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Abstract

Synchronisation is the remarkable phenomenon of in-phase movement of coupled oscillators during
a prolonged period of time, which even occurs when these have different natural frequencies. This
property is used in many fields like physics, biology and chemistry, to model various system behaviours,
for instance: circadian rhythms in the chemistry of the eyes [1].
This thesis focuses on synchronisation and entanglement in systems consisting of quantum Van der
Pol oscillators. After looking at the exemplary properties of the classical VdP oscillator, it follows the
methods of [2] to explore the behaviour of two coupled QVdPOs, quantum Van der Pol oscillators, using
Monte Carlo simulations for trajectories of this system. The system is then expanded to three-oscillator
systems with all-to-all and chain coupling. The validity of the extension of the properties found in two
QVdPOs in [2] with regard to synchronisation and entanglement is tested. Does an Arnold tongue,
the region of parameters for which a system shows synchronisation, still exist and if so has its shape
changed? Do synchronisation and strong entanglement still show a positive correlation?
Simulations of the 2-oscillator system gave results which were just slightly different from those obtained
in[2], validating the occurrence of synchronisation within the Arnold tongue and showing a positive
correlation between synchronisation and entanglement of the system. Both the 3-oscillator systems
showed synchronisation as well in their respective Arnold tongues, which were increasingly smaller for
the all-to-all coupled and the chain coupled system when compared to the 2-oscillator system. Overall,
the amount of synchronisation, shown in three oscillators was very close to the amount shown in
two oscillators when strongly coupled and just a little less for weak coupling. The correlation between
synchronisation and strong entanglement was also found for three oscillators, though for weaker coupling
the chain coupled system showed a little more entanglement than before.
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1 Introduction

Synchronisation is a phenomenon seen in many quite different systems. The tendency of certain oscil-
lators to move in-phase with one another when weakly coupled, is used in a plethora of fields within
physics, biology and chemistry to predict how systems behave [3, 4]. For example, in [1] circadian
rhythms in the chemistry of the eyes are modelled using three Van der Pol oscillators and their ability
to synchronise.
In quantum mechanics synchronisation is also a widely researched topic [2, 5–9] since the understanding
of the way oscillators behave can often provide very useful insights into how smaller systems, like salt
crystals or hydrogen atoms, behave.
In this thesis we build upon the research done in [2]. There constraints to allow synchronisation in
a system of two quantum Van der Pol oscillators, QVdPOs, and the relation of synchronisation and
entanglement in the system were explored. Using their methods we first look at the same system to
verify the results before expanding to a three-oscillator system. For the three oscillators, we look at all-
to-all and chain coupling, for which in the end we provide an answer to whether or not the 3-oscillator
systems show the same behaviour as the 2 oscillators with respect to synchronisation and entanglement.

To this end we first present a theoretical background in chapter 2. There properties of various systems
with classical Van der Pol oscillators, CVdPOs, are explored, such as limit cycles and synchronisation.
Regimes called Arnold tongues are found, in which synchronisation is possible, and these serve as a
prediction for the quantum Arnold tongues. Lindblad master equations and stochastic Schrödinger
equations are used to describe the quantum systems, followed by an introduction to the indicators we
use to characterise their behaviour. In chapter 3 the results of the Monte Carlo simulations of the
quantum systems are presented and connections between the various systems are made. From these
results, we draw conclusions in chapter 4 and discuss the methods used, before suggesting some options
for further research.

1



2 Theoretical background

2.1 One classical VdP oscillator

We first look at a system of one classical Van der Pol oscillator, as its behaviour is in many ways similar
to the more complex systems probed later on. This CVdP oscillator is described by the non-linear
Ordinary differential equation:

ẍ+ µ(x2 − 1)ẋ+ ω2x = 0 (2.1)

Where x gives the perturbation from the equilibrium at x = 0, µ indicates the strength of the non-linear
damping, which for |x| < 1 acts as a pumping term and ω is the eigenfrequency of the oscillator.

2.1.1 Stability of the CVdP oscillator

To find the parameters that lead to stable solutions 2.1 is rewritten as a system of two first order ODEs:

ẋ = y
ẏ = µ(1− x2)y − ω2x

(2.2)

Or using matrix notation:

ẋ = Ax + g(x) (2.3)

With x =

[
x
y

]
, A =

[
0 1
−ω2 µ

]
and g(x) =

[
0

−µx2y

]
Since g(x)/‖x‖ vanishes for x = 0 the eigenvalues of A can be calculated to determine stability [10]:∣∣∣∣ −λ 1

−ω2 µ− λ

∣∣∣∣ = λ2 − λµ+ ω2 = 0 (2.4)

Giving λ = 1
2µ ±

1
2

√
µ2 − 4ω2. The right part of which is imaginary when |µ| < 2|ω| thus giving

asymptotic stability for µ < 0. The other case gives asymptotic stability within the same region of µ
values since then

√
µ2 − 4ω2 ≤ |µ|. Therefore the origin is a stable equilibrium solution for µ < 0. How

the oscillator moves towards the equilibrium can be illustrated using phase diagrams:

Fig. 2.1: Phase plot of one classical VdP, µ = −0.1, ω = 1, x0 = −1, ẋ0 = 0, t0 = 0, te = 5000.
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As shown in fig. 2.1, with partially imaginary eigenvalues, the system spirals down into the stable solu-
tion.

When µ is set to zero the system simplifies to:

ẍ+ ω2x = 0 (2.5)

Which is just the harmonic oscillator with solutions x(t) = A cos(ωt+ φ). With the initial conditions
determining the radius in phase space, this looks something like:

Fig. 2.2: Phase plot of the harmonic oscillator, µ = 0, ω = 1, x0 = −1, ẋ0 = 0, t0 = 0, te = 5000.

2.1.2 Limit cycle of the CVdP oscillator

It remains to look at the case of µ > 0, which according to the previous stability analysis, gives instability
of the origin. However under this condition the system approaches a limit cycle, a closed trajectory
in phase space, to which in this case all initial conditions, except the origin, converge. Existence and
uniqueness of this LC are proven using Liénard’s theorem [4]:
Liénard’s equation: ẍ+ f(x)ẋ+ g(x) = 0

Theorem 1 (Liénard’s theorem). If f(x) and g(x) satisfy:

1. f(x) and g(x) are continuously differentiable for all x;

2. g(−x) = −g(x) for all x;

3. g(x) > 0 for x > 0;

4. f(−x) = f(x) for all x;

5. F (x) =
∫ x

0
f(u)du has exactly one positive zero at x = a, is negative for 0 < x < a, is positive

and nondecreasing for x > a, and F (x)→∞ as x→∞

Then Liénard’s equation has a unique, stable limit cycle around the origin of its phase plane.
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For the VdP oscillator we have f(x) = µ(x2−1) and g(x) = ω2x in Liénard’s equation, thus for positive
values of µ Liénard’s theorem gives the existence of a unique, stable limit cycle around the origin.
For µ � 1 and µ → ∞, the weakly and strongly non-linear regime respectively, the amplitude of this
limit cycle is close to 2 and for the transitional area between those, formulas exist to approximate the
amplitude [11]. Between those two regimes, the limit cycle takes on the shape shown in fig. 2.3(b),
whereas µ increases the extrema deviate further from ẋ = 0.

(a) (b)

Fig. 2.3: Limit cycle of the VdP oscillator in the (weakly) non-linear regime, ω = 1, x0 = −1, ẋ0 = 0
(a): µ = 0.1, (b): µ = 1.

2.2 Two coupled CVdP oscillators

Proceeding from the single CVdP we now couple two oscillators. Since the oscillations of the coupled
CVdPs are mainly of concern to describe dynamical systems, first of all conditions for the existence of
the LC are explored.

2.2.1 LC of the coupled CVdP system

A system of coupled VdP oscillators is given by:

ẍ1 + µ1(x2
1 − 1)ẋ1 + ω2

1x1 + σ(x2 − x1) = 0
ẍ2 + µ2(x2

2 − 1)ẋ2 + ω2
2x2 + σ(x1 − x2) = 0

(2.6)

Where the indices number the oscillators and σ is the strength of the coupling. To find which values
for the various parameters lead to a limit cycle it, is useful to look at Hopf bifurcations of the system.
A Hopf bifurcation is transitional point between the system having a stable equilibrium solution and
having a stable LC. In order to find the Hopf bifurcation 2.6 can be written as a system of 4 first order
ODE’s:

ẋ1 = y1

ẏ1 = µ1(1− x2
1)ẋ1 − ω2

1x1 − σ(x2 − x1)
ẋ2 = y2

ẏ2 = µ2(1− x2
2)ẋ2 − ω2

2x2 − σ(x1 − x2)

(2.7)

Which can be written using matrix notation as:

ẋ = Ax + g(x) (2.8)

With x =


x1

y1

x2

y2

 , A =


0 1 0 0

σ − ω2
1 µ1 −σ 0

0 0 0 1
−σ 0 σ − ω2

2 µ2

 and g(x) =


0

−µ1x
2
1y1

0
−µ2x

2
2y2
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The characteristic polynomial of A can be found as:

P (λ) = λ4 − (µ1 + µ2)λ3 + (µ1µ2 − 2σ + ω2
1 + ω2

2)λ2

+(µ1σ − µ1ω
2
2 − µ2ω

2
1 + µ2σ)λ− σ(ω2

1 + ω2
2) + ω2

1ω
2
2

(2.9)

For a Hopf bifurcation we have one eigenvalue pair λ = ±iω for some ω ∈ R. Using this and the
characteristic polynomial gives:

P (iω) = ω4 + (µ1 + µ2)iω3 − (µ1µ2 − 2σ + ω2
1 + ω2

2)ω2

+(µ1σ − µ1ω
2
2 − µ2ω

2
1 + µ2σ)iω − σ(ω2

1 + ω2
2) + ω2

1ω
2
2

(2.10)

The equation can be split into a real and an imaginary part, both of which must equal zero for iω to
be an eigenvalue:

ω4 − (µ1µ2 − 2σ + ω2
1 + ω2

2)ω2 − σ(ω2
1 + ω2

2) + ω2
1ω

2
2 = 0

(µ1 + µ2)ω3 + (µ1σ − µ1ω
2
2 − µ2ω

2
1 + µ2σ)ω = 0

(2.11)

Solving the last equation gives ω = 0 or ω2 = −µ1σ−µ1ω
2
2−µ2ω

2
1+µ2σ

µ1+µ2
. Plugging the non-trivial solution

into the first equation gives an implicit curve that describes where a Hopf bifurcation occurs:

(µ1σ−µ1ω
2
2−µ2ω

2
1+µ2σ)2

(µ1+µ2)2 +
(µ1σ−µ1ω

2
2−µ2ω

2
1+µ2σ)(µ1µ2−2σ+ω2

1+ω2
2)

µ1+µ2
− σ(ω2

1 + ω2
2) + ω2

1ω
2
2 = 0 (2.12)

Where we require that µ1 + µ2 6= 0 and
µ1σ−µ1ω

2
2−µ2ω

2
1+µ2σ

µ1+µ2
< 0, since µ1 + µ2 = 0 would only allow

ω = 0 and ω needs to be a real valued solution to the last equation of 2.11.
Using the description obtained above, we now look at a few cases for the coupled VdP system. First
we assume no coupling between the oscillators, σ = 0, and equal eigenfrequencies, ω2

1 = ω2
2 = ω2.

Combining these values with 2.12 gives: µ1µ2 = 0 (ω = 0 is not accepted). Thus a Hopf bifurcation
occurs when µ1 = 0 or µ2 = 0, analogous to the criterion for the existance of a LC for a single oscillator.

When the oscillators are coupled with strength σ, we obtain µ1µ2 = σ2

σ−ω2 < 0, since the second

requirement gives σ < ω2. Therefore a positive value for µ1 would give a negative value for µ2 and vice
versa:

Fig. 2.4: Curve of µ-values for which a Hopf bifurcation occurs, σ = 0.1, ω2
1 = ω2

2 = 1

As µ1 approaches plus or minus infinity µ2 goes to zero. This makes sense because as the µ value of an
oscillator goes to infinity, its amplitude becomes constant. In turn the other oscillator then practically
is decoupled and experiences a constant driving force as well as a frequency shift, making stability
dependent on only the µ of the oscillator itself.
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Within the numbered areas in fig. 2.4, separated by the Hopf curve, the system shows different behaviour.
In area I oscillator 1 has a stable equilibrium but is forced to circle around this due to the coupling to
the stable limit cycle of oscillator 2. By adding energy to oscillator 1, oscillator 2 creates a limit cycle
for the combined system. Similar behaviour is achieved in area IV, where the roles of both oscillators
are flipped. For values inside area II both oscillators have a stable limit cycle, in area III however, both
oscillators have the same equilibrium and the system collapses to zero displacement in combination with
zero movement.

2.2.2 Synchronisation of two coupled CVdPOs

When multiple oscillators are connected through some kind of coupling, a phenomenon called syn-
chronisation may occur. Synchronisation is achieved when the phase difference between two oscillators
becomes constant for a prolonged period of time, which can even take place for oscillators with differ-
ent natural frequencies. Conditions required for synchronisation can be attained from the system in
complex amplitude form [3][8]:

α̇1 = −iω1α1 +
γ

(1)
1

2 α1 − γ(1)
2 |α1|2α1 +

(
D
2 + iR

)
(α2 − α1)

α̇2 = −iω2α2 +
γ

(2)
1

2 α2 − γ(2)
2 |α2|2α2 +

(
D
2 + iR

)
(α1 − α2)

(2.13)

γ
(i)
1 and γ

(i)
2 are the negative and non-linear damping for oscillator i, D ≥ 0 and R ≥ 0 give the

dissipative (non-conservative with energy loss to the environment) and reactive (conservative) coupling
respectively. When uncoupled the oscillators have a stable limit cycle with amplitude |α1| = r̄i =√
γ

(i)
1 /2γ

(i)
2 [7]. The system above can be written in terms of modulus and phase using αi = rie

iφi :

ṙ1 =

(
γ

(1)
1

2 − γ
(1)
2 r2

1

)
r1 + D

2 (r2 cos(θ)− r1)−Rr2 sin(θ)

ṙ2 =

(
γ

(2)
1

2 − γ
(2)
2 r2

2

)
r2 + D

2 (r1 cos(θ)− r2)−Rr1 sin(−θ)

θ̇ = −(ω2 − ω1) +R
(
r1
r2
− r2

r1

)
cos(θ)− D

2

(
r1
r2

+ r2
r1

)
sin(θ)

(2.14)

Where θ = φ2 − φ1. To see how these systems are equivalent, we substitute the modulus amplitude
expression into 2.13 and divide by eiφi giving for the left hand side ṙi + iφ̇iri. Separating the real and
imaginary parts of the obtained equations then gives:

ṙ1 =

(
γ

(1)
1

2 − γ
(1)
2 r2

1

)
r1 + D

2 (r2<{eiθ} − r1)−Rr2={eiθ}

ṙ2 =

(
γ

(2)
1

2 − γ
(2)
2 r2

2

)
r2 + D

2 (r1<{e−iθ} − r2)−Rr1={e−iθ}

φ̇1r1 = −ω1r1 + D
2 r2={eiθ}+R(r2<{eiθ} − r1)

φ̇1r2 = −ω2r2 + D
2 r1={e−iθ}+R(r1<{e−iθ} − r2)

(2.15)

Substituting Euler’s formula and subtracting the third equality form the last after division by ri gives
the previous system 2.14. Now focussing on a system with dissipative coupling only, we set R = 0.
Assuming small coupling the dynamics of ṙ1 and ṙ2 can be neglected [8]. This gives the Adler equation
for the relative phase [12]:

θ̇ = −∆− DA

2
sin(θ) (2.16)

In this ∆ = ω2 − ω1 and A = r̄1/r̄2 + r̄2/r̄1. The steady-state solution is found by setting θ̇ = 0 and
can only exist when: ∣∣∣∣ 2∆

DA

∣∣∣∣ ≤ 1 (2.17)

Which for the coupling strength requires:

2|∆|
A
≤ D (2.18)
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When the oscillators have equal damping rates (γ
(1)
1 = γ

(2)
1 , γ

(1)
2 = γ

(2)
2 ), this results in |∆| ≤ D = V

2
(where D can remain small when ∆ is a small fraction of the natural frequencies), the classical Arnold
tongue [2]:

Fig. 2.5: Plot of the (blue) area in which conditions for synchronisation of two VdP oscillators with
equal damping rates are met, also called the Arnold tongue. V = 2D.

2.3 Three coupled CVdP oscillators

Here two differently coupled systems of three classical Van der Pol oscillators will be presented, one of
which has all-to-all coupling and the other has chain coupling. In the all-to-all coupled system energy
can be transferred from each oscillator to one of the others in a fully symmetrical way. The chain
coupling sees oscillators only linked to its two (or one for endpoints) direct neighbours.

2.3.1 Synchronisation of three all-to-all coupled CVdPOs

The Arnold tongue for three oscillators is found analogously to that for two oscillators, but the assump-
tion of equal damping and pumping rates and R = 0 are made right away:

α̇1 = −iω1α1 +
γ

(1)
1

2 α1 − γ(1)
2 |α1|2α1 + D

2 (α3 + α2 − 2α1)

α̇2 = −iω2α2 +
γ

(2)
1

2 α2 − γ(2)
2 |α2|2α2 + D

2 (α3 + α1 − 2α2)

α̇3 = −iω3α3 +
γ

(3)
1

2 α3 − γ(3)
2 |α3|2α3 + D

2 (α2 + α1 − 2α3)

(2.19)

γ
(i)
1 and γ

(i)
2 are the negative and nonlinear damping for oscillator i. D gives the dissipative and

R the reactive coupling. When uncoupled the oscillators have a stable limit cycle with amplitude

|α1| = r̄i =

√
γ

(i)
1 /2γ

(i)
2 . The system above can be written in terms of modulus and phase using

αi = rie
iφi :

7



ṙ1 =

(
γ

(1)
1

2 − γ
(1)
2 r2

1

)
r1 + D

2 (r2 cos(θ) + r3 cos(θ + ϕ)− 2r1)

ṙ2 =

(
γ

(2)
1

2 − γ
(2)
2 r2

2

)
r2 + D

2 (r1 cos(θ) + r3 cos(ϕ)− 2r2)

ṙ3 =

(
γ

(3)
1

2 − γ
(3)
2 r2

3

)
r3 + D

2 (r2 cos(ϕ) + r1 cos(θ + ϕ)− 2r3)

θ̇ = −(ω2 − ω1) + D
2

(
−
(
r1
r2

+ r2
r1

)
sin(θ) + r3

r2
sin(ϕ)− r3

r1
sin(ϕ+ θ)

)
ϕ̇ = −(ω3 − ω2) + D

2

(
−
(
r2
r3

+ r3
r2

)
sin(ϕ) + r1

r2
sin(θ)− r1

r3
sin(ϕ+ θ)

)
(2.20)

Where θ = φ2 − φ1 and ϕ = φ3 − φ2. Assuming small coupling the dynamics of ṙ1, ṙ2 and ṙ3 can be
neglected [8]. Thus taking the limit cycle amplitudes we have:

θ̇ = −∆2,1 + D
2 (−2 sin(θ) + sin(ϕ)− sin(ϕ+ θ))

ϕ̇ = −∆3,2 + D
2 (−2 sin(ϕ) + sin(θ)− sin(ϕ+ θ))

(2.21)

In this ∆i,j = ωi − ωj . To find phase locking in the first two oscillators of the system θ̇ = 0 has to be
possible, which requires:

2∆2,1

D
= −2 sin(θ) + sin(ϕ)− sin(ϕ+ θ) (2.22)

Where θ is a constant implying that ϕ can only take a few specific values, if any value at all makes the
equality valid. Therefore the area in which phase locking for the first and second oscillator can occur
is:

|∆2,1| ≤
D

2
max

θ,ϕ∈(−π,π]
{−2 sin(θ) + sin(ϕ)− sin(ϕ+ θ)} ≈ 1.760D (2.23)

Where continuity ensures the maximum is taken and all values between this and the minimum, which
is the maximum multiplied by -1, are reached since the total expression is odd in both variables.
Independently the same area is found for the second phase difference ϕ since only the roles of θ and
ϕ are swapped in the right-hand side of 2.23, but the domain over which the maximum was taken for
both variables was equal.
Picking a value for the left hand side of 2.22 however gives a set of certain combinations of θ and ϕ that
satisfy the equation and

2∆3,2

D in the equation’s equivalent for ϕ thus becomes limited to values obtained
within that set. In turn this limitation might heavily restrict the values ∆3,2 can take, depending on
the values of D and ∆2,1 chosen (remember constant θ requires constant ϕ). A nice Arnold tongue for
θ in which all parameters allow the same tongue for ϕ is found by replacing the maximum in 2.23 by:

max
θ,ϕ∈(−π,π]

{min{−2 sin(θ) + sin(ϕ)− sin(ϕ+ θ),−2 sin(ϕ) + sin(θ)− sin(ϕ+ θ)}} (2.24)

This ensures simultaneous phase locking can be achieved for as large of an interval for ∆i,j as possible.
Smaller values up until the minimum of the maximum are now also available for ∆3,2 for each chosen
∆2,1. The solution to 2.24 is found at a point where the two expressions have the same value since
their range is the same on the used domain. From this it follows that the maximum is obtained with
θ = ϕ or θ = π − ϕ. The former does give the maximum. Differentiation with this in mind of one of
the expressions followed by setting the result equal to zero:

− cos(θ)− 2 cos(2θ) = 0 (2.25)

Which gives a maximum for:

θ = ϕ = −2 arctan

(√
6−
√

33

)
(2.26)

Leading to the mutual Arnold tongues given by:

|∆i,j | ≤ 0.880D (2.27)
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Fig. 2.6: Area for which both synchronisations can occur for the same domain of values ∆i,j(red) and
Arnold tongue for two CVdPOs (blue). V = 2D

When compared to the region for which synchronisation of two oscillators occurs (fig. 2.5), the region
for three oscillators appears slightly narrower.

2.3.2 Synchronisation of three chain coupled CVdPOs

Instead of 2.19, for the oscillators coupled like links in a chain, the following is used:

α̇1 = −iω1α1 +
γ

(1)
1

2 α1 − γ(1)
2 |α1|2α1 + D

2 (α2 − α1)

α̇2 = −iω2α2 +
γ

(2)
1

2 α2 − γ(2)
2 |α2|2α2 + D

2 (α3 + α1 − 2α2)

α̇3 = −iω3α3 +
γ

(3)
1

2 α3 − γ(3)
2 |α3|2α3 + D

2 (α2 − α3)

(2.28)

Where the second oscillator is the middle link and the first and third are its neighbours at the end of
the chain. The relevant equations from the system analogous to 2.20

θ̇ = −(ω2 − ω1) + D
2

(
−
(
r1
r2

+ r2
r1

)
sin(θ) + r3

r2
sin(ϕ)

)
ϕ̇ = −(ω3 − ω2) + D

2

(
−
(
r2
r3

+ r3
r2

)
sin(ϕ) + r1

r2
sin(θ))

) (2.29)

Substituting limit cycle amplitudes gives:

θ̇ = −∆2,1 + D
2 (−2 sin(θ) + sin(ϕ))

ϕ̇ = −∆3,2 + D
2 (−2 sin(ϕ) + sin(θ))

(2.30)

Once again phase locking of θ also locks ϕ, thus the Arnold tongue for one pair of oscillators is:

|∆2,1| ≤
D

2
max

θ,ϕ∈(−π,π]
{−2 sin(θ) + sin(ϕ)} =

3

2
D (2.31)

Yet the Arnold tongue of the other pairs of oscillators do depend on the specific point in this region.
Similar to in the all-to-all case it is therefore helpful to look at the biggest Arnold tongues that can be
acquired simultaneously. For this region the maximum above is replaced by:

max
θ,ϕ∈(−π,π]

{min{−2 sin(θ) + sin(ϕ),−2 sin(ϕ) + sin(θ)}} (2.32)
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For which the maximum is found in the same way as for the all-to-all system. Hence the mutual Arnold
tongues are found as:

|∆i,j | ≤
D

2
(2.33)

Fig. 2.7: Area for which both synchronisations can occur for the same domain of values ∆i,j with
chain coupling (green), all-to-all coupling (red) and for two CVdPOs (blue). V = 2D.

Relative to the Arnold tongue for both the 2 oscillator system and the all-to-all coupled 3 oscillator
system, the area for synchronisation of a chain of 3 CVdPOs is about half as wide. Synchronisation
of oscillators with indirect coupling therefore seems to be more difficult to achieve than with direct
coupling.

2.4 One quantum VdP oscillator

A quantum Van der Pol oscillator can simulated using a Lindblad master equation for which [6] proposed
a derivation using a heat bath. Setting ~ = 1 the LME is:

ρ̇ = L(ρ) = −i[H, ρ] + γ↓D[a2]ρ+ γ↑D[a†]ρ (2.34)

Where H is the Hamiltonian of the harmonic oscillator, H = ωa†a with ω the eigenfrequency of the
system; a the annihilation operator; D[L]ρ = LρL† − 1/2{L†L, ρ}; ρ gives the density matrix of the
VdP oscillator; γ↓ and γ↑ give the damping and pumping rate respectively.

2.4.1 Relation of the QVdP to the CVdP

The QVdPO is not directly derived from the CVdPO, however the connection between the quantum
oscillator and the classical one can be shown using the complex amplitude form of the CVdPO [7]:

α̇ = −iωα+ α(κ1 − 2κ2|α|2) (2.35)

A different way to write 2.34 dropping the shorthand notation for the dissipators is:

ρ̇ = −i[H, ρ] + κ1(2a†ρa− aa†ρ− ρaa†) + κ2(2a2ρa†2 − a†2a2ρ− ρa†2a2) (2.36)
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Where κ1 = µ
2 and κ2 = µ

16 with respect to 2.1 [5], thus γ↓ = µ
8 and γ↑ = µ in 2.34. Using the expression

above the derivative of the expectation value for a can be found:

d 〈a〉
dt

=
d Tr(ρa)

dt
=

d
∑n
i

∑n
j ρi,jaj,i

dt
=

n∑
i

n∑
j

(
dρi,j
dt

aj,i + ρi,j
daj,i
dt

) (2.37)

Since the annihilation operator a itself is constant in time, the right most term in 2.37 equals zero and
we get:

d 〈a〉
dt

=

n∑
i

n∑
j

ρ̇i,jaj,i = Tr(ρ̇a) (2.38)

Combining this with 2.36 gives:

d 〈a〉
dt

= Tr{−i[H, ρ]a+ κ1(2a†ρa− aa†ρ− ρaa†)a+ κ2(2a2ρa†2 − a†2a2ρ− ρa†2a2)a} (2.39)

The trace of a matrix is linear so we can rewrite this term by term, for the first expression we get:

Tr(−i[H, ρ]a) = −iω(Tr
(
a†aρa

)
− Tr

(
ρa†a2

)
) (2.40)

Next we use the cyclic invariance of traces and that [a, a†] = 1

Tr(−i[H, ρ]a) = −iω(Tr
(
aa†aρ

)
− Tr

(
a†a2ρ

)
) = −iωTr

(
[a, a†]aρ

)
= −iωTr(ρa) = −iω 〈a〉 (2.41)

Doing the same for the second term one finds:

Tr
(
κ1(2a†ρa− aa†ρ− ρaa†)a

)
= κ1 Tr

(
2ρa2a† − ρa2a† − ρaa†a

)
= κ1 Tr

(
ρa[a, a†]

)
= κ1 〈a〉 (2.42)

And finally for the last term:

Tr
(
κ2(2a2ρa†2 − a†2a2ρ− ρa†2a2)a

)
= κ2 Tr

(
2aρa†2a2 − aρaa†2a− aρa†2a2 + ρa†aa†a2 − ρa†aa†a2

)
= κ2 Tr

(
(a2ρa† + a†a2ρ)[a†, a]

)
= κ2 Tr

(
−2a†a2ρ

)
= −2κ2

〈
a†a2

〉
(2.43)

From combining all these terms it follows that:

d 〈a〉
dt

= −iω 〈a〉+ κ1 〈a〉 − 2κ2

〈
a†a2

〉
(2.44)

Replacing operator a with the complex number α for a coherent state in the classical limit (γ↓ → 0)
gives the complex amplitude equation for the classical VdP oscillator 2.35 [7].

2.4.2 Long term behaviour of the QVdP

For the inquiry into the long term behaviour of the QVdPO the functions ’steadystate’ and ’mesolve’
from the QuTiP package were used[13]. In [6] the steady-state in the quantum limit, γ↓ → ∞, of
2.36 is found to be ρs = 2

3 |0〉 〈0| +
1
3 |1〉 〈1| as can be verified by plugging this matrix into the spin

representation of 2.36 as obtained in appendix A:

ρ̇ =− i[H, ρ] + κ1(2σ+ρσ− − σ−σ+ρ− ρσ−σ+) + 2κ1(2σ−ρσ+ − σ+σ−ρ− ρσ+σ−) (2.45)

Where the Hamiltonian is H = ωσ+σ−, and the spin flip operators are defined as σ+ = |1〉 〈0| and
σ− = |0〉 〈1|. For the steady-state the right-hand side then needs to become zero, as it does for ρs:
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ρ̇s = −iω
(

1

3
|1〉 〈1| − 1

3
|1〉 〈1|

)
+ κ1

(
4

3
|1〉 〈1| − 2

3
|0〉 〈0| − 2

3
|0〉 〈0|

)
+ 2κ1

(
2

3
|0〉 〈0| − 1

3
|1〉 〈1| − 1

3
|1〉 〈1|

)
= 0

(2.46)

Which is obtained using that the product of a bra and a ket equal the Kronecker delta taking value 1
for equal Fock states and zero otherwise: 〈n|m〉 = δn,m.
Through QuTiP the same steady-state is observed:

Fig. 2.8: Plot showing the steady-state solution for a Quantum Van der Pol oscillator and the shift of
the solution of the master equation towards that, ω = 1, γ↓ = 100, γ↑ = 0.1.

In fig. 2.8 the convergence of the probabilities to find the oscillator in Fock state 0 or 1 can be seen
to converge quite rapidly to the steady-state. Whilst the system theoretically has infinitely many Fock
states, in the quantum limit only the lowest two states are occupied as explained in appendix A. To
check the validity of the two-state approximation higher states can be taken into account and the
discrepancy between finding the system in one of the lowest two states and the total probability of 1
can be found. In the case of fig. 2.8 with 10 states per oscillator, both the ’steadystate’ and the ’mesolve’
function give a difference of 0.00033, which is negligible. When γ↑ ≥ γ↓ higher states of the system
also become occupied and the two-state approximation brakes down. Even though the probabilities
remain fixed in the steady-state, the system does still exhibit stable oscillation akin to the limit cycle
found in the CVdP. The oscillations can be seen for instance using the Wigner function, which gives a
quasi-probability distribution for the location and momentum of the oscillator. The Wigner function is
defined as:

W (x, p) =
1

~π

∫ ∞
−∞
〈x+ y| ρ̂ |x− y〉 e−2ipy/~dy (2.47)

For x relative to xzpf = 1√
2mω

and p to pzpf =
√
mω/2, values for the zero-point fluctuations [9]. The

distribution, when viewed analogously to a phase diagram, clearly indicates oscillations. Its shape is a
circle with symmetrical values, for which the top half has positive momentum, thus increasing x/xzpf
and the bottom half has negative momentum, decreasing x/xzpf :
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Fig. 2.9: Colourmap of the Wigner function for the one QVdP oscillator steady-state in the quantum
limit with 5 simulated states, ω = 1, γ↓ = 100, γ↑ = 0.1.

2.5 Two coupled QVdP oscillators

The Lindblad master equation for two coupled quantum Van der Pol oscillators is:

ρ̇ = L(ρ) = −i[H, ρ] + VD[a1 − eiθa2]ρ+

2∑
i=1

γ
(i)
↓ D[a2

i ]ρ+ γ
(i)
↑ D[a†i ]ρ (2.48)

Where H =
∑2
i=1 ωia

†
iai, the subscripts and superscripts indicate for which of the two oscillators an

operator or constant holds and V gives the coupling strength of the oscillators. θ in the dissipator of
the coupling determines the phase difference for which the largest coupling takes place and in that way
gives the phase difference with which synchronisation may occur. In the quantum limit, γ↓ → ∞, the
two- and three-oscillator systems occupy a limited number of their infinite Fock states, as explained
below. For those systems, we thus look at their dynamics in the quantum limit to keep the analysis
manageable.

2.5.1 Steady-state of two coupled QVdPOs

As a starting point for analysis of the coupled system, the steady-state of 2.48 can be used. To obtain
this solution we look at oscillators in the quantum limit, γ↓ → ∞, with equal damping and pumping

rates for the oscillators: γ
(1)
↑,↓ = γ

(2)
↑,↓. In this case only the first and second Fock states of the oscillators

are occupied because higher states are annihilated by non-linear damping. The two-state system can be
mapped to a spin system with an up |↑〉 and down |↓〉 state corresponding to |1〉 and |0〉 respectively[7](for
the connection between the representations see Appendix A):

ρ̇ = L(ρ) = −i[H, ρ] + VD[σ−1 − eiθσ
−
2 ]ρ+

2∑
i=1

2γ
(i)
↑ D[σ−i ]ρ+ γ

(i)
↑ D[σ+

i ]ρ (2.49)

Here H =
∑
i=1,2 ωiσ

+
i σ
−
i , the original ladder operators ai and a†i are replaced by spin operators

σ−i = |0〉 〈1|i and σ+
i = |1〉 〈0|i. The spin operators for the combined system are σ±1 = σ±1 ⊗ I2 and
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σ±2 = I2 ⊗ σ±2 , with the Kronecker product ⊗. The density matrix of the system is written in a similar
way: ρ = ρ1 ⊗ ρ2 = |·〉 〈·|1 ⊗ |·〉 〈·|2, where either the up or down state can be inserted for each dot
separately. The steady-state solution of 2.49 is the density matrix obtained using these operators when
solving L(π) = 0. The resulting matrix is:

π1,1 = 1− γ↑(5γ↑+2V )(∆ω2+(3γ↑+V )2)
N

π2,2 = π3,3 =
γ↑(2γ↑+V )(∆ω2+(3γ↑+V )2)

N

π4,4 =
γ2
↑(∆ω

2+(3γ↑+V )2)

N

π2,3 = π∗3,2 =
γ↑V (γ↑+V )(3γ↑+V−i∆ω)e−iθ

N

(2.50)

Where N = (γ↑ + V )(3γ↑(∆ω
2 + 9γ↑) + (∆ω2 + 27γ2

↑)V + 8γ↑V
2) and the unmentioned elements are

equal to zero.
As initial wave vectors for the Monte Carlo simulation proposed later on, samples from the steady-state
are used: π =

∑
n P (πn) |πn〉 〈πn|. For the πn wave functions normed eigenvectors of the π density

matrix (pure states) are used and P (πn) is equal to the respective eigenvalue, all of which sum to one
since the sum equals the trace of the density matrix.

π1 =


1
0
0
0

 , π2 = 1√
2


0

− π2,3

|π2,3|
1
0

 , π3 = 1√
2


0
π2,3

|π2,3|
1
0

 , π4 =


0
0
0
1


P (π1) = π1,1, P (π2) = −|π2,3|+ π2,2, P (π3) = |π2,3|+ π2,2, P (π4) = π4,4

(2.51)

2.5.2 Trajectories of two coupled QVdPOs

For the investigation into synchronisation of the two coupled quantum VdP oscillators we look at
quantum trajectories. These offer more insight into single realisations of quantum processes as opposed
to considering averages only. The Lindblad master equation for the coupled oscillators 2.36 can be used
to obtain the stochastic Schrödinger equation for the coupled system [2]:

d |ψ(t)〉 = dt

[
−iHeff +

∑
k

〈Xk〉ψ(t)

2

(
Lk −

〈Xk〉ψ(t)

4

)]
|ψ(t)〉+

∑
k

dW k (t)

(
Lk −

〈Xk〉ψ(t)

2

)
|ψ(t)〉

(2.52)

Here Heff = H−i
∑
k L
†
kLk/2, Xk = Lk+L†k, with H the original Hamiltonian of the system, 〈A〉ψ(t) ≡

〈ψ(t)|A|ψ(t)〉. The sums are taken over the Lindblad operators: L1 =
√
γ

(1)
↓ a2

1, L2 =
√
γ

(1)
↑ a†1,

L3 =
√
γ

(2)
↓ a2

2, L4 =
√
γ

(2)
↑ a†2 and the operator describing the coupling L5 =

√
V (a1 − eiθa2), obtained

from 2.36. dW k is a Wiener stochastic increment, which is introduced by the continuous measurement
of Xk. The increments have Gaussian behaviour and zero mean over trajectories, 〈dW k〉 = 0, with
dW 2

k = dt.

2.6 Three coupled QVdP oscillators

Here the two systems possible with three coupled QVdPOs are presented. These are the all-to-all
coupled system, in which all oscillators are directly linked and the chain coupled system, in which one
oscillator is the forms the link between the other two.

2.6.1 Three all-to-all coupled QVdPOs

The system of three all-to-all coupled QVdP oscillators is given by:

ρ̇ = L(ρ) = −i[H, ρ]+V (D[a1−eiθa2]+D[a2−eiθa3]+D[a1−eiθa3])ρ+

3∑
i=1

γ
(i)
↓ D[a2

i ]ρ+γ
(i)
↑ D[a†i ]ρ (2.53)
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Where H =
∑3
i=1 ωia

†
iai, the subscripts and superscripts indicate for which of the three oscillators an

operator or constant holds and V gives the coupling strength of the oscillators. In a similar way to
what was done before, this system as well can be cast into a spin equation since only two states are
occupied per oscillator in the quantum limit. However finding the steady-state matrix now proves quite
tricky, luckily this can be found relatively easily numerically once the system parameters are known.
The eigendecomposition of the steady-state is then again used as a distribution for the initial states of
the Monte Carlo simulation. 2.53 Is also the starting point to find a stochastic Schrödinger equation of

the shape of 2.52. For this SSE Lindbladians L6 =
√
γ

(3)
↓ a2

3, L7 =
√
γ

(3)
↑ a2

3†, L8 =
√
V (a1 − eiθa3) and

L9 =
√
V (a2 − eiθa3) are added and the original Hamiltonian gets an extra term ω3a

†
3a3.

2.6.2 Three chain coupled QVdPOs

The chain coupled system of three QVdPOs is very similar to the all-to-all coupled system presented
above. It misses the link between oscillator 1 and 3 giving it the structure of a chain:

ρ̇ = L(ρ) = −i[H, ρ] + V (D[a1 − eiθa2] +D[a2 − eiθa3])ρ+

3∑
i=1

γ
(i)
↓ D[a2

i ]ρ+ γ
(i)
↑ D[a†i ]ρ (2.54)

2.7 Quantum indicators

To investigate the synchronisation of coupled quantum VdP oscillators there are a couple of different
indicators, all of which have their own characteristics. The first indicator is the complex correlator
defined as[2]:

Cψi,j(t) =

〈
a†iaj

〉
ψ(t)√〈

a†iai

〉
ψ(t)

〈
a†jaj

〉
ψ(t)

(2.55)

The modulus of this correlator gives a sense of how strong synchronisation is between the oscillators, 1
giving total correlation and 0 indicating completely uncorrelated oscillations. The phase of the correlator
holds information about the phase difference of the oscillators when these are correlated. When looking
at the two oscillator system for example, substituting the spin operators into 2.55 and using the values
for π the following is obtained:

Cπ =
π2,3√

(π3,3 + π4,4)(π2,2 + π4,4)
=

V (γ↑ + V )

(3γ↑ + V )
√

∆ω2 + (3γ↑ + V )2
ei∆φπ (2.56)

|Cπ| can then be used to find the strength of synchronisation for both VdP oscillators for various values
of ∆ω and V , giving the quantum equivalent of the Arnold tongue as later on presented in the results
section.
Another measure of synchronisation is the Pearson correlation coefficient:

rXY =
Cov(X,Y )

σ(X)σ(Y )
=

E[(X − E[X])(Y − E[Y ])]√
E(X − [X])2E(Y − E[Y ])2

(2.57)

In the case where the two variables are measurements of trajectories, the coefficient will depend on time
and on the window used to determine the averages that replace the expectation values:

rx1,x2
(t|∆t) = δ〈x1〉δ〈x2〉√

δ〈x1〉2 δ〈x2〉2

=

∫ t+∆t/2

t−∆t/2

(
〈x1〉ψ(s)−

1
∆t

∫ s+∆t/2

s−∆t/2
〈x1〉ψ(r)dr

)(
〈x2〉ψ(s)−

1
∆t

∫ s+∆t/2

s−∆t/2
〈x2〉ψ(r)dr

)
ds√∫ t+∆t/2

t−∆t/2

(
〈x1〉ψ(s)−

1
∆t

∫ s+∆t/2

s−∆t/2
〈x1〉ψ(r)dr

)2
ds
∫ t+∆t/2

t−∆t/2

(
〈x2〉ψ(s)−

1
∆t

∫ s+∆t/2

s−∆t/2
〈x2〉ψ(r)dr

)2
ds

(2.58)
Where sample means are taken over a time interval ∆t symmetrically around each chosen time. xi =
(ai + a†i )/

√
2 are the position quadratures of the oscillators, the expectation values of which can be
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thought of as the position of the oscillators at a specific time.
Another interesting phenomenon that occurs in a system of coupled quantum oscillators is entanglement.
Since the state of the system remains pure for the system governed by the stochastic Schrödinger
equations as presented before, the Von Neumann entropy is an indicator of entanglement for the state
of a single oscillator. This entropy is given by:

Sψ = −Tr[ρψ1(t) log(ρψ1(t))] (2.59)

Where ρψ1(t) is the reduced density matrix of the first oscillator and the logarithm is taken of this
matrix. ρψ1(t) is found by tracing out the second oscillator using the partial trace:

ρψ1(t) = Tr2[|ψ(t)〉 〈ψ(t)|] = Tr2[ρψ(t)]

=

[
〈0, 0| ρψ(t) |0, 0〉+ 〈0, 1| ρψ(t) |0, 1〉 〈0, 0| ρψ(t) |1, 0〉+ 〈0, 1| ρψ(t) |1, 1〉
〈1, 0| ρψ(t) |0, 0〉+ 〈1, 1| ρψ(t) |0, 1〉 〈1, 0| ρψ(t) |1, 0〉+ 〈1, 1| ρψ(t) |1, 1〉

]
(2.60)

In this the ones and zeros give the numbers of the Fock states for the combined system. The partial
trace in general works by adding the elements of the original matrix with the needed Fock state for the
remaining oscillator and Fock states in the bra and ket for each oscillator that is traced out that are
equal for the single oscillators. An example for a three oscillator system, in which the oscillators have
two Fock states and the second and third oscillator are traced out, would be:

〈0| ρ |1〉 = 〈0, 0, 0| ρ |1, 0, 0〉+ 〈0, 0, 1| ρ |1, 0, 1〉+ 〈0, 1, 0| ρ |1, 1, 0〉+ 〈0, 1, 1| ρ |1, 1, 1〉 (2.61)

The maximum of the indicator in 2.59 is log(2) or approximately 0.69, achieved for a maximally en-
tangled state. The value 0 is taken for states which are not entangled.
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3 Results

In this section the results of various simulations for two- and three-QVdP oscillator systems will be
presented. First the regions in which synchronisation is expected to occur are presented. Parameters
specifically picked within or outside these regions are then used in the simulations of trajectories. For
a single trajectory we show the behaviour of the four indicators. These indicators are then used, in
a similar way as was done by [2], to explore the behaviour of the two-oscillator system with regard
to synchronisation and entanglement. The distributions for the indicator values averaged over single
trajectories are presented for two- and three-oscillator systems and a comparison between the behaviour
shown by the systems is made. The code for the simulations can be found in [14]

3.1 Arnold tongues

To find parameter values for which the oscillators are expected to show synchronisation, 2.55 is used to
find quantum Arnold tongues:

(a) (b)

(c) (d)

Fig. 3.1: |Cπ| for a 2- (a) and 3-oscillator system (b-d). The dotted line is the classical Arnold
tongue (for three oscillators the simultaneous one) and the black line represents the largest tongue for
a single pair of classical oscillators. γ↑ = 0.01, (b) and (c) are all-to-all coupled, (d) is chain coupled,
∆ω3,2 = ∆ω2,1 for (b) and (d), ∆ω3,2 = V

2.2 for (c).

Looking at the quantum Arnold tongues in fig. 3.1 the requirements for synchronisation in a classical
system give a pretty good indication of the quantum system’s behaviour. Even though the quantum
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Arnold tongues are a lot smoother, their shapes and areas of strong synchronisation are very similar to
their classical counterparts. The tongues of three-oscillator systems are smaller than that of the two-
oscillator system, sheerly due to the need for simultaneous synchronisation of more oscillators. Here the
type of coupling comes in to play as well and makes that the tongue in (d) is a lot narrower than that
in (b). This difference in width is caused by the absence of one connection in the chain-coupling versus
the all-to-all coupling. Without it a weaker pull towards the overall average of the system is achieved,
since two links are moving the system to possibly different averages of oscillator pairs, but a third link
to draw those nearer to one another is missing.
The dependence of the Arnold tongue for an oscillator pair on the ∆ω of the other pair can be seen
in (c). There eigenfrequency differences in the second pair along the edge of the classical prediction
for the tongue, result in a clearly skewed synchronisation area, signalling that the conditions on both
oscillator pairs are intertwined.
Utilising the knowledge obtained from these Arnold tongues, parameters within or outside of the regions
can be picked when simulating the quantum systems to either enable or prevent synchronisation.

3.2 Indicator behaviour for single trajectories

Next we seek to explore the behaviour of the indicators discussed in section 2.7. To see how these
indicators behave, they can be applied to a single trajectory developing from one of the eigenvectors of
the steady state:

(a) (b)

(c) (d)

Fig. 3.2: Indicators |Cψ| (blue), ∆φψ (green) and rxixj (orange) for a single trajectory of a two- (a)
and a three-oscillator all-to-all coupled system ((b): pair 1,2; (c): pair 1,3; (d): pair 2,3). Dotted
lines give the expectation values for the steady state. ∆ω2,1 = 0.1γ↑(= ∆ω3,2), ω1 = 2π, V = 10γ↑,
γ↑ = 0.01, ∆t = 4π/ω1, θ = 0.
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The behaviours of the indicators obtained for the two- and three-oscillator system, visible in fig. 3.2,
are very similar and agree with the characteristics of the indicators found in [2]. As noted there, a high
value of |Cψ| is needed for synchronisation, but other indicators should also be used, since a high value
is not necessarily caused by synchronisation and thus the information contained in ∆φψ is not always
high.
The angle of the coupling was set to zero, therefore phase locking was expected at ∆φψ = 0. Nevertheless
the coupling was picked to be weak, so as to allow the relative phases within the systems to evolve over
time between the maximum and minimum phase difference. It is worth noting that the jumps in the
green graphs are not actually jumps, but changes in the phase difference that increase or decrease its
value above or below the maximum or minimum of the indicator respectively, lowering the absolute
difference again.
Values of the phase difference around zero are accompanied by values of the Pearson correlator close to
one, indicating positive linear correlation as expected. When the phase difference increases, r first drops
to 0 and then goes down to -1 as the oscillators become negatively correlated. Because the Pearson
correlator requires a window around the point for which it is calculated, the orange graph begins only
after half of this window has passed.
Average values found in π are in line with the angle θ = 0 and the indicators for the chain coupled
three-oscillator system behave in the familiar way.

3.3 Monte Carlo simulations of two QVdPOs

Now we proceed with Monte Carlo simulations of 1000 trajectories per combination of parameters,
initiated from the eigenvectors of the steady state randomly picked with the eigenvalues as probabilities.
By averaging over these trajectories, the partially stochastic steady-state dynamics can be explored
using distributions for the average indicator values. To make measurements mainly reflect the system
dynamics, the oscillators are first left to depart from the eigenvectors for some time. Then the indicators
are applied at each time step and averaged over the duration of the used part of a trajectory. Following
this method for ∆φψ and |Cψ| the role of the coupling strength, V , becomes apparent:

(a) (b)

Fig. 3.3: (a) Probability distribution of ∆φψ for the two QVdPO system with V = {blue: 5γ↑, red:
50γ↑}. (b) Variances for two QVdPOs of |Cψ| (blue) and ∆φψ (green). ∆ω = γ↑, ω1 = 8π, γ↑ = 0.01,
θ = 0.

In fig. 3.3 the probability distribution of ∆φψ and the variances of ∆φψ and |Cψ| show that higher values
for V lead to sharper peak in the distribution of the phase difference around value chosen through θ = 0.
As V increases both variances go to zero giving a strong indication of long periods of synchronisation.
Even for weaker coupling the distribution in (a) shows a tendency of the system to synchronisation, be
it for shorter durations.
The influence of θ on synchronisation in the system becomes clear when a few different values for it are
picked when simulating the two-oscillator system:
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Fig. 3.4: Probability distributions for ∆φψ, V =
100γ↑, ∆ω = γ↑, ω1 = 8π, γ↑ = 0.01, θ = {blue: 0,
red: π/3, green: π/2}

A change in the coupling angle, θ, shifts the peak
of the distribution of ∆φψ in fig. 3.4 towards the
opposite of that angle. The distributions for non-
zero angles are a little skewed towards zero since
there are more phase differences to randomly take
to the right then there are to the left.

Comparing the indicator for the entanglement
of the quantum system, Sψ, with the ones used
above, correlations between synchronisation and
entanglement can be explored:

(a) (b)

Fig. 3.5: (a) Scatter plot of Sψ and ∆φψ V = {blue: 5γ↑, red: 50γ↑}, ∆ω = γ↑. (b) Variances of
∆φψ (blue) and Sψ (green), V = 20γ↑, ∆ω = {−30,−23,−17,−10,−3, 0, 3, 10, 17, 23, 30}γ↑. ω1 = 8π,
γ↑ = 0.01, θ = 0.

The data displayed in fig. 3.5 shows the same correlation between synchronisation and entanglement
as found in [2]. In (a) for stronger coupling more trajectories show smaller phase differences, which are
accompanied by larger values for Sψ. In general with stronger coupling high Sψ values are also achieved
more frequently. Intuitively this makes sense because stronger coupling increases the dependence of an
oscillator’s dynamics on the dynamics of the oscillator it is coupled to. This would not only be able to
cause the dynamics to be driven towards their average, achieving synchronisation, but also introduce
more co-dependence of the oscillators’ states, creating more entanglement.
Furthermore, opposite behaviour of the variances of ∆φψ and Sψ shown in (b) supports the connection
between synchronisation and entanglement as well. There changes in the difference of the oscillators’
natural frequencies cause the variance of ∆φψ to drop and Sψ to rise as ∆ω becomes close to zero.
Good conditions for synchronisation thus seem to enable entanglement alongside synchronisation.

3.4 Comparing the 2- and 3-oscillator system

With the four indicators applied above, a comparison between the 2-, all-to-all coupled 3- and chain
coupled 3-oscillator system will now be made. Histograms for oscillator pair 2-3 are left out as symmetry
within the systems causes these to be almost completely identical to those of pair 1-2.
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3.4.1 |Cψ| distributions

Starting with the distributions for |Cψ|:

(a) (b)

(c) (d)

(e)

Fig. 3.6: Probability distribution of |Cψ| for different oscillator pairs. 2QVdPOs: (a); 3 all-to-all
coupled QVdPOs: (b) 1-2, (c) 1-3; 3 chain coupled QVdPOs: (d) 1-2, (e) 1-3. Blue: V = 100γ↑,
∆ω = γ↑; red: V = 5γ↑, ∆ω = γ↑, green: V = 20γ↑, ∆ω = 20γ↑; ω1 = 8π, γ↑ = 0.01, θ = 0.

As seen in fig. 3.6, all three systems show low values for |Cψ| when weakly coupled and high values when
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strongly coupled. In the systems consisting of three oscillators however this divide is more significant,
especially for the chain coupled system. The increased gap makes sense because the Arnold tongues for
three oscillators, with chain coupling in particular, are smaller than those for the two oscillator system.
This is further supported by the slight shift to the left of the distribution for the strongly coupled system
in (d) and (e). The shift is most prominently shown in (e) since ∆ω3,1 = ∆ω2,1 + ∆ω3,2 = 2∆ω and
with chain coupling the oscillators are even indirectly coupled. The green bars, valid for a system in
a region with poor synchronisation outside the Arnold tongue, through |Cψ| appears to show a decent
amount of synchronisation. However here |Cψ| like previously mentioned is increased by trajectories
without synchronisation, as becomes clear when looking at the other indicators.

3.4.2 ∆φψ distributions

Next the distributions of the phase difference ∆φψ are shown and discussed:

(a) (b)

(c) (d)
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(e)

Fig. 3.7: Probability distribution of ∆φψ for different oscillator pairs. 2QVdPOs: (a); 3 all-to-all
coupled QVdPOs: (b) 1-2, (c) 1-3; 3 chain coupled QVdPOs: (d) 1-2, (e) 1-3. Blue: V = 100γ↑,
∆ω = γ↑; red: V = 5γ↑, ∆ω = γ↑, green: V = 20γ↑, ∆ω = 20γ↑; ω1 = 8π, γ↑ = 0.01, θ = 0.

The distributions in fig. 3.7 support the notion of synchronisation in the strongly coupled regime, as
the blue histograms are sharply peaked around zero, but the red and green distributions remain a lot
broader. Again the systems with a wider Arnold tongue show a somewhat sharper peak. For the case
with poor synchronisation outside the Arnold tongue ∆φψ is not centred around zero, indicating that
synchronisation with the angle θ = 0 is not achieved.

3.4.3 r distributions

Here we present the distributions for the Pearson correlator, r, which like |Cψ| also gives the strength
of synchronisation in the system:

(a) (b)
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(c) (d)

(e)

Fig. 3.8: Probability distribution of rxi,xj for different oscillator pairs. 2QVdPOs: (a); 3 all-to-all
coupled QVdPOs: (b) 1-2, (c) 1-3; 3 chain coupled QVdPOs: (d) 1-2, (e) 1-3. Blue: V = 100γ↑,
∆ω = γ↑; red: V = 5γ↑, ∆ω = γ↑, green: V = 20γ↑, ∆ω = 20γ↑; ω1 = 8π, γ↑ = 0.01, θ = 0.

The Pearson correlator in fig. 3.8 shows results in line with the previous indicators. For strong coupling
its value peaks close to 1, indicating positive linear correlation between the oscillators. Within areas
of poor synchronisation the distributions are closer to zero, suggesting there is no linear correlation
between the oscillators. This manifests itself the most in the 1-3 pair of the chain coupled system, since
the difference between the eigenfrequencies of these oscillators is the biggest and they are not directly
coupled. The slight shift of the red distribution in (d) towards negative correlation might be explained
by the coupling between 1-2 and 2-3 effectively only pulling oscillator 2 out of synchronisation with the
only oscillators when oscillators 1 and 3 are not synchronised.

3.4.4 Sψ distributions

Now we look at results for the Von Neumann entropy, Sψ, of the systems and discuss the relation
between synchronisation and entanglement in them:
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(a) (b)

(c) (d)

(e)

Fig. 3.9: Probability distribution of Sψ for different oscillator pairs. 2QVdPOs: (a); 3 all-to-all coupled
QVdPOs: (b) 1-2, (c) 1-3; 3 chain coupled QVdPOs: (d) 1-2, (e) 1-3. Blue: V = 100γ↑, ∆ω = γ↑; red:
V = 5γ↑, ∆ω = γ↑, green: V = 20γ↑, ∆ω = 20γ↑; ω1 = 8π, γ↑ = 0.01, θ = 0.

Values before associated with strong synchronisation in fig. 3.9 show a larger probability for higher
values of Sψ and thus more entanglement. Less entanglement comes paired with weak synchronisation
inside the Arnold tongue as indicated in red. The green distribution shows very little entanglement for
the system outside of the synchronisation regime. Differences in the entanglement of systems showing
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strong and weak synchronisation, found in two coupled QVdPOs, remain in three oscillator systems even
though the highest values for Sψ are less likely to be reached. It is remarkable how in the three oscillator
system, in particular with chain coupling, weakly coupled oscillators show entanglement distributions
centred around bigger Sψ values. An explanation for this can be found in the fact, that due to the extra
link in the system, a single oscillator does not only feel the influence of the added oscillator, but also
becomes more dependent on the dynamics of the QVdPO that was already present since these start to
change more frequently.
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4 Conclusion

In this thesis, we have explored the behaviour of all-to-all and chain coupled systems consisting of three
quantum Van der Pol oscillators using trajectories. In order to ease the analysis of the quantum system
and understand its properties, first similar classical VdPOs were explored. From these CVdPOs, it be-
came clear that the classical systems have a stable limit cycle and within a certain range of parameters,
called the Arnold tongue, show synchronisation of the oscillators.
The quantum VdPO was found to be equal to the CVdPO in the classical limit (γ↓ → 0). In the
quantum limit (γ↓/γ↑ → ∞), QVdPOs were shown to have a representation consisting of two spin
states. Synchronisation and entanglement in the two-QVdPO system were explored using the methods
of [2]. The four indicators used there showed slightly different results for the simulations presented here.
Still these results support their conclusions about the occurrence of synchronisation in the trajectories
of the system within the quantum Arnold tongue and about the presence of a correlation between this
synchronisation and entanglement of the system.
With the same Monte Carlo simulation and indicators, trajectories for three QVdPOs were analysed.
The system was expanded to an all-to-all coupled and a chain coupled 3-QVdPO system. Arnold
tongues for these systems were found to be smaller and synchronisation occurred slightly less under
the same circumstances than within the 2-oscillator system. Entanglement for three weakly coupled
oscillators was shown to be a little higher but the positive correlation between synchronisation and
strong entanglement remained.

To improve upon the results obtained here for the quantum systems, the Monte Carlo simulation could
be adjusted to include a longer period to let trajectories evolve from the initial states used. Averaging
indicator values for trajectories over longer time periods would likely also improve the results and might
bridge the gap between results shown here and in [2], but both are computationally expensive.
In further works the 3-oscillator structures made in this thesis could be used to build larger networks of
oscillators and predict their behaviour. The influence of the strength of the coupling between the three
oscillators could also be explored by setting this to different values for different links.
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A Appendix

Here the connection is shown between the regular and spin representation for the two VdP oscillator
system with identical pumping and damping rates in the quantum limit (κ2 →∞ with κ1 << κ2). The
regular representation looks like:

ρ̇ =− i[H, ρ] + κ1

∑
n

(2a†nρan − ana†nρ− ρana†n) + κ2

∑
n

(2a2
nρa
†2
n − a†2n a2

nρ− ρa†2n a2
n)

+ V (2(a1 − eiθa2)ρ(a1 − eiθa2)† − (a1 − eiθa2)†(a1 − eiθa2)ρ− ρ(a1 − eiθa2)†(a1 − eiθa2))

(A.1)

Where the Hamiltonian is given by H =
∑
n ωna

†
nan; the sums with index n account for the individual

oscillators; the first sum gives the linear part with rate κ1; the second the non-linear component with
rate κ2; the systems are coupled with strength V and the coupling is set to a relative phase through
the angle θ. To show how in the limit given above this system may be represented using spin operators
σ−n = |0〉 〈1|n and σ+

n = |1〉 〈0|n and Fock states |0〉, |1〉 corresponding to |↓〉 and |↑〉, we use the following
evaluations of the ladder operators:
a |n〉 =

√
n |n− 1〉; 〈n| a† = 〈n− 1|

√
n; a† |n〉 =

√
n+ 1 |n+ 1〉; 〈n| a = 〈n+ 1|

√
n+ 1.

First the elements 〈n1, n2| ρ̇ |m1,m2〉 are found using these relations and A.1. Since in the quantum limit
only the lowest two Fock states, |0〉 and |1〉, are occupied due to instantaneous decay of higher states
to a lower state, we assume values for states higher than |2〉 to be zero, for instance 〈3, 0| ρ |3, 0〉 ≈ 0.
Then the fact that the system relaxes to the steady state very rapidly (κ2 >> κ1) is used to set one side
of the found equations equal to zero. Coupling terms are omitted during the last step and evaluated
separately later on. The equations for the various elements are:

〈0, 0| ρ̇ |0, 0〉 =− 4κ1 〈0, 0| ρ |0, 0〉+ 4κ2(〈2, 0| ρ |2, 0〉+ 〈0, 2| ρ |0, 2〉)
+ 2V (〈1, 0| ρ |1, 0〉 − e−iθ 〈1, 0| ρ |0, 1〉 − eiθ 〈0, 1| ρ |1, 0〉+ 〈0, 1| ρ |0, 1〉)

(A.2)

〈1, 0| ρ̇ |1, 0〉 =κ1(2 〈0, 0| ρ |0, 0〉 − 6 〈1, 0| ρ |1, 0〉) + κ2(4 〈1, 2| ρ |1, 2〉+ 12 〈3, 0| ρ |3, 0〉)

+ V [4 〈2, 0| ρ |2, 0〉 − 2
√

2e−iθ 〈2, 0| ρ |1, 1〉+ 2
√

2eiθ 〈1, 1| ρ |2, 0〉+ 2 〈1, 1| ρ |1, 1〉
− 2 〈1, 0| ρ |1, 0〉+ e−iθ 〈1, 0| ρ |0, 1〉+ eiθ 〈0, 1| ρ |1, 0〉]

(A.3)

〈0, 1| ρ̇ |0, 1〉 =κ1(2 〈0, 0| ρ |0, 0〉 − 6 〈0, 1| ρ |0, 1〉) + κ2(4 〈2, 1| ρ |2, 1〉+ 12 〈0, 3| ρ |0, 3〉)

+ V [2 〈1, 1| ρ |1, 1〉 − 2
√

2e−iθ 〈1, 1| ρ |0, 2〉+ 2
√

2eiθ 〈0, 2| ρ |1, 1〉+ 4 〈0, 2| ρ |0, 2〉
− 2 〈0, 1| ρ |0, 1〉+ e−iθ 〈1, 0| ρ |0, 1〉+ eiθ 〈0, 1| ρ |1, 0〉]

(A.4)

〈1, 1| ρ̇ |1, 1〉 =κ1(2 〈0, 1| ρ |0, 1〉+ 2 〈1, 0| ρ |1, 0〉 − 8 〈1, 1| ρ |1, 1〉)
+ V [4 〈2, 1| ρ |2, 1〉 − 4e−iθ 〈2, 1| ρ |1, 2〉 − 4eiθ 〈1, 2| ρ |2, 1〉+ 4 〈1, 2| ρ |1, 2〉 − 4 〈1, 1| ρ |1, 1〉

+
√

2(eiθ 〈0, 2| ρ |1, 1〉+ e−iθ 〈2, 0| ρ |1, 1〉+ eiθ 〈1, 1| ρ |2, 0〉+ e−iθ 〈1, 1| ρ |0, 2〉)]
(A.5)

Now using this and the fact that the system relaxes to the steady state very rapidly (κ2 >> κ1)
neglecting the coupling for now, setting the left hand sides of A.2, A.3 and A.4 equal to zero we obtain:

〈2, 0| ρ |2, 0〉+ 〈0, 2| ρ |0, 2〉 =
κ1

κ2
〈0, 0| ρ |0, 0〉 (A.6)

〈1, 0| ρ |1, 0〉 =
1

3
〈0, 0| ρ |0, 0〉+

2κ2

3κ1
〈1, 2| ρ |1, 2〉 (A.7)

〈0, 1| ρ |0, 1〉 =
1

3
〈0, 0| ρ |0, 0〉+

2κ2

3κ1
〈2, 1| ρ |2, 1〉 (A.8)

Then following the same procedure for another few states(leaving out higher state terms and coupling
except for the first evaluation): Thus:

〈1, 1| ρ |1, 1〉 =
1

4
(〈1, 0| ρ |1, 0〉+ 〈0, 1| ρ |0, 1〉) (A.9)
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〈2, 1| ρ̇ |2, 1〉 = κ1(4 〈1, 1| ρ |1, 1〉+ 2 〈2, 0| ρ |2, 0〉 − 10 〈2, 1| ρ |2, 1〉)− 4κ2 〈2, 1| ρ |2, 1〉 (A.10)

Giving:

〈2, 1| ρ |2, 1〉 = κ1
2 〈1, 1| ρ |1, 1〉+ 〈2, 0| ρ |2, 0〉

5κ1 + 2κ2
(A.11)

〈1, 2| ρ̇ |1, 2〉 = κ1(4 〈1, 1| ρ |1, 1〉+ 2 〈0, 2| ρ |0, 2〉 − 10 〈1, 2| ρ |1, 2〉)− 4κ2 〈1, 2| ρ |1, 2〉 (A.12)

Therefore:

〈1, 2| ρ |1, 2〉 = κ1
2 〈1, 1| ρ |1, 1〉+ 〈0, 2| ρ |0, 2〉

5κ1 + 2κ2
(A.13)

Substituting A.11, A.13 and finally A.9 after adding A.7 and A.8 gives:

〈1, 0| ρ |1, 0〉+〈0, 1| ρ |0, 1〉 =
2

3

(
〈0, 0| ρ |0, 0〉+ κ2

〈1, 0| ρ |1, 0〉+ 〈0, 1| ρ |0, 1〉+ 〈2, 0| ρ |2, 0〉+ 〈0, 2| ρ |0, 2〉
5κ1 + 2κ2

)
(A.14)

Dividing A.6 by κ2

κ1
, plugging it into the equation above and rearranging the terms we arrive at:

〈1, 0| ρ |1, 0〉+ 〈0, 1| ρ |0, 1〉 =
κ2

κ1

12κ1

κ2
+ 4

15κ1

κ2
+ 4

(〈2, 0| ρ |2, 0〉+ 〈0, 2| ρ |0, 2〉) (A.15)

Now we look at the spin representation suggested in [2]:

ρ̇ =− i[H, ρ] + κ1

∑
n

(2σ+
n ρσ

−
n − σ−n σ+

n ρ− ρσ−n σ+
n ) + 2κ1

∑
n

(2σ−n ρσ
+
n − σ+

n σ
−
n ρ− ρσ+

n σ
−
n )

+ V (2(σ−1 − eiθσ
−
2 )ρ(σ−1 − eiθσ

−
2 )† − (σ−1 − eiθσ

−
2 )†(σ−1 − eiθσ

−
2 )ρ− ρ(σ−1 − eiθσ

−
2 )†(σ−1 − eiθσ

−
2 ))

(A.16)
Disregarding the coupling for the ground state we have:

〈0, 0| ρ̇ |0, 0〉 = −4κ1 〈0, 0| ρ |0, 0〉+ 4κ1(〈1, 0| ρ |1, 0〉+ 〈0, 1| ρ |0, 1〉) (A.17)

To see how this compares to A.2 we substitute A.15 into the equation above:

〈0, 0| ρ̇ |0, 0〉 = −4κ1 〈0, 0| ρ |0, 0〉+ 4κ2

12κ1

κ2
+ 4

15κ1

κ2
+ 4

(〈2, 0| ρ |2, 0〉+ 〈0, 2| ρ |0, 2〉) (A.18)

Where κ1

κ2
→ 0 as the limit of κ2

κ1
→ ∞ was assumed thus giving equal evaluations for the regular and

spin representation of the system. Next we look at the coupling term of A.16:

〈0, 0| ρ̇ |0, 0〉 = 2V (〈1, 0| ρ |1, 0〉 − e−iθ 〈1, 0| ρ |0, 1〉 − eiθ 〈0, 1| ρ |1, 0〉+ 〈0, 1| ρ |0, 1〉) (A.19)

The above is exactly the evaluation found for A.1. The comparison should also hold for states with
Fock state |1〉, from A.16 we obtain:

〈1, 1| ρ̇ |1, 1〉 = κ1(2 〈0, 1| ρ |0, 1〉+ 2 〈1, 0| ρ |1, 0〉 − 8 〈1, 1| ρ |1, 1〉)− 4V 〈1, 1| ρ |1, 1〉 (A.20)

〈1, 0| ρ̇ |1, 0〉 =κ1(2 〈0, 0| ρ |0, 0〉 − 6 〈1, 0| ρ |1, 0〉+ 4 〈1, 1| ρ |1, 1〉)
+ V (2 〈1, 1| ρ |1, 1〉 − 2 〈1, 0| ρ |1, 0〉+ eiθ 〈0, 1| ρ |1, 0〉+ e−iθ 〈1, 0| ρ |0, 1〉)

(A.21)

〈0, 1| ρ̇ |0, 1〉 =κ1(2 〈0, 0| ρ |0, 0〉 − 6 〈0, 1| ρ |0, 1〉+ 4 〈1, 1| ρ |1, 1〉)
+ V (2 〈1, 1| ρ |1, 1〉 − 2 〈0, 1| ρ |0, 1〉+ eiθ 〈0, 1| ρ |1, 0〉+ e−iθ 〈1, 0| ρ |0, 1〉)

(A.22)

To see the resemblance with the evaluations of the original representation we use that representation
to evaluate a few more states:

〈2, 0| ρ̇ |1, 1〉 = −i(ω1−ω2) 〈2, 0| ρ |1, 1〉+κ1(2
√

2 〈1, 0| ρ |0, 1〉−8 〈2, 0| ρ |1, 1〉)−2κ2 〈2, 0| ρ |1, 1〉 (A.23)

From which we get:

〈2, 0| ρ |1, 1〉 =
κ12
√

2

i(ω1 − ω2) + 8κ1 + 2κ2
〈1, 0| ρ |0, 1〉 (A.24)
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Likewise:

〈1, 1| ρ̇ |2, 0〉 = −i(ω2−ω1) 〈1, 1| ρ |2, 0〉+κ1(2
√

2 〈0, 1| ρ |1, 0〉−8 〈1, 1| ρ |2, 0〉)−2κ2 〈1, 1| ρ |2, 0〉 (A.25)

leads to:

〈1, 1| ρ |2, 0〉 =
κ12
√

2

i(ω2 − ω1) + 8κ1 + 2κ2
〈0, 1| ρ |1, 0〉 (A.26)

〈0, 2| ρ̇ |1, 1〉 = −i(ω2−ω1) 〈0, 2| ρ |1, 1〉+κ1(2
√

2 〈0, 1| ρ |1, 0〉−8 〈0, 2| ρ |1, 1〉)−2κ2 〈0, 2| ρ |1, 1〉 (A.27)

to:

〈0, 2| ρ |1, 1〉 =
κ12
√

2

i(ω2 − ω1) + 8κ1 + 2κ2
〈0, 1| ρ |1, 0〉 (A.28)

And:

〈1, 1| ρ̇ |0, 2〉 = −i(ω1−ω2) 〈1, 1| ρ |0, 2〉+κ1(2
√

2 〈1, 0| ρ |0, 1〉−8 〈1, 1| ρ |0, 2〉)−2κ2 〈1, 1| ρ |0, 2〉 (A.29)

to:

〈1, 1| ρ |0, 2〉 =
κ12
√

2

i(ω1 − ω2) + 8κ1 + 2κ2
〈1, 0| ρ |0, 1〉 (A.30)

Now since:
〈1, 0| ρ̇ |0, 1〉 = −i(ω1 − ω2) 〈1, 0| ρ |0, 1〉+−6κ1 〈1, 0| ρ |0, 1〉 (A.31)

and:
〈0, 1| ρ̇ |1, 0〉 = −i(ω2 − ω1) 〈0, 1| ρ |1, 0〉+−6κ1 〈0, 1| ρ |1, 0〉 (A.32)

result in:
〈0, 1| ρ |1, 0〉 = 〈1, 0| ρ |0, 1〉 = 0 (A.33)

A.24,A.26, A.28 and A.30 also equal zero. This in turn combined with:

〈2, 1| ρ̇ |1, 2〉 = −i(ω1 − ω2) 〈2, 1| ρ |1, 2〉+ κ1(2
√

2 〈1, 1| ρ |0, 2〉+ 2
√

2 〈2, 0| ρ |1, 1〉 − 10 〈2, 1| ρ |1, 2〉)
(A.34)

and:

〈1, 2| ρ̇ |2, 1〉 = −i(ω2 − ω1) 〈2, 1| ρ |1, 2〉+ κ1(2
√

2 〈0, 2| ρ |1, 1〉+ 2
√

2 〈1, 1| ρ |2, 0〉 − 10 〈1, 2| ρ |2, 1〉)
(A.35)

gives:
〈2, 1| ρ |1, 2〉 = 〈1, 2| ρ |2, 1〉 = 0 (A.36)

The realisation that:

〈2, 1| ρ |2, 1〉+ 〈1, 2| ρ |1, 2〉 = κ1
4 〈1, 1| ρ |1, 1〉+ 〈2, 0| ρ |2, 0〉+ 〈2, 0| ρ |2, 0〉

5κ1 + 2κ2

=
κ1

κ2

4 〈1, 1| ρ |1, 1〉+ 〈2, 0| ρ |2, 0〉+ 〈2, 0| ρ |2, 0〉
5κ1

κ2
+ 2

(A.37)

in the quantum limit equals zero offers te final piece to unify A.5 with A.20 We also obtain:

〈2, 2| ρ̇ |2, 2〉 = κ1(4 〈1, 2| ρ |1, 2〉 − 12 〈2, 2| ρ |2, 2〉+ 4 〈2, 1| ρ |2, 1〉)− 8κ2 〈2, 2| ρ |2, 2〉 (A.38)

From which follows:

〈2, 2| ρ |2, 2〉 = κ1
〈1, 2| ρ |1, 2〉+ 〈2, 1| ρ |2, 1〉

3κ1 + 2κ2
(A.39)

So likewise:

〈2, 0| ρ |2, 0〉 =
κ1 〈1, 0| ρ |1, 0〉+ κ2 〈2, 2| ρ |2, 2〉

2κ1 + κ2

=
κ1 〈1, 0| ρ |1, 0〉

2κ1 + κ2
+ κ1κ2

〈1, 2| ρ |1, 2〉+ 〈2, 1| ρ |2, 1〉
12κ2

1 + 14κ1κ2 + 4κ2
2

=
κ1

κ2
〈1, 0| ρ |1, 0〉
2κ1

κ2
+ 1

+
κ1

κ2

〈1, 2| ρ |1, 2〉+ 〈2, 1| ρ |2, 1〉
12

κ2
1

κ2
2

+ 14κ1

κ2
+ 4

(A.40)
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and

〈0, 2| ρ |0, 2〉 =
κ1 〈0, 1| ρ |0, 1〉+ κ2 〈2, 2| ρ |2, 2〉

2κ1 + κ2

=
κ1 〈0, 1| ρ |0, 1〉

2κ1 + κ2
+ κ1κ2

〈1, 2| ρ |1, 2〉+ 〈2, 1| ρ |2, 1〉
12κ2

1 + 14κ1κ2 + 4κ2
2

=
κ1

κ2
〈0, 1| ρ |0, 1〉
2κ1

κ2
+ 1

+
κ1

κ2

〈1, 2| ρ |1, 2〉+ 〈2, 1| ρ |2, 1〉
12

κ2
1

κ2
2

+ 14κ1

κ2
+ 4

(A.41)

reduce to zero in the limit. For A.3 to be equal to A.21 and A.4 to be equal to A.22 we are left with
the task to prove in the quantum limit:

κ2 〈1, 2| ρ |1, 2〉 = κ1 〈1, 1| ρ |1, 1〉 (A.42)

and
κ2 〈2, 1| ρ |2, 1〉 = κ1 〈1, 1| ρ |1, 1〉 (A.43)

The first of which follows from:

κ2 〈1, 2| ρ |1, 2〉 = κ1κ2
2 〈1, 1| ρ |1, 1〉+ 〈0, 2| ρ |0, 2〉

5κ1 + 2κ2

= κ1
2 〈1, 1| ρ |1, 1〉

5κ1

κ2
+ 2

+
κ2

1

κ2

1

5κ1

κ2
+ 2

 〈0, 1| ρ |0, 1〉
2κ1

κ2
+ 1

+
〈1, 2| ρ |1, 2〉+ 〈2, 1| ρ |2, 1〉

12
κ2

1

κ2
2

+ 14κ1

κ2
+ 4

 (A.44)

And in a similar way the second from:

κ2 〈1, 2| ρ |1, 2〉 = κ1
2 〈1, 1| ρ |1, 1〉

5κ1

κ2
+ 2

+
κ2

1

κ2

1

5κ1

κ2
+ 2

 〈1, 0| ρ |1, 0〉
2κ1

κ2
+ 1

+
〈1, 2| ρ |1, 2〉+ 〈2, 1| ρ |2, 1〉

12
κ2

1

κ2
2

+ 14κ1

κ2
+ 4


(A.45)

All the above taken together thus gives equality of the regular and spin representation in the quantum
limit where only two Fock states survive.
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