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Abstract
We combine theory and numerical calculations to accurately predict the motion of anisotropic particles in shallow micro-
fluidic channels, in which the particles are strongly confined in the vertical direction. We formulate an effective quasi-two-
dimensional description of the Stokes flow around the particle via the Brinkman equation, which can be solved in a time that 
is two orders of magnitude faster than the three-dimensional problem. The computational speedup enables us to calculate 
the full trajectories of particles in the channel. To validate our scheme, we study the motion of dumbbell-shaped particles 
that are produced in a microfluidic channel using ‘continuous-flow lithography’. Contrary to what was reported in earlier 
work (Uspal et al. in Nat Commun 4:2666, 2013), we find that the reorientation time of a dumbbell particle in an external 
flow exhibits a minimum as a function of its disk size ratio. This finding is in excellent agreement with new experiments, 
thus confirming the predictive power of our scheme.

1 Introduction

Microfluidic devices offer many applications, such as 
flow cytometry (Oakey et al. 2010; Wang et al. 2007; Mao 
et al. 2009), separation of cells (Gossett et al. 2010), DNA 
sequencing (Tewhey et al. 2009), or blood cell analysis 
(Toner and Irimia 2005). In many applications, it is of para-
mount importance to control the position of the immersed 
particles. Often, focusing of particles in the channel is 

achieved by external fields or by flows induced by the chan-
nel geometry (Xuan et al. 2010), while particle separation 
or sorting can also be realised by tuning electric fields (Jeon 
et al. 2016; Wang et al. 2007) or the channel geometry (Gos-
sett et al. 2010; Sajeesh and Sen 2014; Pamme 2007; Zeming 
et al. 2013; Li et al. 2014). Alternatively, the shape of the 
particle itself offers a different route to manoeuvring the 
particles in the channel (Masaeli et al. 2012). The hydrody-
namics of various particles in strong confinement has been 
extensively studied; for instance, the motion of confined 
droplets (Beatus et al. 2012; Shen et al. 2014), (connected) 
disks (Uspal and Doyle 2012; Uspal et al. 2013), and fibers 
(Berthet et al. 2013; Nagel et al. 2018). However, as tun-
ability increases with the complexity of the particle shapes, 
theoretical arguments on the basis of simplified geometries 
might fall short of accurately describing the motion of par-
ticles. In addition, advances in versatile particle synthesis 
techniques, such as continuous-flow lithography (Dendukuri 
et al. 2006), make an infinite variety of quasi-two-dimen-
sional shapes experimentally accessible.

Inspired by these advances, we develop, in this work, a 
method to calculate the two-dimensional motion of confined 
particles in microfluidic channels that can handle particles 
of any given quasi-two-dimensional shape. Here, we com-
bine finite-element calculations with a simple approach for 
the particle motion to solve the full hydrodynamic equa-
tions at hand, either in full detail in the three-dimensional 
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geometry or in an effective two-dimensional description. 
Our method is validated by comparison of the three- and 
two-dimensional results with analytical calculations. Next, 
we apply our method to study dumbbell-shaped particles in 
Hele–Shaw channels, reproducing new experimental results 
accurately, without any adjustable parameters.

2  Theory and numerical methods

2.1  Hydrodynamic equations and equations 
of motion

We consider a rigid particle, of arbitrary shape, at position 
rp = (xp, yp, zp) , which is immersed in a fluid that is driven 
through a shallow microfluidic channel by the application 
of pressure at the channel inlet, see the illustration in Fig. 1. 
Let us assume that this particle is strongly confined in the 
z-direction, i.e., the particle is separated from the top and 
bottom walls by a small gap of height h that is much smaller 
than the channel height H. Such a particle can be produced, 
for example, using ‘continuous-flow lithography’ (Den-
dukuri et al. 2006). In this method, the fluid in the chan-
nel is a prepolymer solution, where particles are ‘printed’ 
by crosslinking the oligomers by pulses of UV light, which 

is applied through a photolithographic mask. In this way, 
the particle shape is defined in the xy-plane by the shape of 
the mask (which can be of any desired shape), while it is 
extruded in the z-direction to a height that is comparable to 
the channel height, such that h ≪ H.

The microfluidic channel under consideration here (see 
Appendix 1) has a height H = 30 μ m and a much larger 
width W = 500 μ m, while the length L of the channel is of 
the order of 1 cm, which can be considered infinite for our 
analysis. The fluid is driven through the channel at an aver-
age velocity U0 , which is of the order of 50 μms−1 . Using 
the hydraulic diameter DH = 2HW∕(H +W) as the charac-
teristic length scale, we find that the Reynolds number is 
Re = �U0DH∕� = 10−4 − 10−5 for a typical oligomer solu-
tion with viscosity � and density � . Therefore, the flow is 
well described by the Stokes equation (Kim and Karrila 
1991; Happel and Brenner 2012; Leal 2007):

where u(r) and p(r) are the fluid velocity and pressure at 
position r, respectively, and � denotes the fluid viscosity. 
We supplement the Stokes equation with no-slip boundary 
conditions on the (stationary) channel walls and the (mov-
ing) particle surface Sp:

where Up and �p denote the particle velocity and angular 
velocity, respectively. At the inlet of the channel, we impose 
a uniform incoming Hele–Shaw flow:

which is the analytic solution for the flow between two infi-
nite parallel plates driven by a constant pressure difference. 
Here, z ∈ [−H∕2,H∕2] and U0 is the average velocity in the 
x-direction. Note that this boundary condition neglects the 
no-slip condition on the sidewalls, i.e., the prescribed form 
(3) does not vanish at the side walls at y = ±W∕2 . There-
fore, we take into account a finite ‘entrance length’ at the 
inlet after which the flow is fully developed downstream 
in the channel. Finally, we impose a zero-pressure bound-
ary condition at the outlet, such that the pressure difference 
between inlet and outlet is precisely driving the flow field 
given by Eq. (3), i.e., U0 = −H2∇p∕(12�) . The influence of 
the no-slip side walls on this pressure drop is assumed to 
be negligible. The Stokes equation (1), together with these 
boundary conditions, forms a closed set of equations that we 
solve numerically by a finite-element scheme (see Sect. 2.3).

The fluid in the channel surrounding the particle exerts a 
hydrodynamic force F and torque T on the particle, which 

(1)−∇p + �∇2u = 0, ∇ ⋅ u = 0,

(2)u||walls = 0, u||r∈Sp = Up + �p × (r − rp),

(3)u||inlet = U0(r) =
3

2

(
1 −

4z2

H2

)
(U0, 0, 0),

Fig. 1  Top view a and side view b of the geometry and the Cartesian 
frame. An external flow U0 with parabolic profile is imposed through 
a channel of length L, width W, and height H, containing a dumb-
bell particle with radii R1 and R2 at a center-to-center distance s, with 
height H − 2h , such that the height of the gaps between the particle 
and the top and bottom walls is given by h. In these gaps, the flow 
profile is approximately that of a simple shear flow. The orientation of 
the long axes of the dumbbell with respect to the external flow U0 is 
denoted by �
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is calculated by integrating the hydrodynamic stress tensor, 
�ij = −p�ij + �(�iuj + �jui) , over the particle surface:

Due to the linearity of the Stokes equation (1), we can write 
the solution (p,u) of Eq. (1) with boundary conditions (2) 
and (3) as a superposition of two solutions (Happel and 
Brenner 2012): u = u0 + u� and p = p0 + p� , where (p0, u0) 
and (p�, u�) are solutions to the Stokes equation (1) with 
boundary conditions:

that is, u0 is the solution where the particle is fixed subject 
to the imposed external flow, and u′ the solution where the 
particle moves through the channel without an imposed flow. 
The stress tensor also splits accordingly, � = �0 + �� , such 
that we find that the forces and torque on the particle are 
written as F = F0 + F� and T = T0 + T� , which are calcu-
lated from Eq. (4) by replacing � with �0 or �′.

To proceed, we can again use the linearity of the Stokes 
equation (1) to derive that the force F′ and torque T ′ depend 
linearly on each component of the particle (angular) velocity 
via a 6 × 6 resistance tensor  as (Happel and Brenner 2012; 
Brenner 1963, 1964):

Due to the overdamped nature of the system, the (hydrody-
namic) force and torque on the particle vanish in the absence 
of external forces on the particle. Therefore, after summing 
up the force contributions from the solutions u0 and u′ , we 
find that the particle must obey the equation of motion:

with 0 = (0, 0, 0) . Thus, once ,F0 and T0 are determined, 
either analytically or numerically, the equations of motion 
(9) can be solved for the particle velocity and angular veloc-
ity as follows:

(4)F = ∫Sp

dS � ⋅ n, T = ∫Sp

dS (r − rp) × (� ⋅ n).

(5)u0
||walls = 0, u0

||inlet = U0(r), u0
||r∈Sp = 0;

(6)u�||walls = 0, u�||inlet = 0,

(7)u�||r∈Sp = Up + �p × (r − rp),

(8)
(
F�

T�

)
= −�

(
Up

�p

)
.

(9)
(
F

T

)
= −�

(
Up

�p

)
+

(
F0

T0

)
=

(
0

0

)
,

(10)
(
Up

�p

)
=

1

�
−1

(
F0

T0

)
.

Notice that ,F0 and T0 depend on the position and ori-
entation of the particle, such that Eq. (10) only determines 
the force- and torque-free (angular) velocity for that specific 
particle position and velocity. The position dependence of 
 is related to the effects of the side walls; in the case of an 
infinite slit, the tensor  will only depend on the particle 
geometry and its orientation (with respect to the imposed 
external flow).

In this work, due to the strong confinement in the verti-
cal direction as well as the mirror symmetry in the z = 0 
plane of the problem at hand, the movement of the particle 
is restricted to the two-dimensional mid-plane of the channel 
at z = 0 , thereby reducing the number of degrees of freedom 
to three: Up = (Up,x,Up,y, 0) and �p = (0, 0,�p) , and simi-
larly F = (Fx,Fy, 0) and T = (0, 0, T).1 Moreover, the particle 
position is determined by the coordinates (xp, yp) , while its 
orientation is described by a single angle � , as illustrated 
in Fig. 1. Finally, the resistance tensor  reduces to a 3 × 3 
tensor, which is obtained from the relevant components of 
the original 6 × 6 resistance tensor. In some cases, symmetry 
arguments may be invoked to reduce the number of degrees 
of freedom even further, e.g., mirror symmetric particles 
that are aligned with the imposed external flow, as we shall 
see below.

Using a finite-element scheme, we can numerically solve 
the flow field u for any imposed velocity and angular veloc-
ity, and from these solutions, we can obtain the resistance 
tensor  , the force F0 , and the torque T0 , to subsequently 
obtain the force- and torque-free velocities from Eq. (10). 
By repeating this at the new particle position in the next time 
step, it is, in principle, possible to integrate the complete 
particle motion.

2.2  Brinkman equation

A three-dimensional finite-element calculation is able to 
resolve the flow in the channel. However, due to a separation 
of length scales, h ≪ W , the finite-element mesh needs to be 
chosen very fine at certain places, causing the calculations to 
be computationally costly, and eventually prohibitive for the 
purpose of integrating the particle motion. To circumvent 
this problem, we resort to an effective 2D-description of the 
system via the Brinkman equation (Brinkman 1949; Uspal 
and Doyle 2014).

Far enough from the side walls2 and the particle, the flow 
field is well described by Hele–Shaw flow:

(11)u(x, y, z) =
3

2
ū(x, y)

(
1 −

4z2

H2

)
,

1 For the remainder of this text, F and Up denote two-dimensional 
force and particle velocity, respectively.
2 This can only be the case if the particle is not also confined in the 
y-direction, which is the case in the experimental situation of interest.
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the pressure being independent of z to a good approximation: 
p = p(x, y) . We substitute this ansatz in the Stokes equation 
(1) and average over the channel height to find the Brinkman 
equation (Brinkman 1949; Uspal and Doyle 2014):

where the two-dimensional vector field ū = (ūx, ūy) denotes 
the z-averaged value of the three-dimensional flow field u , 
and p̄ = pH denotes the two-dimensional pressure field. 
Henceforth, we will denote the two-dimensional height-
averaged quantities with an overbar. The boundary condi-
tions that supplement Eq. (12) are accordingly:

where r = (x, y) and 𝜕S̄p denotes the one-dimensional parti-
cle boundary of the projected particle surface S̄p . Notice that 
the walls in this situation are the projections of the sidewalls 
at y = ±W∕2 . As before, Up = (Up,x,Up,y) and �p denote the 
particle velocity and angular velocity, respectively.

The solution (p̄, ū) of the Brinkman equation (12) defines 
a stress tensor:

which is integrated over the particle surface to find the 
hydrodynamic force and torque on the particle:

The subscript ‘f’ indicates that this is the force and torque 
due to the surrounding two-dimensional fluid, and does not 
include the force and torque from the confining walls.

Similar to the Stokes equation, the Brinkman equation is 
linear in the fields p̄ and ū . Using a similar decomposition 
as in the previous section, we prove explicitly in Appendix 
3 that the force Ff  and torque Tf  admit a linear relation to 
the particle velocity and angular velocity in terms of a 3 × 3 
resistance tensor f :

(12)−∇2Dp̄ + 𝜂H∇2
2D

ū −
12𝜂

H
ū = 0, ∇2D ⋅ ū = 0,

(13)ū||walls = 0,

(14)ū||inlet = U0x̂,

(15)ū||(x,y)∈𝜕S̄p = Up + 𝜔p(−(y − yp), x − xp),

(16)�̄�ij = −𝛿ijp̄ + 𝜂H(𝜕iūj + 𝜕jūi),

(17)Ff = ∫
𝜕S̄p

ds �̄� ⋅ n,

(18)Tf = ∫
𝜕S̄p

ds

(
(x − xp)(�̄� ⋅ n)y − (y − yp)(�̄� ⋅ n)x

)
.

(19)
(
F

T

)

f

= −�f

(
Up

�p

)
+

(
F0

T0

)
.

In Appendix 3, it is shown that f  is symmetric by employ-
ing a version of the Lorentz reciprocal theorem for solutions 
of the Brinkman equation, which is given in Appendix 2.

Since the fluid-filled gaps between the particle and 
the walls are not accounted in the Brinkman description, 
their contribution to the force and torque on the particle, 
which stem from the friction with the top and bottom wall, 
is missing. To obtain this contribution, we assume locally 
a simple shear flow in the narrow gaps between the parti-
cle and the confining walls. As a result, an area element dS 
on either of the particle faces that moves with a velocity 
vS = Up + �p × (r − rp) with respect to the wall will experi-
ence a friction force f S = −(�∕h)vSdS . The total force Fw on 
the particle due to the wall friction is then found by integrat-
ing over the particle-gap surface:

where the factor 2 is due to the two gaps. The area element 
dS also generates a torque r × f S , which can be integrated 
to find the frictional torque on the particle due to the walls:

As before, the linear dependence of Eqs. (20) and (21) in the 
particle velocities leads to

where the components of the 3 × 3 wall resistance tensor w 
are calculated from (20) and (21) to be

Here, the off-diagonal components of the symmetric ten-
sor w are explicit manifestations of hydrodynamic rota-
tion–translation coupling for anisotropic particles, which 

(20)Fw = −
2𝜂

h ∫S̄p

dS
(
Up + �p × (r − rp)

)
,

(21)Tw = −
2𝜂

h ∫S̄p

dS

(
(r − rp) ×

(
Up + �p × (r − rp)

))
.

(22)
(
F

T

)

w

= −�w

(
Up

�p

)
,

(23)w,11 = w,22 =
2

h �S

dS;

(24)w,12 = w,21 = 0;

(25)w,13 = w,31 =
2

h �S

dS (−y);

(26)w,23 = w,32 =
2

h �S

dS x;

(27)w,33 =
2

h �S

dS (x2 + y2).
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vanish for particles with enough symmetry (Uspal et al. 
2013).

Taking Eqs. (19) and (22) together, we find the same force 
balance that was obtained above, but with an explicit speci-
fication of the fluid and wall contributions:

with  = f +w the symmetric 3 × 3 overall resistance 
tensor. The accuracy of this equality is directly related to 
the accuracy of the assumptions underlying the Brinkman 
equation and the simple shear flow in the gaps. Notice that 
Eq. (28) is equivalent to Eq. (10), indicating that this result 
is not sensitive to the hydrodynamic model that one chooses 
for the hydrodynamic fluid–particle interaction, because of 
the overdamped nature of the system and the fact that there 
are no external force and torque acting on the particle.

2.3  Numerical methods

The Stokes equation (1) or the Brinkman equation (12) 
can be solved numerically for a particle of any shape in the 
channel. In this work, we use the finite-element software 
COMSOL Multiphysics (COMSOL, Inc., Burlington, MA, 
USA) to find the flow field u or ū . Using this solution, we 
can determine the forces acting on the particle and integrate 
its motion using a numerical scheme detailed below. The 
finite-element mesh is carefully chosen fine enough, such 
that doubling the minimum element size leads to a deviation 
in the force-free velocities of only 0.05%.

At a given particle position (xp, yp) and orientation � , each 
column of the resistance tensor  is determined by impos-
ing a single non-zero component of the particle velocities 
(Up,�p) , without external flow. The force and torque that 
determine the column of  are either found by numerically 
solving the Stokes equation (1) and integrating the obtained 
stress tensor via Eq. (4), or by solving the Brinkman equa-
tion (12) and integrating via Eqs. (18) and (23)–(27). Simi-
larly, F0 and T0 are found by fixing the particle in the exter-
nal flow, in either formalism.

With ,F0 and T0 determined from the finite-element 
solutions, the force- and torque-free velocity Up(x, y, �) and 
angular velocity �p(x, y, �) are calculated from Eq. (28). 
Then, the particle position and orientation are integrated as

for some appropriately chosen time step �t . The inversion 
of  to obtain the solution of Eq. (28) and the numerical 

(28)
(
F

T

)
= −�

(
Up

�p

)
+

(
F0

T0

)
=

(
0

0

)
,

(29)x(t + �t) = x(t) + Up,x(x(t), y(t), �(t))�t

(30)y(t + �t) = y(t) + Up,y(x(t), y(t), �(t))�t

(31)�(t + �t) = �(t) + �p(x(t), y(t), �(t))�t,

integration (29)–(31) are performed in MATLAB to obtain 
the position and orientation at the next time step, which are 
subsequently fed back into the finite-element calculations.

2.4  Validity of the Brinkman equation

To test the validity of the Brinkman formalism described 
above, we compare with results obtained from three-dimen-
sional analytical or numerical solutions of the Stokes equa-
tion. Here, we do this by considering the terminal velocity 
of a disk that is moving with the fluid between two infinite 
parallel plates (corresponding to the experimental setup but 
with W large compared to the disk size), for which a semi-
analytical result by Halpern and Secomb exists (Halpern and 
Secomb 1991). The analysis in Halpern and Secomb (1991) 
concerns a cylindrical disk with rounded edges with a radius 
of curvature that is precisely half the height of the cylinder. 
In Fig. 2, we plot the particle velocity Up , scaled by U0 , 
as a function of the gap height h/H. We compare the ana-
lytical solution to the results obtained from the solutions of 
the Stokes equation and of the Brinkman equation. We find 
good agreement between the three calculations, especially 
for smaller gaps. The deviations at larger gaps are expected, 
since the assumption of a simple shear flow and the quasi-
2D character ceases to hold in this region. To test this, we 

Fig. 2  Terminal velocity of a rounded cylinder between two con-
fining plates, as obtained by the from 3D finite-element method 
in the Stokes formalism (red) and 2D finite elements in the Brink-
man formalism (blue), and the semi-analytical result from Halp-
ern and Secomb (1991) (solid black line). The radius of the cyl-
inder is R∕H = 1.79(1 − 2h∕H) + rc , with radius of curvature 
rc = (H − 2h)∕2 for the rounded edges, where H and h are the chan-
nel and gap height, respectively. The inset shows the z-dependence 
of the flow field magnitude |u(z)| relative to the particle velocity Up , 
at position x = y = 0 in the thin gap between the bottom wall (at 
z = −H∕2 ) and the particle disk surface (at z = −H∕2 + h ), for differ-
ent gap heights h. (Colour figure online)
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plot, in the inset of Fig. 2, the magnitude of the flow field in 
the thin gap between the bottom wall at z = −H∕2 , where 
we have |u| = 0 , and the disk surface at z = −H∕2 + h , 
where |u| = Up . We find that, for h∕H = 0.02 , the depend-
ence of the flow field on the height z is linear, correspond-
ing to simple Couette flow. Conversely, for h∕H = 0.2 , we 
find a deviation from the linear dependence, indicating 
that the simple shear flow assumption ceases to hold. The 
case of h∕H = 0.06 corresponds to the experiments in this 
work, where, from Fig. 2, we see that the simple shear flow 
assumption is still valid.

It should be noticed that the rounding of cylinder edges 
is not taken into account in the quasi-2D calculations. This 
does not seem to influence the results strongly, since the 
results agree with the analytical and three-dimensional 
numerical results where the rounded edges are taken into 
account. An attempt to incorporate rounded edges, by mak-
ing the gap height in our quasi-2D calculations position-
dependent, did not improve the results significantly, but 
increased the computational time by a factor of two and was, 
therefore, not continued.

3  Results

To test our numerical scheme for complex particle geom-
etries, where analytical solutions are not available, we turn 
our attention to the situation described by Uspal et al. (2013). 
In Uspal et al. (2013) and in this work, dumbbell-shaped 
particles are produced in the channel using ‘continuous-flow 
lithography’. These dumbbell particles consist of two circu-
lar disks of radius R1 and R2 ≤ R1 , respectively, and height 
H − 2h . The smaller disk has a fixed radius R2 = 18.75 μm , 
while the larger disk radius R1 is varied. The disks are con-
nected, at a fixed center-to-center distance s = 62.5 μm , by 
a cuboid of width 13.7 μm , which has the same height as the 
two disks. In the experiments, the dumbbell edges are not 
completely sharp but are rounded, with a rounding radius 
rc∕H = 0.15 , as estimated from experimental images (Uspal 
et al. 2013). This detail is incorporated in the three-dimen-
sional calculations, but not in the two-dimensional calcula-
tions. The particle geometry is depicted in Fig. 1b.

In this work, we focus on the aligning motion observed in 
Uspal et al. (2013), where asymmetric dumbbells oriented 
in the flow with the larger disk upstream. The orientation � 
between the long axis of the dumbbell and the flow direction 
(see Fig. 1a) was shown to follow the equation:

where the characteristic timescale � is dependent on the par-
ticle geometry. Specifically, we investigate here the depend-
ence of � on the ratio of the disk radii R1∕R2 . From Eq. (32), 

(32)�̇� = −
1

𝜏
sin 𝜃,

we see that � can be obtained from a trajectory by consider-
ing the angular velocity at perpendicular orientation:

Hence, we can use the 3D and quasi-2D calculations 
described above to find the angular velocity of a particular 
dumbbell and obtain � through Eq. (33).

The results are shown in Fig. 3, where we plot � against 
R1∕R2 . In green squares, we show the experimental data of 
Uspal et al. (2013); the red circles show the numerical data 
from our three-dimensional calculations, while the blue line 
shows the results from the quasi-two-dimensional calcula-
tions. First, we observe excellent agreement between the 
numerical results, which serves as another confirmation of 
the validity of our quasi-two-dimensional calculations. Sec-
ond, we see that the results agree with the previous experi-
mental data, with the exception of the data point of the most 
asymmetric size ratio R1∕R2 = 2.5 . Our calculations clearly 
show that a minimum in � is expected around R1∕R2 ≈ 1.9 , 
with � increasing for larger R1∕R2.

In contrast, the previous data show a strictly decreasing 
dependence of � on R1∕R2 . Moreover, the theoretical curve 
that was fitted to the data in Uspal et al. (2013) was mono-
tonically decreasing. This curve was derived considering 
an idealized situation of a pair of disks connected with a 
massless rod, which demonstrates the pitfalls of oversimpli-
fying the geometry. However, we argue here that the mini-
mum for � that is predicted by our analysis is correct. In our 

(33)𝜏 = −
1

�̇�(𝜃 = 𝜋∕2)
.

Fig. 3  Characteristic reorientation time � for dumbbell particles, 
as obtained from 3D finite-element method in the Stokes formal-
ism (red) and 2D finite elements in the Brinkman formalism (blue), 
and experimental data from the previous experiments of Uspal et al. 
(2013) (green) and new experiments (black), as a function of R1∕R2 . 
(Colour figure online)
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calculations, as well as in the experiments, R1∕R2 is varied 
by varying R1 , while keeping R2 and the center-to-center 
distance s constant. As a result, when R1 ≥ R2 + s , the shape 
becomes effectively just a single disk, which will not rotate 
at all ( � → ∞ ) due to symmetry (provided that it is still in 
the center of the channel). Therefore, when R1∕R2 → ∞ , we 
should have � → ∞ and hence a minimum in � . Note that 
the overlapping of the two disks is not incorporated in the 
theoretical results of Uspal et al. (2013).

To clear up this discrepancy, we performed a new set of 
experiments using an experimental setup that is almost iden-
tical to the setup in Uspal et al. (2013). Dumbbell particles 
were produced in a Hele–Shaw channel using continuous-
flow lithography and their reorientation motion was tracked, 
as described in Appendix 1. In our experimental setup, the 
particle geometry and gap heights are taken to be approxi-
mately identical to those used in Uspal et al. (2013). Our 
measured reorientation times � are shown by black diamonds 
in Fig. 3, where an excellent agreement with our numerical 
results is observed. The new data confirm the existence of 
a minimum in � as a function of R1∕R2 . We stress that our 
numerical method does not rely on any adjustable parameter, 
and uses only the experimental geometry and flow rate as 
input.

We have also calculated the complete angular trajec-
tory of the dumbbell particles. Setting the time step to 
�t∕� = 0.2 , we integrated the position and orientation as 
described in Eqs. (29)–(31), starting from an initial orienta-
tion �(t = 0) = 5�∕6 . Indeed, we observe that the dumbbells 
will align with the flow, such that the larger disk is upstream 
( � = 0 ). This is illustrated in Fig. 4, where we contrast 
experimental (top) and numerical (bottom) snapshots of the 
reorienting particle at times t∕� = 1 (a), t∕� = 2 (b), t∕� = 3 

(c), and t∕� = 4 (d). We do not distinguish here between the 
� values obtained from experiment and numerical calcula-
tions, since the two results are found to agree very well. 
Around the particle in the numerical snapshots of Fig. 4, we 
show isobars of the disturbance pressure field p(x, y) − p0(x) 
created by the particle, which are obtained from the Brink-
man equation (12) with the force- and torque-free (angular) 
velocity imposed. Here, p0 denotes the pressure field corre-
sponding to an undisturbed external flow U0 in the channel. 
The contours of p(x, y) − p0(x) show the dipolar nature of the 
disturbance flow. A clear impression of the particle motion 
may be obtained from the microscopic movie and animations 
found in the supplemental material.3

The results for the complete angular trajectories are 
shown in Fig. 5. When time is rescaled by � , we find a data 
collapse of the numerical calculations (open symbols) on 
the analytical solution of Eq. (32) (solid red line). This col-
lapse offers a strong confirmation that the orientation is, 
indeed, correctly described by Eq. (32). For R1∕R2 = 2.0 , we 
have also calculated a complete trajectory using the three-
dimensional method. The results, shown by the large blue 
circles in Fig. 5, perfectly agrees with the quasi-two-dimen-
sional results, a final confirmation of the accuracy of our 
quasi-two-dimensional calculations. Finally, we also show 
an experimentally obtained trajectory (black dots) and find 
good agreement with the numerical results. Discrepancies 
may be attributed to small variations in the channel height 
due to fabrication imperfections or dust particles in the pre-
polymer mixture.

Fig. 4  Experimental (top) and 
numerical (bottom) snapshots 
of the reorienting motion of a 
dumbbell with R1∕R2 = 2 in 
the microfluidic channel, at 
t∕� = 1 (a), t∕� = 2 (b), t∕� = 3 
(c), and t∕� = 4 (d), where 
the initial orientation of the 
dumbbell is �(0) = 5�∕6 . We 
clearly observe that the dumb-
bell reorients with the larger 
disk upstream ( � = 0 ). Around 
the dumbbell, we show isobars 
of the disturbance pressure 
field created by the particle, as 
obtained from Eq. (12)

(a) (b) (c) (d)

3 See Supplemental Material for the animation and microscopic 
movie of a reorienting dumbbell particle.
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4  Summary and outlook

In conclusion, we have set up a combined theoretical and 
numerical framework that uses numerical solutions of 
either three-dimensional (Stokes) or quasi-two-dimen-
sional (Brinkman) hydrodynamical equations, to calculate 
strongly confined particle motion in shallow microfluidic 
channels. Our method is not restricted to simplified shapes 
such as disks, but is able to handle any shape. The method 
is validated by comparing between analytical and three- 
and quasi-two-dimensional numerical calculations, which 
show excellent agreement. The two orders of magnitude 
of computational speedup that is offered by the quasi-two-
dimensional description enable to fully resolve the particle 
trajectory in time.

Our method is applied to dumbbell particles, for which 
we have calculated the characteristic rotation time � as a 
function of R1∕R2 , and found that, contrary to earlier find-
ings, � shows a minimum at R1∕R2 ≃ 1.9 . The existence 
of a minimum is confirmed by a new set of experiments. 
Moreover, we have calculated the angular motion as a func-
tion of time, and have shown that it agrees with the equation 
of motion derived earlier, and with the trajectories that are 
obtained from the experiments.

In future work, it will be interesting to further investi-
gate the relation between the geometry and the trajectories 
of different particles, with the goal to possibly steer parti-
cles to different areas in the channel. Finally, our method is 

easily generalized to systems of multiple particles, which 
can offer a controlled setup to study hydrodynamic interac-
tion between confined particles. Work in this direction is 
already under-way.
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Appendix 1: Materials and experimental 
methods

Particle production and tracking

Polymeric microparticles are produced and observed with an 
experimental setup, similar to the one used by Uspal et al. 
(2013). Polydimethylsiloxane (PDMS,  Sylgard® 184, Dow 
Corning) and microfluidic devices are produced according 
to Dendukuri et al. (2008). A UV-crosslinking oligomer, 
poly-(ethyleneglycol) diacrylate (PEG-DA Mn = 700 , 
� = 55 × 10−3 Pa s , Sigma-Aldrich), is mixed with a pho-
toinitiator, hydroxy-2-methylpropiophenone,  (Darocur® 
1173, Sigma-Aldrich), in a 19:1 volume ratio and the 
mixture is pumped through the microfluidic channel. The 
device, loaded with prepolymer, is mounted on the stage of 
a motorized Nikon Ti Eclipse inverted optical microscope. A 
photolithographic mask with well-defined shape is inserted 
between the UV light source and the microscope objective. 
Mask designs are made in Wolfram  Mathematica® and post-
processed in Dassault Systémes’  DraftSight®.

Microparticles are produced by shining a 100 ms pulse of 
UV light through the mask onto the channel, thus confining 
photopolymerization to a discrete part of the prepolymer 
mixture. Oxygen, diffusing through the PDMS walls of the 
device, inhibits crosslinking (Dendukuri et al. 2008). This 
ensures the formation of two lubrication layers, which sepa-
rate the particle from the z-walls, thus preventing sticking.

The microparticle is set in motion by applying a pressure 
drop Δp across the channel and tracked by moving the auto-
mated stage in a stepwise manner. Since two different micro-
fluidic devices with differing hydraulic resistances were 

Fig. 5  Orientation angle � as a function of rescaled time t∕� , with 
�(t = 0) = 5�∕6 , for dumbbells of varying R1∕R2 . The large blue 
circles show the trajectory obtained using the three-dimensional 
method, while the black dots show one particular trajectory obtained 
from the experiments, both for a dumbbell particle with R1∕R2 = 2 . 
Error bars for the experimental data are smaller than the black dots 
and hence omitted. The solid red line shows the analytical solution of 
Eq. (32)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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used, the applied pressure differs depending on the device 
used—Δp1 = 0.10 ± 0.01 psig and Δp2 = 0.15 ± 0.01 psig . 
Both pressure drops produce a flow with U0 ≈ 50 μms−1 in 
the respective microfluidic device. The experimental uncer-
tainty in determining U0 is around 10%.4

Particle positions and orientations are extracted from the 
acquired movie using a custom-written MATLAB script, 
which employs circular Hough transforms to identify the 
particle shape in each frame. The script utilizes MATLAB’s 
Bio-Formats package (Linkert et al. 2010) and the calcCircle 
tool.

Channel geometry and determination

Both used devices feature a microfluidic channel of length 
( L = 11.54 ± 0.01 cm  )  and width ( W = 515 ± 2 μm  ) 
determined via optical microscopy. The channel height 
( H = 30 ± 1 μm ) is inferred from fluorescent particle track-
ing (Uspal et al. 2013), and verified with optical and scan-
ning electron microscopy by cutting the device and looking 
at the cross section. Briefly, fluorescently labelled polysty-
rene beads with an average diameter of 1.89 μm are intro-
duced in the prepolymer mixture. After focussing in the mid-
plane of the channel, the beads are tracked, as the mixture 
is pumped through the device. Due to optical depth of focus 
and bead size, a normal distribution of particle velocities is 
obtained. The mean of the distribution is taken as U0 and 
the height of the channel is calculated via Eq. 11. Particle 
height ( Hp = 25.7 ± 1.4 μm ) is measured via optical micros-
copy and is used to calculate the lubrication layer thickness 
( h = (H − Hp)∕2 = 2.2 ± 0.9 μm).

Appendix 2: Lorentz reciprocal theorem 
for Brinkman flow

In this appendix, we derive a version of the Lorentz recipro-
cal theorem for solutions of the Brinkman equation. Let ū 
and ū′ be two solutions to the Brinkman equation in a two-
dimensional fluid domain A with boundary �A , with different 
boundary conditions. These solutions have corresponding 
stress tensors �̄� and �̄�′ , defined as follows:

and similarly for �̄�′ . With this definition, we may write the 
Brinkman equation (12) as follows:

(34)�̄�ij = −p̄𝛿ij + 𝜂H(𝜕iūj + 𝜕jūi),

(35)∇2D ⋅ �̄� =
12𝜂

H
ū, ∇2D ⋅ ū = 0.

Let us follow the same steps as in the derivation of the orig-
inal Lorentz reciprocal theorem (Kim and Karrila 1991). 
First, consider the quantity ū�

i
(𝜕j�̄�ij) , which can be rewritten 

as follows:

where the term involving p̄ drops out due to the incompress-
ibility constraint 𝜕iū�i = 0 . Interchanging ū and ū′ and sub-
tracting give us

For solutions of Stokes flow, both terms of the left-hand side 
of Eq. (37) vanish identically leading to the Lorentz recip-
rocal theorem. For solutions of the Brinkman equation, the 
left-hand side of Eq. (37) vanishes, because when Eq. (35) 
is applied to it, we find

such that Eq. (37) reads

Thus, using the two-dimensional divergence theorem, we 
obtain the Lorentz reciprocal theorem for Brinkman flow:

where �A denotes the one-dimensional boundary of the two-
dimensional fluid domain A, where ū and ū′ are defined and 
solve the Brinkman equation. Using this relation, symmetry 
properties of the resistance tensor f  defined in Eq. (19) for 
particles in Hele–Shaw cells may be proven, see Appendix 3.

Appendix 3: Fluid resistance tensor 
from the Brinkman equation

In this appendix, we show explicitly that the force Ff  and 
torque Tf  exerted on the particle by the (quasi-)two-dimen-
sional Brinkman fluid are related to the particle velocity 
and angular velocity in terms of a 3 × 3 resistance tensor 
f  . Inspired by the decompositions into sub-solutions of 
the original Stokes problem in Sect. 2.1, we exploit the lin-
earity of the Brinkman equation to write the solutions as 
the superpositions ū = ū0 + ū� + ū�� and p̄ = p̄0 + p̄� + p̄�� , 
where (p̄0, ū0) , (p̄�, ū�) and (p̄��, ū��) are solutions to the Brink-
man equation (12) with boundary conditions:

(36)

ū�
i
(𝜕j�̄�ij) = 𝜕j(ū

�
i
�̄�ij) − �̄�ij𝜕jū

�
i
= 𝜕j(ū

�
i
�̄�ij)

− (−p̄𝛿ij + 𝜂(𝜕iūj + 𝜕jūi))𝜕jū
�
i

= 𝜕j(ū
�
i
�̄�ij) − 𝜂(𝜕iūj + 𝜕jūi)𝜕jū

�
i
,

(37)ū�
i
(𝜕j�̄�ij) − ūi(𝜕j�̄�

�
ij
) = 𝜕j(ū

�
i
�̄�ij − ūi�̄�

�
ij
).

(38)ū�
i

12𝜂

H
ūi − ūi

12𝜂

H
ū�
i
= 0,

(39)∇2D ⋅ (ū� ⋅ �̄� − ū ⋅ �̄��) = 0.

(40)∮
𝜕A

dsū ⋅ �̄��
⋅ n = ∮

𝜕A

dsū� ⋅ �̄� ⋅ n,

(41)ū0
||walls = 0, ū0

||inlet = U0x̂, ū0
||r∈𝜕S̄p = 0;

4 See Supplemental Material for detailed calculation of all reported 
experimental uncertainties.
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respectively. Here, ū0 corresponds to the situation in which 
the particle is stationary subject to the imposed external 
flow, while ū′ and ū′′ correspond to the situation where 
the particle is translating and rotating, respectively, in the 
absence of an imposed flow. The stress tensor of Eq. (16), 
being linear in the fields ū and p̄ , admits a similar decompo-
sition �̄� = �̄�0 + �̄�� + �̄��� , which is then inherited by the force 
Ff  and torque Tf  via Eq. (18). While the force and torque 
on the stationary particle follow directly from Eq. (18) by 
substituting �̄�0 for �̄� , let us consider the contributions from 
�̄�′ and �̄�′′ in more detail.

Translation

The linearity of the Brinkman equation allows for a 
factorization:

where the tensor fields (̄ �, ̄ �) obey

which lead to the original Brinkman equation for (ū�, p̄�) 
by contracting with Up . In turn, the fields (̄ �, ̄ �) define 
a tensor

which is related to the stress tensor by �̄��
ij
= 𝜂�̄��

ijk
(Up)k . Next, 

we define

(42)ū�||walls = 0, ū�||inlet = 0, ū�||r∈𝜕S̄p = Up;

(43)ū��||walls = 0, ū��||inlet = 0,

(44)ū��||r∈𝜕S̄p = 𝜔p(−(y − yp), x − xp),

(45)ū�
i
= ̄ �

ij
Up,j, p̄� = 𝜂̄ �

ij
Up,j,

(46)− 𝜕ī �
j
+ 𝜕2

k
̄ �

ij
−

12

H
̄ �

ij
= 0, 𝜕i �

ij
= 0,

(47)̄ �
ij
||walls = ̄ �

ij
||inlet = 0, ̄ �

ij
||r∈𝜕S̄p = 𝛿ij,

(48)�̄��
ijk

= −𝛿ij̄ �
k
+ 𝜕ī �

jk
+ 𝜕j̄ �

ik
,

(49)K̄ik = −∮
𝜕S̄p

dS(�̄��
ijk
nj),

(50)C̄�
k
= −∮

𝜕S̄p

dS

(
(x − xp)(�̄�

�
yjk
nj) − (y − yp)(�̄�

�
xjk
nj)

)
,

such that the hydrodynamic force and torque that the two-
dimensional fluid exerts on the translating particle are 
expressed as follows:

Similar to the derivation for the three-dimensional resistance 
tensor, we can prove that the 2 × 2 tensor K is symmetric, 
using a version of the Lorentz reciprocal theorem that is 
proven in Appendix 2. Consider the two problems where 
the particle is either translating with velocity U or Ũ through 
the channel without external flow, with corresponding flow 
fields ū and ̃̄u that are solutions to the Brinkman equation 
with boundary conditions (42). Applying the Brinkman ver-
sion of the reciprocal theorem, we find

where the integration over ‘ w,i,o ’ is carried out over the 
(projected) sidewalls, the inlet and the outlet. However, since 
both flow fields vanish on the side walls according to Eq. 
(42), these integrals vanish identically. Using the no-slip 
boundary condition on the particle boundary 𝜕S̄p and defini-
tions of Eq. (18), we find

which using Eq. (51) may be written as follows:

Now, since U and Ũ are completely arbitrary, we conclude 
that K̄ is symmetric: K̄ij = K̄ji.

Rotation

Similarly, we factorize the angular velocity �p from the solu-
tion ū′′:

with (tensor-)fields that obey

which, as usual, lead to the original Brinkman equation for 
ū′′ with boundary conditions (44) by multiplying with �p . 
Moreover, we define the tensor �̄�′′

ij
 , similar to Eq. (48), 

(51)F�
f ,i
= −𝜂K̄ijUp,j, T �

f
= −𝜂C̄�

j
Up,j .

(52)
∮
𝜕S̄p

dsū ⋅
̃̄𝜎 ⋅ n + ∮w,i,o

dsū ⋅
̃̄𝜎 ⋅ n =

∮
𝜕S̄p

ds ̃̄u ⋅ �̄� ⋅ n + ∮w,i,o

ds ̃̄u ⋅ �̄� ⋅ n,

(53)Ũ ⋅ Ff = U ⋅ F̃f ,

(54)ŨiK̄ijUj = UiK̄ijŨj = ŨiK̄jiUj.

(55)ū��
i
= ̄ ��

i
𝜔p, p̄ = 𝜂̄ ��𝜔p,

(56)− 𝜕ī �� + 𝜕2
k
̄ ��

i
−

12

H
̄ ��

i
= 0, 𝜕i ��

i
= 0,

(57)
̄ ��

i
||walls = ̄ ��

i
||inlet = 0, ̄ ��

i
||(x,y)∈𝜕S̄p = −y𝛿ix + x𝛿iy,
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which has the property �̄���
ij
= �̄���

ij
𝜔p . Note that the fields 

̄ ′′, ̄ ′′ and �̄�′′ have dimensions of length of one power 
higher than their single-primed counterparts  ′, ′ and �′ , 
while they are of one tensor rank lower, the latter following 
from the fact that we have only one rotational degree of 
freedom in two dimensions. To proceed, we define

such that

Similar to proving that K̄ is symmetric, we can use the Lor-
entz reciprocal theorem of Appendix 2 to prove that, in fact, 
C�
i
= C��

i
 , but we leave this to the reader.

Complete particle motion

Taking together the contributions from the sub-solutions 
ū0, ū

′ and ū′′ , we find that the force and torque on the moving 
particle exerted by the two-dimensional fluid can be written 
as follows:

where the components of the 3 × 3 resistance tensor f  are 
given by the following:

with Ci ≡ C�
i
= C��

i
.
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