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Abstract
Modern multi-megawatt wind turbines are tall and may reach heights of 200 meter. Tall wind turbines
require measurements above typical measurement mast height. As tall measurement masts are ex-
pensive and cumbersome to install, wind measurements at hub height are scarce. Currently, the use of
lidars in wind measurement campaigns is increasing. Lidars provide wind measurements over the full
wind turbine rotor, but lidars are not always available for an extended period. This thesis investigates
the possibility of applying the measure-correlate-predict (MCP) method to short-term lidar measure-
ments in order to extrapolate wind shear statistics.

The first step was to compare the wind shear derived from lidar measurements with wind shear
derived from mast measurements because the instruments have a different measurement principle.
Wind data from mast-lidar pairs at Høvsøre (DK) and Breezanddijk (NL) are used for the analyses.
Subsequently, a detailed study of the seasonality of wind shear, as the seasonality becomes a concern
when the measurement period is shorter than one year. The MCP model has been implemented and
validated using the commercially available software WindPRO. The data from the measurement sites
have been used to test the new approach of estimating the mean wind shear exponent using short-
term lidar measurements and MCP. Lastly, the uncertainty in the wind shear exponent is propagated to
uncertainty in the annual energy production.

Although the wind shear statistics are subject to seasonality, this thesis shows that the proposed
method has the potential to significantly reduce the error in the estimate of the mean wind shear ex-
ponent. As the error in the mean wind shear exponent is decreased, the uncertainty in the vertical
extrapolation of the wind resource can be reduced. This reduction ultimately leads to a decrease of the
uncertainty in the annual energy production.
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Latin Symbols
Symbol Description Unit
𝐴 Weibull scale parameter [m/s]
𝑏 Slope from linear regression
𝑏 Intercept from linear regression
ℂ Covariance matrix [-]
𝑐 Count in bin 𝑖 [-]
𝑓 Frequency [1/s]
𝑔 Gravitational acceleration [m/s ]
𝑘 Weibull shape parameter
𝐿 Obukhov length [m]
𝑀 Total number of bins [-]
𝑁 Total number of samples [-]
𝑝 Exponent of the AEP model [-]
𝑟 Ratio of prediction height over observation height [-]
𝑅 Pearson’s correlation coefficient [-]
𝑅 Coefficient of determination [-]
𝑢 Wind speed [m/s]
𝑢∗ Friction velocity [m/s]
𝑢 Wind speed at reference height [m/s]
𝑉 Rated wind speed [m/s]
𝑤 Weight [-]
𝑥 Wind speed at reference site [m/s]
�̂� Predicted wind speed at target site [m/s]
𝑧 Height above ground level [m]
𝑧 Roughness length [m]
𝑧 Reference height [m]

Greek Symbols
Symbol Description Unit
𝛼 Wind shear exponent [-]
�̂� Predicted wind shear exponent [-]
Γ(𝑥) Gamma function of 𝑥 [-]
Δ𝛼 Bin width of the shear exponent histogram [-]
𝜖 Error or difference
̃𝜖 Normalised error or difference
𝜅 Von Karman constant [-]
𝜆 Wavelength [m]
𝜇 Mean of random variable 𝑥 [-]
�̃� Normalised mean of random variable 𝑥
𝜎 Standard deviation of random variable 𝑥
�̃� Normalised standard deviation of a random variable 𝑥 [-]
𝜒 Chi-squared goodness of fit statistic [-]
�̃� Normalised chi-squared goodness of fit statistic [-]
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ABL Atmospheric Boundary Layer
AEP Annual Energy Production
ANNs Artificial Neural Networks
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LR Linear Regression
LT Long-term
MCP Measure Correlate Predict
NaN Not a Number
SL Surface Layer
ST Short-term
VRM Variance Ratio Method
wLR Weighted Linear Regression
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1
Introduction

1.1. Project context
In pursuit of an entirely sustainable electricity generation, it is necessary to increase the amount of
installed wind power. An important aspect of increasing the amount of installed wind power, is reducing
the cost of wind energy by making wind turbines more efficient. Over the last years, the design of more
efficient wind turbines has lead to an increased rotor size and higher wind turbine hub heights. Two
main reasons are identified for the increase in size. Firstly, large multi-megawatt wind turbines are more
efficient per produced megawatt-hour, and these turbines require large rotors. Secondly, wind turbines
have become taller to make wind energy projects profitable in areas with a lower natural wind resource.
When the wind resource at greater heights can be utilised, new, inland areas become suitable for wind
energy generation.

As wind turbines grow taller, wind measurements at greater heights are required. For wind resource
assessment, it is currently advised to install a measurement mast, which has a height of at least two
thirds of the wind turbine hub height [28]. An illustration of the relevant heights in wind resource as-
sessment are shown in Fig. 1.1. The installation of the appropriate met mast becomes cumbersome
and expensive for wind energy projects involving tall wind turbines.

Lidar is becoming a popular tool for measuring over expected turbine rotor heights [32]. The em-
ployment of lidars is expensive, and often less than a year of lidar measurements are available in
industrial wind farm developments. This project focuses on how lidar measurements, in combination
with Measure Correlate Predict (MCP) methods, can be used in wind resource assessment to improve
the wind resource estimations above measurement mast height. Reduction of the measurement period
using MCP methods would reduce the costs of the measurement campaign and allows the use of the
portability of the lidar.

As the rotor size and hub height of wind turbines increase, the wind shear has significant effects on
power performance and fatigue loading. Regarding wind resource assessment, the wind shear affects
the available wind power. Due to the large rotor, there can be a significant difference in the available
wind power in the lower and in the upper half of the rotor plane. This provide another argument for
evaluating the wind shear distribution at a potential wind farm site.

A complication that appears due to increasing turbine heights, is the presence of the turbine in
different regimes of the atmospheric boundary layer (ABL). As the height of the ABL is varying, the
height of the atmospheric surface layer (ASL), which is approximately 10% of the ABL height, is varying
as well. Tall turbines are more often present above the ASL, where different formulations are needed
to describe the wind profile [12]. Lidars are able to measure the wind over the full wind turbine height,
and could support the understanding of wind at higher heights.

This thesis contributes to the knowledge about the benefits and usability of lidars in a wind mea-
surement campaign. The focus of this thesis is on the wind shear measured by lidars, and how MCP
can be used to use short-term lidar measurements to improve the wind resource estimation above
measurement mast height.

1
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Figure 1.1: Illustration of relevant heights in wind resource assessment and wind turbine siting. Fictive situation for a wind turbine
with a hub height of 100 m and a rotor diameter of 120 m. The mast measures at 40 m and 75 m.

1.2. Objectives
The project goal is formulated as follows:

” To improve wind resource assessment above measurement mast height by statistical
extrapolation using lidar measurements.”

And is split into sub-objectives:

1. Compare the wind profiles and shear exponent distributions obtained via lidar measurements with
the ones obtained via met mast measurements

2. Estimate wind shear exponent distribution and long-term wind profile using lidar measurements
and MCP method

3. Determine effect of shorter measurement period on the obtained wind speed and wind shear
distribution

1.3. Scope
The wind energy resource is often vertically extrapolated using the logarithmic wind profile or the power
law profile. The focus of this project is the extrapolation using the power law. A drawback of the
logarithmic law is the need for the specification of a roughness length. An advantage of the logarithmic
law is that it can be adapted to fit diabetic wind profiles. However, this requires determination of the
atmospheric stability and this may be complicated as the installation of instruments required for the
evaluation of the atmospheric stability is not current practice in the industry.

It is known that wind shear influences the wind turbine performance. Wind shear over a wind turbine
rotor affects the loading on the turbine and therefor the power production. The focus of this thesis is on
the role of the wind shear in wind resource assessment and vertical extrapolation of the wind resource.
The effects of wind shear on the loads on the wind turbines are outside the scope of this study. Also,
the effects of the wind shear on a wind turbine power curve are outside the scope of this study.
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1.4. Outline
In Chapter 2 the results of the literature study are presented. Three main topics are distinguished
in the literature study, respectively wind profiles, lidars, and MCP methods. The research set-up is
discussed in Chapter 3. Definition of the research questions, and description of the measurement sites
are included. Data of the sites is firstly used in Chapter 4 to compare the wind shear derived from mast
measurement with the wind shear derived from lidar measurements. Secondly, in Chapter 5 the wind
measurements are analysed on seasonal trends of the wind shear exponent.

The implementation and validation of the MCP code are presented in Chapter 6. This chapter
also considers two improvements over standard MCP methods for the current application on wind
shear exponents. The implemented MCP method is applied in Chapter 7. In order to evaluate its
performance, the MCP result is compared with long-term measurements. Further, the effect of the
measurement period on the MCP outcome is studied. Lastly, the effect of the wind shear exponent on
the Annual Energy Production (AEP) is considered in Chapter 8.





2
Literature Review

An overview of the relevant background theory and a literature review are provided in this chapter.
Firstly, the vertical wind profile discussed in Section 2.1. Secondly, lidars are discussed in Section 2.2.
The working principle of lidars, and the difference between lidars and the traditional met mast mea-
surements are reviewed. Measure-correlate-predict methods, which are used to obtain the long-term
wind characteristics at a wind site are discussed in Section 2.3.

2.1. Wind profiles
Wind speed and direction change with height above the ground level. The variation of the wind with
height is depicted in a wind profile. The wind profile is influenced by the geostrophic wind, the sur-
face roughness and buoyancy effects. Additionally, local effects change the wind profile, for example
roughness changes, flow inclination, or speed-up.

2.1.1. Wind in the atmospheric boundary layer
The atmospheric boundary layer (ABL) is the part of the atmosphere that is directly influenced by the
Earth’s surface. The height of the ABL is in the range from a few hundred meters to a few kilometres
and can change over time. The structure of the atmospheric boundary layer over land and its diurnal
variation are shown in Fig. 2.1. By definition, the lower ten percent of the ABL is called the surface
layer (SL) [37].

During the day the sun heats up the surface and there is a positive heat flux from the relatively warm
surface. During the night the opposite process takes place, the surface is relatively cold and a negative
heat flux from the air towards the surface exists. This process cools down the air and enhances the
atmospheric stability.

Buoyancy effects on the wind profile are indicated by the static stability of the atmospheric boundary
layer. Stull defines an unstable, neutral and stable stratification. An unstable ABL is characterised by
turbulence and convective processes, which are enhanced by the unstable air. Vertical mixing of the air
takes place and the wind shear is limited. In the stable case the turbulence and convective processes
are suppressed. The vertical mixing is limited and wind shear is enhanced. This condition allows higher
wind shear. The stable stratification means a decoupling of the flow and surface [37].

The Obukhov length 𝐿 is used to quantify the static stability:

𝐿 = − 𝜃 𝑢∗
𝜅𝑔(𝑤 𝜃 ) (2.1)

In the equation 𝜃 is the virtual temperature, 𝑢∗ is the friction velocity, 𝜅 is the Von Karman constant, 𝑔
is the gravitational acceleration, and (𝑤 𝜃 ) represents the virtual potential heat flux [15]. The quan-
tification of the stability allows further classification. Various classifications of the atmospheric stability
exist, an example is given in Table 2.1. In the example five stability classes are distinguished.
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6 2. Literature Review

Figure 2.1: Structure of the atmospheric boundary layer over time. Adopted from [37]

Table 2.1: Stability classes and their respective boundaries, as defined by Holtslag et al. [15]

Class Name Class Boundaries
Very Unstable (VU) -200 ≤ 𝐿 < 0
Unstable (U) - 500 ≤ 𝐿 < -200
Neutral (N) |𝐿| > 500
Stable (S) 200 < 𝐿 ≤ 500
Very Stable (VS) 0 < 𝐿 ≤ 200

The connection between the atmospheric stability and the wind shear has been described in lit-
erature for different sites. For example, 2006 Verkaik described the wind profiles at Cabauw, The
Netherlands[40]. More recently, the relationship between atmospheric stability and wind shear has
been investigated regarding wind energy. Holtslag et al. observed the influence of atmospheric stabil-
ity on the wind shear at an offshore wind farm site in the Netherlands [15].

Kelly et al. derived a general formulation for the distributions of atmospheric stability in the SL [19],
and applied it to extend the mean wind profile above the surface layer [18].

2.1.2. The logarithmic wind profile
The neutral logarithmic wind profile is given by Eq. (2.2). It is derived by applying Buckingham Pi
Theory. Alternatively, it can be derived using mixing length theory [37].

𝑢(𝑧) = 𝑢∗
𝜅 ln (

𝑧
𝑧 ) (2.2)

In which 𝑢∗ is the friction velocity, 𝜅 is the Von Karman constant, 𝑧 the respective height above ground
level, and 𝑧 is the (aerodynamic) roughness length. As Eq. (2.2) yields for neutral atmospheric stability
only, it has to be adapted to represent a wind profile in stable or unstable atmospheric conditions.
According to Monin-Obukhov similarity theory, the neutral logarithmic wind profile can be rewritten to
account for stable and unstable conditions and is given by:

𝑢(𝑧) = 𝑢∗
𝜅 [ln (

𝑧
𝑧 ) − 𝜓 (𝑧𝐿)] (2.3)

In which 𝜓 is the correction function and the stability parameter. The form of the correction function
depends on the sign of 𝐿 i.e. the stability class. The Monin-Obukhov similarity theory is valid for
homogeneous surface layers [41].
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2.1.3. The power law profile
An alternative to the logarithmic wind profile is the power law. This empirical function is often used for
engineering purposes because of its simplicity. The power law is also used in the IEC standards for
wind turbine design. Contrary to the logarithmic law, the power law does not include an aerodynamic
roughness length. Instead, over a limited vertical extent the shear exponent 𝛼 is defined.

𝑢(𝑧) = 𝑢 ( 𝑧
𝑧 ) (2.4)

The shear exponent is obtained by fitting the power law to wind speed measurements at two or more
heights. When only two points are used for the fit or when none of the measurements were above hub
height, the shear exponent may result in an unrepresentative wind profile [41]. As the shear exponent
varies over time, the shear characteristic of a site can be shown using a 𝑃(𝛼) distribution. The 𝑃(𝛼)
distribution shows a dependence on wind speed. For higher wind speeds the peak of the 𝑃(𝛼|𝑈) is
located at smaller shear exponents. This observation is explained by the reduced effect of the atmo-
spheric stability at high wind speeds [22].

In the SL, the stable side of the distribution of the stability can be used to map the distribution of
the wind shear exponent from stability. Above the SL mapping of shear from stability does not result in
a correct shear distribution, as the MO theory does not apply, and the flow can be decoupled from the
flow in the SL [22].

2.1.4. Vertical extrapolation in wind resource assessment
The wind resource assessment is essential in the assessment of the financial feasibility of a wind energy
project. Before a wind turbine is erected at a site, its future energy production is to be estimated. The
estimations are complex and uncertain. Uncertainty arises due to different factors, among those is
vertical extrapolation. According to Clifton et al., vertical extrapolation of the wind resource accounts
for an uncertainty up to 6% in a gross energy estimate. Advancedmeasurement techniques like remote
sensing could mitigate the uncertainty [4].

The annual energy production (AEP) estimate is based on the power curve of the wind turbine gen-
erator. As the power curve is a function of the wind speed at hub height, it is essential to know the wind
speed distribution at hub height. However, wind measurements at hub height are not always available
and vertical extrapolation of the wind resource is necessary to improve the AEP estimation. Methods
for vertical extrapolation are based on the logarithmic law (Eq. (2.2)) and the power law (Eq. (2.4)).
Both methods introduce uncertainty in the wind statistics.

A simple method for quantification of the vertical extrapolation uncertainty is given by Kwon [24]. In
this work only the variation of the shear exponent 𝛼 is taken into account. A more elaborated method to
quantify the uncertainty, and a comparison of the uncertainty due to vertical extrapolation via the WAsP
method and the power law are provided by Kelly [18]. The uncertainty in the wind speed due to the
vertical extrapolation is dependent on the relative extrapolation distance (𝑧 /𝑧 ). The comparison
shows that for small relative extrapolation distances the differences between the WAsP method and
the power law are small. However, for larger relative extrapolation distances, the WAsP method results
in lower uncertainties.

2.1.5. Extension of the wind profile
New wind turbines are tall and reach above the atmospheric surface layer. The logarithmic wind profile,
Eq. (2.3) is based on the assumption of a constant friction velocity 𝑢∗, which is true for the surface layer
only. Therefore the logarithmic wind profile is only valid for heights up to 80m. To describe the wind
profile above the surface layer, different formulations of the wind profile are needed. Extended wind
profile forms have been suggested by Etling, and Gryning et al. [12, 14], with Kelly et al. further
developing mean wind profiles and extrapolation above the SL based on statistics of stability and ABL-
depth [19, 21, 22].



8 2. Literature Review

2.2. Light Detection and Ranging
As new wind turbines are tall, high met masts are required for the wind resource assessment. Installa-
tion of tall meteorological masts is cumbersome and expensive, therefore remote sensing techniques
have become more attractive to be used in the wind resource assessment. Lidars are remote sensing
devices, which make use of the Doppler shift in back-scattered light. Previous research has established
that current wind lidars can be an alternative to the installation of tall meteorological masts [32].

2.2.1. Working Principle
Lidars utilize the wave characteristic of light to measure the wind speed and direction. A laser emits
light, which is back-scattered by moving aerosols and molecules in the air. The back-scattered light is
collected by a detector and the Doppler shift of the frequency is measured. The Doppler shift relates
to the velocity of the moving particles, following Eq. (2.5).

Δ𝑓 = 𝑓 − 𝑓 = �⃗�
𝜆 (2.5)

Where 𝜆 is the wavelength of the emitted laser light �⃗� is the velocity of the particle along the beam
direction. This implies that no Doppler shift is observed when the particle moves perpendicular to the
beam.

A common applied technique to find the Doppler shift is heterodyne (coherent) detection. At the
detector the back-scattered light is mixed with the reference signal. As the Doppler shift is small, the
mixed signal shows beats. The beats are appearing at the frequency of the Doppler shift, so Δ𝑓 can
be measured directly and the flow velocity along the beam direction can be calculated using Eq. (2.5).

A single measurement provides only the flow velocity along the beam direction. To establish a three
dimensional wind velocity vector the lidar needs to measure the flow velocity along multiple beam
directions. It is common to use beams that form a cone, as is shown in Fig. 2.2. By keeping the
cone angle constant and varying the azimuthal angle of the beam, the lidar measures multiple velocity
vectors and a wind velocity vector can be constructed. A cone angle of approximately 60 degrees is
often applied [32].

The majority of currently deployed lidars can be divided into two groups: Continuous Wave (CW) li-
dars and pulsed lidars. Both techniques have their specific advantages and disadvantages. Dependent
on the application one may prefer one technique over the other.

Continuous Wave Lidar The laser of a continuous wave lidar continuously emits laser light. The
optics of the lidar focus the laser beam at the desired measurement height.A rotating wedge is used to
vary the azimuthal angle. In this way measurements are made for a range of azimuthal angles. The
CW lidar addresses one measurement height at a time. In approximately 1 second, the lidar measures
the flow velocity height along the beam direction at one height for different azimuthal angles, see the
right side of Fig. 2.2. Subsequently, it focuses on the next measurement height and again measures
the flow velocity along the beam direction for different azimuthal angles in approximately 1 second.

Back-scattered light is scattered by particles from a confined volume. This volume is called the
probe volume. The probe volume depends on the probe length and beam diameter. For CW lidars
both the probe length and beam diameter depend on the measurement range. As the measurement
range increases, the beam diameter increases linearly with the range and the probe length increases
roughly quadratically with the range. The quadratic increase is caused by focusing the Gaussian laser
beam, which causes a spatial sensitivity in the axial direction of the beam. The spatial sensitivity can
be approximated by a Lorentzian function [32].

The disadvantage of the increase in probe length is that it can lead to biased wind speed measure-
ments. Under conditions of non-linear shear, spatial averaging leads to a small bias in the wind speed
measurement. At greater measurement ranges, the probe lengths are longer, and the bias could be
more severe [36].

Pulsed Lidar The pulsed lidar emits strong laser pulses, that have a duration in the order of hundreds
of nanoseconds. The frequency at which the pulsed lidar emits the pulses is limited by the time the light
needs to travel from the emitter to the detector. The lidar uses one pulse to measure the wind speed at
all the programmed heights. The focus of the laser is optimised to receive signals from all the heights.



2.2. Light Detection and Ranging 9

Figure 2.2: Comparison of the scanning techniques of a pulsed lidar(left) and a scanning lidar, where is the cone half angle,
is the velocity of the particle, its radial component, and is the azimuthal angle. Adopted from [6]

The travel time of the signal is used to determine the height that corresponds to the received sig-
nal. Due to the short travel time for low heights, the pulsed lidar has a minimum measurement height
around 40 metres, whereas the CW lidar does not have the disadvantage of a minimum measurement
height. On the opposite, the advantage of a pulsed lidar is that the probe length does not increase with
measurement height [32].

The scanning technique used by pulsed lidars is often different from the scanning technique used by
CW lidar. To construct the wind speed vector, the pulsed lidar uses three to five fixed beam directions,
as shown on the left side of Fig. 2.2 The advantage of this method, is that it offers the possibility to
remove a rotating part from the lidar [32].

2.2.2. Comparison of Lidar measurements and mast measurements
The method of measuring the wind using lidars is significantly different from the method using cup
anemometers or sonic anemometers. The wind velocity measured by the lidar is volume averaged,
whereas the velocity vectors measured by a cup anemometer or a sonic anemometer can be consid-
ered as a point measurement. Several studies have compared lidar measurements and tower mea-
surements, because understanding the difference between the methods is essential in the process of
replacing meteorological towers by lidars. Experiments with all-fibre lidars at DTUWind Energy started
in 2003 and numerous studies on lidars have been carried out. Currently new applications of lidars are
investigated, e.g. wind turbine control using lidars and power curve verifications [29].

Comparison of scanning lidar and met mast measurements have been carried out extensively, e.g.
by Courtney et al., and Smith et al. [7, 36]. The studies show good agreement of wind speed mea-
sured by the lidar and by the measurement mast. Courtney concluded that the pulsed lidar (Windcube)
is better suited for measurements above 130m, whereas the CW lidar (ZephIR) is better for wind mea-
surements below 80 meters. Furthermore, an advantage of the pulsed lidar over the CW lidar is that it
is not affected by back-scatter from clouds [7].

The relation between lidars and met masts in complex terrain is still a relevant research topic. As
the flow in complex terrain can be non-uniform across the lidar measurement disk, the measured wind
speed can be significantly different [32]. Recently, lidars and met masts have been compared in multi-
site experiments, e.g. by Rodrigo et al. [35] [23]. It was observed that the lidar error increases with
terrain complexity.

2.2.3. Shorter measurement campaigns
The portability of remote sensing devices as lidars provides the possibility of a new type of wind resource
assessment, in which the device is moved around within a measurement year. Short measurement
periods are distributed over the year to measure the wind during the different seasons within a year.
As a result, the lidar can measure at different sites within a year, resulting in a reduction of the cost of
the wind resource assessment.
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Lackner et al. tested this type of wind resource assessment in 2007 and called the method ”round
robin site assessment method”[26]. In his study long-term measurement data from weather station
pairs were used to assess the quality of the prediction using the round robin site assessment method.
One of the weather stations was assumed to be a remote sensing device and its data was used for the
short-term measurement periods. The other weather station was used as a reference site. The results
showed that the new method performs well in comparison to the standard method in terms of accuracy
and uncertainty, and that the method can enhance the efficiency of the wind resource assessment
campaign.

Later, in 2010 Lackner investigated a method in which short-term hub height wind speed measure-
ments are used to correct the wind shear model applied to met mast measurement. As measurements
from remote sensing devices were not available, Lackner used measurements from a met mast to
test the method. The measurement from the top anemometer was assumed to be a measurement
from a remote sensing device. The measurement was used to establish a shear correction factor,
which is applied to the shear measured from the lower anemometers. Basically, a kind of measure-
correlate-predict method is applied to correct the shear. The results show that the short-term hub height
measurements can be used to improve the estimation of the wind speed, although the method may not
be effective every time it is applied [27].

Crockford studied the effect of a shorter wind measurement campaign using lidar in 2013. It was
concluded that the wind climate derived from 6 months measurement time, distributed over the four
seasons in a year, differs by only 1 % from the wind climate derived from full year of measurements.
At the same time, the costs of the measurement campaign were reduced by 35% [8].

2.3. Measure-correlate-predict methods
Wind measurements at a wind farm site are often only available for a relative short period, i.e. approx-
imately a year. Based on the measurements of the short period, the energy production for 20 years
has to be estimated. As the wind resource varies from year to year, a method to correct for the long-
term wind resource is necessary. In wind resource assessment the measure-correlate-predict (MCP)
methods are commonly applied to correct for the long-term. At first a reference site, which has good
quality data for a long period of time, is needed. Secondly, a correlation between the target site and the
reference site is established. The correlation is based on the concurrent measurement period. Lastly,
the long-term data of the reference site and the correlation are used to predict the wind resource at the
target site.

2.3.1. Correlation methods
A variety of MCP methods exists to establish the correlation between the target site and the reference
site. In 2005, Rogers et al. compared the performance of four MCP methods. The methods are [34]:

1. Linear Regression
2. Mortimer method
3. Vector regression method
4. Variance ratio method

In his work Roger concluded that the linear regression method succeeds at predicting the average wind
speed. However, as the predicted wind speed has lower variance, the method does predict a biased
wind speed distribution. Furthermore it was concluded that the variance ratio method and the Mortimer
method performed best in predicting the different metrics. The variance ratio performed slightly better,
since the Mortimer method results in biased predictions for the Weibull shape parameter 𝑘. Below, the
working principles of different MCP methods are explained.

The linear regression was suggested by Derrick [9]. The method assumes that there exists a rela-
tionship between the wind speed at the target site and the reference site of the form:

�̂� = 𝑎𝑥 + 𝑏 (2.6)

In which �̂� is the predicted wind speed, 𝑥 is the wind speed measured at the reference site, and 𝑎 and
𝑏 are the fitting constants determined via linear regression. Clive [5] notes that there is a non-linearity
in the relation between two Weibull distributions and proposes to use the form of Eq. (2.7), in which 𝑚,
𝑎 ,and 𝑐 are fitting constants. However, if 𝑐 ≠ 0, linear regression cannot be applied.
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�̂� = 𝑚𝑥 + 𝑐 (2.7)

Secondly, the Mortimer method is an empirical method proposed by Mortimer [30]. The wind speed
measurements are binned according to the wind speed and wind direction at the reference site. Then,
two matrices are constructed: a matrix which provides the average of ratios of the wind speed at the
target site to the wind speed at reference site per wind speed and wind direction bin , and a matrix con-
taining the corresponding standard deviations. Subsequently a relation of the form shown in Eq. (2.8)
is used to predict the wind speed at the target site.

�̂� = (𝑟 + 𝑒)𝑥 (2.8)

In this relation, 𝑟 is the average of the wind speed ratios corresponding to the speed and direction at the
target site, and 𝑒 is a random variable given by a triangular distribution corresponding to the standard
deviation of the ratios.

Thirdly, the vector regression method has been introduced by Nielsen et al. [31]. A vector model of
the form of Eq. (2.9) is set up to correlate the orthogonal wind speed components at the target site to
the wind speed components at the reference site.

[ �̂��̂� ] = [ 𝑎𝑎 ] + [ 𝑏 𝑏
𝑏 𝑏 ] [ 𝑥𝑥 ] (2.9)

In which 𝑥 , 𝑥 are the orthogonal wind speed components at the reference site and �̂� , �̂� the predicted
wind speed components at the target site. The advantage of the vector regression method, is that the
wind data is not binned into direction bins.

The last method used by Rogers et al. is the variance ratio method. They have introduced the
variance ratio method, because simple linear regression leads to an underestimation of the long-term
variance in the predicted wind speed. The expression used for predicting the wind speed is:

�̂� = 𝜇 −
𝜎
𝜎 𝜇 +

𝜎
𝜎 𝑥 (2.10)

In which 𝜇 and 𝜇 are the mean wind speed at the target site and the reference site, respectively. And
𝜎 and 𝜎 are the respective standard deviations of the wind speed at the target site and the reference
site. Using Eq. (2.10), the variance of the predicted wind speeds, 𝜎 (�̂�), is equal to the variance of
the observed wind speeds 𝜎 (𝑦). Using Eq. (2.10) for the correlation, results in better prediction of the
wind speed distribution at the target site [34].

Thøgersen et al. describe MCP methods incorporated in the software WindPRO, which is widely
used for wind resource assessments in the industry. The regression method in WindPRO is extended
by adding a random error term to the regression model, see Eq. (2.11) [38].

�̂� = 𝑓(𝑥) + 𝑒 (2.11)

In which 𝑒 is a Gaussian-distributed random variable.
In addition the matrix method is introduced by Thøgersen. Similar to the Mortimer method, the wind

speed data is binned based on the wind speed and direction at the reference site. The mean wind
speed-up and mean wind-veer at the target site are modeled by a joint distribution conditioned on the
wind speed and wind direction at the reference site. To predict the wind speed at the target site the the
joint distribution is to be known for all wind conditions at the reference site, i.e. the full matrix needs
to be constructed. When the joint distribution for certain wind conditions cannot be acquired from the
measured wind data, polynomials are used to interpolate the mean and standard deviation and to fill
the matrix [38].

Artificial Neural Networks (ANNs) are as well applied as correlation technique, since the ANNs are
useful for pattern recognition. The performance of ANNs in long-term wind prediction has been subject
in different studies [3, 39, 43]. However, the ANNs are currently not among the standard methods for
long-term correction used in wind resource assessment. More information can be found in an extensive
overview of MCP methods by Carta et al. [2].
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The traditional MCP methods use one reference site. New correlation methods have been de-
veloped to predict the long-term wind characteristics using data from multiple reference sites. Zhang
developed a hybrid MCP method which combines wind data from multiple reference sites. To account
for the different stations, a weight based on the distance and the elevation difference was assigned
to each reference station. He found that the hybrid MCP method has the potential to improve the ac-
curacy of the predictions. However the best hybrid strategy is highly dependent on the stations and
the data [43]. Another hybrid MCP method is provided by Dinler, who developed a MCP method that
improves the prediction for the cases in which only low-correlation reference sites are available or when
no concurrent data is available [11]. ’

2.3.2. Uncertainty in MCP predictions
The quantification of uncertainties is an important part of the wind resource assessment, as it has a
direct effect on the financial feasibility of a wind project. Frameworks for quantifying the uncertainty in
wind resource assessment have been provided by e.g. Lackner and Kwon [24, 25]. These frameworks
include methods to estimate the uncertainty due to the MCP method. However, both frameworks as-
sume the variance ratio method is used for the wind resource assessment. Further research on the
uncertainty propagation through the MCP methods is still relevant, as this would increase the credibility
of wind resource assessment and energy production estimates [43].



3
Research Set-Up

In this chapter the master thesis project is further outlined. The research questions are presented in
Section 3.1. The research questions provide structure to the study, and assist in obtaining the knowl-
edge required to achieve the research objectives stated in Section 1.2. The data which is required for
the stufy is obtained from two measurement sites. The surrounding of the sites and the instrumentation
are described in Section 3.2.

3.1. Research questions
Three main research questions have been defined. Those are divided in sub-questions.

1. How do the wind profile and shear distribution obtained via lidar compare to the wind profile and
shear distribution obtained via met mast?

(a) How do lidar measurements compare to measurements from a met mast?
(b) What definition of wind shear is used?
(c) What methods for vertical extrapolation of the wind profile are used and what are the impli-

cations and shortcomings of the current methods?

2. To what extent can statistical extrapolation methods estimate the shear exponent distribution?

(a) What metrics are used to assess the quality of the estimation?
(b) What statistical extrapolation methods exist?
(c) How do the estimations from different extrapolation methods compare?
(d) What changes in the extrapolation method could be made to improve the estimation of the

shear exponent distribution?

3. What is the effect of shorter measurement campaigns on the obtained long-term wind profile and
shear distribution?

(a) What duration for short-term measurement periods can be used?
(b) Does distribution of measurement time within a year improve the estimation?
(c) Does seasonality of the wind affect the estimation?

3.2. Measurement site descriptions
Wind data from two measurement sites wind data from two measurement sites is used: Høvsøre, and
Breezanddijk. At both locations lidar data and met mast data are available. A brief overview of the
available wind data/instruments is given in Table 3.1.

13



14 3. Research Set-Up

Table 3.1: Overview of the available measurement instruments. The heights at Høvsøre refer to height above ground level. The
heights at Breezanddijk refer to the height above the average water level of the lake (IJsselmeer).

Measurement period Instrument Measurement heights [m]
Høvsøre
1. Met Mast 01-01-2009 to 01-06-2017 Cup anemometer 10, 40, 60, 80, 100, 116.5

Wind vane 10, 60, 100

2. Lightning Mast 01-01-2009 to 01-06-2017 Sonic Anemometer 60, 100, 160

3. Lidar 17-5-2011 to 04-04-2012 Windcube 40, 60, 80, 100, 160, 200

Breezanddijk
1. Met Mast 23-06-2016 to 01-06-2017 Cup anemometer 40, 60, 70, 75

Wind vane 36, 67

2. Lidar 01-01-2016 to 01-06-2017 ZephIR 300 20, 40, 47, 60, 75, 95, 110,
120, 135, 182, 200

The quality and usability of the wind data depend on the surroundings and lay-out of the measure-
ment site. Obstacles, e.g buildings and wind turbines, distort the wind flow and cause a change in
the vertical wind profile. How the obstacles influence the wind profile is illustrated in Fig. 3.1. Other
roughness changes like the land-sea interface affect the wind profile as well.

Local effects should be taken into account. It is desired that the measurement used for the analysis
are not influenced by obstacles or wind turbine wake. Therefore a description of the measurement sites
is necessary and suitable wind direction sectors need to be defined.

Figure 3.1: The effect of obstacles on an undisturbed airflow [42]

3.2.1. Høvsøre
The Høvsøre measurement site is located in Jutland, in the western part of Denmark. As shown on
the map of Fig. 3.3, the site is surrounded by farmland. Approximately 1.7 km to the west of the site,
is the coastline of the land with the North Sea. One kilometer to the south of the measurement site the
Bøvling Fjord is located.

Five wind turbines are present at the Høvsøre site. The wind turbines are aligned in a row from
north to south, as can be seen on the map. Each wind turbine has its own power curve met mast,
which is located on the west side of the turbine.
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Next to the wind turbines, two major obstacles are located at the site:

• The village of Bøvlingbjerg is located at approximately 3 km to the east of the site.

• Between the site and the coastline is a sand dune with a height of 12 m and a width of 40 to 50
m [33].

At the south end of the wind turbine row, a 116.5m-high meteorological met mast is located. This
met mast is used in this analysis. The mast contains several types of instruments. The available cup
anemometers and wind vanes are listed in Table 3.1.

Within the row of wind turbines, two lightning protection masts are located. One of the lightning
masts is equipped with sonic anemometers. A detailed description of the Høvsøre test facility and an
overview of the research performed at the site are provided by Pena et al. [33].

Wind speed and direction measurements of the met mast have been used to construct the wind
rose of Fig. 3.4. It is clear that winds from the west are more common than winds from the east. The
prevailing wind direct is west-northwest.

To avoid the wakes of turbines and the effect of the obstacles, two wind direction sectors will be
used: the eastern wind sector from 60 to 120 degrees, and the western wind direction from 240 to 300
degrees. An overview of the selected wind directions is provided in Fig. 3.2 and Table 3.2.

Figure 3.2: Direction sectors used for analysis at Høvsøre

Table 3.2: Overview of direction sectors at Høvsøre

Sector Description
I. 60 - 120 deg Wind coming from the farm-

land

II. 240-300 deg Wind coming from the North
Sea, over the sand dune
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Figure 3.3: Overview of the Høvsøre test site. In the centre of the map the row of wind turbines, the lightning mast, and the
measurement mast are located. Furthermore the coastline of the North Sea and the coastline of the Bøvling Fjord are visible.

Figure 3.4: Wind rose of wind speeds at 100 m at Høvsøre. The wind rose is constructed using eight years of data (2009-2017).
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3.2.2. Breezanddijk
Breezanddijk is located in the northern part of the Netherlands, at the Afsluitdijk, which is the dyke
between the Waddenzee and the IJsselmeer. Apart from the dyke the site is surrounded by water.
The shortest distance to the mainland is 15 km to the southwest and 12 km to the northeast. The
measurement set-up consists of a lidar and a met mast, which are approximately 110m separated from
each other. A map of the site is provided in Fig. 3.6.

The lidar at Breezanddijk is a ZephIR300 continuous wave lidar. It measures the wind at eleven
altitudes, ranging from 20m to 200m above the average water level (see Table 3.1). As the lidar was
installed in December 2015, more than a year of lidar data is available. The exact location of the lidar
is on top of a gas station. Therefore the wind measurements at lower heights are influenced by the
building. The met mast has a height of 70m. It measures the wind speed at four heights and the
wind direction at two heights. The met mast was set-up six months later than the lidar, in June 2016.
Therefore less than a year of met mast data is available.

The lidar data has been used to construct the wind rose for the Breezanddijk site. The wind rose is
shown in Fig. 3.7. It indicates that the prevailing wind direction is south-west.

At the Breezanddijk measurement site various obstacles are present:

• Gas station building: The lidar is on top of the gas station. The mast is located approximately
100 m to the east of the building.

• Telecommunication mast is located between the lidar and the met mast. The distance to both the
met mast and the lidar is approximately 50 m. The telecom mast is approximately 40 m high and
affects the cup anemometer at 36 m.

• Road overpass: At 200 m distance from the lidar a road overpass is located. The height of the
overpass is approximately 10 m.

• Dyke: The dyke is located north of the mast and lidar. It is approximately 10 m high and could
influence the measurements at lower heights.

To avoid the influence of the obstacles and to avoid the interaction between the wind and the booms
of the met mast, three wind direction sectors are distinguished. An overview of the sectors used for
is provided in Fig. 3.5 and Table 3.3. Sector 1 is relatively open and without obstacles. The only
obstacle in this sector is the dyke. It is expected that the dyke only affects the wind profile at lower
heights. Unfortunately, the wind does not frequently blow from the directions in sector 1. The wind
profile in sector 2 can be affected by the presence of the camping site, but as this is the prevailing wind
direction, the sector is included. The wind profile in sector 3 could be affected by the harbour and the
dyke.

Figure 3.5: Breezanddijk direction sectors used for analysis

Table 3.3: Overview of sectors at Breezanddijk

Sector Description
I. 345 - 51 deg Wind coming from the sea,

coming over the dyke

II. 170-228 deg Wind coming from the Ijs-
selmeer, flowing over the
harbour and camping site

III. 228-281 deg Wind coming from the sea,
flowing over the harbour and
the dyke



18 3. Research Set-Up

Figure 3.6: Overview of the Breezanddijk measurement site. The location of the lidar and the location of the met mast are
indicated. The harbour and the camping site are also visible on the map.

Figure 3.7: Wind rose of wind speeds at 95 m at Breezanddijk. The wind rose is constructed using one year of data (2016).
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Comparison of Wind Profiles observed

by Lidar and Measurement Mast
Lidars use a different measurement principle than met masts. As explained in Chapter 2, traditional
cup anemometers measure the wind speed at a point, whereas lidars measure the wind speed over
a volume. As most lidars use a conical scan, the measurement volume increases with the height.
Measuring over a volume instead of measuring at a point could lead to a difference between the wind
shear derived from mast measurements and the wind shear derived from lidar measurements.

Whether the difference in measurement principle leads to a significant difference between the mast
and lidar is studied in this chapter. The observations from the lidar and mast pairs at Høvsøre and
Breezanddijk are used for the comparison. In Section 4.1 the approach used for the comparison is
outlined. The results of the analysis are presented per measurement site in Section 4.2. Subsequently,
the results are summarised and discussed in Section 4.3.

4.1. Method
For the comparison of the lidar profiles and the met mast profiles, the lidar and met mast pairs at
Breezanddijk and Høvsøre are used. In the ideal measurement set-up for the comparison, the mast
and the lidar would be located directly next to each other, thereby minimising the difference due to
spatial variation in the wind. At Høvsøre this is the case: the lidar was located approximately 10 m
to the west of the met mast. However, at Breezanddijk the lidar and mast are further away from each
other: the lidar is located 110 m to the west of the met.

The wind speed data for the comparison is filtered on wind speed and wind direction. The selected
data points are concurrent 10-minute averages for which both wind speed and wind direction mea-
surements are available at the mast and the lidar. Two selection criteria are applied. Firstly, the wind
direction at both the lidar and the mast should be within the selected sector. Secondly, the 10-minute
averages of wind speed below 1 m/s have been left out of the comparison.

In the comparison, the wind shear exponent measured by the lidar is compared with the wind shear
exponent measured by the met mast. The definition of the wind shear exponent which is used, is the
two point log-ratio fit:

𝛼 = ln (𝑢 /𝑢 )
ln (ℎ /ℎ ) (4.1)

Examples of the power law representation of wind profiles are provided in Appendix C.
To compare the lidar and the met mast on the measured wind shear, the time series of wind shear

exponents are compared using four metrics:

1. Bias: the difference between the means of the time series.

2. Root Mean Squared Error (RMSE) gives an indication of the deviation of shear measured by the
lidar from the shear measured by the met mast.

19
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3. Slope: the slope of a linear fit through the origin (intercept is zero).

4. Pearson’s correlation coefficient, 𝑅, provides an indication of the linear dependence of the time
series of the lidar and the met mast.

4.2. Results
The results of the analysis are presented in this section. First the results obtained from the Høvsøre
measurement campaign are discussed. Secondly the results obtained at Breezanddijk are discussed.

4.2.1. Høvsøre
The lidar at Høvsøre has been measuring for almost a full year. The data is used to calculate two shear
exponents: 𝛼 and 𝛼 . The 𝛼 from the lidar is compared with the 𝛼 from the met
mast. The met mast and the lidar can be considered collocated. The lightning mast is located 400m
north of the Lidar, but has the advantage that it measures the wind speed at 160m height, so the shear
exponent at higher height can be compared as well. As it turned out that the lidar measurements for
the eastern sector are significantly influenced by the presence of the mast structure, the focus of the
comparison is on the western sector.

In Fig. 4.1 the observed 𝛼 are plotted for the western sector at Høvsøre. According to the
figure, the shear exponent from the mast and the lidar are similar. The slope of the fit is 1.00, and most
of the data points are located along the line. It stands out that the deviation of the data points from the
fitted line is larger for the lower shear exponents. The cloud of data points is wider for shear exponents
in the range of 0.0 to 0.2 than it is for the range of 0.2 to 0.5.

The corresponding metrics are shown in Table 4.1. A bias of 0.0036 is observed in the measure-
ments, implying that the shear measured by the Windcube is slightly higher. The slope is 1.0, and
the correlation coefficient is 0.97. These metrics are confirming the very good agreement of the shear
exponents from the lidar and mast.

Table 4.1: Comparison of the shear exponent measured by the lidar and by the met mast per direction sector at Høvsøre

East West
Parameter Indicator MM Windcube MM Windcube

# Samples 4340 4309 9179 9142
# vs MM 4309 9140

𝛼 40-100 Mean [-] 0.2252 0.2476 0.1602 0.1638
BIAS [-] 0.0224 0.0036
RMSE [-] 0.0484 0.0187
Slope [-] 1.0385 0.9951
𝑅 [-] 0.8989 0.9669

Secondly, 𝛼 from the lidar measurements is compared with 𝛼 measured by the sonic
anemometers. The results are presented in Fig. 4.2 and Table 4.2. The plot shows that for this case
there is a larger difference between the shear exponent from the lidar and from the mast. This observa-
tion is also pointed out by the higher RMSE and lower correlation coefficient in the table. An explanation
for the difference in the shear exponents is the horizontal distance between the sonic anemometers
and the lidar.

In order to assess the effect of the horizontal distance without changing from a mast to a lidar,
a comparison between the measurement from the two masts is made. Although the met mast and
the lightning mast use different types of anemometers, both measurement can be considered a point
measurement, whereas the lidar measurement is a volume measurement. The overview of the results
of this analysis are included in Appendix D.
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Figure 4.1: Comparison of measured by the lidar and by the met mast at Høvsøre. The result of the western sector is
shown.

The comparison of the two masts is based on data recorded during approximately the same period
as the lidar was measuring at Høvsøre, and over 13,000 data points were included in the comparison
for the western sector. The bias between the met mast and the lightning mast is -0.0015, and the RMSE
is 0.0336. As shown in Table 4.2, the bias and RMSE for the western sector are 0.0224, and 0.0382
respectively. It is remarkable that the bias in the lidar-mast comparison is significantly higher than in
the mast-mast comparison, but the RMSE is similar.

Table 4.2: Comparison of the shear exponent measured by the lidar and by the met mast per direction sector at Høvsøre

East West
Parameter Indicator Sonic Windcube Sonic Windcube

# Samples 3983 3774 9827 9831
# vs Sonic 3772 9766

𝛼 100-160 Mean [-] 0.2111 0.2421 0.0779 0.1003
BIAS [-] 0.0310 0.0224
RMSE [-] 0.0868 0.0382
Slope [-] 1.0029 1.0175
𝑅 [-] 0.7656 0.8778

4.2.2. Breezanddijk
Over seven months of wind measurements at Breezanddijk have been included in the analysis. Data
has been collected in the period from the start of July 2016 til early February 2017.The lidar and met
mast are compared for three different direction sectors, as the surroundings of the lidar and the mast
are not homogeneous. The direction sectors are described in Section 3.2.2. For each direction sector
the four metrics are calculated and are shown in Table 4.3.

The table indicates that the mast recorded more 10-min averages than the lidar. The discrepancy
is mainly because the lidar occasionally fails to record a wind speed and wind direction due to a low
signal to noise ratio. Possible causes of the low signal to noise ratio are precipitation, and fog.
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Figure 4.2: Comparison of measured by the lidar and by the met mast at Høvsøre. The result of the western sector is
shown.

The RMSE in sector 2 is significantly larger than for sector 1 and 3. This observation can be ex-
plained by two factors. Firstly, the upwind terrain in sector 2 differs between the mast and the lidar. The
wind measurements in sector 2 are affected by the camping site, the road overpass and the marina.
As the lidar is closer to these obstacles than the met mast, a deviation in the wind speed measure-
ments can be expected. Secondly, it appeared that objects had been affecting the mast measurement
at 40 m, but were not affecting the lidar measurements leading to inconsistencies in the derived shear
exponents. The deviations result in a large spread in the plot of the shear exponents (see Fig. 4.3b).

Table 4.3: Comparison of the shear exponent measured by the lidar and by the met mast per direction sector at Breezanddijk

Sector I Sector II Sector III
Parameter Indicator MM ZephIR MM ZephIR MM ZephIR

# Samples 2883 2782 8166 7879 7316 7166
# vs MM 2749 7651 7133

𝛼 40-75 Mean [-] 0.1023 0.0955 0.1130 0.1367 0.1278 0.1162
BIAS [-] -0.0068 0.0238 -0.0116
RMSE [-] 0.0438 0.0592 0.0443
Slope [-] 0.9285 0.9077 0.8593
𝑅 [-] 0.9038 0.8387 0.8826
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(a) Sector 1 (b) Sector 2

(c) Sector 3

Figure 4.3: Comparison of the wind shear exponent from 40 to 75m, measured by the met mast, and by the lidar,
at Breezanddijk

4.3. Discussion and Conclusion
The findings show that the shear measured by the mast and by the lidar is comparable. To place
the results in perspective, a comparison with results found in the literature is made. Unfortunately,
the majority of the lidar validation studies leaves the shear exponent out of the validation and focuses
on wind speed and turbulence intensity instead. An exception is a study by Rodrigo et al., which
includes the wind shear in the lidar validation study [35]. They performed a lidar validation study at two
locations: Høvsøre, and Alaiz, which is a complex terrain site in Spain. In the study a pulsed lidar and
a continuous-wave lidar were compared to the met mast. It is noted that the mast and lidar at Høvsøre
that were used by Rodrigo et al., are different from the mast and lidar used in this study. Only the results
obtained at Høvsøre are used for comparison, because the terrain is comparable.

Rodrigo et al. found a bias between the mast and lidars of 0.005 and 0.011 for the CW and pulsed
lidar respectively. From the tables, it can be observed that the bias found in this validation study is
0.0036, and 0.0224 for the shear exponents in the western sector at Høvsøre. The latter one is affected
by the horizontal distance between the mast and the lidar.

At Breezanddijk the bias for sector 1 is -0.0068. This bias is comparable in size to the 0.005 that
Rodrigo found. Sectors 2 and 3 result in higher biases of 0.0238 and -0.0116 respectively. The increase
of the bias can be attributed to the surroundings of the measurement set-up. Sector 1 is open and very
similar for the mast and lidar. On the contrary, sector 2 and 3 are different for the mast and the lidar in
terms of distance to obstacles and roughness changes.
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Rodrigo et al. also calculated the RMSE of the shear exponents compared to the mast. They found
a RMSE of 0.034, and 0.031 for the CW lidar and pulsed lidar. Høvsøre western sector in same order.
At Breezanddijk the RMSE is in the order of 0.044 for sector 1 and 3, and 0.06 for sector 2, so larger
than the RMSE found at Høvsøre.

In conclusion, the shear measured by the mast and lidar show a proper agreement, especially in
the ideal measurement set-up at Høvsøre, where the lidar was located directly next to the mast. At
an actual potential wind farm site, like Breezanddijk, the location of the lidar and met mast are de-
pendent on the surroundings, and the ideal measurement set-up is not always feasible. The data from
Breezanddijk shows that the shear measured by the mast and lidar deviates. The deviation is explained
by two factors. Obstacles cause deviations in the measured wind profile. Secondly, differences in the
roughness of the upwind terrain cause differences in the wind profile.



5
Intra-annual Variability of the

Wind-Shear Exponent
The vertical wind profile at a potential wind farm site varies within the year. The profile is affected by
temperature changes and changes of the surface. In this chapter the intra-annual variability of the shear
exponent at Høvsøre and Breezanddijk is studied. Two main aspects are discussed. Firstly the extent
of monthly variation of the shear exponent is discussed, because the variation is an important factor in
the possibility of reducing the measurement time. Significant intra-annual variation confirms the need
for a long-term correction when the measurement time is shorter than a year. The MCP method could
be the long-term correction.

Secondly, the variation of the relation between shear exponents at different heights is analysed.
Relating shear exponents at different heights is a first step towards the vertical extrapolation of the
shear exponent which is discussed in Section 6.2. It could potentially improve the estimation of wind
shear above measurement mast height.

5.1. Method
Variability of the wind shear exponent is studied by calculating themonthly average shear exponent, and
the shear exponent distribution per month. The wind shear is analysed per direction sector, because
the wind shear can significantly change with the wind direction due to terrain differences and obstacles.
The direction sectors for both Høvsøre and Breezanddijk are described in Section 3.2.

The monthly average of the shear exponent shows the variation of the shear exponent over the
year. By plotting the monthly mean of shear exponents from various heights, a comparison of monthly
averages of shear exponents at different heights is possible.

The shear exponent distribution, 𝑃(𝛼), is calculated for each month and compared with the shear
exponent distribution of a full year. In this way, it becomes clear what part of the shear exponent distri-
bution is measured in a certain month, and how this month relates to the full year. The distributions are
calculated using Matlab’s built-in histogram function, which bins the data, and estimates the probability
corresponding to the bin using:

𝑃(𝛼 ) = 𝑐
𝑁 (5.1)

In which 𝑐 is the number of bin elements, 𝑖 is indicating the bin, and 𝑁 is the total number of ele-
ments. This is a direct way of estimating the shear exponent distribution. Another way of estimating
the distribution would be to estimate the parameters of a given probability density function. However,
there is no standard probability density function for wind shear exponent distributions.

For each month the number of data points, 𝑁month, and a weight, 𝑤 is assigned. The 𝑤, is calculated
to assess how much each month contributes to the yearly shear exponent distribution, and depends
on the wind direction distribution for each month.

𝑤 = 𝑁month
𝑁year

(5.2)
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5.2. Observations
The shear variability is discussed per measurement site. First the observations at Høvsøre are anal-
ysed, subsequently the observations at Breezanddijk are discussed.

5.2.1. Høvsøre
Measurement data from the met mast and the lightning mast are used for this analysis, because only
short-term lidar data is available. In total, seven years of measurement data have been included. Two
shear exponents are investigated:

• 𝛼 is evaluated at the met mast. It could represent a shear exponent which is derived using
a tall met mast in a wind measurement campaign.

• 𝛼 is evaluated at the lightning mast. As this mast provides measurement above typical met
mast height, this could represent a shear exponent derived using a lidar. Besides, this shear
exponent could be used to represent the wind profile over a full rotor plane

The mean shear exponent per month for the eastern sector at Høvsøre is shown in Fig. 5.1. It is
observed that the monthly means vary in the range of 0.15 to 0.32 with a few outliers reaching as high
as 0.41. In general, the shear from 40 to 100 m is greater than the shear from 60 to 160m, which is
expected due to high shear in the surface layer and lower shear above the surface layer. The variation
of the mean shear does not show a seasonal trend. Fluctuations appear only on a monthly scale.

Figure 5.1: Mean shear exponent per month for the eastern sector at Høvsøre

To explain the observation, the shear exponent distribution per month is analyzed. The monthly
distributions of 𝛼 are shown in Fig. 5.2. On the contrary of the mean shear exponent, these
distributions show a clear variation on a seasonal scale. In the winter months the shape of the shear
exponent distribution has one peak around 0.2. Continuing to the spring, the peak of the distribution
shifts towards lower alphas. Simultaneously the distribution becomes wider, implying a decrease of
shear exponents around 0.2, and an increase of shear exponents above 0.3.



5.2. Observations 27

An interesting result is found for the months July, August and September, in which the distribution
has the shape of a bimodal distribution. This observation can be attributed to variation of the wind
shear at daily scale. During the nights the wind shear is high, resulting in the peak around 0.38, while
the peak at 0.06 results from wind shear measured during the day. Wagner mentions that longer days
and stronger heating by the sun are mentioned as causes for the distinct daily variations [41]. These
conditions correspond to the conditions in the months July, August and September.

Figure 5.2: Shear exponent distribution, ( ) per month for the eastern sector at Høvsøre. The red histograms are
showing the distribution for the particular months. The blue histogram is the histogram corresponding to the yearly shear exponent
distribution. Seven years of data, 2010-2016, have been included in the distribution.

In Fig. 5.3 the mean shear exponents of the western sector are presented. A fluctuation on seasonal
scale is apparent. High mean shear is measured during the winter months, whereas the summer
months show low monthly mean shear exponents. Further, it stands out that the winters of 2010 to
2012 result in higher mean shear exponents than the last four years. The monthly mean shear during
the summers appears to be similar. An explanation of the higher wind shear during the first three years
is the colder winters in this period.

Comparing the 𝛼 with the 𝛼 shows that the 𝛼 is consistently greater than 𝛼 ,
which implies that the shear in the lower part of the wind profile is higher than the shear in the upper
part. The difference between the mean shear exponents fluctuates on the timescale of a year, and
is significant over the whole year, i.e. it is is necessary to correct the shear exponent for vertical
extrapolation.
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Figure 5.3: Mean shear exponent per month for the western sector at Høvsøre

The 40 to 100 m shear exponent distribution, 𝑃(𝛼 ), for the western sector is presented in
Fig. 5.4. From the distribution it becomes clear that the width of the distribution changes over the
months. From December to May the distribution is wider, meaning higher 𝜎𝛼 than in the other months.
The months with a higher 𝜎𝛼 are also the months in which the average shear is higher. The wider
distributions are caused by the prevailing stable conditions in the winter.

Wagner investigated the wind shear at Høvsøre and included stability [41]. Wind shear distributions
per stability class showed that the correlation between stability and wind shear is strong for the eastern
sector. For the western sector the correlation is weak due to the presence of the coastline. This finding
provides an argument for leaving out stability in the analysis of wind shear.
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Figure 5.4: Shear exponent distribution, ( ), for the western sector at Høvsøre. The red histograms are showing the
distribution for the particular months. The blue histogram is the histogram corresponding to the yearly shear exponent distribution.
Seven years of data, 2010-2016, have been included in the distribution.

5.2.2. Breezanddijk
The lidar data from Breezanddijk has been used to calculate the mean wind shear exponent and the
wind shear exponent distribution per month. One and a half year of data was available for the analysis.
In order to keep the obtained monthly distributions comparable with the yearly distribution, exclusively
data from the year 2016 has been used. In this section, the focus is on the first and the third direction
sector as these sectors are the least influenced by obstacles.

As lidar data is used, wind measurements at 11 heights are available, see Table 3.1. For this
analysis, three height ranges are used for the shear exponent calculation:

• 𝛼 , is based on wind speed measurements at 40 m and 75 m. These are heights at which
typical met masts measure the wind speed.

• 𝛼 , is calculated from wind speed measurements at 40 m and 200 m. The shear exponent
would represent the wind shear over a large wind turbine rotor, with a hub height of approximately
120 m.

• 𝛼 is based on wind speed measurements at 40 m and 120 m. This shear exponent is
required for the extrapolation of the wind speed to a typical hub height of 120 m.

Apart from the dyke, Breezanddijk is surrounded by water. The nearest coastline of the IJsselmeer
with the main land is located at least 11 km to the north-west. From this observation, it is expected that
the average wind shear at Breezanddijk is generally lower than the wind shear at Høvsøre, because
the terrain roughness is lower. This hypothesis is confirmed by comparing Fig. 5.5 with Fig. 5.7.
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Themonthlymean shear exponent of the first sector is shown in Fig. 5.5. Themonthly shear average
shows a seasonal cycle like the shear for the western sector of Høvsøre. The difference between the
minimum andmaximum in a yearly cycle is around 0.2, and is similar to the observations for the western
section at Høvsøre. The monthly mean shear exponent of the third sector at Breezanddijk (Fig. 5.7
shows the same trend.

Figure 5.5: Monthly averaged shear exponent for sector 1 at Breezanddijk

In Fig. 5.6 the shear exponent distribution for sector 1 is shown. As only one year of wind mea-
surements are used, and sector 1 includes the infrequent northerly winds, a low number of samples is
available. Therefore it is hard to obtain an image of the underlying shear exponent distribution. The ef-
fect of the lower number of samples is clearly visible when the monthly histograms for Breezanddijk are
compared to the histograms for Høvsøre. For example, the months January and December include not
enough samples to obtain the distribution. Contrary to these months are May and June, these months
include more than 1000 10-min averaged 𝛼 samples. As a result these months have a weight, 𝑤
of 0.15, implying that May and June account for 30% of the total number of samples.

Comparing the yearly shear distribution of sector 1 with the distribution of sector 3 shows that the
distribution of sector 3 is wider, having more frequent high shear exponents. This difference could be
caused by the sampling issue. Direction sector 1 does not include enough samples to construct the
𝑃(𝛼) for the winter months December and January (less than 200 data points per month). Another
factor could be the presence of the marina. This is unlikely because the dykes of the embankment are
not high and will not influence the wind speed at 40 m.

Contrary to sector 1, sector 3 contains enough samples for the winter months January and De-
cember. Figure 5.8 clearly shows that the monthly distribution corresponding to the winter months is
located at higher shear exponents than the yearly distribution. This is also expected, when one keeps
in mind the variation shown in Fig. 5.7.
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Figure 5.6: Shear exponent distribution, ( ), for sector 1 at Breezanddijk. The red histograms are showing the distribution
for the particular months. The blue histogram is the histogram corresponding to the yearly shear exponent distribution. One year
of data, 2016, has been included in the distribution.

Figure 5.7: Monthly averaged shear exponent for sector 3 at Breezanddijk
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Figure 5.8: Shear exponent distribution, ( ), for sector 3 at Breezanddijk. The red histograms are showing the distribution
for the particular months. The blue histogram is the histogram corresponding to the yearly shear exponent distribution. One year
of data, 2016, has been included in the analysis.
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5.3. Conclusion
Wind shear exponent distributions vary within a year. The observations at Høvsøre and Breezanddijk
show that the shear varies on a seasonal timescale. The variation in wind shear is caused by the
difference in the heating of the Earth’s surface by the sun from season to season. The surrounding
terrain at the measurement site influences the intra-annual variability. At Høvsøre a comparison was
made between the eastern and the western sector. Whereas the average wind shear exponent in the
western sector shows an obvious seasonal variation, it does not show this trend for the eastern sector.
Despite minimal variations in the mean, the shear exponent distributions of the eastern sector do show
a seasonal variation. Particularly interesting are the shear exponent distributions in the summer that
show 2 maxima due to shear variation on a daily time scale. Fitting a probability density function may
be more difficult in this case.

The analysis presented in this chapter has shown that wind shear distributions measured from one
season only cannot represent the long-term wind shear. The intra-annual variation confirms the need
for an extrapolation of wind shear statistics that are measured during periods shorter than a year. A
suitable extrapolation method could be the MCP method. This hypothesis is further tested in the next
chapters.

Other consequences of the variable wind shear exponent may be found in wind turbine load calcu-
lations. The current IEC standards specify a constant wind shear exponent for the load calculations
[16, 17]. As the wind shear exponent is variable, the calculations might be too simple and do not rep-
resent the real situation. Especially for large rotors, the variable wind shear could be an important
factor. Dimitrov et al. studied the effect of a wind shear model conditional on turbulence on the wind
turbine loading [10]. They show that the shear in the design standard may be over-specified in the
case of moderate turbulence. The new model could reduce the fatigue loads. Further, they found that
the IEC61400-1 wind shear model results in non-conservative estimates of the 50-year extreme blade
deflection towards the tower. These are strong arguments to further investigate the potential benefits
of a variable wind shear model.





6
Implementation and Validation of the

MCP Code
In wind resource assessment it is required to obtain wind statistics that are representative for the long-
term wind at the target site. These wind statistics are necessary for the evaluation of the feasibility of
a potential wind farm. However, the measurement campaign only provides short-term wind data at the
target site. To obtain wind statistics that represent the long-term wind at the target site, an extrapolation
is carried out.

This chapter presents the implementation of the MCP method, which can be used to extrapolate
short-term wind data to better represent the long-term wind conditions at the target site. Implementation
of two existing MCP methods is presented in Section 6.1. To improve the MCP method for the purpose
of extrapolating short-term wind shear data, two improvements of the standard MCPmethod have been
considered. Firstly, vertical extrapolation of the wind shear is discussed in Section 6.2. Secondly, a
weighted MCP method is presented in Section 6.3. Finally, the implemented MCP code is validated
using WindPRO, presented in Section 6.4.

6.1. Implementation of the MCP procedure in Matlab
In this section the implementation of the MCP procedure is discussed. The process consists of three
main steps and is visualised in Fig. 6.1. Besides, the figure shows the required input, consisting of
a short-term and a long-term data set. The following subsections elaborate on the three steps of the
MCP procedure.

Figure 6.1: Flowchart of the MCP procedure

6.1.1. Data selection
In the first step, the target site data and the reference site data are imported and wind direction sectors
are defined. By default, twelve direction sectors are used. The first sector ranging from 345 degrees
to 15 degrees. The direction sectors will be used to establish a correlation per direction sector. It is
assumed that the correlation between the target and reference data depends on the wind direction and
that the prediction improves when a separate correlation for each direction sector is used.
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This assumption is justified as the terrain influences the wind profile and the terrain changes with
direction. Under this assumption, it can be expected that the MCP prediction enhances further when
narrow direction sectors are used. The issue which arises for smaller direction sectors is a sampling
problem. For smaller direction sectors, the short-term data set may not contain enough data points in
each direction sector to establish a reliable correlation. This sampling issue is an important factor to
consider when the measurement time in a wind measurement campaign is to be reduced.

6.1.2. Correlation
The concurrent data points of the input data are used to establish the correlation. The concurrent
data points of the input data are detected and the points are binned using the wind direction data at the
reference site. Subsequently, a correlation between the target site and the reference site is established
for each direction sector. Two common correlationsmethods have been implemented: linear regression
and the variance ratio method.

Linear regression is implemented, as it is straightforward, and commonly applied in MCP calcu-
lations for wind resource assessment. The variance ratio method is implemented as it is better at
predicting the distributions than the linear regression method [34]. The difference in the accuracy of
the predicted distributions is explained by the fact that linear regression underestimates the variance
in the predicted signal (see Appendix B).

The Mortimer method is not implemented, because of the need for enough data to fill the correlation
matrix. For short measurement periods, the matrix is not filled out completely, or the bins need to be
very large, which reduces the effect of the method. Another way to fill out the correlation matrix is to
interpolate and extrapolate the recorded matrix elements, similar to the approach used for WindPRO’s
matrix method [38].

Linear Regression
Linear regression can be performed via the least squares method [13]. The slope and intercept of the
linear relation are calculated via:

b = ((X X) )X y (6.1)

In which b is the vector containing the slope and intercept of the least squares fit, X is a matrix
containing ones in the first column and the reference data in the second column, and y is a column
vector containing the target data, as shown by:

X X = ( 1
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) (6.2)
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) (6.3)

The result of the least squares regression results in the following equations for the slope, 𝑏 , and
the intercept, 𝑏 :

𝑏 = 𝜎(𝑥𝑦)
𝜎 (𝑥) (6.4)

𝑏 = 𝑦 − 𝑏 𝑥 (6.5)

Variance Ratio Method
The variance ratio method was suggested by Rogers [34] to improve the MCP prediction of the target
distribution. The correlation established by VRM follows:

�̂� = 𝜇 −
𝜎
𝜎 𝜇 +

𝜎
𝜎 𝑥 (6.6)
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In which 𝜇 and 𝜇 are the mean wind speed at the target site and the reference site, respectively. And
𝜎 and 𝜎 are the respective standard deviations of the wind speed at the target site and the reference
site. Using Eq. (2.10), the variance of the predicted wind speeds, 𝜎 (�̂�), is equal to the variance of the
observed wind speeds 𝜎 (𝑦). Using Eq. (2.10) for the correlation, results in a better prediction of the
wind speed distribution at the target site [34].

6.1.3. Prediction
The last step is the prediction of the long-term time series at the target site. The reference data, and the
established correlation are used to calculate the long-term time series at the target site. For each time
step at which reference data is available, a prediction for the target site is calculated. The algorithm
approaches the prediction per direction sector. Firstly, the reference data in and the correlation for the
first sector are used for a prediction, then the data and correlation for the second sector, etc.

6.2. Vertical extrapolation of the wind shear exponent
For present-day wind energy projects, wind data at heights above 100 m is often necessary. In the
ideal case, wind measurements are available at the target hub height for an extended period of time,
i.e. multiple years. However, the majority of wind measurements are performed at low altitudes and
windmeasurements above 100m are scarce. In particular long-term data is often only available at lower
heights. To estimate the long-term wind statistics at higher heights, vertical extrapolation is frequently
applied. This vertical extrapolation could be implemented in the MCPmethod to improve the correlation
between the target data and the reference data.

In this section, a simple expression for vertical extrapolation of the wind shear exponent is derived
(see Section 6.2.1). In Section 6.2.2 the vertical extrapolation of the shear exponent is compared with
observations at Høvsøre.

6.2.1. Method
The vertical wind profile is commonly described by the power law profile or the logarithmic profile:

𝑢(ℎ) = 𝑢 ( 𝑧
𝑧 ) (6.7)

𝑢(𝑧) = 𝑢∗
𝜅 ln (

𝑧
𝑧 ) (6.8)

The shear exponent 𝛼 of the power law (Eq. (6.7)) can be defined using a centred definition [22],
following:

𝛼 ≡ 𝜕𝑢
𝜕𝑧
𝑧
𝑢 (6.9)

In this definition and 𝑢 are evaluated at 𝑧, the geometric mean height.The geometric mean height
𝑧 is defined as: 𝑧 = √𝑧 𝑧 . Substitution of the logarithmic wind profile for neutral atmospheric stability,
Eq. (6.8) in Eq. (6.9) results in the following expression for the wind shear exponent:

𝛼 = 1
ln ( )

= 1
ln(𝑧) − ln(𝑧 ) (6.10)

The expression gives the shear exponent as a function of the geometric mean height 𝑧 and the
roughness length 𝑧 . When the shear exponent is known from measurements, it can be used to calcu-
late the observed roughness length via:

𝑧 = 𝑧

𝑒
(6.11)

In which 𝑧 is the geometric mean height of the observation, and 𝛼 is the observed shear
exponent.

The observed roughness length is substituted in Eq. (6.10), resulting in:
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𝛼(𝑧) = 1
ln(𝑧) − ln(𝑧 ) +

= 𝛼
𝛼 ln( ) + 1

(6.12)

The advantage of this expression is that it does not contain a roughness length. Therefore a rough-
ness map of the measurement site is not required. The vertically extrapolated 𝛼 only depends on the
observed shear exponent 𝛼 , and the ratio of the geometric mean height over over the observed
geometric mean height .

In Fig. 6.2 an example of the application of Eq. (6.12) is shown. The shear exponent as a function
of height is calculated using Eq. (6.9). Numerical differentiation has been used to approximate the .
The shear exponent alpha of the power law is calculated for two height ranges: from 40 to 100 meter
and from 40 to 160 m.
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Figure 6.2: Example of the application of Eq. (6.12) to a logarithmic wind profile with ∗ . m/s and . m

6.2.2. Observations
The derived expression, Eq. (6.12) is tested using observations from Høvsøre and Breezanddijk. Only
results from the Høvsøre site have been included. In Figs. 6.3 and 6.4 the vertical extrapolation of the
shear exponent is shown. Both figures are using the same heights in the extrapolation. The difference
is the upwind terrain. The scatter plots show the lower shear exponent on the x-axis and the higher
shear exponent on the y-axis.

The expression for the vertical extrapolation, Eq. (6.12), offers only a marginal improvement. In the
range of the higher shear exponents, the extrapolation appears to follow the data points better than
the linear relations. However, the joint probability density function shows that the conditions for which
Eq. (6.12) improves the fit, are not common at this site.

From Fig. 6.3 it can be observed that most of the data is below the curve described by Eq. (6.12).
For a better fit, the equation should not go through the origin. An extra term should be added to the
equation to enhance the fit. For this reason, the vertical extrapolation by Eq. (6.12) has not been
implemented in the MCP.
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Figure 6.3: Scatter plot of the shear exponent and the shear exponent for the western sector at Høvsøre.
On top of the data a contour plot shows the joint probability of the shear exponents. The magenta line represents the vertical
extrapolation of alpha, given by Eq. (6.12)

Figure 6.4: Scatter plot of the shear exponent and the shear exponent for the eastern sector at Høvsøre.
On top of the data a contour plot shows the joint probability of the shear exponents. The magenta line represents the vertical
extrapolation of alpha, given by Eq. (6.12)
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6.3. Weighted MCP
When the concurrent measurement period is reduced, it is more likely that the sample does not rep-
resent a full year. Therefore the correlation which is established, could be based on conditions that
do not occur as often in the long-term as in the short-term. As a consequence, a bias is introduced
in the prediction. The reference data set can be used to mitigate the effect of the unrepresentative
measurement period.

As a long-term reference data set is available for the MCPmethod, it can be determined whether the
conditions during the concurrent measurement period are representative for the long-term. Moreover,
a weighted correlation can be calculated to account for the long-term. By assigning higher weights to
frequent conditions, the correlation improves for the long-term. The weights assigned to the concurrent
data points are based on the probability of the reference shear exponent in the long-term distribution,
and its probability in the short-term distribution:

𝑤 = 𝑃(𝛼 )
𝑃(𝛼 ) (6.13)

The probabilities 𝑃(𝛼 ), and 𝑃(𝛼 ), are calculated in the sameway as the histograms of Chapter 5,
following:

𝑃(𝛼) = 𝑐
𝑁 (6.14)

To ensure that the weights do not become too large, the denominator of the equation has been
adapted for its implementation in the MCP procedure. A threshold value was assigned by adding 0.1
to the denominator:

𝑤 = 𝑃(𝛼 )
𝑃(𝛼 ) + 0.1 (6.15)

The weights can be used both in the linear regression and the variance ratio MCP. In linear regres-
sion MCP the weights are used to calculate a weighted least squares fit, following:

b = ((X WX) )X Wy (6.16)

In which b is the vector containing the slope and intercept of the least squares fit,X is a matrix con-
taining ones in the first column and the reference data in the second column, W is a matrix containing
the weights on the diagonal and zeros at the other locations, and y is a column vector containing the
target data.

In the variance ratiomethod theweights are used to calculate the weightedmean, 𝜇 , , andweighted
standard deviation, 𝜎 , , of the concurrent data set.

𝜇 , =
∑ 𝑤 𝑥

∑ 𝑤
(6.17)

𝜎 , =

√⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⎷

∑ 𝑤 (𝑥 − 𝑥 )

∑ 𝑤
(6.18)

Substitution of the weighted mean and weighted standard deviation in the VRM correlation results
in:

�̂� = 𝜇 , −
𝜎 ,
𝜎 ,

𝜇 , +
𝜎 ,
𝜎 ,

𝑥 (6.19)

A striking example of the benefit of assigning weights to the short-term data is provided in the second
example application of the MCP method in Chapter 7, see Section 7.2.2.
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(a) 1. Breezanddijk (b) 2. Høvsøre

Figure 6.5: Visualisation of the wind data used for the validation. Details of the measurement periods are provided in Table 6.1

6.4. Validation of the MCP code
Validation of the MCP code is performed by comparing the result of the code with results obtained using
theMCPmodule of theWindPRO software. WindPRO is widely applied in the industry for wind resource
calculations. WindPRO has many options for data filtering and data processing, so it is important to
set-up the software in the way that it matches the MCP method implemented in Matlab.

For the validation purpose, linear regression MCP is used. The validation is carried out in 2 steps.
Firstly, the data selection and calculation of the linear regression are validated by comparing the estab-
lished linear relations. Secondly, the predictions of the long-term data set is validated, which is done
by calculating the difference between the two predicted time series:

𝜖 = 𝑈 − 𝑈 (6.20)

The VRM MCP method is not implemented in WindPRO. Therefor the implemented VRM method
cannot be validated directly. However the linear regression and VRMMCP only differ on the established
correlation. The data selection and the prediction are carried out in the same way as for the linear
regression. Consequently, the validation of the MCP code partially applies to the VRM method.

Two validation cases are carried out using WindPRO and the Matlab code. The cases are listed in
Table 6.1. The first case is performed using wind data from the Breezanddijk measurement site. The
second case is carried out using wind data from the Høvsøre measurement site. In Fig. 6.5 the input
for the MCP method is visualised.

Table 6.1: Validation cases

Case Short-term data Long-term data
Data Period Data Period

1. Breezanddijk Lidar, 𝑈 01-Jul-’16 to 01-Feb-’17 Mast, 𝑈 01-Jan-’16 to 01-Feb-’17
2. Høvsøre Lidar, 𝑈 17-May-’11 to 04-May-’12 Mast, 𝑈 01-Jun-’09 to 01-Jun-’16

Matlab and WindPRO have been used to set-up a linear relation between the target site and the
reference site for 12 sectors of 30 degrees. Where the first sector is from 345 to 15 degrees, and the
twelfth sector is from 315 to 345 degrees. The calculated linear relation for each sector can be found
in Appendix E.
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For the first case, the results from Matlab and WindPRO correspond well. The deviation between
the slopes and intercepts is in the order of 10 or smaller for the twelve sectors. For the second
validation case, the relations calculated in Matlab correspond with the relations calculated in WindPRO
for ten out of the twelve sectors. For those sectors, the order of the deviation is similar to the one found
for case 1. However, for sectors four and five, the difference in the results of the linear regression is
larger. The order of the deviation goes up to 10 , and the difference in intercept for sector five is even
in the order of 10 . Therefore it is expected to observe a difference in the predicted time series as
well.

The second part of the validation is the comparison of the predicted time series. The difference
between the predicted time series is calculated according to Eq. (6.20). As the output of the WindPRO
MCP module is automatically rounded to two decimals, the minimum difference that can be found is
0.01 m/s. The result of the comparison is shown in Fig. 6.6. Note that the vertical axis has a logarithmic
scale. It can be observed that for case 1, only at a few time steps a deviation in the order of 0.01 is
present. For case 2, the distribution of the difference, 𝜖, is wider. From the comparison of the regression
line per sector it is expected that the discrepancy is a result of the deviation in the slope and intercept
for sectors four and five. Therefore the distribution of 𝜖 per sector is visualised in a whisker plot, see
Fig. 6.7. The figure confirms the supposition that the deviation is caused by the difference in the linear
relations used for the prediction.

Overall, the results of the validation indicate that the implemented MCP procedure works. The
results from the Matlab MCP code and the WindPRO MCP module are the same for the major part
of the predicted time series. In the remaining part, only a small difference between the predicted time
series was found. The median of the difference is around 0.04 m/s and the maximum difference around
0.14 m/s.
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(a) 1. Breezanddijk (b) 2. Høvsøre

Figure 6.6: Histogram of the difference between the predicted time series from WindPRO and Matlab
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(a) 1. Breezanddijk (b) 2. Høvsøre

Figure 6.7: Box plots of the absolute value of the difference between time series of predicted wind speeds, | |, per direction
sector





7
Application of the MCP Method to Shear

Exponent Data
The measure-correlate-predict (MCP) method is applied to obtain wind statistics that represent a period
longer than the sample period. In this chapter, the MCP method is tested in various cases to evaluate
the performance and the usability of the MCP to extrapolate the short-term shear exponent data. A
quantitative assessment of the performance of the MCP methods is made. Performance metrics have
been defined to enable a quantitative evaluation. The performancemetrics are explained in Section 7.1.
Application of the MCP method to predict the wind shear exponent distribution, 𝑃(𝛼), is discussed in
detail in Section 7.2. Finally, in Section 7.3 an analysis is carried out to assess how good the MCP
predictions are in general, and to determine the effect of shorter measurement periods on the result of
the MCP prediction.

7.1. Performance metrics
To determine to what extent the shear exponent distribution at a target site can be predicted by the MCP
method, it is required to have metrics that indicate the performance of the method. Better performance
means that the MCP result is a more accurate prediction of the actual wind statistics at the target site
and target height. In previous research onMCPmethods, a variety of metrics has been used to evaluate
to what extent the prediction represents the actual variable. For example, Lackner uses the RMSE and
standard deviation of the percentage error [26, 27]. Dinler uses the coefficient of determination, 𝑅 , and
RMSE applied to the bins of the distributions [11]. Rogers used the Weibull distribution parameters,
the normalised mean, and the chi-square goodness of fit test [34]. In addition to those, their research
includes derived quantities as the AEP and the capacity factor, [11, 34]. Using derived quantities leads
to an indirect comparison of the MCP results, but it shows the significance of the difference in the
predictions.

The four performancemetrics used to evaluate theMCP predictions in the present analysis are listed
below. It has been decided to use three metrics that are directly comparing the predicted distribution
with the actual long-term distribution. The fourth metric provides a comparison of the error in the
predicted mean wind shear exponent predicted with and without lidar. The effect of the variable wind
shear exponent on the AEP calculation is treated separately in Chapter 8.

Metric 1 - Normalised mean
The normalised mean indicates how far the predicted mean lies from the real mean, and shows if the
MCP method is able to predict the real mean based on the short-term data. It is calculated by:

�̃� ̂ =
𝜇 ̂
𝜇 (7.1)

In which 𝜇�̂� is the mean of the predicted distribution, and 𝜇𝛼 is the mean of the real long-term
distribution.

45
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Metric 2 - Normalised standard deviation
The normalised standard deviation is the factor between the real and the predicted standard deviation,
calculated via:

�̃� ̂ =
𝜎 ̂
𝜎 (7.2)

In which 𝜎�̂� is the standard deviation of the predicted distribution,𝑃(�̂�), and 𝜎𝛼 is the standard
deviation of the real long-term distribution. The standard deviation of the distribution can be regarded
as a measure of the width of the distributions. This metric is calculated to assess whether the MCP
method provides an accurate estimate of the width of the distribution.

Metric 3 - Normalised chi-squared statistic
The chi-squared goodness of fit test is used to compare the predicted shear exponent distribution with
the real shear exponent distribution. The chi-squared goodness of fit test is given by:

𝜒 =∑ (𝑂 − 𝐸 )
𝐸 (7.3)

In which 𝑀 is the number of bins, 𝑖 is the bin number, 𝑂 is the number of observations in bin 𝑖,
and 𝐸 is the expected number of observations in bin 𝑖. When Eq. (7.3) is used to calculate the 𝜒 , the
outcome depends on the number of observations 𝑁. Therefore Eq. (7.3) cannot be used to compare
samples that differ in sample size, e.g. a short-term observation and a long-term observation.

To make the outcome independent of the number of observations, 𝑂 and 𝐸 are normalised by the
respective total number of observations 𝑁 and 𝑁 :

�̃� = ∑ (𝑂 /𝑁 − 𝐸 /𝑁 )
𝐸 /𝑁 (7.4)

The result is the normalised chi-squared statistic, it is equivalent to the chi-squared statistic using
ratios instead of the number of observations per bin. An example of the calculation of performance
metric �̃� is given in Table 7.1. In the example, the agreement between an observed and an expected
distribution is evaluated. The samples have a different number of observations: The expected distribu-
tion is based on a sample of 1000 observations, and the observed sample consists of 100 observations.
Figure 7.1 shows a visualisation of the samples. The example calculation of �̃� is given in Table 7.1.

Although the normalised chi-square statistic does not depend on the number of observations, it is
emphasised that the normalised chi-squared statistic as defined in Eq. (7.4) depends on the bins. The
bins used in the analysis of Sections 7.2 and 7.3 are ranging from 𝛼 = −0.2 to 𝛼 = 0.6, and have a
width of Δ𝛼 = 0.02. From the bin definitions it becomes clear that the predictions also take into account
the negative wind shear exponents. A remark on the inclusion of the negative shear exponents is made
in the discussion of this chapter (see Section 7.3.4).

Table 7.1: Example calculation of the normalised chi-squared statistic, ̃

Bin Number 1 2 3 4 5
Exp Obs Exp Obs Exp Obs Exp Obs Exp Obs

Count 218 24 422 40 259 23 77 12 24 1
Probability 0.22 0.24 0.42 0.40 0.26 0.23 0.08 0.12 0.02 0.01

( / / )
/ 0.0022 0.0011 0.0032 0.0240 0.0082

Result �̃� = ∑ ( / / )
/ = 0.039
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(a) Count per bin (b) probability

Figure 7.1: Input for the example calculation of the normalised chi-squared statistic, ̃

Metric 4 - Normalised error of the predicted mean
The fourth performance metric is introduced to evaluate the advantage of the lidar in the estimation of
the mean wind shear exponent. When no lidar is available, the best estimate of the mean wind shear
exponent, is the mean wind shear exponent derived from the mast measurements: 𝜇 , , where the
subscript 𝑀, 𝐿𝑇 indicates that it is the wind shear exponent derived from the long-term mast measure-
ment. However, as shown in Chapter 5, the mean wind shear exponent over a greater vertical distance
(𝜇 , ) is often smaller than the 𝜇 , . Because of the difference, an error is introduced. This error
is notated here as:

𝜖 = 𝜇 , − 𝜇 , (7.5)

If a lidar is employed at the measurement site for a short period of time, the estimate of the wind
shear exponent can be assisted by measurements above the measurement mast height, e.g. using
the MCP approach. This results in a new estimate of the mean wind shear exponent: 𝜇�̂�. The new
estimate still deviates from the true mean wind shear exponent by the error:

𝜖 = 𝜇 ̂ − 𝜇 , (7.6)

Comparison the error of the case in which a lidar is employed, 𝜖 , and the case in which only a mast
is used,𝜖 , is done by taking the ratio of the errors:

̃𝜖 = 𝜖
|𝜖 | =

𝜇 ̂ − 𝜇 ,

|𝜖 | (7.7)

This fourth error metric is called the normalised error of the mean, and it indicates the advantage
of the new approach using lidar and MCP over the old situation in which only a mast was available.
Obviously, an ̃𝜖 in the range of -1 to 1, means that the application of lidar and MCP resulted in a reduced
error. Although the ̃𝜖 is closely related to the �̃�, it is added, since ̃𝜖 includes the comparison with the
old situation.

As a major part of the applications of the wind shear exponent are solely using the mean wind
shear exponent, ̃𝜖 is particularly relevant. Additionally, 𝜖 will be used in Chapter 8 for the propagation
of uncertainty in the wind shear exponent to the uncertainty in AEP.
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7.2. Prediction of the wind shear exponent using MCP
Two MCP cases are presented in this section to demonstrate the performance of the MCP method
applied to wind shear exponent data. The cases show the application of the MCP method to a 90-day
lidar measurement at Høvsøre. The lidar measures the shear over a height range from 40 to 160 m.
Subsequently, the MCP method and met mast data are used to extrapolate the 90 day measurement to
obtain the long-term shear exponent distribution. The reference data is the wind shear exponent from
40 m to 100 m, measured at the mast.

To assess the quality of the prediction, the prediction is compared with the long-term shear distri-
bution at the obtained from the me which include measurements at the same heights. The metrics
discussed in the previous section are used to compare the performance of the implemented MCP
methods.

It should be noted that in this section, the performance is evaluated based on the combined result
of four direction sectors. This was chosen in order to show the full MCP procedure, so including the
correlations per wind direction sectors.

7.2.1. Case 1
In Fig. 7.2 the input signals of the MCP procedure are shown. The reference data is eight years of data.
The lidar data is measured in a period from 2011-05-17 to 2011-08-15. In Fig. 7.4 the shear exponent
distribution, 𝑃(𝛼) corresponding to the input is provided. It stands out that the measurement includes
mainly lower shear exponents, which corresponds to the fact that the sample period falls in the summer
season.

Figure 7.2: Input for the first MCP case. The blue time series is the low shear exponent derived from met mast measurements.
The red time series is the high shear exponent derived from the lidar measurement and has a length of 90 days in total (2011-
05-17 to 2011-08-15

The input signal is used to establish the MCP correlations. Only 4 direction sectors are used,
because in this prediction the directions are limited to the eastern and western direction sector as
defined in Section 3.2. The correlations are shown in Fig. 7.3.

The figure shows that there is a significant difference in the number of data points per sector. This
is in accordance with the wind rose shown in Fig. 3.4. All sectors include sufficient data for calculation
of the correlation. The plots also show the weights assigned to the individual data points. The colour
of the data points corresponds with the colour scale on the right side of the plot. Comparison of the
four correlations shows that the LR method results in linear relations that have lower slopes and higher
intercepts.
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Figure 7.3: Correlations for the first MCP case. The colours of the data points are showing the weights assigned to the individual
points. The weights are used for the wLR and wVRM method.

In Fig. 7.4, the predicted distributions are plotted together with the actual measured long-term distri-
bution of 𝛼 . It has to be noted that the discussed result is the combined 𝑃(𝛼) of the four direction
sectors.

It is observed that all four predictions predicted the mode of the distribution at the same location:
𝛼 = 0.1. However the predicted 𝑃(𝛼) differs. Linear regression clearly overestimates the probability
corresponding to the mode. Further, all predictions have resulted in underestimations of the probability
of the shear exponents in the range of 0 to 0.1.

A second difference is found for shear exponents in the range of 0.15 to 0.25. In this range both
the LR and wLR method overestimate the probability, whereas the prediction of the VRM and wVRM
method are very accurate. In the tail of the distribution, the VRM and wVRM methods overestimate the
probability, and the LR methods seem to be more accurate.

These observations are resembled in the metrics shown in Table 7.2. All methods overestimate the
mean of the distribution. The methods based on LR result in the best estimates of the mean in this
case. The standard deviation of the distribution is overestimated by the VRM and wVRM method, but
underestimated by the LR and wLR methods. The normalised error of the predicted mean wind shear
exponent is very high. This is caused by a very small 𝜖 . Probably the effect of assessing the four
direction sectors at once, also plays a role. A longer concurrent measurement time is probably needed
to improve the estimates. This is discussed in Section 7.3.
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Figure 7.4: Result for the first MCP case. The lines show the four MCP predictions. The blue histogram shows the real long-
term distribution obtained from the mast measurement ( , ). The red histogram corresponds to the distribution of the
short-term sample, the MCP input ( , ).

Table 7.2: Performance metrics for case 1

LR wLR VRM wVRM ST itself
Normalised mean, �̃� ̂ 1.06 1.09 1.16 1.13 0.75
Normalised std, �̃� ̂ 0.86 0.90 1.10 1.12 0.77
Normalised Chi-squared statistic, �̃� 0.085 0.059 0.048 0.032 0.435
Normalised error statistic, ̃𝜖 18.8 45.5 25.3 37.8 73.3

7.2.2. Case 2
The second case is similar to the first one. The difference is that the 90-day lidar measurement is
made during a different season. The lidar data comes from the months January, February and March.
Figure 7.5 shows the input for the second case. The stable conditions of the winter months cause that
the distribution of the input time series includes a lot of high shear exponents relative to the long-term
distribution.

The MCP correlations established for this case are shown in Fig. 7.6. Direction sector four stands
out, because the scatter plot contains anomalous data points. These points have a significant influence
on the correlation. Ideally, this data is removed from the data set. Instead of removing the data, a similar
effect is accomplished by assigning low weights to the particular data points. It is observed that the
weighting greatly enhances the correlation established by the VRM. This indicates that the wVRM could
be more robust than the unweighted method.

The result of the second MCP execution is shown in Fig. 7.7. In this case, significant differences
between the distributions are found. The prediction by the VRM stands out because of the large differ-
ence between the predictions and the actual distribution for negative shear exponents. This is a result
from the correlation in the fourth direction sector. The intercept of this correlation is too low and the
predicted distribution is located too far to the left in Fig. 7.7. The wVRM offers an improvement over
the VRM and better resembles the shape of the actual distribution. However, both the LR and wLR
method overestimate the probability of the mode, resulting in a high �̃� .
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Figure 7.5: Input for the secondMCP case. The blue time series is the low shear exponent derived frommet mast measurements.
The red time series is the high shear exponent derived from the lidar measurement and has a length of 90 days in total (2011-
05-17 to 2011-08-15

In Table 7.3 the performance metrics are shown. All methods except VRM overestimate the mean.
Furthermore it is observed that the weighted methods are more accurate than the VRM and LRmethod.
The improvement by the weighted methods was expected due to the anomalous data in the fourth
direction sector.

A remarkable result is that the LR method results in a better estimate of the standard deviation
than the VRM method. This result is opposite of the expectation and is attributed to the large standard
deviation of the short-term distribution, 𝑃(𝛼 −𝑆𝑇). The standard deviation predicted by the VRM
method is higher than the standard deviation predicted by the LR methods, which is in accordance with
the theory.

Regarding �̃� , the distribution predicted by the wVRM is best in agreement with the real long-term
𝛼 distribution. As observed from the figure, the distribution predicted by the VRMmethod deviates
the most from the actual distribution, resulting in the largest �̃� . As for the first case, the ̃𝜖 is very high,
implying that the error in the estimate is larger than the error resulting from the case without lidar, 𝜖 .
This is caused by the effect of calculating the performance metrics for the sum of the sectors.

Table 7.3: Performance metrics for case 2

LR wLR VRM wVRM ST itself
Normalised mean, �̃� ̂ 1.11 1.08 0.62 1.03 1.35
Normalised std, �̃� ̂ 0.89 0.92 1.59 1.16 1.00
Normalised chi-squared statistic, �̃� 0.251 0.129 1.800 0.069 .435
Normalised error statistic, ̃𝜖 31.5 110.3 24.2 9.05 103.3
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Figure 7.6: Correlations for the second MCP case. The colors of the data points are showing the weights assigned to the
individual points. The weights are used for the wLR and wMCP method.

Figure 7.7: Result for the second MCP case. The lines show the four MCP predictions. The histograms show the real long-term
distribution obtained from the mast measurement ( ) and the distribution corresponding to the short-term, the MCP
input ( )
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7.3. Effect of shorter concurrent measurement period
The cases shown in the previous section demonstrate that the implemented MCP methods can correct
the measured distribution for the long-term. However, a new question arises: how good are the MCP
predictions in general? Whether the MCP is useful in the shear exponent extrapolation or not cannot
be based on two cases only. Therefore the MCP is applied in additional, randomly chosen cases. This
analysis is combined with the study of the effect of the concurrent measurement time (expressed as
𝑡 ).

Ideally, multiple years of data should be available to study the effect of reducing the concurrent
measurement period on the MCP result. Accordingly, the MCP result can be compared with a real
long-term data set and multiple sample periods can be used as MCP input to check the variability in
the MCP result due to different input periods. For this reason, measurement data from a tall mast at
Høvsøre is used. At Høvsøre at least eight years of data is available for the analysis. Therefore the
variability in the MCP result can be tested even for longer periods, e.g. a year, and the outcome of the
MCP can be compared with a real long-term measurement.

At Breezanddijk only one and a half year of lidar data is available, so there is only few non-overlapping
input for the MCP and there is not an appropriate long-term reference. However, the data set from
Breezanddijk is suitable for testing to what extent a lidar measurement of a couple of months can be
used to predict the yearly wind shear above the met mast height. Although one and a half year of
data is available, only one year of data is used. This is done to ensure that there is no bias due to the
seasonality of the data set.

7.3.1. Method
The approach used in this analysis is illustrated in the flow chart of Fig. 7.8. Below the figure, the six
steps are elaborated on. The third step requires extra attention, as there is a small difference between
the approach used for the Breezanddijk case and the approach used for the Høvsøre case.

1. Define sample period lengths
At first the sample period lengths are defined. It was chosen to take steps of 30 days up to 360
days. In this way the added value of every extra measurement month is assessed.

2. Define measurement periods
Themeasurement periodsmake up the ensemble for the specific concurrent measurement length.
The approach of defining the measurement periods is different for Breezanddijk than for Høvsøre.
Data of consecutive months is used to simulate that a lidar has been measuring the data during
one specific period. In order not to change the effect of the seasonality in the samples, the
sampling at Breezanddijk is ”circular”, meaning that the end of the data set is extended using
the beginning of the data set. For example, if a period with a length of 3 months is starting in
December, January and February of the same year are used to complete the sample. For the
Høvsøre data set, this type of ”circular” sampling has not been implemented as multiple years of
data are available.
The second difference is the selection of the start dates of the samples. For the Høvsøre case,
100 random dates are sampled. For Breezanddijk, 12 start dates of the sample periods are evenly
distributed over the year, minimising the overlap between the sample periods. This different
approach was chosen because of the small data set.

3. Execution of MCP procedure for each sample period
For each sample period the four MCP methods are executed to extrapolate the sample period to
a long-term data set.

4. Calculation of performance metrics
For each MCP result the performance metrics are calculated. The metrics are the normalised
mean, normalised standard deviation, the normalised chi-squared statistic, and the normalised
error of the mean. Additionally, the same metrics are calculated based on the ”ST data itself”.
This shows the outcome of the case in which MCP is not applied, but in which the ST data is
taken as representative for the long-term.
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Figure 7.8: Flowchart of the procedure used to assess the effect of the length of the measurement period. The flowchart shows
the two loops that are used in the analysis.

5. Calculation of ensemble statistics over the result
Two statistics are calculated for the ensemble corresponding to a specific data length: the ensem-
ble mean and ensemble standard deviation. These statistics are calculated to assess how good
the prediction of the MCP method is in general. The ensemble mean provides the bias of the pre-
diction. The ensemble standard deviation should be viewed as an indication of the uncertainty.
It shows the variability of the predictions due to the difference in the input periods.

6. Assessment of ensemble statistics as function of measurement time
The ensemble statistics are plotted as function of the length of the concurrent measurement
period, 𝑡 to evaluate how 𝑡 influences the performance of the MCP method.

The metrics calculated from the short-term data itself are added to some of the resulting plots to see
how the MCP results compares with the uncorrected short-term sample. In principle, any MCP method
should provide a more accurate prediction of the real long-term statistics than the short-term data itself
[11].

Before moving to the results of the analysis, a remark on the notation is made. The mean and stan-
dard deviation of the individual predictions are referred to using 𝜇 and 𝜎. When discussing ensemble
statistics, angle brackets are used to notate the mean and standard deviation, i.e. ⟨𝑥⟩ and, ([𝑥−⟨𝑥⟩] ) .
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7.3.2. Result Breezanddijk
In the first case, the distribution of 𝛼 of direction sector 3 is predicted (see Section 3.2 for de-
scription of the sector). This shear exponent could be required to vertically extrapolate the wind speeds
measured at mast height to the hub height of a wind turbine. The ensemble mean of the first metric is
shown in Fig. 7.9. It stands out that ⟨𝜇 ̂ ⟩ is in the order of 1 % for the MCP predictions. The ensem-
ble mean is close to the real mean because the ensemble includes all periods. Due to seasonality,
the correlation between the target and reference data varies. This leads to both overpredictions and
underpredictions and it is expected that the ensemble mean will be close to the one-year mean.

Comparing the performance of the four MCP method, it can be concluded that the bias of the
weighted methods is smaller than the bias of the unweighted methods. Further, it seems that the
VRM method benefits more from the weighting than the LR method, but the differences are small. As
explained in the method, the Breezanddijk ensemble contains 12 evenly distributed samples for each
𝑡 . This implies that all the data is present in the ensemble and one may expect that the ensemble
mean of the ”ST data” is equal to the one-year mean. However, the individual means in the ensemble
are not weighted with the amount of data in the sample month, so a difference exists. When the sample
length becomes 12 months, all the data is present in the individual samples, and the exact one-year
mean is found.

The scatter plot, which is not included, has shown that the individual �̃� ̂ of the ensemble are ap-
proximately normally distributed. Both overpredictions and underpredictions appear in the ensemble.
The ensemble standard deviation of �̃� ̂ as a function of 𝑡 is given in Fig. 7.10.

This ensemble standard deviation indicates the uncertainty in the predicted mean. The standard
deviation of the normalised mean that results from the ST data itself is not shown, as it is much larger
than the standard deviation in the MCP results, e.g. the standard deviation of 𝜇 ̂ /𝜇𝛼 is 0.28 for a 𝑡 of
6 months. This is over ten times the value of the VRMmethod, which is 0.02. The significant difference
proofs the advantage of applying the MCP method.

Figure 7.9: Ensemble mean of ̃ ̂ as a function of concurrent measurement time for Breezanddijk sector 3.
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Figure 7.10: Ensemble standard deviation of ̃ ̂ as a function of concurrent measurement time for Breezanddijk sector 3.

The ensemble mean and ensemble standard deviation of �̃� ̂ are shown in Figs. 7.11 and 7.12.
Linear regression underestimates the standard deviation of the long-term distribution by 10%. Further,
it is observed that the weighted methods result in higher 𝜎 ̂ for this case. The addition of the weights
does not result in a better estimation of the 𝜎 for the VRM method. The weighting increased the bias
in the estimation. Regarding the LR method, the weighting does not significantly change the prediction.
If the short-term data is used without the application of MCP, one needs to measure at least 10 months
to find the yearly 𝜎 . It stands out that increasing the length of the measurement period from 7 to 8
months improves the estimate significantly more than an increasing the measurement period from 9 to
10 month.

Figure 7.11: Ensemble mean of ̃ ̂ as a function of concurrent measurement time for Breezanddijk sector 3.
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Figure 7.12: Ensemble standard deviation of ̃ ̂ as a function of concurrent measurement time for Breezanddijk sector 3.

In order to evaluate the agreement between the predicted distributions and the measured long-term
distribution, the ensemble mean of the chi-squared metric is provided in Fig. 7.13. It is observed that
the distributions predicted by the VRMmethods are consistently better than the ones predicted by linear
regression.

The chi-squared metric that compares the short-term distribution with the long-term distribution is
also plotted in Fig. 7.13. It shows that the agreement between the one-year distribution and the ST data
is better than the agreement between the one-year distribution and the prediction by the LR method for
a 𝑡 of 9 months, and the VRM methods for a 𝑡 of 10 months. So in this particular case, in which the
yearly distribution is estimated, the estimation mostly benefits from the MCP application for a 𝑡 shorter
than 9 months.

Figure 7.13: Ensemble mean of ̃ as a function of concurrent measurement time for Breezanddijk sector 3.
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Lastly, the ensemble statistics of the normalised error in the predictedmean, ̃𝜖, is shown in Figs. 7.14
and 7.15. Although it is expected that the predictions are unbiased, the plot of the ensemble mean
shows that a bias exists. The bias is largest for a 𝑡 of one month. There it is around 0.06. The bias
decreases for increasing 𝑡 .

The ensemble standard deviation of the normalised error is smaller than 1. The majority of the
individual ̃𝜖 is smaller than 1, whichmeans that the application of short-term lidar data andMCP reduces
the error. The best result is obtained using the VRM, e.g. 1 month of lidar data decreases the error by
more than 50%, and 4 months of lidar data reduces the error by more than 85% with respect to the 𝜖 .
Further, it is observed that the weighting only improves the LR method. The wVRM is not better than
the VRM.

The reduction of the error can also be supported by the calculation of the mean absolute deviation
of ̃𝜖. This calculation is not shown here, as it is closely related to the ensemble standard deviation,
shown in Fig. 7.15.

Figure 7.14: Ensemble mean of ̃ as a function of concurrent measurement time for Breezanddijk sector 3.
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Figure 7.15: Ensemble standard deviation of ̃ as a function of concurrent measurement time for Breezanddijk sector 3.

7.3.3. Results Høvsøre
The long-term shear exponent distribution, 𝑃(𝛼 ) of a 30-degree sector centred at 270 degrees,
is predicted using short-term measurements of 𝛼 and the MCP method. The short-term mea-
surements represent lidar measurements, although they originate from the mast. The reference data
in this MCP prediction is the time series of the shear exponent 𝛼 .

As described in Section 7.3.1, the MCPmethod is executed 100 times per ensemble. As eight years
of data are available, inter-annual variability of the shear exponent is now included in the predictions,
and the performance metrics will not converge like the performance metrics of the Breezanddijk case.
Chapter 5 has shown that the mean shear exponent varies on a yearly scale as well, so the inter-annual
variability is expected to affect the predictions.

The ensemble mean of ̃𝜇 ̂ is shown in Fig. 7.16. Comparing the performance of the four MCP
methods shows that the linear regression seems to be better at predicting the mean for a 𝑡 below
6 months. The ensemble mean corresponding to the data itself is oscillating due to the variability
in the random samples. Further, the weighting appears to be an improvement. Especially for the
measurement periods shorter than 6 months.

Fig. 7.17 shows the ensemble standard deviation of �̃��̂�. An interesting difference with the previous
case is, that VRM results in the largest ensemble standard deviation, whereas in the Breezanddijk case
it resulted in the lowest ensemble standard deviation. The differences between are in the order of 0.01

The ensemble standard deviation corresponding to the ST data itself is not shown, as it is much
larger and falls outside this plot, e.g. for a 𝑡 of 6 months, the ensemble standard deviation is 0.22 and
for 𝑡 equal to 12 months, it is 0.10. This difference illustrates the benefit of the MCP. The application of
the MCP method reduces the uncertainty in the prediction of the long-term mean. When measuring a
full year, the ensemble deviation reduces to approximately 3%, which is the variation due to inter-annual
variability.
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Figure 7.16: Ensemble mean of ̃ ̂ as a function of concurrent measurement time for the western sector at Høvsøre.

Figure 7.17: Ensemble standard deviation of ̃ ̂ as function of concurrent measurement time for the western sector at Høvsøre.

From Fig. 7.18 it is observed that one needs to measure at least 9 months to reduce the bias in the
prediction of 𝜎 when VRM MCP is used. As explained in Appendix B, linear regression MCP is not
able to predict the 𝜎𝛼 without a negative bias.

As for the first case, Fig. 7.18 can be used to estimate the minimum measurement length if MCP
would not be applied. According to the result, at least 10 months of measurement time are required to
reduce the bias to approximately 1%. Although an estimate of the long-term 𝜎 may be found without
applying MCP, the uncertainty of this estimate is higher. This can be observed from the ensemble
standard deviation of �̃� ̂ , shown in Fig. 7.19.
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Figure 7.18: Ensemble mean of ̃ ̂ as a function of concurrent measurement time for the western sector at Høvsøre.

Figure 7.19: Ensemble standard deviation of ̃ ̂ as a function of concurrent measurement time for the western sector at Høvsøre

The ensemble mean of the chi-squared statistic is plotted in Fig. 7.20. The VRM gives the best
predictions. It stands out that the ⟨�̃� ⟩ does not reduce after a 𝑡 of 9 months. A remarkable difference
with the Breezanddijk case is that the ST data plot does not surpass the MCP methods in this figure.
This is explained by the inter-annual variability, which was already observed in Fig. 5.3. The inter-
annual variability cannot be accounted for in the predictions by the ST data only, but is included in
the MCP prediction. It confirms that the prediction of the long-term distribution benefits from the MCP
application.
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Figure 7.20: Ensemble mean of ̃ as a function of concurrent measurement time for the western sector at Høvsøre.

To compare the error in the predicted mean in the case with lidar to the case without lidar, ̃𝜖 is
calculated. The ensemble mean of ̃𝜖 is plotted in Fig. 7.21. The figure shows that a bias exists for a
𝑡 of 1 month. When only 1 month of lidar data is used, the MCP method overestimates the true mean
wind shear exponent. As the 𝑡 is increases, the bias decreases. It is remarkable that the bias is the
largest for the VRM, because in the Breezanddijk case, the VRM gave the best result in comparison to
the other three methods.

The same conclusion can be drawn from Fig. 7.22. The VRM decreases the error in the predicted
mean, but its performance is worse than the other methods. The figure also shows that the weighted
MCP methods offer a small improvement over the unweighted ones.

Figure 7.21: Ensemble mean of ̃ as a function of concurrent measurement time for the western sector at Høvsøre.
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Figure 7.22: Ensemble standard deviation of ̃ as a function of concurrent measurement time for the western sector at Høvsøre.

In addition to the result of the western sector, selected plots for the eastern sector are shown. The
same analysis as for the west has been performed on wind shear data from a 30-degree wind direction
sector centred at 90 deg. The first three metrics, �̃� ̂ , ̃𝜎 ̂ , and �̃� show a similar behaviour as the western
sector. However, the ensemble statistics of ̃𝜖 as function of 𝑡 show some significant differences that
shows the limits of the suggested MCP procedure. For this reason, the ensemble statistics are shown
in Figs. 7.23 and 7.24. It is observed that the application of the lidar data and the MCP method is less
successful in reducing the error. Two factors may explain the difference with the western sector. Firstly,
the wind profile in the east is more affected by stable atmospheric conditions. Secondly, the prevailing
wind direction at Høvsøre is the west, so more months of lidar data are necessary to record the same
amount of data as for the western sector.

Figure 7.23: Ensemble mean of ̃ as a function of concurrent measurement time for the eastern sector at Høvsøre.
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Figure 7.24: Ensemble standard deviation of ̃ as a function of concurrent measurement time for the eastern sector at Høvsøre.

7.3.4. Conclusion and Discussion
This section has shown the effect of the length of the concurrent measurement period 𝑡 on the MCP
outcome, as well as, the convergence of the performance metrics without the application of MCP. At
Breezanddijk, the MCP method has been used to find the one-year wind shear exponent distribution.
At Høvsøre, MCP has been used to find a long-term (eight-year) wind shear exponent distribution.
Therefor a 𝑡 of 12 months leaves an uncertainty due to inter-annual variability.

A comparison of the performance of four MCP methods was made using four performance metrics:
the normalised mean, normalised standard deviation and the chi-squared statistic, and the normalised
error of the mean. As expected, wind shear exponent distributions are better predicted by VRM meth-
ods. This is consistent with the findings of Rogers when he applied MCP to predict wind speed distri-
butions [34]. However, it is acknowledged that the majority of application of the wind shear exponent
require just the mean wind shear exponent.

The bias in the prediction of the mean wind shear exponent by the methods was small, and is in
the order of 1%, even in the case where 𝑡 is only a few months.The uncertainty in the predictions also
shows small differences. In the Breezanddijk case the LR method produced the largest uncertainty,
whereas in the Høvsøre case the VRM method did. Assigning weights to the data results in minor
improvements, and reduces the bias and uncertainty, in particular for the LR method

Results of the MCP method have been compared with the results of taking the short-term data as
representative for the long-term. If MCP is not applied, the bias and uncertainty are significantly larger.
Nevertheless, the metrics also converge without application of MCP, and the present study can be
used to determine what period is required to get a good estimate of the mean and standard deviation
of the shear exponent distribution. Thereby one has to keep in mind that the presented analysis used a
direction selection. The 𝑡 does not indicate the actual number of data points within the selected sector.
Depending on the wind direction distribution at a site, the convergence of the metrics for increasing 𝑡
may be different.

Using the normalised error in the mean wind shear exponent, the prediction of the mean using the
proposed MCP procedure has been compared to the situation in which no lidar is available. When no
lidar is available, the best estimate of the wind shear exponent above measurement mast height, is the
wind shear exponent derived from mast measurements. This estimate often results in too high wind
shear exponents, so an error exists. The proposed method of using MCP in combination with short-
term lidar measurements can reduce this error. For the western sector the method was particularly
successful and reduces the error by 50% for two months of lidar data. However, for the eastern sector
8 to 10 months of lidar data were necessary to reduce the error approximately 10%.
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The present analysis also includes negative wind shear exponents. One would in general not use
negative wind shear exponents for vertically extrapolating the wind resource, but there are reasons
to include the negative part of the distribution. The share of negative shear exponents in the long-
term distribution used in the examples of Section 7.2 is 4.5%. Excluding those measurements results
in an overestimation of the mean wind shear exponent. Furthermore, as the lidar measures the wind
speed directly at the prediction height the shear exponent resembles a relation between the wind speed
measured at the two heights.

Finally, a remark is made on the perception of the presented MCP application. MCP in the way
demonstrated here can be viewed as a typical MCP application of extrapolating observed wind shear
exponents in time. However, one could also argue that the implemented MCP methods can be viewed
as a first-order vertical extrapolationmodel for wind shear exponents: the long-term data is extrapolated
to the height of the short-term data. It is noted that in the case of a MCP application on wind speed
data, it is common to have a reference data set which is measured at a different, usually lower, height.





8
The Effect of Wind Shear on the

Prediction of Annual Energy Production
In this chapter, the role of the wind shear exponent in AEP estimations is discussed. Firstly, in Sec-
tion 8.1 it is shown how the extrapolation of the wind speed depends on the wind shear exponent and the
extrapolation distance, expressed by the height ratio 𝑟 = . Secondly, the uncertainty propagation
from wind shear exponent to AEP is presented in Section 8.2.

8.1. Vertical Extrapolation of the Wind Speed
It is demonstrated how the vertical extrapolation of wind speeds depends on alpha and the ratio between
the predicted and observed height.

Figure 8.1: The effect of changing alpha on the ratio of the predicted wind speed and the observed wind speed for multiple height
ratios, .
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8.2. Uncertainty Propagation
As shown in Section 7.3, the long-term mean wind shear exponent can be predicted using MCP. How-
ever, the outcome of the prediction varies. Therefor the predicted mean wind shear exponent is un-
certain. In this section the propagation of the uncertainty in the wind shear exponent towards the
uncertainty in the AEP is analysed. First the propagation to uncertainty in wind speed is discussed.
Subsequently, the uncertainty in wind speed is used to find the uncertainty in the AEP.

8.2.1. Propagation to Wind Speed
Starting from the power law wind profile, Kelly derived an expression for the uncertainty in the predicted
wind speed due to the uncertainty in the observed wind speed, and the uncertainty in the wind shear
exponent [18]. The result is:

�̃� ≃ �̃� + 𝜎 [ln (
𝑧
𝑧 )] (8.1)

In which 𝜎 is the uncertainty in the observed wind speed, 𝑧 and 𝑧 are the heights of the
observed and the predicted wind speed respectively. The tildes indicate non-dimensional quantities.
The dimensional uncertainty, 𝜎 , can be related to a normalised uncertainty via:

𝜎 = 𝛼 �̃� (8.2)

To study the effect of 𝜎 on the �̃� , the uncertainty in the observed mean wind speed was
assumed to be 1%. This allows direct calculation of the �̃� . The result is given in Fig. 8.2.

Figure 8.2: Non-dimensional uncertainty of the predicted wind speed, as function of the uncertainty in the shear exponent,
, following Eq. (8.1). For multiple height ratios, .

8.2.2. Propagation to AEP
Propagation of the uncertainty in wind speed towards uncertainty in the AEP prediction is done by
means of a method presented by Kelly et al. [20]. They state that the relation between mean wind
speed, ⟨𝑈⟩ and the AEP depend on the ratio of mean wind speed over rated wind speed, ⟨𝑈⟩/𝑉 , and
it can be expressed via:
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AEP = ⟨𝑈⟩ (8.3)

In the paper an expression for the exponent 𝑝 is derived. Here only the result is shown:

𝑝 =
𝜋(𝐴/𝑉 )sech (𝜋(𝐴/𝑉 ) − √ )
1 + tanh (𝜋(𝐴/𝑉 ) − √ )

(8.4)

If one takes into account that the Weibull scale parameter, 𝐴 is directly related to the mean wind
speed for a given shape parameter, 𝑘 (see Eq. (8.5)), the exponent 𝑝 only depends on the ratio ⟨𝑈⟩/𝑉 .
The function is plotted for a Weibull shape parameter of 2 in Fig. 8.3.

⟨𝑈⟩ = 𝐴Γ(1 + 1/𝑘) (8.5)

Figure 8.3: The exponent as function of the ratio mean wind speed over rated wind speed. For this curve a Weibull shape
factor of 2 is assumed.

The model for the AEP,Eq. (8.3) is combined with the power law representation of the wind profile,
to express the AEP as function of the wind shear exponent, the observed wind speed and the height
ratio:

AEP = ⟨𝑈⟩ = [𝑈 𝑟 ] (8.6)

Equation (8.6) can be used to evaluate the uncertainty in AEP due to the uncertainty in the wind
shear exponent:

AEP = AEP(𝛼 ) + (𝜕AEP𝜕𝛼 ) [𝛼 − 𝛼 ] (8.7)

𝜎AEP =
𝜕AEP
𝜕𝛼 𝜎 (8.8)

A resulting expression for normalised uncertainty in AEP,�̃�AEP due to uncertainty in 𝛼 is found:

�̃�AEP = 𝑝 ln(𝑟)𝜎 (8.9)
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The �̃�AEP has been calculated for two height ratios and three values of the 𝑝-exponent. The result
is shown in Fig. 8.4.

Figure 8.4: Uncertainty in AEP due to the uncertainty in the mean wind shear exponent for two height ratios, and three values
of the -exponent

8.3. Example of uncertainty propagation
The outcome of the previous section, which is Fig. 8.4, can be connected to the uncertainty in the mean
wind shear exponent due to variable MCP input, as discussed in Section 7.3, to estimate the effect of
the length of the measurement period on the uncertainty in AEP due to the uncertain mean wind shear
exponent. In Section 7.1, the error 𝜖 was defined:

𝜖 = 𝜇 ̂ − 𝜇 , (8.10)

The standard deviation of 𝜇 ̂ is equal to the standard deviation of 𝜖 . Themeasure for the uncertainty
of the predicted mean wind shear exponent is the ensemble standard deviation of 𝜖 .

This can be found by multiplying ̃𝜖 with 𝜖 . If the results of the analysis of the third sector at
Breezanddijk is taken as an example, it follows that 𝜖 =0.0159. Using the data from Fig. 7.15, a 𝜎
can be calculated. Subsequently, Fig. 8.4 can be used to find the 𝜎 . The result is provided in
Table 8.1.

Table 8.1: Example of uncertainty propagation, using the ensemble standard deviation of ̃ of the Breezanddijk case (see
Fig. 7.15), and 1.6 and 2.0

𝑡 [months] ⟨[ ̃𝜖 − ⟨ ̃𝜖⟩] ⟩ 𝜎 = 𝜎 𝜎 [%]
1 0.5 0.008 1.1
3 0.3 0.005 0.7
6 0.2 0.003 0.4



9
Conclusion and Recommendations

9.1. Conclusion
Lidar is a relatively new technique in wind resource assessment. Themeasurement principle of the lidar
is different from the measurement principle of the traditional cup anemometer. The lidar measures the
wind speed over a volume, whereas the cup measurement is considered to be a point measurement.

Data from twomeasurement sites have been used in this study: the Høvsøre test facility in Denmark,
and the industrial measurement site Breezanddijk in the Netherlands. Lidar and mast pairs at the
sites have been used to evaluate if the difference in measurement principle causes a difference in the
derived wind shear exponents. In general, the shear exponents derived frommast and lidar are in good
agreement. However, deviations arise due to the spatial separation between lidar and mast, and due
to obstacles at the sites. For an ideal comparison, the lidar should be placed directly next to the mast,
which causes a significant improvement in the correlation between mast and lidar.

When the length of a measurement period is reduced below one year, seasonality in the wind
statistics becomes a concern. Therefore a detailed analysis of the variation of wind shear exponents
has been made. It is shown that the mean shear exponent varies from season to season, in particular
for the directions that are affected by the presence of the sea. The eastern sector at Høvsøre did not
show high variation in the mean wind shear, but the shape of the wind shear exponent distribution varies
from season to season. Particularly interesting are the distributions corresponding to the summer, as
those distributions show two maxima. One could question the usefulness of a mean shear exponent
for this situation.

Two standard MCP methods have been implemented for prediction of the long-term wind exponent
distributions: the linear regression MCP and the variance ratio MCP. For the present application, two
improvements have been considered of which one has been implemented, namely the assigning of
weights to the concurrent data points. Only the linear regression MCP has been validated, as this
method is available in the commercial wind software WindPRO.

In literature, no other examples have been found of the application of MCP to extrapolate the shear
exponent distribution. This thesis has shown that the application of MCP can be used to predict long-
term shear exponent distributions. The results can be used to make a recommendation on the required
measurement period for obtaining wind statistics that are representative of the long-term.

The reduction of the measurement time of the lidar has a significant effect on the predictions. The
variability of the MCP outcome is a function of the measurement time. This dependency means that
the uncertainty of the prediction reduces when the measurement time is increased. The results of this
research can be used to determine the required measurement time of the lidar. Furthermore, it has
been shown that the estimation of the mean wind shear exponent can benefit from short-term lidar
measurements. For the Breezanddijk case and the Høvsøre-West case, a reduction of the error was
possible even using 1 or 2 months of lidar data in combination with MCP. This reduction is with respect
to the case in which no lidar is available, and measurements performed below the prediction height are
used.
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Lastly, the propagation of uncertainty in the mean wind shear exponent to uncertainty in the AEP
is analysed. The uncertainty due to vertical extrapolation is one out of the numerous uncertainties that
are involved in the estimation of the wind resource at a potential site. An example has shown that the
uncertainty is reduced when the amount of lidar data is increased. Increasing the measurement time
from 1 month to 6 months yielded a decrease from 𝜎 = 1.1% to 𝜎 = 0.4%.

9.2. Recommendations
Regarding recommendations for further work, it is suggested to keep looking into the effects of a vari-
able wind shear exponent. The analysis performed in this thesis has shown that the wind shear and its
distribution vary from season to season. The assumption that the wind shear is well represented by a
mean wind shear exponent should be challenged.

It is suggested to look further into the extrapolation of the wind shear exponents using the MCP
method. The presented evaluation of the MCP performance focused on the prediction of the distribu-
tion. More research is needed to assess the quality of the predicted time series.

Another part of the continuation of research could be on the improvement of the MCP method.
Based on the analysis of the seasonal variation, it is suggested to include seasonal terms in the MCP
method. Likewise, one could investigate the possibility of improving the MCP methods using additional
input variables, or the possibility of enhancing the weighted MCP method which was presented here.
More advanced correlation methods can be found in literature, and have been applied to extrapolate
wind speed statistics. It would be interesting to see if these methods can improve the predictions.

Also, it would be good to look into the effect of choosing a different reference data set. It would
be interesting to know to what extent the shear exponent distribution can be predicted when e.g. a
mesoscale model is used to generate the reference data. Expanding the possible sources of reference
data would increase the usability of the application of MCP to extrapolate wind shear statistics.
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A
Simple example of the MCP method

In this appendix the application of three MCP methods is shown in a simple situation to illustrate the
principle of the MCP method. A set of reference and target wind speeds and directions has been
generated using Matlab’s built-in multivariate normal random number generator. The set has a total
length of 50 points. The input for the random number generator consists of a vector of mean values of
the wind speed and wind direction time series, and a corresponding covariance matrix:

𝜇 = [ 9 11 190 160 ]
ℂ =

⎡
⎢
⎢
⎣

1 0.7 0.5 0
0.7 1 0.5 0.5
0.5 0.5 3600 2520
0 0 2520 3600

⎤
⎥
⎥
⎦

It is assumed that only the last 20 data points were measured at the target site, see Fig. A.1. The
MCP method is applied to estimate the first 30 data points at the target site. The correlation methods
used in this example are: linear regression, variance ratio method and the Mortimer method. The
methods are explained in Section 2.3. The linear regression and the variance ratio method were applied
without taking into account the wind speed directions. Therefor the correlation does not depend on the
direction of the wind speed.

The correlation via the variance ratio method is given by

�̂� = 𝜇 −
𝜎
𝜎 𝜇 +

𝜎
𝜎 𝑥 (A.1)

The standard deviations and mean values from the sample can be found in Table A.1. In the table it
is shown that the variance ratio method results in 𝜎(�̂�VRM) = 𝜎(𝑦), ensuring that the standard deviation
of the predicted wind speed is equal to the standard deviation of the observations. Further, it is shown
that the standard deviation of the prediction via linear regression, is significantly lower.

A visualisation of the correlations is shown in Fig. A.2. It is observed that the slope of the linear
regression fit is lower than the slope of the variance ratio method. This results in significant differences
in the correlation for reference wind speeds below 8 m/s or above 11 m/s.

Table A.1: Mean values and standard deviations corresponding to the input and the results of the MCP example

Input MCP Results
𝑥 = 𝑈 𝑦 = 𝑈 �̂�LR �̂�VRM �̂�Mortimer

𝜇 8.98 10.83 11.08 10.97 10.99
𝜎 0.9083 1.0318 0.7011 1.0318 1.5714
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Figure A.1: Results of the MCP example using three methods: linear regression (LR), variance ratio method (VRM) and the
Mortimer method. Furthermore the wind speeds at the target site and reference site are plotted.

As described in Section 2.3 the Mortimer method bins the wind speed measurements according
to the wind speed and wind direction at the reference site. For this example three bins for the wind
directions were established (0-120,120-240,240-360) and four bins for wind speed were established
(0-8, 8-9, 9-10, 10-18). The reason for the large bins is the small data set. If the bins would be smaller,
a lot of empty bins will exist, and the correlation for the corresponding wind speeds has to be estimated
in a different way.

The binned data is used to construct two matrices, 𝑅 and 𝑒. The matrix 𝑅 contains the average of
the wind speed ratios in each bin. The elements of 𝑅 and 𝑒 are calculated using:

𝑅 , =
1
𝑁 ∑

𝑦 ,
𝑥 ,

(A.2)

𝑒 , = √
1
𝑁 ∑ (

𝑦 ,
𝑥 ,

− 𝑅 , ) (A.3)

In which 𝑥 is the wind speed at the reference site and 𝑦 is the wind speed at the target site. The
subscripts 𝑖 and 𝑗 are used to indicate the direction bins and wind speed bins respectively. The 𝑁
represents the total number of wind speed ratios in the bin.

The resulting matrices for the example of Fig. A.1 are given below. Five of the matrix elements
could not be calculated due to a lack of data. These matrix elements show ”Not a Number” (NaN) as
the result. Other bins contain only very few data, which causes 𝑒 to be equal to zero. This directly
shows the drawback of the Mortimer method. The concurrent measurement period has to be long
enough to record a sufficient amount of data to construct the matrices. Alternatively, wider bins could
be chosen or the missing elements of the matrices could be estimated using the known elements of
the matrix, but these methods are not demonstrated here.

R = [
1.35 NaN 1.16 1.11
1.33 1.23 1.24 NaN
NaN 1.35 NaN NaN

]

e = [
0.21 NaN 0 0
0.03 0.10 0.04 NaN
NaN 0.09 NaN NaN

]
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Figure A.2: The correlations found through linear regression (LR) and the variance ratio method (VRM).



B
Variance of the residuals in linear

regression
This appendix shows how the variance of the residuals in linear regression relates to the variance of
the dependent variable 𝑦, as derived by Back [1].

The result from linear regression is:

�̂� = 𝑏 𝑥 + 𝑏 (B.1)

In which the slope 𝑏 is:

𝑏 = 𝜎(𝑥𝑦)
𝜎 (𝑥) = 𝑟

𝜎(𝑦)
𝜎(𝑥) (B.2)

In which the correlation coefficient 𝑟 is:

𝑟 = 𝜎(𝑥𝑦)
𝜎(𝑥)𝜎(𝑦) (B.3)

And the intercept 𝑏 is:

𝑏 = 𝑦 − 𝑏 𝑥 (B.4)

The residuals in linear regression are:

𝑑 = 𝑦 − �̂� (B.5)

Then the variance of the residuals of linear regression can be written as:

𝜎 (𝑑) = 𝜎 (𝑦 − �̂� ) (B.6)
= 𝜎 (𝑦 − (𝑏 𝑥 + �̄� − 𝑏 �̄�)) (B.7)
= 𝜎 (𝑦 − �̄� − 𝑏 (𝑥 − �̄�)) (B.8)
= 𝜎 + 𝑏 𝜎 − 2𝑏 Cov(𝑦 − �̄�, 𝑥 − �̄�)) (B.9)

= 𝜎 + 𝑟
𝜎
𝜎 𝜎 − 2𝑟

𝜎
𝜎 (𝑟𝜎 𝜎 ) (B.10)

= 𝜎 − 𝑟 𝜎 (B.11)
= 𝜎 (1 − 𝑟 ) (B.12)

The variance of the residuals, 𝜎 (𝑑) is smaller than the variance of the dependent variable 𝜎 (𝑦),
when the correlation coefficient 𝑟, is unequal to zero.
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C
Power law representation of observed

wind profiles
The power law representation of wind profiles is probably the most used wind profile representation
for engineering purposes. An example of its application is the IEC standard, in which the wind shear
exponent of the power law is used to specify the wind shear over the rotor.

𝑢(𝑧) = 𝑢 ( 𝑧
𝑧 ) (C.1)

The power law is fitted using the log ratio method. This method uses wind speed measurements at
two heights to calculate the wind shear exponent via:

𝛼 = ln (𝑢 /𝑢 )
ln (ℎ /ℎ ) (C.2)

In this appendix, the power law representation of wind profiles observed at Breezanddijk is dis-
cussed in Appendix C.1. Further, the power law wind profile is shown for a range of wind shear expo-
nents in Appendix C.2.

C.1. Power law fit to Wind profiles observed at Breezanddijk
The power law is limited to increasing wind speeds over height, i.e. for negative wind shear exponents
the wind profile is not correctly described by the power law. However, current wind turbine rotors
are large, reaching heights from 40 to 200 m. In this height regime, the wind speed is not always
strictly increasing with height, and the assumption of a constant shear exponent does not hold. As the
extrapolation distance increases, the accuracy of the wind profile representation decreases. Therefor
the estimated wind speeds over the rotor can significantly deviate from the observed wind speed. In
Fig. C.1 four observed 10-min averaged wind profiles are plotted along with three corresponding fits of
the power law. The fits have been calculated using the log ratio method, but using different heights.

• The first shear exponent, 𝛼 , is based on wind speed measurements at 40 m and 75 m.
These are heights at which typical met masts measure the wind speed.

• The second shear exponent, 𝛼 , is based on wind speed measurements at 40 m and 200 m.
This shear exponent could be used to represent the wind shear over a large wind turbine rotor,
with a hub height of approximately 120 m.

• The third shear exponent, 𝛼 is based on wind speed measurements at 40 m and 120 m.
This shear exponent is necessary for the extrapolation of the wind speed to a typical hub height
of 120 m.
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C.1. Power law fit to Wind profiles observed at Breezanddijk 81

(a) Profile 1 (b) Profile 2

(c) Profile 3 (d) Profile 4

Figure C.1: Log ratio fit of the power law to four observed 10-min averaged wind profiles at Breezanddijk. The time stamp and
mean wind direction at 95 m of the 10-min period is provided for each wind profile.

The observed wind profile of Fig. C.1a shows a low-level jet. The wind speed increases from ground
level to 95 m and a decreases for heights above 100 m. The power law profile using 𝛼 drastically
overestimates the wind speed at heights above 100 m. The 𝛼 is negative and the corresponding
power law profile fails to represent the observed profile.

The wind profile in Fig. C.1b shows an increasing wind shear with height. The power law based
on 𝛼 leads to an underestimation of wind speed around hub height. Using 𝛼 leads to an
overestimation of the wind speed over the rotor plane. Another example of 𝛼 leading to underes-
timation of the wind speed is provided in Fig. C.1c. However in this case the wind over the rotor plane
is well represented by the power law using 𝛼 or 𝛼 .
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C.2. Examples of the power law wind profile
In Fig. C.2 the power law profile is plotted for a range of shear exponents.

Figure C.2: The power law wind profile for a shear exponent ranging from -0.2 to 0.4



D
Comparison of shear measured at met

mast and lightning mast
This appendix includes the results of the analysis in which the shear derived at the met mast is com-
pared to the shear derived at the lightning mast. The masts are located at the Høvsøre measurement
site. A description of the site is provided in Section 3.2. The method used for the analysis is similar to
the method used in Chapter 4 and is described in Section 4.1.

Table D.1: Comparison of the shear exponent measured at the met mast and at the lightning mast per direction sector
at Høvsøre

East West
Parameter Indicator MM Sonic MM Sonic

# Samples 6488 6488 13252 13252
# vs MM 6488 13252

𝛼 60-100 Mean [-] 0.2388 0.2346 0.1560 0.1545
BIAS [-] -0.0042 -0.0015
RMSE [-] 0.0534 0.0336
Slope [-] 0.9304 0.9682
𝑅 [-] 0.9013 0.9457
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Figure D.1: Comparison of the shear exponent measured at the met mast and at the lightning mast for the eastern
sector.

Figure D.2: Comparison of the shear exponent measured at the met mast and at the lightning mast for the western
sector



E
WindPRO and Matlab linear regression

MCP results
This appendix includes the correlations established for the linear regression MCP in Matlab and Wind-
PRO. The anomalous results, for which the Matlab and WindPRO result show a deviation of the order
10 , have been highlighted.

Table E.1: Validation case 1: Comparison of MCP correlations for 12 sectors at Breezanddijk by Matlab and WindPRO

Sector Slope Intercept
Matlab WindPRO Matlab WindPRO

1 1.0182 1.0182 -0.0238 -0.0238
2 1.0292 1.0292 -0.1166 -0.1166
3 1.0194 1.0194 -0.0330 -0.0330
4 1.0083 1.0083 0.0640 0.0640
5 0.8023 0.8023 0.4034 0.4034
6 1.0426 1.0426 -0.5461 -0.5461
7 1.1088 1.1088 -1.1470 -1.1469
8 1.0319 1.0318 -0.2138 -0.2130
9 1.0169 1.0169 0.0137 0.0137
10 1.0096 1.0096 0.0369 0.0369
11 1.0099 1.0099 0.0210 0.0210
12 0.9945 0.9945 0.1231 0.1231

Table E.2: Validation case 2: Comparison of MCP correlations for 12 sectors at Høvsøre by Matlab and WindPRO

Sector Slope Intercept
Matlab WindPRO Matlab WindPRO

1 0.5657 0.5656 2.9728 2.9729
2 0.8729 0.8729 0.9891 0.9891
3 0.9822 0.9822 -0.1564 -0.1564
4 0.9848 0.9922 -0.1402 -0.1525
5 0.9711 0.9860 0.1083 -0.0232
6 1.0275 1.0277 -0.1656 -0.1669
7 1.0015 1.0015 -0.0413 -0.0413
8 1.0035 1.0035 -0.1351 -0.1351
9 1.0031 1.0031 -0.0353 -0.0353
10 1.0105 1.0105 -0.2128 -0.2128
11 0.9692 0.9692 -0.5425 -0.5425
12 0.6375 0.6375 1.5207 1.5207

85


	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Project context
	Objectives
	Scope
	Outline

	Literature Review
	Wind profiles
	Wind in the atmospheric boundary layer
	The logarithmic wind profile
	The power law profile
	Vertical extrapolation in wind resource assessment
	Extension of the wind profile

	Light Detection and Ranging
	Working Principle
	Comparison of Lidar measurements and mast measurements
	Shorter measurement campaigns

	Measure-correlate-predict methods
	Correlation methods
	Uncertainty in MCP predictions


	Research Set-Up
	Research questions
	Measurement site descriptions
	Høvsøre
	Breezanddijk


	Comparison of Wind Profiles observed by Lidar and Measurement Mast
	Method
	Results
	Høvsøre
	Breezanddijk

	Discussion and Conclusion

	Intra-annual Variability of the Wind-Shear Exponent
	Method
	Observations
	Høvsøre
	Breezanddijk

	Conclusion

	Implementation and Validation of the MCP Code
	Implementation of the MCP procedure in Matlab
	Data selection
	Correlation
	Prediction

	Vertical extrapolation of the wind shear exponent
	Method
	Observations

	Weighted MCP
	Validation of the MCP code

	Application of the MCP Method to Shear Exponent Data
	Performance metrics
	Prediction of the wind shear exponent using MCP
	Case 1
	Case 2

	Effect of shorter concurrent measurement period
	Method
	Result Breezanddijk
	Results Høvsøre
	Conclusion and Discussion


	The Effect of Wind Shear on the Prediction of Annual Energy Production
	Vertical Extrapolation of the Wind Speed
	Uncertainty Propagation
	Propagation to Wind Speed
	Propagation to AEP

	Example of uncertainty propagation

	Conclusion and Recommendations
	Conclusion
	Recommendations

	Bibliography
	Simple example of the MCP method
	Variance of the residuals in linear regression
	Power law representation of observed wind profiles
	Power law fit to Wind profiles observed at Breezanddijk
	Examples of the power law wind profile

	Comparison of shear measured at met mast and lightning mast
	WindPRO and Matlab linear regression MCP results

