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Abstract

In this paper, we consider the Reliable Communica-
tion and Byzantine Reliable Broadcast problems on
partially connected networks with authenticated links.
We consider the Reliable Communication (RC) prob-
lem on partially connected networks, and the Byzan-
tine Reliable Broadcast (BRB) problem on partially
and fully connected networks. Danny Dolev’s proto-
col works on the former, while Gabriel Bracha’s au-
thenticated double echo protocol works on the latter
in the case of a fully connected network. By layer-
ing the two protocols the BRB problem can be solved
for partially connected networks. The state-of-the-
art protocols for these problems focus on unknown
topologies, whereas we focus on known topologies.
We show that these protocols can be optimized when
processes leverage this knowledge. Our simulations
with our profiler show that we can drastically reduce
the message complexity and network usage (e.g., a re-
duction of 71.9% and 79.4% respectively with a 12B
payload when N=150 and =20 for Dolev) compared
to naive routing with our optimizations and disjoint
path solver.

1 Introduction

Distributed systems are at the heart of our everyday lives. These
systems consist of autonomous processes that communicate
with a subset of other processes to coordinate their efforts. This
means that these systems have to be robust against arbitrary be-
havior that some faulty or malicious nodes might exhibit. Fault-
tolerant distributed communication algorithms are being used in
practice to give this guarantee.

The Byzantine fault model is often used to describe these
fault-tolerant systems. In this model there are two types of pro-
cesses: correct processes which follow their programming faith-
fully, and Byzantine processes that exhibit arbitrary behavior
which includes but is not limited to altering messages, creating
new ones, or dropping messages altogether.

There are several solutions to this problem, all of which make
different assumptions and differ in their guaranteed properties.
An example of this is Dolev’s reliable communication (RC) al-
gorithm [1], which assumes a 2f + 1-connected network. An-
other example is Bracha’s double echo authenticated broad-
cast [2], which assumes a fully connected network. The state-
of-the-art solution for Byzantine Reliable Broadcasts (BRB) de-
scribed by Wang and Wattenhofer [3] and improved by Bonomi

et al. [4] relies on an optimized combination of Dolev’s RC al-
gorithm [5] and Bracha’s double echo authenticated broadcast.

This research will focus on optimizing Dolev, Bracha, and
Bracha-Dolev by minimizing the number of redundant mes-
sages transmitted when the topology of the network is known
to all processes. While the problem of reducing the amount
of messages has been discussed in several papers, they focus
on unknown network topologies [4; 5; 6], introduce cryptogra-
phy and/or public-key infrastructure (PKI) [7; 8], or use trusted
nodes [9]. Focusing on the case where the network topology
is known to all processes is worth investigating, as this is a
realistic use case and might allow for more optimizations. In
addition to this, other papers have shown ways to reconstruct
the topology [10] with protocols such as Explorer [11] and
Explorer2 [12], which makes it possible to use the optimiza-
tions in this paper for previously unknown topologies. Even
though the aforementioned papers do not assume a known net-
work, most of their optimizations also apply.

In this paper, we will start from solutions using naive routing
and make the following contributions:

(i) We explain how a routing table can be created for Dolev us-
ing a combination of existing algorithms.

(ii) We discuss how the verification step of Doleyv is trivial in our
system.

(ii1) We introduce 9 modifications to Dolev, Bracha, and Bracha-
Dolev.

(iv) We present a detailed performance analysis using our pro-
filing tool.

The structure of this paper is as follows. We will first explain
what work has already been done in this field. Sec. 2 will in-
troduce the system model and the problem, while Sec. 3 will
provide some background on Dolev, Bracha, and Bracha-Dolev.
Sec. 4, 5 and 6 will then introduce our novel modifications for
Dolev, Bracha and Bracha-Dolev respectively. Sec. 7 contains
our performance analysis. We will briefly discuss the broader
impact and reproducibility of our work in Sec. 8. Finally, Sec. 9
will conclude our paper.

Related work

The idea of reliably reaching an agreement in the presence of
faulty or malicious processes was first introduced by Lamport et
al. [13] and was named the Byzantine Agreement. The network
tolerance to faults can be represented as f, which represents the
number of Byzantine processes that can be present before cor-
rect processes can no longer reliably communicate with each
other. One can imagine this number heavily depends on the net-
work’s connectivity, i.e., the number of nodes that can fail before
the network is partitioned. A simple connected (1-connected)



network might already be partitioned when a single Byzantine
process exists, while a fully connected network (n-connected)
can sustain more Byzantine nodes. Pease et al. proved that
there exists a tight upper bound for f in these networks, namely
f<|N/3|[14].

When a network is partially connected, Dolev showed that
processes can still communicate reliably in the presence of
f Byzantine nodes when the network is at least 2f + 1-
connected [1]. Dolev introduced two variants, where one has
access to a routing table and one does not, the known and un-
known topology variants respectively. For the unknown topol-
ogy variant, the message is essentially flooded over the network,
therefore following at least 2 f + 1 vertex-disjoint paths. In the
routed variant messages are only transmitted over their predes-
ignated routes. Since authenticated links' are assumed in this
solution, every process can append the transmitter of a message
to a header representing the message path. A process delivers a
message when it has received the same payload data over f + 1
vertex-disjoint paths. Note that this means a Byzantine sender
can cause only a single correct process to deliver a message, vio-
lating the basic principles of a Reliable Broadcast, which is why
the broadcaster is assumed to be a correct process. We will only
focus on the known topology variant.

Bracha described the authenticated double echo protocol [2]
for fully connected networks, which gives the additional guar-
antee that either every correct process will deliver a message or
none will, even when the broadcaster is Byzantine. This proto-
col uses three phases to coordinate the global acceptance of a
message m: send, echo, and ready.

In their original versions, both protocols are less than prac-
tical. In the case of Dolev, the worst-case message and com-
putational complexity are high (O(n!) for n processes), mak-
ing it impractical for large (n = 100) networks. While Bracha
is computationally less expensive, it requires a fully connected
network, reducing its applicability in regular networks.

Bonomi et al. [5] introduced several improvements to Dolev’s
original protocol, considerably improving its average message
complexity. These modifications make Dolev more practical for
use in general networks, even though the complexity of delivery
verification is still high.

Wang and Wattenhofer [3] introduced a combination of exist-
ing protocols, Bracha and Dolev for example, to use a protocol
designed for a fully connected network (e.g. Bracha’s proto-
col) on a k-connected (where k < |V|) network. More recently,
Bonomi et al. [4] introduced several novel improvements to this
protocol and combined it with an optimized version of Dolev’s
RC protocol [5; 6]. Their work showed significant improve-
ments to the message complexity, and several modifications may
also apply to other combinations, such as CPA [15] and Bracha.

2 System model and problem statement

Our model is defined by a set A = {p1, pa, ..., pn} of N pro-
cesses, uniquely identified by an identifier ¢ known to all others.
In the Byzantine fault model, it is assumed that there are at most
f < |N/3] Byzantine nodes, which can exhibit arbitrary be-
havior.

Furthermore, the processes are connected by a network which
can be represented by an undirected graph G = (V, E). In this
graph every vertex represents a process p;, such that p; € A,
which means V' = A. The edges represent the communication

! Authenticated links guarantee messages sent over a link originate
from the complementing process

links between nodes. Processes p;, p; € A have a direct com-
munication link if there exists an edge (v;,v;) € E, which they
can use to directly communicate with each other. If there exists
no such link, they will have to rely on other processes to relay
their messages. We assume that these links are authenticated,
i.e., messages delivered at p; € A via edge (v;,v;) € E are
guaranteed to originate from p;, and vice-versa. In addition to
this, the links are reliable, i.e., messages will always arrive at p;
if and only if p; sent them over edge (v;,v;). However, there
is no delivery time or delivery order guarantee, so a link can
be synchronous or asynchronous. Graph G is known to all pro-
cesses, and so are the identifiers for every process. Furthermore,
it is assumed the network is static, i.e., the network topology
does not change, and one or more processes can broadcast mes-
sages simultaneously. The processes are used as the underlying
layer for application code, which receives data from the process
when it delivers a message to the application layer.

To send message data to others, processes can add informa-
tion to the message header, which can be used to uniquely iden-
tify the message and add protocol-specific information.

A Byzantine Reliable Broadcast (BRB) protocol guarantees
the following properties:

(i) Validity: If process p; € A broadcasts message m, then ev-
ery correct process p; € A delivers m at some point.

(ii) No duplication: A message m broadcast by process p; € A
is not delivered more than once by every correct process p; € A.
(iii) Integrity: If process p; € A delivers message m with
sender p;, process p; has broadcast m in the past.

(iv) Agreement: If process p; € A delivers message m, then m
will eventually be delivered by every correct process p; € A.

We will be introducing improvements to both Dolev [1],
Bracha [2], and Bracha-Dolev [3], which make different as-
sumptions about the network GG and provide different guaranteed
properties.

Dolev assumes a network G that is at least 2 f 4+ 1-connected.
Furthermore, Dolev provides Reliable Communication (RC)
which guarantees the same properties as BRB, except for the
Agreement property. Bracha assumes a fully connected net-
work G, i.e. for every pair v;,v; € V there exists an edge
(vs,v;) € E. Unlike Dolev, Bracha guarantees all BRB proper-
ties.

We make the same assumptions as the mentioned protocols
while adding topology knowledge and static networks.

Reducing the number of messages

While all mentioned protocols work well in their designed en-
vironments, there is naturally a substantial amount of redundant
work when processes are unaware of the network topology.

This paper aims to reduce the number of messages which are
transmitted through the network for the three mentioned proto-
cols. This reduces the network usage even further, assuming that
all processes know the network topology. In addition to this, it
might be possible to improve the delivery complexity of Dolev
in the process by taking advantage of the fact that messages will
traverse fixed paths. Furthermore, while the general process for
handling known topologies for Dolev has been described in the
original paper [1], no actual implementation has been provided,
which is something this paper will also do and is an additional
contribution of this work.

3 Background

In this section, we will explain Dolev’s and Bracha’s protocols,
and how they can be combined into Bracha-Dolev.



Dolev

Dolev’s protocol provides reliable communication when the net-
work has authenticated links and is at least 2 f 4+ 1-connected.

When a message traverses the network, processes leverage the
authenticated links to build a traversal path for each message.
Said paths have two purposes: avoiding transmission loops and
message verification. The former is at play when processes relay
messages to their neighbors; a message is forwarded to all neigh-
bors, except to the transmitter and processes which are already
present in the path. This is required to avoid messages circu-
lating through the network indefinitely. The paths are also used
for verification; a message is delivered whenever it has been re-
ceived over f + 1 disjoint paths.

The basis for the correctness for Dolev’s protocol lies in
Menger’s theorem [16] which shows that there exist 2f + 1
disjoint paths between every pair of processes if a network is
2f 4 1-connected, and the fact that at most f of those paths can
contain one or more Byzantine processes.

Pseudocode for Dolev’s protocol for a single message is pro-
vided in Algorithm 2 in Appendix A.1.

Bracha

Unlike Dolev’s protocol, Bracha’s protocol requires a fully con-
nected network while guaranteeing all four BRB properties, in-
cluding the Agreement property. The protocol has three phases:
send, echo, and ready.

When a process wants to broadcast a message it sends the pay-
load in a send message to all processes, including itself. When
a process receives a send messages, it responds by transmitting
an echo message to all processes with the corresponding con-
tent. Every process then waits for a minimum of [ X+ echo
messages. After this number has been reached, or f + 1 ready
messages have been received, a process will transmit its own
ready message to all processes. Finally, a message will be de-
livered when 2 f + 1 corresponding ready messages have been
received, as can be seen for a single message in Algorithm 3 in
Appendix A.1.

Bracha-Dolev

Dolev’s and Bracha’s protocol can be combined to achieve BRB
guarantees in a multi-hop network, as described in [3].

This works by layering the two protocols, where Dolev’s pro-
tocol forms the bottom layer. This means that every Bracha
broadcast operation is replaced by a Dolev broadcast, and ev-
ery Bracha receive operation by a Dolev deliver.

By layering Bracha and Doley, the latter emulates a fully con-
nected network by enabling the former to reliably reach all pro-
cesses. However, this means the message complexity of both
protocols is essentially multiplied.

Instead of simply layering the two protocols, a cross-layer
version [4] can be used which allows for greater optimization.

4 Improving Dolev on known topologies

In this section, we will describe the algorithms required to lever-
age the potential of topology knowledge, in what ways Dolev’s
protocol will have to be modified for this case, and 7 modifica-
tions to the resulting protocol.

4.1 Finding k-disjoint paths

To build a routing table, one has to find &k vertex-disjoint paths to
every p; € A where the total weight of all paths is minimized.

Formally this problem is known as the min-sum disjoint paths
problem.

A straightforward solution would be to repeatedly find the
shortest path, remove the edges in the path, and repeat this pro-
cess k times. However, even though this algorithm would work
on most graphs, there exist so-called trap topologies for which
this algorithm would fail to find a solution. In said topologies
there exists a path with a minimal sum, which traverses multiple
disjoint paths, effectively blocking off more disjoint paths than
needed. An example of a trap topology can be found in Figure 1.
In this example the path a-c-b-d would be chosen over a-b-d and
a-c-d by this naive algorithm.

Figure 1: In this example there exist two disjoint paths from a to d, but
only one would be found by a naive shortest path algorithm

A solution that can handle trap topologies was introduced by
Bhandari [17]. This algorithm finds & edge-disjoint paths in a
directed weighted graph by repeatedly finding the shortest path
and inverting the resulting edges. An edge is inverted by simply
reversing its direction and multiplying its weight by —1. If there
already exists a reverse edge for the edge being inverted, the
existing edge is replaced. If the edge that is being inverted has
already been inverted once, it can be simply discarded instead.
To find the result, all complementing edges are removed from
the set with all edges in the paths. The final paths can then easily
be retrieved from the resulting sets, as every edge will only have
two or fewer matching edges.

Note that this algorithm only returns k edge-disjoint paths, not
k vertex-disjoint paths. This problem can be solved by applying
aprocess called vertex splitting, which as the name implies splits
every vertex except for the source and sink into two distinct ver-
tices. A vertex is split into an ’in’ vertex, and an ‘out’ vertex.
Every incoming edge will be directed to the former, while every
outgoing edge will be directed to the latter. The two vertices are
connected by a directed edge with a weight of zero from the ’in’
vertex to the “out’ vertex. This process is visualized in Figure 2.
Note that this change forces every path which uses a vertex to
use the interconnecting edge, limiting the number of times every
vertex can be used to one. This means the algorithm will now
find k vertex-disjoint paths.
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Figure 2: Vertex splitting visualized

To build the full routing table, this algorithm has to be com-
pleted for every process, resulting in (n — 1) x (2f + 1) paths
which will reach every process over 2 f + 1 node-disjoint paths.

The pseudocode for the k-disjoint path solver can be found
in Algorithm 1. We use the Shortest Path Faster Algorithm
or SPFA [18; 19], which is a queue-based Bellman-Ford [20;
21] variation to find the shortest path in our paper, but every
algorithm that is capable of handling negative weights can be
used.

A single entry in our routing table can be created using our
disjoint path solver, which uses Bhandari’s [17] algorithm and



SPFA [18; 19] to find the disjoint paths with a minimum sum
of weights. The full table can be created by varying the target
process t, by iterating over all possible values for ¢.

Algorithm 1: Disjoint path solver algorithm

1 func DisjointPaths(g, s, ¢, k):

2 edges = DisjointEdges(g, s, t, k)

3 filtered = FilterCounterparts(edges)
4 return BuildPaths(filtered, s, ¢, k)

5 func DisjointEdges(g, s, t, k):

6 split = VertexSplitting(g)

7 result = ()

8 repeat k times

9 path = ShortestPath(s, t, split)

10 forall e € path do
1 result.add(e)
12 InverseEdge(split, e)

13 return result

14 func FilterCounterparts(edges):
15 drop = result = ()

16 | forall (f,t) € edges do

17 | drop.add((t, f))

18 forall e € edges do
19 if not drop.contains(e) then
| result.add(e)

21 return result

22 func BuildPaths(edges, s, t):
3 result = ()
2 forall (f,e) € edges do

25 if f = s then

2 path = ()

27 while not e = t do
28 path.add((f, e))
29 (f,e) = Next(e)
30 path.add((f, e))

31 B result.add(path)

2 return result

4.2 Modifying Dolev

We can distinguish between two options for the routing table in
a modified version of Dolev’s protocol.

In one version a process only computes its own routing ta-
ble. This is computationally less expensive but requires more
information to be included in the transmitted messages, as other
processes are unaware of the desires paths of messages. Mes-
sage verification is slightly less complex than in the case of nor-
mal Dolev since traversed paths can be remembered by receiving
nodes. However, the first message will have to be verified using
the same technique as in an unknown topology.

In the second version, every process computes the routing ta-
ble for every other process. This is computationally expensive
but reduces the amount of information in the message headers
considerably. Message verification also becomes trivial, as ev-
ery process is aware of the paths the messages will use, so any
message with an incorrect path can be discarded. Care has to
be taken that this process is deterministic, as to avoid having
different routing tables for different processes.

Note that the computational cost is only a one-time cost
with the assumptions we use; static topologies. When dynamic

topologies are used, the computational cost becomes more im-
portant.

In this paper, we have opted for the protocol where every pro-
cess has access to every routing table to decrease the message
size, as will be discussed later.

Verification

The message verification is simplified greatly, as every message
path can now be simply compared to the corresponding rout-
ing table entry. If no matching entry exists for the given ori-
gin, the message is discarded. Otherwise, it is kept in memory.
Once enough messages with identical payloads and unique paths
have been received the message is delivered. This can easily be
achieved by creating a mapping between a message identifier,
consisting of the regular Dolev identifier and the hash of the
payload, and a set of paths. When the size of the set of paths is
equal to f + 1, corresponding content can be delivered.

4.3 Optimizations on routing table

In addition to providing a base implementation for Dolev’s pro-
tocol with routing, we also introduce several optimizations to
further reduce the number of messages transmitted. To avoid
confusion we use the identifier ORD.1-7 for our optimizations.
This section will elaborate on optimizations focused on reduc-
ing the size of the routing table, decreasing the memory usage
in the process.

ORD.1: Avoid transmitting subpaths

When process p is building its routing table, it can discard all
paths which are a subpath of other paths. The messages related
to said paths can be dropped without loss of information, as it is
guaranteed another message will traverse the path in full. This
optimization will reduce the size of the routing table which re-
duces the number of messages transmitted and the memory us-
age of the routing table, or -if combined with ORD.3- reduce
the amount of information being transmitted with the message.
An example is illustrated in Figure 3.
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Figure 3: The blue path

ORD.2: Use a single route for direct neighbors

Bonomi et al. [5] showed that direct neighbors can directly de-
liver messages originating from the source. A similar change
can be made to the routed version of Dolev’s protocol, by ac-
cepting only one path to direct neighbors. We have achieved this
by adding links to neighboring processes separately before find-
ing disjoint edges, which corresponds to line 2 in Algorithm 1.
An example is given in Figure 4.

ORD.3: Merge next hops when broadcasting

When process p is transmitting the initial broadcast messages, it
can merge all messages which have the same first hop into a sin-
gle message. After a process receives these merged messages,
the original messages can be reconstructed. The process can
then be continued by all relaying nodes until only a single base
message remains. This means the desired and traversed path
form a pair which needs to be maintained throughout the entire



network. This optimization applies to the creation of routing ta-
bles but is also applied when processes disseminate messages
as they may need to split messages. This process is shown in
Figure 5.

Remark The message header will contain multiple paths after
this change, for which the actual paths will be identical until the
messages are split. It might be possible to further reduce the
header size by only including a single copy of the actual path
when there exist multiple identical copies.
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Figure 5: The mes-
sages can be merged to
traverse (0,1) together,
and then split at 1

Figure 6: The messages
can be merged at 3 to
traverse (3,4) together

ORD.4: Reuse paths when possible

When messages traverse the same path, processes can attempt
to merge messages as explained in ORD.3. For this reason,
routes should be as similar as possible. We have achieved this
by adding weights to unused edges after each iteration of the
disjoint k-paths solver, which corresponds to the space between
lines 12 and 13 in Algorithm 1.

Additional care has to be taken when ORD.2 is also applied,
to avoid routing messages to neighbors over intermediate nodes.

4.4 General optimizations

This section solely focuses on optimizations that do not apply
to the creation of the routing table or are mostly applicable at
message dissemination.

ORD.5: Apply delayed relaying and merging

While ORD.3 introduced the concept of merging messages, this
is a structurally decreasing process, i.e. the number of wrapped
messages in a single message will only decrease as the message
is being relayed. The reason for this is that processes only an-
alyze an incoming message without additional context, which
means a process will inspect the incoming buffer sequentially
and immediately relay messages when possible. While this is
pure? there are cases when using the context of other messages
or delaying outbound messages is beneficial. For example, two
messages with the same Dolev identifier received over two dif-
ferent links can be merged into a single message (similar to
ORD.3) when they share the same next-hop. However, since
these messages are handled separately the process needs to de-
lay the former and use its context when processing the latter
message. This situation has been illustrated in Figure 6.

One possible option is to only relay messages whose contents
have been delivered and keep other messages in a buffer that
can be used to merge outbound messages. While this approach
would work on some networks, a deadlock will occur when pro-
cesses are delaying messages which would otherwise cause the
other process to deliver.

This can be avoided by detecting possible deadlocks and then
marking one of the conflicting paths as a priority path, which
means processes will immediately relay it. Deadlocks can be
detected by finding a pair of paths for which at least one edge

Pure in the functional programming sense, a message enters the
pipeline and zero or more come out without using other context

whose reverse edge is contained in the other path exists. Decid-
ing on priority paths can be done in any way, but at least one
path must be picked for every conflict. In this paper, we simply
find the processes in an overlapping section with a maximum
distance and mark the path which traverses the process with the
smallest ID first as a priority path, unless the other path is al-
ready marked as a priority path. An optimal solution to this
problem exists, but this is outside the scope of this paper.

Remark This modification introduces more latency to the
protocol, as (some) messages are being held in buffers for longer
amounts of time. This can be partially mitigated by applying op-
timizations to the deciding procedure. For example, designating
paths as a priority path when all processes on the conflicting
edges only have to relay that single message, since there is no
other message to merge with. Another addition might be pig-
gybacking, which means messages in the buffer can be merged
with a priority message sharing the same next-hop since the pri-
ority message will be transmitted anyways.

ORD.6: Merging messages with identical contents

While most optimizations focus on single-message broadcasts,
i.e., there is only one process broadcasting a message, there
exist plenty of algorithms where every process transmits mes-
sages simultaneously. For the general case, there is not a lot that
one can optimize for multiple broadcasts. However, in the case
where the payloads of multiple messages are identical, there is
room for improvement. Examples of these cases are keepalive
or topology discovery protocols, where the payload will likely
be identical for all processes.

When the payload is identical processes can combine multiple
messages into a single wrapper message, reducing the amount
of time the payload is transmitted. This modification can use
the buffer created by ORD.S. By tracking the Dolev identifiers
for identical payloads, the buffers of multiple messages can be
queried when relaying messages.

A receiving process can reconstruct the original Dolev mes-
sages based on a single wrapper message, reducing the amount
of information transmitted in these messages.

Remark Something similar might be possible for Bracha, by
tracking similar echo payloads. Whenever multiple similar pay-
loads exist a Bracha process can wait to send the appropriate
readys until all similar payloads have enough echo confirma-
tions. There should be an early exit strategy to avoid waiting
indefinitely, but this will need to be researched further.

ORD.7: Implicit desired paths

As discussed in Sec. 4.2, the routing information can be included
in the message headers to reduce computational complexity or
it can be fully precomputed to reduce the message size. When
optimizing for bandwidth usage the latter is the preferred option.

This modification ensures message headers are not larger than
needed by precomputing the routing tables for every process,
which can then be used to deduce the desired paths based on
the actual paths. Based on the actual paths the matching desired
paths are retrieved from the global routing table. Depending on
the other active modification, one or all of the desired paths are
used to relay the message.

Remark If this modification is used in the context of topology
discovery, it might be possible to reduce the size of the routing
table while it is being transmitted over the network. Some en-
tries are no longer applicable and can then be dropped from the
broadcast. However, this is for future research, as this paper
does not focus on integration with topology discovery already.



5 Bracha on known topologies

In the case of Bracha’s protocol, topology knowledge is not as
useful as with Dolev’s protocol. This is because Bracha assumes
a fully connected network, which means the topology is known
anyways. The only knowledge processes gain is the weight of
edges representing links between other processes. We will try to
use this knowledge for our optimizations

Similar to Dolev’s optimizations, we will use ORB.1-2 to
identify different optimizations.

ORB.1: Implicit echo messages

Instead of sending a send message and an echo message sepa-
rately, a process can send a single send message and others will
interpret that as a combined send and echo message. Similarly,
an echo or ready message will also be interpreted as a send mes-
sage. This optimization is similar to MDB.2 from [4], as that
optimization converts the send message into an echo message
after the first hop. While this is slightly different, the effects are
nearly identical.

ORB.2: Use minimal subset of neighbours

Bracha’s protocol requires [N +2f H] + f participants in the echo

phase and 3f + 1 for the ready phase. This means that for over-
provisioned networks, i.e., networks where f < L%J — 1, we
can avoid using all processes in said phases.

This is similar to the optimization MBD.11 from [4]. How-
ever, we can improve overall latency by assigning a cost to every
neighbor based on their outgoing edges and then making a se-
lection.

There are several ways to assign a cost to a process. Simple
heuristics include finding the minimum sum of weights of edges
used, finding the minimum sum of weights for all edges, and
several other similar approaches. The optimal solution can also
be computed, but that is outside of our scope. In this paper, we
use the simple heuristic of finding the minimum sum of weights
for all edges.

Using the chosen heuristic, every process calculates a Bracha
routing table which contains all echo and ready participants for
every message origin.

To not add information to the message header, we made every
process precompute these participant tables. Processes can then
use these tables to find the participant sets for a given origin.

6 Bracha-Dolev on known topologies

In this section, we will describe how our previous optimizations
for Dolev and Bracha can be applied to Bracha-Dolev and addi-
tional cross-layer optimizations.

6.1 Applying optimizations
As Dolev is used as the lowest layer, all ORD optimizations can
be applied as-is to our improved version of Bracha-Dolev.
Bracha is used as the upper layer in Bracha-Dolev, and as
such we can not directly apply ORB.2, since it assumes a fully
connected network. However, we can use a different way of
selecting processes, by simply selecting the closest processes in
the network. The other Bracha optimization, ORB.1, can be
directly applied as it does not rely on topology knowledge.

6.2 Optimizations

In addition to applying all ORD and (modified) ORB optimiza-
tions, we can also apply some new modifications. These are
identified by ORBD.1-2.

ORBD.1: Using partial Dolev broadcast

When ORB.2 is active not all processes are participating in the
echo phase, and therefore do not need to receive these messages.
However, by default Bracha-Dolev can only perform full broad-
casts on the Dolev layer. This optimization changes that by al-
lowing partial broadcasts on the Dolev layer, i.e., some mes-
sages are not delivered by all processes. While this violates the
RC properties for Dolev, the overall Bracha-Dolev guarantees
still hold, so this is valid.

We have added this modification by adding an additional pre-
computed routing table, which takes the Bracha phase and mes-
sage origin into account. Dolev will now inspect the Bracha
message type (send, echo, or ready) to determine which routing
table to use, and transmit the messages accordingly.

ORBD.2: Merging multiple Bracha messages

The Dolev layer considers messages originating from differ-
ent processes as different Dolev broadcasts altogether, which
is technically correct even though they may all originate from
the same Bracha broadcast. However, Bracha messages from
the same Bracha-Dolev broadcast share identical payload and
origin data. This can be leveraged on the Dolev layer by identi-
fying Bracha messages belonging to the same Bracha broadcast
and merging them if possible, by utilizing the buffer created by
ORD.5.

When merging messages, a special wrapper message is trans-
mitted by a Dolev node, which neighbors can use to recon-
struct the original messages, similar to the wrapper message in
ORD.6. This wrapper message includes the original payload
and origin data, and the regular Dolev data for all merged mes-
sages. This reduces the number of times the payload is transmit-
ted, at the cost of some additional header information.

Remark This optimization can likely be extended to the
Bracha layer in addition to being just on the Dolev layer, to
leverage topology knowledge even more. However, at this time
we have no solution to this problem, but also no proof of its
infeasibility. This should be further explored in the future.

7 Evaluation

In this section, we will discuss the methodology we used and the
results of our optimizations.

7.1 Methodology

For our research we implemented an evaluation program in Go
which uses goroutines [22] as a process abstraction, and ded-
icated channels [23] as communication links. The protocol
instances are instantiated by the process wrappers, and they
have access to a network and an application instance, which
are defined by the interfaces containing Send(dst, m) and
Deliver(m) respectively. The protocols themselves provide the
Init(), Receive(src, m), and Broadcast (m) functions.

In addition to the original protocols and improved version of
Dolev [5] and a version of Dolev with naive routing was im-
plemented. These two versions are the baseline for Dolev and
Bracha-Dolev.

We focus on message complexity and network consumption,
which is defined by the total number of messages transmitted
and the total number of bytes transmitted, respectively. We men-
tion latency when notable, but this is not a statistic we focus on.
We define latency as the time between the original broadcast and
the final non-Byzantine node delivering the message.

We use similar graphs as used in [4; 5]: generalized wheels,
multipartite wheels, and random regular graphs. For the tests,



we use an AMD Ryzen 5 2600 (3.4-3.9GHz) machine. The us-
age of channels leads to a different throughput per machine, but
their performance will not limit the tests and will not affect our
main measurement.

We will run the tests with varying random graphs, broadcast-
ing process, byzantine processes, and parameters N, k, f, such
that N > 3f + 1 and k > 2f + 1, and report the mean and
standard deviation of five tests. In most tests, a single process
will broadcast a single message, unless the modifications being
tested include ORD.6 as it is specifically made for the case of
multiple broadcasters. In that case, the amount of transmitters
m is defined by N — f.

Remark Note that the latency will not be entirely representa-
tive of the latency in a real deployment, as our simulated links
have low latency which means latency is largely influenced by
computing time.

7.2 Impact of individual optimizations

We evaluated the impact of individual optimizations on message
complexity and network consumption. Table 1 summarizes our
findings for every individual modification compared to its base-
line. The baseline is different for each protocol: for Dolev, we
compare to a version with naive routing, for Bracha we compare
to the original version, and for Bracha-Dolev we compare to a
version of Bracha-Dolev which uses naive routing for the Dolev
layer and the original Bracha implementation. For these tests,
random graphs were used with a size of N = 150 for Dolev and
Bracha and N = 75 for Bracha-Dolev, and we varied the k£ and
f to find out when modifications are useful.

We will illustrate some modifications with the aforemen-
tioned configuration.

There are several modification which perform well across the
board, such as ORD.1-3,7, ORB.1,2, and ORBD.1. Others are
slightly more nuanced, however. For example, both ORD.6 and
ORBD.2 perform better when the payload is large since they
both rely on merging the payload while adding slightly more
information in a single header. The opposite is true for ORD.7,
which performs better when there is a smaller payload. This
is because this optimization tries to minimize the information
contained in the message header, which is insignificant if a large
part of the message consists of the payload data.

Another optimization, ORD.5, does not show significant im-
provement. However, this lack of performance is offset by the
fact that both ORD.6 and ORBD.2 rely on this modification.
Another modification not showing significant improvements is
ORD.4. While a part of this is likely caused by a non-optimal
algorithm to reuse paths, it can also be attributed to the fact that
it heavily relies on ORD.3 to complete its task and needs an
oversaturated network.

It is also interesting to note the dependencies between mod-
ifications. For example, ORDB.2 on its own does not improve
the protocol that much. However, when combined with ORD.2
and ORD.3 the number of messages merged increases more than
tenfold. The reason being that these two modifications cause a
lot of messages to end up in the buffer and also cause quicker
deliveries, leading to more merging in ORDB.2.

The opposite is also true, some modifications are mutually ex-
clusive. For example, ORD.6 is unable to merge messages when
ORBD.2 is active since they share the same buffer and ORBD.2
changes the payload temporarily. For this reason, it is recom-
mended to prefer ORD.6 over ORBD.2 when all processes are
broadcasting identical payloads.

7.3 Improvements

In addition to comparing individual modifications, we will eval-
uate the performance of our fully modified protocols. Figure 7
shows the reduction of our protocol compared to Dolev, Bracha,
and Bracha-Dolev with regards to the message complexity. The
reduction is relative to the same baseline used for the individual
modifications.

For Dolev and Bracha-Dolev we again use random graphs
with V = 150 and NV = 75 respectively, and vary the connectlv-
ity k. The number of Byzantine nodes f is defined by L L. In
the case of Bracha we have can only use fully connected graphs,
and will therefore vary the number of processes N depending on
the connect1v1ty The number of byzantine nodes, in this case, is
defined by L ’ |. In all cases, the payload size is equal to 12B.

These tests show we can achieve a mean reduction of
79.49% (+/-0.93%) for Dolev, 23.32% for Bracha, and 89.54%
(+/-0.22%) for Bracha-Dolev under the conditions mentioned
above. The reduction in bytes transmitted is similar: 85.86%
(+/-0.68%), 23.32%, and 92.32% (+/-0.17%) respectively.
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Figure 7: Reduction of message complexity using K-random graphs
and fully- connected graphs (Bracha), whlle varying the connectivity.
'N =150,>N =75,"f = | 52|, f = | &]

7.4 Scalability

In real deployments, the number of processes in the network will
likely scale quickly, which is why we also evaluated the scala-
bility of the protocol for an increasing number of processes. We
considered graphs that include 25 to 150 processes in increments
of 25. The connectivity k£ and Byzantine parameter f are defined
ask = |¥]and f = | 21| for (Bracha-)Dolev and f = ||
for Bracha. The other configuration is identical to the previous
sections.

The evaluation for Bracha-Dolev was unable to continue after
75 processes, due to resource constraints; the version with naive
routing and no additional optimizations was using too much
memory® during testing. We expect the trend of outperform-
ing the base version on larger networks to continue, leading us
to believe the reduction would be around 87% for the larger net-
works.

From these experiments we can see that the message com-
plexity reduction is not decreasing, which means in terms of
message complexity and network usage our modified versions
scale well with the number of processes. However, the latency
is still doubling after each increment, suggesting exponential
growth. The modified protocols still outperformed the baseline

*12GiB on a 16GiB system in this case



Small payload (12B) Large payload (12KB)

ID Msg. red. % Useful when Usage red. % Useful when Msg. red. % Useful when Usage red. % Useful when
ORD.1 10.18% (+/-2.65%) small kA large f* | 8.29% (+/-3.05%)  small kA large f* | 8.67% (+/-3.47%)  small kA large f* | 8.63% (+/-3.48%)  small kA large f*
ORD.2 | 34.65% (+/-2.41%) large k* 34.82% (+/-2.78%) large k* 32.71% (+/-3.01%) large k* 32.70% (+/-3.01%) large k*
ORD.3 | 63.06% (+/-1.37%) always 10.11% (+/-2.94%) always 62.03% (+/-1.77%) always 61.29% (+/-1.80%) always
ORD.4 | 0.84% (+/-3.04%) large f 0.77% (+/-3.46%) large f -0.90% (+/-3.81%) - -0.90% (+/-3.82%) -

ORD.5 2.09% (+/-2.99%) always 1.63% (+/-3.43%) always -0.06% (+/-4.04%) - 0.07% (4.05%) -

ORD.6 | 6.18% (+/-0.33%) small f* 0.81% (+/-0.22%) small f 6.41% (+/-0.19%) small f 6.31% (+/-0.18%) small f
ORD.7 1.41% (+/-3.09%) - 66.15% (+/-1.38%) always 0.05% (+/-4.51%) - 0.81% (+/-4.47%) -

ORB.1 0.41% (+/-0%) always 0.41% (+/-0%) always 0.41% (+/-0%) always 0.41% (+/-0%) always
ORB.2 41.73% (+/-0%) small f 41.73% (+/-0%) small f 41.73% (+/-0%) small f 40.91% (+/-0%) small f
ORBD.1 | 24.51% (+/-2.71%) small kA small f* | 24.68% (+/-2.73%) small kA small f* | 21.66% (+/-2.03%) small kA small f* | 21.66% (+/-2.03%) small kA small f*
ORBD.2 | 1.25% (+/-1.12%) always -3.04% (+/-1.96%) never 0.2% (+/-0.82%) - 0.14% (+/-0.83%) -

Table 1: Effect of modifications measured on random graphs compared to their respective protocol standard. The mean reduction and standard error
are listed respectively, in addition to a small description of the best use-cases. Note that descriptions marked with a star* are always useful, but will

perform best in the given use-case.

in terms of latency by 25.16%, 22.38%, and 50.19% for Dolev,
Bracha, and Bracha-Dolev respectively.

100
< [—
= T5F s
1S
§ e Dolev?
'g 50 | —— Bracha-Dolev? ||
= ——  Bracha’
Z
= 2
=

0 | | | |

25 50 75 100 125 150

Processes

Figure 8: Reduction of message complexity using K-random graphs
and fully-connected graphs (Bracha), while varying the number of pro-
cesses. k= [ ¥ |, f = | 551).°F = | &)

7.5 Discussion

While our results are promising, we have focused on two main
statistics: message complexity and network usage. This means
that other statistics such as latency have sometimes been sacri-
ficed to enhance our chosen statistics, as is the case with ORD.6
and ORBD.2 for example. This might not be desired in some
systems.

As mentioned earlier, the measured latency is not fully rep-
resentative of the real world. Something similar is true for the
measured network usage, as we use the size of internal struc-
tures as measurement. While this size is mostly representative
of the actual size, it also includes some internal headers which
would not be transmitted, and should therefore not be included.
However, this will have no significant impact on our results as
all measurements will include a similar size for internal data,
which means the relative reductions will not be affected.

Our evaluation was completed on a simulated network using
Go channels [23], which limits our evaluation to a single ma-
chine with no bandwidth limits. A more elaborate evaluation
should use multiple systems, to evaluate the protocol on a real
network. Our evaluation platform can be relatively easily mod-
ified to use a framework such as ZeroMQ [24] or plain TCP
sockets, as the network evaluation layer is completely abstracted
from the protocol layer. However, our evaluation platform also
uses a controller to run processes and set correct parameters,
which should also be modified to work on multiple machines.

For the sake of time, this was not implemented for this paper,
but the proper abstraction was used to have the possibility for
extension for future papers.

Some optimizations introduced by Bonomi et al. [4] can also
be translated to our protocol, which could reduce the message
complexity even further. Some have already been used (MBD.2,
MBD.12), while others could be implemented with (MBD.3,
MBD.4) or without (MBD.7, MBD.8) slight modifications.

We can safely conclude that we can indeed reduce the num-
ber of messages when leveraging topology knowledge, but the
system model might be too strict for modern networks as they
are generally dynamic instead of static.

8 Broader impact and reproducibility

Our research focused on improving existing protocols. This
means we guarantee the same properties as the original proto-
cols while putting the network under less stress in certain sys-
tems. For this reason, there are no inherent risks to our work. In
addition to this, there are limited malicious uses for our work,
as it works as an underlying protocol similar to the regular in-
ternet protocol. However, our modifications add a considerable
amount of complexity to the protocol, allowing for more devel-
oper error possibly leading to violated protocol properties.

Now that we have discussed the broader impact of our work,
its reproducibility should also be mentioned. All of our results
are retrieved from a standalone binary whose source will be pub-
lished together with this paper. The program has a low barrier
of entry and can be used by anyone since the program is written
in a widely supported language (Go) and has no other system
dependencies. The program can be found in the GitLab reposi-
tory4.

The exact configurations used can be deduced from the eval-
uation section, and are also included in the provided command-
line tool. These can then be executed by the program. The exact
graphs used for evaluation will also be published along with the
code, although a user can also choose to generate new graphs.

It is important to note that results may be different for ev-
ery computer, as the program will execute everything as fast as
possible. However, the relative differences between the original
protocols and our improved versions will be closer to the results
showed in our paper.

9 Conclusion and Future work

In this paper, we have introduced the Byzantine Reliable Broad-
cast problem on partially connected networks and fully con-
nected networks where the topology is known to all processes.

*https://gitlab.tudelft.nl/jdecouchant/rp21-group31-4-anema
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We started by introducing the current state of the problem and
how the original protocols work. We continued by elaborating
on how one can find the required paths through the network for
Dolev, and then how this information can be used to build rout-
ing tables for processes. We then described 9 modifications to
Dolev, Bracha, and Bracha-Dolev, and evaluated each modifi-
cation separately. When we combine all modifications, we pro-
vide a solution with a lower message complexity and network
usage than existing solutions, a reduction of 71.9% and 79.4%
respectively with a 12B payload when N = 150 and f = 20
for Dolev. We have concluded that we can indeed reduce the
number of messages transmitted when processes have topology
knowledge.

This work can be extended in the future by deploying our
modified protocols on real infrastructure to get accurate mea-
surements as opposed to simulations. Furthermore, the dis-
joint path solver can likely be further optimized by enhanc-
ing the pathfinding and (re)using better-suited data structures.
Applying our modifications to dynamic networks should also
be researched further. In addition to this, we use several sim-
ple heuristics in our paper (ORB.2, ORD.5) which should be
replaced by optimal solutions or improved heuristics. An-
other interesting direction is that of topology discovery [10; 11;
12]. Previously unknown networks can use optimizations spe-
cific for known networks when matched with a topology discov-
ered. One challenge to overcome in this scenario is the tolerance
for imperfect routing tables.
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A Appendix
A.1 Pseudocode

Algorithm 2: Dolev’s Reliable Communication routed
algorithm

1 On event Init:
2 delivered = False
3 | paths=0

4 On event Receive (p,ecy, M, path, planned):
5 path = path U {precy }

6 forall p; € planned do

7 | transmit(p;, m, path, planned)

8 paths.add(path)
if paths contains f + 1 node-disjoint paths to the
origin and delivered = False then

10 deliver(m)

11 delivered = True

12 On event Broadcast(m):

13 deliver(m)

14 delivered = True

15 forall (p;, route) € routingTable do
16 L transmit(p;, m, 0, route)
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Algorithm 3: Bracha’s authenticated double echo algo-
rithm

1 Onevent Init:

2
3

4
5
6
7

sentEcho = sentReady = delivered = False
echos = readys = ()

On event ReceiveEcho (p,ccy, M)

if not sentEcho then
forall p; € neighbours do
L transmit(p;, m, ECHO)
sentEcho = True
echos.add(pyecy)
if len(echos) > (N%f“} and not sentReady then
forall p; € neighbours do
| transmit(p;, m, READY)

sentReady = True

On event ReceiveReady (p,ecy, M)

readys.add(p,ecy)
if len(readys) > f + 1 and not sentReady then
forall p; € neighbours do
| transmit(p;, m, READY)
sentReady = True
if len(readys) > 2f + 1 and not delivered then

deliver(m)
delivered = True

On event Broadcast(m):

forall p; € neighbours do
transmit(p;, m, SEND)
B transmit(p;, m, ECHO)

10
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