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A second-level diagonal preconditioner 
for single-step SNPBLUP
Jeremie Vandenplas1* , Mario P. L. Calus1, Herwin Eding2 and Cornelis Vuik3

Abstract 

Background: The preconditioned conjugate gradient (PCG) method is an iterative solver of linear equations systems 
commonly used in animal breeding. However, the PCG method has been shown to encounter convergence issues 
when applied to single-step single nucleotide polymorphism BLUP (ssSNPBLUP) models. Recently, we proposed a 
deflated PCG (DPCG) method for solving ssSNPBLUP efficiently. The DPCG method introduces a second-level precon-
ditioner that annihilates the effect of the largest unfavourable eigenvalues of the ssSNPBLUP preconditioned coeffi-
cient matrix on the convergence of the iterative solver. While it solves the convergence issues of ssSNPBLUP, the DPCG 
method requires substantial additional computations, in comparison to the PCG method. Accordingly, the aim of this 
study was to develop a second-level preconditioner that decreases the largest eigenvalues of the ssSNPBLUP precon-
ditioned coefficient matrix at a lower cost than the DPCG method, in addition to comparing its performance to the 
(D)PCG methods applied to two different ssSNPBLUP models.

Results: Based on the properties of the ssSNPBLUP preconditioned coefficient matrix, we proposed a second-level 
diagonal preconditioner that decreases the largest eigenvalues of the ssSNPBLUP preconditioned coefficient matrix 
under some conditions. This proposed second-level preconditioner is easy to implement in current software and does 
not result in additional computing costs as it can be combined with the commonly used (block-)diagonal precondi-
tioner. Tested on two different datasets and with two different ssSNPBLUP models, the second-level diagonal pre-
conditioner led to a decrease of the largest eigenvalues and the condition number of the preconditioned coefficient 
matrices. It resulted in an improvement of the convergence pattern of the iterative solver. For the largest dataset, the 
convergence of the PCG method with the proposed second-level diagonal preconditioner was slower than the DPCG 
method, but it performed better than the DPCG method in terms of total computing time.

Conclusions: The proposed second-level diagonal preconditioner can improve the convergence of the (D)PCG 
methods applied to two ssSNPBLUP models. Based on our results, the PCG method combined with the proposed 
second-level diagonal preconditioner seems to be more efficient than the DPCG method in solving ssSNPBLUP. How-
ever, the optimal combination of ssSNPBLUP and solver will most likely be situation-dependent.

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/
publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Since its introduction in the late 1990s [1], the precon-
ditioned conjugate gradient (PCG) method has been 
the method of choice to solve breeding value estima-
tion models in animal breeding. Likewise, the systems 
of linear equations of the different single-step single 
nucleotide polymorphism BLUP (ssSNPBLUP) models 

are usually solved with the PCG method with a diagonal 
(also called Jacobi) or block-diagonal preconditioner [2–
4]. Several studies [3–6] observed that the PCG method 
with such a preconditioner applied to ssSNPBLUP is 
associated with slower convergence. By investigating the 
reasons for these convergence issues, Vandenplas et  al. 
[4] observed that the largest eigenvalues of the precon-
ditioned coefficient matrix of ssSNPBLUP proposed by 
Mantysaari and Stranden [7], hereafter referred to as 
ssSNPBLUP_MS, resulted from the presence of the equa-
tions for single nucleotide polymorphism (SNP) effects. 
In their study, applying a deflated PCG (DPCG) method 
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to ssSNPBLUP_MS solved the convergence issues [4]. 
In comparison to the PCG method, the DPCG method 
introduces a second-level preconditioner that annihilates 
the effect of the largest eigenvalues of the preconditioned 
coefficient matrix of ssSNPBLUP_MS on the convergence 
of the iterative solver. After deflation, the largest eigen-
values of the ssSNPBLUP_MS preconditioned deflated 
coefficient matrix were reduced and close to those of sin-
gle-step genomic BLUP (ssGBLUP). As a result the asso-
ciated convergence patterns of ssSNPBLUP were, at least, 
similar to those of ssGBLUP [4].

While it solves the convergence issues associated with 
ssSNPBLUP, the DPCG method requires the computa-
tion and storage of the so-called Galerkin matrix, which 
is a dense matrix that could be computationally expen-
sive for very large evaluations and that requires some 
effort to be implemented in existing software. In addi-
tion, as implemented in Vandenplas et al. [4], each itera-
tion of the DPCG method requires two multiplications 
of the coefficient matrix by a vector, instead of one mul-
tiplication for the PCG method. As a result, computing 
time per iteration with the DPCG method is roughly 
twice as long as with the PCG method. Accordingly, it is 
of interest to develop a second-level preconditioner that 
would reduce the largest eigenvalues of the precondi-
tioned coefficient matrix of ssSNPBLUP at a lower cost 
than the DPCG method. As such, the aim of this study 
was to develop a second-level preconditioner that would 
decrease the unfavourable largest eigenvalues of the pre-
conditioned coefficient matrix of ssSNPBLUP and to 
compare its performance to the DPCG method. The per-
formance of the proposed second-level preconditioner 
was tested for two different ssSNPBLUP models.

Methods
Data
The two datasets used in this study, hereafter referred to 
as the reduced and field datasets, were provided by CRV 
BV (The Netherlands) and are the same as in Vandenp-
las et al. [4], in which these two datasets are described in 
detail.

Briefly, for the reduced dataset, the data file included 
61,592 ovum pick-up sessions from 4109 animals and the 
pedigree included 37,021 animals. The 50K SNP geno-
types of 6169 animals without phenotypes were avail-
able. A total of 9994 segregating SNPs with a minor allele 
frequency higher than or equal to 0.01 were randomly 
sampled from the 50K SNP genotypes. The number of 
SNPs was limited to 9994 to facilitate the computation 

and the analysis of the left-hand side of the mixed model 
equations. The univariate mixed model included ran-
dom effects (additive genetic, permanent environmental 
and residual), fixed co-variables (heterosis and recom-
bination) and fixed cross-classified effects (herd-year, 
year-month, parity, age in months, technician, assistant, 
interval, gestation, session and protocol) [8].

For the field dataset, the data file included 3,882,772 
records with a single record per animal. The pedigree 
included 6,130,519 animals. The genotypes, includ-
ing 37,995 segregating SNPs, of 15,205 animals without 
phenotypes and of 75,758 animals with phenotypes were 
available. The four-trait mixed model included random 
effects (additive genetic and residual), fixed co-variables 
(heterosis and recombination) and fixed cross-classified 
effects (herd x year x season at classification, age at clas-
sification, lactation stage at classification, milk yield and 
month of calving) [9, 10].

Single‑step SNPBLUP models
In this study, we investigated two ssSNPBLUP linear 
equations systems. The first system was proposed by 
Mantysaari and Stranden [7] (ssSNPBLUP_MS). This 
system was also investigated in Vandenplas et al. [4]. The 
standard multivariate model associated with the ssSNPB-
LUP_MS system of equations can be written as:

where the subscripts g and n refer to genotyped and 
non-genotyped animals, respectively, y is the vector of 
records, β is the vector of fixed effects, un is the vector 
of additive genetic effects for non-genotyped animals, ag 
is the vector of residual polygenic effects for genotyped 
animals, g is the vector of SNP effects and e is the vector 
of residuals. The matrices X , Wn and Wg are incidence 
matrices relating records to their corresponding effects. 
The matrix Mz is equal to Mz = It ⊗ Z , with It being an 
identity matrix with size equal to the number of traits t 
and the matrix Z containing the SNP genotypes (coded as 
0 for one homozygous genotype, 1 for the heterozygous 
genotype, or 2 for the alternate homozygous genotype) 
centred by their observed means.

The system of linear equations for multivariate ssSN-
PBLUP_MS can be written as follows:
CMSxMS = bMS  

where 

y = Xβ+
�

Wn 0 0
0 Wg WgMz

�





un
ag
g



+ e
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 is a symmetric positive (semi-)definite coefficient matrix, 

xMS =









β̂
ûn
âg
ĝ









 is the vector of solutions, and 

 is the right-hand side with 

 being the inverse of the residual (co)variance structure 
matrix. The matrix �−1

MS is the inverse of the covariance 
matrix associated with un , ag and g , and is equal to 

 The matrix Q is equal to Q = Agn(Ann)−1Ang , with 

being the inverse of the pedigree relationship matrix. The 
parameter w is the proportion of variance (due to addi-
tive genetic effects) considered as residual polygenic 
effects and m = 2

∑

po(1− po) with po being the allele 
frequency of the oth SNP.

The second system of linear equations investigated in 
this study is the system of equations proposed by Gengler 
et al. [11] and Liu et al. [5], hereafter referred to as ssSN-
PBLUP_Liu. The system of linear equations for a multi-
variate ssSNPBLUP_Liu can be written as follows:

 where 
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.

A−1 =
[

Ann Ang

Agn Agg

]

CLxL = bL

 and 

The matrix �−1
L  is equal to 

 with A−1
gg = Agg −Q.

It is worth noting that the absorption of the equa-
tions associated with ĝ of ssSNPBLUP_Liu results in the 
mixed model equations of single-step genomic BLUP 
(ssGBLUP) for which the inverse of the genomic rela-
tionship matrix is calculated using the Woodbury for-
mula [12]. Several studies (e.g., [13–15]) investigated the 
possibility of using specific knowledge of a priori vari-
ances to weight differently some SNPs in ssGBLUP. Such 
approaches are difficult to extend to multivariate ssGB-
LUP, while they can be easily applied in ssSNPBLUP by 
replacing the matrix G−1

0 ⊗ m
1−w I by a symmetric positive 

definite matrix B that contains SNP-specific (co)vari-
ances obtained by, e.g., Bayesian regression [5].

In the following, matrix C will refer to either CMS or CL 
(and similarly for the vectors x and b ). In addition, the 
matrices CMS and CL have the same structure, and both 
can be partitioned between the equations associated with 
SNP effects (S) and the equations associated with the 
other effects (O), as follows:

CL =











X
′
R
−1

X X
′
nR

−1
n Wn X

′
gR

−1
g Wg 0

W
′
nR

−1
n Xn W

′
nR

−1
n Wn +�

11
L �

12
L �

13
L

W
′
gR

−1
g Xg �

21
L W

′
gR

−1
g Wg +�

22
L �

23
L

0 �
31
L �

32
L �

33
L











,

xL =









β̂
ûn
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From this partition, it follows that CMSOO = CLOO and 
that CSO , COS , and CSS are dense matrices.

The PCG method
The PCG method is an iterative method that uses succes-
sive approximations to obtain more accurate solutions 
for a linear system at each iteration step [16]. The precon-
ditioned systems of the linear equations of ssSNPBLUP_
MS and of ssSNPBLUP_Liu have the form:

where M is a (block-)diagonal preconditioner.
In this study, the (block-)diagonal preconditioner M is 

defined as:

where the subscripts f and r refer to the equations asso-
ciated with fixed and random effects, respectively and 
block_diag(Crr) is a block-diagonal matrix with blocks 
corresponding to equations for different traits within a 
level (e.g., an animal).

After k iterations of the PCG method applied to the Eq. 
(1), the error is bounded by [16, 17]:

where CM = M−1C , ||x||C is the C-norm of x , defined 
as 

√
x′Cx , and κ(CM) is the effective spectral condition 

number of CM , that is defined as �max(CM)
�min(CM)

 with �max(CM) 
( �min(CM) ) being the largest (smallest) non-zero eigen-
value of CM.

The deflated PCG method
Vandenplas et al. [4] showed that the largest eigenvalues 
of the ssSNPBLUP_MS preconditioned coefficient matrix 
CM were larger than those of the ssGBLUP precondi-
tioned coefficient matrix, while the smallest eigenvalues 
were similar. This resulted in larger effective condition 
numbers κ(CM) and convergence issues for ssSNPB-
LUP_MS. As applied by Vandenplas et al. [4], the DPCG 
method annihilates the largest unfavourable eigenvalues 
of the ssSNPBLUP_MS preconditioned coefficient matrix 
CM , which resulted in effective condition numbers and 
convergence patterns of ssSNPBLUP_MS similar to those 
of ssGBLUP solved with the PCG method. The precondi-
tioned deflated linear systems of ssSNPBLUP_MS and of 
ssSNPBLUP_Liu mixed model equations have the form:

C =
[

COO COS

CSO CSS

]

.

(1)M−1Cx = M−1b,

M =
[

Mff 0
0 Mrr

]

=
[

diag
(

Cff

)

0
0 block_diag(Crr)

]

∣

∣

∣

∣x − x̂k
∣

∣

∣

∣

C
≤ 2

∣

∣

∣

∣x − x̂0
∣

∣

∣

∣

C

(
√
κ(CM)− 1√
κ(CM)+ 1

)k

where P is a second-level preconditioner, called the defla-
tion matrix, equal to P = I− CZdE

−1Z′
d , with the matrix 

Zd being the deflation-subspace matrix as defined in 
Vandenplas et al. [4] and E = Z′

dCZd being the Galerkin 
matrix.

A second‑level diagonal preconditioner
The DPCG method requires the computation and the 
storage of the Galerkin matrix E , which is computation-
ally expensive for very large evaluations [4]. Furthermore, 
as implemented in Vandenplas et  al. [4], each iteration 
of the DPCG method requires two multiplications of the 
coefficient matrix C by a vector, instead of one multipli-
cation for the PCG method. Here, our aim is to develop 
another second-level preconditioner that decreases the 
largest eigenvalues of the preconditioned coefficient 
matrix CM at a lower cost than the DPCG method and 
results in smaller effective condition numbers and better 
convergence patterns.

To achieve this aim, we introduce a second-level diago-
nal preconditioner defined as:

where IOO is an identity matrix of size equal to the num-
ber of equations that are not associated with SNP effects, 
ISS is an identity matrix of size equal to the number of 
equations that are associated with SNP effects, kO and kS 

are real positive numbers and D̃ =
[

IOO 0

0 kS
kO
ISS

]

 . Possi-

ble values for kO and kS are discussed below.
Therefore, the preconditioned system of Eq. (1) is mod-

ified as follows:

Hereafter, we show that the proposed second-level pre-
conditioner D applied to ssSNPBLUP systems of equa-
tions results in smaller effective condition numbers by 
decreasing the largest eigenvalues of the preconditioned 
coefficient matrices. For simplicity, the symmetric pre-
conditioned coefficient matrix D

−1/2
M

−1/2
CM

−1/2

D
−1/2 = D

−1/2
C̃D

−1/2 with C̃ = M−1/2CM−1/2 is used 
instead of D−1M−1C . Indeed, these two matrices have 
the same spectrum, i.e., the same set of eigenvalues. In 
addition, the effective condition number of D−1/2C̃D−1/2 , 
κ

(

D−1/2C̃D−1/2
)

 , is equal to the effective condition 

number of D̃−1/2C̃D̃−1/2 , κ
(

D̃−1/2C̃D̃−1/2
)

 , because:

M−1PCx = M−1Pb,

D =
[

kOIOO 0
0 kSISS

]

= kO

[

IOO 0

0 kS
kO
ISS

]

= kOD̃

(2)D−1M−1Cx = D−1M−1b.
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with �min

(

k−1
O D̃

−1/2
C̃D̃

−1/2
)

= k−1
O �min

(

D̃
−1/2

C̃D̃
−1/2

)

 , and 

�max

(

k−1
O D̃−1/2C̃D̃−1/2

)

= k−1
O �max

(

D̃−1/2C̃D̃−1/2
)

.

The result is that κ
(

D−1/2C̃D−1/2
)

 depends only on D̃ 
and therefore only on the kO/kS ratio.

Regarding the largest eigenvalues of the preconditioned 
coefficient matrix D−1/2C̃D−1/2 or equivalently of 
D−1M−1C , the effect of the second-level preconditioner 
D on �max

(

D−1/2C̃D−1/2
)

 can be analysed using the Ger-
shgorin circle theorem [18]. From this theorem, it follows 
that the largest eigenvalue of the preconditioned coeffi-
cient matrix D−1/2C̃D−1/2 is bounded by, for all ith and 
jth equations:

Partitioned between the equations associated with SNP 
effects (S) and with the other effects (O), it follows from 
Eq. (3) that �max

(

D−1/2C̃D−1/2
)

 has the following lower 
and upper bounds (see Additional file  1 for the 
derivation):

with a = maxk

{

C̃OOkk
+

∑

j �=k |C̃OOkj
| +

√

kO
kS

∑

j �=k |C̃OSkj |
}

,

b = max1

{

kO
kS
C̃SSll +

kO
kS

∑

j �=l |C̃SSlj | +
√

kO
kS

∑

j �=l |C̃SOlj
|
}

 
and k and l referring to the equations not associated with 
and associated with SNP effects, respectively.

Therefore, for a fixed value of kO , the upper bound of 
�max

(

D−1/2C̃D−1/2
)

 will decrease with decreasing kO/kS 

ratios, up to the lowest upper bound k−1
O maxk

{

C̃OOkk
 

+
∑

j �=k |C̃OOkj
|
}

 , that is the upper bound of  

k−1
O �max

(

C̃OO

)

.

κ

(

D−1/2C̃D−1/2
)

=
�max

(

D−1/2C̃D−1/2
)

�min

(

D−1/2C̃D−1/2
)

=
�max

(

k−1
O D̃−1/2C̃D̃−1/2

)

�min

(

k−1
O D̃−1/2C̃D̃−1/2

)

=
�max

(

D̃−1/2C̃D̃−1/2
)

�min

(

D̃−1/2C̃D̃−1/2
)

= κ

(

D̃−1/2C̃D̃−1/2
)

(3)

�max

�

D
−1/2

C̃D
−1/2

�

≤ maxi






D
−1/2
ii C̃iiD

−1/2
ii +

�

j �=i

|D−1/2
ii C̃ijD

−1/2
jj |







.

(4)
k−1
O �max

(

C̃OO

)

≤ �max

(

D−1/2C̃D−1/2
)

≤ k−1
O max

{

a, b
}

,

Nevertheless, decreasing the largest eigenvalue does  
not (necessarily) mean decreasing the effective condition  
number κ

(

D
−1/2

C̃D
−1/2

)

 , because �min

(

D
−1/2

C̃D
−1/2

)

  
could decrease at the same rate as, or faster than �max
(

D
−1/2

C̃D
−1/2

)

 leading to constant or larger κ
(

D
−1/2

C̃D
−1/2

)

 . As such, it is required that �min

(

D−1/2C̃D−1/2
)

 
decreases at a lower rate, remains constant, or even 
increases, when �max

(

D−1/2C̃D−1/2
)

 decreases with 
decreasing kO/kS ratios. This would be achieved if 
�min

(

D−1/2C̃D−1/2
)

 is independent of kS . Hereafter, we 
formulate a sufficient condition to ensure that 
�min

(

D−1/2C̃D−1/2
)

= k−1
O �min

(

C̃
)

 for any kO/kS ratio.
Let the matrix Ṽ be a matrix containing (column-

wise) all the eigenvectors of C̃ sorted according to the 
ascending order of their associated eigenvalues. The set 
of eigenvalues of C̃ sorted according to their ascending 
order is hereafter called spectrum of C̃ . The matrix Ṽ can 
be partitioned into a matrix Ṽ1 storing eigenvectors asso-
ciated with eigenvalues at the left-hand side of the spec-
trum (that includes the smallest eigenvalues) of C̃ and a 
matrix Ṽ2 storing eigenvectors at the right-hand side of 
the spectrum (that includes the largest eigenvalues)of C̃ , 
and between equations associated with SNP effects or 
not, as follows: 

A sufficient condition to ensure that 
�min

(

D−1/2C̃D−1/2
)

= k−1
O �min

(

C̃
)

 is that ṼS1 = 0 , 
ṼO2 = 0 and that all eigenvalues associated with an 
eigenvector of Ṽ2 are equal to, or larger than kSkO �min

(

C̃
)

 
(see Additional file 2 for proof). Therefore, the effective 
condition numbers κ

(

D−1/2C̃D−1/2
)

 will decrease with 
decreasing kO/kS ratios until the largest eigenvalue 
�max

(

D−1/2C̃D−1/2
)

 reaches its lower bound k−1
O �max

(

C̃OO

)

 , as long as the sufficient condition is satisfied. In 
practice, the pattern of the matrix Ṽ will never be as 
required by the sufficient condition, because the subma-
trices C̃OS and C̃SO contain non-zero entries. However, 
this sufficient condition is helpful to formulate the expec-
tation that convergence of the models will improve with 
decreasing kO/kS ratios up to a point that can either be 
identified from the analyses or by computing the eigen-
values of C̃.

Analyses
Eigenvalues and eigenvectors of ssSNPBLUP_MS pre-
conditioned coefficient matrices D−1/2C̃D−1/2 with val-
ues of kS from 1 to 105 (and kO = 1 ) were computed for 

Ṽ =
[

Ṽ1 Ṽ2

]

=
[

ṼO1 ṼO2

ṼS1 ṼS2

]

.
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the reduced dataset using the subroutine dsyev provided 
by Intel(R) Math Kernel Library (MKL) 11.3.2.

Using the matrix-free version of the software devel-
oped in Vandenplas et  al. [4], the system of ssSNPB-
LUP_MS and ssSNPBLUP_Liu equations for the reduced 
and field datasets were solved with the PCG and DPCG 
methods together with the second-level preconditioner 
D for different values of kS (with kO = 1 ). The second-
level preconditioner D was implemented by combining 
it with the preconditioner M , as M̃ = DM . Accordingly, 
its implementation has no additional costs for an itera-
tion of the PCG and DPCG methods. The DPCG method 
was applied with 5 SNP effects per subdomain [4]. To 
illustrate the effect of kO , the system of ssSNPBLUP_MS 
equations was also solved for the reduced dataset with 
the PCG method and different values of kO (with kS = 1 ). 
For both the PCG and DPCG methods, the iterative pro-
cess stopped when the relative residual norm was smaller 
than 10−6 . For all systems, the smallest and largest 
eigenvalues that influence the convergence of the itera-
tive methods were estimated using the Lanczos method 
based on information obtained from the (D)PCG method 
[16, 19, 20]. Effective condition numbers were computed 
from these estimates [17].

All real vectors and matrices were stored using double 
precision real numbers, except for the preconditioner, 
which was stored using single precision real numbers. All 
computations were performed on a computer with 528 
GB and running RedHat 7.4 (x86_64) with an Intel Xeon 
E5-2667 (3.20 GHz) processor with 16 cores. The number 
of OpenMP threads was limited to 5 for both datasets. 
Time requirements are reported for the field dataset. 
All reported times are indicative, because they may have 
been influenced by other jobs running simultaneously on 
the computer.

Results
Reduced dataset
The spectra of the ssSNPBLUP_MS preconditioned 
coefficient matrices D−1/2C̃D−1/2 solved with the PCG 
method and with kS values from 1 to 105 (and kO = 1 ) 
are depicted in Fig.  1. It can be observed that the larg-
est eigenvalues decreased with decreasing kO/kS ratios, 
up to kO/kS = 10−2 (Fig. 1; Table 1). On the other side of 
the spectrum, a set of approximately 10,000 small eigen-
values that decrease with decreasing kO/kS ratios can be 
observed.

Fig. 1 Eigenvalues of different preconditioned coefficient matrices C̃ for the reduced dataset. Eigenvalues of the preconditioned coefficient 
matrices of ssSNPBLUP_MS are depicted on a logarithmic scale. All eigenvalues less than 10−10 were set to 10−10 . Eigenvalues are sorted in 
ascending order
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Figures  2,  3 and  4 depict all the eigenvectors of the 
ssSNPBLUP_MS preconditioned coefficient matrices 
D−1/2C̃D−1/2 with different values of kS (and kO = 1 ). 
Non-zero eigenvector entries indicate an association 
of the eigenvalue (associated with this eigenvector) 
and the corresponding equations, while (almost) zero 
entries indicate no such (or a very weak) association. 
When kO/kS = 1 , it can be observed that the smallest 

eigenvalues of D−1/2C̃D−1/2 are mainly associated with 
the equations that are not associated with SNP effects. 
On the other side, with kO/kS = 1 , the largest eigenval-
ues of D−1/2C̃D−1/2 are mainly associated with the equa-
tions that are associated with SNP effects (Figs.  2 and 
3). Decreasing kO/kS ratios resulted in modifying the 
associations of the extremal eigenvalues (i.e. the small-
est and largest eigenvalues) with the equations. Indeed, 

Table 1 Characteristics of preconditioned (deflated) coefficient matrices, and of PCG and DPCG methods for solving 
ssSNPBLUP applied to the reduced dataset

a MS = ssSNPBLUP model proposed by Mantysaari and Stranden [7]; Liu = ssSNPBLUP model proposed by Liu et al. [5]
bNumber of SNP effects per subdomain is within brackets
cParameters used for the second-level preconditioner D
dSmallest and largest eigenvalues of the preconditioned (deflated) coefficient matrix
eCondition number of the preconditioned (deflated) coefficient matrix
fNumber of iterations. A number of iterations equal to 10,000 means that the method failed to converge within 10,000 iterations

Modela Methodb k
c
O

k
c
S

kO/kS �
d
min

�
d
max

κ
e

N
f

MS PCG 1 1 1 1.07× 10
−04

1.81× 10
2

1.70× 10
6 1499

MS PCG 1 2 0.5 1.07× 10
−04 9.11× 10

1
8.55× 10

5 1103

MS PCG 1 3.3 0.3 1.07× 10
−04 5.51× 10

1
5.17× 10

5 862

MS PCG 1 10
1

10
−1

1.07× 10
−04 1.91× 10

1
1.79× 10

5 560

MS PCG 1 10
2

10
−2

1.07× 10
−04 1.19× 10

1
1.12× 10

5 417

MS PCG 1 10
3

10
−3

1.06× 10
−04 1.19× 10

1
1.12× 10

5 608

MS PCG 1 10
4

10
−4

4.86× 10
−05 1.19× 10

1
2.45× 10

5 1254

MS PCG 1 10
5

10
−5

4.87× 10
−06 1.19× 10

1
2.45× 10

6 2350

MS PCG 10
−1 1 10

−1
1.07× 10

−03
1.91× 10

2 1.79× 10
5 557

MS PCG 10
−2 1 10

−2
1.07× 10

−02
1.19× 10

3 1.12× 10
5 416

MS PCG 10
−3 1 10

−3
1.06× 10

−01 1.19× 10
4

1.12× 10
5 606

MS PCG 10
−4 1 10

−4
4.86× 10

−01 1.19× 10
5

2.45× 10
5 1254

MS PCG 10
−5 1 10

−5
4.86× 10

−01
1.19× 10

6
2.45× 10

6 2367

MS DPCG (1) 1 1 1 1.09× 10
−04 6.44 5.93× 10

4 294

MS DPCG (1) 1 10
5

10
−5

1.09× 10
−04 6.44 5.92× 10

4 293

MS DPCG (5) 1 1 1 1.07× 10
−04 6.44 6.03× 10

4 342

MS DPCG (5) 1 10
1

10
−1

1.07× 10
−04 6.44 6.03× 10

4 331

MS DPCG (5) 1 10
2

10
−2

1.07× 10
−04 6.44 6.04× 10

4 385

MS DPCG (5) 1 10
3

10
−3

1.06× 10
−04 6.44 6.05× 10

4 544

MS DPCG (5) 1 10
4

10
−4

4.96× 10
−05 6.44 1.30× 10

5 961

MS DPCG (5) 1 10
5

10
−5

4.95× 10
−06 6.44 1.30× 10

6 1456

Liu PCG 1 1 1 1.06× 10
−04 6.98× 10

1
6.56× 10

5 1401

Liu PCG 1 10
1

10
−1

1.06× 10
−04 1.19× 10

1
1.12× 10

5 561

Liu PCG 1 10
2

10
−2

1.06× 10
−04 1.19× 10

1
1.12× 10

5 563

Liu PCG 1 10
3

10
−3

5.91× 10
−05 1.19× 10

1
2.02× 10

5 1154

Liu DPCG (5) 1 1 1 1.07× 10
−04 6.44 6.05× 10

4 419

Liu DPCG (5) 1 10
1

10
−1

1.07× 10
−04 6.44 6.05× 10

4 399

Liu DPCG (5) 1 10
2

10
−2

1.06× 10
−04 6.44 6.05× 10

4 520

Liu DPCG (5) 1 10
3

10
−3

6.02× 10
−05 6.44 1.07× 10

5 1046
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decreasing kO/kS ratios resulted in the smallest eigenval-
ues of D−1/2C̃D−1/2 mainly associated with the equations 
that are associated with SNP effects, and in the largest 
eigenvalues of D−1/2C̃D−1/2 mainly associated with the 
equations that are not associated with SNP effects.

The extremal eigenvalues of the ssSNPBLUP_MS and 
ssSNPBLUP_Liu preconditioned (deflated) coefficient 
matrices, with various values for kO and kS , are in Table 1. 
For both ssSNPBLUP_MS and ssSNPBLUP_Liu solved 
with the PCG method, the largest eigenvalues of the pre-
conditioned coefficient matrix decreased with decreas-
ing kO/kS ratios to a lower value of 11.9 that was reached 
when kO/kS = 10−2 . In addition, for both models, the 
smallest eigenvalues remained constant with decreasing 
kO/kS ratios, until kO/kS = 10−3 for ssSNPBLUP_MS 
and kO/kS = 10−2 for ssSNPBLUP_Liu. Due to these 

results, the effective condition numbers and the number 
of iterations to reach convergence were the smallest for 
kO/kS = 10−2 for ssSNPBLUP_MS and for kO/kS = 10−1 
for ssSNPBLUP_Liu (Table 1; Figs. 5 and 6). In compari-
son to the PCG method without the second-level precon-
ditioner (i.e., with kO = kS = 1 ), the number of iterations 
to reach convergence decreased by a factor of more than 
3.5 for ssSNPBLUP_MS and by a factor of more than 2.4 
for ssSNPBLUP_Liu. The minimum number of iterations 
to reach convergence with the PCG method was 417 for 
ssSNPBLUP_MS and 561 for ssSNPBLUP_Liu (Table  1; 
Figs. 5 and 6).

For the same kO/kS ratio, the extremal eigenvalues (i.e. 
the smallest and largest eigenvalues) of the different pre-
conditioned coefficient matrices were proportional by 
a factor of k−1

O  (Table  1). Therefore, for the same kO/kS 

Fig. 2 Eigenvectors of preconditioned coefficient matrices with different ratios kO/kS for the reduced dataset. Reported values are aggregate 
absolute values of sets of 15 eigenvectors sorted following the ascending order of associated eigenvalues, and of 15 entries per eigenvector. 
Equations associated with SNP effects are from the 41,950th equation until the 51,944th equation
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ratio the effective condition numbers of the different pre-
conditioned coefficient matrices and the associated num-
bers of equations to reach convergence were the same 
(Table 1). It is also worth noting that, for a fixed value of 
kO , the largest eigenvalues decreased almost proportion-
ally by a factor of k−1

S  with decreasing kO/kS ratios until 
they reached their lower bound (Table 1).

For both ssSNPBLUP_MS and ssSNPBLUP_Liu solved 
with the DPCG method and 5 SNPs per subdomain, the 
largest eigenvalues of the preconditioned deflated coef-
ficient matrices remained constant (around 6.44) for all 
kO/kS ratios (Table  1). However, for both models, the 
smallest eigenvalues started to decrease for kO/kS ratios 
smaller than 10−3 ( 10−2 ) for ssSNPBLUP_MS (ssSNPB-
LUP_Liu). These unfavourable decreases of the smaller 
eigenvalues with decreasing kO/kS ratios resulted in 
increasing the effective condition numbers and the 
number of iterations to reach convergence when the 

second-level preconditioner D was applied with the 
DPCG method (Table 1; Figs. 5 and 6).

Field dataset
For the field dataset, regarding the extremal eigenval-
ues, the application of the second-level preconditioner 
D together with the PCG method led to a decrease of 
the largest eigenvalues of the preconditioned coeffi-
cient matrix from 1.8× 103 for ssSNPBLUP_MS, and 
from 1.4 × 102 for ssSNPBLUP_Liu, to about 5. Ratios of 
kO/kS smaller than 10−3 for ssSNPBLUP_MS and smaller 
than 10−2 for ssSNPBLUP_Liu did not further change 
the largest eigenvalues (Table 2). For the DPCG method 
applied to ssSNPBLUP_MS, the largest eigenvalues of the 
preconditioned deflated coefficient matrices remained 
constant for all kO/kS ratios (Table  2). For the DPCG 
method applied to ssSNPBLUP_Liu, the largest eigenval-
ues of the preconditioned deflated coefficient matrices 
slightly decreased with kO/kS = 10−1 and then remained 

Fig. 3 Eigenvectors associated with the 750 smallest and largest eigenvalues of the preconditioned coefficient matrix with the ratio kO/kS = 10
0 

for the reduced dataset. Reported values are aggregate absolute values of sets of 15 eigenvectors sorted following the ascending order of 
associated eigenvalues, and of 15 entries per eigenvector. Darker colors correspond to higher values. Equations associated with SNP effects are from 
the 41,950th equation until the 51,944th equation
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constant for all kO/kS ratios (Table 2). The application of 
the second-level preconditioner D with both the PCG 
and DPCG methods led to the smallest eigenvalues of the 
preconditioned (deflated) coefficient matrices decreasing 
with decreasing kO/kS ratios (Table 2).

These observed patterns of extremal eigenvalues 
resulted in an optimal kO/kS = 10−3 ratio for the PCG 
method applied to ssSNPBLUP_MS and an optimal 
kO/kS = 10−2 ratio for the PCG method applied to ssS-
NPBLUP_Liu, in terms of effective condition numbers 
and numbers of iterations to reach convergence (Table 2; 
Figs. 7 and 8). With these ratios, the PCG method con-
verged within 3825 iterations for ssSNPBLUP_MS and 
within 2665 iterations for ssSNPBLUP_Liu, while the 
PCG method did not converge within 10,000 iterations 
for both models (Table 2; Figs. 7 and 8). For the DPCG 
method, the application of the second-level precondi-
tioner D generally deteriorated the effective condition 
numbers and numbers of iterations to reach convergence, 

for both ssSNPBLUP_MS and ssSNPBLUP_Liu. The 
DPCG method converged within 748 iterations for ssS-
NPBLUP_MS with kO/kS = 1 and within 2877 iterations 
for ssSNPBLUP_Liu with kO/kS = 10−1 (Table 2; Figs. 7 
and 8).

The total wall clock times of the iterative processes and 
for the complete processes (including I/O operations 
and computation of the preconditioners, and Galerkin 
matrices) for the PCG and DPCG methods are in Table 2. 
Across all combinations of systems of equations and solv-
ers, the smallest wall clock time for the complete process 
was approximately 14,000 s for the PCG method with 
the second-level preconditioner D applied to ssSNPB-
LUP_Liu. Slightly greater wall clock times were needed 
for ssSNPBLUP_MS solved with the DPCG method 
(without the second-level preconditioner D ). It is worth 
noting that the wall clock times needed for the compu-
tation of the inverse of the Galerkin matrix ( E−1 ) were 

Fig. 4 Eigenvectors associated with the 750 smallest and largest eigenvalues of the preconditioned coefficient matrix with the ratio kO/kS = 10
−2 

for the reduced dataset. Reported values are aggregate absolute values of sets of 15 eigenvectors sorted following the ascending order of 
associated eigenvalues, and of 15 entries per eigenvector. Darker colors correspond to higher values. Equations associated with SNP effects are from 
the 41,950th equation until the 51,944th equation
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Fig. 5 Termination criteria for the reduced dataset for ssSNPBLUP_MS using the PCG and DPCG methods

Fig. 6 Termination criteria for the reduced dataset for ssSNPBLUP_Liu using the PCG and DPCG methods
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approximately 9700 s for ssSNPBLUP_MS and approxi-
mately 2500 s for ssSNPBLUP_Liu.

Discussion
In this study, we introduced a second-level diagonal pre-
conditioner D that results in smaller effective condition 
numbers of the preconditioned (deflated) coefficient 
matrices and in improved convergence patterns for two 
different ssSNPBLUP mixed model equations. From the 
theory and based on the results, the use of the second-
level preconditioner D results in improved effective 
condition numbers of the preconditioned (deflated) coef-
ficient matrices of ssSNPBLUP by decreasing the larg-
est eigenvalues, while the smallest eigenvalues remain 
constant, or decrease at a lower rate than the largest 
eigenvalues. In this section, we will discuss the follow-
ing three points: (1) the influence of the second-level 
diagonal preconditioner D on the eigenvalues and asso-
ciated eigenvectors of the preconditioned (deflated) coef-
ficient matrices of ssSNPBLUP; (2) the application of the 

second-level preconditioner in ssSNPBLUP evaluations; 
and (3) the possible application of the second-level pre-
conditioner D to more complex ssSNPBLUP models and 
to models other than ssSNPBLUP.

Influence of D on the eigenvalues and associated 
eigenvectors
Applying the second-level preconditioner D with an 
optimal kO/kS ratio to the linear systems of ssSNPBLUP 
results in a decrease of the largest eigenvalues of the 
preconditioned (deflated) coefficient matrices of ssS-
NPBLUP. As observed by Vandenplas et  al. [4] and in 
comparison with ssGBLUP, the largest eigenvalues that 
influence the convergence of the PCG method applied to 
ssSNPBLUP_MS were associated with SNP effects. The 
second-level preconditioner D allows a decrease of these 
largest eigenvalues by multiplying all entries of these 
SNP equations of the preconditioned coefficient matri-
ces by a value proportional to kO/kS , as shown with the 
Gershgorin circle algorithm [18] [see Eq. (4)]. However, 

Table 2 Characteristics of preconditioned (deflated) coefficient matrices, and of PCG and DPCG methods for solving 
ssSNPBLUP applied to the field dataset

a MS = ssSNPBLUP model proposed by Mantysaari and Stranden [7]; Liu = ssSNPBLUP model proposed by Liu et al. [5];
bParameters used for the second-level preconditioner;
cSmallest and largest eigenvalues of the preconditioned (deflated) coefficient matrix;
dCondition number of the preconditioned (deflated) coefficient matrix;
eNumber of iterations. A number of iterations equal to 10,000 means that the method failed to converge within 10,000 iterations;
fWall clock time (seconds) for the iterative process;
gAverage wall clock time (seconds) per iteration;
hWall clock time (seconds) for a complete process (including I/O operations)

Modela Method kO/k
b
S

�
c
min

�
c
max κ

d N
e

Iterative timef Time/iter.g Total timeh

MS PCG 1 3.70× 10
−5

1.75× 10
3 4.74× 10

7 10,000 44,808 4.5 46,081

MS PCG 10
−1

1.18× 10
−5

1.77× 10
2 1.51× 10

7 10,000 51,768 5.2 53,550

MS PCG 10
−2

4.37× 10
−6 1.95× 10

1
4.45× 10

6 6210 34,139 5.5 35,812

MS PCG 10
−3

3.99× 10
−6 5.08 1.27× 10

6 3825 19,043 5.0 20,866

MS PCG 10
−4

1.50× 10
−6 5.07 3.37× 10

6 7336 54,326 7.4 56,475

MS DPCG 1 2.86× 10
−5 4.77 1.67× 10

5 748 6527 8.7 17,229

MS DPCG 10
−1

1.41× 10
−5 4.77 3.37× 10

5 1211 11,864 9.8 22,947

MS DPCG 10
−2

9.17× 10
−6 4.77 5.20× 10

5 1778 17,030 9.6 28,615

MS DPCG 10
−3

7.50× 10
−6 4.77 6.36× 10

5 2569 23,676 9.2 35,497

Liu PCG 1 7.38× 10
−6

1.43× 10
2 1.93× 10

7 10,000 44,122 4.4 45,083

Liu PCG 10
−1

3.66× 10
−6 1.52× 10

1
4.14× 10

6 6049 31,085 5.1 32,018

Liu PCG 10
−2

4.29× 10
−6 5.07 1.18× 10

6 2669 13,225 5.0 13,888

Liu PCG 10
−3

3.51× 10
−6 5.07 1.44× 10

6 3606 20,578 5.7 21,458

Liu PCG 10
−4

1.69× 10
−6 5.07 3.00× 10

6 7033 33,534 4.8 34,675

Liu DPCG 1 5.40× 10
−6 5.31 9.85× 10

5 2877 22,791 7.9 26,521

Liu DPCG 10
−1

6.91× 10
−6 4.77 6.90× 10

5 1628 14,231 8.7 18,049

Liu DPCG 10
−2

5.23× 10
−6 4.77 9.11× 10

5 2234 23,244 10.4 28,057

Liu DPCG 10
−3

4.31× 10
−6 4.77 1.11× 10

6 3106 34,950 11.3 39,603
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if the kO/kS ratio is applied to a set of equations that 
are not associated with the largest eigenvalues of the 
preconditioned (deflated) coefficient matrices, the sec-
ond-level preconditioner D will not result in decreased 
largest eigenvalues. This behaviour was observed when 
the second-level preconditioner D was applied to ssS-
NPBLUP_MS with the DPCG method for the reduced 
dataset (Table 1). For these scenarios, the DPCG method 
already annihilated all the largest unfavourable eigenval-
ues up to the lower bound of the largest eigenvalue that 
is allowed with the second-level preconditioner D . There-
fore, the second-level preconditioner D did not further 
decrease the largest eigenvalues. It is worth noting that, 
if the DPCG method did not annihilate all the unfavour-
able largest eigenvalues up to the lower bound defined by 
Eq. (4), the application of the second-level preconditioner 
D with the DPCG method did remove these remaining 
largest eigenvalues, as shown by the results for ssSNPB-
LUP_Liu applied to the field dataset (Table 2).

The decrease of the largest eigenvalues of the precondi-
tioned coefficient matrices with decreasing kO/kS ratios 
(and until the lower bound is reached) can be explained 
by the sparsity pattern of the eigenvectors associated 
with the largest eigenvalues of the preconditioned coef-
ficient matrices C̃ of ssSNPBLUP. Indeed, Figs.  2 and  3 
show that the entries that correspond to the equations 
that are not associated with SNP effects, are close to 0 for 
the eigenvectors associated with the largest eigenvalues 
of C̃ of ssSNPBLUP_MS. Accordingly, if we assume that 
these entries are 0, i.e., 

being an eigenvector associated with one of largest eigen-
values of C̃ , it follows that the largest eigenvalues of C̃ 
multiplied by k−1

S  are also the eigenvalues of 
D−1/2C̃D−1/2 . These largest eigenvalues of C̃ will there-
fore be equal to the largest eigenvalues of D−1/2C̃D−1/2 
until the lower bound defined by Eq. (4) is reached (see 
Additional file 2 for the derivation). This observation can 
also motivate an educated guess for an optimal kO/kS 
ratio for ssSNPBLUP with one additive genetic effect. If 
the largest eigenvalues �max

(

C̃
)

 and �max

(

C̃OO

)

 are 
(approximately) known, an educated guess for the kO/kS 

ratio can be equal to kOkS = kO
�max

(

C̃OO

)

�max

(

C̃
)  . For example, in 

our cases, �max

(

C̃OO

)

 was always equal to the largest 
eigenvalue of the preconditioned coefficient matrix of a 
pedigree BLUP (results not shown). It follows that the 
educated guess for the field dataset is equal to 3.0× 10−3 
for ssSNPBLUP_MS and 3.5× 10−2 for ssSNPBLUP_Liu, 
since �max

(

C̃OO

)

= 5.07 . Both values are of the same 

ṽmax =
[

ṽOmax

ṽSmax

]

=
[

0
ṽSmax

]

order as the corresponding optimal kO/kS ratios. How-
ever, the second-level preconditioner D will be effective 
only if the smallest eigenvalues of the preconditioned 
coefficient matrices are not influenced, or at least less 
influenced than the largest eigenvalues, by the second-
level preconditioner D.

The decrease of the smallest eigenvalues of the precon-
ditioned (deflated) coefficient matrices mainly depends 
on the sparsity pattern of the eigenvectors associated 
with the smallest eigenvalues. We formulated a suf-
ficient condition such that the smallest eigenvalues 
remain constant when the second-level preconditioner 
is applied. While this sufficient condition is not fulfilled 
for the reduced dataset (and probably also not for the 
field dataset), it can help us to predict the behaviour of 
the smallest eigenvalues based on the sparsity pattern of 
the associated eigenvectors. For example, if the eigen-
vector associated with the smallest eigenvalue of C̃ has 
mainly non-zero entries corresponding to the equations 
associated with SNP effects, the use of the second-level 
preconditioner D will most likely result in a decrease of 
the smallest eigenvalues proportional to k−1

S  , which is 
undesirable. Other behaviours of the smallest eigenvalues 
of the preconditioned (deflated) coefficient matrices can 
lead to the conclusion that the associated eigenvectors 
have a different sparsity pattern, which helps understand 
if and how the use of the proposed second-level diagonal 
preconditioner will be beneficial.

Application of D in ssSNPBLUP evaluations
The second-level preconditioner D is easy to implement 
in existing software and does not influence the compu-
tational costs of a PCG iteration, since it can be merged 
with the preconditioner M . Indeed, it is sufficient to mul-
tiply the entries of M−1 that correspond to the equations 
associated with SNP effects by an optimal kO/kS ratio to 
implement the second-level preconditioner D . Further-
more, the value of an optimal kO/kS ratio for a ssSNPB-
LUP evaluation can be determined by testing a range of 
values around the educated guess defined previously and 
then re-used for several subsequent ssSNPBLUP evalua-
tions, because additional data for each new evaluation is 
only a fraction of the data previously used and will there-
fore not modify, or will modify only slightly, the proper-
ties of the preconditioned coefficient matrices C̃.

In this study, we used the second-level diagonal pre-
conditioner D for two different ssSNPBLUP models. To 
our knowledge, it is the first time that ssSNPBLUP_Liu 
was successfully applied until convergence with real data-
sets [3, 5]. From our results, it seems that the precondi-
tioned coefficient matrices of ssSNPBLUP_Liu are better 
conditioned than the preconditioned coefficient matri-
ces of ssSNPBLUP_MS, leading to better convergence 
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Fig. 7 Termination criteria for the field dataset for ssSNPBLUP_MS using the PCG and DPCG methods

Fig. 8 Termination criteria for the field dataset for ssSNPBLUP_Liu using the PCG and DPCG methods
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patterns for ssSNPBLUP_Liu. Therefore, among all possi-
ble combinations of linear systems (i.e., ssSNPBLUP_MS 
and ssSNPBLUP_Liu), solvers (i.e., the PCG and DPCG 
methods) and the application (or not) of the second-level 
preconditioner D , it seems that ssSNPBLUP_Liu solved 
with the PCG method combined with the second-level 
preconditioner D is the most efficient in terms of total 
wall clock times and implementation. However, in our 
study it was tested only on two datasets and the most effi-
cient combination of linear system and solver will most 
likely be situation-dependent.

Application of D to other scenarios
The proposed second-level preconditioner D can be 
applied and may be beneficial for ssSNPBLUP models 
that involve multiple additive genetic effects, or for other 
models that include an effect that would result in an 
increase to the largest eigenvalues of the preconditioned 
coefficient matrices. The developed theory does not 
require a multivariate ssSNPBLUP with only one addi-
tive genetic effect. As such, for example, if multiple addi-
tive genetic effects are fitted into the ssSNPBLUP model, 
such as direct and maternal genetic effects, the second-
level preconditioner D could be used with different kO/kS 
ratios applied separately to the direct and maternal SNP 
effects. A similar strategy was successfully applied for 
ssSNPBLUP proposed by Fernando et al. [2] with French 
beef cattle datasets (Thierry Tribout, personal commu-
nication). Furthermore, the second-level preconditioner 
D could be used to improve the convergence pattern of 
models other than ssSNPBLUP. For example, with the 
field dataset, the addition of the genetic groups fitted 
explicitly as random covariables in the model for pedi-
gree-BLUP (that is, without genomic information) led 
to an increase of the largest eigenvalue of the precon-
ditioned coefficient matrix from 5.1 to 14.8. The intro-
duction of the second-level preconditioner D into the 
preconditioned linear system of pedigree-BLUP with a 
kO/kS = 10−1 ratio applied to the equations associated 
with the genetic groups reduced the largest eigenvalues 
to 6.0, resulting in a decrease of the effective condition 
number by a factor of 2.6. This decrease of the effective 
condition number translated to a decrease in the number 
of iterations to reach convergence from 843 to 660.

Conclusions
The proposed second-level preconditioner D is easy to 
implement in existing software and can improve the con-
vergence of the PCG and DPCG methods applied to dif-
ferent ssSNPBLUP methods. Based on our results, the 
ssSNPBLUP system of equations proposed by Liu et  al. 
[5] solved using the PCG method and the second-level 
preconditioner seems to be most efficient. However, the 

optimal combination of ssSNPBLUP and solver will most 
likely be situation-dependent.
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