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Robust prognostics of impacted
composite structures using an adaptive
hidden semi-Markov model

Mariana Salinas-Camus1 , George Galanopoulos2 , Lucas Amaral3,
Ethan I. L Jull3 and Nick Eleftheroglou1

Abstract
Prognostics and health management (PHM) is becoming increasingly important as engineering structures and systems
grow more complex. Many of these systems lack accurate physical models to describe their degradation, especially in
unpredictable scenarios. To meet safety regulations, robust prognostic models are needed to transform sensor data into
reliable predictions about a system’s remaining useful life (RUL). This study presents the adaptive hidden semi-Markov
model (AHSMM), a novel probabilistic approach that enhances RUL prediction accuracy, uncertainty quantification
(UQ), and reliability assessment compared to a long short-term memory (LSTM) model. A key contribution is an in-
house experimental campaign involving glass fiber-reinforced polymer specimens subjected to fatigue loading and multi-
ple impact events at different locations and time intervals. Unlike traditional models that rely on data from similar dam-
age histories, the AHSMM is trained exclusively on unimpacted specimens and tested on multiply impacted ones,
showcasing its adaptability to previously unseen conditions. The study also introduces a new prognostic performance
measure tailored to AHSMM and develops a conditional reliability analysis for both AHSMM and LSTM predictions.
Results demonstrate that AHSMM consistently outperforms LSTM across all evaluation metrics. It achieves a 24% lower
RMSE over the full lifetime and superior UQ, with an average coverage of 0.79 compared to 0.17 for LSTM. Conditional
reliability analysis further shows that AHSMM provides more accurate and stable reliability estimates as data accumu-
lates. By capturing the degradation process and adapting to evolving conditions, AHSMM strengthens prognostic robust-
ness. This study highlights the need for robust PHM models that can handle real-world uncertainties and contribute to
advancements in the aerospace, automotive, and defense industries.
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Introduction

Prognostics and health management (PHM) play a cru-
cial role in ensuring operational safety, improving the
reliability and availability of engineering assets, and
reducing maintenance costs. A critical parameter in
achieving these objectives is the prediction of remaining
useful life (RUL), which is an output of the prognostics
models.1 Prognostics models are typically classified
into three main types: physics-based, data-driven, and
hybrid models.2,3

Physics-based models describe the underlying degra-
dation process using mathematical equations.4

However, these models often face limitations, as they
tend to assume specific operational conditions and are
typically applicable only to simple systems or compo-
nents. In practice, most engineering systems and

structures are much more complex, and physical mod-
els may not be available.5
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Data-driven models, on the other hand, use histori-
cal degradation data from similar systems to make pre-
dictions.6 Supervised data-driven models, such as deep
learning (DL) models, including long short-term mem-
ory (LSTM) networks and convolutional neural net-
works, have demonstrated high accuracy in various
applications. However, these models are highly sensi-
tive to the quality and quantity of training data, as well
as to operational variability, unexpected phenomena,
and environmental uncertainties common in real-world
scenarios. Such challenges can lead to poor generaliza-
tion and unreliable predictions.7–9

In contrast, unsupervised data-driven models, such
as stochastic models and Bayesian filters, offer a pro-
mising alternative for robust prognostics, particularly
when labeled failure data are scarce or unavailable.10,11

Additionally, stochastic models and Bayesian filters
inherently provide uncertainty quantification (UQ),
whereas UQ must be introduced separately in DL mod-
els through various mechanisms.12 The probabilistic
nature of stochastic models and Bayesian filters allows
for RUL predictions with associated confidence levels.

Hybrid models seek to combine the strengths of
both physics-based and data-driven approaches, aim-
ing to improve prediction performance while reducing
computational complexity. However, the practical
implementation of these models remains challenging,
limiting their widespread adoption.13

Due to the limitations of physics-based models,
especially for complex systems, PHM has increasingly
shifted its focus to data-driven approaches. In struc-
tural health monitoring (SHM), for example, data are
typically collected using nondestructive testing tech-
niques or networks of permanently attached sensors
that gather real-time information about the degrada-
tion process.14,15 However, the degradation of a struc-
tural component is heavily influenced by operational
conditions such as environmental factors and load var-
iations. Since it is impossible to account for all poten-
tial conditions during training, it becomes crucial to
develop robust prognostics models that can maintain
their performance even under unforeseen operational
or environmental conditions.16

In industries such as aerospace, automotive, and
defense, composite materials are widely used due to
their desirable specific strength and stiffness, but they
also present unique challenges for prognostics. These
materials are not only vulnerable to impact damage,
which can significantly reduce their load-bearing capac-
ity, but their behavior is also complex and difficult to
model, with no readily available physics-based models.
Though considerable research has focused on diagnos-
tic techniques to identify damage mechanisms,17,18

fewer studies have directly addressed RUL prediction,
particularly under realistic operational conditions.

Most existing literature focuses on residual strength or
damage progression estimation,19–23 leaving a gap in
RUL prediction research, which is critical for effective
maintenance planning and mission operations.

Several studies have explored data-driven prognos-
tics for composites under controlled conditions, where
training and testing data are similar. For example,
nonhomogeneous hidden semi-Markov models
(NHHSMMs) have been used successfully to predict
the RUL of composite structures based on acoustic
emission (AE)24 and Digital image correlation (DIC)25

data from Carbon-fiber reinforced polymer (CFRP)
open-hole coupons. Similarly, Gaussian process regres-
sion (GPR) has been employed for RUL prediction
using health indicators (HI) derived from AE and
Lamb waves, yielding reliable results under fixed
operational conditions.26,27

While these studies provide valuable insights, their
applicability in real-world scenarios, where operational
conditions often vary, is limited. A few studies have
attempted to predict RUL under variable conditions.
For instance, a physics-based Particle Filter model was
used to estimate the RUL of composites subjected to
impact tests, based on electromechanical behavior.19

However, this model is limited to monitoring electrical
resistance in CFRP materials and does not account for
fatigue loading, a key factor in load-bearing applications.
Other research efforts have introduced Bayesian frame-
works that correlate stiffness degradation with RUL,28,29

but these models focus mainly on fatigue life estimation
rather than addressing variable operational conditions.
In the study by Cheng et al.,30 a progressive damage
model for residual strength and fatigue life of impacted
glass fiber-reinforced polymer (GFRP) composite lami-
nates after different loading conditions was developed. It
was observed that the impacts had a greater effect on the
fatigue strength of the composites when under compres-
sive loads and that the loading sequence significantly
affects damage evolution. Similarly, in the study by
Zhao et al.,31 a model to predict the fatigue strength after
impact of composite coupons was used. The model
showed an average error of approximately 15%. The
model parameters were fitted from the experimental
data, and the only monitoring performed was the size of
the impact damage via C-scan. These studies did not rely
on experimental parameters, and no SHM systems were
employed, making it less appealing for more complex
systems where failure data may be unavailable. On the
other hand, in the study by Zarouchas et al.,32 in situ
high-speed impacts were performed on CFRP open hole
coupons during tensile fatigue loading, and AE and DIC
were used to monitor the behavior. Even though the two
monitoring systems efficiently monitored the degradation
process, no predictions of the fatigue life or strength were
performed.
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In recent years, there have been efforts to enhance
the robustness of data-driven prognostics models
under varying operational conditions and unexpected
events. For example, a study examined RUL predic-
tion of single stiffened composite panels using AE-
based HIs, comparing the performance of GPR and
Bayesian neural networks. Both models exhibited simi-
lar results, with GPR showing faster training times.33

The same study also explored the use of strain-based
HIs and GPR for predicting RUL,34 while a similarity
learning hidden semi-Markov model (HSMM) was
employed to improve performance.35 A further study
was made by attempting to upscale their methodology
in multistiffened composite panels using GPR and
LSTM.36 Their performance was only average, and it
was noted that regression models are reliant on the
input data. Another study introduced an adaptive
NHHSMM, trained on open-hole composite specimens
subjected to fatigue loading and tested on specimens
that experienced an impact during fatigue loading.37

These studies highlight the importance of prognostic
models capable of modeling the degradation process
rather than regressing on the SHM data.

The need for robust prognostics in composite mate-
rials is particularly urgent for two reasons. First, com-
posites are vulnerable to impact damage, which can
severely compromise their load-bearing capacity.
Second, composites are susceptible to impact fatigue,
which occurs when multiple impacts further degrade

their structural integrity. While impact fatigue has been
extensively reviewed,38 it is often studied separately
from fatigue loading, even though these two types of
fatigue typically occur together, exacerbating the opera-
tional challenges of composite structures. The com-
bined effect of these factors is further amplified when
operational conditions vary, underscoring the impor-
tance of accurately estimating their impact on RUL.

This article presents a methodology for robust prog-
nostic modeling of composite structures, focusing on
model performance under complex and unpredictable
scenarios. The adaptive HSMM (AHSMM) is pro-
posed, incorporating an adaptation mechanism similar
to that in the study by Eleftheroglou et al.37 Unlike
prior studies that considered only single-impact events,
this work introduces an experimental campaign involv-
ing multiple impacts applied at different locations dur-
ing fatigue loading. This setup better reflects
operational conditions in defense and aerospace appli-
cations, where systems are exposed to repeated and
varied impact events.

To capture these events, SHM sensors are employed.
From the sensor data, statistical features are extracted
to derive a degradation signal, which is then used as
input to the AHSMM for predicting the RUL of multi-
ply impacted composite coupons. The complete frame-
work is illustrated in Figure 1.

The data division strategy trains the model on unim-
pacted specimens and evaluates it on multiply

Figure 1. Prognostic framework using SHM data and AHSMM for RUL prediction of multiimpacted composite structures. SHM:
structural health monitoring; RUL: remaining useful life; AHSMM: adaptive hidden semi-Markov model.
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impacted ones. This approach is crucial for assessing
the model’s ability to adapt to previously unseen dam-
age conditions.

Accordingly, this study makes three key
contributions:

(1) A new prognostic performance measure tailored
to the AHSMM model.

(2) A new case study for prognostics through an
experimental campaign with multiple impacts in
different locations in GFRP composite structures.

(3) A conditional reliability analysis for direct evalua-
tion of RUL prediction uncertainty from both
AHSMM and LSTM models.

The remainder of the article is structured as follows:
‘‘Methodologies’’ section presents the basic principles
of the methodologies employed for the RUL estima-
tions and conditional reliability, and ‘‘Case study:
unexpected impact events’’ section describes the case
study that is used to evaluate the methodologies.
‘‘Results and discussion’’ section is split into two sec-
tions, presenting the main results of the article and a
discussion about the need for robust prognostics.
Finally, the conclusions are presented in ‘‘Conclusions’’
section.

Methodologies

This section outlines the methodology used to develop
the AHSMM model and the LSTM model, which is
used as a comparison point for the RUL and condi-
tional reliability estimations. The AHSMM is an adap-
tive extension of the well-established hidden semi-
Markov model (HSMM),39 while the adaptive exten-
sion of the model is based on the methodology used in
the study by Eleftheroglou et al.37 The LSTM is based
on the architecture presented in the study by Asif
et al.40

Adaptive hidden semi-Markov model

The HSMM is an extension of the hidden Markov
model (HMM)41 with the inclusion of a variable
sojourn time for each damage state. For each damage
state, a number of observations are emitted depending
on the sojourn time of the given damage state. For this
study, the sojourn time of each damage state is given
by a Weibull distribution. The parameters of the
HSMM are described below:

� N: number of damage states. The set of damage
states is denoted as S = fS1, S2, . . . , SNg. Each dam-
age state represents a level of degradation.

� M: number of distinct observation symbols. The
observation process is modeled with a Gaussian
distribution, therefore, the space consists of all the
real numbers.

� l: transition rate function.It describes the degrada-
tion process that follows a rate function, denoted
by l. For this study, the l function corresponds to
the Weibull distribution, which is commonly used
in reliability theory.

To train the HSMM, the Expectation–Maximization
algorithm is used. Details of this procedure can be
found in the study by Shun-Zheng et al.42 However,
some assumptions are made to use this model for
prognostics.

� Initial state: the model starts in the first damage
state. Therefore, the engineering system is assumed
to always start as good as new.

� Transitions: only left-to-right transitions are
allowed. This means that the model can only tran-
sit to a neighboring state or stay in the current
state. Therefore, it is assumed that the engineering
system does not recover health and that it has to
go through all the states before reaching failure.

� Final state: the final state of the HSMM is observa-
ble, and it represents failure. In the final state, only
one observation value is emitted.

Finally, Figure 2 presents a representation of the
HSMM incorporating the assumptions made for
prognostics.

As previously mentioned, the model AHSMM is an
adaptive extension of the HSMM. The overall adapta-
tion process is illustrated as a flowchart in Figure 3.
During the testing phase, the adaptation is triggered
once a transition from damage state Si to damage state
Si + 1 occurs. The sojourn time of the damage state Si is
then Ti and is compared to the expected value from the
Weibull distribution for that damage state, Ei. The
Weibull distribution is defined in Equation (1), in

Figure 2. HSMM representation. HSMM: hidden semi-Markov
model.
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which a is the shape parameter and b is the scale para-
meter. The expected value is defined in Equation (2).

f xð Þ=
a
b

x
b

� �a�1

e�
x
bð Þ

a

, x ø 0,

0, x\0:

(
ð1Þ

E½X �= bG 1 +
1

a

� �
ð2Þ

A ratio between Ti and Ei of the current state, Si, is cal-
culated and used as a resampling factor (Rf ) for the
sojourn time of the next damage state, Si + 1. To resam-
ple the sojourn time of Si + 1, the scale parameter is
adapted since it can shift the Weibull distribution to
have shorter and longer sojourn times. The adapted
scale parameter for the state Si + 1 is denoted as b�i + 1

and is defined in Equation (3). Thus, the Weibull distri-
bution for Si + 1 is defined by the parameters (ai + 1,b

�
i + 1)

since the shape parameter a is not adapted and remains
the same as the one calculated during training.

b�i + 1 =
Ei + 1Rf

G 1 + 1
ai + 1

� � ð3Þ

For RUL prediction, a time-dependent prognostic
measure is used, following the framework in the study
by.39,43 This formulation provides a probability distri-
bution for the RUL that evolves with time spent in the
current damage state.

The variables in Equations (4)–(6) are defined as
follows:

� Di dð Þ: The probability density function (pdf) of the
sojourn time in damage state i, evaluated at time d.

� t: Time already spent in the current state i; thus,
Di d � tð Þ accounts for elapsed time, making the
estimate time-dependent.

� di, i + 1 = P d<t j St = ið Þ: Probability of transitioning
to the next damage state i + 1 within time d.

� di, i = 1� di, i + 1: Probability of remaining in the cur-
rent state beyond time d.

� N 1, eð Þ: Gaussian noise term accounting for uncer-
tainty in predictions.

The resulting RUL expression gives a probability
distribution per time step, and 95% confidence inter-
vals are computed using the cumulative distribution
function (CDF). Since the AHSMM is a stochastic
model, the uncertainty reflected in the pdf corresponds
to the aleatoric uncertainty with the added uncertainty
propagation that comes from the prognostic measure.
Aleatoric uncertainty refers to the inherent variability
or randomness in a system or process that cannot be
reduced, even with more information or data:

RULt
i = di, i Di d � tð Þ+

XN�1

k = i + 1

Dk dð Þ+N 1, eð Þ
 !

+ di, i + 1

XN�1

k = i + 1

Dk dð Þ +N 1, eð Þ
 ! ð4Þ

di, i + 1 = P d<tjSt = ið Þ ð5Þ

di, i = 1� di, i + 1 ð6Þ

Conditional reliability is defined as the probability
that the system remains operational at a future time t,
given that the lifetime L exceeds t (L.t), that t is
beyond the current time tp, that the system has not yet
reached its end of life (L.tp), and is conditioned on the
observed test data y1:tp and the prognostic model M .
Mathematically, conditional reliability is expressed by
the CDF of RUL, as shown in Equation (7):

R t + tpjy1:tp ,M
� �

= 1� P RULtp <tjy1:tp ,M
� �

ð7Þ

Long short-term memory

The LSTM has been widely used in prognostics, given
its high accuracy in predicting RUL, since it can learn
temporal features in time-series data. The LSTM is a
supervised model, and it maps the HI values to the
labels (regression), which are RUL values in the prog-
nostics case.

Figure 3. Flowchart of the adaptation process.
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Figure 4 presents the architecture used for this arti-
cle. The architecture only uses two LSTM layers, given
the low amount of data available to train, and that
only one feature is available. The model’s hyperpara-
meters are shown in Table 1 and are chosen based on a
random search using Keras Tuner. The input for the
LSTM consists of windows of 10 samples. This choice
is driven by the need for the LSTM to receive inputs of
consistent length and to be utilized in an online man-
ner, necessitating the data to be windowed; therefore,
the dense layer needs to have 10 units.

To account for uncertainty, the Monte Carlo (MC)
dropout technique is utilized, which accounts for epis-
temic uncertainty.44 Epistemic uncertainty is the uncer-
tainty that arises from a lack of knowledge or
information about a system or process, and can poten-
tially be reduced with more data or better understand-
ing. For this study, the number of forward passes to
account for uncertainty equals 100 since it is the stan-
dard number in the literature. Similar to AHSMM, the
conditional reliability for the LSTM is calculated in

the same way as shown in Equation (7). It is worth
noting that the pdf of RUL for the LSTM is defined as
a Gaussian distribution determined from the samples
taken with the MC dropout technique.

Case study: unexpected impact events

The proposed model is evaluated in a case study
involving (multiple) impacts during constant amplitude
tensile fatigue tests. An experimental campaign is con-
ducted on GFRP specimens subjected to both fatigue
loading and multiple impacts. The case study focuses
on creating unexpected events that can occur during
operation and evaluates the capabilities of the model
to handle short-term unexpected events similar to the
study by Eleftheroglou et al.37

Specimen specifications and experiment definition

GFRP coupons were manufactured from SL90–T0/
EGL, with a nominal length of 400 mm and a width of
45 mm. An eight-ply quasi-isotropic layup of
½0=+ 45=90=� 45�S was used, leading to a nominal
thickness of 7.7 mm (Figure 5). A 10 mm hole was
drilled at the center of the coupons using a diamond
drill bit to minimize damage. Quasi-static tensile tests
were performed to determine the tensile failure load,
which averaged 69 kN, using a 1.5 mm/min loading
rate. This value guided the selection of the load level
during the subsequent tensile fatigue tests.

The fatigue tests comprised constant amplitude
tension-tension fatigue where the load was fixed at
50% of the average tensile failure load, the load ratio
at 0.1, and the frequency at 4 Hz. The tests were run in
an MTS hydraulic machine with a 250 kN load

Figure 4. LSTM architecture for prognostics. LSTM: long
short-term memory.

Figure 5. GFRP coupon depiction and dimensions. GFRP: glass
fiber-reinforced polymer.

Table 1. LSTM hyperparameters.

Hyperparameter Value

Number of hidden units 40
Dropout probability 0.4
Learning rate 0.001
Batch size 64
Optimizer Adam
Loss function MSE

MSE, mean squared error.

6 Structural Health Monitoring 00(0)



capacity. The fatigue was interrupted every 500 cycles,
for 2 s, allowing pictures to be taken at the maximum
load to inspect damage progression and failure during
postprocessing visually. Additionally, the entirety of
the fatigue loading is monitored using Vallen VS900-M
AE sensors, paired with a four-channel AMSY-6 acqui-
sition system and an external pre-amplifier of 34 dB.
To reduce the external noise and hits not associated
with degradation, a 50-dB threshold was set.

Two types of tests were conducted: fatigue testing
(until failure) of unimpacted specimens, and fatigue
testing with in situ impacts at various time intervals,
while the specimens were loaded with the mean value
of the fatigue loading. Impacts were performed via an
in-house gas gun, which is shown in Figure 6. As
shown in Figure 7, the hemispherical aluminum projec-
tile is attached to a plastic cylinder that matches the
barrel’s radius. The length of the projectile (including
the aluminum tip) was 35 mm, and the diameter was
25 mm. The total weight of the projectile is approxi-
mately 16 g. The purpose of this shape and design is to
reduce spinning effects inside the barrel and ensure a
precise impact location. The impact pressure ranged
from 1.2 to 1.5 bar. To protect the AE sensors, they
were removed during the impact and re-attached before
restarting the fatigue.

The goal of the impact(s) is to simulate unexpected
events during fatigue testing, which can commonly
occur during the operation of a structure. These events
affect structural integrity and the degradation process,
resulting in changes in the fatigue life. Additionally,
the impacts present a challenge that is used to evaluate
the robustness of the models and their ability to adapt
their predictions to the altered degradation process.
The fatigue life of unimpacted specimens is provided in
Table 2, while Table 3 specifies the impact conditions
and reports the lifetimes for impacted specimens.
Failure time is derived during postprocessing; thus,
lifetimes are reported as the time the picture is cap-
tured. The total collapse was the result of the speci-
mens snapping in two, while from visual inspection,
failure is considered at the time separation initiates,
which is accompanied by a significant stiffness drop
observed from the load-displacement data.

Impacts were performed at the location of the hole
unless specified otherwise. In Table 3, simultaneous
impacts are denoted with ‘‘3’’ (e.g., ‘‘10k 3 2’’ indi-
cates two consecutive impacts at cycle 10,000), whereas
sequential impacts are separated by commas (e.g., ‘‘5k,
10k, 15k’’ represent impacts occurring at 5000, 10,000,
and 15,000 cycles, respectively). The total cycles col-
umn reflects the lifetime of each specimen under the
specified conditions.

As observed in Tables 2 and 3, impact damage does
not necessarily reduce fatigue life; in some cases,
impacted specimens outlast unimpacted ones. This out-
come may result from stress redistribution around the
drilled hole in the quasi-isotropic layup. Additionally,
impact-induced delaminations or fiber breakage could
modify local stress fields, potentially reducing stress
concentrations.

Data preprocessing and feature extraction:

The AE data collected during the tests were used to
extract informative features for the RUL estimation. In

Table 2. Unimpacted specimen fatigue lifetime.

Specimen number Total cycles

Sp-6 131,000
Sp-7 78,500
Sp-8 67,500
Sp-9 69,000
Sp-10 61,000
Sp-11 119,000
Sp-14 117,500
Sp-20 85,000
Sp-22 91,000
Sp-26 88,000
Sp-28 99,500

Figure 6. Impact gas gun setup.

Figure 7. Projectile.

Salinas-Camus et al. 7



the first step the low-level AE features, including ampli-
tude, duration, rise time, energy, counts, and so on, are
windowed using a nonoverlapping 500-cycle window
since it has been demonstrated that cumulative features
are not always representative of the degradation and
suffer from poor prognosability (dependent on running
time).25 The window size was chosen arbitrarily based
on the cycles that the photos were taken. In the second
step, since the low-level features are not sensitive
enough to degradation, statistical features were calcu-
lated for each window in both the time and frequency
domains in an attempt to identify degradation-sensitive
features.45,46 The mathematical formulation of these
statistical features is demonstrated in Table 4, where xi

is a data point in each window with a size of n samples.
Transformation to the frequency domain was done via
the fast Fourier transform.

Apart from the statistical features in the time and fre-
quency domains, principal component analysis (PCA) is
performed in both domains, including all primary (low-
level AE features recorded by the AE system) and sec-
ondary features (statistical features extracted in the pre-
vious step). The PCA model, similar to the study by
Loukopoulos et al.,47 is created using only a healthy
subset of the data, which consists of the time of the first
impact or 10,000 cycles if no impact is performed (cho-
sen arbitrarily), and then the entire dataset is trans-
formed into the principal component space. The
cumulative squared reconstruction residual (Q) and
Hotelling’s T2 are calculated and, to improve prognos-
ability, the natural logarithm is applied.

The suitability of the extracted features was evalu-
ated using the sum of Spearman rank monotonicity
(Equation (8)), prognosability (Equation (9)), and
trendability (Equation (10)).48

Mo=
1

M

XM
j = 1

corr rank xj

� �
, rank tj

� �� ��� �� ð8Þ

Pr= exp �
stdj xj Nj

� �� �
meanj xj 1ð Þ � xj Nj

� ��� ��
 !

, j = 1, . . . ,M ð9Þ

Tr= min
j, k

cov xj, xk

� �
sxj

sxk

����
����, j, k = 1, 2, . . . ,M ð10Þ

As demonstrated in Figure 8, the raw features
(amplitude, duration, frequency, and rise-time/ampli-
tude) consistently exhibit poor performance across all
evaluation metrics. Among the extracted features, lnQ

calculated in the frequency domain (lnQfft)

Table 4. Statistical features.

Statistic name Equation

Mean
�x = 1

n

Pn
i = 1

xi

Median median = middle value of sorted data
Standard deviation

std =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n�1

Pn
i = 1

xi � �xð Þ2
s

Variance
var = 1

n�1

Pn
i = 1

xi � �xð Þ2

Minimum min = smallest value in xi

Maximum max = largest value in xi

Range range = max�min
Skewness

skewness =
1
n

Pn

i = 1
xi��xð Þ3

stdð Þ3

Kurtosis
kurtosis =

1
n

Pn

i = 1
xi��xð Þ4

stdð Þ4 � 3

Mode mode = most frequent value in xi

Sum
sum =

Pn
i = 1

xi

Geometric mean
geomean =

Qn
i = 1

xi

� �1
n

Harmonic mean harmmean = nPn

i = 1
1
xi

Coefficient of variation coeffvar = std
mean

Interquartile range (IQR) iqr = percentile75� percentile25
Median absolute
deviation (MAD)

mad = median xi �medianj jð Þ

Table 3. Impacted specimen information and lifetime.

Specimen number Impact pressure (bar) 3 number Time of impact (cycles) Total cycles

Sp-12 1.2 3 1 20k 75,500
Sp-15 1.2 3 2 20k, 40k 101,000
Sp-16 1.2 3 2 20k 3 2 75,000
Sp-17 1.5 3 2 5k, 10k 61,500
Sp-18 1.5 3 2 10k 3 2 90,000
Sp-19 1.5 3 3 5k, 10k, 15k 23,500
Sp-21 1.5 3 2 and 1.0 3 1 5k, 10k, 15k (1 bar) 32,500
Sp-23 1.5 3 3 5k 3 3 23,000
Sp-24 1.5 3 1 5k 104,500
Sp-25 1.5 3 3 5k, 10k (5 cm below hole), 15k 48,500
Sp-27 1.5 3 3 5k, 10k, 15k (all 5 cm below hole) 79,500
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demonstrates superior performance according to the
aforementioned metrics. Notably, lnQfft exhibits high
monotonicity and prognosability, though it shows
extremely low trendability.

It is also worth highlighting that when compared to
prognostic feature optimization studies,34,46,49 the
prognostic feature shows only average performance in
the combined metrics. Purposefully, further investiga-
tion is not performed to demonstrate that the proposed
prognostic model is capable of providing good results
even with average prognostic features, and optimiza-
tion of the degradation feature is outside the scope of
the article.

The behavior of lnQfft for the different specimens is
shown in Figure 9. This feature will be used as the input
to train the prognostic models and predict the RUL.
The data are split into training and testing sets, with
the training data consisting solely of specimens without
impact, and the testing data including only specimens
with impact. This approach allows for evaluating the
proposed methodology on unseen events during train-
ing and demonstrates its robustness in adapting to such
events during operation.

In addition, Figure 10 shows the degradation his-
tories of selected test specimens, along with the corre-
sponding times of impact. Impact times are indicated
with circles, and a larger circle denotes that two
impacts occurred within the same cycle. For better
visual clarity, only four representative degradation his-
tories are shown. It can be observed that the impact
event does not necessarily alter the behavior of the
degradation feature, providing a clear indication of
damage initiation.

Results and discussion

The proposed AHSMM was trained exclusively on
data from specimens that were not subjected to in situ
impacts. As a result, unexpected impact events were
excluded from the training process and only introduced
during testing. The same training strategy was applied
to the LSTM model, which is used here for perfor-
mance comparison. A Q-Q plot of the RUL predic-
tions from both models is shown in Figure 11. The

Figure 9. Degradation histories of train and test set using
feature lnQfft .

Figure 10. Test degradation histories with marked times of
impacts.

Figure 11. Q-Q plot of AHSMM and LSTM predictions for all
test samples. AHSMM: adaptive hidden semi-Markov model;
LSTM: long short-term memory.

Figure 8. Comparison of raw and top two best features based
on monotonicity, trendability, and prognosability metrics.

Salinas-Camus et al. 9



plot reveals that both models exhibit reduced accuracy
during the early life cycles. However, as the specimens
approach end-of-life, the AHSMM aligns more closely
with the ideal distribution than the LSTM, highlighting
the benefits of its adaptiveness. Given this performance
distinction, only the RUL predictions from the
AHSMM are presented in the following analysis for
clarity.

To illustrate the model’s performance, three RUL
plots are presented in Figure 12, corresponding to the
specimens with the shortest, average, and longest fati-
gue life within the test set. The comprehensive sum-
mary of results across all test specimens is provided in
Tables 5, 6, and 7.

Unexpected events typically, but not always, lead to
a reduction in the overall fatigue life of a specimen.
This effect is particularly evident in Figure 12(a), which
corresponds to the specimen with the shortest lifetime.
Initially, the model significantly overestimates the true
RUL; however, after adaptation, the AHSMM refines

its predictions to accurately estimate the true RUL.
Meanwhile, the specimen with the longest lifetime
(Figure 12(c)) shows consistency between the predicted
and actual RUL, as its lifespan falls within the range
learned from the training data. Similarly, the predicted
RUL for the specimen with an average lifetime
(Figure 12(b)) aligns closely with the true RUL during
the latter part of its life cycle.

Two key evaluation metrics are used: Root mean
squared error (RMSE) and coverage. RMSE quantifies
the error between the true and predicted mean RUL,
while coverage assesses UQ by measuring the propor-
tion of true RUL values that fall within the predicted
confidence intervals. Specifically, if yt represents the
true RUL value at time step t and ½lt, ut� denotes the
predicted lower and upper bounds, the coverage for a
single prediction Ct equals 1 if lt<yt<ut; otherwise, it
equals 0. For a complete degradation history of length
T , the coverage metric is defined in Equation (11).

Coverage= 1
T

PT
t = 1

Ct ð11Þ

Table 5 compares RMSE values between AHSMM
and LSTM. The AHSMM consistently achieves lower
RMSE values across all tested specimens, expect for
SP-21, demonstrating its superior predictive perfor-
mance. The adaptive module within AHSMM signifi-
cantly enhances accuracy as new data become
available. In particular, when evaluating performance
over the second half of the lifetime of each specimen
(Table 6), the AHSMM shows a substantial reduction
in RMSE, highlighting the model’s capability to refine
its estimates as more degradation data is collected.

Coverage results shown in Table 7, further empha-
size the robustness of AHSMM. The AHSMM
achieves an average coverage of 0.79, significantly out-
performing the LSTM, which only achieves 0.17. This
indicates that the AHSMM provides more reliable

Table 5. RMSE value comparison between AHSMM and LSTM.

Specimen name AHSMM
(3500 cycles)

LSTM
(3500 cycles)

Sp-12 37.13 49.90
Sp-15 18.78 54.43
Sp-16 37.80 41.79
Sp-17 15.35 38.96
Sp-18 22.77 29.58
Sp-19 29.26 47.84
Sp-21 103.20 65.88
Sp-23 54.75 70.19
Sp-24 33.77 44.92
Sp-25 27.58 49.12
Sp-27 12.66 25.20
Average 35.78 47.07

Table 6. RMSE value comparison between AHSMM and LSTM
for the second half of the lifetime.

Specimen name AHSMM (50%)
(3500 cycles)

LSTM (50%)
(3500 cycles)

Sp-12 6.06 33.19
Sp-15 20.01 22.93
Sp-16 16.89 28.84
Sp-17 5.03 48.22
Sp-18 29.06 23.68
Sp-19 10.75 40.61
Sp-21 96.68 66.99
Sp-23 23.52 64.15
Sp-24 26.70 34.11
Sp-25 19.38 55.25
Sp-27 10.80 26.57
Average 24.08 40.41

Table 7. Coverage comparison between AHSMM and LSTM.

Specimen name AHSMM LSTM

Sp-12 0.94 0.17
Sp-15 0.75 0.28
Sp-16 0.99 0.22
Sp-17 0.99 0.26
Sp-18 0.98 0.31
Sp-19 0.10 0.0
Sp-21 0.20 0.01
Sp-23 0.82 0.0
Sp-24 0.99 0.22
Sp-25 0.98 0.00
Sp-27 0.99 0.37
Average 0.79 0.17
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UQ, ensuring that the true RUL values are better cap-
tured within the confidence intervals.

To further analyze model performance from a con-
ditional reliability perspective, Figure 13 presents relia-
bility comparisons between AHSMM and LSTM at
different time steps. At the beginning of the degrada-
tion cycle (Figure 13(a)), the conditional reliability esti-
mates for both models exhibit higher uncertainty.
However, as more data become available, AHSMM
adapts effectively, providing more precise reliability
estimates, as shown in Figure 13(b) and (c). In

contrast, LSTM struggles to maintain accurate reliabil-
ity estimates.

Discussions

This study underscores the need for robust prognostic
models capable of handling unexpected operational
conditions. The results demonstrate that state-of-the-
art machine learning models like LSTM have a signifi-
cant decrease in their prognostic performance when
unexpected events occur, particularly for specimens
with significantly shorter lifetimes than those observed

Figure 12. RUL predictions with the AHSMM: (a) left outlier,
(b) inlier, and (c) right outlier. (a) RUL prediction for the test
specimen with the shortest lifetime (SP-19). (b) RUL prediction
for the test specimen with average lifetime (SP-16). (c) RUL
prediction for the test specimen with the longest lifetime (SP-
24). RUL: remaining useful life; AHSMM: adaptive hidden semi-
Markov model.

Figure 13. Conditional reliability comparison between
AHSMM and LSTM for SP-17. (a) Conditional reliability at t = 0
cycles. (b) Conditional reliability at t = 30,000 cycles. (c)
Conditional reliability at t = 45,000 cycles. AHSMM: adaptive
hidden semi-Markov model; LSTM: long short-term memory.
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in the training set. This limitation is inherent in models
that rely heavily on training data distributions, which
may not adequately account for rare or unexpected
events.

The need for robust and adaptive prognostic models
becomes even more apparent in applications operating
under harsh and dynamic environments, such as aero-
space or defense applications. For example, civil air-
craft typically operate under predefined conditions for
each flight cycle, but unexpected weather phenomena
or bird strikes can alter these conditions, requiring
real-time adaptation of RUL predictions to enhance
condition-based maintenance planning. This require-
ment is even more critical for military aircraft, where
rapid maneuvering and unpredictable conditions high-
light the need for real-time awareness of structural
health and mission readiness.

To establish a robust framework for PHM, adaptive
models such as AHSMM are essential. A crucial com-
ponent of such a framework is UQ, which is categor-
ized into aleatoric and epistemic uncertainty. Aleatoric
uncertainty stems from the inherent randomness in
data, while epistemic uncertainty arises due to a lack of
knowledge or model limitations.50 As discussed in
‘‘Methodologies’’ section, AHSMM effectively cap-
tures and propagates aleatoric uncertainty, whereas
LSTM models address only epistemic uncertainty using
techniques such as MC Dropout.

Results from AHSMM demonstrate that the confi-
dence intervals generated by the model generally
encompass the true RUL, although with wide intervals.
This aligns with findings in other stochastic prognostic
models, highlighting the importance of uncertainty
management. Effective uncertainty management51 can
minimize the impact of uncertainties on RUL predic-
tions, thereby improving decision-making robustness.
Future research should explore advanced techniques
for uncertainty management to refine confidence inter-
vals and enhance the accuracy of RUL predictions,
ultimately strengthening the robustness of PHM
frameworks.

Conclusions

In this article, an AHSMM is proposed to address the
challenging task of RUL prediction of composite struc-
tures subjected unexpected impact events. A case study
was launched using GFRP open hole coupons sub-
jected to tensile fatigue loading. The model was trained
on data from unimpacted specimens and evaluated on
cases involving multiple in situ impacts. This approach
allowed for a realistic assessment of the model’s adapt-
ability to unforeseen damage scenarios, addressing a
critical gap in prognostics research.

The AHSMM successfully predicted the RUL of
impacted specimens with an RMSE of 17k cycles.
Notably, the RMSE improved to 12k cycles when
evaluating the second half of the specimens’ lifetimes.
This reduction underscores the model’s capacity to
refine its predictions as additional data become avail-
able. In contrast, the LSTM model showed a higher
RMSE of 23k cycles, which decreased to 20k cycles
when focusing on the second half of the fatigue life.
From a UQ perspective, the AHSMM outperformed
the LSTM model by achieving higher coverage. This
highlights that the AHSMM not only enhances pre-
diction accuracy but also offers more reliable confi-
dence intervals.

The comparative analysis between AHSMM and
LSTM demonstrated the advantages of an adaptive
approach in capturing the degradation process beyond
simple regression on SHM data. While LSTM models
showed sensitivity to data variations and exhibited lim-
ited generalization, AHSMM provided more consistent
RUL predictions with well-calibrated reliability esti-
mates. Furthermore, the conditional reliability analysis
highlighted the importance of integrating UQ into
prognostic models, particularly for decision-making in
safety-critical applications.

The findings highlight the necessity of developing
robust prognostic models that can support mainte-
nance planning while maintaining sufficient reliability.
However, as a data-driven model, AHSMM still relies
on the quality of SHM data. Despite its robustness,
noisy or highly variable data can significantly impact
performance. Another concern is the wide confidence
intervals resulting from aleatoric uncertainty, which
could lead to conservative maintenance decisions. Since
decision-makers often use the lower bound of confi-
dence intervals for planning, managing uncertainty
more effectively is essential for improving the model’s
practical applicability.

Overall, the results underscore the necessity of devel-
oping prognostic models that can adapt to changing
operational conditions without requiring extensive
retraining. The findings contribute to advancing PHM
frameworks for composite materials, particularly in
aerospace and other high-reliability industries. Future
work will focus on expanding the model’s applicability
to more complex structures and operational scenarios,
including variable loading conditions and real-time
adaptation strategies.
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