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Abstract

The Planchón-Peteroa Volcanic Complex (PPVC) is located in the Cen-

tral Andes, Argentina-Chile. Even though this active volcanic system is

considered one of the most dangerous volcanoes in the region, with more

than twenty modest (VEI < 4) Holocene eruptions, knowledge of its sub-

surface structures, internal processes, dynamics, and their relation, is still

limited.

Seismic interferometry (SI) is a high-resolution technique based on anal-

yses of the interference of the propagation seismic energy at one or many

stations. SI can be used to characterize the subsurface properties of a target

area. In particular, previous SI studies performed in the area of the PPVC

describe specific ranges of depth; therefore, more information is required for

a thorough description of the subsurface features in the area and for a better

understanding of the PPVC dynamics.
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We apply SI based on autocorrelations of selected regional and tele-

seismic events to image the subsurface structures below stations located in

Argentina and Chile during 2012. The selection of the events is performed

according to their location, magnitude, angle of incidence of P-wave seismic

energy, and signal-to-noise ratio in the records. For each station, we extract

time windows and we process them using two ranges of frequency, which are

sensitive to different depth ranges.

This work describes depths and zones previously not analyzed in the area

using SI methods. The results not only complement the available geological,

geochemical, and geophysical information, but present new information for

depths between 10 and ∼750 km depth, increasing the general knowledge of

the subsurface features in the PPVC. Finally, we also propose a model for

the subsurface down to the Moho, which indicates the crustal structure and

the likely distribution of magma bodies in depth.

Keywords:

Planchón-Peteroa Volcanic Complex, Seismic Interferometry, Regional and

teleseismic events, Magma storage in depth

1. Introduction1

The Planchón-Peteroa Volcanic Complex -PPVC- (35.223◦ S, 70.568◦ W;2

see location in Figure 1) is located in the Andes at the international border3

between Argentina and Chile. The PPVC is composed of three main volcanic4

edifices, i.e., the Azufre, the Planchón, and the Peteroa, out of which the5

latter is the current active volcano. The PPVC presents overlapped calderas6

originating from the destruction of several volcanic structures during past7

explosive events (Tormey, 1989). Through analyses of its historical activity8

and products, this volcanic system is ranked as the most hazardous volcano9
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in Argentina (Elissondo and Faŕıas, 2016) and the eighth most risky volcano10

in Chile (Technical sheet, Observatorio Volcanológico de los Andes del Sur,11

OVDAS-SERNAGEOMIN, Chile).12

The knowledge of the PPVC has been developed by the contribution13

from several disciplines, i.e., geology (Tormey, 1989; Haller et al., 1994;14

Naranjo et al., 1999; Tapia Silva, 2010; Haller and Risso, 2011), geochem-15

istry (Benavente, 2010; Tassi et al., 2016; Benavente et al., 2016), meteorol-16

ogy (Guzmán et al., 2013), ash analysis (Ramires et al., 2013), seismology17

(Casas et al., 2014; Manassero et al., 2014; Olivera Craig, 2017; Casas et al.,18

2018, 2019), gravimetry (Tassara et al., 2006), and risk analysis (Haller and19

Coscarella, 2011). These studies contribute to the knowledge of the eruptive20

history and the current subsurface conditions of this volcanic system. Nev-21

ertheless, the dynamics of the PPVC and their relation with the subsurface22

structures are still poorly understood, increasing the local risk (Elissondo23

and Faŕıas, 2016).24

A description of the subsurface structures (i.e., depth, associated dimen-25

sions, density contrasts, etc.) is essential for developing accurate knowl-26

edge of the dynamics of any volcanic system. In particular, knowledge of27

subsurface discontinuities provides constraints for tomographic studies, for28

magma-ascent modeling, among others, contributing to a better inference29

of the subsurface conditions, and, therefore, leading to more reliable analy-30

ses of likely future volcanic scenarios. Based on structural-geology analyses,31

Tapia Silva (2010) describes the subsurface geological units located in the32

very first 10 km of the subsurface in the area of the PPVC, and presents33

their distribution in depth. Even though no local studies have been applied34

for describing the crustal structure in the PPVC, Faŕıas et al. (2010) and35

Giambiagi et al. (2012) provide a crustal structure as a function of depth36
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and the distance from the trench in the Central Andes. They indicate the37

crust to be structured by four zones delimited in depth at ∼12 (upper-crust38

discontinuity), ∼20 (upper-lower crust discontinuity), and ∼35 (lower-crust39

discontinuity) km, with uncertainties smaller than 5 km. The crust-mantle40

discontinuity (the Moho) is estimated at ∼48 km depth, the lithosphere-41

asthenophere boundary at ∼75 km depth, and the top of the subducting42

slab (oceanic lithosphere) at ∼120 km depth (see also Tassara et al. (2006)).43

Nevertheless, more scientific evidence is required to increase the information44

about the known subsurface structures, leading to a more accurate charac-45

terization of their properties, as well as to describe the subsurface features46

previously not analyzed. These goals motivate local studies, as the one47

presented in this article.48

Claerbout (1968) has constituted a frame over which the theory of seis-49

mic interferometry developed. This passive seismic method -from here on,50

Seismic Interferometry by Autocorrelations (SIbyA)- suggests that the au-51

tocorrelation of a plane-wave transmission response propagating in a hori-52

zontally layered medium, recorded at the surface, allows the retrieval of the53

reflection response of a virtual source co-located with the recording station.54

SIbyA has shown to be a robust method; it has been applied to different55

types of seismic data, in several areas and at different scales. For example,56

SIbyA was applied to global- and teleseismic phases to image the subsurface57

at regional scales -array lengths greater than 50 km (Ruigrok and Wapenaar,58

2012; Nishitsuji et al., 2016), to P-wave of microseismic events to image the59

shallow (down to ∼3 km depth) volcanic subsurface (Kim et al., 2017), and60

to ambient-noise seismic data at several scales -local and regional (Draganov61

et al., 2007; Gorbatov et al., 2013; Boullenger et al., 2014; Oren and Nowack,62

2017; Delph et al., 2019). The robustness of SIbyA has motivated its ap-63
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plication to local (Casas et al., 2019), regional, and teleseismic seismic data64

(present article) recorded in the area of the PPVC.65

Nishitsuji et al. (2016) apply SIbyA to global seismic phases recorded66

in the eastern flank of the Peteroa volcano during 2012. They confirm the67

location of the Moho at ∼45-50 km depth, and propose a deformation feature68

in the subducting slab in the form of detachment, shearing, necking, or any69

combination of them.70

Casas et al. (2019) apply SIbyA to local seismic events to image the sub-71

surface below the stations located in the Argentine and Chilean sides of the72

PPVC during 2012. They confirm the geological structure described for the73

first 4 km of the subsurface (Tapia Silva, 2010), provide information about74

regions of higher heterogeneity caused by faulting and complex geochemical75

processes, and support the presence of a magma body emplaced at ∼4 km76

depth (previously suggested by Benavente (2010)).77

We apply SIbyA to regional and teleseismic events selected according to78

their location, magnitude, angles of incidence of the P-wave seismic energy79

at each station, and the signal-to-noise ratio in the records. The results80

for two different frequency ranges allow the description of the subsurface81

structures between ∼10 and ∼750 km depth, as well as the inference of the82

crustal structure and the likely location of magma bodies down to the Moho.83

2. Data84

The present application uses seismic data recorded by stations deployed85

in Argentina and Chile during 2012 (see station distribution in Figure 1).86

The temporary deployment of seismic instruments in an area of interest87

is a widely used tool for reaching several goals, e.g., perform first analyses88
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of the propagating wavefield and the subsurface conditions, increase the89

number of the recording stations, extend the analyzed area, and improve90

the accuracy of previous results. The MalARRgue project (Ruigrok et al.,91

2012) was designed by institutions from The Netherlands (Delft University92

of Technology -TUDelft), Argentina (Comisión Nacional de Enerǵıa Atómica93

CNEA), and The United States (Boise State University -BSU). Its goal was94

imaging and monitoring the subsurface of the Malargüe region (Mendoza,95

Argentina), an area of high scientific interest due to peculiar volcanic and96

tectonic processes (Stern, 2004). The MalARRgue project consisted of a97

temporal deployment (from January 2012 to January 2013) of 38 stations,98

out of which six were deployed along the eastern flank of the PPVC (from99

here on, the PV array). The PV array was equipped with short-period (2100

Hz) three-component (Sercel L-22) sensors.101

Another source of data is provided by three broad-band stations of the102

Observatorio Volcanológico de los Andes del Sur (OVDAS-SERNAGEOMIN,103

Chile), which are located ∼6 km northwards. These stations (from here on,104

OVDAS array) were active during 2012, through the same period as the PV105

array.106

3. Application and results107

SIbyA is described by the reciprocity theorem of correlation type (Wape-108

naar, 2003, 2004). Based on this theorem for transient sources (Wapenaar109

and Fokkema, 2006), and using autocorrelation in the time domain, we ob-110

tain:111
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∑
sources

{[
T (xA,−t) ∗ si(−t) ∗ T (xA, t) ∗ si(t)

]
⊗
[
s(−t) ∗ s(t)

]
i

}
≈ −R(xA,−t) + δ(t) −R(xA, t) , (1)

which states that the reflection response R(xA, t) can be retrieved at112

the station A located (at xA) at the surface through the autocorrelation113

of a recorded transmitted wavefield T (xA, t). The operator ∗ indicates114

convolution, ⊗ means deconvolution, and δ is the Dirac’s delta. The fac-115

tor
[
s(−t) ∗ s(t)

]
i

corresponds to the autocorrelated source time function116

(ASTF), which allows the deconvolution of each source time function si(t).117

Even though Equation 1 requires sources over the whole stationary phase118

area (i.e., the Fresnel Zone), seismic events present a non-uniform spatial119

distribution. Therefore, performing a selection of the seismic sources to be120

used is essential for a proper application of SIbyA. In order the transmission121

response of the propagating seismic energy to be accurately estimated by122

the vertical component of the records, we select only seismic events with123

P-wave seismic energy arriving (sub) vertically to a station at the surface.124

The retrieved reflection response (from here on, Rv(xA, t)) is related to a125

seismic source co-located with the station at the surface, radiating P-wave126

energy (sub)vertically downwards.127

A seismic source in the subsurface releases energy that propagates to-128

wards the surface, where the energy is reflected back to the subsurface. This129

seismic energy is reflected, refracted, converted and diffracted at the sub-130

surface structures and heterogeneities (or the surface), part of which arrives131

to the recording station at the surface. Seismograms are then composed132

of direct waves followed by these reverberated waves. SIbyA removes the133
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times previous to the direct arrival, and attenuates the incoherent noise,134

providing reflection evidence of the location of the subsurface structures.135

Figure 2a depicts the application of SIbyA in an idealized horizontally lay-136

ered 2-D medium, given a plane wavefield originated by a seismic source137

located exactly below the station. The obtained virtual reflection response138

can be used to estimate the depth of the reflectors located in the subsurface139

below the station. Based on Nishitsuji et al. (2016), Figure 2b shows the140

scenarios (except the one shown in Figure 2a) in which this methodology141

would (would not) retrieve seismic reflection energy: a gently dipping layer,142

a steep layer, a stair-like steep layer, and a steep layer with an abrupt break143

along its structure.144

In the real Earth, neither the wave fronts are planar at local and regional145

scales nor is usually the subsurface horizontally layered. In highly hetero-146

geneous zones (as, for example, the area of the PPVC; Manassero et al.147

(2014)), the location of a seismic source exactly below the station is not an148

imperative condition for an accurate retrieval of the subsurface reflection149

response Rv(xA, t) as small variations in the location of the sources do not150

affect the propagation of the seismic energy in the area of interest (Fan and151

Snieder, 2009), i.e., the vertical component of the records is still an accu-152

rate estimation of the transmission response. Therefore, sources with small153

P-wave angles of incidence are selected.154

3.1. Pre-processing155

Here, we obtain the input data and prepare it for the proper application156

of the Equation 1. Using the reference seismic catalogs (IRIS and USGS),157

we select events that occurred during the recording period (i.e., January158

2012 until January 2013) and which are characterized by a sufficiently high159
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magnitude to have a high signal-to-noise ratio in the records of each station.160

Due to likely variations of the local seismic wavefield in space and time, we161

evaluate the signal-to-noise ratio of each event at each of the stations.162

For the selection of seismic events, we use the software JWEED (Java163

version of Windows Extracted from Event Data) developed by IRIS. Based164

on restrictions in the origin time, the location, and the magnitude, we pre-165

select events (see Figure 3). According to their epicentral distance, we clas-166

sify them in two groups. One group is composed of events with epicentral167

distances between 30◦ and 120◦, and magnitudes higher than Mw. 6; each168

event in this group guarantees a sufficiently small P-wave ray parameter169

(< 0.08 s/km) so that seismic energy arrives (sub)vertically at a station,170

i.e., with incident angles <∼ 25◦ (Kennett et al., 1995). The second group171

is composed of events with epicentral distances lower than 30◦ and magni-172

tudes higher than Mw. 5. These events present a wide range of possible173

P-wave angles of incidence. Therefore, we perform an examination analysis174

(per station) on this second group in order to select only those events with175

at least one P-wave phase arriving with a ray parameter smaller than the176

adopted threshold (i.e., 0.08 s/km). The ray parameters estimated by the177

regional velocity model ak135 (Kennett et al., 1995) are appropriate for this178

analysis, as the seismic energy arrives to a zone with velocities lower than179

those predicted by the model (Casas et al., 2018), deviating the ray paths180

towards the vertical. Note that once the seismic events are selected, there is181

no need to keep the distinction between the groups, i.e., the information pro-182

vided by the records are equally important (no weights are assigned during183

processing).184

The origin time of the selected events is used to extract the seismic185

waveforms from the records of the PV and OVDAS stations. A first estimate186
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of the P- and S-wave arrival times for each event is calculated using the187

regional velocity model ak135; this estimate is then employed to manually188

pick accurate P- and S-wave arrival times. These times are used to compute189

the signal-to-noise ratio in the frequency domain (FSNR = As/An, where190

As and An are the signal and noise amplitude spectrums, respectively) and191

subsequently obtain a frequency range of a sufficiently high ratio. We request192

a good (FSNR > 4) signal-to-noise ratio for the events to be processed, in193

order to avoid high amplitudes of events we are not interested in.194

Once we obtained the origin time of the selected events and the accurate195

arrival times, and we examined the (sub)vertical incidence of the P-wave196

energy and high signal-to-noise ratio of the records, we extract the vertical-197

component records of the selected events at each of the used stations.198

3.2. Processing199

The vertical-component records of seismic events with P-wave energy200

arriving (sub)vertically at a station represent an accurate estimate of the201

P-wave transmission response of such propagating wavefield (provided the202

discontinuities are not excessively inclined; Nishitsuji et al. (2016)).203

From the frequency range of the processing previously selected for each204

event at every station according to its signal-to-noise ratio in the records,205

we use the frequencies higher than 0.3 Hz, a threshold defined by the in-206

strumental characteristics of the PV-array stations (Nishitsuji et al., 2014).207

Furthermore, we only use those frequencies which are common for all the208

events, i.e., [0.3 3] Hz. In order to perform a better interpretation of the209

results in depth, we segmented this frequency range in two sub-ranges, i.e.,210

[0.3 0.8] Hz and [0.8 3] Hz. The separation frequency (0.8 Hz) is selected211

after a trial and error approach, based on the observed coherency in the212
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results for all the stations in advanced stages of the processing.213

In order to avoid the rise of high-amplitude non-physical arrivals caused214

by cross-terms in the correlations, we extract the times between the first215

P-wave arrival (including this first arrival) and the first S-wave arrival. As216

an example, Figure 4 shows the processing windows for the station PV04 in217

the frequency range [0.8 3] Hz).218

As the information provided by each of the events is equally impor-219

tant, we normalize the processing windows according to their vertical flux220

of seismic energy. Therefore, all the events will contribute in the summation221

process in Equation 1.222

As suggested by Equation 1, we estimate and deconvolve the ASTF223

from each of the autocorrelated time windows. The ASTF of each event224

is estimated by the main lobe and its secondary monotonously decreasing225

amplitudes, as shown in Figure 5 for the vertical component of station AD2226

and the frequency range [0.3 0.8] Hz. A dominance of the main lobe in the227

autocorrelated deconvolved traces is observed after deconvolution. These228

features close to 0 s are amplitudes remaining from the deconvolution rele-229

vant to the Dirac’s delta. Therefore, we remove them through windowing,230

i.e., muting the monotonously decreasing amplitudes relevant to the 0 s231

lobe. However, high amplitudes are still present at early times, i.e., down232

to ∼ 10−15s. These arrivals might be multiples of reflections at the crustal233

discontinuities and the crust-mantle boundary (the Moho). We then ap-234

ply predictive deconvolution in order to attenuate these multiples (as also235

implemented by Nishitsuji et al. (2016) for the same area).236

SIbyA is based on the autocorrelation of time windows extracted from237

the records of selected seismic events. Despite an appropriate selection of the238

seismic event and the P-window, note that this autocorrelation trace could239
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contain non-physical arrivals at times equal to the time interval between240

two P-wave phase arrivals (as, for example, PP or PcP phases), reducing241

the quality of the results. However, these time intervals are a function of the242

epicentral distance of the events. The seismic events used in this application243

present a wide range of epicentral distances, so that the non-physical arrivals244

are located at different times in the autocorrelations, leading to a destructive245

interference of their energy during stacking (Kim et al., 2019; Tork Qashqai246

et al., 2019).247

In addition, converted waves (e.g., P-to-S and S-to-P) might also con-248

tribute to the retrieved result in the autocorrelated traces. However, pro-249

vided we correlate vertical-component data, non-physical arrivals from S-250

wave converted energy are expected to be attenuated on these zero-offset251

results (Delph et al., 2019). Furthermore, we choose to autocorrelate only252

(sub)vertical energy on the vertical components. This further limits record-253

ing S-wave arrivals; even though a transmission path from an earthquake254

source to the stations might contain S-waves, the final leg of the transmis-255

sion path before being detected on the vertical components of the stations256

will contain little to no S-wave energy. When such arrivals are reflected257

by the Earth’s free surface, and consecutively by impedance contrasts in258

the subsurface, they will also be characterized by little to no conversions to259

S-waves. Thus, by choosing for autocorrelation only (sub)vertical arrivals260

at the stations, we naturally suppress the presence in the retrieved results261

of cross-terms due to correlation of P- and S-wave arrivals thus obtaining262

mainly retrieved P-waves on the vertical component and S-waves on the263

horizontal components of the stations. Nevertheless, in order to provide264

evidence of the attenuation of these cross terms, as well as for testing the265

stability of our seismic results, we also apply SIbyA to the P and SH wave-266
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fields associated to each of the seismic sources (as applied by Kim et al.267

(2019)). We employ the three component records at a station and the lo-268

cation of the selected seismic sources to estimate the P and SH wavefields269

(Kennett, 1991). Shallow P- and S-wave velocities are required for estimat-270

ing these wavefields. For (sub)vertical incident seismic energy, even though271

shallow velocities would not be accurately known, small variations of se-272

lected velocities do not cause big changes on the results (Kennett, 1991).273

Then, estimates of P and SH wavefields are sufficiently accurate. Thus, we274

apply the same processing scheme as for the vertical component but to the275

estimated wavefields. For the P wavefield, we use the same processing time276

window as for the vertical-component data, i.e., enclosing the first P-wave277

arrival and its seismic coda; for the SH wavefield, we use the same win-278

dow size but enclosing the first S-phase arrival and its seismic coda. Note279

that P- and SH-wavefield estimation requires three-component data. As we280

have access to the three-component records of the PV stations only, the281

results using these estimated wavefields might be significant for this array282

exclusively.283

The last step in the application of Equation 1 is stacking the result-284

ing autocorrelated traces for each station, which enhances the energy from285

the stationary phase area. We use phase-weighted stacking (Schimmel and286

Paulssen, 1997; Schimmel and Gallart, 2003) for a better treatment of spu-287

rious out-of-phase arrivals compared to the classical linear stacking (Delph288

et al., 2019; Andrés et al., 2019). Figure 6a and Figure 6b show the pre-stack289

panel (deconvolved and windowed autocorrelated traces) and the stacked290

traces for PV05 and CRI stations, which use P-wavefield data in the fre-291

quency range [0.3, 0.8] Hz and vertical-component data for [0.8 3] Hz, re-292

spectively. Provided the stations of each array are relatively close to each293
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other, we also stacked the individual retrieved reflection trace per array in294

an attempt to further increase the signal-to-noise ratio of retrieved events..295

Figure 6c and Figure 6d show the results for the OVDAS array using vertical-296

component data in the [0.3 0.8] Hz frequency range and the results using297

the P-wavefield data for the PV array in the [0.8 3] Hz frequency range,298

respectively.299

4. Interpretation and discussion300

Aiming to compare the seismic results with the known features of the301

subsurface, we transform the time axis of the results to depth through con-302

struction and utilization of a velocity model. This model is composed of303

velocities provided by the regional model ak135 for depths greater than 60304

km, and a modified version of the model obtained by Bohm et al. (2002) for305

shallower depths (see Figure 7).306

Figure 8 (right) shows the results for the PV and OVDAS arrays for307

each processing frequency range and each employed source of data (i.e., ver-308

tical component, P wavefield, and/or SH wavefield). Provided the complex309

impedance contrast with depth expected for the area of the PPVC, and310

the possible presence of non-physical arrivals, we only seek for the domi-311

nant amplitudes on the obtained reflection responses (i.e., local maximum312

amplitudes on the envelope of the resulting signal), which are potentially re-313

lated to the main subsurface discontinuities. Average energy is computed for314

overlapping running windows; a candidate local maximum is selected when315

the averages of several consecutive windows are more than double the seis-316

mic energy for earlier consecutive windows. From the maximums selected317

automatically, we select manually the accepted local maximum amplitudes.318
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The lowest frequency range (i.e., [0.3 0.8] Hz) gives us the possibility319

to describe the subsurface between ∼30 and ∼750 km depth, whereas the320

results for the frequency range [0.8 3] Hz allow us to interpret the subsurface321

features for depths between 10 km and the Moho. The minimum depth limit322

is set by the smeared delta-function (central-lobe monotonously decreasing)323

amplitudes removed after deconvolution. The maximum depth limit is set324

by significant attenuation of the seismic amplitudes at later times.325

The interpretation of the results for each frequency range is performed326

through contrast of the seismic results and the expected location of the327

known subsurface features based on the geodynamic scenario and the avail-328

able geological information for the area of the PPVC (Ferrán and Mart́ınez,329

1962; Tassara et al., 2006; Faŕıas et al., 2010; Benavente, 2010; Tapia Silva,330

2010; Giambiagi et al., 2012; Bostock, 2013; Deuss and Woodhouse, 2004;331

Faccenna et al., 2017; Jackson et al., 2018).332

For each array, the obtained seismic results (see Figure 8, right) for333

the vertical component and the P and/or SH wavefields show dominant334

amplitudes (i.e., local maximum amplitudes on the waveform envelopes) in335

common, which we classify as potential subsurface impedance contrasts.336

Note that the SH-wavefield results are not shown in Figure 8a (i.e., for337

[0.3 0.8] Hz frequency range). The SH-wavefield results are not coherent over338

the stations of the PV array. This might be caused by higher attenuation of339

the S-wave energy in comparison to the P-wave energy in this volcanic zone340

for the vertically incident seismic energy; then, attenuation would seriously341

affect S-wave coherency on the autocorrelations traces. Therefore, for the342

lower frequency range, the interpretation of the potential subsurface features343

is performed using the vertical-component and P-wavefield results for the344

PV array and the vertical-component results for the OVDAS array.345

15

785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840



For the shallowest depths in the results, the multiples, although attenu-346

ated after predictive deconvolution, might still be significant, likely challeng-347

ing the identification of the amplitudes representing primaries. Thus, for the348

shallowest depths, our interpretation is based on analyses of the spatial cor-349

relation between the arrivals in the seismic results and the known subsurface350

discontinuities. For arrivals at the later times, two considerations limit the351

possibility of them being multiples. First, the target volcanic area presents352

high attenuation effects (Manassero et al., 2014); therefore, long paths are353

highly attenuated. Second, based on Zoeppritz’s equations (Shuey, 1985)354

and provided vertical incidence of the propagating seismic energy, refracted355

(i.e., transmitted) energy represent ∼90% of such propagated energy. Thus,356

the seismic energy relevant to later multiples or higher-order multiples is sig-357

nificantly reduced. These effects led us to infer that multiples at later times358

are highly attenuated, making those multiples most likely unidentifiable.359

For the lower frequency range, the interpretation of the shallowest (down360

to ∼200 km) section of the subsurface is the most intricate as a consequence361

of the number of discontinuities reflecting energy and the likely presence of362

multiples. However, the close location of the identified features in the seismic363

results and the known subsurface features lead us to the interpretation of364

the Moho discontinuity at ∼50 km depth, a low-velocity zone (LVZ) at ∼100365

km depth down to the top of the subducting slab at ∼120 km depth, and366

the bottom of the subducting slab at ∼200 km. Even though the available367

information points to the lithosphere-asthenosphere boundary being at ∼75368

km depth (Tassara et al., 2006; Giambiagi et al., 2012), it emerges ambiguous369

in our results (see the shallowest empty rectangle in Figure 8a) likely due to370

hydration originating by the subducting slab at these depths (Gilbert et al.,371

2006), or the presence of multiples from the crustal structure.372
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The results for this frequency range evidence the presence of the Lehmann373

discontinuity (Deuss and Woodhouse, 2004) at ∼270 km depth, the 410 km374

and 660 km discontinuities, as well as three extra discontinuities named375

Reflector A, Reflector B, and Reflector C in Figure 8a. Reflector A is lo-376

cated around 325 km depth; we think this is relevant to the discontinuity377

previously identified by Havens (1999) for the same area, which might be378

an evidence of ancient subducted oceanic crust (Williams and Revenaugh,379

2005). Reflector B is located at ∼480 km depth; given its location and rel-380

atively low amplitude, it is probably a multiple from a shallower reflector.381

Reflector C is located at ∼600 km depth; its distinguished amplitude guides382

us to think it is not a multiple of any previous arrival. The bottom of the383

transition zone (i.e., around 660 km depth) would present its own topog-384

raphy as a consequence of an ancient subducting slab moving horizontally385

at these depths, then undergoing thickening and folding (Faccenna et al.,386

2017). Reflector C might be indicating the top of this feature.387

The OVDAS array is located ∼6 km to the north of the PV array, com-388

posed of half the stations of the PV array. The results for OVDAS array389

for the two used frequency ranges are similar to those for the PV array,390

which evidences that main subsurface features do not change largely along391

the volume separating them.392

Even though dipping structures in the subsurface restrict the reflection393

energy arriving at the surface, we clearly identify the depth of the top and394

bottom of the subducting slab. Therefore, two hypotheses arise. One hy-395

pothesis suggests a stair-like subduction (Figure 2b-3), according to which396

the top and the bottom of the oceanic slab present horizontal (or gently397

inclined) regions. This hypothesis, though, would not explain the lack of398

seismicity at the longitude of the stations and depths of analysis (US Geo-399
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logical Survey ; Nishitsuji et al. (2016)). A second hypothesis proposes a slab400

deformation in the form of detachment, shearing, necking, or any combina-401

tion (see Figure 2b-4, Nishitsuji et al. (2016)). However, more information402

is required to elucidate the proper interpretation.403

For the second range of frequencies (i.e., [0.8 3] Hz), we also use vertical-404

component data for the PV and OVDAS arrays, as well as P- and SH-405

wavefield data for PV array. In this case, coherent similar results are ob-406

tained from all those sources of data (see Figure 8b, right). Note that,407

opposite to [0.3 0.8] Hz results, SH results for [0.8 3] Hz also provide in-408

terpretable information about the subsurface reflectors. Even though the409

higher the frequencies, the greater the expected attenuation effect (Schön,410

2015), the interpreted propagation distances are shorter for this frequency411

range; therefore, coherent energy arises on the SH results.412

The interpretation of the results for the second frequency range is based413

on the average depth of the identified reflectors, the available scientific infor-414

mation about the subsurface in the PPVC (e.g., Ferrán and Mart́ınez (1962);415

Benavente (2010); González-Vidal et al. (2018)), the proposed structure of416

the crust for the area (Gilbert et al., 2006; Tassara et al., 2006; Faŕıas et al.,417

2010; Giambiagi et al., 2012), and the physics of magma storage in the crust418

(Jackson et al., 2018).419

The results for both arrays for this frequency range indicate six domi-420

nant amplitudes. Those located at ∼13, ∼18, and ∼37 km depth agree with421

the depth of intra-discontinuity in the upper crust (rigid-ductile disconti-422

nuity), the intra-crustal discontinuity (between the upper and lower crust),423

and the intra-discontinuity in the lower crust (rigid-ductile discontinuity),424

respectively.425

Jackson et al. (2018) models the formation, storage, and chemical differ-426
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entiation of magma in the Earth’s crust. According to the physics of magma427

storage, the melt fraction is not homogeneously distributed with depth. A428

high percentage of melt is located in the very upper part of a reservoir, a429

low percentage is located through most of the reservoir, while a solid area is430

present in the lowest part. The seismic results are most probably evidence431

of the solid lower section of the reservoir (Jackson et al., 2018). Because432

of this, we speculate that magma could be stored right above some of the433

identified reflectors (see Figure 8b), in particular the one located at ∼28 km434

depth, as it is not associated with any of the main discontinuities of the435

crust.436

The seismic results also show the location of two reflectors at ∼46 and437

∼52 km depth; we interpret these reflectors as the top of the MASH (Melt-438

ing, Assimilation, Storage and Homogenization zone, previously imaged by439

Gilbert et al. (2006) for this area) and the Moho, respectively. The MASH440

zone is composed of low-velocity zones (Hildreth and Moorbath, 1988) which441

supports the negative amplitudes of the reflector identified at ∼46 km depth,442

as well as the presence of a blurred Moho arrival (Gilbert et al., 2006). Fi-443

nally, following Cashman et al. (2017) and González-Vidal et al. (2018), we444

interpret those areas between zones of likely storage of magma as transfer445

zones via dikes.446

Our results support the information obtained for the subsurface in the447

area (Yuan et al., 2006; Ward et al., 2013; González-Vidal et al., 2018)448

which indicates (although with a limited resolution) low-velocity zones for449

approximately the same range of depths.450

The resolution of the results is a function of the uncertainties in the ve-451

locity model, as well as the quality of the data and the processing applied.452

We estimate the uncertainty of our interpretation based on the width of the453
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identified features in the seismic results. This strategy not only accounts454

for the vertical resolution, according to which the pulse relevant to a dis-455

continuity might be wider in case of small differences in the arrival times at456

the traces to be stacked, but also for the horizontal resolution. The energy457

from the Fresnel zone interferes constructively to provide the resulting seis-458

mic trace. This zone is larger for deeper discontinuities. This means that a459

zone that we describe as vertically below a station should be understood as460

starting vertically below a station and extending laterally on both sides of461

the vertical to include the Fresnel zone. As a result, a zone that we interpret462

as (sub-)horizontal or locally deformed below a station, might actually be463

lying away from the vertical up to the extend of half the Fresnel zone at that464

depth. The features on the results for the lower frequency range present an465

average width of ∼12 km for depths below 350 km, and ∼33 km for higher466

depths; the features for the higher frequency range present an average width467

of ∼2.7 km. Provided the close spatial correlation of our results with the468

geological information available for the area, we infer that the (composed469

-vertical and horizontal) resolution of our results is sufficiently high.470

Because the interpretations performed in this article are based on the471

available scientific information for the area of the PPVC in addition to472

the obtained seismic results, Figure 8 represents a reasonable subsurface473

model for depths between 10 and 750 km. We expect this model to be474

used as a starting point for more accurate estimation of the locations of the475

subsurface features. It is also worth noting the importance of developing a476

high-resolution (P- and S-wave) velocity model for the area of the PPVC,477

which would allow an appropriate location of seismic events in depth as well478

as an efficient removal of multiples, enhancing the quality of the results.479

Therefore, more research (particularly, local seismic velocity -or attenuation-480
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tomography studies) is required to accurately locate and characterize the481

regions of magma storage.482

5. Conclusions483

Even though the Planchón-Peteroa Volcanic Complex (PPVC) is one484

of the most hazardous volcanic systems in the Central Andes, its internal485

processes, structures, dynamics, and their relation are still not satisfactorily486

understood.487

We applied seismic interferometry by autocorrelation to regional and488

teleseismic earthquake arrivals recorded by nine stations deployed in the489

area of the PPVC (six in Argentina and three in Chile) during 2012. The490

events are selected according to their location, magnitude, angle of incidence491

of the P-wave energy, the signal-to-noise ratio on the results, and the related492

useful frequency range. The interferometric results represent virtual reflec-493

tion measurements from virtual sources co-located with each of the array494

stations, where the virtual sources emit energy (sub) vertically down. With495

the virtual reflection measurement, we aimed to shed extra light on the sub-496

surface below the PPVC. In order to perform an appropriate description of497

the subsurface structures below the stations, we used two frequency ranges498

([0.3 0.8] Hz and [0.8 3] Hz) which are sensitive to different range of depths.499

We used the lower frequency range ([0.3 0.8] Hz) to infer tectonic fea-500

tures, i.e., the Moho (at ∼50 km depth), the lithosphere-asthenosphere501

boundary (∼75 km), the top of a low-velocity zone at ∼100 km depth, the502

top and bottom of the subducting slab (∼120 and ∼200 km), the Lehmann503

discontinuity at ∼270 km, a discontinuity at ∼330 km depth, the 410 km dis-504

continuity, and a layer between ∼600 and ∼660 km depth likely originating505
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from accumulated ancient subducting slab at these depths.506

Based on the results for the higher frequencies (i.e., [0.8 3] Hz) and507

previous geological, geochemical, and geophysical information, we proposed508

a model which describes the structure of the crust and the subsurface regions509

storing magma bodies down to the Moho. We suggested three regions of510

magma emplacement right above ∼13 km, ∼28 km, and ∼37 km depth,511

respectively.512

The present work provides valuable information about the subsurface513

conditions of an active volcanic system -the CVPP. We expect the obtained514

knowledge to be employed in future research aiming to better understand515

the dynamics of the CVPP.516
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Figure 1: Distribution of the seismic stations used in the present application in relation

to the main edifices of the Planchón-Peteroa Volcanic Complex (PPVC).
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(a)

(b)

Figure 2: (a) Seismic interferometry by autocorrelation applied to vertically arriving en-

ergy in a horizontally layered medium. Parameter tj represents the two-way travel time

between the station at the surface and the reflector j in the subsurface. The autocor-

relation allows the retrieval of a seismogram composed of reflected energy released by a

virtual source co-located at the position of the station. Each layer is heterogeneous, which

is perceived by the arriving energy at times between strong arrivals. For sake of simplicity,

we show only vertical-component results with reflector multiples removed. (b) Schematic

scenarios in which the applied methodology would (would not) retrieve seismic reflection

energy from a subsurface layer. Solid arrows represent seismic energy leaving or arriving

at the station, while a dashed arrow indicates seismic energy not arriving at the station.

A dashed line shows the vertical as a reference. 1. A sub-horizontal layer; 2. A steep

layer; 3. A stair-like steep layer; 4. A steep layer with an abrupt discontinuity along its

structure (Nishitsuji et al., 2016).

33

1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848



Figure 3: Location of seismic events pre-selected for the application of SIbyA in the area

of the PPVC. A triangle indicates the location of the main edifices constituting the PPVC.

Stars show the location of events with epicentral distances less than 30◦ and magnitudes

Mw > 5. Circles indicate events with epicentral distances greater than 30◦ and less than

120◦, and magnitudes Mw > 6.
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Figure 4: Processing time windows (vertical-component P-wave windows) for each of the

events selected for PV04 station for frequencies [0.8 3] Hz. Each window is normalized

according to its vertical energy flux. Vertical axis indicates propagation time. Each

window is composed of a pre-event time (20 s) and the times between the first P- and

S-wave arrival times.

Figure 5: Autocorrelated source time functions (ASTFs) estimated for the vertical com-

ponent of station AD2 for the frequency range [0.3 0.8] Hz. A highlighted area shows the

ASTFs in the autocorrelation panel (for graphical purposes, we only show the first 15 s).
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(a) PV05, P wavefield, [0.3 0.8] Hz

(b) CRI, Vertical component, [0.8 3] Hz

(c) Stack OVDAS, Vertical component, [0.3 0.8] Hz
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(d) Stack PV, P wavefield, [0.8 3] Hz

Figure 6: Pre-stacking panels (left) and stacked seismic trace (right) for (a) station PV05

using the P-wavefield data for the frequency range [0.3 0.8] Hz, and (b) station CRI

using the vertical-component data for the frequency range [0.8 3] Hz. We also show the

individual retrieved reflection traces at each station (left) and their stacked result (right)

for (c) the OVDAS array using the vertical-component data for the frequency range [0.3

0.8] Hz, and (d) the PV array using the P-wavefield data for the frequency range [0.8 3]

Hz.
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Figure 7: Velocity model used to perform the time-to-depth transformation of the retrieved

zero-offset reflection traces.
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(a)

(b)

Figure 8: Interpretation of the results for [0.3 0.8] Hz, (b) [0.8 3] Hz. Filled rectangle areas

in the seismic results show the local maximum amplitudes, i.e., the interpreted subsurface

discontinuities below each array. Empty rectangles indicate a higher uncertainty at the

identification of a discontinuity. Vertical axes are in km; the horizontal size of the inter-

preted features is arbitrary and it does not follow any particular scale. In (b), inverted

triangles indicate the longitude of the stations, thick horizontal lines below the stations

show the average depth of the reflectors interpreted in the seismic results, and dashed

lines are the interpreted discontinuities between the different regions of the crust (based

on Faŕıas et al. (2010) and Giambiagi et al. (2012)). Question marks indicate zones of

likely magma storage based on Jackson et al. (2018). MASH = Melting, Assimilation,

Storage and Homogenization zone (Gilbert et al., 2006).
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