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Original Research

In-flight model parameter and state
estimation using gradient descent for
high-speed flight

S Li , C De Wagter , CC de Visser, QP Chu and
GCHE de Croon

Abstract

High-speed flight in GPS-denied environments is currently an important frontier in the research on autonomous flight of

micro air vehicles. Autonomous drone races stimulate the advances in this area by representing a very challenging case with

tight turns, texture-less floors, and dynamic spectators around the track. These properties hamper the use of standard visual

odometry approaches and imply that the micro air vehicles will have to bridge considerable time intervals without position

feedback. To this end, we propose an approach to trajectory estimation for drone racing that is computationally efficient and

yet able to accurately estimate a micro air vehicle’s state (including biases) and parameters based on sparse, noisy obser-

vations of racing gates. The key concept of the approach is to optimize unknown and difficult-to-observe state variables so

that the observations of the racing gates best fit with the known control inputs, estimated attitudes, and the quadrotor

dynamics and aerodynamics during a time window. It is shown that a gradient-descent implementation of the proposed

approach converges �4 times quicker to (approximately) correct bias values than a state-of-the-art 15-state extended

Kalman filter. Moreover, it reaches a higher accuracy, as the predicted end-point of an open-loop turn is on average only�20

cm away from the actual end-point, while the extended Kalman filter and the gradient descent method with kinematic model

only reach an accuracy of �50 cm. Although the approach is applied here to drone racing, it generalizes to other settings in

which a micro air vehicle may only have sparse access to velocity and/or position measurements.
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Introduction

Quadrotors have received considerable attention in

recent years, thanks to their mechanical simplicity

and good maneuverability combined with hover prop-

erties. They have offered new possibilities in a variety

of fields like aerial photography, inspection and even

transportation. With recent advances in on-board com-

putation and sensor technology, aggressive maneuver-

ing has come within reach of many applications. To

further stimulate aggressive and fast flight, autono-

mous drone racing is gaining interest. The first ever

autonomous drone race was held by the International

Conference on Intelligent Robots and Systems (IROS)

in 2016.1 A track consisting of gates had to be flown

autonomously in a pre-specified order. The robot had

to achieve this as fast as possible, while only relying on

onboard sensors and processing. Figure 1 illustrates the
setup of the 2016 indoor track.

Autonomous indoor drone racing brings many new
challenges to the fields of quadrotor navigation and
control. One initial challenge is the navigation without
any external positioning system like VICON, Optitrack
or GPS. Typical approaches to this problem make use
of on-board cameras and use Visual Inertial Odometry
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to integrate position. This type of algorithms rely on
integrating inertial information, tracking visual fea-
tures over several frames and solving an optimization
problem to retrieve the most likely solution. In auton-
omous drone racing, on top of this position estimation
algorithm, gate detection is often needed when the
position of gates is not precisely known, or when
gates contain moving parts—as is the case in the
IROS competitions. With the limited computational
resources of small indoor drones, to achieve the fast
speeds needed in drone racing, this paper proposes a
navigation solution based solely on gate detection, aug-
mented with inertial measurements and an aerodynam-
ic model. To cope with the sometimes sparse and noisy
non-Gaussian visual observations, we formulate the
navigation solution as an optimization problem. We
then solve it using a gradient descent method. The
resulting method provides online estimation of the
quadrotor position, velocity and inertial biases using
less computational resources than traditional Visual
Inertial Odometry. The proposed approach also esti-
mates aerodynamic properties of the quadcopter—
which become increasingly important in the case of
fast aggressive control. Finally, the approach scales
favorably with increasing flight speeds as it keeps per-
forming well even with very few position updates. As a
comparison, we use the Kalman filter, which is current-
ly still the default choice for navigation. Since the
extended Kalman filter (EKF) is significantly less com-
putationally complex than the unscented Kalman filter
(UKF),2 in this paper we select the EKF as a bench-
mark. We compare the results with EKF, which is
shown to be much more sensitive to visual outliers or
other non-Gaussian effects.

In the section Related work, an overview of studies
on aerodynamics modeling and state estimation meth-
ods is given. The section Quadrotor model will describe
the quadrotor model parameters that will be solved.
The section State estimation proposes two different
approaches for the visual state estimation. First a clas-
sic 15-state EKF is developed as benchmark. Then the
novel FMINCON-based gradient descent optimization
method is proposed to solve the model parameters and
states. In the section Experiment setup and result, both
algorithms are compared on flight test data and
Conclusion summarizes the conclusions.

Related work

Several researchers have already proposed aerodynam-
ics models for quadrotors.3–7 The main object of their
studies is to derive a nonlinear quadrotor aerodynamics
model to improve the control performance by compen-
sating for the nonlinear terms. In some studies, a
detailed aerodynamic model is analyzed through

theory and fitted by experimental data.3 Simplified
aerodynamic models are also established from experi-
ments.5,6 It should be noted that their models are all

obtained off-line using external measurements, such as
GPS, VICON and thrust test beds. Aerodynamic
models can also be combined with on-board measure-

ments, for instance from computer vision,8 in order to
better estimate the velocity of the drone on-line. In this
article, we employ a simplified aerodynamic model in

the trajectory estimation exactly for this purpose.
Quadrotor control heavily relies on attitude estimation

from an attitude and heading reference system (AHRS).
This system is typically based on inertial sensors (accel-
erometers and gyroscopes), but also relies on orientation

sensors (magnetometer) and/or positioning sensors (GPS,
VICON) to estimate inertial sensor biases and compen-
sating for long term drift. Sensor biases become increas-

ingly important as the drone will have to fly longer or
temporarily perform feedforward control maneuvers in
the absence of sensor measurements. Hence, for drone

racing, it is important to estimate them accurately. Here
we briefly discuss the sensors and then the filtering
employed in estimating both attitude and position or
velocity on micro air vehicles (MAVs).

Most systems intended for outdoor environments uti-
lize the magnetometer and GPS-measurements.9–13 The

indoor equivalent is the use of a motion tracking system
such as VICON or Optitrack.14 In many applications—
like autonomous drone racing, it is required to have

accurate state estimation without the help of external
systems. The necessary position or velocity measure-
ments can be obtained from multiple sensors. One

early option is to use laser scanners.15,16 But a laser
scanner contains sensitive optics and mirrors, which
are susceptible to shock and vibration problems.17

Another choice for on-board navigation is RGB-D

Figure 1. The map of the IROS 2016 drone race. In this drone
race, the UAVs have to fly through orange gates in a pre-specified
order as fast as possible.
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devices.18–20 The main drawback of these RGB-D devi-
ces is that their maximum depth perception range is lim-
ited to a few meters.21,22 This is why light-weight and
inexpensive on-board cameras which are more robust to
vibration and shock, have attracted interest of research-
ers for the navigation of drones. Generally, visual odom-
etry (VO) algorithms23 using a stereo camera or
monocular camera are used for estimation of the
MAV’s translation and rotation between frames.24–28

However, generic visual odometry approaches necessita-
te detecting features, matching corresponding features
and estimating motions, which leads to a heavy
demand for on-board computational resources and
low-frequency estimation. In the meantime, aggressive
maneuvers may introduce blur into generic visual odom-
etry and seriously affect the accuracy of estimation.
Moreover, in complicated environments like drone
racing, dynamic spectators may also interfere visual
odometry. Less generic but computationally efficient
methods are employed in some specific environments,
for instance, using detection of known visual markers
to determine position.29,30 However, these methods
cannot cope with other generic environments.

Concerning filtering, with white-Gaussian position
measurement, Kalman filter and its variants are
widely used. It is well-known that nonlinearities in
the state update or observation equations can be han-
dled by an EKF11,12,22,31 and that heavy nonlinearities
are often handled better by a UKF.30,32,33 Also, there
are factor graph-based smoothing methods which can
handle nonlinearity and allows multi-rate, asynchro-
nous, and possibly delayed measurements, which
have similar performance with an EKF.34,35 We
hypothesize that when these measurements get sparser,
and their noise distribution moves further away
from the Gaussian distribution, it will be better to esti-
mate the attitude, heading, and trajectory in general
as an optimization problem that uses more data at
a time. In particular, we want to optimize the
trajectory and parameters such as sensor biases,
given a specified time-window with the corresponding
sensor measurements, control inputs, and knowledge of
the aerodynamic model. Our approach will be
explained below, starting with our dynamic quadro-
tor model.

Quadrotor model

Dynamic model of quadrotor

Before deriving the dynamic model for quadrotor, two
reference frames are introduced (Figure 4).

• Earth frame E. The origin of the local tangent earth
frame is on the ground, the x-axis xE points to north,

the y-axis yE points east and the z-axis zE

points down.
• Body frame B. The origin of the body frame is at the

center of mass. Its x-axis xB is in the symmetry plane
of the drone and points forward. Its z-axis zB also
lies in the symmetry plane and points downward.
The y-axis yB is directed to the right, perpendicular
to the symmetry plane.

The relative relation between two frames can be
expressed by three successive rotations along three
axes. In this paper, we use z–y–x sequence to rotate
one frame to the other. The corresponding angle of
rotation is defined by /B

E; h
B
E, and wB

E which are also
called Euler angles. Given the Euler angles between the
two frames, the rotation matrix between two frames
can be expressed by

RB
E ¼

ChCw ChSw �Sh

S/ShCw � C/Sw S/ShSw þ C/Cw S/Ch

C/ShCw þ S/Sw C/ShSw � S/Cw C/Ch

2
64

3
75
(1)

where CX and SX denote the cosine and sine of X,
respectively. The control of the quadrotor is often
divided in to two loops which can be independently
developed, namely a high level translation loop and a
faster low-level attitude loop. For the attitude loop, the
inputs of the system are the four rotor speeds and the
output consists of the three Euler angles. For the trans-
lation loop, the inputs of system are three Euler angles
and the output is position. Since quadrotor attitude
control is a well-developed topic, in this work we
only derive the translational model and have used
INDI from Smeur et al.36 as innerloop.

According to Newton’s laws of motion, the motion
of quadrotor can be described as

m _V ¼mgþ F (2)

where m is mass of the drone, g is gravity vector and F
is the specific force vector. The change in position can
be described by the kinematic equation

_X ¼V (3)

In equation (2), the specific force F can be expressed
in Body frame B as

FB ¼
FB
x

FB
y

FB
z

2
664

3
775 (4)
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Gravity acting on the center of mass and expressed
in Earth frame is

mgE ¼ m
0
0
g

2
4

3
5 (5)

Combining all forces yields the equations of motion
in inertial frame

_x
_y
_z

2
4

3
5 ¼

vx
vy
vz

2
4

3
5

_vx
_vy
_vz

2
4

3
5 ¼

0
0
g

2
4

3
5þ RE

B

aBx
aBy
aBz

2
64

3
75

(6)

where

aBx
aBy
aBz

2
64

3
75 ¼

FB
x

FB
y

FB
z

2
64

3
75=m (7)

In the system above, we have six states x ¼
½x; y; z; vx; vy; vz�T and four inputs u ¼ ½/; h;w; aBz �T. In
equation (6), the specific force is a nonlinear function
of velocity, attitude, angular rates and other factors. It
can be expressed as F ¼ faðV;/; h;w; . . .Þ. This system
is a multiple input multiple output nonlinear system.

IMU misalignment

Equation (6) reveals that rotation matrix RB
E is an

essential part of the model. However, in the real
world, many aspects can contribute to attitude estima-
tion errors. A first reason is the misalignment of the
IMU (see Figure 2). Assembly inaccuracy can cause the
measurements of the IMU to differ from the real states
in body frame. Rotor misalignment can also affect the
performance of quadrotor. In an ideal quadrotor, the
four rotors should be perpendicular to xBOyB plane. In
practice however, due to installation errors or defor-
mation of rotors or axes, the thrust produced by the
rotors is not perfectly perpendicular to the
xBOyB plane.

Both factors lead to non-zero required attitude
during hover: /B

E 6¼ 0� and hBE 6¼ 0�. In order to model
this misalignment error, we introduce a new frame. The
IMU frame I is an orthogonal frame whose three axis
coincide with three axes of the accelerometers. The
rotation between the IMU frame I and the body
frame B can be described by Euler angles
UB

I ¼ ½/B
I ; h

B
I ;w

B
I �T. The rotation matrix between the

IMU frame I and the body frame B is RB
I ðUB

I Þ. Since
the IMU frame is physically attached to the body

frame, we have the assumption

_/
B

I ðtÞ ¼ 0

_h
B

I ðtÞ ¼ 0

_w
B

I ðtÞ ¼ 0

8>>><
>>>:

(8)

Aerodynamic model

There are many factors that can affect the quadrotor’s

aerodynamics. Some examples are the quadrotor’s

velocity V, its angle of attack a, the thrust T, the

rotor speed x, the angular velocity q and so on.

Accurate and complete quadrotors models can be com-

plicated and nonlinear.37,38 Moreover, accurate model-

ing also requires many more parameters to be

estimated and this leads to heavier computations. In

the context of autonomous drone racing we opted for

a faster approach using a minimal model that covers

the most important aerodynamic effects, hereby maxi-

mizing the yield for a given computational load. In

particular, many drag factors—such as induced drag,

translation drag and blade flapping drag—can be

approximated as linear functions of body velocity vbx
and vby with the assumption that wind is still.6 This

results in the following simple lumped parameter model

aBx ¼ Kxv
B
x

aBy ¼ Kyv
B
y

(
(9)

where

vBx

vBy

" #
¼ RB

Eð3; 3Þ
vx

vy

" #
(10)

Figure 2. When a quadrotor hovers, usually the average atti-
tude of the quadrotor and reading of the AHRS are not zero.
This is caused by the misalignment of both the IMU and
the rotors.
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aBx ; a
B
y are the acceleration caused by drag in the

body frame. Kx, Ky are first-order drag coefficients in
body frame coordinates B and have units 1/s.

AHRS bias model

When positioning information is available, the main-
stream approach for estimating attitude is merging
information from gyro, accelerometer and the position-
ing system. For instance, the classic 15-state Kalman
filter uses accelerometer and gyro measurements to pre-
dict states along with GPS measurement updates. It
can provide non-biased optimal attitude by estimating
the gyro and accelerometer biases as states.

When no continuous external positioning informa-
tion is available, like in our experiment, a compromise
is to neglect kinematic accelerations in the attitude
filter. In this case, the biases of accelerometers cannot
be estimated.

In the case of attitude determination with constant
sensor biases and small angles, the Kalman gain in the
Kalman filter typically converges to an almost constant
value. To avoid the computational overhead of com-
puting the Kalman gain, complementary filters can be
used with very similar results. The structure of the com-
plementary attitude determination filter implemented
in this work can be found in Figure 3. In Figure 3,
Xm ¼ ½pm; qm; rm� are the gyro measurements. am ¼
½amx ; amy ; amz � contains the accelerometer measure-
ments and

R0 ¼
1 tanhsin/ tanhcos/

0 cos/ �sinh

0
sin/
cosh

cos/
cosh

0
BBB@

1
CCCA (11)

Figure 3 shows that the gyroscopes are integrated
and the accelerometer is used as feedback to determine
attitude. The high-frequency vibrations and centripetal
forces which are measured by the accelerometers cancel
out on the long term when no constant non-zero accel-
erations are present. On the long term, the resulting
attitude estimation therefore converges to

/̂aðtÞ
ĥaðtÞ

" #
¼

arctan
�amx
�amz

arctan
�cos/̂aðtÞamx

�amz

2
66664

3
77775 (12)

where amx ; a
m
y , and amz are measurements of the acceler-

ometer in three axes.
The gyroscopes measure angular velocity in the

three axes of the body frame. Because they are

integrated, even small biases cause drift over time,

and in this filter the gyro biases bg ¼ ½bp; bq; br�T are

accounted for by the kI/s term in the filter.
Accelerometers unfortunately also suffer from

biases, which is denoted by ba ¼ ½bax ; bay ; baz �T, for

instance caused by temperature changes. Fortunately,

the biases of the accelerometers only change slowly.

Everything combined, the AHRS has an erroneous rep-

resentation of where earth is, which is referred

to as coordinate frame E0 and is shown in Figure 4.

The AHRS attitude is then defined as the

rotation between E0 and I and is denoted as

UI
E0 ¼ ½/I

E0 ; hIE0 ;wI
E0 �T. The corresponding rotation

matrix is written as RI
E0 ðUI

E0 Þ.
The rotation between the real earth E and E0 can be

expressed by three Euler angles UE0
E ¼ ½/E0

E ; h
E0
E ;w

E0
E �T.

Based on the assumption that the AHRS error changes

slowly, we can assume

_/
E0

E ðtÞ�0

_h
E0

E ðtÞ�0

_w
E0

E ðtÞ�0

8>>><
>>>:

(13)

With this assumption, on the short term the rotation

matrix RE0
E ðUE0

E Þ is a constant matrix.

Figure 3. Complementary filter for attitude determination.

Figure 4. AHRS estimation errors can be represented by an
erroneous Earth reference frame E0 .
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Four reference frames have been introduced, namely

E, E0, I and B. The rotation matrix RB
E in equation (6)

can now be expressed as

RB
EðUB

EÞ ¼ RB
I ðUB

I ÞRI
E0 ðUI

E0 ÞRE0
E ðUE0

E Þ (14)

where RB
I ðUB

I Þ and RE0
E ðUE0

E Þ are constant matrices and

RI
E0 ðUI

E0 Þ represents the attitude as determined by

the AHRS.

Full model

Combining equations (6), (9), and (14), we obtain the

full model as

_x ¼

vx
vy
vz
0
0
g

2
4

3
5þ RE

B

0
0
aBz

2
4

3
5þ

Kx 0 0
0 Ky 0
0 0 0

2
4

3
5RB

E

vx
vy
vz

2
4

3
5

8>>>>>><
>>>>>>:

RB
EðUB

EÞ ¼ RB
I ðUB

I ÞRI
E0 ðUI

E0 ÞRE0
E ðUE0

E ÞRE
B ¼ RB

E
T

aBz ¼ amz � baz
(15)

The model in equation (15) contains the following

parameters, which are assumed to be constant over

short periods of time

H ¼ Kx;Ky; baz ;/
E0
E ; h

E0
E ;w

E0
E ;/

B
I ; h

B
I ;w

B
I

h iT
(16)

State estimation

To estimate the states of the model from the section

Quadrotor model, two approaches are derived. As a

benchmark, an EKF is developed. Secondly, a novel

gradient descent based optimization method to esti-

mate the states is proposed.

Vision-based EKF

The attitude determination Kalman filter uses the iner-

tial sensors as inputs to predict the states of the system,

then uses different observations to revise the predic-

tions. When the system is linear, observable and the

noise is white Gaussian, then it can be mathematically

proven that the Kalman filter provides the optimal

solution. If the system is nonlinear, it can be linearized

at every time step, which is referred to as the EKF. A

classic 15-state EKF is implemented as found in

Gross’s work,2 the difference being that we use vision

measurements instead of GPS as positioning informa-

tion. The following states are used

X ¼ ½x; y; z�T
V ¼ ½vx; vy; vz�T
U ¼ ½/; h;w�T
ba ¼ ½bax ; bay ; baz �T
bg ¼ ½bp; bq; br�T

(17)

with as inputs

Xm ¼ ½pm; qm; rm�T
am ¼ ½amx ; amy ; amz �T

(18)

and as observation

y ¼ hðxÞ ¼
x
y
z

2
4

3
5 (19)

The process equation is

_X ¼ V

_V ¼ gþRE
Bðam þ baÞ

_U ¼ R0ðXm þ bgÞ
_ba ¼ 0

_bg ¼ 0

8>>>>>>><
>>>>>>>:

(20)

This forms a standard nonlinear system expression

_x0 ¼ fðx0; uÞ (21)

where x0 ¼ ½X;V;U; ba; bg�T and

fðx0; uÞ ¼

V

gþ RB
Eðam þ baÞ

R0ðXm þ bgÞ
0

0

2
6666664

3
7777775

(22)

The EKF follows five steps:
(1) Predict the states based on equation (20)

X̂kjk�1 ¼ X̂k�1 þ fðX̂k�1; uk�1ÞT (23)

where T is sampling time.
(2) Linearize and discretize the system

Fk�1 ¼ @

@x
fðxðtÞ; uðtÞÞjxðtÞ¼x̂k�1

Ukjk�1 � Iþ Fk�1T

Hk ¼ @

@x
hðxðtÞÞjxðtÞ¼x̂k�1

(24)
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(3) Propagate the covariance matrix Pkjk�1

Pkjk�1 ¼ Ukjk�1Pk�1U
T
kjk�1 þQk�1 (25)

where Qk�1 is system noise covariance matrix.
(4) Calculate the Kalman gain and update

the prediction.

dX̂k ¼ Kk Zk � h½X̂kjk�1; k�
n o

Kk ¼ Pkjk�1H
T
k ½HkPkjk�1H

T
k þ Rk��1

X̂k ¼ X̂kjk�1 þ dX̂k

(26)

where Rk is sensor noise covariance matrix.
(5) Update the covariance matrix of the state esti-

mation error

Pk ¼ ðI�KkHkÞPk=k�1ðI�KkHkÞT þKkRkK
T
k (27)

Vision-based gradient descent method

According to the gate detection algorithm we used

in IROS 2016 autonomous drone race, the vision-

based position used as observation in the Kalman

filter (equation (19)) has very non-Gausian noise,

which can significantly affect the estimation

accuracy of Kalman filters. The vision measurement

model will be discussed later. Therefore the state

prediction is rewritten as a parameter optimization

problem in the form of a trajectory match-

ing problem.
Unlike the Kalman filter which estimates continu-

ously varying states like pitch and roll for any

moment in time, the proposed gradient descent using

the model from equation (15) in essence estimates cor-

rections on top of attitude estimates provided by an

external complementary attitude filter.
Since most model parameters like drag and AHRS

error are integrated twice to arrive at position,

observing the trajectory over a period of time

allows for extremely fine observations of these

parameters. For instance, a sub-degree attitude

error is hard to identify in noisy raw accelerometer

measurements. However integrating the consequence

of this small angle error, which causes a percentage

of gravity to be erroneously double-integrated in the

lateral position after several seconds, becomes very

easily observable.
The observed trajectory is obtained from the vision

pipeline and expressed as a list of n noisy measure-

ments. The predicted trajectory is based on integrating

the model presented in equation (15) using attitude

from the AHRS and given a set of model parameters

Ĥ. The resulting trajectory becomes

FðHÞ ¼
Z t

0

fðH; uðtÞ; tÞdt ¼

x̂ðH; uðtÞ; tÞ
ŷðH; uðtÞ; tÞ
ẑðH; uðtÞ; tÞ
v̂xðH; uðtÞ; tÞ
v̂yðH; uðtÞ; tÞ
v̂zðH; uðtÞ; tÞ

2
6666666664

3
7777777775

(28)

The error between the predicted integrated trajecto-

ry and the vision measurements is found as

JðHÞ ¼
Xn
i¼i

x̂ðH; uðtiÞ; tiÞ
ŷðH; uðtiÞ; tiÞ
ẑðH; uðtiÞ; tiÞ

2
64

3
75�

xmi

ymi
zmi

2
64

3
75

�������
������� (29)

where xmi ; y
m
i ; z

m
i are position measurements obtained

from onboard computer vision. Now the state estima-

tion has become a nonlinear parameter optimization

problem that finds a set of optimal parameters H� to

minimize the value of JðHÞ which can be expressed as

minHJðHÞ
s:t: _xðtÞ ¼ fðxðtÞ; uðtÞÞ (30)

To solve the problem formulated by equation (30),

we can apply many types of nonlinear optimization

methods to find the optimal parameters H�. In this

paper, we propose the gradient descent method,

which is iteratively searching for optimal values in neg-

ative gradient direction until it finds the mini-

mum point

Hkþ1 ¼ Hk þ arJðHkÞ (31)

where a is learning rate and

rJðHkÞ ¼ @
@H1

JðHÞ � � � @
@Hn

JðHÞ
h iT

jH¼Hk
(32)

is the gradient of JðHÞ.
Figure 5 shows an example of the gradient descent

approach. The propagation in time of the model from

equation (15) for various parameters H is compared to

the ground-truth measured by a passive external posi-

tioning system. The gradient descent starts with an ini-

tial guess of H0, and gradually gets the predicted

trajectory closer to the real trajectory until an optimal

set H� is found. In this example, we directly use

Optitrack data as measurements which better illustrate

Li et al. 7



how the predicted trajectories converge to the ground-

truth trajectory (measured by Optitrack).

Experiment setup and result

Experiment setup

In order to study the performance of state estimation

methods, a hippodrome shaped track is used with end

circles with radius of 1.5 m and straights of 3 m as

shown in Figure 6. Onboard flight data are recorded

while flying without computer vision but based on

Optitrack position. The data are then analyzed in

MATLAB. A Bebop 1 (Figure 7) from Parrot is used

as experiment platform. It is equipped with three gyros,

three accelerometers, one sonar, one barometer, a front
camera and a bottom camera. Only the front camera
and IMU are used and the original stock flight-code in
the drone is replaced by open-source software from the
Paparazzi-UAV project.39 The AHRS runs on-board
and consists of the complementary filter discussed in
previous section. The flight time of the test runs is
about 100s and the average flight velocity is about

Figure 6. The top view of the experiment track.

1

-2

2

z[
m

]

-1

0

x[m]

1
32 2

y[m]

13
0

-1 End

Start
fitted
Opti-track

Figure 5. A gradient descent method optimizes a set of
parameters H to best fit a predicted trajectory through a mea-
sured trajectory (blue). During the fitting phase, the gradient
descent method converges to the ground-truth trajectory.

Figure 7. The Parrot Bebop 1 hardware is used as experiment
platform. All flight code is replaced with open-source Paparazzi-
UAV flight code.

x 
[m

]

3.5

3

2

1.5

1

0

y [m]
32.5

2.5

0.5

Opti-track trajectory
vision measurement

Figure 8. Based on the vision measurement model (equation
(33)), simulated vision measurement points (red) are generated
around the real trajectory (blue). During the autonomous drone
race, only the visual measurement points are available.
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1.8m/s, resulting in about 15 circles of the hippodrome.
An overview of data gathered is presented in Table 1.

During the IROS 2016 autonomous drone race, we
used the bebop 1 onboard camera to detect the gates
and provide the position measurements for navigation.
In this work, however, noisy vision measurements are
generated simulating on-board vision-based gate detec-
tions with various levels of accuracy. Along the straight
part trajectory, n random points Pi are randomly sam-
pled (15 < n < 20; i 2 ½1; n�). For each sampled point
Pi, we calculate the distance between Pi and the gate
which is denoted by x̂i � xg. Then, the noise DPi is
generated depending on the distance to the gate that
DPi is larger when the gate is further away. Finally, DPi

is added to Pi to get the simulated measurements Pv
i .

This process can be described by equation (33)
(Figure 8)

Pv
i ¼ Pm

i þ DPi

DPi � Nð0; SiÞ

Si ¼
r2i 0 0
0 r2i 0
0 0 r2i

2
4

3
5

ri ¼ 0:1ðx̂i � xgÞ

(33)

The test flights consist of two distinct phases which
are shown in Figure 6.

• During the straight part (blue line), the gates are in
the field of view of the quadrotor and vision-based
position measurements are available. The vision-
based EKF (VEKF) can run both prediction and
update loops. The vision-based gradient descent
method (VGD) searches for parameters H that
make the prediction best fit the noisy measurements.

• During the arc (purple line), no position measure-
ments are available but an open-loop coordinated
turn is performed. The VEKF can only rely on
model prediction and the gradient descent method
uses the last estimated parameters and on-board iner-
tial data to propagate the states of the quadrotor.
This phase must be limited in time as the open-loop
integration is diverging as can be seen in Figure 9.

The test track is designed to resemble an autonomous
drone race track, where it is not possible to keep gates in
sight at all times. When using fast gate detection as sole
means of position information, some maneuvers need to
be performed open-loop. But even when gates are in-
sight, better model prediction allows the estimation of
more accurate trajectories through the noisy visual data.
Therefore, as a performance index we selected the pre-
diction error Df at the final point of the open-loop arc to
evaluate the performance of both algorithms.

Table 1. Data gathered during the experiment.

Parameter Symbol Frequency (Hz) Source

Acceleration âm 512 IMU

Angular velocity p̂m 512 IMU

Attitude Û
m

512 AHRS

Position x̂m 120 Optitrack

Velocity v̂m 120 Optitrack

Altitude zm 512 Sonar

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

x 
[m

]

00.511.522.53
y [m]

Opti-track trajectory
estimated trajectory

Figure 9. When vision measurements are not available, the
quadrotor can only rely on model predictions based on model
information and inertial data. This prediction will diverge in time.
The better the model prediction is, the smaller the end point
prediction error Df becomes.

Figure 10. Example test flight data showing the x position in
function of time and illustrating the prediction strategy when c = 2.
First, the data of straight lines 1 and 2 are used to estimate H� .
Then the identified model parameters are used to predict the
second turn. Finally, the final point error after the second arc 2

2Df is
calculated. Here, subscript 2 means the data from 2 straight lines are
used and superscript 2 means second arc’s trajectory prediction is
used. This procedure is repeated by using data of straight lines 2 and
3 and predicting the trajectory of third arc and so forth. (a) Final
point error s

cDf in function of c for various parts of the run s.
(b) Number of FMINCON iterations based on stopping criteria
(equation (36)) in function of c for various parts of the run s.
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Df ¼
xf

yf

" #
� x̂f

ŷf

" #�����
����� (34)

where xf and yf, which are from Optitrack, form the

ground truth of the end point of the arc, while x̂f and ŷf
are the filter prediction of the end point.

Analysis of VGD

In this section, we use the on-board flight data and

generated vision measurements to analyze the VGD

using a MATLAB implementation of gradient descent,

FMINCON.
The performance of the gradient descent method is

affected by the size of the training data. It is important

to investigate how the size of the dataset used to search

for H� affects the estimation performance. We use the

notation c (1 	 c 	 5) to represent the size of the his-
tory used by FMINCON. In other words, c is the
number of straight lines whose corresponding vision
measurement is used by FMINCON. Too short c will
contain very few visual measurements and the
approach is at risk of over-fitting the gate detection
noise. Too long c will violate the constant parameter
constraint like for instance equation (13). Figure 10
shows an example where c = 2. For each step, we
use an array of flight data and vision measurements
of size c in FMINCON to search for H�. Then, H� is
used to estimate the trajectory of next arc, which is
given by id s (1 	 s 	 15). Finally the final point
error s

cDf can be calculated using equation (34)

s
cDf ¼

����� xf

yf

" #
� x̂f

ŷf

" #����� (35)

The stopping criteria used in the FMINCON opti-
mization is

kJðHkÞ � JðHk�1Þk
kJðHkÞk 	 10�4 (36)

With different combinations of s and c, a set of 70
s
cDf is gathered. The prediction accuracy results,
s
cDf, and the number of iterations based on the

stopping criteria from equation (36) are shown in

Figure 11.
Figure 11(a) shows the prediction accuracy s

cDf as a

function of the history length c. Each gray dot repre-

sents an individual arc estimation s on another part of

the data while the blue dots give the average for a given

c. Similarly, in Figure 11(b) the required number of

iterations based on the stopping criteria is shown.

The figures show that the prediction error s
cDf keeps

decreasing up to c = 4. This means that fitting more

than one straight part helps improving the accuracy of

state estimation. Figure 11(b) shows that the average

number of iterations is about 19 and the maximum is

only 25, which means this VGD quickly converges and

is not very computationally expensive.
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Figure 11. Influence of the history length c on the prediction
accuracy s

cDf and required number of iterations.

Table 2. The range of H0 in VGD and VGD-kinematic.

H0 Range H0 Range

K0
� ½�1; 0� /�

�
0 ½�3

�
; 3

� �
b0a ½�1m=s2; 1m=s2� h��

0 ½�3
�
; 3

� �
b0g ½�3

�
=s;�3

�
=s� w�

�
0 ½�3

�
; 3

� �
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Comparison between VEKF, VGD and
VGD-kinematic

In this section, in order to show the different perfor-
mance of the gradient descent between the kinematic

model and model from equation (15), we introduce a
new method called Vision-based gradient descent
method with kinematic model (VGD-kinematic). This
method has the same principle as VGD except that it is
using a kinematic model 38 as prediction model.

Figure 12. The final point error s
cDf when using the VEKF, VGD and VGD-kinematic. The VGD has the most stable performance and

least s
cDf compared to the EKF and VGD-kinematic. (a) Position estimation; (b) Velocity estimation; (c) Estimation of accelerometer

bias; (d) Estimation of gyro bias.
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_X ¼ V

_V ¼ gþRE
Bðam þ baÞ

_U ¼ R0ðXm þ bgÞ

8>><
>>: (37)

In this case, the parameters to be estimated are the
bias of accelerometers and gyros, which can be writ-
ten as

H ¼ ½bax ; bay ; baz ; bp; bq; br�T (38)

To compare the performance of the of three
methods, all three methods are tested using the same

on-board data and the same generated vision measure-
ments. In both VGD and VGD-kinematic, c was set to
3, which means that the flight data of the last 3
straights is used in the estimation of H�. Note that
during the first two arcs of the flight, there is not yet
enough flight data, and c will be smaller than 3.

The resulting full flight is shown in Figure 13. In
Figure 13, the orange dots are the generated vision
measurements from the straight parts of the track.
The magenta curve is the estimation result of the

VEKF. In the VEKF, R ¼ diagð½2:52; 2:52; 2:52�Þ; Q ¼
diagð½ð2e� 6; 2e� 6; 5e� 6; e� 5; 5e� 6; 3e� 5; 3e�
8; 3e� 9; 3e� 9; 0; 0; 0; 0; 0; 0�Þ and P0 ¼ 10
 I15
15.
The blue curve is the estimation result of the VGD
and the red curve is the result of VGD-kinematic. To
test the sensitivity of the VGD and the VGD-kinematic
algorithm, the initial parameters H0 are selected ran-
domly within some ranges which can be found in Table
2. It can be seen that while the VEKF clearly converges
to the measurements. The long prediction horizon com-
bined with few and noisy measurement updates chal-
lenges the filter to its limit. On the other hand, the
VGD managed to find parameters that fit the model
very well through the noisy measurements and is not
sensitive to the initial parameters. Even large measure-
ment noise does not affect the prediction too much as
the dynamics of the quadrotor cannot explain them.

The final point prediction error s
cDf after each turn

of the three algorithms is shown in Figure 12. The
VEKF requires several laps (3rd arc, or about 20 s of
flight) to converge to sub-meter prediction accuracy.
During the rest of the flight, the EKF can predict the
180� turns with a final point prediction error of around
0.5 m. The VGD-kinematic uses the derived kinematic
model as prediction model and utilizes multiple vision
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Figure 12. Continued
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Figure 13. Comparison of the position and velocity estimation
results of the EKF and the FMINCON-based gradient descent
method using inertial sensors and discrete low frequency noise
vision based position measurements from gate detections.
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measurements for parameter estimation. It has similar
performance when compared with the VEKF. Overall,
the VGD, which uses the same measurements as the
VGD-kinematic but performs a bias and aerodynamics
model estimation, is shown to find the best estimates of
all parameters. It even finds good model parameters for
the first arc, using only 1 straight line’s flight data.
During the whole flight, s

cDf of the VGD is kept
around 0.2 m.

Conclusion

Accurate state and parameter estimation is essential for
quadrotor control, especially when they perform
aggressive maneuver. However, in the environment
where only sparse and noisy position measurements
are available, a classic Kalman filter can struggle to
provide accurate state and model parameter estimation
results. In this paper, we presented a novel method that
only uses sparse vision measurements to estimate the
AHRS error and select aerodynamic parameters of the
quadrotor using a gradient descent method. The exper-
iment result shows that our VGD could increase the
accuracy of state estimation when compared to a clas-
sic Kalman filter in environments where only sparse
noisy position measurements are available.
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