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Introduction

Unmanned aerial vehicles (UAVs) have gained tremendous popularity over the past two decades both in the

recreation and commercial sectors. The quadrotor is a particularly popular and versatile UAV configuration that

finds several applications. With the ever-increasing prevalence of these vehicles in our airspace, it has become a

priority to increase the reliability, and more importantly, the safety of these systems both from a legislative and

technological standpoint. With better technology comes safer, and more reliable operability of UAVs, which

should further ease legislative burdens which constrain the applications of these platforms.

One important area to focus on when trying to improve the safety of a system is to understand how it performs

and behaves in impaired conditions which may impact normal operation, and therefore increase the risk of

catastrophic damages to the system and its surroundings. By understanding the behavior of an impaired system,

better strategies for controlling the system in this state can be developed that account for the limited capability.

However, to understand impaired behavior, a model of the impaired system must be obtained.

In the case of quadrotors, several faults are plausible including, but not limited to, sensor failures, actuator

failures, and structural damage. It is reasonable to assume, however, that faults that have the highest impact on

performance and safe operability, are those which directly affect the propulsion system, which is simultaneously

responsible for maintaining stability and control. Physical damage to the propeller blades is one of the fault

scenarios which has received considerable attention in the literature in terms of diagnosis and fault tolerant control,

but not from a modeling point of view. Therefore, this gap in the literature was considered an important one to

bridge through data-driven modeling of quadrotors subject to physical damage to the propeller blade. Particularly,

asymmetric blade damage was considered the more important damage scenario, because the symmetric damage

cases often found in the literature do not seem representative of how propellers may be damaged in real-world

scenarios.

With the aforementioned motivation, the following research objective was set along with a list of research

questions.

“To obtain a dynamicmodel of a quad-rotor dronewith asymmetric blade dam-
ageononeor tworotorsby conducting system identificationexperiments through
test flights of damaged quadrotors”.

1. What are the effects of asymmetric blade damage on the dynamic model of a quadrotor?

(a) What model structure is required to capture the effects of asymmetric blade damage?

(b) Which model terms are most affected by asymmetric blade damage?

2. What function approximation method is best suited for modeling the high-frequency dynamic behavior in

the presence of asymmetric blade damage?

(a) How well does the method allow for interpolating the dynamics at damage levels for which no training

data is recorded?

(b) Are local non-linearities captured?

3. At what extent of asymmetric blade damage do problems caused by excessive vibrations become severe?

(a) What auxiliary IMU (with higher measurement ranges) will have to be appended to allow for flights

where the standard IMU on the drone becomes saturated?

(b) What resonant frequencies of the quadrotor frame inhibit flight with asymmetrically damaged rotor

blades?

4. Which flight maneuvers should be performed for system identification of a drone with blade damage?

(a) How do the maneuvers differ for the identification of aerodynamic models compared to those for the

high-frequency phenomena?

(b) What are the challenges of covering the flight envelope of the quadrotor in an indoor environment

through manual test flights?
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5. What insights can be drawn regarding the diagnosis of asymmetric blade damage in quadrotors based on the

models identified from experimental data?

The remainder of this report is structured as follows. Themain outcomes of the research conducted are presented

in the format of a scientific paper in Part II. The preliminary literature review which led to the formulation of the

aforementioned research objective and research questions is presented in Part III. Finally, the outcomes of the

research are concluded, and recommendations for further research are outlined in Part IV,



Part II

Scientific Paper
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Modeling Asymmetric Blade Damage in Quadrotors through
System Identification Techniques

B. Saify∗ and Dr.ir. C.C. de Visser †

As quadrotors continue to become more popular for personal and commercial use, improving
their safety is essential, especially in impaired operating states. With (asymmetric) blade damage
(ABD) being a potentially dangerous type of impairment, it is beneficial to understand how it
affects the dynamic behavior of a quadrotor. This research examines the effects of blade damage
on the dynamic model of a quadrotor through system identification techniques. Time scale
separation is used to split the low-frequency aerodynamic behavior and high-frequency (HF)
dynamics. Aerodynamic models are identified using stepwise regression, and a novel approach
for modeling HF dynamics –relying purely on on-board sensors– using spectral analysis and
simplex B-splines has been developed. A majority of the aerodynamic models surpass 𝑅2 values
of 0.95, and the HF models exceed 𝑅2 values of 0.90. The findings provide new insights and
significant implications for diagnosing ABD in quadrotors.

I. Introduction

Quadrotors are one of the most popular unmanned aerial vehicle (UAV) configurations in use, owing to their
simplicity and versatility [1]. With these systems starting to gain traction in the commercial sector, safe operability

has come under scrutiny. This is corroborated by the vast amount of research focused on improving the safety and
reliability of these systems. Key areas of research include safe control algorithms in the event of system impairments
[2–4], diagnosis of faults [5, 6], aerodynamic modeling [7–9] and safe flight envelope prediction [10].

Several fault scenarios can inflict quadrotors, with actuator faults being one of the most commonly researched due to
the high impact of such faults on controllability. Actuator faults in quadrotors are split into two sub-categories; motor
failures, and physical damage to the propeller blades. Control of quadrotors subject to complete motor failures has been
treated thoroughly [2–4]. The diagnosis of partial losses in rotor effectiveness has also been researched [5, 11, 12]. The
latter fault condition is characterized by physical damage to the propeller blades while the motor driving the damaged
propeller remains in good health. Physical blade damage has also received considerable attention in the literature both
in terms of robust control [13–15], as well as fault diagnosis [16–18].

Physical propeller damage is one of the important modes of structural failure which can adversely affect a quadrotor
and is the focus of this paper. Physical damage on a single propeller is divided into two categories; symmetrical and
asymmetrical. The former is characterized by equal extent and type of damage to each propeller blade. Naturally,
asymmetric damage is characterized by different levels of damage to each propeller blade. It can be argued that
asymmetric damage is worth investigating more than symmetric damage purely from the point of view that such a fault
condition is more likely to occur, which is also confirmed to some qualitative extent through the experiments of Brown
et al. [19].

Several approaches to the diagnosis of (a)symmetric blade damage have been proposed in literature [17, 18, 20–22].
Most of the approaches for diagnosing blade damage rely on data gathered using an Inertial Measurement Unit (IMU)
which is a ubiquitous sensor found on quadrotors because it is essential for state estimation and therefore control. The
most common approaches to ABD diagnosis involve transforming the time-series IMU data to the frequency domain.
This of course makes intuitive sense because the circular –and therefore periodic– motion of the propeller blades results
in salient features in the frequency domain. Many methods use features extracted directly from the time domain [18] or
frequency domain [17, 23] to train neural-network based classifiers. Notably, Brown et al. [19] thoroughly examine a
slew of potential sensors for blade damage diagnosis such as thermal measurements of the electronic speed controllers
(ESC), accelerometer measurements, current sensors, and battery voltage to name a few. However, they determine that
the accelerometer is one of the best options for ABD diagnosis.

While several papers focus on the diagnosis of ABD, no example was found where the effects of blade damage are
modeled through system identification techniques. Neither the effects on the aerodynamics nor the high-frequency

∗Graduate student, Faculty of Aerospace Engineering Control&Simulation., TU Delft
†Associate Professor, Faculty of Aerospace Engineering Control&Simulation, TU Delft

1



Fig. 1 Representation of a quadrotor body frame and rotation directions of rotors [24]

effects of ABD on quadrotors are thoroughly studied through data-driven analysis. This paper aims to bridge this gap in
knowledge. This is achieved by performing experiments with quadrotor platforms subject to ABD at varying levels. Data
gathered from these experiments is used to build aerodynamic models and hybrid mass-aerodynamic high-frequency
models to capture the effects of ABD. The aim of these models is twofold; for one they allow for accurate simulations
and therefore model-based prediction of safe flight envelopes of quadrotors afflicted with blade damage, and to examine
the effects of varying locations and levels of blade damage on aerodynamic model parameters as well as the parameters
of the models of the high-frequency phenomenon caused by mass and aerodynamic imbalances.

The paper outline is as follows. Fundamentals of the quadrotor platform are introduced in Sec. II, the methodology
for experimentation, and modeling are outlined in Sec. III and the results are presented in Sec. IV. Section V provides a
discussion of the findings, limitations, and potential of the methodology, followed by a conclusion in Sec. VI.

II. Quadrotor Fundamentals

A. First Principles Model
The kinematics and simplified dynamics of a quadrotor are introduced based on first principles and simple relations

for propulsive force and moments. A quadrotor is 6 degree-of-freedom (DOF) system, in that it can control its position
and attitude in 3D space. Two reference frames are used when defining the equations of motion of a quadrotor; the
inertial frame and the body-fixed reference frame. The inertial frame F𝐼 is aligned with respect to the Earth such that the
𝑥𝑦 plane is parallel to the ground, and the 𝑥𝑧 plane contains the Earth’s axis of rotation. The Earth is assumed locally flat
and non-rotating (which is quite common for quadrotor analysis) resulting in the inertial frame being chosen arbitrarily
as long as the 𝑧-axis is perpendicular to, and points into, the ground. The body frame F𝐵 is defined as depicted in Fig. 1
and is centered at the center of gravity of the quadrotor.

Let 𝒑𝐼 = [ 𝑥 𝑦 𝑧 ]𝑇 and 𝒗𝐵 = [ 𝑢 𝑣 𝑤 ]𝑇 represent the inertial position and body frame velocities of a quadrotor
respectively. Similarly, let 𝒒 = [ 𝜙 𝜃 𝜓 ]𝑇 and 𝝎𝐵 = [ 𝑝 𝑞 𝑟 ]𝑇 represent the attitude of the quadrotor and angular
rates in the body frame respectively. Note that the attitude vector 𝒒 essentially describes the orientation of F𝐵 with
respect to F𝐼 using Euler angles 𝜙, 𝜃, and 𝜓 to represent roll, pitch, and yaw respectively. The matrix 𝑹𝑰𝑩 describes
the transformation from the body frame velocities to the inertial velocities using the Euler angles. Similarly, 𝑲𝑰𝑩

kinematically relates body angular rates to inertial attitude rates. Constructions for these matrices can be found in [25].
With the aforementioned quantities defined, the equations of motion (EOM) of the quadrotor –split into the linear

and rotational EOM– can be formally introduced. Linear motion is described by Eq. (1) and Eq. (2) while rotational
motion is described by Eq. (3) and Eq. (4). The terms 𝑭𝐵 and 𝑴𝑩 represent the external forces and moments acting on
the quadrotor in F𝐵 respectively which are influenced by the effects of gravity, propulsion, and aerodynamics. This
simple model excludes the gyroscopic effects of the spinning rotors, and these effects are not included for the remainder
of the paper because their contribution was found to be negligible compared to the aerodynamic moments.
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¤𝒑𝐼 = 𝑹𝐼𝐵𝒗𝐵 (1)

¤𝒗𝐵 =
1
𝑚
𝑭𝐵 + 𝝎𝐵 × 𝒗𝐵 (2)

¤𝒒 = 𝑲 𝐼𝐵𝝎𝐵 (3)

¤𝝎𝐵 = 𝑰−1 (𝑴𝐵 − 𝝎𝐵 × 𝑰𝝎𝐵) (4)

A simple model is added to the first principles model to account for the thrust force and propulsive control moments
created by the 4 rotors. Equation (5) describes the propulsive thrust generated as a result of the rotational speed Ω𝑖

of each rotor, and Eq. (6) describes the propulsive moments on each axis in F𝐵 as a function of rotor speeds and the
geometry of the quadrotor (see Fig. 1 for rotor numbering, rotation direction, and geometrical definitions of parameters
𝑙 and 𝑏). The parameters 𝜅0 and 𝜏0 are the thrust and torque constants of the propeller respectively.

𝑭𝐵,𝑝 =


0
0

−𝜅0
∑
Ω2

𝑖

 (5)

𝑴𝐵,𝑝 =



𝑏𝜅0 ((Ω2
1 +Ω2

2) − (Ω2
3 +Ω2

4))

𝑙𝜅0 ((Ω2
2 +Ω2

4) − (Ω2
1 +Ω2

3))

−𝜏0
∑
Ω2

𝑖
sign(Ω𝑖)


(6)

B. Extensions to the Quadrotor Model
The simple quadrotor model is only applicable around the hovering flight condition and fails to capture quadrotor

behavior in high-speed flight. Therefore, it has been extended in the literature by borrowing from helicopter theory
[9, 26]. These extensions describe the aerodynamic forces and moments generated by a quadrotor in moderate to
high-speed flight. The most important effects are identified to be thrust variance, blade flapping and induced drag
[9, 25–28].

Thrust variance describes the dependence of thrust (of a single rotor) on the incoming flow velocity 𝑉 and angle of
attack 𝛼 of the rotor plane with respect to the incoming flow. The thrust equation can be derived from both momentum
theory and blade element theory to yield Eq. 7 and Eq. 8 respectively where 𝐴 is rotor disk area, 𝑎 the blade airfoil
lift-slope, 𝑏 the number of blades, 𝑐 the chord, 𝑅 the rotor radius, 𝜔 the propeller rotational speed, and 𝜃 the blade pitch
angle. These relations were used by Sun et al. [7, 29] to inform candidate model regressor choices for quadrotor model
identification.

𝑇 = 2𝜌𝐴𝑣𝑖
√︃
𝑉2 + 2𝑉𝑣𝑖 sin𝛼 + 𝑣2

𝑖
(7)

𝑇 =
𝜌𝑎𝑏𝑐𝜔2𝑅3

2

(
𝜃

3
+ 𝑉2 cos2 𝛼𝜃

2𝜔2𝑅2 + 𝑉 sin𝛼 + 𝑣

2𝜔𝑅

)
(8)

Blade flapping is another important phenomenon that affects quadrotors in translational flight and is not accounted
for by the first principles model. Blade flapping occurs when the velocity field at a blade changes as a function of the
azimuth angle of the blade, for example in forward flight where the advancing blade experiences a higher velocity
than the retreating blade. The imbalance in the velocity field induces forces that cause the rotor plane, and thus the
thrust vector, to tilt such that it is no longer perpendicular to the actuator (motor) axis. This effect has been analyzed
thoroughly in helicopter literature [30] and has been adopted to explain quadrotor body forces that occur in the 𝑥𝑦

plane. The tilting of the thrust vector also induces aerodynamic pitching moments depending on how far the c.g. of the
quadrotor is from the plane containing the 4 rotors.

The flap angle 𝛽 of a blade is defined as a function of the azimuth Ψ using Eq. 9 where 𝑎0 is the coning angle 𝑎1𝑠
and 𝑏1𝑠 are the tilt angles of the rotor plane orthogonal to, and along the in-plane velocity vector of the rotor. These
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angles can be calculated using Eq. 10 and Eq. 11 [27]. The values of parameters A and B are determined by the physical
characteristics of the propeller. With the known thrust and tilt of the rotor plane due to flapping, the thrust vector can be
projected into the 𝑥𝑦 body plane of the quadrotor to predict drag forces and resultant moments. In addition to moments
caused by in-plane drag-like forces at the rotor, the stiffness of the rotor blades also induces moments directly at the
rotor axis. This moment is computed using Eq. 12 [27].

𝛽 = 𝑎0 − 𝑎1𝑠 cosΨ + 𝑏1𝑠 sinΨ (9)

𝑎1𝑠 =

��𝑽 𝑝

��
Ω𝑅

𝐴1𝑐 +
1
Ω
𝐵2𝑝 − 1

Ω
𝐵1𝑞 (10)

𝑏1𝑠 = −
��𝑽 𝑝

��
Ω𝑅

𝐴1𝑠 +
1
Ω
𝐵1𝑝 − 1

Ω
𝐵2𝑞 (11)

𝑀𝑏𝑠 = 𝑘𝛽𝑎1𝑠 (12)

III. Modeling Methodology
The presence of ABD is assumed to show effects in two separable frequency regions; the low-frequency region, and

the high-frequency region. Damaged propellers experience a loss in thrust capability due to a decrease in blade surface
area, which subsequently impacts the dynamic ability of the quadrotor. This loss of thrust affects the low frequency
(<60 Hz) dynamic behavior of the quadrotor such as the ability to produce control moments, and accelerations in the 𝑧

body axis.
The high-frequency effects of asymmetric damage are caused by imbalances in the mass, and aerodynamic forces

acting on the damaged propeller. These effects are dominant in the frequency range of the motor rotational speed,
which is roughly an order of magnitude higher than the dynamics of the quadrotor as a whole. For example, the hover
frequencies of the propellers on the chosen experimental platforms are in the range of 280 Hz to 350 Hz and can go
up to 550 Hz at the maximum throttle setting, which is much higher than the cut-off frequency of the slow-speed
quadrotor dynamics when no blade damage is present. This assumption is further solidified by Sun et al. [31] who
use a cut-off frequency of only 20 Hz for identifying aerodynamic models for a quadrotor comparable in size and
mass to the experimental quadrotor platforms used in this research. Using the assumption of time-scale separation, the
low-frequency aerodynamic effects, and high-frequency mass-aerodynamic imbalance effects occurring due to ABD are
modeled separately.

This section outlines the techniques used to model the aerodynamic models, and high-frequency dynamics models
for quadrotors with ABD. The damage cases tested in this research are defined in Sec. III.A. The experimental platforms
used for the research are presented, and practical considerations are discussed in Sec. III.B. The methodology utilized
to construct the low-frequency aerodynamic models and high-frequency models is explained in Sec. III.C and III.D
respectively.

A. Damage Scenarios

1. Damage Case Definitions
Figure 2 shows propellers artificially inflicted with asymmetric damage. The damage is introduced as a straight cut

along the blade chord (at each radial location). The damage level is defined as the missing blade span as a percentage of
propeller radius. Only damage to a single blade was tested. Additionally, both the Beetle and Geyser use the same type
of propeller.

Damage scenarios are described with respect to the damage level, and which propeller on the quadrotor is inflicted.
The nomenclature ’level”location’ is used to describe these damage scenarios. The location is a composition of
abbreviations listed in Table 1 while level is the extent of the damage.

The location for a damage scenario where a single propeller is damaged is defined by combining the longitudinal
location followed by the lateral location. For example, damage to the front-right propeller is defined by location identifier
’FR’. If there are two propellers damaged on the same side, then the location identifier is simply the abbreviation of that
side. For example, ’F’ would be the identifier for both front propellers being simultaneously damaged.
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Fig. 2 Damage cases tested (left to right): Healthy - 10% - 15% - 20% - 25% - 30% - 40%

Table 1 Damage location abbreviations

Damage location Front Back Right Left
Abbrevitaion F B R L

The level is simply the percentage damage of the propeller(s). For example, 30% damage to the front-right propeller
is represented as 30FR, while 30% damage to both front propellers is represented by 30F. It must be noted here that the
nomenclature scheme defined here does not account for simultaneous damage to more than two propellers, damage to
non-adjacent propeller pairs, or damage scenarios where adjacent propellers have different levels of damage. While these
damage scenarios are possible, they are qualitatively assumed less likely, especially ones where diagonally opposite
propellers are damaged. In addition to reducing the experimental costs, the aforementioned reasons are cited for the
choice of tested damage scenarios.

2. Damage Cases Tested
The damage cases covered by the aerodynamic models and HF models of the Beetle quadrotor are listed in Table 2

and 3 respectively. Damage cases with simultaneous damage to two propellers are not covered by the HF models of the
Beetle, while they are included in the aerodynamic models. The reason for this is further elaborated on in Sec. V. The
aerodynamic models for the various damage cases are constructed both for hovering flights, as well as flights with a
mean airspeed of 8 m/s to capture high-speed effects.

Table 4 shows the cases covered by the HF models of the Geyser drone. These cases are much more sparsely covered
when compared to the HF models of the Beetle. The reason for this is that the Geyser drone was treated as a secondary
platform to apply the HF modeling methodology which gave very good results on the Beetle. The aerodynamic models
of the Geyser were not identified because it was only used to test the HF modeling approach and how it generalizes to
different quadrotors.

Table 2 Damage scenarios tested
for Beetle aerodynamic modeling

10 20 30
F

FL
BL
BR

Table 3 Damage scenarios tested
for Beetle HF modeling

10 15 20 25 30
FL
FR
BL
BR

Table 4 Damage scenarios tested
for Geyser HF modeling

10 20 30 40
FL
FR
BL
BR

B. Experimental Platform and Practical Considerations

1. Platform and Facilities
Two quadrotors were used for experimentation shown in Fig. 3a and 3b with their respective code names. These

quadrotors are built using off-the-shelf hobby (kits and parts) and use open source flight control software Betaflight ∗.
The inertia properties of the Beetle quadrotor are presented in Table 5. The inertia properties of the Geyser are not

∗https://github.com/betaflight/betaflight
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Table 5 Inertia properties of the Beetle (including battery)

Mass [kg] Moment of Inertia [kg m2]
𝐼𝑥𝑥 𝐼𝑦𝑦 𝐼𝑧𝑧

3.770E-01 8.998E-04 9.158E-04 1.467E-03

presented because these were not required for HF model identification however they are in the same order of magnitude
as the Beetle.

The experimental flights were conducted in the Open Jet Facility† and the CyberZoo‡. The former is a large
low-speed wind tunnel that can produce steady wind at up to 35 [m/s] and features a nozzle with dimensions 2.85 x
2.85 m. The latter is a large caged arena used for testing robotic systems. These facilities are found at the Aerospace
Engineering Faculty of the TU Delft. Both facilities feature an optical motion capture (mo-cap) system ’Optitrack’ §

which was used as an external data source to provide accurate measurements of the pose of the quadrotors. Looking at
Fig. 3a, the special reflective tape used by the Optitrack system to track the quadrotor can be seen pasted at various
locations around the frame.

2. Practical Limitations
One of the key practical limitations was the difficulty to gather the required sensor data. Construction of the

aerodynamic models requires high-frequency sampling of the rotational speeds of each of the motors while modeling the
high-frequency effects requires high-rate raw (unfiltered) data from the IMU. Betaflight is capable of logging high-rate
motor speed data, raw accelerometer data, or raw gyroscope data simultaneously because of the inherent limitations of
the firmware. However, concurrent logging of all three of these sources of data is required to simultaneously gather data
for low-frequency and high-frequency modeling.

Alternatively to Betaflight, PX4 ¶ was compatible with the flight controllers used in both experimental quadrotors
and provided the capability to log all required on-board data simultaneously. However, the motor speeds are measured
in PX4 via the telemetry line connecting the ESC to the flight control board unlike Betaflight which uses the more
advanced "bidirectional DShot". Therefore, the logging rate of motor speeds in PX4 is limited to 32 Hz while Betaflight
can log motor speeds at up to 2 kHz.

Due to the unique data collection limitations of each of the flight firmware, a compromise was made. Data for
low-frequency aerodynamic modeling was gathered using Betaflight, while that for high-frequency modeling was
gathered using PX4. This is possible because these models are assumed, and observed to be, separable in the frequency
domain as was explained earlier. One disadvantage to this approach is of course that double the flights have to be
performed, however, this was a manageable limitation.

Another practical limitation comes from the fact that flying with ABD causes severe vibrations which tend to saturate
the IMU, and also can cause the motors to fail over time. It was found that blade damage at or above 40% causes enough
clipping in the accelerometer, that the attitude estimate gets biased over time, making the quadrotor very difficult to
fly in angle mode. Motor failures were also observed to be more frequent at higher than 30% damage for the Beetle
quadrotor. For these reasons, the highest used in the experimental flights was 30% for the Beetle, while the Geyser
–having a higher mass, and better motors– could be reliably flown at 40% damage.

The clipping in the IMU also means that accelerations of the quadrotor caused by low-frequency aerodynamic forces
–which we are trying to model– can not be measured accurately. Even at lower damage levels, where clipping is not
present, the filtering of accelerometer data performed by Betaflight results in erroneous spikes in the accelerometer
measurements. To resolve this, the pose measurements obtained from the Optitrack system were used to compute the
accelerations in the body frame. Due to the exceptional position accuracy of the Optitrack system (< 1mm) and low
measurement noise, double time-differentiation of the position measurements using a 2𝑛𝑑 order Savitzky-Golay filter
[32] gives accurate acceleration estimates. Surprisingly, the accelerations derived from Optitrack position measurements

†https://www.tudelft.nl/lr/organisatie/afdelingen/flow-physics-and-technology/facilities/low-speed-wind-
tunnels/open-jet-facility

‡https://tudelftroboticsinstitute.nl/labs/cyber-zoo
§https://optitrack.com/
¶https://github.com/PX4/PX4-Autopilot
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(a) Beetle (b) Geyser

Fig. 3 The quadrotor platforms used for collecting experimental data.

show similar noise performance as IMU measurements. An advantage of using Optitrack-derived accelerations is
that no filtering takes place. We however still cannot rely on these acceleration measurements for high-frequency
modeling because the sampling frequency of 120 Hz is not nearly as high as the 8 kHz sampling rate of the IMU, and
the oscillations in position and attitude resulting from the high-frequency forces and moments result in pose changes
which cannot be detected by Optitrack system. Thus, the Optitrack system is used to measure the accelerations which
are then used to build the low-frequency aerodynamic models while IMU-derived accelerations are used for modeling
the high-frequency behavior.

Unlike the accelerometer, the gyroscope is much more resilient against the vibrations caused by ABD. The limits of
the gyroscopes on both the Beetle and Geyser are 2400 𝑜/s, while the oscillations caused by the worst-case vibrations
are not more than around 400 deg/s in magnitude. Therefore, the flight controller, and standard PID-based flight control
algorithms of Betaflight and PX4 are able to accurately control the angular rates around all three body axes of the
quadrotor. The lack of clipping in the gyroscope also meant that the moments acting on the quadrotor body could be
recovered directly unlike the accelerations which were derived from the Optitrack pose measurements. The moments
𝑴𝐵 acting on the quadrotor are derived using Eq. 4 where ¤𝝎𝐵 is computed through numerical differentiation of the
measured angular rates using a 2𝑛𝑑 order Savitzky-Golay filter.

C. Aerodynamic Model Identification with Stepwise Regression

1. State estimation
In order to build accurate models, the states which are used as dependent variables are estimated. This is done using

a Extended Kalman Filter (EKF) [33]. As explained in Sec. III.B, the accelerations of the quadrotor are measured using
the external mo-cap system because of severe vibration-induced clipping of the on-board accelerometers rendering
these measurements unusable. Similarly, velocity is also reconstructed from the Optitrack position measurements. This
results in all measurements in terms of linear dynamics (Eq 1 and 2) coming from a single source. This essentially
means that the measurements must be taken as ground truth, and no state estimation is performed here. This is assumed
reasonable because of the exceptional position measurement performance of the Optitrack system.

Unlike linear accelerations and velocities, the angular rates and attitude can both be measured through independent
sources of data. The IMU provides angular rate data, while the attitude is measured with the Optitrack system. These
sources of data are fused together using rotational kinematics (Eq. 3). The measurement model for all three attitude
angles and angular rates assumes additive white Gaussian noise, the statistics of which were determined through analysis
of stationary IMU and Optitrack measurements.
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2. Parameter estimation
Aerodynamic models were identified using the stepwise regression (SWR) technique [32] which was earlier used by

Sun et al. [29]. A global linear-in-the-parameters polynomial model of the from shown in Eq. 13 is used to model
the dependent variable 𝒚 ∈ R𝑛 as a combinations of regressors 𝐴 = [ 1 𝝃1 𝝃2 . . . 𝝃𝒑 ] ∈ R𝑛×𝑝 with model
parameters 𝜽 ∈ R𝑝 and residuals 𝝐 ∈ R𝑛. The optimal parameters using an Ordinary Least Squares estimator 𝜽 are
computed using Eq. 14.

𝒚 = 𝐴𝜽 + 𝝐 (13)

𝜽 =

(
𝐴𝑇 𝐴

)−1
𝐴𝑇 𝒚 (14)

The SWR approach, in addition to determining the optimal model parameters, also determines the set of regressors
that best describe the dependent variable. The regressors are added and removed from a pool of regressors in a step-wise
manner until a stopping criterion is met. An example of a candidate regressor pool of independent variables 𝑥1, 𝑥2, and
𝑥3 to model dependent variable 𝑦 is shown in Eq. 15 where 𝑃2

1 (𝑥1, 𝑥3) represents all second-order polynomials in 𝑥1
and 𝑥3 and 𝑃2 (𝑥1, 𝑥2) [1 𝑥3] represent all polynomials in 𝑥1 and 𝑥2 multiplied by 1 or 𝑥2

3

𝑦 = 𝑃2
1 (𝑥1, 𝑥3) + 𝑃2 (𝑥1, 𝑥2) [1 𝑥2

3] (15)

The SWR procedure is described next. First, the model is initialised with a bias vector 𝐴 = [1 1 ... 1]𝑇 . Then, the
following algorithmic loop is entered:

1) The optimal OLS parameters are estimated using Eq. 14 and the residuals 𝜖 for this model are computed.
2) Each regressor 𝝃𝒊 in the remaining pool of regressors is made orthogonal to the current model using Eq. 16.

𝝀𝒊 = 𝝃𝒊 − 𝐴

(
𝐴𝑇 𝐴

)−1
𝐴𝑇 𝒚 (16)

3) The orthogonalized regressor 𝝀 𝒋 with the highest correlation to the model residuals is found, and the corresponding
regressor 𝝃 𝒋 is added to the model (A), and remove from the candidate pool.

4) The model regressors in A are statistically evaluated through an F test. Given q regressors in the current model,
the partial F-ratio for the 𝑘𝑡ℎ regressor is calculated using Equation 17 where 𝑠2 is the variance of the fit error
computed using Equation 18 for N data points.

𝐹0 =
𝑆𝑆𝑅 (𝜽𝑞) − 𝑆𝑆𝑅 (𝜽𝑞−𝑘)

𝑠2 (17)

𝑠2 =
𝜖𝑇𝜖

𝑁 − 𝑞 − 1
(18)

𝑆𝑆𝑅 (𝜽𝑞) is the regression sum of squares for the current model, and 𝑆𝑆𝑅 (𝜽𝑞−𝑘) is the same but with regressor 𝜉𝑘
removed from the model. The 𝑆𝑆𝑅 value is computed using Equation 19 where 𝒚̄ is the mean of the observation
vector.

𝑆𝑆𝑅 = 𝜽
𝑇
𝐴𝑇 𝒚 − 𝑁 𝒚̄ (19)

If the regressor with the smallest 𝐹0 value has an F score below a constant threshold 𝐹𝑜𝑢𝑡 , then that regressor is
removed. The algorithm stops if the regressor removed was the same as that which was added in that loop. We
use an 𝐹𝑜𝑢𝑡 threshold of 4 as was done by Sun et al. [7]

5) A stopping criteria based on the Predict Square Error (PSE) (Eq. 20) is used to terminate the algorithm. The first
term in this equation is the model residual mean squared error, and the second term penalises model redundancy
where 𝑞 is the number of regressors in the current model. Over-fitting leads to an increase in the PSE at which
point the SWR algorithm is terminated.

𝑃𝑆𝐸 =
1
𝑁
𝜖𝑇𝜖 + 𝜎2

𝑚𝑎𝑥

𝑞

𝑁
(20)
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(a) Hovering (b) High-speed

Fig. 6 Example trajectories of system identification test flights for hovering (left) and high-speed flight (right)

3. Flight Test Maneuvers
The system-identification test flights were flown manually. However, to ensure that the data gathered for all damage

cases are similar, a set of identical pre-planned maneuvers were flown for each damage case. While the exact flight
path followed during each maneuver cannot be kept consistent through this approach, the excitation of all forces and
moments can be generated to cover similar envelopes.

The longitudinal flight and lateral flight maneuvers were kept largely separated by design, which means that forces
and moments in the x and y body axes were seldom excited simultaneously. This was mainly because of difficulties in
flying such maneuvers manually. This results in the ’+’ shape of the plot showing the kernel density estimates of the
distribution of (𝐹𝑥 , 𝐹𝑦) and (𝑀𝑥 , 𝑀𝑦) in Fig. 4 and Fig. 5 respectively.

Fig. 4 Kernel density estimates of the force distri-
butions in the xy body plane

Fig. 5 Kernel density estimates of the moment
distributions in the xy body plane

Figure 6a and Fig. 6b show examples of the spatial trajectories followed for a flight without wind, and at a wind
speed of 8 m/s respectively. The system identification flight maneuvers, consisting of fast pitch, roll, and throttle inputs,
as well as slow (sustained) pitch, roll, and throttle inputs, are visible in the figures. While yaw maneuvers were tried
for hovering flights, it was difficult to manually excite the yawing moments, which also lead to poor yawing moment
models. In high-speed flight, only fast roll maneuvers were possible to execute while staying within the wind stream,
and yawing maneuvers were not performed.
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4. Model Candidates
With the goal of creating models for all three body forces, and all three body moments using SWR, first a set of

candidate regressors is chosen. These sets include various measured states, such as body velocities, angular rates,
attitude, as well as control inputs which are derived from measured motor speeds. The choice of candidate regressors
is also influenced by the theoretical equations for thrust, and additional effects explained in Sec. II.B. A limit of 3
added regressors was imposed for all models because it was found that after this point, regressors become increasingly
complex while offering insignificant improvements to model performance.

𝐹𝑥 = 𝑋0 + 𝑋1𝑢

+ 𝑃3 (𝑢, 𝑤)
[
1, 𝜔𝑡𝑜𝑡 , 𝑞, 𝑢𝑞 , sin(𝜃), cos(𝜃)

]
+ 𝑃2 (𝜇𝑥 , 𝜇𝑧)

[
1, 𝜔𝑡𝑜𝑡 , 𝑞, 𝑢𝑞 , sin(𝜃), cos(𝜃)

]
+ 𝑃2 (𝑞) [1, 𝜔𝑡𝑜𝑡 ]
+ 𝑃2 (𝑢𝑞 ) [1, sin(𝜃), cos(𝜃), 𝜔𝑡𝑜𝑡 ]
+ 𝑃2 (𝜔𝑡𝑜𝑡 ) [sin(𝜃)]

(21)

𝐹𝑦 = 𝑌0 + 𝑌1𝑣

+ 𝑃3 (𝑣, 𝑤)
[
1, 𝜔𝑡𝑜𝑡 , 𝑝, 𝑢𝑝 , sin(𝜙), cos(𝜙)

]
+ 𝑃2 (𝜇𝑦 , 𝜇𝑧

) [
1, 𝜔𝑡𝑜𝑡 , 𝑝, 𝑢𝑝 , sin(𝜙), cos(𝜙)

]
+ 𝑃2 (𝑝) [1, 𝜔𝑡𝑜𝑡 ]
+ 𝑃2 (𝑢𝑝

)
[1, sin(𝜙), cos(𝜙), 𝜔𝑡𝑜𝑡 ]

+ 𝑃2 (𝜔𝑡𝑜𝑡 ) [sin(𝜙)]

(22)

𝐹𝑧 = 𝑍0 + 𝑍1𝑤

+ 𝑃3 (|𝑢 |, |𝑣 |, 𝑤)
[
1, 𝜔𝑡𝑜𝑡 , |𝑝 |, |𝑞 |, |𝑢𝑝 |, |𝑢𝑞 |

]
+ 𝑃2 ( |𝜇𝑥 |, |𝜇𝑦 |, 𝜇𝑧

) [
1, 𝜔𝑡𝑜𝑡 , |𝑝 |, |𝑞 |, |𝑢𝑝 |, |𝑢𝑞 |

]
+ 𝑃2 (𝜔𝑡𝑜𝑡 ) [1]
+ 𝑃2 (|𝑝 |, |𝑞 |, |𝑟 |) [1, 𝜔𝑡𝑜𝑡 ]

(23)

Equations 21, 22, and 23 show the model candidate structures for the x, y, and z body axis forces respectively.
Equations 24, 25, and 26 show the model candidates for the x, y, and z body moments respectively. Note that coupling
between 𝐹𝑥 and 𝐹𝑦 was largely eliminated while choosing these regressor sets because the flight test maneuvers were
largely uncoupled in the longitudinal and lateral directions. The regressor 𝜔𝑡𝑜𝑡 is defined as the sum of the rotor speeds,
and the input roll, pitch, and yaw control moments –𝑢𝑝 , 𝑢𝑞 and 𝑢𝑟– are defined according to the respective axis-specific
rotor speed combinations defined in 6. The advance ratios, 𝜇𝑥,𝑦,𝑧 , are added to capture the effects of thrust variance as
well as blade flapping.

While the attitude angles are not necessarily a good regressor choice from a physical sense, they are found to improve
model performance significantly, likely because these angles encode information about relative flow angles with respect
to the rotors of the quadrotor. It is important to point out here that while the chosen model candidates are influenced by
analytical models of the underlying physical phenomena, they do not necessarily capture cause-effect relationships, but
rather also model correlations that describe reality from a phenomenological perspective. Nevertheless, when applied to
quadrotors (and other aerospace systems), these models can still offer a reliable means to make predictions, even if the
underlying physics is not exactly captured.

𝑀𝑥 = 𝐿0 + 𝐿1𝑝 + 𝐿2𝑢𝑝

+ 𝑃3 ( |𝑢 |, 𝑣, 𝑤)
[
1, 𝜔𝑡𝑜𝑡 , 𝑝, |𝑟 |, 𝑢𝑝 , |𝑢𝑟 |, sin(𝜙), cos(𝜙)

]
+ 𝑃2 ( |𝜇𝑥 |, 𝜇𝑦 , 𝜇𝑧

) [
1, 𝜔𝑡𝑜𝑡 , 𝑝, |𝑟 |, 𝑢𝑝 , |𝑢𝑟 |, sin(𝜙), cos(𝜙)

]
+ 𝑃2 (𝑝, |𝑞 |, |𝑟 |) [1, 𝜔𝑡𝑜𝑡 , sin(𝜙), cos(𝜙)]
+ 𝑃2 (𝑢𝑝 , |𝑢𝑞 |, |𝑢𝑟 |

)
[1, sin(𝜙), cos(𝜙), 𝜔𝑡𝑜𝑡 ]

+ 𝑃2 (𝜔𝑡𝑜𝑡 ) [sin(𝜙), cos(𝜙)]

(24)
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𝑀𝑦 = 𝑀0 + 𝑀1𝑞 + 𝑀2𝑢𝑞

+ 𝑃3 (𝑢, |𝑣 |, 𝑤)
[
1, 𝜔𝑡𝑜𝑡 , 𝑞, |𝑟 |, 𝑢𝑞 , |𝑢𝑟 |, sin(𝜃), cos(𝜃)

]
+ 𝑃2 (𝜇𝑥 , |𝜇𝑦 |, 𝜇𝑧

) [
1, 𝜔𝑡𝑜𝑡 , 𝑞, |𝑟 |, 𝑢𝑞 , |𝑢𝑟 |, sin(𝜃), cos(𝜃)

]
+ 𝑃2 ( |𝑝 |, 𝑞, |𝑟 |) [1, 𝜔𝑡𝑜𝑡 , sin(𝜃), cos(𝜃)]
+ 𝑃2 (𝑢𝑞 , |𝑢𝑝 |, |𝑢𝑟 |

)
[1, sin(𝜃), cos(𝜃), 𝜔𝑡𝑜𝑡 ]

+ 𝑃2 (𝜔𝑡𝑜𝑡 ) [sin(𝜃), cos(𝜃)]

(25)

𝑀𝑧 = 𝑁0 + 𝑁1𝑟 + 𝑁2𝑢𝑟

+ 𝑃3 (|𝑢 |, |𝑣 |, 𝑤)
[
1, 𝜔𝑡𝑜𝑡 , |𝑝 |, |𝑞 |, |𝑟 |, 𝑢𝑝 , |𝑢𝑞 |, |𝑢𝑟 |, sin(𝜃), cos(𝜃), sin(𝜙), cos(𝜙)

]
+ 𝑃2 (|𝜇𝑥 |, |𝜇𝑦 |, 𝜇𝑧

) [
1, 𝜔𝑡𝑜𝑡 , |𝑝 |, |𝑞 |, |𝑟 |, 𝑢𝑝 , |𝑢𝑞 |, |𝑢𝑟 |, sin(𝜃), cos(𝜃), sin(𝜙), cos(𝜙)

]
+ 𝑃2 (|𝑝 |, |𝑞 |, 𝑟) [1, 𝜔𝑡𝑜𝑡 ]
+ 𝑃2 (|𝑢𝑞 |, |𝑢𝑝 |, 𝑢𝑟

)
[1, 𝜔𝑡𝑜𝑡 ]

+ 𝑃2 (𝜔𝑡𝑜𝑡 ) [sin(𝜃), cos(𝜃), sin(𝜙), cos(𝜙)]

(26)

5. Model Simplification
Rather unsurprisingly, SWR often finds a different set of regressors (for each force and moment model) for different

damage cases. However, these regressors tend to often be spurious and offer almost insignificant model improvement.
Additionally, two regressors that are highly correlated may be picked somewhat randomly from one damage case to
another.

To gain a better understanding of the variation of model parameters with the extent of blade damage, simplifications
were made to the models found through SWR. In this way, the polynomial models for all damage cases have the same
set of regressors, and only the parameter values for these regressors change for different damage cases.

The exact procedure for picking the fixed regressors was largely heuristic. The general rules-of-thumb are; to keep
the regressors that appear most commonly for all damage scenarios, offer the most significant model improvements, and
are not highly correlated with other regressors. Following these procedures, the models could be simplified without
losing too much performance, but allow for better physical insights into how the impact of a given regressor change with
blade damage, and if any clear patterns can be found.

D. High-Frequency Model Identification

1. General Approach
The goal of the High-frequency models is to be able to reproduce the IMU signals which are measured by a quadrotor

inflicted with ABD. The base assumption used for constructing the high-frequency models is that the time series of each
IMU measurement can be modeled as a sum of a few sinusoids. This assumption is physically motivated by the fact that
force and moment imbalances created by an asymmetrically damaged propeller will be cyclic in nature, and visual
examination of the measured IMU signals also shows that this is the case (see Fig. 21). Therefore, the model structure
shown in Eq. 27 was chosen, where k is the number of harmonics of the frequency 𝑓 , and 𝑑𝑙 is the damage level of the
propeller. To parameterize this model, the amplitude surface 𝐴𝑛 of the 𝑛𝑡ℎ harmonic is constructed as a function of 𝑓

and 𝑑𝑙 .

𝑦(𝑡) =
𝑘∑︁

𝑛=1
𝐴𝑛 ( 𝑓 , 𝑑𝑙) sin(2𝜋𝑛 𝑓 𝑡) (27)

The amplitude models were built assuming dependence only on the frequency and level of damage. Here, frequency
refers to the rotational speed of the damaged propeller in Hz, and corresponding harmonics. This choice of dependent
variables is again due to physical reasoning. For one, higher levels of damage result in larger mass imbalances as well as
larger asymmetries in the aerodynamic forces and torques generated by the damaged propeller. It is straightforward to
see that the mass imbalance of a damaged propeller induces a net centripetal force vector which oscillates in direction
at the rotational frequency of the rotor. These forces can be quite high even with small mass imbalances because the
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propellers of the quadrotor spin at very fast speeds. A first principles approach would be to model the centripetal forces
as scaling with the square of the rotational speed of the propeller, but this ignores various physical interactions which
can be captured through data-driven analysis.

A less obvious high-frequency effect comes from the aerodynamic imbalances of the damaged rotor. For example,
in the presence of ABD, the thrust force is no longer aligned with the rotational axis of the propeller but is offset from
this axis and also rotate around it in sync with the propeller. Due to its movement with respect to the center of gravity of
the quadrotor, the thrust imbalance induces oscillatory pitching and rolling moments around the quadrotor c.g. Similar
to the imbalance in thrust, there is also an in-plane drag force generated perpendicular to the rotation axis with some
offset. The moment arm of this imbalanced drag force also oscillates sinusoidally with respect to the c.g., resulting in
oscillatory yawing moments created around the quadrotor c.g. The spinning drag force vector, similar to the centripetal
forces due to the mass imbalance, also causes oscillatory forces in the 𝑥 and 𝑦 body axes of the quadrotor.

The forces and moments described earlier do not consider the structural frame of the quadrotor, and how this frame
affects the measurements taken at the IMU. The frames of both the Beetle and Geyser quadrotors are largely made of
carbon composites, meaning they are quite stiff. However, no structure is infinitely stiff, and therefore as the oscillatory
forces and torques of the damaged rotor are transmitted through the frame, they get altered due to structural resonance in
the frame. Even the stand-offs which are used to mount the flight controller to the frame of the quadrotor affect the
forces before they are measured by the IMU which is soldered on the flight control board. Clearly, there are complex
interactions with the structural frame of the quadrotor which are very difficult to model from first principles. However,
using a data-driven method, the effects of frame resonance get lumped along with all the other physical interactions
which take place in the presence of ABD.

Finally, another kinematic consideration to keep in mind is that the IMU does not lie exactly at the c.g. of the
quadrotor. This offset means that the IMU does not measure the accelerations of the c.g. of the drone, but rather
the accelerations which are also corrupted by rotational rates and rotational accelerations about the c.g. While this
effect can be analytically corrected, there is no good reason to do so. It is again re-emphasized that the goal of the
high-frequency models is to accurately inject the lumped effects of oscillatory forces and torques arising due to ABD on
the measurements made by the IMU, not to accurately model the forces and torques themselves. These models can then
facilitate the accurate reproduction of high-frequency effects in simulations of quadrotors with damaged propellers.

The flight maneuvers flown to sufficiently excite the high-frequency phenomenon described above were chosen with
the simple requirement of making sure the damaged propeller goes through a large part of the rotational speed range of
the motor. This essentially means that the maneuvers should be flown such that the full throttle range is covered. This
proved challenging in an indoor environment because of the restricted space for mobility. This problem was overcome
by performing short, yet aggressive successive throttle punches, as well as longer duration throttle pulses with lower
maximum throttle input. In addition to the above, aggressive rolling and pitching maneuvers were also performed to
again ensure that the damaged propeller covers a large part of the rotational speed range of the motor within a single
flight. The cumulative distribution of motor frequencies over all the test flights of the Beetle is shown in Fig. 36.

2. Spectral Analysis
Before identifying a model to predict the amplitudes of sinusoidal oscillations measured by the IMU, the amplitudes

and corresponding frequencies must be estimated from the time-series data of each IMU axis. This can also be
interpreted as the ’state estimation’ step of identifying the high-frequency models.

There are a handful of techniques that can be used to transform signals from the time domain to the frequency
domain. However, for this application, some important constraints must be considered while choosing a method. For
one, the IMU time series signal generated during a flight will be non-stationary, therefore an evolutionary spectrum must
be computed. Another practical constraint is that the sampling times of the IMU are not perfectly constant, which may
pose additional challenges. With these constraints, a spectrogram constructed using the short-time Fourier transform
(STFT) was used. The SciPy implementation of the STFT was used for the analysis presented in this paper [34]. Even
though this technique assumes evenly sampled data, the amount of sampling jitter observed in the experimental data
was not severe enough to significantly impact the results. This was also numerically verified by computing STFTs of
artificially generated sinusoidal signals with greater amounts of jitter than what was observed in the experimental data.
A detailed analysis of the noise and jitter properties of IMU measurements is presented in Appendix A.

Two important parameters of the spectrogram are the window length (𝑛𝑠), and the number of samples (𝑛fft) used to
compute the STFT at each time slice. The window length, in combination with the sampling frequency 𝑓𝑠, sets the
frequency resolution ( 𝑓𝑟 ) of the spectrogram, while (𝑛fft) essentially sets the amount of zero-padding applied to each
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Fig. 7 Comparison of STFT computed without zero padding (left) to that with zero-padding (right) where the
circular markers show the true underlying frequencies and associated amplitudes of the time-series signal.

time slice of the signal being analyzed. While zero-padding does not surpass the frequency resolution limit, it does
generate more frequency bins in the STFT. The resulting frequencies are no longer orthogonal to each other, however,
which means that two sinusoids with frequency separation within the frequency resolution of the STFT cannot be
resolved perfectly. The IMU signals are comprised mainly of a few dominant sinusoids which are separated by several
multiples of the frequency resolution. Thus, zero-padding allows for better recovery of the properties of the sinusoids
comprising the signal compared to the no-zero-padding case.

To visualize the effect of zero padding, a numerical example is shown in Fig. 7. Here, a 0.02 s long signal ( 𝑓𝑟
= 50 Hz) with a sampling frequency of 4 kHz (N = 80) and comprising of three pure sinusoids was generated. By
zero-padding the signal with 𝑛fft = 2000, an effective frequency resolution of 2 Hz is achieved. It is clear from Fig.
7 that applying zero-padding facilitates interpolation between the frequencies corresponding to the true frequency
resolution. However, this comes at the cost of spurious peaks caused by the fact that the sin functions at the zero-padded
frequencies do not form an orthogonal set. Using a Hann window solves this problem at the expense of broadening the
peaks. Fortunately, this is not a problem for the spectral analysis of IMU signals because these are dominated by a base
sinusoid with a minimum frequency generally above 100 Hz, and its harmonics have frequency separations greater than
or equal to this value.

The values of the parameters 𝑛𝑠 and 𝑛fft are linked to parameters 𝑓𝑟 , 𝑓𝑟𝑒 and the sampling frequency 𝑓𝑠 through Eq.
28 and 29 respectively. The choice of 𝑓𝑟 and 𝑓𝑟𝑒 plays a critical role in determining the quality of the STFT. If the 𝑓𝑟
is chosen to be small, equating to large time windows, the signal may go through a large change in frequency within
the time window resulting in the frequency content being smeared across multiple frequencies. Therefore, the true
frequency-amplitude relationship cannot be recovered. Alternatively, a large value for 𝑓𝑟 , equating to very short time
windows may again be detrimental as there is little information in each window. Since the main factor influencing the
choice of these parameters is how fast the dominant frequencies of the signal change with time, a numerical study was
conducted (described in detail in Appendix B) which resulted in a choice of 60 Hz for 𝑓𝑟 and 2 Hz for 𝑓𝑟𝑒 .

𝑛𝑠 = floor
(
𝑓𝑠

𝑓𝑟

)
(28)

𝑛fft = floor
(
𝑓𝑠

𝑓𝑟𝑒

)
(29)

Once the spectrogram of a signal is computed, each slice of the spectrogram is analyzed to find the location of the
peak frequency, its harmonics, and the respective amplitudes of these harmonics. This procedure results in a data set
of frequency-amplitude pairs for all the dominant harmonics of the time signal. Since the base harmonic is expected
to be near the measured motor rotational speed, this frequency is found by locating the highest peak within a certain
frequency range 𝑓range of the motor frequency. The value of 𝑓range is set to 25 Hz, which is heuristically set to ensure
that a large range of frequency around the motor frequency is checked for peaks. With the frequency of the base
harmonic known, the same procedure is repeated for the higher harmonics. Figure 8 shows an example of the spectral
analysis described above applied to the raw roll rate measurements obtained from the Geyser drone. Here the motor
frequency went from around 160 Hz to above 350 Hz in this span of 0.15 seconds, which is visible in the spectrogram.
The detected amplitudes of the base harmonic are shown along with the addition of the amplitudes of the 2nd and 3rd

harmonics, which collectively bound the signal fairly accurately. The significance of the 2nd harmonic is also evident
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Fig. 8 A time-snippet of the roll rate (bottom) measured by the Geyser quadrotor for damage case 30FR, and
the spectrogram of this signal showing peak harmonics related to the motor frequency (top).

in this particular set of frequencies. It is important to note here that the harmonics above the first are only computed
for base harmonic frequencies which ensure a frequency separation of at least 3 𝑓𝑟 (180 Hz) because smearing in the
peaks of the STFT results in inaccurate estimates of amplitudes with low separation between sinusoids. Because the
harmonics do not have significant contributions below (roughly) 250 Hz, this is not a major limitation.

3. Simplex B-splines
The final step of the system identification of the HF models is to fit a surface to each of the amplitude-frequency-

damage scattered estimates for each harmonic, of each IMU signal, for all damage locations tested to obtain models of
the form 𝐴𝑛 ( 𝑓 , 𝑑). Because of the highly non-linear local features of these surfaces, Simplex B-splines [35, 36] are
used as the curve-fitting method of choice. Global polynomials models were also tried but did not give satisfactory
results. Here, simplex B-splines are briefly summarised.

Simplex B-splines comprise of basis polynomials, defined locally over simplices 𝑡𝑖 belonging to a triangulation T ,
which are joined together to satisfy some prescribed continuity condition between polynomials of neighboring simplices.
Simplices contain a local coordinate system known as Barycentric coordinates 𝒃 = (𝑏0, ..., 𝑛𝑛) ∈ R𝑛+1 which uniquely
map to point in R𝑛. Given some point 𝒙 inside a simplex with vertices (𝑣0, ..., 𝑣𝑛)where𝑣𝑖 ∈ R𝑛, Eq. 30 relates the
barycentric coordinates to 𝒙. The barycentric coordinates 𝑏𝑖 ≥ 0 if 𝒙 is inside the simplex.

𝒙 =

𝑛∑︁
𝑖=0

𝑏𝑖𝑣𝑖 (30)

The B-form polynomials are defined in barycentric coordinates on a simplex according to Eq. 31 where 𝑐𝜅 are
the B-coefficients of the polynomial set indexed with multi-index 𝜅 = (𝜅0, ..., 𝜅𝑛) ∈ R𝑛 defined such that |𝜅 | = ∑

𝑖 𝜅𝑖 ,
𝜅! =

∏
𝑖 𝜅𝑖 , and 𝒃𝜅 =

∏
𝑖 𝑏

𝜅𝑖
𝑖

[35]. Each permutation of 𝜅 corresponds to a unique B-from polynomial and its
B-coefficient, and the collective set forms a basis for the space spanned by all B-form polynomials of degree d in n
variables.

𝑝(𝒃) =
∑︁
|𝜅 |

𝑐𝜅
𝑑!
𝜅!
𝜅 (31)

A continuity order 𝑟 between B-form polynomials of neighboring simplices 𝑡𝑖 and 𝑡 𝑗 are enforced through constraints
on the respective B-coefficients of the two simplices using Eq. 32 where 𝛾 = (𝛾0, ..., 𝛾𝑛) is another multi-index
independent of 𝜅, and 𝑤is the out-of-edge vertex. The continuity conditions for all simplices in the triangulation can be
compiled into matrix form as shown in Eq. 33 where 𝑯 is known as the ’smoothness matrix’ [35].
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𝑐
𝑡𝑖
(𝜅0 ,...,𝜅𝑛−1 ,𝑚) =

∑︁
|𝛾 |=𝑚

𝑐
𝑡 𝑗

(𝜅0 ,...,𝜅𝑛−1 ,0)+𝛾𝐵
𝑚
𝛾 (𝑤), 0 ≤ 𝑚 ≤ 𝑟 (32)

𝑯𝒄 = 0 (33)

Given a pair of observations (𝑥𝑖 , 𝑦𝑖) related by some function 𝑓 such that 𝑦𝑖 = 𝑓 (𝑥𝑖) + 𝜖𝑖 where 𝜖𝑖 is a residual
term. Then, the regression model for approximating 𝑓 using a linear combination of B-form polynomials with degree 𝑑

defined over a triangulation of 𝐽 simplices is given by Eq. 34 where 𝑏𝑖 are the barycentric coordinates of 𝑥𝑖 with respect
to simplex 𝑡 𝑗 . This expression can be written in matrix form to include all observations (𝑥𝑖 , 𝑦𝑖) through a data sifting
matrix 𝐷 which ensures that observations are only active within the simplices that contain them, explained in further
detail by de Visser et al. [35]. The final spline-based regression model is then given by Eq. 35 where 𝒀 is the vector of
observations and 𝑿 = 𝑩𝑑𝑫 is the local regression matrix of all observations. Finally, the OLS estimation problem
cost function is formulated as shown in Eq. 36. The equality-constrained OLS parameter estimator 𝒄 using Lagrange
multipliers 𝝀̂ is then given by Eq. 37.

𝑦𝑖 =

𝐽∑︁
𝑗=1

∑︁
|𝜅 |=𝑑

𝑐
𝑡 𝑗
𝜅 𝐵

𝑑
𝜅 (𝑏𝑖) + 𝜖𝑖 (34)

𝒀 = 𝑿𝒄 + 𝝐 (35)

𝐽𝑂𝐿𝑆 (c) =
1
2
(Y − Xc)𝑇 (Y − Xc) subject to Hc = 0 (36)[

ĉ
𝜆̂

]
=

[
X𝑇X H𝑇

H 0

]+
·
[

X𝑇Y
0

]
(37)

Simplex B-splines require the user to define a triangulation, the degree 𝑑, and continuity order 𝑟 . These parameters
are set based on the intuitive physical reasoning of the system being modeled, and certain best practices. In general,
it is advised to start with a few simplices, low polynomial degree, and continuity order, and increase the complexity
henceforth. For the amplitude surfaces presented in this paper, certain important aspects of the data must be considered
when choosing a triangulation, degree, and continuity order. For one, the data are concentrated along the direction
of frequency, while very sparse in the direction of damage level (see Fig. 27a). Secondly, the data is not uniformly
scattered in the 𝑓 − 𝑑𝑙 plane, but rather constrained in linear regions corresponding to each damage level. Because
of these properties, a triangulation that is dense in the direction of 𝑓 but sparse in the direction of 𝑑𝑙 is chosen. An
example is shown in Fig. 27a with 20 equally sized triangles. It is clear to see from the models presented in Sec IV.B
that the local nonlinearities in the observed data are present along 𝑓 , which is a further reason for more triangles along
this direction. B-form polynomials with degree 3 and 1st order continuity were used to construct simple models which
still capture the observed nonlinearities in the data.

A point to note is that the high-frequency models include both the blade damage level and frequency as regressors
instead of building 1-dimensional spline models at each damage level separately. Surfaces are fit in the 𝑓 − 𝑑𝑙 plane
rather than curves for each damage level separately so that the amplitude models can facilitate the prediction of HF
behavior at damage levels in between the rows of experimental data. An alternative approach to interpolate between
damage levels would be to construct one-dimensional models as a function of frequency at all damage levels. Then,
the corresponding B-coefficient parameter values of curves at the different damage levels can be interpolated to create
interpolated spline curves. While there is no concrete proof that the applied method is better than this alternative, it
does offer a more natural solution to the problem.
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Table 6 Model performance metrics of aerodynamic force models around hover

𝑭𝒙 𝑭𝒚 𝑭𝒛

Case NRMSE R2 NRMSE R2 NRMSE R2

Full Test Full Test Full Test Full Test Full Test Full Test
Healthy 0.106 0.107 0.989 0.989 0.111 0.109 0.988 0.988 0.081 0.080 0.993 0.994

10F 0.117 0.118 0.986 0.986 0.090 0.090 0.992 0.992 0.077 0.078 0.994 0.994
10BL 0.157 0.157 0.975 0.975 0.087 0.086 0.992 0.993 0.080 0.081 0.994 0.993
10FL 0.113 0.110 0.987 0.988 0.125 0.125 0.984 0.984 0.125 0.125 0.984 0.984
20F 0.129 0.125 0.983 0.984 0.100 0.102 0.990 0.990 0.062 0.062 0.996 0.996

20BL 0.125 0.118 0.984 0.986 0.079 0.078 0.994 0.994 0.065 0.065 0.996 0.996
20BR 0.086 0.083 0.993 0.993 0.100 0.107 0.990 0.989 0.066 0.067 0.996 0.996
20FL 0.118 0.113 0.986 0.987 0.087 0.090 0.992 0.992 0.071 0.071 0.995 0.995
30F 0.083 0.083 0.993 0.993 0.074 0.071 0.995 0.995 0.066 0.067 0.996 0.996

30BL 0.077 0.078 0.994 0.994 0.069 0.072 0.995 0.995 0.063 0.064 0.996 0.996
30FL 0.085 0.084 0.993 0.993 0.073 0.073 0.995 0.995 0.072 0.072 0.995 0.995

IV. Results

A. Aerodynamics Models

1. Stepwise regression Models
Tables 6 and 7 respectively present the model performance metrics of the SWR force and moment models constructed

for the low-speed flight regime. Tables 8 and 9 respectively present the model performance metrics for the force and
moments models identified for the high-speed flight regime. It is evident that all the low-speed force and moment
models give very good performance except for the yawing moment model, which was difficult to excite during the
system-identification test flights. For high-speed flight, all the models perform worse except for 𝑀𝑥 , with 𝐹𝑥 and 𝑀𝑦

particularly worse than the other models. Overall, however, all the models give decent performance and can be used for
simulation purposes. The ratio of training data to test data was 75:25 for all the models. The similarity between the
metrics for the test and the complete set shows that the models do not overfit the data.

To examine whether the SWR models actually capture the effects of blade damage, a ’model confusion matrix’ was
constructed. This matrix is constructed for each force and moment model, for all damage cases. The models for each
damage case are applied to the observed data of all damage cases, and the NRMSE is computed for all combinations.
Each row of the matrix represents the SWR model of the damage case, while the columns represent the training data for
the damage case. With the matrix of NRMSE values computed, the relative NRMSE RNRMSE values of the off-diagonal
elements are computed with respect to the corresponding diagonal elements through Eq. 38. Based on this definition, if
the off-diagonal elements have values above 1, this means that the model from one damage case fit the data of another
damage case better, while values below 1 suggest the opposite.

RNRMSE𝑖 𝑗 =
NRMSE𝑖 𝑗

min
(
NRMSE𝑖𝑖 ,NRMSE 𝑗 𝑗

) (38)

Figures 9 and 10 show the model confusion matrices for the low-speed and high-speed aerodynamic models
respectively. These are computed by averaging (element-wise) the confusion matrices of each force and moment model.
The results show that models applied to off-diagonal elements can have significantly lower NRMSE values, suggesting
that the models for each damage case actually capture the effects of blade damage on the aerodynamics of the quadrotor.
Although this is a week argument, when combined with the high 𝑅2 values for each model (except 𝑀𝑧), however, it can
be quantitatively concluded that the effects of blade damage are indeed captured.
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Table 7 Model performance metrics of aerodynamic moment models around hover

𝑴𝒙 𝑴𝒚 𝑴𝒛

Case NRMSE R2 NRMSE R2 NRMSE R2

Full Test Full Test Full Test Full Test Full Test Full Test
Healthy 0.170 0.185 0.971 0.966 0.228 0.230 0.948 0.947 0.603 0.595 0.636 0.646

10F 0.120 0.122 0.986 0.985 0.137 0.132 0.981 0.983 0.625 0.624 0.610 0.611
10BL 0.126 0.128 0.984 0.984 0.166 0.168 0.972 0.972 0.620 0.621 0.615 0.614
10FL 0.156 0.156 0.976 0.976 0.167 0.181 0.972 0.967 0.568 0.567 0.678 0.679
20F 0.155 0.149 0.976 0.978 0.160 0.154 0.974 0.976 0.691 0.703 0.522 0.505

20BL 0.208 0.208 0.957 0.957 0.184 0.194 0.966 0.962 0.817 0.728 0.332 0.470
20BR 0.142 0.141 0.980 0.980 0.190 0.175 0.964 0.969 0.733 0.745 0.463 0.445
20FL 0.144 0.146 0.979 0.979 0.143 0.146 0.979 0.979 0.663 0.652 0.561 0.574
30F 0.146 0.145 0.979 0.979 0.180 0.173 0.967 0.970 0.685 0.684 0.53 0.532

30BL 0.195 0.201 0.962 0.960 0.155 0.160 0.976 0.974 0.747 0.746 0.441 0.444
30FL 0.185 0.207 0.966 0.957 0.193 0.195 0.963 0.962 0.670 0.671 0.551 0.550

Table 8 Model performance metrics of aerodynamic force models in high-speed flight

𝑭𝒙 𝑭𝒚 𝑭𝒛

Case NRMSE R2 NRMSE R2 NRMSE R2

Full Test Full Test Full Test Full Test Full Test Full Test
Healthy 0.205 0.206 0.958 0.957 0.137 0.133 0.981 0.982 0.129 0.131 0.983 0.983

10F 0.252 0.250 0.937 0.937 0.150 0.153 0.978 0.977 0.167 0.164 0.972 0.973
10BL 0.156 0.155 0.976 0.976 0.194 0.198 0.962 0.961 0.141 0.142 0.980 0.980
10FL 0.139 0.140 0.981 0.980 0.162 0.166 0.974 0.972 0.130 0.132 0.983 0.983
20F 0.261 0.260 0.932 0.932 0.140 0.144 0.980 0.979 0.135 0.136 0.982 0.981

20BL 0.250 0.251 0.937 0.937 0.099 0.093 0.990 0.991 0.139 0.140 0.981 0.980
20BR 0.219 0.222 0.952 0.951 0.096 0.096 0.991 0.991 0.134 0.134 0.982 0.982
20FL 0.235 0.236 0.945 0.944 0.198 0.208 0.961 0.957 0.156 0.157 0.976 0.975
30F 0.247 0.247 0.939 0.939 0.106 0.105 0.989 0.989 0.145 0.144 0.979 0.979

30BL 0.284 0.283 0.919 0.920 0.122 0.125 0.985 0.984 0.137 0.135 0.981 0.982
30FL 0.258 0.261 0.934 0.932 0.116 0.117 0.987 0.986 0.145 0.144 0.979 0.979
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Table 9 Model performance metrics of aerodynamic moment models in high-speed flight

𝑴𝒙 𝑴𝒚

Case NRMSE R2 NRMSE R2

Full Test Full Test Full Test Full Test
Healthy 0.124 0.128 0.985 0.984 0.279 0.324 0.922 0.895

10F 0.119 0.121 0.986 0.985 0.270 0.235 0.927 0.945
10BL 0.115 0.114 0.987 0.987 0.435 0.427 0.811 0.818
10FL 0.114 0.114 0.987 0.987 0.250 0.215 0.937 0.954
20F 0.122 0.122 0.985 0.985 0.254 0.253 0.935 0.936

20BL 0.126 0.126 0.984 0.984 0.204 0.206 0.958 0.958
20BR 0.195 0.197 0.962 0.961 0.420 0.431 0.824 0.814
20FL 0.105 0.105 0.989 0.989 0.307 0.285 0.906 0.919
30F 0.217 0.232 0.953 0.946 0.528 0.621 0.721 0.614

30BL 0.237 0.225 0.944 0.949 0.449 0.412 0.798 0.830
30FL 0.136 0.126 0.982 0.984 0.316 0.318 0.900 0.899

Fig. 9 Element-wise average of model confusion
matrices for all low-speed aerodynamic models

Fig. 10 Element-wise average of model confusion
matrices for all high-speed aerodynamic models

2. Simplified Fixed-Regressor Models
The simplified models for the low-speed and high-speed flight regime were built using the regressors listed in Tables

10 and 11 respectively. These regressors were chosen based on the semi-quantitative procedure described in Sec. III.C.
The regressor choices are fairly symmetric for the low-speed case because of the symmetry of the flight maneuvers,
evident from the similarities in the 𝐹𝑥 and 𝐹𝑦 , and 𝑀𝑥 and 𝑀𝑦 regressors. The regressors for the high-speed regime are
similar to those for the low-speed regime, except for those for 𝐹𝑥 and 𝑀𝑦 . The 𝐹𝑥 and 𝑀𝑦 models in the high-speed
regime are clearly influenced by the effects of the higher mean airspeed.

Figure 11 shows how the model performance metrics differ between the SWR and FR models, for both speed regimes.
Interestingly, the FR models for 𝐹𝑦 , 𝐹𝑧 , and 𝑀𝑥 are virtually as good as the SWR counterparts. The 𝑀𝑦 FR models
for both airspeed regimes are similarly reduced in accuracy, while for 𝐹𝑥 only the high-speed models are significantly
worse. These results suggest that the simplification of the models does not significantly reduce the performance of the
models. It is again highlighted here that the purpose of the simplifications was to obtain models for different cases with
the same set of regressors so that the parameter variations between the damage cases can be compared.

Figures 12-16 plot the variation of parameter values as a function of blade damage extent and location for the various
force and moment models of the low-speed regime. The standard deviations of the parameters are plotted as error bars.
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Table 10 Selected regressors for simplified low-speed
models

Model Regressors
𝐹𝑥 𝑢, sin(𝜃)𝜔𝑡𝑜𝑡

𝐹𝑦 𝑣, sin(𝜙)𝜔𝑡𝑜𝑡

𝐹𝑧 𝑤, 𝜔2
𝑡𝑜𝑡

𝑀𝑥 𝑝, 𝑢𝑝 , cos(𝜙)𝑣
𝑀𝑦 𝑞, 𝑢𝑞 , cos(𝜃)𝑢
𝑀𝑧 𝑟 , 𝑢𝑟 , 𝜔𝑡𝑜𝑡𝑢𝑟

Table 11 Selected regressors for simplified high-speed
models

Model Regressors
𝐹𝑥 𝑢, sin(𝜃)𝜇𝑥 , sin(𝜃)𝑢2

𝐹𝑦 𝑣, sin(𝜙)𝜔𝑡𝑜𝑡

𝐹𝑧 𝑤, 𝜔2
𝑡𝑜𝑡

𝑀𝑥 𝑝, 𝑢𝑝 , cos(𝜙)𝑣
𝑀𝑦 𝑞, 𝑢𝑞 , 𝜇𝑧

𝑀𝑧 -

Fig. 11 Model performance metric comparison between the SWR models and the simplified fixed regressor
(FR) models

It is evident from these plots that, in general, no simple patterns can be found the parameter values of most of the
regressors.

Intuitively, the control moment parameters corresponding to regressors 𝑢𝑝 and 𝑢𝑞 for the 𝑀𝑥 and 𝑀𝑦 model
respectively are expected to decrease in magnitude with increasing levels of damage. While this is the case for 𝑀𝑥 , the
decrease in control effectiveness does not follow a logical trend with some model 10% damage showing an increase in
control effectiveness compared to the base models. For example, the control effectiveness remains almost unaffected up
to 20% FL damage. The models for 𝑀𝑦 on the other hand show an increase in pitch control effectiveness with increasing
blade damage which is physically impossible. The bias terms for both 𝑀𝑥 and 𝑀𝑦 do however show consistent patterns.
For example, the 𝑀𝑥 bias for F (front) damage stays around the bias corresponding to no damage, which makes sense
because the damage is symmetric about the 𝑥𝑧 plane. The biases for both left-side damage cases –FL and BL– are in
agreement, while bias for the BR case seems to be reflected about the zero-damage case bias. Similarly, the bias in
𝑀𝑦 is worse for the F damage case compared to the single damage cases, and all the bias decreases or increases in the
expected directions in accordance with the location of the damage.

Lastly, the parameters corresponding to the 𝜔2
𝑡𝑜𝑡 regressor show a clear pattern with respect to the damage level.

There is almost a linear trend, with the F damage case having a higher slope. This makes physical sense, but the question
arises why, from the same data, do the control effectiveness parameters not follow meaningful patterns? This is further
explored in the next subsection.

The parameters of the high-speed regime models largely show the same non-patterns with respect to blade damage
and are therefore omitted for brevity. Interestingly, the 𝑀𝑥 models in the high-speed regime reveal clearer patterns in
the parameters, as shown in Fig. 17 compared to the low-speed models. The regressor 𝑝 has the physical interpretation
of acting as a damping term. The parameters of this regressor do show a much more prominent pattern than the others
(except the bias). Looking at the regressor values, it appears that the roll damping is decreased in the case of front
damage, while it is increased in the case of rear damage in the high-speed regime.

The models built by SWR, and therefore the selected regressors are influenced strongly by the system identification
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Fig. 12 𝐹𝑥 parameter variations with damage level and location (low-speed regime)
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Fig. 13 𝐹𝑦 parameter variations with damage level and location (low-speed regime)
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Fig. 14 𝐹𝑧 parameter variations with damage level and location (low-speed regime)
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Fig. 15 𝑀𝑥 parameter variations with damage level and location (low-speed regime)
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Fig. 16 𝑀𝑦 parameter variations with damage level and location (low-speed regime)
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Fig. 17 𝑀𝑥 parameter variations with damage level and location (high-speed regime)

maneuvers performed and the regime of airspeeds flown. This is evident by the fact that the regressor cos(𝜃)𝑢 selected
for the hovering flight was not selected for any of the high-speed models, which apart from being identified at a much
higher mean airspeed, also lack the slow speed rolling maneuvers which were performed for the hovering case.

3. Control Effectiveness Analysis
This section tries to uncover the reason for the sporadic estimates of the control effectiveness parameters of the

pitching and rolling moments described in the previous subsection. Figures 18 and 19 respectively show the low-speed
and high-speed observed forces/moments from training data plotted against the respective primary control effectiveness
regressors. Each plot also shows a simple linear model fit to the respective data.

For the 𝐹𝑧 model of both speed regimes, a linear trend is clearly observed between 𝐹𝑧 and 𝜔2
𝑡𝑜𝑡 with decreased slope

magnitude at higher damage levels. This is in line with expected behavior; the quadrotor should be less effective in
producing thrust when blade damage is present. Conversely, the slope of the (low-speed) 𝑀𝑦 model actually increases
with increasing damage level, which was also the case for the simplified models shown in Fig. 16.

The low-speed 𝑀𝑥 data shows that there are 2 distinct patterns between 𝑢𝑝 and 𝑀𝑥 . For example, the 𝑀𝑥 data
shows dominant linear behavior from -0.15 to 0.15 Nm but there is another region with a lower slope, which is active
on a smaller range of moment values, roughly -0.03 to 0.03 Nm. This additional non-linear effect was found to occur
during the lateral maneuvers while the dominant linear behavior corresponds to the quick roll maneuvers where the
lateral airspeed remains close to zero. In the high-speed test flight, only fast roll maneuvers could be performed so as to
make sure the quadrotor stays within the jet of the wind tunnel. This is also evident by the fact that the high-speed 𝑀𝑥

data shown in Fig. 19 only shows the dominant linear pattern.
Similar to the phenomenon for 𝑀𝑥 , similar features can be seen in the 𝑀𝑦 data. Unlike the 𝑀𝑥 , the pitching moment

could be excited both through fast pitch maneuvers as well as slower longitudinal maneuvers during high-speed flight.
This is clearly evident in Fig. 19 where two distinct linear regions are visible. The presence of these dual patterns results
in the models identified from the data being an unweighted average of both patterns. Since the patterns arise based on
the maneuvers performed, differences in flight maneuvers result in different distributions of data for each maneuver
which eventually impact the control effectiveness parameters. This would also explain why the high-speed 𝑀𝑥 models
shown in 17 show clearer patterns than the other models, only one type of maneuver was flown for this case.

These findings suggest that linear-in-the-parameters models may not be sufficient to model the dynamics of a
quadrotor from a physical perspective. For example, the roll control effectiveness is found to depend on additional
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Fig. 18 Control effectiveness comparison plots for low-speed flight data

states such as lateral airspeed in a non-linear fashion, while also of course depending on the control input created by the
combination of rotor speeds.

B. High-Frequency Models

1. Spectral Analysis
While the simplex B-spline models are the primary result of the HF models, the frequency-amplitude data gathered

from the spectral analysis of the raw IMU data is interesting to analyze. Here, the results obtained for a variety of
damage cases for both the Beetle and Geyser drone are presented. First, the results for a single damage case are presented
which show the amplitude-frequency relationships of three harmonics for each IMU axis. Then, similar plots are shown
for increasing levels of damage at a single location. Finally, results are shown for the same damage level at all four
damage locations.

Figures 20 and 21 show the 𝑓 − 𝐴 relationships as mean value (solid lines) and 2𝜎 bands (shaded regions) for the Beetle
and Geyser quadrotors respectively. These results are obtained from a single flight with duration around 120 seconds.
The duration of flights for the remainder of the HF spectral analysis results are derived from flights of similar duration.

Since the accelerometer on the Beetle is sampled at 1000 Hz, only the first harmonic is extracted. Another important
point to note is that the accelerometers of both quadrotors have a limit of 16 g ( 160 m/s), yet the estimated amplitudes
tend to surpass this value for the Beetle. This occurs at frequencies close to the Nyquist limit (500 Hz), where the STFT
does start to break down given the very short time windows. This is an inherent limitation and requires the use of IMUs
with higher sampling rates and higher saturation limits. Additionally, as mentioned in Sec. III.B, high frequencies are
difficult to excite in an indoor environment, which results in fewer data points in these regions, accounting partly for the
noisy data at frequencies above 450 Hz.

Figure 21 shows that the high-frequency region (>450 Hz) for the Geyser drone is less noisy than the Beetle. Unlike
the Beetle, the accelerometer of the Geyser has a logging rate of 8 kHz. Additionally, the higher mass of the Geyser
results in higher hovering RPM, making the full range of frequencies easier to cover through throttle punch maneuvers.
The higher inertia of the Geyser also makes the accelerometer less susceptible to clipping.

It is interesting to note that the harmonics above the base harmonic have a relatively small contribution to the
time-series signal. For the Beetle, the higher harmonics only contribute significantly to the yaw rate, while the Geyser
has the highest contributions in 𝑎𝑧 with noticeable peaks around 300 Hz for the other IMU measurements.

Figure 22 shows that increasing levels of blade damage manifest in clear differences between the 𝑓 − 𝐴 relationships for
all the IMU axes of the Beetle quadrotor. Figure Figure 24 also shows that the location of damage results in different
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Fig. 19 Control effectiveness comparison plots for low-speed flight data
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Fig. 20 Amplitude-frequency relationships of the Beetle quadrotor with damage case 30FR
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Fig. 21 Amplitude-frequency relationships of the Geyser quadrotor with damage case 30FR

𝑓 − 𝐴 relationships at the same damage level. In both the figures, there are multiple lines of the same color which
signifies data obtained from completely separate flights with the same damage case, which shows the reproducibility of
the results obtained from the spectral analysis procedure explained in Sec. III.D. It is interesting to see that the curves at
different damage levels show similar localized features which increase in prominence as the damage level increases.
These highly non-linear effects are likely caused by structural resonance in the airframe, and complex aerodynamic
interactions.

Figure 23 and 25 show the same effects seen from the corresponding plots for the Beetle quadrotor on the Geyser
quadrotor. However, the mean 𝑓 − 𝐴 curves appear to be noisier for the Geyser, with larger 2𝜎 bands. After a closer
inspection of the raw IMU data, and the frequency and amplitude estimates at each time point, it was found that there
may be a dependence of amplitude on additional states apart from 𝑓 . For example, Fig. 26 shows the roll-rate data
of the Geyser with damage case 30FR. A clear oscillation in the amplitude of the signal is seen which at first looks
independent of the frequency of the signal, but there is a pattern visible of lower amplitudes corresponding to lower
frequencies and vice-versa. This oscillation in frequency is also weakly visible in the STFT plot. These oscillations in
amplitude were also observed on the Beetle but to a much lower extent.

There are two explanations for the high-frequency amplitude oscillation phenomenon. For one, the assumption that
the amplitude is only a function of frequency may still be valid. This suggests that the high-frequency oscillations in
frequency are caused by fast oscillation in motor RPM values, and the amplitude is directly related to these frequency
oscillations. However, it is difficult to resolve these dynamics with the STFT because the frequency changes very rapidly.
This essentially means that the signal is too non-stationary to capture the frequency and amplitude by analyzing even
small time windows. This is also visible in Fig. 26, where the estimated amplitude does not perfectly conform to the
signal.

Alternatively, there may be hidden states governing this oscillation in signal amplitude. It is important to note that
the flight controller on the Geyser drone is mounted on the airframe via rubber standoffs which include metal inserts for
securing the board with fasteners. The Beetle on the other hand has steel standoffs that are many orders of magnitude
stiffer. It is possible that the high levels of vibration cause non-linear structural effects through the rubber standoffs
which do not occur with the same severity on the Beetle. In either case, even though the high-frequency amplitude and
frequency oscillation of the signal cannot be resolved, the mean 𝑓 − 𝐴 relations are still captured.

2. Simplex B-spline Models
The surfaces of the simplex B-spline models constructed for the Beetle quadrotor of the amplitudes corresponding

to the first harmonic, for the FR damage case, are presented in Fig. 27. The training data is also shown in these plots but
reduced to the mean value at each frequency bin for each damage level. The spline surfaces go through the training data
and are able to capture all the local non-linearities in the data. Additionally, the regions in between the rows of training
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Fig. 22 Amplitude-frequency relationships of the first harmonic at varying levels of FR damage for the Beetle
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Fig. 23 Amplitude-frequency relationships of the first harmonic at varying levels of FR damage for the Geyser
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Fig. 24 Amplitude-frequency relationships of the first harmonic at varying locations with 20% damage for the
Beetle
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Fig. 25 Amplitude-frequency relationships of the first harmonic at varying locations with 20% damage for the
Geyser
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Fig. 26 A time-snippet of the roll rate (bottom) measured by the Geyser quadrotor for damage case 30FR, and
the spectrogram of this signal showing peak harmonics related to the motor frequency (top)

data appear to be qualitatively well interpolated by the spline models. The models for the second harmonic are shown in
Fig. 28. The training data appears nosier in this case but it is also important to notice that the amplitudes of the second
harmonic are much lower in value than that of the first harmonic. The training data is especially noisy in the low and
high-frequency regions. The noise in the low-frequency region is likely caused by leakage of amplitudes estimated for
the first harmonic into the second harmonic, while noise in the high-frequency regions is likely because of fewer data
points in each frequency bin as explained in the previous section.

The performance metrics for the various simplex B-spline models of the Beetle quadrotor are summarised in Table
12 and Table 13 for the accelerometer and gyroscope models respectively. The results are shown calculated on the entire
dataset (Full) as well as the validation set (Test). The data was split randomly into the 80:20 ratio for the training and
validation sets for all the models. Note that because the MPU6000 IMU is limited to 1 kHz, only the first harmonic
models are possible to construct for the Beetle.

From the results, some general conclusions can be drawn. The base harmonic models generally perform significantly
better than those corresponding to higher harmonics. Since the base harmonic is the dominant component, this is not a
very consequential limitation. The performance metrics for the validation data are comparable to those of the complete
dataset, which indicates that the models do not overfit the training data.

It is interesting to note the BL accelerometer models show worse performance than the other damaged locations.
Looking at the top row of plots in Fig. 29, it appears that noise in the high-frequency regions (>450 Hz) is the probable
cause. The noisy data in the high-frequency region are likely present because of the proximity of these frequencies to
the Nyquist limit (500 Hz). The gyroscope models for the BL case are not always worse than the other damage locations.
The gyroscope data is sampled at 8 kHz, which further suggests that accelerometer model training data is inflicted with
noisy estimates due to proximity to the Nyquist limit.

The performance metrics for the simplex B-spline models of the Geyser quadrotor are summarised in Table 14 and
Table 15 for the accelerometer and gyroscope models respectively. Unlike the Beetle, the 8 kHz sampling rate of the
accelerometer in the ICM42605 IMU facilitates the identification of accelerometer models at harmonics higher than
the base harmonic. Note that models only for the FR location are presented even though Table 4 suggests that all 4
single-damage locations were tested. This is because apart from the FR case, the other cases only cover one damage
level, to qualitatively analyze how the 𝑓 − 𝐴 relationships change based on damage location, at the same damage level,
for the Geyser quadrotor.

On average, the base harmonic models of the Geyser seem to be slightly worse than the Beetle. This is likely because
of the high-frequency amplitude oscillations phenomenon described in the previous section. The models of the higher
harmonics also show significantly worse performance than those of the base harmonics, as was the case with the Beetle.
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Fig. 27 Spline models of the Beetle for FR damage (Harmonic 1)
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Fig. 28 Spline models of the Beetle for FR damage (Harmonic 2)
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Table 12 Model performance metrics for the HF acceleration models of the Beetle quadrotor (h = harmonic)

𝒂𝒙 𝒂𝒚 𝒂𝒛

Case h NRMSE R2 NRMSE R2 NRMSE R2

Full Test Full Test Full Test Full Test Full Test Full Test
FR 1 0.171 0.173 0.971 0.970 0.194 0.191 0.963 0.964 0.239 0.241 0.943 0.942
FL 1 0.285 0.292 0.919 0.915 0.200 0.201 0.960 0.960 0.223 0.219 0.950 0.952
BR 1 0.174 0.173 0.969 0.970 0.220 0.222 0.952 0.951 0.147 0.147 0.979 0.979
BL 1 0.323 0.323 0.895 0.896 0.309 0.302 0.905 0.909 0.189 0.186 0.964 0.966

Table 13 Model performance metrics for the HF angular-rate models of the Beetle quadrotor (h = harmonic)

𝒑 𝒒 𝒓

Case h NRMSE R2 NRMSE R2 NRMSE R2

Full Test Full Test Full Test Full Test Full Test Full Test
1 0.243 0.236 0.941 0.945 0.137 0.134 0.981 0.982 0.180 0.179 0.967 0.968

FR 2 0.525 0.536 0.724 0.712 0.38 0.398 0.855 0.841 0.457 0.475 0.771 0.759
3 0.318 0.317 0.893 0.894 0.391 0.402 0.815 0.819 0.349 0.352 0.877 0.875
1 0.253 0.250 0.936 0.937 0.169 0.168 0.971 0.972 0.365 0.367 0.867 0.866

FL 2 0.495 0.482 0.755 0.767 0.532 0.513 0.718 0.737 0.462 0.464 0.784 0.781
3 0.367 0.368 0.864 0.863 0.389 0.387 0.816 0.815 0.322 0.323 0.882 0.882
1 0.217 0.218 0.953 0.953 0.206 0.204 0.958 0.958 0.176 0.176 0.969 0.969

BR 2 0.286 0.288 0.920 0.918 0.625 0.620 0.615 0.622 0.509 0.519 0.591 0.583
3 0.274 0.272 0.912 0.913 0.172 0.163 0.895 0.896 0.258 0.262 0.929 0.928
1 0.209 0.216 0.956 0.953 0.288 0.287 0.917 0.918 0.305 0.299 0.905 0.909

BL 2 0.455 0.403 0.791 0.837 0.634 0.634 0.594 0.594 0.491 0.470 0.747 0.764
3 0.268 0.271 0.925 0.924 0.245 0.237 0.934 0.937 0.275 0.279 0.924 0.922

Table 14 Model performance metrics for the HF acceleration models of the Geyser quadrotor (h = harmonic)

𝒂𝒙 𝒂𝒚 𝒂𝒛

Case h NRMSE R2 NRMSE R2 NRMSE R2

Full Test Full Test Full Test Full Test Full Test Full Test
1 0.236 0.233 0.945 0.946 0.204 0.210 0.958 0.956 0.336 0.341 0.887 0.884

FR 2 0.327 0.357 0.893 0.873 0.355 0.348 0.874 0.879 0.28 0.29 0.922 0.916
3 0.717 0.723 0.488 0.479 0.359 0.363 0.872 0.870 0.494 0.49 0.756 0.761

Table 15 Model performance metrics for the HF angular-rate models of the Geyser quadrotor (h = harmonic)

𝒑 𝒒 𝒓

Case h NRMSE R2 NRMSE R2 NRMSE R2

Full Test Full Test Full Test Full Test Full Test Full Test
1 0.262 0.270 0.932 0.928 0.233 0.226 0.947 0.950 0.260 0.259 0.934 0.934

FR 2 0.334 0.320 0.889 0.898 0.385 0.424 0.852 0.821 0.313 0.320 0.902 0.898
3 0.509 0.514 0.740 0.735 0.515 0.535 0.736 0.714 0.640 0.658 0.590 0.567
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Fig. 29 Projected spline models of the Beetle for BL damage (Harmonic 1)

Table 16 Interpolation performance of the HF acceleration models

Case h 𝒂𝒙 𝒂𝒚 𝒂𝒛

NRMSE R2 NRMSE R2 NRMSE R2

15Bl 1 0.475 0.774 0.516 0.734 0.291 0.915
25FL 1 0.339 0.885 0.323 0.895 0.297 0.912

In addition to creating models for the damage levels for which flight data was gathered, the simplex B-spline models
also facilitate interpolation between the damage levels. To examine how accurately the spline models are capable of
interpolating between damage levels, flight data was gathered for two damage cases: 15BL and 25FL (see Table 3). The
data for these cases were not used to construct the models for the respective damage locations.

Figure 29 shows plots of the training data, spline models, and validation data for the BL damage case of the
Beetle quadrotor. The validation data corresponds to a damage level of 15% and was not used when identifying the
simplex B-spline model. It can be seen from the plot of each model in Fig. 29 that the spline model is actually able to
approximate the data obtained for the 15% damage case quite well for all six models, even capturing the local peaks and
valleys as a function of frequency.

Figure 30 shows similar plots as Fig. 29, but for FL damage, with validation data recorded at 25% damage. Again,
the spline models are able to interpolate the 25% damage case quite well. However, roll rate (𝑝) and 𝑎𝑦 models perform
relatively poorly at the higher frequency region. Models for 𝑞 and 𝑟 are particularly accurate.

Tables 16 and 17 respectively show the model performance metrics for the accelerometer and gyroscope models at
both interpolated damage cases. While the error for the interpolated damage levels is higher than that of the damage
levels used for training the model, the models still give a decent approximation. This shows the feasibility of simulating
the HF behavior at several damage levels with HF models built from a discrete set of a few damage levels, which is a
novel finding of this research.
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Fig. 30 Projected spline models of the Beetle for FL damage (Harmonic 1)

Table 17 Interpolation performance of the HF angular-rate models

Case h 𝒑 𝒒 𝒓

NRMSE R2 NRMSE R2 NRMSE R2

1 0.411 0.831 0.547 0.701 0.602 0.638
15BL 2 0.911 0.171 0.999 0.002 0.600 0.640

3 0.330 0.891 0.248 0.938 0.345 0.881
1 0.320 0.897 0.231 0.947 0.572 0.672

25FL 2 0.581 0.662 0.619 0.617 0.474 0.776
3 0.377 0.858 0.661 0.564 0.483 0.767
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Fig. 31 A time-snippet of the yaw rate (bottom) measured by the Beetle quadrotor for damage case 30FR, and
the spectrogram of this signal showing peak harmonics related to the motor frequency (top)

V. Discussion

A. Aerodynamic Models
While the aerodynamics models identified through SWR show good performance and are able to capture the effects

of different combinations of blade damage and extent, they do not offer a meaningful method of interpolating between
damage levels at a given damage case because of the differences in regressors chosen from one damage case to the next.
The simplified fixed-regressor models identified to remedy this also did not show many meaningful relationships in the
parameter values as a function of blade damage location and level. Exceptions to this were the 𝜔2

𝑡𝑜𝑡 regressor parameters
of the 𝐹𝑧 models, and the biases of the 𝑀𝑥 and 𝑀𝑦 models. However, it must be noted that the bias component of the
moment models merely accounts for the constant offsets in rotor speeds created due to blade damage, and does not
model the actual moments produced when maneuvers are performed.

One major reason for the lack of meaningful variations in model parameters as a function of blade damage was that,
depending on the flight maneuvers performed, the training data can significantly impact the identified model parameters.
Even though the system identification flights were performed manually, the variation between the maneuvers between
flights was tried to be kept at a minimum by following a fixed set of pre-planned maneuvers. However, this clearly
did not prove to be enough, suggesting that the only way to ensure that flight maneuvers are performed in a repeatable
manner is to perform automated test flights, where pose feedback information provided by an external motion capture
system is used to control the attitude and position of a quadrotor. This has been done by Sun et al. [31]. The automation
of flight should also allow for more complicated maneuvers to be flown which better couple the forces and moments,
unlike the largely uncoupled models presented in this paper.

The analysis of the control effectiveness regressors described in Sec. IV.A also shows the difficulty of capturing
meaningful physical relationships using linear-in-the-parameters polynomial models. This was especially evident for the
moment control effectiveness regressors 𝑢𝑝 and 𝑢𝑞 for the 𝑀𝑥 and 𝑀𝑦 models respectively.

B. High Frequency Models
One of the base assumptions used when building the HF models is that high-frequency accelerations and angular

rates measured in each axis are comprised of a few sinusoids. Specifically, we further assume that the dominant sinusoid
has a frequency equal to the rotation frequency of the damaged propeller, and only the harmonics of this frequency are
dominant. While this was found to be the case for almost all IMU measurements of both the Beetle and Geyser, the yaw
rate measured on the Beetle shows additional oscillations at sporadic frequencies below the motor frequency shown in
Fig. 31. This generally occurs above around 250 Hz but is most dominant at frequencies above 400 Hz. The limitation
of the HF modeling approach is that these sporadic effects are not captured.
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Fig. 32 Relative phases of the IMU signals of the Geyser, with damage case 30FR, obtained from the STFT of
each respective signal.

While the spline-based HF models show the possibility of predicting signal amplitudes at damage levels in between
the levels corresponding to the training data, a spacing of 10% damage between the training data may be too high to
accurately reproduce the behavior in between the training damage levels. The spacing between damage levels also
affects the number of test flights required, so a trade-off is required in terms of accuracy and experimental costs.

The phase relationships between the harmonics of each IMU axis, as well as the phase relationships between these
axes, are not described by the HF models presented in this paper. This would be a useful addition, whereby phase
relationships are constructed as a function of frequency in a similar manner as was done for the amplitudes in this paper.
Figure 32 shows the phase information extracted from the 30FR damage case of the Geyser. Since the absolute phase
depends on the actual angle made by the damaged rotor with respect to a fixed body reference – an unmeasured quantity–
it is impossible to obtain the absolute phase of each IMU signal. However, at each slice of the STFT, the relative phases
between signals can be computed. In Fig. 32, the phase of 𝑎𝑦 and 𝑎𝑧 is shown relative to that of 𝑎𝑥 , while the phases of
𝑞 and 𝑟 are shown relative to that of 𝑝. Interestingly, there are clear patterns visible in the phase data as a function of
frequency. However, the phase data obtained for damage levels below 30% are not as clear as shown here, and almost
look random at 10% damage even though the IMU signals are sinusoidal for all damage cases. Therefore, before phase
models can be constructed, accurate extraction of phase information should be investigated.

The simplex B-spline models presented in this paper use a fairly simple triangulation which is defined on a rectangular
grid of points. To better cover the complete data space, the convex hull of the data should be used to select the simplex
vertices. In terms of the number of simplices in each direction, the triangulation presented here shows good results and
is recommended to be kept the same for amplitude surface modeling.

The HF models only treat frequency as the dependent variable (at a constant damage level). However, there may be
a weak dependence on additional variables which affect the aerodynamic imbalances created by the damaged propeller.
For example, the angle of attack of the rotor plane and airspeed may increase or decrease the effects of the HF forces
and moments caused by aerodynamic imbalances which are not accounted for in the presented models. A few HF model
identification flights were also conducted in the wind tunnel to see the effects of mean flow velocity on the frequency
amplitude curves obtained from spectral analysis. Figure 33 shows the amplitude-frequency relationship for the same
damage case, but flying at different mean airspeed. Note that the multiple curves for the ’0 m/s’ case are for different

33



0

100

200

a
x
 [ m s2

] Mean airspeed
0 m/s
8 m/s

0

1

2

p
 [r

ad s
]

0

100

200

a
y
 [ m s2

]

0

1

q 
[r

ad s
]

0 100 200 300 400 500
Frequency [Hz]

0

50

100

a
z
 [ m s2

]

0 100 200 300 400 500
Frequency [Hz]

0.0

0.5

r 
[r

ad s
]

Fig. 33 First harmonic amplitude-frequency relationships of the Beetle quadrotor at varying wind speed for the
same damage case (20FR)

flights. From these results, it is clear that frequency-amplitude relationships do not change drastically at different air
speeds.

It is important to note here that the variations between the green curves (all corresponding to the same damage case)
in Fig. 33 seem quite large compared to what was shown in Fig. 20 for various damage cases. This is likely because of
minor changes in mass, and mass distribution introduces by changing the battery in between test flights. The wind
tunnel tests were conducted before the model identification flights, the data from which the HF models for the Beetle are
constructed. For the latter, the battery was taped onto the airframe, and all flights were conducted with the same battery
(recharged without detaching from the quadrotor). Therefore, the HF behavior is found to be very sensitive to even
minor changes in the way the mass is distributed on the airframe. In fact, the variation of the high airspeed curve (red)
in Fig. 33 may also largely be because of the fact that the battery was changed, and not purely because of the effect of
flying at a higher mean airspeed.

While the amplitude-frequency relationships are modeled using simplex B-splines in the presented HF modeling
methodology, an alternative approach would be to compute the frequency response function using pole-zero models.
This has the potential advantage of providing fewer and more physical parameters which describe the local peaks and
valleys observed in the amplitude curves as a function of frequency. However, this would come at a cost of providing a
straightforward way to interpolate between the damage levels, which is a benefit of using the spline-based models.

Finally, the HF models are only constructed for the single damage case. If linearity is assumed, then a damage case
for 2 simultaneously failed rotors can be simulated by adding the respective models corresponding to only one damaged
rotor. The difference in phase between the two rotors in this case can cause constructive or destructive interference
between the forces and moments created by each rotor. In a simulation, the angular positions of the rotors can be
simulated through time integration, and so the dual damage cases can be simulated by simply super-imposing the models
identified for single propeller damage. Clipping, especially in the simulated accelerometer, should be taken into account
when simulating simultaneous damage in this way.

The super-imposition of single damage models would have to be validated through HF model identification of a
quadrotor with simultaneous damage to two or more propellers. However, this presents further challenges. Since the
rotor speeds are generally very close throughout most of the flight, spectral analysis through the STFT-based procedure
described in this paper may not be applicable because the frequency resolution would be too low to differentiate the
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nearby frequencies. In this case, probably a single peak frequency corresponding to the dominant propeller can be
extracted from the STFT, however, the amplitude of this peak would lump the influence of each damaged propeller. One
remedy for this would be to fly maneuvers that create differences between rotor speeds such as aggressive pitch, roll, or
yaw combined with simultaneous throttle punch maneuvers to ensure that the effects of imbalances in both propellers
have significant amplitudes and sufficiently distanced frequencies.

C. Implications for blade damage diagnosis
Based on the aerodynamic models and high-frequency models identified for ABD, some important conclusions

can also be drawn regarding the diagnosis of this damage case. High-frequency models are much more robust to the
maneuvers because the primary dependence is on the (rotational) speed of the damaged rotor, while also being highly
sensitive to the damage level. As shown in Sec. IV.B.1, the HF behavior differs based on damage location, at the same
damage level. Bondyra et al. [17] suggest that damage cannot be localized using only a single IMU, however, the results
of this study show that this is not the case. A single IMU is a sensitive enough source of information to differentiate
between the same level of damage at different locations. However, this sensitivity also comes with the disadvantage
that two identically manufactured quadrotors may show significantly different HF model behavior. This also calls into
question the various existing diagnosis methodologies [18, 21, 37] which rely purely on IMU data.

While the aerodynamic models suggest that online identification of these models may not be a good method for
diagnosing damage, certain parameters such as the bias terms of the moment models, as well the parameter for the
𝜔2
𝑡𝑜𝑡 regressor for 𝐹𝑧 offer a useful diagnostic tool which may not be as sensitive to the local variations in structural

properties of the airframe like the HF models. However, these parameters would not provide information about the
asymmetry of the damage, unlike the HF models. It may be possible to harness the strengths of both frequency regimes
to develop a robust blade diagnosis framework that is robust to small changes between airframe properties of different
quadrotors but can still provide accurate estimates of the type of blade damage present on the quadrotor.

VI. Conclusion
This paper explored the process of modeling the effects of asymmetric blade damage on the dynamics of a quadrotor.

It was found that the effects can be largely separated into two frequency ranges, and modeled independently for each
regime. Polynomial models constructed using stepwise regression, which quantify the effects of blade damage on
the aerodynamic forces and moments were analyzed. These models were found to show good performance and were
demonstrated to capture the effects of blade damage. However, the variations of parameter values as a function of
damage extent were sporadic for most model regressors and therefore did not facilitate interpolation between damage
levels, where experimental data is not gathered. A possible way to improve the aerodynamic model interpolatability
would be to perform automated, and therefore more reproducible system identification flights at each damage level.

A novel approach for modeling the high-frequency effects of asymmetric blade damage in the frequency domain
was developed. A simple sinusoidal model structure was found to capture a large part of the high-frequency behavior,
producing accurate models of the HF phenomena, which also facilitated reasonably accurate interpolation of the HF
behavior at damage levels not used for model identification. The HF modeling approach relies purely on on-board
IMU measurements, therefore facilitating online identification. Additionally, with the approach being validated on two
separate quadrotor platforms, the potential for generalization is demonstrated. The findings in terms of HF behavior also
provide insights regarding the diagnosis of blade damage in quadrotors, or similar platforms. Primarily, the potential
strengths and weaknesses of relying purely on IMU sensors as a source of information for diagnosis are highlighted.
Future research should explore the development of robust blade damage diagnosis algorithms which fuse the high
sensitivity capability of the IMU with more robust information provided by certain aerodynamic model terms such as
the bias terms of aerodynamic moments, as well as the 𝜔2

𝑡𝑜𝑡 regressor for 𝐹𝑧 .

Appendix A: IMU properties
This section presents and compares the noise properties of the MPU6000 and ICM42605 IMUs used for gathering

experimental data. Additionally, the sampling jitter properties of both IMUs are also analyzed to examine the validity of
using the STFT for spectral analysis, as it assumes constant sampling times.

Figure 34 shows the noise characteristics of the MPU6000 and ICM62605 IMUs. The distributions are constructed
from 30 seconds of measurement data. While the gyroscopes perform similarly for both, the accelerometer measurements
of the ICM42605 have significantly lower variances than the MPU6000. However, for the purposes of high-frequency
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Fig. 34 Distributions of stationary noise measurements of the MPU6000 and ICM42605
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Fig. 35 Distributions of jitter fraction for the accelerometer (left) and gyroscope (right) measurements of the
MPU6000 and ICM42605.

model identification, the signal-to-noise ratio is very high for both IMUs for both accelerometer and gyroscope
measurements. The data Note that the temperature was not recorded, however, the data was gathered under similar
environmental conditions. It is therefore assumed that variation in temperature did not have a significant effect on the
measured noise statistics.

Apart from the measurement noise, some jitter in sampling times was also observed in the raw IMU data for
both the MPU6000 and ICM42605. Here a quantity jitter fraction (𝜙 𝑗) is defined as per Eq. 39, where Δ𝑡𝑡𝑟𝑢𝑒 is the
required sampling time, and Δ𝑡𝑚𝑒𝑎𝑠 is the measured time difference between two consecutive samples. Figure 35 shows
the distributions of 𝑝ℎ𝑖 𝑗 for the accelerometer and gyroscope measurements. The raw IMU data in px4 is logged
independently for the accelerometer and gyroscope, while the axes of both sensors are logged simultaneously. While
there is some amount of sampling jitter, a vast majority of the measurements (>92%) show consistent sampling periods.

𝜙 𝑗 =
Δ𝑡𝑡𝑟𝑢𝑒 − Δ𝑡𝑚𝑒𝑎𝑠

Δ𝑡𝑡𝑟𝑢𝑒
(39)
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Fig. 36 Distribution of motor frequencies (left) and their derivative (right) constructed from data gathered
from all Beetle test flights

Appendix B: Optimal STFT parameters based on signal properties
As discussed in the paper, the outputs of the STFT are highly sensitive to the choice parameters 𝑛𝑠 and 𝑛fft, which

are linked to the 𝑓𝑠 , 𝑓𝑟 , and 𝑓𝑟𝑒 via Eq. 28 and 29 respectively. Intuitively, it is appropriate to assume that the choice of
these parameters is influenced by the degree of non-stationarity of the sinusoidal signal to be analyzed, which can be
formally defined as the maximum derivative of the frequency of the sinusoidal signal ¤𝑓𝑚𝑎𝑥 .

For the purpose of building the HF models presented in this paper, the sinusoidal IMU signals are analyzed using
the STFT. Because the frequency of these signals is directly related to the rotational frequency of the damaged propeller,
it is useful to study the properties of the motor frequencies. Figure 36 shows the distributions of motor frequencies, and
the derivatives of these frequencies, computed from the data of all the test cases presented in Table 3. We see that the
sinusoidal signals measured by the IMU can have changes in frequency at more than 4000 Hz/s, however, very rare. A
value of 2500 Hz/s for ¤𝑓𝑚𝑎𝑥 encompasses a large amount of the observed non-stationarity.

To determine a good choice for the parameters 𝑓𝑟 and 𝑓𝑟𝑒 , a numerical study was conducted. For this, artificial
non-stationary sinusoidal signals are generated using Eq. 41 where the frequency of the signal is given by Eq. 40. The
sampling rate of the test signal is chosen as 4 kHz, with a length of 20k samples, and the maximum 𝑓max and minimum
frequency 𝑓min are chosen to be 1800 Hz and 100 Hz respectively. Then, the test signal is analyzed through the STFT at
several combinations of 𝑓𝑟 and frequency factor 𝜓 𝑓 (Eq. 42). The relative RMSE of the STFT-derived amplitude and
frequency are computed, for each pair of 𝑓𝑟 and 𝜓 𝑓 . Figure 37 shows the result of this process. It is clear from the
results that a naive choice of parameters can lead to a very bad estimate of amplitude especially.

𝑓 (𝑡) = 𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛

2
sin

(
2

¤𝑓𝑚𝑎𝑥

𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛

𝑡

)
+ 𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛

2
(40)

𝑦(𝑡) = sin(2𝜋 𝑓 (𝑡)) (41)

𝜓 𝑓 =
𝑓𝑟𝑒

𝑓𝑟
(42)

While several good options for 𝑓𝑟 and 𝜓 𝑓 are available, values of 60 Hz and 1/30 were chosen for each parameter
respectively. This choice of parameters results in a very low error in both frequency (<2%) and amplitude (<5%)
estimates derived from the STFT. Based on the definition of 𝜓 𝑓 , the chosen effective frequency resolution has a value of
2 Hz.
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1
Introduction

Small unmanned aerial vehicles (UAVs) have become increasingly popular in both commercial and research

aspects [13]. These vehicles offer autonomy and flexibility which opens up many areas of applicability including

transportation of goods, surveying, and infrastructure inspection to name a few. The quadrotor is the most popular

UAV configuration, which has been heavily researched.

Like any engineered system, quadrotors are susceptible to partial or complete failures which can result in crashes.

Therefore, a large amount of research has focused on fault detection and fault-tolerant control [49, 35, 1, 60] of

these vehicles. One area of research which aims to improve the safety of aircraft such as UAVs is Safe Flight

Envelope (SFE) estimation and protection [52, 58, 30, 31]. When an aircraft sustains damage or a fault, the safely

operable part of the state space is reduced. Without knowledge of this reduced region of safe operation, Loss of

Control (LOC) can occur [36, 52, 58, 30, 31].

The computation of SFEs requires dynamic system models. In quadrotors, failure scenarios such as partial and

complete loss of rotor effectiveness have been researched, and a dynamic model has been obtained for a quadrotor

which has sustained complete loss of one propeller [48]. However, the failure scenario of propeller blade damage

has not been modelled. Most of the research effort focuses on the detection and diagnosis of propeller blade

damage [18, 21, 26, 17], or on fault-tolerant control [28, 12, 20]. Thus, an important gap in the knowledge of

quadrotors is found.

This literature report presents in detail the findings of a literature study conducted on quadrotors, quadrotor model

identification, and quadrotors afflicted with propeller blade damage. First, the quadrotor vehicle is formally

described and a first-principles dynamic model is presented in Chapter 2. An overview of the literature found

regarding propeller blade damage of quadrotors is presented in Chapter 3. A short description of SFEs is provided

in Chapter 4 along with an argument for why model identification for a quadrotor with blade damage is relevant.

System identification techniques for quadrotors are discussed in Chapter 5, followed by a conclusion and research

proposal in Chapter 6.
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2
Quadrotor Dynamic Model

The quadrotor is a complex dynamical system. There are several forces and moments which act on a quadrotor

type UAV aircraft in flight, such as gravity, propulsive forces and moments, gyroscopic effects, and aerodynamic

forces. These forces effect the dynamics of a quadrotor, and reliable prediction of these forces enables accurate

simulations of these vehicles. This chapter gives an overview of a commonly used dynamic model of a quadrotor

which is valid in hovering and low speed flight. First, the important reference frames are introduced in Section 2.1,

followed by a simple model in Section 2.2.

2.1. Reference Frames
The variables which define the state of an aircraft in flight are its velocity, attitude, angular velocity and position.

These vector quantities are represented with respect to coordinate frames. Thus, it is important to have concrete

definitions of the reference frames, and how vector quantities can be transformed between these frames.

It is often convenient to define forces created by the quadrotor -such as the thrust created by each of the rotors- in

a reference frame which has a fixed orientation with respect to the body of the quadrotor. However, to define the

dynamic motion of the quadrotor using Newton’s laws of motion, an inertial frame is required.

The inertial frame FI is generally defined fixed to the ground, with a North-East-Down orientation. The

x-axis of this frame points towards the north poles, the z-axis points towards the center of the Earth and the y-axis

completes the right-handed coordinate system.

The body frame FB of a quadrotor is often defined in two unique ways in literature. For both these frames,

it is assumed that the four rotors lie in the same plane, and that their centers of rotation form a rectangle. The

center of mass is taken as the origin and is assumed to lie on an axis perpendicular to the plane of rotation of all

the rotors, and which passes through the intersection point of lines connecting diagonally opposite rotors. One

representation of the body fixed frame is defined for square quadcopter configurations where the origin is located

at the intersection of the lines connecting opposite rotor axes, the x-axis points towards one of the arms, the z axis

points downwards (perpendicular to the plane containing the rotors), and the y axis completes the right-handed

coordinate system.

The alternative representation of the body-fixed reference frame is one where the x-axis lies parallel to the

plane of the 4 rotors, the projection onto which bisects the lines connecting two adjacent rotors. The z-axis points

downwards perpendicular to the plane containing the rotors, and the y-axis completes the right-handed coordinate

system. The two rotors which are located in the direction of the body x-axis can be labelled as the ’front’ rotors,

with the other two naturally being the ’rear’ rotors. The advantage of this body reference frame is that independent

control of rotation about each axis is more intuitive. For example, to pitch down, the aft rotors increase thrust

and their opposite angular velocities cancel out any yawing moment. Similarly, rolling to the right is achieved by

increasing the speeds of the left two rotors equally. Again, the yawing torque of each rotor is cancelled because

they spin in opposite directions. The alternate representation of the body frame is shown in Figure 2.1 and is used

for the remainder of this chapter.

With the reference frames clearly defined, the rotation of one frame with respect to the other can be represented

using Euler angles. These are the pitch (θ), roll (φ) and yaw (ψ) angles and the describe the orientation of the

47



2.2. Dynamic Model 48

Figure 2.1: Representation of a quadrotor (zB axis points into the page)

body-fixed reference to the inertial frame, with the order of rotation being yaw, pitch and roll (which is commonly

used in the field of aerospace engineering). The matrix used to transform a vector in the inertial frame to the body

frame is given by Equation 2.1. The inverse transformation of a vector in the body frame to the inertial frame is

computed using the transpose of the matrix, which is equal to the inverse since the matrix is orthonormal[6].

RBI =


cos θ cosψ cos θ sinψ − sin θ(

sinϕ sin θ cosψ
− cosϕ sinψ

) (
sinϕ sin θ sinψ
+ cosϕ cosψ

)
sinϕ cos θ(

cosϕ sin θ cosψ
+ sinϕ sinψ

) (
cosϕ sin θ sinψ
− sinϕ cosψ

)
cosϕ cos θ

 (2.1)

2.2. Dynamic Model
A commonly used first principles model for the dynamics of quadrotor drone are presented in this section. The

model is applicable in hovering flight, and small deviations around this flight condition [45]. A few key assumptions

are highlighted before proceeding:

• The Earth is assumed flat. The curvature will cause significant effects when the displacements are of the

order of a kilometer. However, for quadrotor UAVs, generally the flights are within line of sight, making

this assumption valid.

• The rotation of the Earth is ignored. The rotation of the earth means that the ground can no longer be

considered an inertial frame. However, the effect is small enough that is often ignored for modelling small

aircraft.

• The body of the quadrotor is considered rigid, which is equivalent to assuming a constant inertia tensor.

• The mass is assumed to be constant. For battery-powered aircraft, this is indeed the case.

The dynamics of an aircraft can be split into the linear and rotational dynamics. These are governed by

Newton’s laws of motion, and their rotational analogues. The linear velocity derivatives v̇B = [ u̇ v̇ ẇ ]
T
are

computed in the body reference frame, which are transformed to and integrated in the inertial frame to propagate
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the inertial position vector ṗI = [ ẋI ẏI żI ]
T
. Similarly, the angular velocity derivatives ω̇B = [ ṗ q̇ ṙ ]

T
are

computed in the body reference frame, and integrated in the inertial reference frame to compute the attitude

q = [ φ θ ψ ]
T
of the aircraft.

The complete dynamic and kinematic equations of motion for an aircraft are given by the system of equations

given below. Equation 2.2 and Equation 2.3describe the linear equations of motion and Equation 2.4 and Equa-

tion 2.5 describe the rotational equations of motion. Since the linear accelerations (v̇B) and angular accelerations

(ω̇B) are computed in the body frame, additional terms appear in Equation 2.3 and Equation 2.5 to account for the

angular velocity of the body reference frame with respect to the inertial frame. In order to transform the body

angular rates to the attitude derivatives (q̇), the matrixKIB computed using Equation 2.6 is used in Equation 2.4.

ṗI = RIBvB (2.2)

v̇B =
1

m
FB + ωB × vB (2.3)

q̇ = KIBωB (2.4)

ω̇B = I−1 (MB − ωB × IωB) (2.5)

KIB =

 1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ sec θ cosφ sec θ

 (2.6)

The total external forces and moments are lumped into (FB) and (MB) respectively. External forces are

decomposed into gravity forces (FB,g), propulsive forces (FB,p) and aerodynamic forces (FB,a). Similarly, the

external moments comprise of the propulsive (MB,p) and aerodynamic (MB,a) moments. The leading subscript

(B) indicates that the forces and moments are computed in the body frame, while the latter subscript indicates the

type of force or moment. Since the moments are computed around the center of mass, there is no moment due to

gravity.

FB = FB,g + FB,p + FB,a (2.7)

MB = MB,p +MB,a (2.8)

The gravitational force is computed in the body frame by transforming the gravitational acceleration vector in

the inertial reference frame to the body frame using the matrix in Equation 2.1 and multiplying by the mass (m) of

the vehicle.

FB,g = mRBI

 0
0
g

 (2.9)

Propulsive forces and moments
A commonly used propulsion model for quadrotors models the thrust and axial aerodynamic torque of each rotor

as directly proportional to the square of the angular velocity of the rotor. The thrust of rotor i is computed using

Equation 2.10, and torque is computed using Equation 2.11 where Ωi is the angular velocity of rotor i. The

aerodynamic torque acts along the z body axis, and has a sign opposite to the sign of the rotor spin. The constants

of proportionality k and d depend on the density of the air and the geometry of the rotor blades [45, 39].

The total thrust force in the body frame is computed using Equation 2.12 with the assumption that the axes of

all rotors are parallel to the z body axis. The moment vector is computed using Equation 2.13 where the rotor

indices correspond to those in Figure 2.1, b is the distance between the left and right rotors, and l is the distance

between the forward and aft rotors.

Ti = kΩ2
i (2.10)

Qi = −dΩ2
i sign(Ωi) (2.11)
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FB,p =

 0
0

−k
∑

Ω2
i

 (2.12)

MB,p =


b
2k((Ω

2
2 +Ω2

3)− (Ω2
1 +Ω2

4))

l
2k((Ω

2
1 +Ω2

3)− (Ω2
2 +Ω2

4))

−d
∑

Ω2
i sign(Ωi)

 (2.13)

In the simply model, the aerodynamics forces (FB,a) and moments (MB,a) are not considered. The forces

and moments arise from non-propulsion elements such as the body of the drone which houses the flight computer

and avionics, and the arms linking the body to the motors. The effects of these contributions are not significant in

low-speed flight and are thus reasonably omitted.

Gyroscopic effects
Due to the relatively high angular velocities of rotors of a quadrotor in flight, gyroscopic effects are present and

these contribute to the moment acting on the quadrotor body. Since the rotors are assumed to rotate in the z body

axis, the gyroscopic rigidity phenomenon affects the x and y-axis moments. The z-axis moment is generated by

the angular accelerations of the rotors. The gyroscopic effects are quantified by Equation 2.14 where Ir,z is the
polar moment of inertia of each rotor. Since the gyroscopic moments arise from the only the propulsion elements,

these can also be categorised as propulsive moments [45].

MB,r =


qIr,z(Ω1 +Ω2 − Ω3 − Ω4)

pIr,z(−Ω1 − Ω2 +Ω3 +Ω4)

Ir,z(Ω̇1 + Ω̇2 − Ω̇3 − Ω̇4)

 (2.14)

2.3. Aerodynamic Effects
The propulsion model discussed above is valid only near hovering conditions and ignores phenomena that are

observed in high speed flight. In general, the additional aerodynamic effects cause additional forces and moments

to act on the rotor which have a significant effect on the dynamics of a quadrotor. Two important such phenomena

are that of thrust variance and blade flapping [22, 32] which are discussed in this section.

Thrust Variance
The relation for calculating the thrust of a rotor given by Equation 2.10 is derived from actuator disk momentum

theory for hovering flight [32]. However, this relation is not valid in the case of ascending, descending, and

high-speed translational flight.

The general expression for the thrust produced by a rotor as a function of the airspeed V and angle of attack α
of a rotor, derived from momentum theory, is given by Equation 2.15. Another expression for thrust is obtained

by analysing a rotor using Blade Element Theory which results in Equation 2.16 where a is the lift curve slope of
the airfoil comprising the blades of the rotor, b is the number of blades, c is the blade chord, R is the radius of the

rotor and θtip is the pitch angle at the rotor blade tip [39].
Given an airspeed and angle of attack, the induced velocity can be found by solving a quartic equation obtained

by equating the two expressions for the thrust. Then, either of the equations can be used to compute the actual

thrust [39].

T = 2ρAvi

√
V 2 + 2V vi sinα+ v2i (2.15)

T =
ρabcω2R3

2

(
θ

3
+
V 2 cos2 αθ

2ω2R2
+
V sinα+ v

2ωR

)
(2.16)

Experiments conducted by Powers et al. [39] investigated the effects of velocity and angle of attack on the

thrust produced by propellers. Their results show that there is a decrease in thrust with increasing airspeed,
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however, the effects are most pronounced at high angles of attack (climbing flight) compared to low angles of

attack (translational flight). Similar experiments were conducted previously by Hoffman et al. [22] where they

conclude that at low speed, the variation of the angle of attack has a negligible effect on the thrust produced with a

constant power input which is equivalent to low thrust variance with flight speed at high angles of attack. Thus

the two studies agree with each other. The main conclusion drawn is thus that translational flight at flight speeds

in the range of even 3-4 m/s encounters significant thrust variance.

For a quadrotor in flight, depending on the maneuver being flown, each rotor will have a local airspeed and

angle of attack because of the angular velocity of the quadrotor. However, the local effects at each rotor can be

accounted for by computing the angles of attack and airspeed for each rotor using kinematic relations and using

these values to compute the thrust using Equation 2.16. Conversely, explicit relations can be derived using Blade

Element Theory which incorporates the angular rates into the thrust equation as was done by Bristeau et al. [10].

However, the relations they derive incorporate simplifications such as assuming that the vehicle angular rates stay

below 1 rad/s in magnitude and that the translational velocities have magnitudes of less than 10 m/s. Even with

these limitations, the flight envelopes for which the equations are valid is still reasonably large.

Blade Flapping
When a spinning, thrust generating and elastic propeller moves through the air in a way that there is a significant

component of airspeed perpendicular to the axis of the rotor, a phenomenon termed as blade flapping occurs.

Blade flapping is described as the vertical oscillatory motion (along the rotational axis) of each propeller blade

from the horizontal plane (in the body frame) as it rotates about the propeller rotational axis. This phenomenon

has been studied extensively in helicopters [40, 27] and has also been analysed for quadrotors by several authors

[22, 10, 38].

Blade flapping is triggered because of the radially asymmetric velocity distribution about the rotational axis of

the rotor in transitional flight. The advancing blade experiences a higher velocity, and thus higher lift and drag

forces than the retreating blade. This asymmetry is maximum when a blade is oriented perpendicular to the flight

direction (advancing or retreating). The imbalance in lift forces causes the blades to rise (on the advancing side)

and fall (on the retreating side). However, because of the high angular velocity of the blades, the maximum angular

deflections of the blades about the flapping axis occur approximately 90 degrees out of phase of the maximum

force application. Thus, the maximum flapping angle occurs in the direction of flight, and the minimum in the

opposite direction.

In helicopters, flapping is a very important phenomenon which enables high-speed flight. This is because the

flapping motion locally decreases the angle of attack on the advancing blade and increases it on the retreating

blade which helps to balance the undesirable effects of the asymmetric velocity distribution around the rotational

axis [40, 27].

Helicopter rotors incorporate a flapping hinge, and the analysis of the flapping angle of the blades is carried out

by enforcing a moment equilibrium of gravitational, centrifugal, and aerodynamic moments about this hinge for

infinitesimally small blade elements and integrating them along the blade. A solution for the flapping angle as

a function of the blade azimuth (Ψ) is obtained by assuming that only the first harmonic of blade flapping is

considered. The solution is defined as a Fourier series shown in Equation 2.17 where a0 is the coning angle of
the rotor, a1s is the tilt of the rotor plane around the axis orthogonal to the velocity vector of the rotor, and b1s
is the tilt of the rotor plane around the velocity vector [27, 3]. The azimuth angle Ψ is taken as zero at the rear

of the rotor which is the direction opposite the in-plane velocity vector of the rotor, and is measured positive

counter-clockwise when viewing the rotor from above.

β = a0 − a1s cosΨ+ b1s sinΨ (2.17)

By obtaining the flapping coefficients, the tilt of the rotor can be defined and thus the forces generated as

a result of the flapping can be calculated. Bangura et al. [3] have derived a lumped parameter model for blade

flapping which simplifies flapping coefficient relations derived by Pounds [37]. The flapping coefficients that

they derive account for the effects of the angular velocity of the body and are calculated using Equation 2.18 and

Equation 2.19 where V p = (u v 0)T is the xy plane body velocity vector. It must be noted here that the signs of

the terms in the equations have been adjusted here to be consistent with Equation 2.17.

Defining the lumped parameter matrices Aflap and Bflap as shown in Equation 2.20 and Equation 2.21

respectively, the drag like effects due to the flapping of the ith rotor can be calculated using Equation 2.22 [3].
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The coefficients of the two matrices are dependent on the geometry of the propeller and can be estimated by

matching the model to flight recorded test data. This model makes a simplification by assuming that the square of

the advance ratio µ =
|V p|
ΩR is negligible. Additionally, these equations do not consider the stiffness of the rotor

blades, instead assuming they are hinged as is done in helicopter blade flapping analysis.

a1s =
|V p|
ΩR

A1c +
1

Ω
B2p−

1

Ω
B1q (2.18)

b1s = −|V p|
ΩR

A1s +
1

Ω
B1p−

1

Ω
B2q (2.19)

Aflap =
1

R

 −A1c A1s 0
−A1s −A1c 0
0 0 0

 (2.20)

Bflap =

 B2 −B1 0
B1 −B2 0
0 0 0

 (2.21)

Dflapi = Ti

(
Aflap

V pi

Ωi
+Bflap

ωB

Ωi

)
(2.22)

The coefficients a1s and b1s have been modelled by Hoffmann et al. [22] for quadrotor propellers. They

analyse the flapping by treating the propeller as having a virtual torsional hinge with a spring constant kβ at a

location ef scaled by the radius R of the rotor. Thus, ef is the effective hinge offset. The flapping coefficients are

obtained by solving the system described by Equation 2.23. µlon and µver are the horizontal and vertical advance

ratios respectively, Θavg is the average pitch angle of the propeller blade, λβ is the ratio of the flapping frequency

ωβ to the rotor speed Ω and is calculated using Equation 2.24. Ib is the effective moment of inertia of the blade

about the flapping axis and γ is the lock number which is a dimensionless parameter which quantifies the ratio of

aerodynamic forces to the centrifugal forces on the blade [27].


λ2β 0 0 0

γ
6µlon

(
1− λ2β

)
−γ

8 0

0 γ
8

(
1− λ2β

)
0

0 0 0 1




a0
a1s
b1s
CT

σa0

 =


γ
8 −γ

6
0 0

γ
3µlon 0

1
3 − 1

2

[
Θavg

µver + λi

]
(2.23)

λβ =

√
1 +

3

2
ef +

kβ
IbΩ2

(2.24)

The tilt of the rotor plane causes the thrust vector to no longer be aligned with the axis of the electric motor.

Thus the component of the thrust vector projected onto the shaft plane of the motor create additional drag forces

which are quantified by Equation 2.22. When a quadrotor flies straight at high speed, and if the rotors lie above

the center of gravity of the quadrotor at some distance l, the drag forces arising due to blade flapping create a
pitch up moment given by Equation 2.25 which must be compensated for by the rear rotors. The lateral tilt of

each rotor also produces side forces Tb,lat = T sin b1s, but for a quadrotor with undamaged propellers, these side

forces cancel out for the forward and aft propeller pairs because of their opposite spin directions [22]. However,

in the case where a propeller blade is asymmetrically damaged, a force imbalance will result creating a yawing

moment on the quadrotor body.

Mb,lon = T l sin a1s (2.25)

The stiffness of the blade also causes an additional moment on the rotor hub which is proportional to the

flapping coefficients. The longitudinal flapping moment created by the spring stiffness of the blade is calculated

using Equation 2.26 [22]. It must be noted that in all discussions of blade flapping in quadrotors and helicopters

as well, the dynamics of the change in flapping angles are usually not considered. Instead, only the steady-state

solutions are used. This is because it has been experimentally verified that because of strong aerodynamic damping,

the tilt of the rotor plane caused by flapping reaches a steady-state value very quickly, within the time frame of a

single rotation [27, 40].
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Mbs = kβa1s (2.26)

The overall conclusion from past literature on blade flapping is that it has a significant effect on the dynamics

of a quadrotor in high-speed flight. All previous research on this phenomenon is done on undamaged propellers

which allow for some simplifications to be made such as ignoring the lateral forces and moments generated due to

blade flapping. For a quadrotor inflicted with asymmetric blade damage, these simplifications cannot be made.

Thus, it is worth exploring these effects to build accurate dynamic models for a quadrotor with asymmetric blade

damage. In the next chapter, previous work done specifically on quadrotors with damaged blades is presented



3
Quadrotor Blade Damage

Quadrotors and UAVs in general are susceptible to faults which affect their ability to fly safely. Several sources of

faults exist such as sensor errors, structural damage, or faults in the propulsion system motors. Sensor faults have

been studied by various authors and sensor fault detection and isolation systems have been designed. Controllers

have also been developed to enable the flight of a quadrotor with a complete loss of effectiveness of one or two

diagonally opposing motors [49].

Physical damage to the rotor blades is one of the important faults that must be considered for quadrotors. This

because in several popular quadrotor designs, the rotors are the most exposed part of the drone and thus likely the

first point of contact during collisions. Additionally, high rotational energy makes rotors susceptible to damage in

the event of a collision. Fault diagnosis of damaged quadrotor propellers has been researched extensively in the

literature, along with methodologies for control in the presence of propeller damage. It was found that most of the

methodologies for the detection of damage are model free. The control strategies developed for handling blade

damage are also often model-free or rely on very simple models to compensate for the effects of damaged blades.

The work done towards blade damage detection is discussed in Section 3.1 and fault-tolerant control techniques

are discussed in Section 3.2.

3.1. Blade Damage Detection
Several model-based and model-free approaches for blade damage detection have been proposed in the literature.

First model-based approaches are discussed followed by model free.

Ghalamchi et al. [18] propose a method which relies on accelerometer measurements to estimate mass

imbalances in propellers. The method works by using an extended Kalman filter where the states to be estimated

encode the propeller mass imbalance information. The method relies on a model for the thrust produced by each

propeller. The authors use a simple thrust model explained in Chapter 2, computed using Equation 2.10. The

dynamics of the unbalances are assumed to be driven by zero-mean, white, and independent noise. The authors

have applied their method to three quadrotors at differing size scales, and show good experimental results in

identifying the extent of propeller damage. However, the damage cases considered were quite minor at 4% to 10%

mass imbalance. Additionally, because the thrust model is assumed to be very simple, it is unclear how well this

method would work in high-speed flight.

Brown et al. [11] have conducted a series of experiments with propellers subjected to various levels of symmetric

and asymmetric blade damage. The experiments were conducted both on a test bench with a single motor and on a

quadrotor platform. The goal of their work was to determine the effectiveness of various sensors as classifiers for

detecting rotor damage. The sensors which were studied included load cells, current sensors, thermocouples, and

accelerometers to measure vibrations.

Although the authors made use of the loss of lift as a means of detecting propeller damage, they do not attempt

to fit a model for how the lift force is affected by different levels of damage. The main conclusion from the study

is that vibrations measured by an accelerometer are most informative for characterizing blade damage. However,

they also conclude that temperature, current/power, and lift measurements also offer useful metrics.

Guzman-Rabasa [21] et al. propose an approach for detecting partial or total faults in propulsion units. Partial
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faults include loss of motor effectiveness or damage to the propellers. In simple terms, the approach works by

checking the residuals of the roll angle and pitch angle as the difference between the estimates of the angles

obtained from an H∞ observer and the measurements of the angles obtained from the IMU. When the residuals

in either pitch or roll cross a certain threshold, a fault is detected. In order to estimate the roll and pitch angles,

the authors have modelled the rotational dynamics as a quasi-linear-parameter-varying (qLPV) system based on

which the observer is designed. The fault detection approach has only been tested in simulation for partial and

complete loss of rotor effectiveness.

Lee et al. [26] have developed a model-based approach for fault classification and diagnoses of UAV faults.

The method works by identifying faults based on deviations from a healthy steady-state current-speed-voltage

curve of a brushless DC motor. Various fault scenarios are considered such as bearing faults, stator faults, rotor

faults and ESC faults. The rotor fault case was a propeller damaged by reducing the length (or span) by 30%

symmetrically. The effects of the damage were observed in the speed-voltage and current-voltage plots. The speed

for the damaged rotor was higher for a given input voltage because of the lower drag, and the current-voltage

curve shifts downwards because of the reduced power draw. The rotor damage case was only tested on a test rig

and not on a flying quadrotor.

In addition to the aforementioned model-based propeller damage detection methodologies, several model-free and

data-driven approaches have also been researched. Du et al. [14] have used a 1D convolutional neural network to

detect blade damage from accelerometer signals, which is a model-free approach. Thus, no dynamic modelling is

done of the quadrotor in the damaged state.

Fu et al. [17] propose a data-driven propeller damage detection method which uses a hybrid neural network

architecture which combines one-dimensional convolutional neural networks and long short-termmemory recurrent

neural networks. The inputs include attitude, attitude rates, and commanded motor speeds.

Jiang et al. [25] propose a data-driven approach where wavelet packet decomposition of the accelerometer

measurements is used to extract features from flight data collected from a quadrotor with damaged propellers. The

extracted features are used to train an artificial neural network which is then experimentally shown to classify

blade damage. A similar approach was proposed by Bondyra et al. [9, 8] which investigates additional sources

of features such as using Fast Fourier Transforms of IMU signals, and the signal power in different frequency

bands, in addition to the wavelet packet decomposition approach. Additionally, they use a support vector machine

to classify the damage cases based on feature vectors instead of a neural network. They conclude that the Fast

Fourier Transform provides the best compromise between fault detection and damage scale estimation with lower

accuracy in fault type classification.

Liu et al. [29] propose a data-driven approach for detecting and classifying asymmetric rotor blade damage

which relies on audio signals rather than IMU data. The key advantage of using audio signals is the much higher

sampling frequency compared to most onboard IMUs. The authors use a technique called transfer learning to

improve the generalization capability of the trained convolutional neural network based model from platform to

platform.

The general conclusion from analysing previous work in rotor blade damage detection is that several techniques

are model-free, while the model-based techniques rely on very simple models for forces generated by the damaged

rotors.

3.2. Fault tolerant control in the presence of blade damage
A literature review of research into fault-tolerant control techniques to deal with actuator faults with a focus on

rotor blade damage was conducted. These findings are summarised in this section.

Li et al. [28] have applied sliding mode control (SMC) on a quadrotor drone inflicted with damage to the rotor

blades. The type of damage that they consider is symmetric and applied to one of the four two-bladed rotors. The

authors have tested both a passive and active sliding mode control scheme and compared the performance of both

approaches through real experimental test flights.

The passive SMC approach relies on a dynamic model of the undamaged quadrotor. Actuator faults are dealt

with through SMC scheme which accounts for the faults through maximum bounds on the severity of the faults.

The active SMC scheme actually incorporates the damage to propellers into the dynamic model. This is done by

scaling the actuator input based on by some factor k which lies in the range [0,1]. The authors do not develop a
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scheme for estimating the degradation, but instead implement a controller which can improve performance with

the assumption that the level of loss of effectiveness is estimated through another fault diagnosis scheme. It is

clear however that the model used to account for the damage to the propeller is rather simple, but good enough for

the symmetric propeller damage scenario.

Chamseddine et al. [12] have applied a Model Reference Adaptive Control (MRAC) technique to a quadrotor

drone with symmetric blade damage. In fact, the quadrotor platform they used was the same one used by Li et al.

[28]. The goal of model reference adaptive control is to alter the behaviour of the system to be controlled such

that it matches a reference system with specified parameters. The challenge is to estimate the parameters of the

control law, without knowledge of the actual system such that the desired behaviour is achieved. The control

parameters can be updated using a number of techniques, of which the authors have implemented the MIT rule

[23], conventional MRAC [43] and modified MRAC [44].

The MRAC scheme was tested by the authors in three fault scenarios, the most important being one where

symmetric physical damage is injected into the propellers mid-flight. It is clear that the MRAC scheme manages

to perform well compared to a linear quadratic regulator which was taken as a benchmark. However, again, the

control scheme does not take advantage of a known accurate system model in the presence of blade damage but

rather updates the control parameters to account for the changed system behaviour.

Guo et al. [20] have developed a control scheme for quadrotors simultaneously subjected to blade damage and

ground effect. The authors have used blade element theory to derive a simple relationship between the ratio of

thrust generated by a damaged propeller to that of an undamaged propeller for symmetric damage. The thrust

generated by the damaged propeller is derived by integrating the lift force of blade elements up to the point at

which the blade is broken, rather than integrating over the full radius of the propeller. Through this analysis, the

authors conclude that the ratio of thrust force depends on the cube of the ratio of damaged rotor radius to that of

the original radius. Through similar analysis, the ratio of undamaged to damaged torque generated is equal to

the square of the ratio of the damaged radius to that of the undamaged radius. For example, a 25% reduction in

the radius of the rotor results in a 58% lift reduction and a 69% torque reduction. These relations are not used to

explicitly design the controller, or experimentally verified, but instead serve as an estimation to show the level of

performance loss that the controller is able to compensate for.

This chapter provided an overview of past work done towards detecting propeller blade damage in quadrotors

and controlling quadrotors subjected to propeller blade damage. The main gap in knowledge found is that there

are no high fidelity models which describe the dynamics of a quadrotor which is afflicted with symmetrically or

asymmetrically damaged rotors. The development of such models can enable the design of better control strategies,

especially in high-speed flight. In addition, high fidelity models for quadrotors with damaged propellers will also

enhance the safety of these aircraft by enabling flight envelope estimation in damaged states, which is discussed in

more detail in the next chapter.
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Safe Flight Envelopes

Dynamic systems are governed by a set of differential equations which describe the evolution of the system states

based on the current state, inputs to the system, and disturbances. The quadrotor is an example of such a dynamical

system, the modelling for which was discussed in Chapter 2. Dynamic models encode information about the extent

of the state space a system can explore given some admissible control inputs and subjected to external disturbances.

Explicitly determining the extent of the reachable space is useful because it offers important information regarding

what states the system can achieve.

Aircraft such as fixed-wing aeroplanes, helicopters, and quadrotors are all types of dynamical systems which

share similarities. The reachable regions in the state spaces of these types of systems are referred to as flight

envelopes or dynamics envelopes. Another type of flight envelope also referred to as a Safe Flight Envelope (SFE)

is the set of states that can be reached by the aircraft from a given trim condition, and from which the aircraft can

return back the trim set within a prescribed time horizon without loss of control [52].

In this chapter, some of the approaches for estimating safe flight envelopes are briefly discussed in Section 4.1

followed by a discussion on database drive flight envelope protection in Section 4.2. The chapter is concluded

with a motivation for modelling quadrotor damage cases in order to enable envelope estimation.

4.1. Safe Flight Envelope Estimation Techniques
Several approaches for estimating safe flight envelopes have been developed. Two methods for estimating flight

envelopes are discussed here. The first method is the most commonly found in literature and is based on reachability

analysis using level set methods. The second method uses Monte Carlo simulations to general safe flight envelopes.

Before presenting these methods, a more formal description and definition of a ’Safe Flight Envelope’ is presented.

Consider an aircraft, be it a fixed-wing passenger airliner or a quadrotor drone. The dynamics of these systems

are represented by a set of first-order ordinary differential equations of the form ẋ = f (x,u) where x ∈ Rn is

the state vector and u ∈ Rm is the input vector. Then, the safe flight envelope is defined as the intersection of

the forward reachable set, and the backward reachable set. Where the forward reachable set is the set of states

x ∈ Rn that can be reached from an initial trim set K given admissible control inputs within a specified time

horizon, and the backward reachable set is the set of states from which the system can recover to the trim setK
given admissible control inputs within a specified time horizon.

One of the more popular methods uses reachability analyses to compute safe flight envelopes via the level set

method [33, 16]. The reachable set is obtained as the level set of a function V(x,t) which is found by numerically

solving partial differential equations known as the Hamilton-Jacobi-Isaacs (HJI) or Hamilton-Jacobi-Bellmann

(HJB) equations. The former is used when disturbances are not modelled in the dynamics system, while the latter

equation includes disturbances which in the case of aircraft might be wind gusts or uncertainty in the parameters

of the dynamic model.

Recently, a new method for estimating safe flight envelopes through Monte-Carlo simulations has been applied

to quadrotors by Sun and de Visser [46]. This approach tries to overcome the ’curse of dimensionality’[36] of

the level set method and thus offers a more computationally efficient means of computing safe flight envelopes.
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Both the level set method and the monte-carlo method require accurate models of the system in order to accurately

estimate the safe flight envelope.

4.2. Database Driven Flight Envelopes
Global dynamics models of an aircraft are required to compute reachable sets. However, in the presence of

physical damage, the dynamic model of the system is altered. Estimating flight envelopes online in the event of

physical damage presents two major challenges. For one, online identification of a global system model online in

the presence of damage is challenging because only small deviations from the local state can be achieved. The

second challenge is the computational resources required to compute flight envelopes, which are more limited for

micro aerial vehicles than bigger aircraft [56].

Thus, a novel approach to flight envelope estimation using databases was developed by Zhang et al. [56, 57,

59] and applied to a fixed-wing business jet aircraft in simulation. At a high level, the database-driven flight

envelope estimation and protection system uses pre-computed databases of safe flight envelopes which are stored

onboard the aircraft. When physical damage is sustained, online identified aerodynamic model parameter changes

are used to determine the location and extent of the damage through a neural-network based damage classification

scheme [56]. Flight envelopes corresponding to the predicted damage case are then retrieved from the database.

The pre-computed damage cases correspond to different levels of damage for various aerodynamic surfaces.

For example, damage to the left wing of the aircraft generates different levels of constant rolling moments

depending on the level of damage which can be quantified by the rolling moment bias term (Cl0) and a loss of

rolling control effectiveness (Clδa
) in the aerodynamic rolling moment model.

While the database-driven approach has been applied to fixed-wing aircraft in simulation, quadrotor UAVs offer a

cheaper platform for real world experiments. Unlike fixed-wing aircraft, quadrotors rely on rotors for generating

lift and controllability. Thus, structural damage to rotor blades has a significant negative impact on the flight

worthiness of a quadrotor. Quantifying the effects of blade damage by identifying models of a quadrotor through

experimental test fights will enable safe flight envelope estimation for quadrotors inflicted with blade damage.
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Quadrotor System Identification

System identification essentially is the process of representing a system in a mathematical form which can be used

to predict the real observed behaviour of the system reliably and with good accuracy. Aircraft system identification

has become a fairly mature field, with several published textbooks that provide a detailed description of the whole

process [24, 34].

Quadrotors modelling research has been gaining popularity recently as is apparent through an examination of

recent work done in the field [49, 45, 47, 48, 4, 2]. While a large portion of the past literature focuses on obtaining

models for undamaged quadrotors, Sun et al. [48] have obtained a model for a quadrotor subject to a total failure

in one of the rotors. However, as was concluded in Chapter 3, the effects of physical damage to the rotor blades

on the dynamic model of a quadrotor have not been investigated in detail. In Chapter 4, an argument was laid out

for the importance of obtaining such models to enable safe flight envelope estimation. In this chapter, approaches

for identifying quadrotor models are presented, along with some preliminary insights as to how blade damage is

expected to affect the dynamics of a quadrotor.

In past literature, quadrotor model identification has been performed using linear regression applied polynomial

model structures [45, 47] as well as deep learning [4]. The polynomial model-based approaches offer the advantage

of physically motivated model structures which are more intuitive to reason and understand but may fail to capture

important dynamics because of model structures which are restricted to be linear in the model parameters. Artificial

neural networks in contrast are black-boxes which offer little insight into the internal works of the model, with the

advantage being that they are able to ”learn” patterns in data that may not be captured by linear-in-parameters

polynomial models. Polynomial modelling is discussed in Section 5.1, followed by a short discussion of neural

networks and other advanced modelling techniques and how they can be applied to quadrotor modelling in

Section 5.2.

5.1. Polynomial Models
Polynomial models relate a dependent variable to sets of polynomials of independent variables. Given a dataset of

the values of the independent variables, and corresponding values of the dependent variable, a regression model

given by Equation 5.1 can be formulated. Where y ∈ Rn is the vector of observations of the dependent variable,

θ ∈ Rp is a vector of parameters which relate the regressors of the independent variables A = [1 ξ1 ξ2 ... ξp] ∈
RN×p to the dependent variable, and ε ∈ Rn is the unmodelled error. The optimal set of parameters θ̂ which

minimises the mean squared error of the model residuals ε2 is computed using Equation 5.2, which is the Ordinary

Least Squares (OLS) estimator.

y = Aθ + ε (5.1)

θ̂ =
(
ATA

)−1
ATy (5.2)

For quadrotors and aircraft in general, the model outputs are generally the estimated forces and moments

acting on the aircraft body. The regressor matrix A is comprised of state variables such as the angle of attack,

angular rates, and body velocities.
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Step-wise linear regression
The simple linear regression model described above can be modified by including the determination of the model

structure as part of the modelling error minimisation problem. This is done using an algorithm which selects

the regressors in the A matrix from a pool of candidate regressors in a step-by-step approach such that the

prediction accuracy of the model is improved. Sun et al. [45] have applied this approach for identifying a gray-box

aerodynamic quadrotor model. The steps of the algorithm are presented here.

Before applying the step-wise regression algorithm, a set of regressors must be defined. These regressors can be

any continuous function of the regressors such as the exponential functions, and log functions. However, a popular

choice is to use polynomials [45]. Given a dependent variable y in a set of independent variables x1, x2, x3, an
example of a preliminary model structure is given by Equation 5.3 where P 2

1 (x1, x3) represents the second-order

polynomial functions in x1 and x3. Similarly, the term P
(
2x1, x2)x3 includes second-order polynomials in x1 and

x2 which are all multiplied by x3.

y = P 2
1 (x1, x3) + P

(
2x1, x2)x3 (5.3)

With a set of regressors selected, the step-wise regression procedure is as follows [45]:

• The model is initialized with only the constant terms A = [1 1 ... 1]T .

• The algorithmic loop is entered:

1. The model parameters θ̂ are estimated using Equation 5.2, and the model residuals ε are computed.

2. The pool of candidate regressors is made orthogonal to the terms in the model. For each regressor ξi,
the orthogonal regressor λi is obtained as

λi = ξi −A
(
ATA

)−1
ATy (5.4)

3. After all candidate regressors are made orthogonal, the regressor λj with the highest correlation to the
model residual is found. Then, the corresponding regressor ξi is added to the regressor matrix.

4. The existing regressors are statistically evaluated using an F test. Given q regressors in the current

model, the partial F-ratio for the kth regressor is calculated using Equation 5.5 where s2 is the variance
of the fit error computed using Equation 5.6 for N data points.

F0 =
SSR(θ̂q)− SSR(θ̂q−k)

s2
(5.5)

s2 =
εT ε

N − q − 1
(5.6)

SSR(θ̂q) is the regression sum of squares for the current model, and SSR(θ̂q−k) is the same but with

regressor ξk removed from the model. The SSR value is computed using Equation 5.7 where ȳ is the

mean of the observation vector.

SSR = θ̂
T
ATy −N ȳ (5.7)

If the regressor with the smallest F0 value has an F score below a constant threshold Fout, then that

regressor is removed. The algorithm stops if the regressor removed was the same as that which was

added in that loop. Sun et al. [45] use an Fout threshold of 4.

• To avoid over-fitting, the Predict Square Error stopping criterion (Equation 5.8) is used. The first term

is the mean squared fit error, and the second term penalises model redundancy, where q is the number of

regressors. The PSE initially decreases with added regressors, but eventually, over-fitting can occur leading

to an increase in the PSE. Thus, the algorithm is stopped when the PSE increases (or is unchanged) at the

end of a loop.

PSE − 1

N
εT ε+ σ2

max

q

N
(5.8)
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Quadrotor Polynomial Models
The polynomial models for quadrotors identified by Sun et al. [45] are briefly discussed here, along with some

preliminary insights on how these models may be affected for a quadrotor with damaged rotor blades. The models

in [45] are not non-dimsensionalised, however, Sun et al. [47] later also derived more complex models which were

non-dimensionalised. Further work in polynomial quadrotor model identification was also done by van Beers [7],

where outdoor flight tests were used to identify models for quadrotors.

For conciseness, only the moment models from [45] are discussed here. The pitching moment (My) model

with all candidate terms is given by Equation 5.9 where Uq determines the pitching control action based on the

rotor speeds. For the rotor configuration shown in Figure 2.1 in Chapter 2, the pitching control input is calculated

using Equation 5.10.

My =
b

2
kUq + P 3

1 (u,w, q)Uq + P 3
2 (u,w, q)

∑
ωi + P 3

3 (u,w, q) (5.9)

Uq = (Ω2
1 +Ω2

3)− (Ω2
2 +Ω2

4) (5.10)

The above model for the pitching moment implicitly assumed that the actuators are working correctly. For

example, if the front left rotor (rotor 3) is damaged, it has reduced thrust and yawing torque capacity. Thus, the

pitch up control effectiveness will likely be lower than pitch down because the aft rotors are still able to produce

nominal thrust. This is a local effect, which is difficult to capture with polynomial model structures because the

regressors apply on the complete domain. However, it is possible that even with this shortcoming, the lumped

model is still accurate, even if the parameters lose some of their physical meaning.

Continuing with the same rotor damage example, it is clear that rotor 3 will have to spin faster to compensate

for the loss of thrust and yawing torque in hovering flight. Since a quadrotor is an inherently unstable system, it is

assumed in the current example that a controller capable of maintaining altitude and attitude has been implemented.

Due to this, the pitch control action Uq will have a constant non-zero value even in steady hovering flight.

Equivalently the roll and yaw control actions, Up and Ur respectively, will have non zero values in hovering flight.

These constant offsets will be absorbed into the biases for each moment model. This is problematic because if all

rotor speeds are low, resulting in the rotors producing insignificant thrust, the moment bias parameters will create

non-physical moments on the body which will lead to inaccurate simulation models.

Based on the above discussion, it is evident that failures in rotors lead to local effects which can lead to global

models which are not physically motivated. One possible solution for this problem would be to define global

models in different flight regimes and interpolate between these models. However, that would be a tedious and

in-elegant solution. In the next chapter, more advanced modelling techniques are discussed which may offer better

solutions.

5.2. Advanced Modelling Techniques
In addition to polynomial models for quadrotor dynamics, a number of other techniques have been applied to

aircraft system identification. These methods offer certain advantages over polynomial models obtained through

linear regression. Here, Neural networks and multivariate splines are discussed as tools for quadrotor model

identification.

Neural Networks
Deep feedforward networks (DNNs), also referred to as multilayer perceptrons (MLPs), are powerful function

approximators, which have been applied to quadrotors for model identification by Bansal et al. [4] and more

recently van Beers [7]. These models essentially determine a mapping f from inputs x to known outputs y of the

form y = f(x,θ) where the parameters θ are learned such that the underlying process being modelled is best

approximated by f [19].

A DNN, depicted in Figure 5.1 by a simple network, is a collection of layers of neurons. These layers are the

input layer, a series of hidden layers, and an output layer. Each hidden layer and the output layer are formed by a

prescribed number of neurons, with each neuron having an associated weight, bias and activation function. In

Figure 5.1, the weights between layers j and k are represented by a matrixWjk, the bias vector for layer j is bj ,
and the activation functions are denoted by φ(·).
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Figure 5.1: Example of a dense (fully-connected) deep neural network with two hidden layers, a 3 element input vector, and a scalar output

The activation functions play the role of adding non-linearities. There are several activation functions which

have been researched. However, typically a small family of functions are used for most applications. A common

choice of activation is the rectified linear unit (ReLU), φ(x) = max(0, x) [19] which was also used by Bansal

et al. [4] for quadrotor model identification. Radial Bases Functions, φ(x) = e−x2

, have useful properties in

modelling local effects. Thus, based on the shortcomings of polynomial models discussed in the previous section,

RBF neural networks may offer a better alternative.

In order to train a neural network, a cost function which quantifies the difference between the model outputs and

observed outputs of the process is set by the user. Typically, the squared error is chosen [19]. The cost function

value is minimised by iteratively updating the weights through a training algorithm. The basic principle of the

training process is to utilise information about the gradient of the cost function with respect to the weights of

the network and update the weights towards the decreasing gradient in order to decrease the cost function value.

Popular learning algorithms include Stochastic Gradient Descent, Momentum, AdaGrad, RMSProp and Adam.

The latter three algorithms incorporate an adaptive learning rate [19]. The aforementioned algorithms are also

categorised as first-order methods because they only rely on the first derivative of the cost function with respect to

the network weights. Second-order techniques, as the name suggests, use information from the second derivative

of the cost function with respect to the network weights. The second-order methods are more likely to find global

optima and are more aggressive in applying parameter updates, with the disadvantage being that they are more

computationally intensive than the first-order methods [19].

Multivariate Spline Models
Simplex B-splines are yet another tool which can be used for fitting models to scattered datasets [54, 53]. Here,

model identification of a quadrotor with blade damage using multivariate simplex splines is discussed.

When using simplex splines to fit a model to data, the domain of the input dataset is divided into geometric

structures called simplices that span the space in a minimal non-degenerate way [54]. Each of these simplices

has a local coordinate system termed Barycentric coordinates, which allow for polynomials defined in a simplex

to be expressed in the B-form. The coefficients of the polynomial expressed in the B-form are known as the

B-coefficient. The B-coefficients are the ”weights” which change the shape of spline functions, and can also

be constrained in order to impose continuity conditions between simplices. The optimal B-coefficients can be

determined using linear regression methods in order to fit the simplex spline model to a dataset [54].

The main advantages of simplex B-splines in the context of quadrotor model identification are that they have a

higher approximation power, and can model local effects better than global polynomial models, as was discussed

using the example of pitching moments in Section 5.1. Splines also offer a more intuitive way of understanding

how the B-coefficients relate to the underlying physical phenomenon [51]. This is an advantage over the neural

networks which act more like black-boxes. One limitation with multivariate splines however is that they require

the domain of data to be divided into simplices, which is not always straightforward. Nonetheless, multivariate
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simplex B-splines seem to be a better choice than both polynomial models and neural networks for quadrotor

model identification in the presence of damaged propellers.

5.3. State Estimation
Before identifying a model from flight test data, it is essential that the model inputs - which include the states of

the system - are accurately determined. Several researchers have relied on using external motion tracking systems

to provide state estimates [45, 48, 5] while recently outdoor model identification has also been performed by van

Beers [7]. For blade damage modelling, system identification test flights will be performed indoors, and thus

external motion tracking will be employed for state estimation. The reason for indoor flights is to remove an

influences of wind, but also because flying with a damaged drone outdoors in an uncontrolled environment is

unsafe.

State estimation with the inclusion of external motion tracking systems can be accomplished with Kalman Filter

(KF) [55], or an Extended Kalman Filter (EKF) [41]. The basic principle of the Kalman Filter is to determine the

system state by taking a weighted average between the prediction of the state based on a system model, and an

observation of the state through sensors such as the IMU, GPS, or in this case, external motion tracking systems.

The KF is limited to linear systems, while a quadrotor is an inherently non-linear system. The EKF overcomes

this limitation by treating linearising the system around the current state at each state update, and applying the KF

at each step [41].
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Conclusion and Research Proposal

Quadrotors have gained popularity both commercially and in academic research over the past few decades.

Understanding the dynamics and modelling complex aerodynamic behaviour of quadrotors has been an important

area of research [38, 22, 32, 45, 48, 47]. With the ever-increasing popularity of quadrotors, research efforts have

focused on improving quadrotor safety. For example, control of quadrotors in off-nominal flight conditions such

as partial loss of actuator effectiveness [15, 12, 28, 42] and complete rotor failures has been explored [35, 49, 50].

One of the key research areas concerned with improving the safety of aircraft is in safe flight envelope estimation

and protection [31, 58, 46]. Safe flight envelopes provide explicit knowledge of the region of the state space of an

aircraft in which it is safe to operate. Structural damage changes the flight envelope, risking an event in which

the flight envelope is exited, leading to potential loss of control. Estimating flight envelopes in the presence of

physical damage requires knowledge of the system dynamics in the damaged state.

Dynamic modelling of quadrotor UAVs inflicted with structural damage has not been researched extensively.

While Sun et al. [48] did identify a model for a drone with a complete failure of one of the four rotors, dynamic

modelling of a quadrotor with damage to the rotor blades has not been found in the literature. Instead, most of the

research effort is either in the detection and diagnosis of blade damage [18, 11, 21, 26], or fault-tolerant control in

the presence of blade damage [28, 12, 20]. While asymmetric blade damage detection has been explored, fault

tolerant control strategies have only been tested on quadrotors with symmetric blade damage.

Apart from blade damage, structural damage to the main body which houses the electronic components, or

loose actuator mounting arms are also possible scenarios. However, given that the rotors are the primary lifting

and control devices on a quadrotor, and one of the most physically exposed components in popular quadrotor

designs, rotor damage is is a more critical failure scenario which requires investigation.

In order to model the effects of blade damage on the dynamics of a quadrotor, system identification test flights will

be conducted for data gathering. Test flights will be performed with varying levels of asymmetric damage done

on one, or two rotors simultaneously. The reason for not considering more than two damaged rotors is because

scenarios where a collision results in three or more damaged propellers is determined to be relatively unlikely to

single or dual rotor damage.

One research limitation is that with a large amount of asymmetric blade damage, the vibrations can become

severe enough to the point that the inertial measurement unit saturates, or that frame resonance created by the

vibrations results in the quadrotor being unable to fly. These limitations, however, answer questions regarding the

limits of operability of a drone with asymmetric blade damage. An additional limitation would be that the default

flight controllers on the test drones, which use PID based control laws, might not be able to control the damaged

quadrotor even if other limitations do not apply. In this case, gain tuning might be required. However, preliminary

flights conducted on an EMAX Tinyhawk 2 1 after asymmetrically damaging one of the four rotor blades on a

single propeller show that a lack of thrust is the main limiting factor rather than any of the aforementioned issues.

Several techniques can be used to fit mathematical models to scattered data sets. For quadrotors, linear regression

has been used to identify dynamic models from flight test data [45, 47], as well as artificial neural networks [4,

1URL: https://droneshop.nl/emax-tinyhawk-2-ready-to-fly
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7]. Multivariate simplex B-splines [54, 53] seem to provide a better alternative to both the previous techniques

because of better modelling of local effects and high approximation power, which are anticipated to be prevalent in

damage cases. Thus, it will be useful to investigate splines as a means of creating dynamic models for quadrotors

inflicted with blade damage.

Based on the literature study presented in this report, the following research objective and research questions have

been formulated:

Research Objective

“To obtain a dynamicmodel of a quad-rotor drone with asymmetric blade damage on one or
two rotors by conducting system identification experiments through tests flights of damaged
quadrotors”.

Research questions

1. What are the effects of asymmetric blade damage on the dynamic model of a quad-rotor drone?

(a) What model structure is required to capture the effects of asymmetric blade damage?

(b) Which model terms are most effected by asymmetric blade damage?

2. Do multivariate simplex B-splines offer a better alternative to polynomial models for identifying the effects

of asymmetric blade damage on quadrotors?

(a) Which method results in lower aerodynamic force and moment model residuals?

(b) What are the variances of the model parameters?

3. At what extent of asymmetric blade damage do problems caused by excessive vibrations become insur-

mountable?

(a) What auxiliary IMU (with higher measurement ranges) will have to be appended to allow for flights

where the standard IMU on the drone becomes saturated?

(b) What resonant frequencies of the quadrotor frame inhibit flight with asymmetrically damaged rotor

blades?

4. Which flight maneuvers should be performed for system identification of a drone with blade damage?
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Conclusion

The results of the research conducted during this project demonstrated substantial fulfillment of the research

objective and provided answers to a majority of the predetermined research inquiries.

It was found that the high-frequency effects caused by damage to the propellers manifest as significant

vibrational effects which occur at orders of magnitude higher frequencies than the baseline aerodynamic effects

of the quadrotor, allowing for independent modeling of these respective frequency ranges through time-scale

separation. The simple composition of these vibrations, comprising of a few dominant sinusoidal components,

but complex local non-linear effects in the amplitude variation, meant that a very different model structure was

chosen to capture the high-frequency phenomenon compared to the lower-frequency aerodynamic models. A

novel approach for modeling the high-frequency phenomenon was developed which employed a two-step process;

first, the amplitude-frequency relationships are extracted from the signal, for each dominant harmonic, leading

to a scattered dataset, then the amplitude-frequency-damage(level) surfaces are fit using multivariate simplex

B-splines. Simplex B-splines offered a much better alternative to polynomial models in describing the high-

frequency phenomenon occurring due to blade damage, while also providing an additional advantage in allowing

for interpolating the high-frequency dynamics between damage levels used for model identification.

Polynomial models identified through stepwise regression were found to be sufficient in capturing a large part

of the low-frequency aerodynamic effects of blade damage. However, these models did not provide a meaningful

way to interpolate between damage levels through variations in the model parameters. Based on an analysis of the

models, this lack of clear and meaningful parameter variation is thought to be a combination of several factors.

Mainly, correlations between dominant model regressors result in sporadic parameter values. Other factors include

random changes introduced into the model training data from one damage case to the next because of the inability

to manually fly the flight maneuvers in a repeatable and consistent fashion.

In terms of sensor limitation, it was found that accelerometers tend to be the bottleneck rather than gyroscopes by

far. The MPU6000 and ICM42605 IMUs have acceleration measurement ranges of ±16g, which leads to clipping

in the accelerometer caused by high-frequency vibrations at damage levels of around 40% for the quadrotors

used for this research. This clipping due to lack of measurement range results in deteriorated attitude estimates.

Therefore, conducting system identification experiments with damaged quadrotors proves difficult while flying

manually in angle mode. While the attitude estimate is affected severely, the gyroscopes of the aforementioned

IMUs (which are also some of the most commonly found IMUs in UAVs), are much more robust to the high-

frequency vibrations due to their large measurement range, thus ensuring decent control of angular rates even with

PID control algorithms. The use of accelerometers with higher measurement ranges should significantly increase

the ability of a quadrotor to survive severe asymmetric damage to the blades because of better attitude control

authority. Due to poor accelerometer performance in the presence of blade damage, the aerodynamic forces had to

be measured using an external motion capture system, which also inhibits possibilities for purely on-board model

identification.

In terms of flight maneuvers flown to identify the aerodynamic and high-frequency models, very different

approaches were taken. Since the aerodynamic forces and moments depend on a larger number of states than the

high-frequency models, carefully planned flight maneuvers are required that sufficiently excite the aerodynamic

forces and moments in all body axes. The high-frequency behavior is found to largely only depend on the frequency

of the damaged propeller, and so simple maneuvers which allow for the full range of rotational frequencies of the

damaged propeller to be covered are found to be sufficient in capturing the dominant effects.

Lastly, the results of modeling quadrotor behavior in the presence of blade damage also lead to important insights

with respect to the detection and diagnosis of these types of faults. The primary result is that while the high-

frequency effects captured by the IMU offer a good source of diagnostic information, the high sensitivity of this

sensor with respect to the structural frame and its resonant modes makes it a poor choice for a diagnosis method

that gives reproducible predictions on different quadrotors of the same make. However, the high sensitivity of this

information source also provides the benefits of being able to differentiate between locations of damage on the

same quadrotor.
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Recommendations

Separate models for quadrotors afflicted with asymmetric blade damage were identified for the low-frequency and

high-frequency dynamics. Therefore, the recommendations are also made separately for each model type. First,

the low-frequency aerodynamic models are discussed, followed by the high-frequency models. Finally, some

insights derived from this research for applications to blade damage diagnosis are discussed.

One of the main limitations of the polynomial aerodynamic models is that they do not seem to show simple, or

even physically meaningful patterns in the model parameters as a function of the level of blade damage. Some

suggestions that can improve this would be to:

• Perform automated test flights, rather than the manually flown flights in the presented research, to gather

data with less variation in terms of coverage of the state space from one damage case to the next

• Relying on external attitude measurements through a motion capture system will allow higher levels of

damage to be flown, since the limitation of poor on-board attitude estimates (in the presence of asymmetric

blade damage) can be bypassed.

• More coupling between the different forces and moments should be targeted through carefully designed

automated test flights, which can improve the coverage of the aerodynamic models.

While the automation of the data collection flights can help with the identification of better models, the problem

still remains that the polynomial models may not show clear patterns in the parameters as a function of blade

damage because of noise, which the parameters can be highly sensitive to. Another approach to simulate damage

cases for which flight data is not recorded would be to take a weighted average between the models at damage

levels for which data-driven models are constructed. How exactly two models should be weighted together is

therefore an open question, and worth exploring.

While the base assumption of simple sinusoidal components of the high-frequency forces and moments generated

by asymmetric blade damage is largely valid, there were some cases where this did not hold. Particularly, at very

high frequencies above 400 Hz, the yaw rate signal includes additional low-frequency components which are quite

dominant yet sporadic. This phenomenon only occurred on the Beetle quadrotor, however, and not the Geyser.

The cause of this should be further investigated.

The high-frequency models only consider the amplitude of the sinusoidal components and not the phase

information. Without measurements of motor (angular) position, the absolute phase is impossible to determine for

each IMU signal. However, relative phases can be identified for part of the IMU signals as was demonstrated in

the paper. Extracting the phase information accurately, however, may require a more involved spectral analysis

step.

• The relationships between the relative phases of IMU signals with damage cases should be investigated.

Only damage to a single propeller was considered when constructing the high-frequency models. If linear

super-position is assumed to be true, then the IMU signal generated in the presence of dual damage can be simulated

by simply adding the sinusoidal components generated by the model for the individual damage locations. However,

some considerations have to be made about the relative phase of the two propellers, such as assuming uniform

relative phase distribution.

• The super-position assumption should be validated through test flights of quadrotors with damage to two

propellers simultaneously.

Damage to more than one propeller also creates challenges in terms of the spectral analysis step. As mentioned

in the paper, the short time windows required to capture the non-stationarity of the signal result in lower frequency

resolutions. With a single dominant frequency component (and its harmonics), this is not a problem. However, for

a quadrotor with damage to more than one propeller, the frequency distance between the rotational speeds of the

propellers will likely be within the frequency resolution for a large part of the recorded flight data.
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• Maneuvers should be designed which separate the rotational speeds of multiple damaged propellers while

maintaining significant contributions from the high-frequency effects created by the propellers simultane-

ously.

• Throttle punch maneuvers coupled with aggressive roll and pitch inputs can be a good choice.

Finally, the simplex-B spline models use a fairly simple triangulation where the vertices all lie on a rectangular

grid. While this captured a vast majority of the data, the extremes at the low and high frequencies may be omitted

while training.

• The triangulation for HF models can be improved by considering the convex hull of the training dataset.

• The number of simplices should be kept roughly the same as used in this thesis.

The findings of this research also carry significant implications for the diagnosis of asymmetric blade damage. It

was found that the high-frequency behavior is very sensitive to not only the damage level of a propeller but also the

location. The frequency-amplitude relationships of the IMU measurements for a specific damage case essentially

act as fingerprints that facilitate diagnosis. This suggests that a single IMU offers a reliable means of diagnosing

several types of damage scenarios. However, the sensitivity comes at the cost of potentially significant variation

in the high-frequency behavior for different makes of identical quadrotors due to small variations introduced from

one airframe to the other during manufacturing and assembly.

While the aerodynamic models suggest that, for a large part, there are no clear patterns in the model parameters

as a function of the damage case, there are a few regressors terms such as w2
tot for Fz and the moment bias

terms which offer a reliable means of blade damage diagnosis. However, purely relying on the low-frequency

phenomenon does not allow for differentiation between symmetric and asymmetric blade damage.

Clearly, the high-frequency and low-frequency effects each offer positives and negatives as a means for

blade damage diagnosis. Therefore, the ideal approach is to fuse these sources of information such that a robust

framework for blade damage diagnosis of quadrotors can be developed.

• A robust blade damage detection and diagnosis scheme should be developed which takes advantage of

the high sensitivity of the IMU to small changes in the extent of impairment, while also incorporating

aerodynamic model terms from the low-frequency dynamics to potentially make the diagnosis algorithm

less system-specific.
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Book of Appendices
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A
Aerodynamic Models

The detailed aerodynamic models for all the damage cases outlined in Part II are presented here. Each force and

moment model is tabulated, including the regressors, associated parameter values, and the ratio of parameter

standard deviation to value (magnitude). It must be noted that the regressor terms related to motor speeds use

ERPM rather than RPM. Therefore, simulated rotor RPM values should be divided by 16.67 (the scaling factor in

this case) before making predictions with models which contain regressor terms as functions of rotor speeds.
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Table A.1: Aerodynamic models for damage case: Healthy at mean airspeed 0ms−1

(a) Fx

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias -5.2840E-02 0.0279

u -4.8255E-01 0.0022

sin(θ)ωtot -1.7794E-02 0.0041

sin(θ)ω2
tot 2.0081E-05 0.0075

ωtotq -1.1894E-04 0.0136

R2 0.989

(b)Mx

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 2.3400E-03 0.0212

p 1.2376E-02 0.0234

up 4.8278E-06 0.0016

cos(φ)v -8.1734E-03 0.0059

cos(φ)µyµz -4.3094E-02 0.0118

cos(φ)p -1.3345E-02 0.0227

R2 0.973

(c) Fy

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias -6.2371E-04 2.1338

v -3.6274E-01 0.0026

sin(φ)ωtot 1.7597E-02 0.0044

sin(φ)ω2
tot -2.1300E-05 0.0076

ωtotp 9.1245E-05 0.0170

R2 0.988

(d)My

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 5.3251E-03 0.0138

q -4.1361E-04 0.0722

uq -8.2416E-07 0.1182

cos(θ)u 1.0497E-02 0.0079

cos(θ)uw 2.8424E-03 0.0140

cos(θ)uq 4.7723E-06 0.0223

R2 0.949

(e) Fz

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 3.7911E+00 0.0007

w -8.3394E-02 0.0200

ω2
tot -2.1184E-05 0.0005

w2 2.5056E-02 0.0108

ωtotw -1.8834E-04 0.0203

R2 0.993

(f)Mz

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 4.2621E-03 0.0494

r -5.3813E-03 0.0124

ur -1.3855E-06 0.0097

|uq|ur 7.8573E-11 0.0477

|ur|µz 1.7748E-06 0.0405

|r|w -1.8940E-03 0.0658

R2 0.633
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Table A.2: Aerodynamic models for damage case: Healthy at mean airspeed 8ms−1

(a) Fx

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 4.1891E-01 0.0135

u 2.7703E-02 0.0459

ωtotu
2 -3.2925E-04 0.0021

sin(θ)u -5.7966E-01 0.0018

ωtotu
3 2.2799E-05 0.0043

R2 0.958

(b)Mx

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias -6.7775E-04 0.0725

p 3.2457E-04 0.2983

up 4.7942E-06 0.0014

sin(φ)|r|2 -2.6920E-02 0.0558

ωtot|uq||ur| -5.6009E-14 0.0558

pµz 1.3154E-03 0.0670

R2 0.985

(c) Fy

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias -4.3706E-03 0.2130

v -1.1009E-01 0.0459

sin(φ)ωtot 1.5052E-02 0.0074

sin(φ)ω2
tot -1.8681E-05 0.0136

ωtotv -6.9738E-04 0.0175

R2 0.981

(d)My

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 5.8012E-02 0.0046

q -9.9511E-04 0.0228

uq 5.8881E-06 0.0085

µz 6.9877E-02 0.0062

µ2
z 1.6440E-02 0.0114

ωtotuq -5.2100E-09 0.0227

R2 0.932

(e) Fz

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 2.6828E+00 0.0027

w -2.1523E-01 0.0083

ω2
tot -2.0700E-05 0.0014

ωtotw
3 -2.9775E-06 0.0153

ωtot|u|2w 5.4770E-06 0.0197

R2 0.983
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Table A.3: Aerodynamic models for damage case: 10F at mean airspeed 0ms−1

(a) Fx

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 5.8051E-03 0.1837

u -5.0600E-01 0.0022

sin(θ)ωtot -1.7662E-02 0.0046

sin(θ)ω2
tot 2.0074E-05 0.0085

ωtotq -9.7117E-05 0.0109

R2 0.986

(b)Mx

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias -5.3007E-04 0.0685

p -3.7570E-04 0.0367

up 4.8329E-06 0.0011

cos(φ)v -8.6548E-03 0.0055

cos(φ)µyµz -3.4623E-02 0.0205

sin(φ)ω2
tot 2.0624E-08 0.0293

R2 0.986

(c) Fy

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 5.4986E-03 0.1664

v -3.4424E-01 0.0019

sin(φ)ωtot 1.6022E-02 0.0035

sin(φ)ω2
tot -1.7601E-05 0.0066

ωtotp 8.5009E-05 0.0105

R2 0.992

(d)My

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias -3.6714E-03 0.0099

q -5.7185E-04 0.0261

uq -8.3674E-07 0.0581

cos(θ)µx 4.3002E-02 0.0053

cos(θ)µxµz 6.6486E-02 0.0095

cos(θ)uq 4.7011E-06 0.0112

R2 0.981

(e) Fz

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 3.8767E+00 0.0006

w -2.7959E-01 0.0045

ω2
tot -2.0689E-05 0.0005

ωtotw
2 4.2096E-05 0.0157

µz 1.2212E-01 0.0174

R2 0.994

(f)Mz

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias -5.6364E-06 27.8675

r -4.1067E-03 0.0154

ur -1.1379E-06 0.0107

|ur||v|w 1.1457E-06 0.0548

ωtot|q|r -1.1748E-05 0.0579

ωtot|up|ur 1.3765E-13 0.0742

R2 0.609
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Table A.4: Aerodynamic models for damage case: 10F at mean airspeed 8ms−1

(a) Fx

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 1.4163E+00 0.0064

u -2.4975E-01 0.0075

sin(θ)µx -2.3026E+00 0.0027

sin(θ)µ2
x 3.3035E-01 0.0038

ωtotu -6.9338E-04 0.0044

R2 0.936

(b)Mx

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 2.1451E-04 0.2827

p -4.4635E-04 0.0367

up 4.5663E-06 0.0014

cos(φ)|u|vw -4.3573E-05 0.0514

|ur||u|2w 1.0475E-09 0.0512

|r|v 1.6569E-03 0.0822

R2 0.986

(c) Fy

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias -6.0000E-03 0.2195

v -4.0528E-01 0.0036

sin(φ)ωtot 7.2566E-03 0.0040

pw3 -1.6826E-04 0.0302

sin(φ)w3 2.6199E-03 0.0314

R2 0.978

(d)My

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 4.4476E-02 0.0047

q -1.0918E-03 0.0199

uq 5.3871E-06 0.0085

w 1.5626E-02 0.0052

w2 8.6332E-04 0.0095

ωtotuq -4.3155E-09 0.0242

R2 0.921

(e) Fz

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 2.5594E+00 0.0039

w -2.0009E-01 0.0108

ω2
tot -2.0762E-05 0.0011

ωtotw
3 -3.2476E-06 0.0187

|q||µx| 5.2650E-02 0.0348

R2 0.972
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Table A.5: Aerodynamic models for damage case: 10BL at mean airspeed 0ms−1

(a) Fx

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias -5.3349E-02 0.0259

u 2.2131E-01 0.0289

sin(θ)ωtot -1.5288E-02 0.0042

ωtotu -1.6551E-03 0.0084

sin(θ)ω2
tot 1.4604E-05 0.0090

R2 0.975

(b)Mx

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias -5.1669E-03 0.0075

p 8.4409E-03 0.0433

up 4.8090E-06 0.0010

cos(φ)v -7.5977E-03 0.0098

cos(φ)µyµz -5.0412E-02 0.0204

cos(φ)p -9.0516E-03 0.0415

R2 0.984

(c) Fy

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 1.8029E-02 0.0484

v -3.5578E-01 0.0018

sin(φ)ωtot 1.6244E-02 0.0034

sin(φ)ω2
tot -1.8086E-05 0.0062

ωtotp 8.0566E-05 0.0102

R2 0.992

(d)My

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 7.3851E-03 0.0076

q -2.0396E-04 0.0925

uq 8.0771E-06 0.0073

uqu
2 -4.6008E-08 0.0156

ωtotuq -1.0274E-08 0.0130

ωtotu 7.1622E-06 0.0150

R2 0.973

(e) Fz

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 3.8538E+00 0.0006

w -1.9939E-01 0.0039

ω2
tot -2.1112E-05 0.0005

ωtotw
2 8.0780E-05 0.0091

ωtot|u|w2 -1.5549E-04 0.0140

R2 0.994

(f)Mz

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 1.8112E-03 0.1029

r -3.9613E-03 0.0164

ur -1.0710E-06 0.0067

|q|r -3.4237E-02 0.0390

ωtot|q|r 7.2692E-05 0.0445

ωtot|uq|2 -3.0134E-13 0.0617

R2 0.616
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Table A.6: Aerodynamic models for damage case: 10BL at mean airspeed 8ms−1

(a) Fx

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 1.7433E+00 0.0028

u -5.3247E-02 0.0197

sin(θ)µx 3.9734E-01 0.0081

ωtotu -1.3718E-03 0.0015

sin(θ)u -6.2371E-01 0.0018

R2 0.975

(b)Mx

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias -5.1081E-03 0.0104

p -1.3673E-03 0.0123

up 4.6812E-06 0.0015

sin(φ)p2 -3.3762E-04 0.0595

sin(φ)v3 2.6162E-04 0.0563

|r|vw2 1.5286E-04 0.0622

R2 0.987

(c) Fy

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias -7.1312E-03 0.3166

v -5.4263E-02 0.2721

sin(φ)ωtot 1.7539E-02 0.0120

sin(φ)ω2
tot -2.4643E-05 0.0195

ωtotv -8.3024E-04 0.0404

R2 0.963

(d)My

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 4.2804E-02 0.0084

q -8.2350E-04 0.0497

uq 6.1768E-06 0.0156

µz 3.3279E-02 0.0088

sin(θ)uq -1.1262E-06 0.0198

ωtotuq -7.2931E-09 0.0306

R2 0.809

(e) Fz

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 2.7489E+00 0.0029

w -1.4105E-01 0.0120

ω2
tot -2.1064E-05 0.0009

ωtotw
3 -3.8583E-06 0.0122

|q||µx| 5.0520E-02 0.0286

R2 0.980
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Table A.7: Aerodynamic models for damage case: 10FL at mean airspeed 0ms−1

(a) Fx

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias -4.3101E-02 0.0234

u -1.0294E+00 0.0054

sin(θ)ωtot -1.6855E-02 0.0036

sin(θ)ω2
tot 1.7453E-05 0.0070

µx 2.0301E+00 0.0123

R2 0.987

(b)Mx

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias -5.2516E-03 0.0098

p -1.5500E-04 0.1281

up 7.8342E-06 0.0092

cos(φ)v -7.6658E-03 0.0075

cos(φ)vw -1.6439E-03 0.0171

ωtotup -6.7936E-09 0.0241

R2 0.976

(c) Fy

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 5.4969E-03 0.2351

v -3.7947E-01 0.0026

sin(φ)ωtot 1.6772E-02 0.0038

sin(φ)ω2
tot -1.9045E-05 0.0067

ωtotp 6.6510E-05 0.0197

R2 0.984

(d)My

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 1.4196E-03 0.0390

q -4.7155E-04 0.0430

uq -2.3070E-07 0.3153

cos(θ)u 9.6599E-03 0.0059

sin(θ)u2 2.1429E-03 0.0135

cos(θ)uq 4.0564E-06 0.0191

R2 0.974

(e) Fz

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 3.8506E+00 0.0009

w -2.0701E-01 0.0053

ω2
tot -2.0512E-05 0.0007

ωtot|r| -5.0442E-04 0.0105

ωtot|v| -6.8292E-04 0.0138

R2 0.984

(f)Mz

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias -1.8034E-02 0.0700

r -1.4973E-02 0.0283

ur -2.3956E-06 0.0265

cos(θ)ωtot 5.4174E-05 0.0588

ωtotr 2.5705E-05 0.0431

ωtotur 3.3325E-09 0.0468

R2 0.677
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Table A.8: Aerodynamic models for damage case: 10FL at mean airspeed 8ms−1

(a) Fx

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 1.9705E+00 0.0025

u -1.1535E-01 0.0065

ωtotu -1.3026E-03 0.0010

sin(θ)u -5.9848E-01 0.0014

ωtotµxµz 4.7076E-04 0.0053

R2 0.981

(b)Mx

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 1.9485E-03 0.1382

p -8.3488E-04 0.0181

up 4.7381E-06 0.0014

ωtotw 8.3824E-06 0.0361

ωtotw
2 8.6539E-07 0.0443

sin(φ)|ur| -6.6441E-07 0.0476

R2 0.987

(c) Fy

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 2.2963E-02 0.0783

v -7.4261E-01 0.0106

sin(φ)ωtot 6.3700E-03 0.0038

p -2.5770E-02 0.0214

µy 1.1731E+00 0.0268

R2 0.974

(d)My

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 5.3857E-02 0.0050

q -7.7637E-04 0.0312

uq 5.6490E-06 0.0092

w 1.6930E-02 0.0058

ωtotw
2 2.1976E-06 0.0103

ωtotuq -4.8118E-09 0.0252

R2 0.932

(e) Fz

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 3.1679E+00 0.0035

w 1.1302E-02 0.2914

ω2
tot -1.9243E-05 0.0020

w2 2.8691E-02 0.0121

ωtot|u| -2.1267E-04 0.0234

R2 0.983
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Table A.9: Aerodynamic models for damage case: 20F at mean airspeed 0ms−1

(a) Fx

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias -2.5914E-02 0.0531

u -5.6548E-01 0.0025

sin(θ)ωtot -1.8811E-02 0.0044

sin(θ)ω2
tot 2.1428E-05 0.0078

ωtotq -6.6302E-05 0.0176

R2 0.983

(b)Mx

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 2.2108E-03 0.0190

p -4.0386E-04 0.0402

up 4.5856E-06 0.0011

cos(φ)v -8.2738E-03 0.0059

sin(φ)|ur|2 1.2757E-10 0.0136

cos(φ)vw -1.6843E-03 0.0138

R2 0.975

(c) Fy

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 8.1806E-03 0.1315

v -3.9190E-01 0.0019

sin(φ)ωtot 1.7888E-02 0.0043

sin(φ)ω2
tot -2.0689E-05 0.0076

ωtotp 5.0957E-05 0.0186

R2 0.990

(d)My

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias -7.3048E-03 0.0064

q -7.1125E-04 0.0245

uq -4.4100E-07 0.1339

cos(θ)µx 4.7114E-02 0.0060

cos(θ)µxµz 6.6608E-02 0.0115

cos(θ)uq 4.1361E-06 0.0153

R2 0.974

(e) Fz

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 3.8309E+00 0.0005

w -1.2551E-01 0.0107

ω2
tot -1.9938E-05 0.0004

w2 2.0793E-02 0.0127

ωtotw -2.3325E-04 0.0131

R2 0.996

(f)Mz

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 1.8493E-03 0.1279

r -4.1779E-03 0.0246

ur -1.0077E-06 0.0100

|q|r -5.5144E-03 0.0609

|up|2 -1.7766E-09 0.0664

ωtot|up|2 3.9571E-12 0.0726

R2 0.528
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Table A.10: Aerodynamic models for damage case: 20F at mean airspeed 8ms−1

(a) Fx

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias -8.9793E-02 0.0811

u -6.2315E-02 0.0399

sin(θ)µx -2.6162E+00 0.0025

sin(θ)µ2
x 3.9255E-01 0.0035

ωtotu
2 -9.4330E-05 0.0053

R2 0.932

(b)Mx

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 1.2574E-03 0.0388

p -3.7525E-04 0.0414

up 4.4870E-06 0.0015

sin(φ)|r| -1.5515E-02 0.0393

cos(φ)v2w -7.2201E-05 0.0540

p|u|2v 5.0244E-06 0.0675

R2 0.985

(c) Fy

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias -7.3422E-03 0.2789

v 2.2464E-01 0.0754

sin(φ)ωtot 1.8561E-02 0.0102

sin(φ)ω2
tot -2.6891E-05 0.0154

ωtotv -1.3888E-03 0.0267

R2 0.981

(d)My

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 3.9870E-02 0.0051

q -1.0328E-03 0.0212

uq 5.2357E-06 0.0093

w 1.6213E-02 0.0052

w2 9.1824E-04 0.0096

ωtotuq -3.9667E-09 0.0286

R2 0.935

(e) Fz

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 2.5886E+00 0.0031

w -2.1329E-01 0.0093

ω2
tot -1.9510E-05 0.0013

ωtotw
3 -4.8042E-06 0.0167

ωtot|u|w2 -4.8707E-06 0.0339

R2 0.982
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Table A.11: Aerodynamic models for damage case: 20BL at mean airspeed 0ms−1

(a) Fx

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias -5.7676E-02 0.0250

u -5.0306E-01 0.0028

sin(θ)ωtot -1.8180E-02 0.0052

sin(θ)ω2
tot 2.0894E-05 0.0094

ωtotq -9.3142E-05 0.0134

R2 0.984

(b)Mx

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias -8.3267E-03 0.0062

p -3.0979E-04 0.0664

up 1.3188E-06 0.0632

cos(φ)v -8.6884E-03 0.0070

sin(φ)µ2
y 3.5621E-02 0.0152

cos(φ)up 3.6830E-06 0.0246

R2 0.957

(c) Fy

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 4.3229E-03 0.1933

v -3.5666E-01 0.0016

sin(φ)ωtot 1.5854E-02 0.0034

sin(φ)ω2
tot -1.7149E-05 0.0064

ωtotp 8.0540E-05 0.0097

R2 0.994

(d)My

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 1.1011E-02 0.0052

q -3.6034E-04 0.0590

uq 7.9313E-08 0.9542

cos(θ)µx 3.9729E-02 0.0097

cos(θ)µxµz 5.9145E-02 0.0165

cos(θ)uq 3.7179E-06 0.0218

R2 0.967

(e) Fz

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 3.7807E+00 0.0005

w -1.3415E-01 0.0111

ω2
tot -2.0319E-05 0.0004

w2 2.8880E-02 0.0100

ωtotw -1.4669E-04 0.0231

R2 0.996

(f)Mz

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias -2.8593E-03 0.1209

r -4.1450E-03 0.0298

ur -1.0085E-06 0.0168

sin(φ)|u|2w -1.4980E-01 0.1181

|r||u|w2 4.6629E-03 0.1069

|uq|µ2
z -1.4876E-05 0.1653

R2 0.301
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Table A.12: Aerodynamic models for damage case: 20BL at mean airspeed 8ms−1

(a) Fx

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 9.3989E-01 0.0089

u -1.9534E-01 0.0083

sin(θ)µx -2.3494E+00 0.0023

sin(θ)µ2
x 3.2766E-01 0.0030

ωtotu -6.4001E-04 0.0041

R2 0.938

(b)Mx

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias -1.3530E-02 0.0160

p 5.1561E-03 0.0746

up 4.5737E-06 0.0015

|µx|µz -3.4403E-03 0.0406

|r|µyµz -1.3597E-02 0.0545

cos(φ)p -6.8396E-03 0.0580

R2 0.984

(c) Fy

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 4.6123E-03 0.3253

v -7.6568E-01 0.0171

sin(φ)ωtot 1.4681E-02 0.0118

sin(φ)ω2
tot -1.8130E-05 0.0220

µy 1.4669E+00 0.0371

R2 0.990

(d)My

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 4.6093E-02 0.0032

q -8.2098E-04 0.0216

uq 5.9523E-06 0.0060

µz 3.5053E-02 0.0034

uqµ
2
z 4.5360E-07 0.0114

ωtotuq -6.8312E-09 0.0118

R2 0.959

(e) Fz

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 3.0977E+00 0.0029

w -5.6413E-03 0.4798

ω2
tot -2.0101E-05 0.0007

w3 -3.4772E-03 0.0099

|uq||u|2|v| -6.9636E-07 0.0223

R2 0.981
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Table A.13: Aerodynamic models for damage case: 20BR at mean airspeed 0ms−1

(a) Fx

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias -3.0818E-02 0.0319

u -5.2949E-01 0.0016

sin(θ)ωtot -1.6721E-02 0.0040

sin(θ)ω2
tot 1.7660E-05 0.0079

ωtotq -9.5031E-05 0.0098

R2 0.992

(b)Mx

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 9.5475E-03 0.0069

p -3.0326E-04 0.0517

up 4.7963E-06 0.0010

cos(φ)v -8.5011E-03 0.0054

cos(φ)µyµz -4.5458E-02 0.0109

ωtot|ur| 1.3720E-09 0.0193

R2 0.980

(c) Fy

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 8.1839E-04 1.2933

v -3.7291E-01 0.0020

sin(φ)ωtot 1.7129E-02 0.0042

sin(φ)ω2
tot -1.9584E-05 0.0076

ωtotp 6.8866E-05 0.0139

R2 0.990

(d)My

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 1.0924E-02 0.0055

q -4.9829E-04 0.0428

uq 4.0164E-07 0.1764

cos(θ)µx 3.9706E-02 0.0072

sin(θ)µ2
x 4.7821E-02 0.0133

cos(θ)uq 3.3869E-06 0.0224

R2 0.962

(e) Fz

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 3.7930E+00 0.0006

w -1.1734E-01 0.0139

ω2
tot -2.0533E-05 0.0005

w2 2.5118E-02 0.0121

ωtotw -2.3021E-04 0.0164

R2 0.996

(f)Mz

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 2.6640E-03 0.0662

r -3.1648E-03 0.0233

ur -1.2810E-06 0.0136

|p|r -9.4130E-02 0.0385

ωtot|p|r 2.1171E-04 0.0414

ωtot|uq|ur 1.6624E-13 0.0571

R2 0.469
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Table A.14: Aerodynamic models for damage case: 20BR at mean airspeed 8ms−1

(a) Fx

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 8.5359E-01 0.0111

u -1.8802E-01 0.0104

sin(θ)µx -2.5961E+00 0.0027

sin(θ)µ2
x 4.0914E-01 0.0038

ωtotu -6.6837E-04 0.0048

R2 0.953

(b)Mx

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias -1.5930E-03 0.3352

p -1.6566E-03 0.0181

up 3.9117E-06 0.0132

ωtot|uq|2 7.6146E-14 0.0338

cos(φ)ω2
tot 5.9023E-08 0.0494

up|µx|µz -5.7292E-07 0.0657

R2 0.962

(c) Fy

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias -1.4216E-02 0.0776

v -3.9761E-01 0.0040

sin(φ)ωtot 1.1457E-02 0.0103

sin(φ)ω2
tot -1.0726E-05 0.0247

p -1.3164E-02 0.0308

R2 0.991

(d)My

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 4.5909E-02 0.0107

q -8.9625E-04 0.0548

uq 6.3281E-06 0.0212

µz 3.3589E-02 0.0119

uqµxµz -3.8354E-07 0.0289

ωtotuq -7.7672E-09 0.0396

R2 0.827

(e) Fz

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 2.8309E+00 0.0045

w -3.2735E-03 1.5840

ω2
tot -2.0296E-05 0.0008

w2 2.9265E-02 0.0177

ωtot|q|2 4.5068E-04 0.0293

R2 0.982
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Table A.15: Aerodynamic models for damage case: 20FL at mean airspeed 0ms−1

(a) Fx

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias -4.2001E-02 0.0323

u -5.1115E-01 0.0022

sin(θ)ωtot -1.9296E-02 0.0042

sin(θ)ω2
tot 2.3214E-05 0.0071

q -4.1471E-02 0.0128

R2 0.986

(b)Mx

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias -8.0181E-03 0.0051

p -1.1451E-04 0.1406

up 4.7574E-06 0.0010

cos(φ)v 5.3412E-04 0.3873

cos(φ)µyµz -5.3563E-02 0.0095

ωtotv -1.6928E-05 0.0209

R2 0.979

(c) Fy

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias -7.8623E-03 0.1307

v -3.5599E-01 0.0020

sin(φ)ωtot 1.6755E-02 0.0038

sin(φ)ω2
tot -1.9007E-05 0.0068

ωtotp 8.6542E-05 0.0128

R2 0.993

(d)My

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias -1.2118E-03 0.0360

q -6.2134E-04 0.0263

uq -4.2449E-07 0.1188

cos(θ)µx 4.7382E-02 0.0050

cos(θ)µxµz 5.6939E-02 0.0101

cos(θ)uq 4.2585E-06 0.0128

R2 0.980

(e) Fz

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 3.8413E+00 0.0005

w -1.8896E-01 0.0049

ω2
tot -2.0679E-05 0.0004

ωtotw
2 6.3003E-05 0.0105

ωtot|u|w -3.7099E-04 0.0158

R2 0.995

(f)Mz

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias -3.1655E-02 0.0821

r -3.5580E-03 0.0219

ur -1.0125E-06 0.0088

|p|r -7.8002E-03 0.0543

cos(θ)ωtot 9.6140E-05 0.0655

|uq| -1.6217E-06 0.0843

R2 0.556
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Table A.16: Aerodynamic models for damage case: 20FL at mean airspeed 8ms−1

(a) Fx

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias -3.5017E-01 0.0267

u 5.2048E-02 0.0512

sin(θ)µx -2.3587E+00 0.0027

sin(θ)µ2
x 3.5796E-01 0.0035

ωtotu
2 -1.1508E-04 0.0043

R2 0.945

(b)Mx

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias -1.2494E-03 0.2607

p -7.5617E-04 0.0183

up 4.7089E-06 0.0014

sin(φ)|uq| -9.4497E-07 0.0409

cos(φ)ω2
tot -4.5451E-08 0.0409

cos(φ)|uq||ur| -1.7197E-11 0.0541

R2 0.989

(c) Fy

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 1.2176E-02 0.2160

v -3.6882E-01 0.0063

sin(φ)ωtot 1.1773E-02 0.0262

ωtotv
2w 8.4278E-06 0.0475

sin(φ)ω2
tot -1.1296E-05 0.0625

R2 0.963

(d)My

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 4.0599E-02 0.0147

q -1.3145E-03 0.0242

uq 3.7031E-06 0.0028

w 1.7845E-02 0.0089

w2 1.1570E-03 0.0151

cos(θ)ω2
tot 6.8048E-08 0.0397

R2 0.902

(e) Fz

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 2.6993E+00 0.0034

w -1.6314E-01 0.0126

ω2
tot -2.0837E-05 0.0010

ωtotw
3 -3.3619E-06 0.0166

|p||q| 8.5650E-01 0.0300

R2 0.976
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Table A.17: Aerodynamic models for damage case: 30F at mean airspeed 0ms−1

(a) Fx

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias -2.3512E-02 0.0420

u -5.2190E-01 0.0015

sin(θ)ωtot -1.7869E-02 0.0034

sin(θ)ω2
tot 1.9489E-05 0.0063

ωtotq -6.0540E-05 0.0150

R2 0.993

(b)Mx

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 6.5207E-04 0.0700

p -2.8328E-04 0.0610

up 4.6235E-06 0.0014

µy -3.0441E-02 0.0154

cos(φ)up|ur| -5.3975E-11 0.0186

|ur|µy 1.4310E-06 0.0327

R2 0.979

(c) Fy

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 2.8392E-02 0.0242

v -3.6037E-01 0.0018

sin(φ)ωtot 1.8074E-02 0.0029

sin(φ)ω2
tot -2.1277E-05 0.0051

ωtotp 6.1962E-05 0.0105

R2 0.994

(d)My

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias -1.0992E-02 0.0055

q -7.3241E-04 0.0300

uq 7.2606E-07 0.1326

cos(θ)u 1.0057E-02 0.0090

cos(θ)µxµz 7.3262E-02 0.0213

cos(θ)uq 2.8047E-06 0.0363

R2 0.967

(e) Fz

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 3.8019E+00 0.0006

w -1.5736E-01 0.0140

ω2
tot -1.9273E-05 0.0005

ωtotw
2 3.7656E-05 0.0270

ωtotw -1.2567E-04 0.0404

R2 0.996

(f)Mz

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 1.2492E-03 0.1684

r -5.3660E-03 0.0175

ur -1.0189E-06 0.0109

|ur|µz 1.9518E-06 0.0679

|ur||u|w -8.0554E-07 0.0720

|q|µ2
z -2.9772E-01 0.0907

R2 0.530
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Table A.18: Aerodynamic models for damage case: 30F at mean airspeed 8ms−1

(a) Fx

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 2.1617E+00 0.0038

u -4.2100E-01 0.0042

sin(θ)µx -2.3743E+00 0.0027

µxµz 2.8746E-01 0.0043

ωtotu -5.3506E-04 0.0059

R2 0.939

(b)Mx

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias -2.0383E-03 0.1776

p -1.0710E-04 0.2156

up 4.3790E-06 0.0019

cos(φ)ω2
tot 2.8384E-08 0.0633

ωtot|uq|2 4.1427E-14 0.0571

|uq| -3.6553E-07 0.0801

R2 0.955

(c) Fy

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias -1.6191E-02 0.0634

v -1.1805E-01 0.0429

sin(φ)ωtot 1.5455E-02 0.0073

sin(φ)ω2
tot -1.9112E-05 0.0128

ωtotv -5.6904E-04 0.0202

R2 0.989

(d)My

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 4.2469E-02 0.0147

q -8.8516E-04 0.0614

uq 3.5308E-06 0.0053

w 2.0493E-02 0.0153

w2 1.8992E-03 0.0332

ωtotw
3 1.4971E-07 0.0685

R2 0.766

(e) Fz

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 3.1441E+00 0.0031

w 6.5460E-02 0.0650

ω2
tot -1.9059E-05 0.0008

w2 3.2176E-02 0.0145

|q||µx| 6.5475E-02 0.0247

R2 0.979



94

Table A.19: Aerodynamic models for damage case: 30BL at mean airspeed 0ms−1

(a) Fx

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias -4.8475E-02 0.0184

u -4.7458E-01 0.0015

sin(θ)ωtot -1.7530E-02 0.0029

sin(θ)ω2
tot 1.9271E-05 0.0054

ωtotq -7.8074E-05 0.0115

R2 0.994

(b)Mx

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias -1.4662E-02 0.0045

p -3.9905E-04 0.0600

up 1.1515E-06 0.0814

cos(φ)v -9.6182E-03 0.0082

cos(φ)vw -2.3083E-03 0.0237

cos(φ)up 3.7108E-06 0.0270

R2 0.963

(c) Fy

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias -1.1730E-02 0.0746

v -3.2346E-01 0.0023

sin(φ)ωtot 1.5387E-02 0.0042

sin(φ)ω2
tot -1.6087E-05 0.0082

ωtotp 6.2459E-05 0.0121

R2 0.995

(d)My

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 2.5354E-03 0.1274

q -4.1992E-04 0.0536

uq 3.5479E-06 0.0015

cos(θ)µx 3.4595E-02 0.0122

cos(θ)ω2
tot 6.3261E-08 0.0271

cos(θ)µxµz 5.6141E-02 0.0418

R2 0.976

(e) Fz

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 3.8117E+00 0.0006

w -1.6484E-01 0.0080

ω2
tot -2.0044E-05 0.0005

ωtotw
2 5.4455E-05 0.0176

|up|w -1.0484E-05 0.0336

R2 0.996

(f)Mz

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias -6.9523E-06 56.7323

r -6.5440E-03 0.0214

ur -1.2961E-06 0.0183

|r||v|3 1.7014E-02 0.0634

|uq||µy| -1.2580E-05 0.0722

|uq|ur 3.1589E-11 0.1165

R2 0.441



95

Table A.20: Aerodynamic models for damage case: 30BL at mean airspeed 8ms−1

(a) Fx

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 9.2277E-01 0.0128

u -2.2301E-01 0.0100

sin(θ)µx -2.5772E+00 0.0028

sin(θ)µ2
x 3.7797E-01 0.0039

ωtotu -6.0129E-04 0.0054

R2 0.919

(b)Mx

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias -1.0710E-02 0.0104

p -3.1234E-03 0.0222

up 4.9557E-06 0.0040

ωtotup|uq| -1.1493E-13 0.0260

cos(φ)p|r| 6.2112E-03 0.0357

sin(φ)p2 -8.3420E-04 0.0599

R2 0.942

(c) Fy

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 1.0219E-02 0.1658

v -4.2830E-01 0.0049

sin(φ)ωtot 7.0132E-03 0.0035

v2w 4.1382E-03 0.0430

pw3 8.5866E-05 0.0505

R2 0.985

(d)My

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 4.6176E-02 0.0093

q -6.8984E-04 0.0636

uq 6.2517E-06 0.0169

µz 3.3163E-02 0.0111

sin(θ)uq -9.1991E-07 0.0253

ωtotuq -7.3741E-09 0.0343

R2 0.788

(e) Fz

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 3.3414E+00 0.0035

w 1.1423E-02 0.2933

ω2
tot -2.0058E-05 0.0008

w3 -3.2214E-03 0.0126

|uq||u|3 -6.4372E-08 0.0308

R2 0.981
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Table A.21: Aerodynamic models for damage case: 30FL at mean airspeed 0ms−1

(a) Fx

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias -2.4303E-02 0.0382

u -5.4479E-01 0.0014

sin(θ)ωtot -1.8211E-02 0.0036

sin(θ)ω2
tot 2.0287E-05 0.0068

q -3.0386E-02 0.0123

R2 0.993

(b)Mx

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias -1.2058E-02 0.0044

p -2.1916E-04 0.0862

up 7.1058E-06 0.0108

cos(φ)v -7.4670E-03 0.0085

cos(φ)vw -1.9074E-03 0.0240

ωtotup -5.3596E-09 0.0319

R2 0.969

(c) Fy

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias -5.6862E-03 0.1207

v -3.6736E-01 0.0016

sin(φ)ωtot 1.7813E-02 0.0026

sin(φ)ω2
tot -2.0840E-05 0.0046

ωtotp 5.8162E-05 0.0102

R2 0.995

(d)My

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias -4.4822E-03 0.0126

q -5.1702E-04 0.0404

uq -1.3599E-06 0.0537

cos(θ)u 9.6407E-03 0.0070

cos(θ)µxµz 6.5248E-02 0.0130

cos(θ)uq 5.1964E-06 0.0150

R2 0.963

(e) Fz

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 3.5520E+00 0.0015

w -2.2757E-01 0.0036

ω2
tot -2.1968E-05 0.0020

w2 2.1750E-02 0.0162

ωtot 1.4707E-03 0.0221

R2 0.995

(f)Mz

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 3.0130E-03 0.0568

r -3.7507E-03 0.0236

ur -2.1171E-06 0.0490

ωtotur 2.7906E-09 0.0893

|p|r -5.1072E-03 0.0718

sin(θ)|v|3 -1.2981E-01 0.0724

R2 0.551
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Table A.22: Aerodynamic models for damage case: 30FL at mean airspeed 8ms−1

(a) Fx

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 2.1589E+00 0.0056

u -9.8980E-01 0.0028

sin(θ)µx -3.1104E+00 0.0022

sin(θ)µ2
x 7.0000E-01 0.0034

ωtotµ
2
x 1.8715E-03 0.0048

R2 0.934

(b)Mx

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias -1.2786E-03 0.3103

p 9.0449E-04 0.1097

up 4.7056E-06 0.0013

cos(φ)ω2
tot -6.0610E-08 0.0372

|uq||ur| -3.0409E-11 0.0465

pµz 1.4254E-03 0.0656

R2 0.981

(c) Fy

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 3.8994E-04 3.3558

v -3.8799E-01 0.0034

sin(φ)ωtot 7.2710E-03 0.0031

sin(φ)w3 2.3416E-03 0.0327

ωtotp -2.1011E-05 0.0472

R2 0.987

(d)My

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 9.6634E-03 0.0582

q -1.2884E-03 0.0230

uq 3.5776E-06 0.0024

sin(θ)ωtot 8.2693E-05 0.0131

cos(θ)µxµz 2.5112E-02 0.0096

µx 2.3929E-02 0.0160

R2 0.901

(e) Fz

Regressor Θ̂ s(Θ̂)/|Θ̂|
bias 2.8002E+00 0.0033

w -1.3815E-01 0.0147

ω2
tot -2.0607E-05 0.0010

ωtotw
3 -4.1055E-06 0.0154

|q||µx| 7.8919E-02 0.0261

R2 0.979
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