain degree of control ro-
bustness is thus needed before the learned controllers can be transferred to the Flight Control Computer
of real aircraft.

Validating the developed controller on a real-hardware task brings the extra challenges associated
with the gap between simulation and reality. Bridging this gap would definitely be informative but such
validation ultimately falls out of the scope of the present work and thus remains a highly recommended
step for future research.
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10
Conclusion

10.1. Closing Remarks
The present work combined two bio-inspired frameworks, DRL and EA, culminating in SERL, a safety-
informed ERL method that trains flight controllers on a non-linear model for a fixed-wing jet aircraft to
provide optimal attitude tracking. It used a DDPG-based actor-critic structure with a GA loop. Extending
the RL agent within PDERL, the TD3 algorithm improves sample efficiency and stability of the learning.
The GA loop is a novelty-seeking crossover operator and safety-informed mutation that uses high-level
domain knowledge about the flight envelope. With them, it obtains parameter-space exploration adding
to the off-policy state space exploration of TD3.

The current work empirically proved that, by adjusting the population size and then selecting the ade-
quate training time, SERL can achieve the desired balance between performance and control smoothness.
Moreover, off-policy exploration using unregularised multi-layer neural networks was shown to aggravate
the action noise phenomenon in simulation environments which only prioritise tracking performance.

Training a large controller population required proportionally more samples but achieved significantly
higher fault tolerance than the TD3 agent in five out of six cases. It also remained robust to flight conditions
and external disturbances in the presence of noise. This demonstrated the benefit of evolving a diverse
population of controllers through distillation crossover and safety-informedmutations. Nevertheless, when
system faults collapse the offline-obtained diversity, the TD3 remains marginally superior.

Directly balancing the performance-smoothness trade-off and benefiting from its proven robustness,
the offline trained SERL agents can be more flexibly deployed on real-hardware applications. This repre-
sents a step towards making artificial intelligence a safety net for autonomous fault-tolerant controllers for
safety-critical systems in general and aircraft in particular.

10.2. Research Questions
The current research thesis aimed to improve the robustness of fault-tolerant intelligent flight control by
adapting a hybrid evolutionary reinforcement learning framework to provide reference-tracking control for
a high-fidelity model of a small fixed-wing jet aircraft. Subsequently, it has answered a subset of the
research questions proposed in the introductory chapter.

Met-1

What are the requirements for intelligent fault-tolerant flight control?
Met-1.a What are the most critical faults a modern flight control system shall adapt to?
Met-1.b What are the limitations of intelligent flight controllers in dealing with system

faults?

Question Met-1.a was covered by Section 3.1.2 which compiles a list of plausible fault cases that
should be considered while validating the fault-tolerant controller. Then, the answer to sub-question Met-
1.b comes from the rest of Chapter 3.1 which offered an overview of intelligent control and its advantages
and by Section 3.2.4 which delved deeper into the state-of-the-art class of deep reinforcement learning.
Thus, it can be concluded that intelligent fault-tolerant controllers require a generalisable policy. In practice,
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this can only be achieved by finding a stable balance between safe exploration and exploitation of either
domain-specific knowledge (e.g., modelled dynamics in online learning) or extensive series of previous
experiences (e.g., the replay buffer or genetic memory in off-policy learning).

Met-2

What are the state-of-the-art offline hybrid methods combining deep reinforcement learning and
evolutionary algorithms?
Met-2.a What are the strengths and limitations of deep reinforcement learning?
Met-2.b What are the strengths and limitations of evolutionary algorithms?
Met-2.c Which hybrid methods are proposed in the field’s literature?
Met-2.d What benchmarks and corresponding metrics could be used to compare their

control performance?

The second question within the Method Feasibility group was covered by Sections 3.2 to 3.4 from the
Literature Study chapter. Namely, Chapter 3.2 focused on reinforcement learning, explaining its back-
ground, identifying the state-of-the-art and compiling its main advantages and disadvantages in the con-
text of optimising flight control policies. Similarly, Chapter 3.3 treated evolutionary algorithms, introducing
the concept of the quality-diversity search for repertoire learning. In contrast to reinforcement learning,
evolutionary algorithms only update the policies based on completed episodes. Furthermore, they can
be parallelised to reduced wall-clock training time and have a higher chance to explore outside of local
optima.

Then, the two classes are combined in the hybrid framework of Evolutionary Reinforcement Learning.
The historically-first ERL algorithm showed promising features but lacked stability during learning. This
vulnerability prompted research work towards possible extensions. They were surveyed and reviewed to
identify Proximal Distilled ERL as capable of stably evolving a population of control policies. The compar-
ison was completed by using a worst-case performance metric that aims for high average rewards and
low variance. Moreover, using explicit genetic operators and a DDPG actor-critic structure, the modular
design of PDERL allows for straightforward updates and sensitivity studies.

Met-3

Which offline-trained hybrid framework is feasible to maximise the chosen metric for the control of
a high-dimensional continuous system in the presence of faults?

Lastly, the feasibility of performing fault-tolerant control using the chosen hybrid framework was tested
in Chapter 4. PDERL was trained offline on the LunarLander task from OpenAI gym, a toy problem do-
main in optimal continuous control. Compared to DDPG and CMA-ME, a state-of-the-art quality-diversity
algorithm, PDERL showed better worst-case performance in both fault conditions considered: clipped ac-
tuator and unbiased noisy sensor observation. Moreover, the change in its behaviours was observed to be
empirically correlated to the performance under the different faulty conditions. This verification completed
the answer to question Met-3 and thus finished the feasibility sub-set of the research questions.

Moving further from the preliminary analysis, the next research questions look at the implementation
of the ERL framework as an intelligent fault-tolerant flight controller.

Imp-1

What is a suitable system/platform to train and test the hybrid flight controller?
Imp-1.a What simplified model and which initial conditions can be used to train the

controller offline?
Imp-1.b What should be the architecture of the control loop, observation space and

action space?
Imp-1.c Which fault conditions should be evaluated during testing?

The first question deals with the learning task and flight control architecture. Specifically, sub-question
Imp-1.a was answered by employing DASMAT, a framework modelling non-linear 6-DOF fixed-wing air-
craft dynamics framework as the simulation environment for learning and evaluation. The model was
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trimmed for steady straight symmetric flight at H = 2000 m and Vtas = 90 m/s.

Then, the control task considered continuous attitude control following a random sequence of cosine-
smoothed step references in pitch and roll while maintaining zero sideslip. The action space corresponded
to the elevator, aileron and rudder deflection whereas the agent state was formed from the pitch, roll and
yaw rate, angle of attack and tracking errors.

For evaluation, six fault cases were isolated from the previous work in the field based on their relevance
and possibility to be modelled. They were: icing on wings, aft-shift in the centre of gravity, saturated
actuators (aileron and elevator), partially broken tail resulting in reduced elevator effectiveness and, last
but not least, a completely jammed rudder.

Imp-2

How can an offline learnt set of policies be efficiently and safely updated for online control of the
selected platform in presence of faults?
Imp-2.a What are the most promising ways to use safety information to improve aver-

age controller performance with respect to the baseline hybrid framework?
Imp-2.b What is a sample-efficient method to select a well-behaving policy during on-

line control of the faulty system?

The thesis investigated how the baseline hybrid agent can be improved and how it can be efficiently
used for online control. The first challenge, marked by sub-question Imp-2.a, was tackled by adopting
the TD3 structure and by designing the safety-informed mutation operator. The first improves sample
efficiency by limiting catastrophic forgetting of the RL policy, a claim already verified within the field’s
literature. The mutation operator used domain knowledge to discourage parameter-space exploration in
possibly unsafe directions. The safety-informed mutation offers an opportunity to incorporate expert-level
knowledge concerning the controlled system via the user-defined cost function. Using even preliminary
knowledge of the flight envelope decreases, over one generation, the number of unsafe transitions. Long-
term learning beneficially impacts performance by limiting the chance of catastrophic forgetting. This
increases the confidence that the safety-informed ERL canmore easily be transferred to other flight control
systems.

Then, Chapter 8 offers an answer to sub-question Imp-2.b by providing a proof-of-concept for an online
adaption method which employs a sample-efficient Recursive Least Squares online model identification.
Then, the tool uses the identified incremental model to predict the return of each available policy over a
receiving time horizon. The best-performing individual by a margin switches with the behavioural policy in
a hard (direct copy) or soft (Polyak average) manner. Testing this tool on an evaluation case with a sudden
aft-shift of the aircraft’s centre of gravity, the adaption via selection improved the tracking performance and
the soft switching also increased the smoothness of the control actions.

Imp-3

How does the hybrid approach compare to an intelligent control framework based on DRL in terms
of performance under faulty conditions?

SERL framework was compared to a state-of-the-art DRL agent trained under the same conditions
(number of training frames, seed, hardware, and the number of hyperparameter tuning sweeps). TD3
and two configurations of SERL, namely SERL(10) and SERL(50), were tested on ten scenarios: the
nominal conditions (i.e., same as during training), six fault cases, two different trim conditions and, last
but not least, against an external disturbance in the presence of realistic sensor noise. For each case,
the performance had been compared using the episode nMAE averaged over the controlled states: pitch,
roll and sideslip.

The SERL(50) champion significantly outperformed the TD3-only actor in all but one case. As for most
cases, the identified best-behaving actor was different from the nominal case, the success of SERL(50)
can be attributed to the diversity obtained by evolving a genetic population of non-linear controllers. TD3
outperformed both SERL frameworks in the jammed rudder scenario when the blocked actuator caused
the genetic diversity achieved in the actuating space to collapse.
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Finally, by adjusting the population size and then selecting the adequate training time, SERL can bal-
ance performance and control smoothness. In contrast, TD3 showed action smoothness values lower by
at least one order of magnitude than the SERL(50) champion. Thus, off-policy exploration using unregu-
larised multi-layer neural networks was shown to aggravate the action noise phenomenon in simulation
environments which only prioritise tracking performance.

10.3. General Contribution
With the increasing popularity of artificial intelligence, research in control systems has the challenge and
opportunity to adapt and synchronise its state-of-the-art algorithms with novel bio-inspired intelligence
methods.

Directly balancing the performance-smoothness trade-off and benefiting from its proven robustness,
the offline trained SERL agents can be more flexibly deployed on real-hardware applications. In doing so,
they perform a valuable step towards including artificial intelligence algorithms within autonomous fault-
tolerant controllers, making them a robust safety net applicable to safety-critical systems in general and
aircraft in particular.
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Recommendations

Despite its achievements, the present work still faces limitations. This chapter provides a brief overview
of the primary recommendations for the future continuation of this research project.

Hyperparameter tuning
Whereas this work considered limited hyperparameter tuning, this area should be explored in future iter-
ations of the study. Specifically, more hyperparameter sweeps should be performed for a larger set of
genetic population sizes.

Improve sample-efficiency
The hybrid methods suffer from poor sample efficiency. Ideally, such issues could be targeted by improving
the sample efficiency of either or both learning frameworks. On one side, the work of [113] shows the
opportunity to increase the training stability and efficiency of the RL agent by involving distributional critics.
Potentially, this can benefit large population searches which hinder the RL convergences. On the other
side, novel evolutionary strategy algorithms, such as Covariance Matrix Adaptation from [34], can replace
the GA loop. For these extensions, the control policy smoothness and the possibility to add it to the fitness
function shall be closely investigated.

Improve online selection of actors
The online adaption method can be improved by including means of uncertainty quantification over the
prediction horizon. Also, the offline population can be tested against a set of safety constraints to identify
and remove potentially unsafe policies. Lastly, scaling up the complexity of the identified model can in
turn downgrade the sample efficiency. To prevent this from affecting the adaption, the agent can employ
a probabilistic planner such as Monte Carlo Tree Search [33] for faster decision-making.

6-DOF flight control
This work only targeted the attitude control task and trained in one flight condition. Previous works have
shown the opportunity to train 6-DOF controllers in a hierarchical manner. Achieving smooth control via
direct actuator commands and benefiting from episodic evolutionary learning, the present work opens a
possibility to circumvent the curse of dimensionality of 6-DOF control. Moreover, training such a controller
on multiple points sampled within the flight envelope can increase its performance in the low dynamic
pressure regime.

Flight-test validation
Proving robustness to changes in flight conditions, system and sensor dynamics and external distur-
bances, the work made valuable steps towards showing that SERL can provide attitude control on real
systems. Despite this, validating it requires flight-testing campaigns. Generally, the problem of validating
neural networks as flight control policies is cumbersome due to their black-box nature, which lacks explain-
ability. Despite this, this necessary step would contribute towards their certification as flight controllers for
future autonomous systems.
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