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Abstract
This master’s thesis introduces a new p-dependent coercivity condition through which
L

p (≠;L
2([0,T ]; X )) estimates can be obtained for a large class of SPDEs in the variational

framework. Using these estimates, we obtain existence and uniqueness results by using a
Galerkin approximation argument. The framework that is built is applied to many SPDEs
such as stochastic heat equations with Dirichlet and Neumann boundary conditions, Burger’s
equation and Navier-Stokes in 2D. Furthermore, we obtain known results for systems of
SPDEs and higher order SPDEs using our unifying coercivity condition. We also obtain first
steps towards a theory of higher order regularity of stochastic heat equations.
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�
Introduction

In his Théorie Analytique des Probabilités [26], Pierre-Simon Laplace remarks

It is remarkable that a science which began with the consideration of games of
chance should have become the most important object of human knowledge.

This quote remains more true than ever before, possibly beyond all of Laplace’s expecta-
tions. However, probability theory has not always taken this important place in mathemat-
ics. Starting with the conception of classical mechanics in the 17th century by Isaac New-
ton, models of nature through Newton’s laws were governed by deterministic equations.
This approach was expanded by people such as Lagrange and Hamilton through their own
respective formulations of mechanics, with still no room for probability in the equations.
In the 19th century, this slowly started to change. Beginning with Ludwig Boltzmann’s sta-
tistical physics, Boltzmann showed that macroscopic thermodynamic variables could be
derived from a probabilistic examination of the microscopic variables, which was revolu-
tionary and controversial at the time. Boltzmann’s discoveries were especially remarkable
if one considers that scientists had no notion of atoms and the microscopic world during
Boltzmann’s time! One success of statistical physics was given by Albert Einstein and Paul
Langevin. They managed to give an explanation of the Brownian motion of pollen grains
by doing a probablistic, microscopic examination of the system, describing one of the first
stochastic differential equations (SDEs) in history [25, 27]. Proceeding into the early 20th
century, classical mechanics was superseded by quantum mechanics, which gives a proba-
bilistic description of objects on small scales. It became clearer and clearer that probability
theory had a fundamental place in nature. 1

Since Laplace’s remark, probability theory and analysis have not stood still either. Both
have gotten rigorous fundamentals, starting with analysis in the 19th century by Augstin-
Louis Cauchy and Karl Weierstrass. For probality theory, the modern axiomatic foundation
was layed by Andrei Kolmogorov only in 1933. This allowed for a rigourous study of many
new concepts, such as Markov processes, martingales and Wiener processes. Kyoshi Itô in-
troduced a theory of stochastic integration [17, 18], through which a rigorous mathematical
interpretation to the SDE of Einstein and Langevin could be given. As a generalization of

1Of course, a probabilistic view of nature has also led to some controversialism in philosphy. For different
interpretations of probability theory, see [16]

1
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SDEs, one can also consider stochastic partial differential equations (SPDEs), which will be
the main topic of this master’s thesis. As the name suggests, these are a natural extension of
partial differential equations with some stochastic dependence included in the equation.
For example, a natural extension of the heat equation @t u =¢u on Rd is the stochastic heat
equation

@t u =¢u +ª
on Rd ,where ª is some random signal in space and time. Just as SDEs turned up in the
study of Brownian motion by Einstein and Langevin, SPDEs turn up naturally in many other
physical models, such as the ©4

3 model in quantum field theory [32] and stochastic fluid
models [1, 6]. Other areas where they turn up are filtering theory [21, 24], reaction diffu-
sion equations, neurophysiology and finance [10, 21], amongst others. From a more math-
ematical point of view, SPDEs bring their own interesting problems. The most common
approach to study PDEs and SPDEs is to reformulate them as infinite dimensional ordi-
nary differential equations (ODEs) or stochastic differential equations (SDEs). However, it
is well-known that not all results from finite dimensions carry over to infinite dimensions.
A famous theorem in the study of finite dimensional SDEs is Itô’s lemma, which can be
used to prove existence and uniqueness of solutions of SDEs and very useful theorems such
as the Burkholder-Davis-Gundy (BDG) inequalities (useful for energy estimates) and Gir-
sanov’s theorem (often used for a change of measure in mathematical finance). However,
Itô’s lemma does not carry over to the infinite dimensional setting for all SPDEs. Therefore,
it is not possible to simply generalize finite dimensional results to infinite dimensions. This
prompts a different approach, which leads to interesting mathematics of itself and makes
SPDEs definitely worth studying.

1.1. Exposition and background
In this thesis, we will introduce a new coercivity condition to obtain existence and unique-
ness of a large class of SPDEs. In particular, we are interested in L

p (≠;L
2([0,T ]; X )) results,

where ≠ is a probability space, p ∏ 2, [0,T ] is a time interval and X is a Hilbert space (take
for instance the Sobolev space W

2,k
0 (D) on a domain D). The main motivation to study this

problem comes from the theory of stochastic maximal regularity. To illustrate this problem,
we first introduce maximal regularity in the deteriministic setting. In this setting, we can
consider the inhomogeneous Cauchy problem

du

dt
(t )+ Au(t ) = f (t ), t 2 [0,T ], u(0) = u0, (1.1)

in L
p ([0,T ], X ) for p 2 (1,1) and X a Banach space. We say that a closed and densely de-

fined operator A : D(A) Ω X ! X has maximal L
p -regularity if for each f 2 L

p ([0,T ]; X )
there exists a unique u 2W

1,p ([0,T ]; X )\L
p ([0,T ];D(A)) satisfying the above equation a.e.

in [0,T ] with u0 = 0. We can also derive the following:

kukLp ([0,T ];X ) +kAukLp ([0,T ];X ) ∑Ck f kLp ([0,T ];X ). (1.2)

It is well-known that A has maximal regularity if and only if °A generates an analytic semi-
group [33]. Now, maximal regularity can be used to obtain a wide range of well-posedness
results for nonlinear PDEs using fixed-point arguments or others. In particular, the above
estimate is very useful in proving this. A long standing aim in the study of SPDEs has been



1.1. Exposition and background 3

to obtain a theory of stochastic maximal regularity. In this theory, we search for existence
and uniqueness of solutions of SPDEs in a class L

p (≠;L
q ([0,T ]; X ) where p, q ∏ 2, ≠ is a

probability space, [0,T ] is a time-interval and X is a Banach space. However, a theory of
stochastic maximal regularity only exists for certain subcases of p, q and certain choices of
X . The aim of this thesis is to introduce a new coercivity condition that leads to existence
and uniqueness in L

p (≠;L
2([0,T ]; X )) for a large class of SPDEs. This can be applied to a

wide range of equations, such as stochastic heat equations with both Dirichlet and Neu-
mann boundary conditions, as well as Burgers’ equation and the Navier-Stokes equations
in 2D. Furthermore, we are able to recover results from the literature for systems of SPDEs
and higher order SPDEs by using our theory.

In order to study SPDEs, we will reformulate them as infinite dimensional stochastic evo-
lution equations of the following form:

dut = A(t ,ut ) dt +B(t ,ut ) dWt , u(0) = u0. (1.3)

There are three main approaches that have tackled these type of equations over the past 70
years. The most studied approach is probably the semigroup approach. In this approach,
the operator A is assumed to be the generator of some semigroup and B a bounded op-
erator satisfying a Lipschitz condition. Using contraction mapping arguments, both exis-
tence and uniqueness of solutions can be obtained. Another approach is the martingale
approach. This approach generalizes the notion of weak solutions of SDEs to SPDEs. As it
is easy to confuse the notion of weak solution to SDEs with weak solutions to PDEs, this ap-
proach is called the martingale problem approach by some authors [10]. Both approaches
will not be discussed in the sequel, but it is good to be aware of their limitations. In particu-
lar, it is standard to assume that the operator A is the generator of a C0 semigroup. However,
many SPDEs do not satisfy this assumption. For example, certain SPDEs arising in control
theory are not included in the semigroup or martingale approaches, see [23].

The third approach is the variational approach, which will be the only important approach
for this thesis. The variational approach for SPDEs was initiated by Alain Bensoussan in
1971 [2] [3], based on Lions’ approach for PDEs. In this approach, a coercivity condition
on the operator A is assumed, together with B = I . Using time discretization methods, ex-
istence and uniqueness of solutions is proved. Bensoussan’s work was later generalized in
1975 by Étienne Pardoux [31], who proved existence and uniqueness results for monotone
operators in both the parabolic and hyperbolic setting based on Galerkin approximations.
Influential work by Krylov and Rozovskii in 1981 [23] loosens restrictions on the operators A

and B made by Pardoux, but still uses the Galerkin approximation idea. More recently, Wei
Liu and Michael Röckner [28] have generalized this framework even further by using locally
monotone operators instead of monotone operators. This allows for new equations to be
studied, such as the stochastic Burgers equation. However, the assumptions in their pa-
per still allow limited growth on B and the estimates for their solutions are only restricted
to L

2 estimates in ≠. Work published by Zdzislaw Brzeźniak, Wei Liu and Jiahui Zhu [4]
expands their framework by considering a slightly better growth condition on B and Lévy
noise. The latest point in this development is a paper published by David Šiška and Nee-
lima Varshney [38], in which L

r p (≠;L
2([0,T ]; X )) estimates are obtained, where r 2 (0,1).

This paper will be the starting point of this thesis. We will use a slightly more general coer-
civity condition and improve the argument given by Šiška and Varshney to actually obtain
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L
p (≠;L

2([0,T ]; X )) estimates, which we will describe now. In order to study (1.3) in the
variational approach, we need to introduce the Gelfand triple setting. This means that we
have a triple of spaces (V , H ,V

§), where V is a separable Banach space, H is a Hilbert space,
V µ H densely and V

§ is the Banach space dual of V . We will also need an extra separable
Hilbert space U to make sense of the stochastic part of the equation. Then, we consider A as
a map A : V !V

§ and B as a map B : V ! L2(U , H), where L2(U , H) is the space of Hilbert-
Schmidt operators. We also assume that A and B satisfy local monotonicity bounds, as well
as certain indivdual bounds, details of which can be found in chapter 4 of the thesis. The
most important assumption is the following: for all v 2V , v 6= 0, t 2 [0,T ] a.s.

2hA(t , v), vi+kB(t , v)k2
L2(U ,H) + (p °2)

kB(t , v)§vk2
U

kvk2
H

∑°µkvkÆ
V
+ ft +Kckvk2

H
(1.4)

where p ∏ 2, µ > 0, Æ > 1, Kc ∏ 0 and f 2 L
p

2 (≠;L
1([0,T ];R)) nonnegative. With these as-

sumptions in hand we can state the most important result from this thesis. Given the above
assumptions, suppose a solution exists to (1.3). Then, there exists a constant C ∏ 0 depend-
ing on µ,Æ and p such that

E sup
t2[0,T ]

kutkp

H
+E

Z
T

0
kutkp°2

H
kutkÆV dt +E

µZ
T

0
kutkÆV dt

∂ p

2

∑Ce
C T

√
Eku0kp

H
+E

µZ
T

0
ft dt

∂ p

2
!

.

(1.5)

Moreover, these estimates are optimal. With optimal, we mean that it is not possible to
obtain better results such as higher moments based on the assumptions we used to prove
this estimate in the first place. These a priori estimates will then be used to prove existence
and uniqueness for (1.3) using the method of Galerkin approximations. This means that
we project (1.3) to finite dimensions and use the finite dimensional theory to obtain a se-
quence of approximate solutions. It is then shown that this sequence converges and that
its limit is indeed a solution of (1.3). It can be shown that this framework applies to a wide
range of equations. The equations we work out in this thesis are stochastic heat equations
with both Dirichlet and Neumann boundary conditions, as well as Burgers’ equation and
Navier-Stokes in 2D. Furthermore, we are able to recover results from the literature for sys-
tems of SPDEs and higher order SPDEs by using our theory.

We also study the higher order space regularity of stochastic heat equations on smooth
domains in the L

p (≠; ...) setting. First results in this direction were obtained by Krylov for
p = 2 [20], though he needs weighted Sobolev spaces to do this, unlike the deterministic
setting [14]. We aim to produce the same results for p ∏ 2. In this thesis, we have made
the first steps in this direction by proving higher order space regularity for p ∏ 2 on Rd

+ for
stochastic heat equations with constant coefficients. A large part in proving this is taken up
by the framework built in this thesis.

1.2. Reading guide
Now that we have established the exposition of this thesis, we will provide a brief overview
of the structure of this thesis and how different chapters relate to each other.
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• Chapter 2 (Preliminaries): The intended audience for whom this chapter has been
written are mathematics students with some knowledge of PDEs, functional analy-
sis and stochastic integration. The chapter mostly contains statements of important
theorems and lemmas that will be used later. References for proofs are also provided.
Only some theorems and lemmas were proven by the author himself.

• Chapter 3 (A coercivity condition for higher order moments): The main problem of
the thesis is treated in this chapter. We build a framework based on the new coer-
civity assumption by first proving a priori estimates and then proving existence and
uniqueness. Optimality of the framework is also proven in this chapter.

• Chapter 4 (Examples of coercive SPDEs): In this chapter we introduce a variety of
SPDEs to which our framework applies. The examples here are certainly non-exhaustive,
but might provide a good insight in what the framework is capable of. For example,
we show that the stochastic heat equation with Dirichlet boundary conditions re-
duces to the known setting using our framework. We are also able to derive previously
obtained results in the literature for systems of SPDEs and higher order SPDEs.

• Chapter 5 (Higher order regularity): This chapter proves higher order space regularity
of stochastic heat equations with constant coefficients.



�
Preliminaries

The most essential knowledge that is needed to understand the results in this thesis is
treated in this chapter. The topics included are ordered in three sections: functional anal-
ysis, PDE theory and stochastic integration theory. Most results can also be found in the
literature and are referenced accordingly, while some other, less standard results are tay-
lored for this thesis.

2.1. Some functional analysis
2.1.1. Bochner integration and Bochner spaces
Suppose one is given a function f : E ! X , where E and X are both Banach spaces. In many
situations in mathematics, one is interested in integrating such a function for a variety of
reasons. The easiest case one could think of, and for which integration was introduced
historically, is determining the area under a curve. In this case, X =R and integration can be
made rigorous in both the Riemann sense and the Lebesgue sense. To motivate integration
for infinite dimensional Banach spaces F , we inspect the heat equation

@u

@t
(t , x) =¢u(t , x).

If we surpress the spatial variable x from notation, we can see this PDE as a function valued
ODE, where u(t , ·) takes values in some function space X . Informally, one would then solve
this PDE by finding a function u(t , ·) that satisfies the following integrated form of the PDE:

u(T, ·)°u(0, ·) =
Z

T

0
¢u(t , ·)dt .

Therefore, to solve this PDE, one needs to be able to make sense of the integral on the
RHS. This can be done using the Bochner integral, which allows integration of functions
f : E ! X , where both E and X are Banach spaces. The Bochner integral generalizes the
Lebesgue integral, and accordingly one can also introduce Bochner spaces as a generaliza-
tion of the classical Lebesgue spaces.

For ease of exposition and since all Banach spaces in this thesis will be separable, we only
treat the special case where the space X is separable. The exposition in this section is
adapted from [10]. The interested reader can find the case of non-separable Banach spaces

6
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in [29].

To introduce the Bochner integral, we have to recall some basic measure theoretic notions.
We consider a measurable space to be a pair (E ,E ), where E is a set and E is a æ-algebra.
If E is a metric space, one particular choice of æ-algebra is the Borel æ-algebra. This is the
æ-algebra generated by the open sets of E . A measurable space can be turned into a mea-
sure space by equipping it with a measure µ : E ! [0,1]. Now, consider two measurable
spaces (E ,E ) and (X ,X ). A mapping f : E ! X is said to be measurable if for every A 2X ,
{X 2 A} = {a 2 E : X (a) 2 A} 2 E .

We call a function f : E ! X simple if it can be expressed as f =P
n

i=1 ai 1Ai
where ai 2 X and

Ai 2 E . To construct the Bochner integral, we first define integration for simple functions
and then use an approximating sequence. Therefore, we need the following approximation
lemma

Lemma 2.1. Let E and X be separable Banach spaces with norms k · kE , k · kX . Consider a

measurable map f : E ! X . Then there exists a sequence { fn} of simple X -valued functions

such that for every a 2 E, k fn(a)° f (a)kX ! 0 monotically.

Proof. [See lemma 1.3, p. 16 in [10]] Let E0 = {ek }k2N be a countably dense subset of E . For
m 2N and a 2 E , define the following:

Ωm(a) = min
k2{1,...,m}

k f (a)°ekkX

km(a) = min{k ∑ m : Ωm(a) = k f (a)°ekkX }

fm(a) = ekm (a)

Then, every fm is a simple function, since fm(E) µ {e1, ...,em}. Since E0 is dense in E ,
Ωm(a) is monotonically decreasing to 0 in m for all a 2 E . It is clear to see that Ωm(a) =
Ω( f (a), fm(a)).

We are now in a position to define the Bochner integral. Suppose f : E ! X is a simple
function on a measure space (E ,E ,µ) of the form

f =
NX

i=1
xi 1Ai

, Ai 2 E , xi 2 E , N 2N.

We set Z

E

f dµ=
NX

i=1
xiµ(Ai ) (2.1)

This integral does not depend on the representation of f , as can be checked similarly
for Lebesgue integration by using refinement. It is also straightforward to prove that the
Bochner integral for simple functions is additive and linear. The following triangle inequality-
like property also holds:

∞∞∞∞
Z

E

f dµ
∞∞∞∞

X

∑
Z

E

k f kX dµ. (2.2)
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Next, we want to extend this integral to all measurable functions f : E ! X . First note that
k f kX is also a measurable function, since k ·kX is a continuous function. We call f Bochner
integrable if Z

E

k f kX dµ<1. (2.3)

Note that the above integral is a Lebesgue integral, since k f kX is a real function. Using
lemma 2.1, we obtain an approximating sequence of simple functions { fm}m2N such that
{k f (a)° fm(a)kX } decreases to 0 for all a 2 E . It follows that {

R
E

fm dµ}m2N is a Cauchy
sequence, since

∞∞∞∞
Z

E

fm dµ°
Z

E

fn dµ
∞∞∞∞

X

∑
Z

E

k f ° fmkX dµ+
Z

E

k f ° fnkX dµ
(2.4)

and the RHS decreases to 0 as m,n !1. Since X is a Banach space, we can therefore define
Z

E

f dµ= lim
m!1

Z

E

fm dµ. (2.5)

We call the quantity on the RHS the Bochner integral of f against µ. It is routine to check
that the integral does not depend on the approximating sequence { fm}m2N. For a bounded
linear operator T , it is clear that the operator T and the integral can be interchanged. How-
ever, we can prove the same for a certain class of closed operators, which is the content of
the next proposition.

Proposition 2.1. Suppose f : E ! X is Bochner integrable and T a closed linear operator

with domain D(T ) µ X and values in some Banach space Y . Suppose f takes values in D(T )
a.e. and that T f : E ! Y is Bochner integrable. Then,

R
E

T f dµ 2 D(T ) and

T

Z

E

f dµ=
Z

E

T f dµ.

Proof. See [29].

2.1.2. Hilbert-Schmidt operators
In order to build the stochastic integral in Hilbert spaces, we need to introduce the con-
cept of Hilbert-Schmidt operators. To preserve some type of Itô isometry, Hilbert-Schmidt
operators form the natural arena for stochastic integration in Hilbert spaces. The mate-
rial treated in this section is entirely standard and also treated in [28]. Let (U , (·, ·)U ) and
(H , (·, ·)H ) be two separable Hilbert spaces. We denote the space of bounded linear opera-
tors between U and H by L(U , H).

Definition 2.1. An element T 2 L(U , H) is said to be a nuclear operator if there exists a
sequence (a j ) j2N in H and a sequence (b j ) j2N in U such that

T x =
1X

j=1
a j (b j , x)U , for all x 2U

and 1X

j=1
ka jkHkb jkU <1.
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The space of all nuclear operators is denoted by L1(U , H). If U = H and T 2 L1(U ,U ) is
nonnegative and symmetric, then T is called trace class.

Definition 2.2. A bounded linear operator T : U ! H is called a Hilbert-Schmidt operator

if X

k2N
kTekk2

H
<1,

where ek ,k 2N, is an orthonormal basis of U .

The space of all Hilbert-Schmidt operators is denoted by L2(U , H). We can define a norm
on L2(U , H) by setting

kT k2
L2(U ,H) =

1X

k=1
kTekk2

H
. (2.6)

The following properties of Hilbert-Schmidt operators turn out to be crucial later for stochas-
tic integration in Hilbert spaces:

Proposition 2.2. Let T 2 L2(U , H). Then,

1. the definition of Hilbert-Schmidt operators and the number kT k2
L2(U ,H) are indepen-

dent of the basis on U .

2. kT kL2(U ,H) = kT
§kL2(H ,U ).

3. kT kL(U ,H) ∑ kT kL2(U ,H).

4. Let (G , (·, ·)G ) be another separable Hilbert space, S1 2 L(H ,G), S2 2 L(G ,U ) and T 2
L2(U , H). Then, S1T 2 L2(U ,G) and T S2 2 L2(G , H) with estimates

kS1T kL2(U ,G) ∑ kS1kL(H ,G)kT kL2(U ,H),

kT S2kL2(G ,H) ∑ kT kL2(U ,H)kS2kL(G ,U ).

Proof. The proof is taken from [28, Remark B.0.6, p. 217]. We prove items 1 and 2 at the
same time.

1. Let {ek }k2N, { fk }k2N be two orthonormal basises of U and {gk }k2N be an orthonormal
basis of H . We use Parseval’s identity to obtain:

1X

k=1
kTekk2

H
=

1X

k=1

1X

j=1

ØØhTek , gki
ØØ2 =

1X

j=1
kT

§
g jk2

U
.

We can now apply the same trick to obtain:

1X

j=1
kT

§
g jk2

U
=

1X

k=1

1X

j=1

ØØhT fk , gki
ØØ2 =

1X

k=1
kT fkk2

H
.

In the course of the proof we have also obtained that kT kL2(U ,H) = kT
§kL2(H ,U )

2. See item 1
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3. Let x 2 U and { fk }k2N be an orthonormal basis of H . We can then use item 2 and
Parseval’s identity to obtain:

kT xk2
H
=

1X

k=1

ØØhT x, fki
ØØ2 ∑ kxk2

U

1X

k=1
kT

§
fkk2

U
= kT k2

L2(U ,H)kxk2
U

.

By definition of the operator norm, we obtain kT kL(U ,H) ∑ kT kL2(U ,H).

4. Let {ek }k2N be an orthonormal basis of U . Then,

1X

k=1
kS1Tekk2

G
∑ kS1k2

L(H ,G)kT k2
L2(U ,H).

Using item 2 and the property (T S2)§ = S
§
2 T it follows that

kT S2kL2(G ,H) = k(T S2)§kL2(H ,G)

= kS
§
2 T

§kL2(G ,H)

∑ kS2kL(G ,U )kT kL2(U ,H).

We end this section by showing that the space L2(U , H) can be turned into a Hilbert space.

Proposition 2.3. Let S,T 2 L2(U , H) and let {ek }k2N, be an orthonormal basis of U . If we

define

hT,SiL2 =
1X

k=1
hSek ,Teki (2.7)

we obtain that (L2(U , H),h·, ·iL2 ) is a separable Hilbert space. Furthermore, if { fk }k2N is an

orthonormal basis of H we get that f j ≠ ek = f j hek , ·iU , where j ,k 2 N, is an orthonormal

basis of L2(U , H)

Proof. See [28, Proposition B.0.7, p. 218].

2.1.3. Weak convergence
As outlined in the exposition, we are interested in treating the variational approach for
SPDEs. In this approach, we build a sequence of approximate solutions of which we extract
a convergent subsequence in some way. One way to do this is by using weak compactness
arguments. The basics to make such an argument are recalled in this section. We will take
the easy route and avoid any reference to the theory of locally convex spaces, following
Evans [14]. For a more detailed treatise of weak topologies, weak convergence and locally
convex spaces, see [9, 35]. In this subsection we let X be a real Banach space.

Definition 2.3. A sequence {xk }k2N µ X is said to converge weakly to x 2 X , denoted by

xk * x,

if
hxk , x

§i! hx, x
§i

for each bounded linear functional x
§ 2 X

§.
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The following proposition is a simplified version of the famous Banach-Alaoglu theorem.
The proof is taken from [36].

Proposition 2.4. Let X be a separable normed space and let (x
§
n

)n∏1 be a bounded sequence

in the dual space X
§

. Then there exists a subsequence (x
§
nk

)k∏1 and an x
§ 2 X

§
such that

lim
k!1

hx, x
§
nk
i= hx, x

§i for all x 2 X . (2.8)

Proof. Let (x j ) j∏1 be a countable set whose linear span X0 is dense in X (which is possible
by separability). By a diagonal argument we find a subsequence (x

§
nk

)k∏1 such that the limit
¡(x j ) := limk!1hx j , x

§
nk
i exists for all j ∏ 1. Then, the limit¡(x) := limk!1hx, x

§
nk
i exists for

all x 2 X0, which follows from linearity. It is easy to see that x 7! ¡(x) is a bounded linear
map from X0 ! R. Since X0 is dense in X , we can obtain a unique bounded extension of
¡ of the same norm, which we also denote by ¡. Since the operators h·, x

§
nk
i are uniformly

bounded, we obtain that ¡(x) = limk!1hx, x
§
nk
i for all x 2 X . Therefore, x

§ := ¡ has the
required properties.

We can obtain a very useful corollary from this proposition. For example, one can identify
a candidate limit from having a bounded sequence of certain approximate solutions to a
PDE, using this corollary.

Corollary 2.1. Let X be a separable reflexive Banach space and (xn)n∏1 a bounded sequence

on X . Then, there exists a subsequence (xnk
)k∏1 and an x 2 X such that

lim
k!1

hxnk
, x

§i= hx, x
§i for all x

§ 2 X
§. (2.9)

Proof. We first note X
§ is also separable, since X is reflexive and separable. This allows us to

apply Proposition 2.4 with X
§ as our normed space and (xn)n∏1 as our bounded sequence,

which is possible by reflexivity. We immediately obtain a subsequence (xnk
)k∏1 and an

x 2 X such that
lim

k!1
hxnk

, x
§i= hx, x

§i for all x
§ 2 X

§. (2.10)

This finishes the proof.

We proceed to prove one extra lemma related to weakly convergent sequences, which will
be useful in proving existence of the SPDEs we consider. Recall that for any weakly conver-
gent sequence {xn}n2N we have the following bound:

kxkX ∑ liminfkxnkX . (2.11)

We can generalize the above bound in a special way that is needed for one of the results in
this thesis. Let≠ be a probability space and H be a separable Hilbert space. Then we have
the following:

Lemma 2.2. Suppose a sequence (u
(n))n∏1 converges weakly to u in L

2(≠;L
2([0,T ]; H)). Then,

for any weight w : [0,T ]£≠! [0,1) with w ∑ 1, we have the following inequality:

E

Z
T

0
kutk2

H
wt dt ∑ liminfE

Z
T

0
ku

(n)
t

k2
H

wt dt (2.12)
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Proof of Lemma 2.2. Let v 2 L
2(≠;L

2([0,T ]; H)). By definition of weak convergence, we
then have:

lim
n!1

hu(n), vi= hu, vi.

Now, consider the following:

lim
n!1

E

Z
T

0
(u

(n)
t

, vt )H wt dt = lim
n!1

E

Z
T

0
(u

(n)
t

, wt vt )H dt

= E
Z

T

0
(ut , wt vt )H dt

(2.13)

where the last line follows since w v 2 L
2(≠;L

2([0,T ]; H)). Now, we can consider the LHS
and RHS as duality pairings between the spaces L

2(≠;L
2([0,T ]; w ; H)) and L

2(≠;L
2([0,T ]; w ; H)).

Therefore,

E

Z
T

0
(ut , vt )H wt dt ∑ liminfku

(n)kL2(≠;L2([0,T ];w ;H))kvkL2(≠;L2([0,T ];H)) (2.14)

We can therefore conclude that the lemma holds.
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2.2. Stochastc integration theory
The main motivation to study stochastic integration theory is to study stochastic differen-
tial equations. One could consider the following ODE:

dut

dt
= f (t ,ut )+ª(t ),u(0) = u0, (2.15)

where ª(t ) is some kind of forcing signal. In many situations in nature, it is reasonable
to assume that ª is a random signal. For instance, the Langevin equation (also called the
Ornstein-Uhlenbeck process by mathematicians)

m
d2

xt

dt 2 =°6ºµa
dx

dt
+ª(t )

describes the motion of a particle of radius a suspended in a liquid with viscosity µ with
Gaussian white noise ª(t ), see [25] (translated version [27]). Using the theory of stochastic
integration introduced by Kyoshi Itô, we can give rigorous meaning to the above equation
[18]. For other motivations to study stochastic differential equations and stochastic inte-
gration theory, see for instance the introduction of [30].

Of course, we can consider stochastic forcings for PDEs as well. This leads to the study of
SPDEs, which we briefly touched upon in the exposition. To make sense of the SPDEs that
we are going to study, we need a theory of stochastic integration in Hilbert spaces. Suppose
one is given an SPDE of the form

@ut

@t
=¢ut +ª(t , x),

where ª(t , x) is a white noise in space and time (this is a stochastich heat equation). The
aim is then to reformulate this SPDE as a function-space valued ODE, just as in the deter-
ministic setting. The function spaces we consider in this master’s thesis are almost always
Hilbert spaces. We can give meaning to the white noise1 by using stochastic integration
theory in Hilbert spaces.

2.2.1. Stochastic integration in Rd

For a primer on stochastic integration theory in Rd we refer to [19]. We also refer to the
short callback in [28].

2.2.2. Gaussian measure theory and infinite dimensional Wiener processes
The goal of this subsection is to introduce enough theory so that we can build the stochastic
integral for Hilbert spaces in the next section. We start of by recalling the definition of an
R-valued Wiener process (also called Brownian motion sometimes).

Definition 2.4. A stochastic process {Wt }t∏0 is called a Wiener process whenever the follow-
ing four properties hold:

1. W (0) = 0 a.s.

2. W (t )°W (s) ªN (0, t ° s) for all t ∏ s ∏ 0.

1Strictly speaking the spatial dimension should be of dimension 1. In higher dimensions, the white noise can
only be interpreted as a distribution.
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3. For any finite collection of time points 0 ∑ t1 ∑ t2 ∑ · · ·∑ tn , the collection Wtn
°Wtn°1 ,

Wtn°1 °Wtn°2 , . . . , Wt1 is independent.

4. The paths t 7!Wt are continuous a.s.

It is not straightforward how one should extend the second property. One standard char-
acterization of the normal distribution is that it has Gaussian density. However, this does
not work in infinite dimensions, since there exists no infinite dimensional Lebesgue mea-
sure. Therefore, we will introduce infinite dimensional Wiener processes using a different
approach, namely Gaussian measures. To this end, let (U , (·, ·)) be a separable Hilbert space.

Definition 2.5. A probability measure µ on (U , (·, ·)) is said to be Gaussian whenever the
measure µ± l

°1 has Gaussian density for all l 2U
§, that is,

µ(l 2 A) = 1
p

2ºæ2

Z

A

e
° (x°m)2

2æ2 dx for all A 2B(R)

where m 2R and æ> 0, and B(R) denotes the Borel æ-algebra on R.

If one takes U =Rd , where d ∏ 1, and X is an Rd -valued Gaussian random variable, we can
find that the above definition also holds for X . Indeed, for any a 2 Rd , a · X is normally
distributed with mean zero. Since any linear functional in U

§ can be identified with some
a 2 Rd , we obtain the above definition. This gives a hint that the new definition is indeed
the ‘right’ one.

It turns out that Gaussian measures can be characterized by a mean m 2U and a nonneg-
ative, symmetrice, finite trace, covariance matrix Q 2 L(U ), just as in the real case. We have
the following theorem:

Theorem 2.1. A measure µ on a separable Hilbert space (U , (·, ·)) is Gaussian if and only if

bµ(u) =
Z

U

e
i (u,v)dµ= e

i (m,u)° 1
2 (Qu,u), u 2U ,

where m 2U , Q 2 L(U ) is nonnegative, symmetric and with finite trace.

Proof. See [28, Theorem 2.1.2, p. 10].

From now on, we will denote a Gaussian measureµ as N (m,Q) where m and Q are specified
using the above theorem. However, this theorem does not show us if we can form any
Gaussian measure given arbitrary m 2U and Q 2 L(U ). It turns out that this is also possible,
which will be helpful to define the infinite dimensional Wiener process.

Proposition 2.5. Let (U , (·, ·)) be a separable Hilbert space, m 2U and Q 2 L(U ) be nonneg-

ative, symmetric with tr Q <1. Let {ek }k2N be an orthonormal basis of U , consisting of the

eigenvectors of Q with corresponding eigenvalues∏k , where k 2N. Then, a U -valued random

variable X is Gaussian with P±X
°1 = N (m,Q) if and only if

X =
1X

k=1

p
∏kØk ek +m

where {Øk }k2N are independent real-valued standard normal random variables. Further-

more, the above series converges in L
2(≠;U ).
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This leads to the following corollary:

Corollary 2.2. Let Q be a nonnegative and symmetric operator in L(U ) with finite trace and

let m 2U . Then there exists a Gaussian measure µ= N (m,Q) on (U , (·, ·)).

Proof of proposition 2.5. See [28, Proposition 2.1.6, p. 14].

This allows us to introduce the definition of the infinite dimensional Wiener process on a
Hilbert space.

Definition 2.6. Let (U , (·, ·)) be a separable Hilbert space. A U -valued stochastic process
{W (t )}t2[0,T ] is called a Q-Wiener process if:

1. W (0) = 0 a.s.

2. W (t )°W (s) ª N (0, (t ° s)Q) for all t ∏ s ∏ 0

3. For any finite collection of time points 0 ∑ t1 ∑ t2 ∑ · · ·∑ tn , the collection Wtn
°Wtn°1 ,

Wtn°1 °Wtn°2 , . . . ,Wt1 is independent.

4. The paths t 7!Wt are continuous a.s.

The existence of such a process can be derived from the real case. The interested reader
is again referred to [10, 28]. Ideally, we would like to set Q = I , but this is not possible in
the current setting, since the identity operator does not have finite trace. If we go back to
Definition 2.5, this means that it is not possible to seek convergence for

1X

k=1
Øk (t )ek

in L
2(≠;L

2([0,T ];U )). Using Hilbert-Schmidt embedding, we can let the above series con-
verge in a different space, and therefore define the infinite dimensional version of the Wiener
process for traceless Q. This type of Wiener process is called the cylindrical Wiener process.
We will only consider setting Q = I , though it is also possible to take other traceless Q. It
is also clear that the identity operator I is nonnegative and symmetric. Then we have the
following proposition:

Proposition 2.6. Let (U , (·, ·)) be a separable Hilbert space. Let {ek }k2N be an orthonormal ba-

sis of U and {Øk }k2N be a family of independent, real-valued Brownian motions. Let (U1, (·, ·))
be a further separable Hilbert space such that U is Hilbert-Schmidt embedded in U1, i.e.

U µ U1 and J : U ! U1 is Hilbert-Schmidt. Last but not least, define Q1 = J J
§

, which is

nonnegative and symmetric with finite trace and Q1 2 L(U1). Then, the series

W (t ) =
1X

k=1
Øk (t )Jek , t 2 [0,T ], (2.16)

converges in L
2(≠;L

1([0,T ];U1)) and defines a Q1-Wiener process on U1. Moreover, we have

Q

1
2
1 (U1) = J (U ) and for all u 2U ,

kukU = kQ

1
2
1 JukU1 = kJuk

Q

1
2

1 (U1)
.

Proof. See [28, Proposition 2.5.2, p. 50].

Remark 2.1. One can also introduce Hilbert space-valued Wiener processes through isonor-
mal processes. See for instance [37].
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2.2.3. Stochastic integration in Hilbert spaces
Having made sense of the Wiener process in separable Hilbert spaces, we are in the position
to introduce the stochastic integral. We will do this through 4 steps, which mimick the
construction in the real case:

Step 1: Defining the stochastic integral for a certain class of elementary L(U , H)-valued
processes.

Step 2: Prove an Itô isometry and use the isometry to extend the integral to a larger class of
integrands.

Step 3: Identify the extension.

Step 4: Extend the stochastic integral through localization.

The construction we give follows [28]. Throughout this section, H and U are assumed to be
separable Hilbert spaces.
Step 1:
Let ¡ : R+£≠! L(U , H) be an adapted elementary process of finite rank. That is, ¡ is a
linear combination of processes of the form

1(s,t ]£F (u ≠h)

where 0 ∑ s < t , F 2 Fs , u 2 U , h 2 H and u ≠h is a linear operator u ≠h : U ! H such
that (u ≠h)u

0 = (u,u
0)h for all u

0 2U . We can then define the stochastic integral against a
cylindrical Wiener process W by setting

Z1

0
1(s,t ]£F (u ≠h)dW := 1F (W (t )°W (s),u)≠h

and extend this to all adapted elentary processes of finite rank by linearity.

Step 2:
Let ¡ be an adapted elementary process of finite rank. We can write ¡ as

¡=
NX

n=1
1(tn°1,tn ]

MX

m=1
1Fmn

kX

j=1
u j ≠h j mn

where (u j )k

j=1 is an orthonormal system of U , for each 1 ∑ n ∑ N , the sets Fmn , 1 ∑ m ∑ M ,
are disjoint and belong to Ftn°1 . Finally, h j mn 2 H . We see that

Z1

0
¡ dW =

N ,M ,kX

n,m, j=1
1Fmn

(W (tn)°W (tn),u j )≠h j mn . (2.17)

We use the inner product structure of the Hilbert space H to obtain the following isometry:

E

∞∞∞∞
Z1

0
¡ dW

∞∞∞∞
2

H

= E
∞∞∞∞∞

N ,M ,kX

n,m, j=1
1Fmn

(W (tn)°W (tn°1),u j )≠h j mn

∞∞∞∞∞

2

H

(§)=
N ,M ,kX

n,m, j=1
(tn ° tn°1)E

£
1Fmn

kh j mnk2
H

§

= E
Z1

0
k¡tk2

L2(U ,H)dt .

(2.18)
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In the (§) step, we use that W is a Wiener process, orthonormality of the collection (u j )k

j=1
and adaptedness of ¡. For details, see [28].
Step 3:
Let E be the class of all adapted finite rank elementary processes. Then, the above isometry
can be used to extend the stochastic integral to the closure of E , which turns out to be all
progressively measurable ¡ : R+£≠! L2(U , H) such that E

R1
0 k¡tk2

L2(U ,H)dt <1. We will
not prove this here, but refer to [28].

Step 4:
The above stochastic integral can also be extended to integrands ¡ : R+£≠! L2(U , H) for

which ¡ is progressively measurable and P
≥R1

0 k¡tk2
L2(U ,H)dt <1

¥
, again see [28].

We will also state Burkholder’s inequality, arguably the most important inequality of this
master’s thesis:

Theorem 2.2. Let (U , (·, ·)) and (H , (·, ·)) be separable Hilbert spaces. Then, for any progres-

sively measurable ¡ : R+£≠! L2(U , H) and 0 < p <1, there exists a constant C only de-

pending on p such that

Esup
t∏0

∞∞∞∞
Z

t

0
¡dW

∞∞∞∞
p

H

∑Ck¡kp

Lp (≠;L2(R+;L2(U ,H)))
(2.19)

Proof. See [12].

2.2.4. Itô formulas for the square norm and p-norm
A cornerstone of much of the study of stochastic differential equations is Itô’s lemma. For
example, Itô’s lemma allows us to verify solutions of stochastic differential equations and
prove certain important theorems such as the martingale representation theorem and the
Burkholder-Davis-Gundy inequalities. Seeing that we are interested in obtaining solutions
of SPDEs, it is therefore desirable to produce a similar formula in an infinite-dimensional
setting. We give such a result for the square norm and subsequentially for the p-th norm
where p ∏ 2. The results in the next chapters crucially hinge on the Itô formulas presented
here.

In the sequel we assume that (V , H ,V
§) is a Gelfand triple. That is, V is a reflexive Banach

space with its dual V
§ and H is a Hilbert space such that V is densely embedded in H (from

which it follows that H
§ is densely embedded in V

§). We have the following two theorems:

Theorem 2.3. Let Æ 2 (1,1), X0 2 L
2(≠;F0,P; H) and Y 2 L

Æ
Æ°1 ([0,T ]£≠;dt ≠P;V

§), Z 2
L

2([0,T ]£≠;dt ≠P;L2(U , H)), both progressively measurable. Define the following continu-

ous V
§

-valued process

X (t ) = X0 +
Z

t

0
Y (s)ds +

Z
t

0
Z (s)dW (s), t 2 [0,T ].

If for its dt≠P-equivalence class X̂ we have X̂ 2 L
Æ([0,T ]£≠;dt≠P;V ) and if E(kX (t )k2

H
) <1

for dt-a.e. t 2 [0,T ] then X is a continuous H-valued Ft -adapted process and the following
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Itô-formula holds for the square of its H-norm P-a.s.:

kX (t )k2
H
= kX0k2

H
+

Z
t

0

≥
2hY (s), X̄ (s)iV +kZ (s)k2

L2(U ,H)

¥
ds

+2
Z

t

0
(X (s), Z (s)·)dW (s) for all t 2 [0,T ],

(2.20)

where X̄ is a V -valued progressively measurable version of X .

Proof. See [28, Theorem 4.2.5, p. 91] or [34, Theorem 3.2, p. 73].

We can generalize the above theorem to any p 2 [2,1)

Theorem 2.4. Let p 2 [2,1), Æ 2 (1,1), X0 2 L
p (≠;F0,P; H) and Y 2 L

Æ
Æ°1 ([0,T ]£≠;dt ≠

P;V
§), Z 2 L

2([0,T ]£≠;dt ≠P;L2(U , H)), both progressively measurable. Define the follow-

ing continuous V
§

-valued process

X (t ) = X0 +
Z

t

0
Y (s)ds +

Z
t

0
Z (s)dW (s), t 2 [0,T ].

If for its dt≠P-equivalence class X̂ we have X̂ 2 L
Æ([0,T ]£≠;dt≠P;V ) and if E(kX (t )k2

H
) <1

for dt-a.e. t 2 [0,T ], then X is a continuous H-valued Ft -adapted process and the following

Itô-formula holds P-a.s.:

kX (t )kp

H
= kX0kp

H
+p

Z
t

0
kX (s)kp°2

H
(X (s), Z (s)·)dWs

+ p(p °2)
2

Z
t

0
kX (s)kp°4

H
kZ (s)§X (s)k2

U
ds

+ p

2

Z
t

0
kX (s)kp°2

H

≥
2hY (s), X̄ (s)i+kZ (s)k2

L2(U ,H)

¥
ds for all t 2 [0,T ],

(2.21)

where X̄ is a V -valued progressively measurable version of X .

Proof. Since X0 2 L
p (≠;F0; H) µ L

2(≠;F0; H) for any p 2 [2,1), we can apply Theorem 2.3.
Therefore, we obtain continuity and Ft -adaptedness for X as an H-valued process. We also
obtain the formula stated in Theorem 2.3:

kX (t )k2
H
= kX0k2

H
+

Z
t

0

≥
2hY (s), X̄ (s)iV +kZ (s)k2

L2(U ,H)

¥
ds

+2
Z

t

0
(X (s), Z (s)·)dW (s), for all t 2 [0,T ],

(2.22)

Now, observe that this formula implies that kX (t )k2
H

is a real-valued local semi-martingale.
We can therefore apply the real-valued version of Itô’s lemma [19, theorem 3.3, p. 149].
Since f (x) = x

p

2 is not C
2 for p 2 (2,4), we use an approximating sequence of C

2 functions

f"(x) =
°
x

2 +"
¢ p

4 , where " > 0. It is clear that the theorem holds for p 2 [4,1). For exposi-
tion, we first calculate the relevant derivatives of f". These are

f
0
"(x) = p

2

°
x

2 +"
¢p

4 °1
x (2.23)
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and

f
00
" (x) = p

2

°
x

2 +"
¢p

4 °1 +p
°

p

4 °1
¢°

x
2 +"

¢p

4 °2
x

2. (2.24)

Using these derivatives, we can apply Itô’s lemma. This results in:

°
kX (t )k4

H
+"

¢ p

4

=
°
kX0k4

H
+"

¢ p

4 +p

Z
t

0

°
kX (s)k4

H
+"

¢ p

4 °1 kX (s)k2
H

(X (s), Z (s)·)dWs

| {z }
A

+ p

2

Z
t

0

°
kX (s)k4

H
+"

¢ p

4 °1 kX (s)k2
H

≥
2hY (s), X̄ (s)i+kZ (s)k2

L2(U ,H)

¥
ds

| {z }
B

+2
Z

t

0

∑
p

≥
p

4
°1

¥°
kX (s)k4

H
+"

¢ p

4 °2 kX (s)k4
H
+ p

2

°
kX (s)k4

H
+"

¢ p

4 °1
∏
kZ (s)§X (s)k2

U
ds

| {z }
C

(2.25)

We will take the limit in probability by taking "! 0 on both sides. By considering subse-
quences, we obtain the formula stated in the theorem. Therefore, we inspect terms A , B

and C individually.

For term A , we use the Itô isometry. Therefore, it suffices to show the following:

E

Z
t

0

∑°
kX (s)k4

H
+"

¢ p

4 °1 kX (s)k2
H
°kX (s)kp°2

H

∏2

kZ (s)§X (s)k2
U

ds ! 0 as "! 0 (2.26)

We will show this by using the dominated convergence theorem. Taking " > 0 small, we
have the following bound:

°
kX (s)k4

H
+"

¢ p°4
4 kX (s)k2

H
°kX (s)kp°2

H

∑
°
kX (s)k4

H
+"

¢ p°2
4 °kX (s)kp°2

H

∑C

≥
kX (s)kp°2

H
+"

p°2
4

¥

∑C

≥
kX (s)kp°2

H
+M

¥
,

(2.27)

where the third line follows since p 2 [2,1). Since X is continuous in H , the above multi-
plied by kZ

§
X k2

U
, is integrable in t a.s. Therefore, we can apply the DCT to obtain the limit

(2.26). Therefore, we have shown the following:

P - lim
"!0

A =P - lim
"!0

Z
t

0

°
kX (s)k4

H
+"

¢ p

4 °1 kX (s)k2
H

(X (s), Z (s)·)dWs

=
Z

t

0
kX (s)kp°2

H
(X (s), Z (s)·)dWs .

(2.28)
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The limits need to be interpreted as limits in probability. We continue with term B . The
integrand in B can be dominated in a similar way as in (2.27). This results in:

°
kX (s)k4

H
+"

¢ p°4
4 kX (s)k2

H

≥
2hY (s), X̄ (s)i+kZ (s)k2

L2(U ,H)

¥

∑C (kX (s)kp°2
H

+M)
≥
2kY (s)kV §kX̄ (s)kV +kZ (s)k2

L2(U ,H)

¥ (2.29)

Therefore, if we pick the RHS as dominating function for the DCT, we only need to check
integrability. Indeed,

Z
t

0
C (kX (s)kp°2

H
+M)(2kY (s)kV §kX̄ (s)kV +kZ (s)k2

L2(U ,H))ds

∑C ( sup
t2[0,T ]

kX (t )kp°2
H

+M)
Z

t

0
2kY (s)kV §kX̄ (s)kV +kZ (s)k2

L2(U ,H)ds

∑C ( sup
t2[0,T ]

kX (t )kp°2
H

+M)
≥
2
µZ

t

0
kY (s)k

Æ
Æ°1
V §

∂Æ°1
Æ

µZ
t

0
kX̄ (s)kÆ

V
ds

∂ 1
Æ

+
Z

t

0
kZ (s)k2

L2(U ,H)ds

¥
.

(2.30)

Since X is continuous, Y 2 L
Æ

Æ°1 (≠£[0,T ];V
§), X 2 L

Æ(≠£[0,T ];V ) and Z 2 L
2(≠£[0,T ];L2(U , H)),

all above quantities are finite P-a.s. Therefore, we can apply the DCT for term B . This re-
sults in:

P - lim
"!0

B =P - lim
"!0

Z
t

0

°
kX (s)k4

H
+"

¢ p°4
4 kX (s)k2

H

≥
2hY (s), X̄ (s)i+kZ (s)k2

L2(U ,H)

¥

=
Z

t

0
kX (s)kp°2

H

≥
2hY (s), X̄ (s)i+kZ (s)k2

L2(U ,H)

¥
ds.

(2.31)

Here, the limits should also be interpreted as limits in probability. We are only left to treat
term C . We will do this again by using the DCT. First note by the Cauchy-Schwarz inequal-
ity and some other elementary inequalities, that for all "> 0 small enough, there exists C ∏ 0
such that:

ØØØØp
≥

p

4
°1

¥°
kX (s)k4

H
+"

¢ p

4 °2 kX (s)k4
H
+ p

2

°
kX (s)k4

H
+"

¢ p

4 °1
ØØØØkZ (s)§X (s)k2

U

∑ p

µ
p °2

4

∂°
kX (s)k4

H
+"

¢ p

4 °1 kZ (s)§X (s)k2
U

∑ p

µ
p °2

4

∂°
kX (s)k4

H
+"

¢ p°2
4 kZ (s)k2

L2(U ,H)

∑C p

µ
p °2

4

∂
(kX (s)kp°2

H
+M)kZ (s)k2

L2(U ,H),

(2.32)

where the last line follows since p > 2. By similar arguments for terms A and B , the last
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quantity is integrable. Therefore, we can apply the DCT to conclude:

P - lim
"!0

C

=P - lim
"!0

Z
t

0

∑
p

≥
p

4
°1

¥°
kX (s)k4

H
+"

¢ p

4 °2 kX (s)k4
H
+ p

2

°
kX (s)k4

H
+"

¢ p

4 °1
∏
kZ (s)§X (s)k2

U
ds

= p

µ
p °2

4

∂Z
t

0
kX (s)kp°4

H
kZ (s)§X (s)k2

U
ds

(2.33)

Again, the limits should be interpreted as limits in probabilty. We can combine all limits
and take a subsequence to obtain the Itô formula stated in the theorem, which concludes
the proof.

Remark 2.2. It turns out that Theorem 2.3 can be generalized even further than Theorem
2.4. See for example [22].
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2.3. Standard notions from PDE theory
In this section, we will state some definitions and notation used for elements of PDE theory
used in this master’s thesis. We will

2.3.1. Sobolev spaces
We first state the definition of a Sobolev space on some set D µRd .

Definition 2.7. The Sobolev space W
k,p (D) is defined as the space of all u 2 L

1
loc(D) such

that for each multiindex |Æ|∑ k, D
Æ

u exists in the weak sense and belongs to L
p (D).

We can turn the Sobolev spaces into normed spaces, identifying functions that are equal
a.e., by defining

kuk
W k,p (D) :=

√
X

|Æ|∑k

Z

D

ØØDÆ
u

ØØp dx

! 1
p

, for 1 ∑ p <1. (2.34)

For p =1, we define
kuk

W k,1(D) :=
X

|Æ|∑k

ess supD

ØØDÆ
u

ØØ . (2.35)

It is a standard exercise to prove that the Sobolev spaces are Banach spaces. However, un-
like the L

p spaces, C
1
c

functions are not always dense in the Sobolev spaces. Therefore, we
make the following separate definition.

Definition 2.8. We let W
k,p

0 (D) be the closure of C
1
c

(D) in W
k,p (D) under the above norms.

Remark 2.3. The Sobolev spaces for which p = 2 take a special place in the theory of PDE,
because they are Hilbert spaces. They are usually denoted as H

k (D) = W
k,2(D). Accord-

ingly, the closure of C
1
c

(D) in W
k,2(D) is denoted by H

k

0 (D).

Remark 2.4. We will denote the dual of H
k

0 (D) by H
°k (D).



�
A coercivity condition for higher order

moments

In this chapter we will introduce the new p-dependent coercivity condition that will allow
us to obtain L

p (≠;L
2([0,T ]; X )) estimates for solutions of SPDEs in the respective class we

study. It must be mentioned that this condition is only a slight generalization of a rela-
tively new coercivity condition introduced in a recent paper by David Šiška and Neelima
Varshney [38]. In turn, they extended earlier work by Liu and Röckner, a more extensive
summary of which can be found in the introduction.The main novelty of this thesis over
the work of Šiška is two-fold: We slightly generalize the coercivity condition as well as ob-
taining endpoints for L

p (≠;L
2([0,T ]; X )) estimates. Slightly generalizing the p-dependent

coercivity condition allows us to distinguish between p-dependent and p-independent ex-
amples such as the stochastic heat equation and the p-Laplacian. Furthermore, Šiška and
Neelima only obtained almost p-th moments, i.e. estimates of type

E sup
t2[0,T ]

kukr p

H
, (3.1)

where r 2 (0,1), whereas our methods allow for r = 1. This is because we avoid the use of
Lenglart’s inequality.

This chapter is structured as follows. We first state the setting and assumptions we use for
the SPDEs we study. We then proceed to prove our main workhorse of this thesis, which are
a priori estimates on the solution of the SPDEs in our class. Using these a priori estimates,
we prove existence and uniqueness using Galerkin approximations. We proceed by extend-
ing our framework to additive equations, which will be especially useful when we consider
examples. Last but not least, we prove that the results that we have obtained are optimal
in the sense that it is not possible to obtain higher moments based on the assumptions we
use.

3.1. Setting, assumptions and a solution definition
This section will first illustrate the assumptions from which we will build our theory, and
define variational solutions for SPDEs. Afterwards, we will give some comments on these
assumptions.

23
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Assumptions 3.1. Let (U , (·, ·)U ), (H , (·, ·)H ) be separable Hilbert spaces and (V ,k · kV ) a re-

flexive Banach space embedded continuously and densely in H. We denote the dual of V by

V
§

and the duality pairing by h·, ·i. We can then consider the Gelfand triple (V , H ,V
§) where

all embeddings are dense and continuous.

Now, consider the SPDE

dut = A(t ,ut )dt +B(t ,ut )dWt , (3.2)

where A is a nonlinear operator

A : [0,T ]£≠£V !V
§

and B a nonlinear operator

B : [0,T ]£≠£V ! L2(U , H).

Both operators are assumed to be progressively measurable. To shorten notation, we will de-

note A(t ,ut ) as At (ut ) from now on, in which we also surpress the dependence on! 2≠. The

same remark holds for B(t ,ut ). We consider (Wt )t2[0,T ] to be a U -valued cylindrical Wiener

process, as defined in the previous chapter, proposition 2.6. Furthermore, it is assumed that

there exist constants Æ> 1,Ø∏ 0, p0 ∏Ø+2,µ > 0,Kc ,K A,KB ,KÆ ∏ 0 and a nonnegative func-

tion f 2 L
p0
2 (≠;L

1([0,T ];R)) such that the following five conditions hold for t 2 [0,T ] a.s.

(H1) (Hemicontinuity) For all u, v, w 2V , ! 2≠, the map

∏ 7! hAt (u +∏v,!), wiV

is continuous.

(H2) (Local weak monotonicity) For all u, v 2V ,

2hAt (u)° At (v),u ° viV +kBt (u)°Bt (v)k2
L2(U ,H)

∑ K (1+kvkÆ
V

)(1+kvkØ
H

)ku ° vk2
H

.

(H3) (Coercivity) For all v 2V , v 6= 0,

2hAt (v), viV +kBt (v)k2
L2(U ,H) + (p0 °2)

kBt (v)§vk2
U

kvk2
H

∑°µkvkÆ
V
+ ft +Kckvk2

H
.

(H4) (Boundedness 1) For all v 2V ,

kAt (v)k
Æ

Æ°1
V § ∑ K A( ft +kvkÆ

V
)(1+kvkØ

H
).

(H5) (Boundedness 2) For all v 2V ,

kBt (v)k2
L2(U ,H) ∑

°
ft +KBkvk2

H
+KÆkvkÆ

V

¢
.
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Remark 3.1. Most conditions are fairly standard and appear in previous works that treat
the variational approach to SPDEs [31] [23] [28]. The coercivity condition we use is slightly
more general than the one in Šiška and Neelima’s paper, which is as follows:

2hAt (v), vi+ (p0 °1)kBt (v)k2
L2(U ,H) ∑°µkvkÆ

V
+ ft +Kckvk2

H
. (3.3)

Whenever Šiška and Neelima’s condition holds, we can derive our coercivity condition H3
using Cauchy-Schwarz and the operator adjoint isometry for Hilbert-Schmidt operators.
We have also introduced an extra condition, H5, which bounds the norm kBt (v)k2

L2(U ,H).
In most other works [28][23], this bound is only mentioned as an extra assumption in the
main theorems. We also use a slightly more general bound, taking inspiration from recent
work by Brzezniak, Liu and Zhang [4]. Last but not least, we mention that the constant Ø
allows us to incorporate some polynomial growth in the operator A.

Remark 3.2. In most cases, Æ = 2, Ø = 0, KB = 0 and f = 0. This is for example the case in
the stochastic heat equation treated in the next chapter.

Having laid out the assumptions from which we will work, we need to define what it means
to be a solution to equation (3.2).

Definition 3.1. Given the assumptions in assumptions 3.1, let u0 2 L
p0 (≠; H) be the initial

condition to (3.2). An adapted, continuous H-valued process u is called a solution of the
stochastic evolution equation (3.2) if:

1. dt £P almost everywhere u 2V and
Z

T

0
kutkÆV dt <1 a.s.

2. For every t 2 [0,T ], P-a.s.,

ut = u0 +
Z

t

0
As(us)ds +

Z
t

0
Bs(us)dWs ,

where the us on the RHS is taken to be a progressively measurable version to ensure the
stochastic integral exists.

3.2. A priori estimates on the solution
We first present a priori estimates (which we will also call energy estimates occasionally) on
the solution of SPDE (3.2) under assumptions H3, H4 and H5. These are estimates under
the solution that SPDE (3.2) indeed has a solution. Eventhough this might seem superflu-
ous, a priori estimates will later help us to prove existence and uniqueness for SPDE (3.2).
The a priori estimates are summarized in the following theorem:

Theorem 3.1. Suppose u is a solution of equation (3.2) with initial condition u0 2 L
p0 (≠; H)

and assumptions H3, H4 and H5 hold. Then, for all p 2 [2, p0], there exists a constant C

depending on µ, Æ, and p such that

E sup
t2[0,T ]

kutkp

H
+E

Z
T

0
kutkp°2

H
kutkÆV dt +E

µZ
T

0
kutkÆV dt

∂ p

2

∑Ce
C T

√
Eku0kp

H
+E

µZ
T

0
ft dt

∂ p

2
!

.

(3.4)
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If we assume that KB = KC = 0 in H3 and H5, we can make energy estimates with constants
that do not on p. This will be commented on in the remark after the next proof.

Proof of Theorem 1. The above estimate can be proven by proving the inequality for each
term on the LHS individually. Before we do this, we first lay out some general estimates
that will be useful for all three terms. To this end, suppose that u is a solution of equation
(3.2). We introduce a sequence of stopping times to apply the function k ·kp

H
to u by using

theorem 2.4. Fix S 2 (0,T ]and consider the following sequence of stopping times:

øn = inf{t 2 [0,S] : kutkH > n}^ inf{t 2 [0,S] :
Z

t

0
kuskÆV d s ∏ n}^S, (3.5)

where n 2N. It is clear that øn ! S a.s. as n !1. Applying theorem 2.4, this results in the
following formula for kut^øn

kp

H
:

kut^øn
kp

H
= ku0kp

H
+p

Z
t^øn

0
kuskp°2

H
(us ,Bs(us)·)dWs

+ p(p °2)
2

Z
t^øn

0
kuskp°4

H
kB

§
s

(us)usk2
U

ds

+ p

2

Z
t^øn

0
kuskp°2

H

≥
2hAs(us),usi+kBs(us)k2

L2(U ,H)

¥
ds,

(3.6)

where the dot in (us ,Bs(us)·) is short notation for a linear operator. We combine the last
two deterministic integrals, which results in:

kut^øn
kp

H
= ku0kp

H
+p

Z
t^øn

0
kuskp°2

H
(us ,Bs(us)·)dWs

+ p

2

Z
t^øn

0
kuskp°2

H

≥
2hAs(us),usi+kBs(us)k2

L2(U ,H)

+ (p °2)
kBs(us)§usk2

U

kusk2
H

¥
ds.

(3.7)

The last expression on the RHS can be simplified by invoking the coercivity assumption H3,
giving:

kut^øn
kp

H
+µp

2

Z
t^øn

0
kuskÆV ds ∑ ku0kp

H
+p

Z
t^øn

0
kuskp°2

H
(us ,Bs(us)·)dWs

+ p

2

Z
t^øn

0
kuskp°2

H

°
fs +Kckusk2

H
°µkuskÆV

¢
ds.

(3.8)

This inequality will be our starting point to derive different inequalities which ultimately
lead to our result. Taking expectations on both sides of (3.8) and using that the stochastic
integral is a martingale results in:

Ekut^øn
kp

H
+µp

2
E

Z
t^øn

0
kuskp°2

H
kuskÆV ds ∑ Eku0kp

H
+ p

2
E

Z
t^øn

0
kuskp°2

H
fsds

+ p

2
KcE

Z
t^øn

0
kuskp

H
ds.

(3.9)
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This estimate will be re-used at different times throughout the proof. At this point, we
specialize to indivual terms of the inequality in the theorem.

Step 1: Supremum term

We proceed by making an estimate on the quantity

E sup
t2[0,S]

kutkp

H
. (3.10)

By re-using the Ito formula obtained in (3.8) for Esupkut^øn
kp

H
, we obtain the following

estimate:

E sup
t2[0,S]

kut^øn
kp

H
∑ Eku0kp

H
+pE sup

t2[0,S]

Z
t^øn

0
kuskp°2

H
(us ,Bs(us)·)dWs

+ p

2
E sup

t2[0,S]

Z
t^øn

0
kuskp°2

H

°
fs +Kckusk2

H

¢
ds.

(3.11)

Note that we can remove the supremum on the last term as the integrand is nonnegative.
Therefore, we are left with

E sup
t2[0,S]

kut^øn
kp

H
∑ Eku0kp

H
+pE sup

t2[0,S]

Z
t^øn

0
kuskp°2

H
(us ,Bs(us)·)dWs

+ p

2
E

Zøn

0
kuskp°2

H
fsds

+ p

2
KcE

Zøn

0
kuskp

H
ds.

(3.12)

Note that the last two integrals range from 0 to øn as S ^ øn = øn by definition. We esti-
mate the stochastic integral first, which we will recombine with estimate (3.12). Let "1 > 0.
We estimate the stochastic integral term by doing a combination of the Burkholder-Davis-
Grundy inequality, Hölder, the Peter-Paul inequality and invoking H5:

pE sup
t2[0,S]

Z
t^øn

0
kuskp°2

H
(us ,Bs(us)·)dWs

(BDG)
∑ 2

p
2pE

µZøn

0
kusk2p°2

H
kBs(us)k2

L2(U ,H)ds

∂ 1
2

∑ p2
p

2E
µ

sup
t2[0,S]

kut^øn
kp

H

Zøn

0
kuskp°2

H
kBs(us)k2

L2(U ,H)ds

∂ 1
2

(Hölder)
∑ p2

p
2
µ
E sup

t2[0,S]
kut^øn

kp

H

∂ 1
2
µ
E

Zøn

0
kuskp°2

H
kBs(us)k2

L2(U ,H)ds

∂ 1
2

(PP)
∑ p

p
2"1E sup

t2[0,S]
kut^øn

kp

H
+ p

"1

p
2E

Zøn

0
kuskp°2

H
kBs(us)k2

L2(U ,H)ds

(H5)
∑ p

p
2"1E sup

t2[0,S]
kut^øn

kp

H

+
p

2
p

"1

µ
E

Zøn

0
kuskp°2

H
( fs +KBkusk2

H
+KÆkuskÆV )ds

∂
.

(3.13)
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We recombine this estimate with (3.12), taking the supremum term to the LHS. This results
in

(1°p

p
2"1)E sup

t2[0,S]
kut^øn

kp

H

∑ Eku0kp

H
+p

√p
2

"1
+ 1

2

!
E

Zøn

0
kuskp°2

H
fsds +p

√p
2KB

"1
+ Kc

2

!
E

Zøn

0
kuskp

H
ds

+pKÆ

p
2

"1
E

Zøn

0
kuskp°2

H
kuskÆV ds. (3.14)

The last term on the RHS can be estimated by re-using estimate (3.9). This results in

E

Zøn

0
kuskp°2

H
kuskÆV ds ∑ 2

pµ
Eku0kp

H
+ 1
µ
E

Zøn

0
kuskp°2

H
fsds

+ Kc

µ
E

Zøn

0
kuskp

H
ds.

(3.15)

Recombining with estimate (3.14) gives

(1°p

p
2"1)E sup

t2[0,S]
kut^øn

kp

H
(3.16)

∑
√

1+KÆ
2
p

2
"1µ

!
Eku0kp

H
+p

√p
2

"1
+ 1

2
+KÆ

p
2

µ"1

!
E

Zøn

0
kuskp°2

H
fsds

| {z }
A

+p

√p
2KB

"1
+ Kc

2
+
p

2KÆKc

µ"1

!
E

Zøn

0
kuskp

H
ds

| {z }
B

. (3.17)

It remains to estimate items A and B . We first estimate item A , whereas term B will
be estimated later using Gronwall’s inequality. To this end, let "2 > 0. We use Hölder’s
inequality and Young’s inequality to obtain

E

Zøn

0
kuskp°2

H
fsds ∑ E sup

t2[0,S]
kut^øn

kp°2
H

Zøn

0
fsds

(Hölder)
∑

µ
E sup

t2[0,S]
kutkp

H

∂ p

p°2
√
E

µZøn

0
fsds

∂ p

2
! 2

p

(Young)
∑ p °2

p
"2E sup

t2[0,S]
kut^øn

kp

H
+ 2

p"
p°2

2
2

E

µZøn

0
fsds

∂ p

2

.

(3.18)

Filling in this estimate on the RHS of (3.16), taking the supremum term to the LHS again,
we finally obtain:
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µ
1°p

p
2"1 ° (p °2)"2

√p
2

"1
+ 1

2
+KÆ

p
2

µ"1

!∂
E sup

t2[0,S]
kut^øn

kp

H

∑
√

1+KÆ
2
p

2
"1µ

!
Eku0kp

H

+ 2

"
p°2

p

2

√p
2

"1
+ 1

2
+KÆ

p
2

µ"1

!
E

µZøn

0
fsds

∂ p

2

+p

√p
2KB

"1
+ Kc

2
+
p

2KÆKc

µ"1

!
E

Zøn

0
kuskp

H
ds

We can simplify the above expression in such way that we can apply Gronwall’s inequal-
ity. We do this by choosing "1 and "2 such that the bracket term on the LHS is positive.
Denoting the resulting constant by C (depending on Kc ,K A,KB ,KÆ, p and µ), we obtain
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As S was arbitrarily chosen in (0,T ] and the constant C does not depend on S, we can apply
Gronwall’s inequality as a function of S. We find:
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We can remove the stopping times by overestimating the RHS and then using Fatou’s lemma
on the LHS. This leaves us with:
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Therefore, up to some constants, we have derived the first part of the inequality stated in
the theorem.

Step 2: Mixed norm

The second part of the inequality in the theorem follows by re-using equation (3.9) at time
t = T . We therefore also need to reintroduce the stopping time øn used before. Specifically,
we reintroduce øn where we take S = T :

øn = inf{t 2 [0,T ] : kutkH > n}^ inf{t 2 [0,T ] :
Z

t

0
kuskÆV d s ∏ n}^T. (3.22)

We can now re-use equation (3.9). Leaving out one of the terms on the LHS, this results in
the following estimate:

µ
p

2
E

Z
t^øn

0
kuskp°2

H
kuskÆV ds ∑ Eku0kp

H
+ p

2
KE

Z
T

0
kuskp°2

H
fsds + p

2
KE

Z
T

0
kuskp

H
ds (3.23)



3.2. A priori estimates on the solution 30

The second term on the RHS is estimated as in equation (3.18). This results in:
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Using the estimate derived in (3.21), we obtain:
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We now proceed to estimate the third term on the RHS of equation (3.23). We again use
(3.21) to get:
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Recombining estimates (3.25) and (3.26) in equation (3.23), we finally obtain:
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Applying Fatou’s lemma on the LHS and setting t = T , we obtain the estimate
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Step 3: V-norm

There is only a third part of the inequality stated in the theorem that we have to prove. We
are interested in the following quantity:

E

µZ
T

0
kuskÆV ds

∂ p

2

(3.29)

In order to estimate this quantity, we have to apply Itô’s formula for kutk2
H

as given in [28],
Theorem 4.2.5. This results in:
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Apply the coercivity assumption H3 to the second term to get:
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In particular,
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We introduce the stopping time øn again:

øn = inf{t 2 [0,S] : kutkH > n}^ inf{t 2 [0,S] :
Z

t

0
kuskÆV > n}^T (3.33)

Applying the function | · |
p

2 to both sides and taking expectations at time t ^øn , we obtain
the following estimate:
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We are only left to estimate the third term on the RHS. Applying the BDG inequality, Hölder’s
inequality and Young’s inequality, we obtain:

E

ØØØØ
Z

t^øn

0
(us ,Bs(us)·)dWs

ØØØØ

p

2

∑ E sup
t2[0,T ]

ØØØØ
Z

t

0
(us ,Bs(us)·)dWs

ØØØØ

p

2

∑CpE

µZ
T

0
kusk2

H
kBs(us)k2

L2(U ,H)ds

∂ p

4

∑CpE

µ
sup

t2[0,T ]
kutk2

H

Z
T

0
kBs(us)k2

L2(U ,H)ds

∂ p

4

∑Cp

µ
E sup

t2[0,T ]
kutkp

H

∂ 1
2
√
E

µZ
T

0
kBs(us)k2

L2(U ,H)ds

∂ p

2
! 1

2

Yng.
∑Cp

1
2"
E sup

t2[0,T ]
kutkp

H
+Cp

"

2
E

µZ
T

0
kBs(us)k2

L2(U ,H)ds

∂ p

2

(3.35)

We use H5 to estimate the second term on the RHS. This results in:
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Recombine this estimate with inequality (3.35) to get:
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We can finally combine this with the estimate (3.34) to obtain:
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Choosing time t = T , we obtain:
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Choosing "> 0 small enough, we finally obtain the estimate we are interested in:
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To conclude the proof we combine the three main estimates (3.21), (3.23) and (3.40)

Remark 3.3. When KB = Kc = 0 in assumptions H1-H5, it is possible to make energy esti-
mates where some of the constants in the estimate do not depend on p. Specifically, we
can prove the following estimates:
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where C depends on µ,Æ,K A and KÆ, but not on p!. We also get:
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where C
0 depends on µ,Æ,K A and KÆ and p. In this case, the constant C

0 behaves as C
0
p
ªp

p. The first estimate allows one to obtain L
1 estimates, while the second estimate is still

useful to obtain tail estimates. Applications of this remark can be found in the next chapter
when we treat the Burgers’ equation and the stochastic Navier-Stokes equation in 2D.
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Proof of Remark 3.3. We prove the inequality for the two terms on the LHS individually.

Step 1: Supremum norm We can do exactly the same steps in the previous proof to obtain
inequality (3.19), where "1,"2 > 0:
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We take 1/p powers on both sides to obtain:
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Both constants can be bounded uniformly in p. Therefore, we obtain the estimate we were
looking for:

µ
E sup

t2[0,T ]
kutkp

H

∂ 1
p

∑C

∑
ku0kLp (≠;H) +k f k2

L

p

2 (≠;L1([0,T ];R))

∏
, (3.46)

where C depends on µ and KÆ.

Step 2: V-norm To prove the inequality for the V term, we re-use equation (3.34). We there-
fore obtain:
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We estimate term A as in (3.35) using the BDG inequality. This results in
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where "> 0 is chosen retrospectively. We continue to estimate the second term on the RHS.
Using assumption H5, we obtain
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Recombine all terms with inequality (3.47) to obtain
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Set time t = T . We can take the last term to the LHS to obtain
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We can take 1/p powers on both sides and re-use the estimate in step 1, to obtain
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All constants can be bounded by a constant growing as
p

p. We can also re-use the esti-
mate in step 1 to estimate the supremum term on the RHS. To summarize, we obtain the
following bound, where the constant C depends on µ,Æ,K A and KÆ and

p
p:
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Using Fatou’s lemma on the LHS to remove the stopping time finishes the proof.
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3.3. Existence and uniqueness result for coercive SPDEs
The a priori estimates derived in the previous section can be used to prove existence and
uniqueness results by using a Galerkin approximation. This will be done in the next theo-
rem:

Theorem 3.2. If assumptions H1 to H5 hold and u0 2 L
p (≠; H) with p 2 [2, p0], then the

stochastic evolution equation (3.2) has a unique solution u and the following estimate holds

for all q 2 [2, p]:
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Proof of Theorem 3.2 (Existence). We start the proof with some constructive preliminaries
in order to project the SPDE to a finite dimensional subspace. This allows us to perform
the Galerkin approximation later.

Step 1: Existence and uniqueness of projected SPDE

Let
{e1,e2, . . .} µV

be an orthonormal basis of H . This is indeed possible, since we can apply the Gram-
Schmidt procedure to any countably dense subset of V in H . Define Hn = span{e1, . . . ,en}
for every n 2N and the operator Pn : V

§ ! Hn by

Pn y =
nX

i=1
hy,ei iV ei

for y 2V
§. Similarly, let

{g1, g2, . . .} µU

be an orthonormal basis of U and define the operator P̃n : U ! span{g1, . . . , gn} by

ePnu =
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(u, gi )U gi .

Using this operator, define
W

n(t ) = P̃nW (t ).

This allows us to consider the following projected SPDE (which is actually an SDE now),
where we suggestively write u

n

t
for the solution process:

du
n

t
= Pn At (u
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t
)dt +PnBt (u
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t
) ePndWt , u
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0 = Pnu0. (3.56)

For notational convenience, we will denote At (u
n

t
) and Bt (u

n

t
) by a

n

t
and b

n

t
respectively

from now on. Furthermore, we claim that the quantities appearing in equation (3.56) sat-
isfy the premises of Theorem (3.1). This will allow us to place a bound on several quantities
involving u

n

t
, independent of n 2N. To this end, we take the following Gelfand triple:

(Hn ,k ·kV ) µ (Hn ,k ·kH ) µ (Hn ,k ·kV §).
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The embedding constants in this triple are independent of n 2 N, since the norms used
are associated with the Gelfand triple (V , H ,V

§). This will be useful for obtaining uniform
bounds independent of n. To obtain these, we only need to check whether a solution of
equation (3.56) exists and assumptions H1 to H5 are satisfied.

Before we do this, we first take note of one identity that will simplify these checks. For
u 2V , v 2 Hn ,

hPn At (u), viV = hPn At (u), viH = hAt (u), viV (3.57)

which can be found by using the definition of Pn .

We use Theorem 3.1.1 from [28, Theorem 3.1.1, p. 56] to show that a solution exists for
equation (3.56). First note that ePndWt turns equation (3.56) into a finite dimensional SDE.
Indeed, dW

n(t ) = ePndW (t ) and by definition of W (t ), the projection ePn creates a finite
dimensional Wiener process, when applied to W (t ). Let u, v 2 Hn such that kukHn

,kvkHn
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R where R 2 [0,1) and t 2 [0,T ]. We check the local weak monotonicity and weak coercivity
conditions. For the local weak coercivity condition, we get:
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where the second step follows by assumption H3 for equation (3.2). We conclude that equa-
tion (3.56) has a unique solution.

Next, we show that assumptions H3, H4 and H5 hold for equation (3.56). To this end, let
v 2 Hn be arbitrary. Then,
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Now, let u, v 2 Hn be arbitrary. We determine the operator norm kAt (v)kV § for v 2 Hn , using
equation (3.57):

|hPn At (u), viV | = |hAt (u), viV |∑ kAt (u)kV §kvkHn
(3.59)

We conclude that kPn At (u)kV § ∑ kAt (u)kV § , which implies that

kPn At (u)k
Æ

Æ°1
V

∑ kAt (u)k
Æ

Æ°1
V § ∑ ( ft +K kukÆ

V
)(1+kukØ

H
) (3.60)

The last assumption H5 follows by a similar argument, since projections are contractions.
We can consequently apply Theorem 1 and conclude the following:

For all p 2 [2, p0] and for all n 2N, there exists a constant C independent of n such that the
following bound holds for all n:
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The above bound is relevant, since it will allow us to build a solution using the Galerkin
approximation method.

Step 2: Weak approximation of solutions

We now proceed to apply weak compactness arguments to obtain a weak approximation
of a candidate solution to the SPDE (3.2). To obtain these, one needs uniform bounds on a
sequence of approximations. In this case, we aim for a candidate solution that is the weak
limit of the sequence (un)n2N. Having obtained this candidate solution, we need to show
that it is actually a solution. We do this by extracting weakly convergent subsequences of
a

n

t
:= At (u

n) and b
n

t
:= Bt (u

n) in some space. Specifically, we look for uniform bounds on
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We start with a
n

t
. Using H4, H5 and p0 ∏Ø+2, we obtain:
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(3.62)

One of the terms in equation (3.62) can be estimated using Hölder’s inequality, giving:
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We can estimate equation (3.62) by combining the above estimate with equation (3.61)
where we take p = p0 and p = 2. This results in:
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(3.63)

We conclude that the term on the LHS of the inequality is therefore uniformly bounded in
n. We do similar estimates for the b

n term, using the growth condition H5:
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Z
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0
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(3.68)

We conclude that the LHS is also uniformly bounded in n. These bounds consequently al-
low us to extract weakly convergent subsequences in the following reflexive Banach spaces:

L
2(≠;L

2([0,T ]; H)), L
Æ([0,T ]£≠;V ), L

Æ
Æ°1 ([0,T ]£≠;V

§), L
2([0,T ]£≠;L2(U , H)).
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One consequence of reflexivity is that unit balls (and multiples of it) of these spaces are
weakly compact, which follows by the Banach-Alaoglu theorem. This implies that any
bounded sequence in one of the four spaces must always have a weakly convergent subse-
quence. We have shown earlier in expressions (3.61), (3.63) and (3.64), that the sequences
(un)n2N, (a

n)n2N, (b
n)n2N all are uniformly bounded in n, respectively. This implies that

they have weakly convergent subsequences. We summarize this as follows. There exist
ū, a and b with ū 2 L

2(≠;L
2([0,T ]; H)), ū 2 L

Æ([0,T ]£≠;V ), a 2 L
Æ

Æ°1 ([0,T ]£≠;V
§) and

b 2 L
2([0,T ]£≠;L2(U , H), and a subsequence (nk )k2N (by taking further subsequences if

needed) such that:

1. u
(nk )* ū in L
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2. u
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Æ
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§).

4. b
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2([0,T ]£≠;L2(U , H)).

We further note, by boundedness of the stochastic integral, that
Z·

0
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b
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s dW
nk (s)*
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0
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in M
2
T

(H). Here, M
2
T

(H) is the space of square integrable continuous martingales taking
values in H with norm

kvk
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µ
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for v 2M
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We use the last two limits to define a candidate solution

ut = u0 +
Z

t

0
asds +

Z
t

0
bsdWs . (3.69)

Step 3: Showing that the candidate solution is a solution

In the previous step 2, we defined the candidate solution u. We are only left to show that
this is an actual solution to the SPDE (3.2). To do this, we first show that ū = u almost
everywhere. To this end, let ¥ 2 L

1(≠£ [0,T ];R), ¡ 2 S
n∏1 Hn . By weak convergence and
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equation (3.57), we get:
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(3.70)

We find that u = ū a.e., since linear combinations of ¥¡ are dense in L
Æ(≠£ [0,T ];V ). By

[28, Theorem 4.2.5, p. 91] (see also theorem 2.3), it follows that ut is continuous in H a.s.
To show that u solves the SPDE, we are only left to show that a = A(u) and b = B(u) almost
everywhere. We introduce the space™ to help us in this task.

For any v 2 V , define Ω(v) = K (1+ kvkÆ
V

)(1+ kvkØ
H

). Let ™ be the collection of V -valued
Ft -adapted processes √ satisfying

Z
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Ω(√t )dt <1 a.s.

Now take √ 2™ arbitrarily. Let √ 2 L
Æ([0,T ]£≠;V )\™\L

2(≠;L
1([0,T ]; H)). We use Itô’s

lemma, to obtain an expression for the following two similar quantities:
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We first note that [28, Theorem 4.2.5, p. 91] (see also theorem 2.3) implies an Itô type for-
mula for both ku
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t

k2
H

and kutk2
H

, since both u
(nk ) and u satisfy the hypotheses of that

theorem. The resulting Itô formulas are:
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and

kutk2
H
= ku0k2

H
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L2(U ,H)ds +
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We apply Itô’s lemma again, using the function f (x, y) = e
°x

y . We apply this to the pair
(Xt ,Yt ) where Xt =

R
t

0 Ω(√s)ds and Mt is a real-valued semimartingale of the form
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We assume that F,G are such that Esup Mt is finite and G 2 L
2([0,T ]£≠;L2(U , H)). This

results in:
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(3.74)

Since we have assumed that G 2 L
2([0,T ]£≠ : L2(U , H)) and Esup Mt are both finite, the

stochastic integrals are martingales. On taking expectations, this results in:
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Choosing Mt = ku
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, we obtain:
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Similarly, we can choose Mt = kutk2
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to get:
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Starting from equation (3.76), we work our way towards invoking the local monotonicity
assumption H2.
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Applying H2, this results in:
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In order to proceed we use lemma 2.2, which results in the following inequality by the weak
convergence of u

(nk )* u in L
2(≠;L

2([0,T ]; H)):
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Using this observation, we can proceed from inequality (3.79). Observe that for all k 2 N,
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convergence and inequality (3.79),
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We know a different expression for the LHS of the above inequality by using equation (3.77).
Filling this in and simplifying both LHS and RHS of inequality (3.81), we obtain:
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Take√= u. We immediately observe that this implies that B(u) = b in L
2([0,T ]£≠;L2(U , H)).

To show that A(u) = a, let ¥ 2 L
1([0,T ]£≠;R), ¡ 2 V , " 2 (0,1) and let √ = u ° "¥¡. This

results in:
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Using the dominated convergence theorem, sending "! 0, and H1, we obtain that
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We conclude from this that
Z
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Since this holds for almost all t 2 [0,T ], ¥ and ¡ were arbitrary, we obtain that A(u) = a in
L

Æ
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§).

Proof of Theorem 2 (Uniqueness). Consider ut and vt to be two solutions of equation (3.2).
This implies that

ut ° vt =
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Z
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Bs(us)°Bs(vs)dWs (3.85)

almost surely for all t 2 [0,T ]. We aim to use Itô’s lemma in a similar way as the previous
proof. We first introduce the following sequence of stopping times:

æn = inf{t 2 [0,T ] : kutkH > n}^ inf{t 2 [0,T ] : kvtkH > n}^T.

We use this stopping time to note that kut ° vtk2
H

is also semimartingale, by using Itô’s
lemma [28, Theorem 4.2.5, p. 91] (or see theorem 2.3), which gives the following Itô for-
mula:
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Since the above satisfies the assumptions for equation (3.74), we use Mt = kut °vtk2
H

. This
results in the following formula:
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Invoke assumption H2 to obtain:
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The stopping time turns the stochastic integral term into a martingale. Taking expectations
on both sides in the above equation, we obtain that:
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We apply Fatou’s lemma to conclude that kut ° vtk2
H
= 0 almost surely for every t 2 [0,T ].

Invoking continuity of u ° v in H , we find that u and v are indistinguishable, i.e.

P

µ
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kut ° vtkH = 0
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= 1
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3.4. Extension to additive equations
We can generalize the framework that has been built to include certain additive equations.
That is, we can treat equations of the form

dut = (At (ut )+ ft )dt + (Bt (ut )+ gt )dWt , (3.90)

where certain assumptions on f and g are made. We will first state assumptions underlying
treatment of this equation and then state the results based on our theory.

Assumptions 3.2. Consider equation (3.90), a given Gelfand triple (V , H ,V
§) and a cylindri-

cal Wiener process W , taking values in a separable Hilbert space U . We assume the operators

A and B satisfy the assumptions H1 to H5, given constants Æ > 1, Ø ∏ 0, p0 ∏ Ø+ 2, µ > 0,
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2 (≠;L

1([0,T ];R)). We also take

f 2 L

p0Æ
2(Æ°1) (≠;L

Æ
Æ°1 ([0,T ];V

§)), g 2 L
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Theorem 3.3. Given assumptions 3.2, define eA = A+ f and eB = B +g . Then assumptions H1
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E sup
t2[0,T ]

kutkq

H
+E

Z
T

0
kutkq°2

H
kutkÆV dt +E

µZ
T

0
kutkÆV

∂ q

2

∑Ce
C T

0
@Eku0kq

H
+E

µZ
T

0
ht dt

∂ q

2

+E
µZ

T

0
k ftk

Æ
Æ°1
V § dt

∂ q

2

+E
µZ

T

0
kgtk2

L2(U ,H)dt

∂ q

2

1
A

(3.91)

Proof of Theorem 3.3. We only show H3, the other assumptions are straightforward. The
second result follows by invoking theorem 3.2 with operators eA and eB . To this end, let
v 2 V , v 6= 0 and t 2 [0,T ]. We use Young’s inequality, H3 and H5 for A and B to derive: We
first split the additive terms and use Cauchy-Schwarz to obtain:

2hAt (v)+ ft , viV +kBt (v)+ gtk2
L2(U ,H) + (p0 °2)

k(Bt (v)+ gt )§vk2
U

kvk2
H

∑ 2hAt (v), viV +2h ft , viV +kBt (v)k2
L2(U ,H) +2(Bt (v), gt )L2(U ,H)

+kgtk2
L2(U ,H) + (p0 °2)

k(Bt (v))§vk2
U

kvk2
H

+2(p0 °2)
(Bt (v)§v, g

§
t

v)U

kvk2
H

+ (p0 °2)kgtk2
L2(U ,H).

(3.92)
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We can apply H3 for operators A and B and Cauchy-Schwarz to derive:

2hAt (v)+ ft , viV +kBt (v)+ gtk2
L2(U ,H) + (p0 °2)

k(Bt (v)+ gt )§vk2
U

kvk2
H

(H3)
∑ ht +K kvk2

H
+2h ft , viV +2(Bt (v), gt )L2(U ,H) + (p0 °1)kgtk2

L2(U ,H)

+2(p0 °2)
(Bt (v)§v, g

§
t

v)U

kvk2
H

°µkvkÆ
V

(C°S)
∑ ht +K kvk2 +2k ftkV §kvkV +2(p0 °1)kBt (v)kL2(U ,H)kgtkL2(U ,H) + (p0 °1)kgtk2

L2(U ,H)

°µkvkÆ
V

.
(3.93)

Next, we make use of Young’s inequality, where "> 0 will be chosen later. We also use H5 to
estimate kBt (v)k2

L2(U ,H). This results in:

2hAt (v)+ ft , viV +kBt (v)+ gtk2
L2(U ,H) + (p0 °2)

k(Bt (v)+ gt )§vk2
U

kvk2
H

∑ ht +K kvk2
H
+C"

2(Æ°1)
Æ

k ftk
Æ

Æ°1
V § +"kBt (v)k2

L2(U ,H) +C
0
"kgtk2
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+
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Æ

∂
kvkÆ

V

(H5)
∑ ht +K kvk2

H
+C"

2(Æ°1)
Æ

k ftk
Æ

Æ°1
V § +"K (ht +kvk2

H
+kvkÆ

V
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+C
0
"kgtk2

L2(U ,H) +
µ
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Æ

∂
kvkÆ

V

∑ ("K +1)ht +C"
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Æ
k ftk

Æ
Æ°1
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0
"kgtk2

L2(U ,H) +K (1+")kvk2
H

+
µ
°µ+" 2

Æ
+"K

∂
kvkÆ

V

(3.94)

By choosing "> 0 small, we have shown H3 for Ã and B̃ .

3.5. Optimality of results within this framework
This section will show that the results obtained in Theorem 3.90 are optimal. By optimal,
we mean that it is not possible to obtain better results, such as higher moments, based on
assumptions 3.1. We prove this by using a rather academic example given by Brzezniak and
Veraar in [7]. The exposition of this section is based on the same arguments as given in [38].
Consider the equation

dut =¢ut dt +2∞ (°¢)
1
2 ut dWt (3.95)

on the torusT, with∞ 2R, a F0-measurable initial condition u0 and W a real-valued Wiener
process. It follows from [7] that equation (3.95) is well-posed in L

p0 (≠;L
2(T)) as long as

2∞2(p0 °1) < 1. Using our framework, we will derive that equation (3.95) indeed has a so-
lution with values in L

p0 ([0,T ]£≠;L
2(T)) whenever 2∞2(p0 °1) < 1, corresponding to the

condition derived in [7]. After this, we show that it is not possible to even obtain existence
whenever 2∞2(p0 °1) > 1.
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Assumptions 3.3. Let ∞2 2 (0, 1
2 ) and u0 2 L

2(≠;L
2(T)). Consider equation (3.95), where Wt

is a real-valued Wiener process. We use the following Gelfand triple in this example:

W
1,2(T) µ L

2(T) µW
°1,2(T).

Let F be the Fourier transform. We define the operator (°¢)
1
2 : W

1,2(T) ! L
2(T) to be:

(°¢)
1
2 u =F

°1((|k|(Fu)(k))k2Z) (3.96)

Subsequently, we let the operators A : W
1,2(T) ! W

°1,2(T) and B : W
1,2(T) ! L

2(T) be de-

fined by A(u) =¢u and B(u) = 2∞(°¢)
1
2 .

Theorem 3.4. Let p0 2 [2,1) be such that 2∞2(p0°1) < 1. Then, equation (3.95) has a unique

solution u 2 L
p ((0,T )£≠;L

2(T)) for all p 2 [2, p0]. Furthermore, we have an energy estimate

of the form:

E sup
t2[0,T ]

kutkp

L2(T)
∑Ce

C TEku0kp

L2(T)
(3.97)

Proof. To apply our theory, we first show assumptions H1 to H5 and then apply Theorem
3.2. We will only show H2 and H3. For H2, let u, v 2 W

1,2(T). Using Plancherel’s theorem,
we obtain:

2hA(u)° A(v),u ° vi+kB(u)°B(v)k2
L2(T)

∑ (°2+4∞2)
1X

k=1
k

2 |(Fu)(k)° (F v)(k)|2

∑ 0

(3.98)

Now we check the coercivity condition H3. Let v 2W
1,2(T). We have the following sequence

of inequalities by using that kT k= kT
§k for Hilbert-Schmidt operators in Hilbert-Schmidt

norm and boundedness of (°¢)
1
2 :

2hA(v), vi+kB(v)k2
W 1,2(T) +

|B(v)§v |
kvkL2(T)

2

∑ (4∞2(p0 °1)°2)
1X

k=1
k

2|(Fu)(k)|2

∑ 0

(3.99)

where part of the inequality follows by Plancherel’s theorem. We see that there exists a µ > 0
such that the coercivity condition holds as long as 2∞2(p0 °1) < 1. Boundedness of H5 is
also straightforward from the above calculations. Application of theorem 3.2 then yields
the main result.

We now proceed to show that we don’t get well-posedness in L
p ((0,T )£≠;L

2(T)) as soon
as 2∞2(p0 °1) > 1. This shows that our results are sharp.

Theorem 3.5. Let p0 2 [2,1) be such that 2∞2(p0°1) > 1. Then, equation (3.95) has a unique

solution u 2 L
p ((0,ø)£≠;L

2(T)) for all p 2 [2, p0], where ø= (2∞2(p0 °1)°1)°1
. Moreover,

limsup
t"ø

ku(t )kLp (≠;L2(T)) =1 (3.100)
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Proof. The existence and uniqueness follows from [7], since the equation doesn’t fit into
our framework under the above assumption. By taking Fourier transforms of equation
(3.95), we have the following equation of SDEs:

(
dvn(t ) =°n

2
vn(t )dt +2∞|n|vn(t )dW (t )

vn(0) = an

(3.101)

where an = e
°n

2
for all n 2Z \ {0} and a0 = 0. Then, one can check by Itô’s formula that the

above has solution
vn(t ) = e

°t (n
2+2∞2

n
2)

e
2∞|n|W (t )

an (3.102)

for n 2 Z \ {0}. If (3.95) has a solution, it must then be of form u(t , x) = P
vn(t )e

i nx . Taking
L

2 norms, we compute the following:

ku(t )k2
L2(T) =

X

n2Z\{0}
|vn(t )|2

=
X

n2Z\{0}
e
°2t (n

2+2∞2
n

2)
e

4∞|n|W (t )
e°2n

2

=
X

n2Z\{0}
e
°2n

2(t+1+2t∞2)
e

4∞|n|W (t ).

(3.103)

As an intermediate step, we note the following sequence of equalities, which can be verified
easily:

°2n
2(t +1+2t∞2)+4∞|n|W (t ) =°2(t +1+2t∞2)

∑
|n|° ∞W (t )

(t +1+2t∞2)

∏2

+ 2∞2
W (t )2

(t +1+2t∞2)

=°2 f (t )(|n|° g (t ))2 +2h(t ),
(3.104)

where we define

f (t ) = t +1+2t∞2, g (t ) = ∞W (t )
(t +1+2t∞2)

, h(t ) = ∞2
W (t )2

(t +1+2t∞2)
(3.105)

Returning to equation (3.103), we see that:

ku(t )k2
L2(T) = e

2h(t )
X

n2N\{0}
e
°2 f (t )(|n|°g (t ))2

= 2e
2h(t )

X

n∏1
e
°2 f (t )(n°g (t ))2

∏ 2e
2h(t )

e
°2 f (t ).

(3.106)

Taking powers and expectation, we find:

Eku(t )kp

L2(T)
= 2

p

2 e
°p f (t )

Z

≠
e

ph(t )dP

= 2
p

2 +1
e
°p f (t )

Z

W (t )>0
e

ph(t )dP

= 2
p

2 +1
e
°p f (t )

Z

W (1)>0
e

p∞2
W (1)2

(1+t°1+2∞2) dP

(3.107)

The last integral becomes unbounded as t ! ø.



�
Examples of coercive SPDEs

We will give a fair amount of examples to which our framework applies. We will show that
we recover the previously known coercivity condition for existence and uniqueness of the
stochastic heat equation with Dirichlet boundary conditions. Accordingly, we will also treat
the stochastic heat equation with Neumann boundary conditions, but we need a different
coercivity condition for existence of higher order moments. We proceed by investigating
the stochastic Burgers’ equation and Navier-Stokes equations in 2D, for which we show
that the solution is bounded almost surely in C ([0,T ];L

2).

4.1. The stochastic heat equation with Dirichlet boundary con-
ditions

The first equation we consider is a stochastic heat equation with stochastic forcing and
Dirichlet boundary conditions on a C

1 domain D µ Rd . This leads us to consider the fol-
lowing equation:

dut =
√

dX

i , j=1
@i (a

i j@ j ut )+ ft

!
dt +

1X

k=1

√
dX

i=1
b

i k@i ut + g
k

t

!
dW

k

t
. (4.1)

We will first make some assumptions on the coefficients of the equation and the initial
condition, and then state the results derived from our framework with proof. It will turn
out that the p dependent term in the coercivity condition vanishes. Therefore, the solution
will admit moment estimates of all orders p ∏ 2, only limited by integrability of the additive
noise and the initial condition.

Assumptions 4.1. Consider equation (4.1) on a d-dimensional C
1

domain D with Dirichlet

boundary conditions and initial condition u0 2 L
p0 (≠; H) where p0 2 [2,1). We reformulate

this equation into an equation of the form

dut = At (ut ) dt +
1X

k=1
B

k

t
(ut ) dW

k

t
. (4.2)

To do this, we use the following Gelfand triple for this example:

H
1
0 (D) µ L

2(D) µ H
°1(D).

49
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Here, H
°1(D) is considered to be the dual of H

1
0 (D). We set the deterministic part of the

equation to be an operator At : H
1
0 (D) ! H

°1(D) defined as:

hAt (u), vi=°
XZ

D

a
i j (t , x)@i u@ j v dx + h ft , vi for u, v 2 H

1
0 (D). (4.3)

The coefficients a
i j

depend on x,! and t, and are bounded almost surely. We also require

that f 2 L
p0 (≠;L

2([0,T ]; H
°1(D))). We set the operators B

k

t
: H

1
0 (D) ! L

2(D) to be defined as:

B
k

t
(v) =

dX

i=1
b

i k@i v + g
k

t
for v 2 H

1
0 (D). (4.4)

We assume the coefficients b
i k

depend on x, ! and t, are bounded almost surely and are

smooth for all i ,k 2 N. An additional requirement is that g
k 2 L

p0 (≠;L
2([0,T ];L

2(D))). We

also assume a uniform ellipticity condition holds for the coefficients a
i j

and b
i k

. Define

æi j =
X

k

b
i k

b
j k (4.5)

Then, we assume the following uniform ellipticity condition:

dX

i , j=1

≥
2a

i j °æi j

¥
ªiª j ∏ µ|ª|2 for all ª 2Rd , (4.6)

where µ > 0.

Proposition 4.1. Suppose the assumptions in 4.1 hold, u0 2 L
p0 (≠;L

2(D)), where p0 is the

same as in 4.1. Then, a unique solution u of equation (4.1) exists and the following estimate

holds for all p 2 [2, p0]:

E sup
t2[0,T ]

kutkp

L2(D)
+E

Z
T

0
kutkp°2

L2(D)
kutk2

H
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0 (D)

dt +E
µZ

T

0
kutk2

H
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0 (D)

dt

∂ p

2

∑Ce
C T

√
Eku0kp

L2(D)
+E

µZ
T

0
k ftk2

H°1(D)dt

∂ p

2

+E
µZ

T

0
kgtk2

`2(N;H 1
0 (D))

dt

∂ p

2
!

,

(4.7)

where C depends on µ and p.

Remark 4.1. Setting f = g = 0 and assuming that all b
k are not space dependent, we can

actually use remark 3.3 to include the endpoint p0 = 1. That is, we can prove that for
any p0 2 [2,1] and u0 2 L

p0 (≠;L
2(D), there exists a unique solution u and the following

estimate holds for p 2 [2, p0]:

kukLp (≠;C ([0,T ];H)) ∑Cku0kLp (≠;H), (4.8)

where C only depends on µ.

Proof. It suffices to show that assumptions H1 to H5 hold for equation (4.1) without f and
g . By applying Theorem 3.3, the result will immediately follow.
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For H1, hemicontinuity is immediately clear from the definition of A. For H2, we let u, v 2
H

1
0 (D) and use the uniform ellipticity type condition to derive:

2hA(u)° A(v),u ° vi+
1X
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∞∞∞∞∞
dX

i=1
b

i k@i (u ° v)
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dX

i , j=1

Z
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(°2a
i j +æi j )@i (u ° v)@ j (u ° v)dx

(4.6)
∑°µ

XZ

D

|@i (u ° v)|2d x

=°µku ° vk2
H

1
0 (D)

(4.9)

We now move to H3. For the first two terms of H3, we can take (4.9) with v = 0, since all

terms are linear. Therefore, we are only left to derive an expression for
kBt (v)§vk2

`2

kvk2
L2(D)

, where

v 2 H
1
0 (D). Now, we use integration by parts and smoothness of the coefficients b

i k to
obtain:

(Bt (v)§v)k =
dX

i=1

Z

D

(b
i k@i v)vdx
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2

dX
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2dx
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2dx
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2

dX
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i kkL1(D)

Z
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v
2dx

= 1
2

dX
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k@i b

i kkL1(D)kvk2
L2(D)

(4.10)

Therefore, the coercivity condition is satisfied in the following way:

2hA(v), vi+
1X

k=1
k

dX

i=1
b

i k@i vk2
L2(D) + (p0 °2)

k(Bt (v)§v)k`2(N;L2(D))

kvk2
L2(D)

∑°µkvk2
H

1
0 (D)

+C (p0 °2)kvk2
L2(D)

(4.11)

For H4, let u, v 2 H
1
0 (D). Then,

|hA(u), vi|∑
dX

i , j=1
ka

i jkL1kuk
H

1
0 (D)kvk

H
1
0 (D) (4.12)
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We conclude that kA(u)k2
H°1(D)

∑
°Pka

i jkL1
¢2 kuk2

H
1
0 (D)

, so H4 is satisfied with Æ= 2. Simi-

larly, H5 holds:

kBt (v)k2
`2(N;L2(D)) ∑

∞∞∞∞∞
dX

i , j=1
æi j

∞∞∞∞∞
1
kvk2

H
1
0 (D)

(4.13)

4.2. The stochastic heat equation with Neumann boundary con-
ditions

The second equation we consider is the same stochastic heat equation equation as before,
but now with Neumann boundary conditions on a C

1 domain D µ Rd . For completeness,
this equation is:

dut =
√

dX

i , j=1
@i (a

i j@ j ut )+ ft

!
dt +

√
1X

k=1

dX

i=1
b

i k@i ut + g
k

t

!
dW

k

t
. (4.14)

Most assumptions and computations will be similar as before. However, the coercivity con-
dition will turn out to be p-dependent.

Assumptions 4.2. Consider equation (4.14) on a d-dimensional C
1

domain D with Neu-

mann boundary conditions and initial condition u0 2 L
p0 (≠; H) where p0 2 [2,1). We refor-

mualte this equation into an equation of the form

dut = At (ut ) dt +
1X

k=1
B

k

t
(ut ) dW

k

t
. (4.15)

The Gelfand triple used for this example is

H
1(D) µ L

2(D) µ H
°1(≠).

This allows us to define the determinstic part of the equation as an operator At : H
1(D) !

H
°1
0 (D) with:

hAt (u), vi=°
XZ

D

a
i j (t , x)@i u@ j v dx + h ft , vi for u, v 2 H

1(D). (4.16)

The coefficients a
i j

depend on x,! and t, and are bounded almost surely. Another assump-

tion is that f 2 L
p0 (≠;L

2([0,T ]; H
°1
0 (D))). The diffusion part of the equation has operators

B
k : H

1(D) ! L
2(D) as components defined as:

B
k

t
(v) =

dX

i=1
b

i k@i v + g
k

t
for v 2 H

1(D) (4.17)

It is assumed the coefficients b
i k

depend on x, ! and t, almost surely bounded and are

smooth for all i ,k 2 N. The collection W
k

is assumed to consist of real-valued, indepen-

dent Wiener processes. Furthermore, we assume g 2 L
p0 (≠;L

2([0,T ];`2(N; H
1(D)))). We also

assume a p-dependent uniform ellipticity condition holds for the coefficients a
i j

and b
i k

in

the following way:

dX

i , j=1

≥
2a

i j ° (p0 °1)æi j

¥
ªiª j ∏ µ|ª|2 8ª 2Rd
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where æi j =P
k b

i k
b

j k
, p0 2 [2,1) and µ > 0.

Proposition 4.2. Suppose the assumptions in Assumptions 4.2 hold, u0 2 L
p0 (≠;L

2(D)),

where p0 is the same as in Assumptions 4.2. Then, a unique solution u of equation (4.14)
exists and the following estimate holds for all p 2 [2, p0]:

E sup
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! (4.18)

Proof. We show that assumptions H1 to H5 hold, where we set f , g = 0. Application of the-
orem 3.3 gives the result. We see that H1, H4 and H5 are similar to the proof of proposition
4.1. To prove H2, we require an extra step in inequality (4.9). Note that the same sequence of
inequalities hold, since we only use the uniform ellipticity condition. This condition also
follows from the new uniform ellipticity condition in assumptions 4.2. Let u, v 2 H

1(D).
Using inequality (4.9), this results in:

2hA(u)° A(v),u ° vi+
1X

k=1
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H 1(D) +µku ° vk2

L2(D)

(4.19)

We are only left to prove H3. We again take v = 0 in H2 to get part of H3. It only remains
to inspect the term k(Bt (v))§vk/kvk2 where v 2 H

1(D). It is sometimes tempting to do the
following trivial estimate

kBt (v)§vk2
`2

kvk2
L2(D)

∑ kBt (v)k2
L2(L2(D),`2).

However, this makes the coercivity condition immediately p0 dependent in this case, which
might not be optimal. Doing this estimate for now results in the following preliminary
estimate for H3:
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dX
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@i v@ j vdx

∑°µ
XZ

D

|@i v |2dx

=°µkvk2
H

1
0 (D)

(4.20)

Therefore, we have shown that H3 holds. Applying Theorem 3.3 results in the statement we
wanted to prove.
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4.3. Stochastic Burgers’ equation
One of the most important equations in fluid dynamics is Burgers’ equation. Introduced
by J.M. Burgers in [8] as a simplification of the Navier-Stokes equations (which will be ex-
tended next section), it was studied to understand how dissaptive and non-linear inertial
forces interact in a fluid. The equation fails to capture the intriguing phenomenon of tur-
bulence, however. Therefore, adding stochastic forcing to the equation might be an inter-
esting generalization. This was first studied by the authors of [5] and later by [11]. In this
section, we will discuss existence, uniqueness and energy estimates for such an equation in
our framework on the domain D = (0,1) with Dirichlet boundary conditions. In particular,
we take the following stochastic form of Burgers’ equation:

dut = (¢ut +ut Dut )dt +∞Dut dWt , (4.21)

where D denotes the spatial derivative and ∞ 2 (°1,1). It will turn out that we are able to
obtain L

1(≠;C ([0,T ];L
2(0,1))) estimates for this particular example. This is in correspon-

dence with what has been shown in [5], albeit obtained in a different way.

Assumptions 4.3. Consider equation (4.21) with ∞ 2 (°1,1) on an interval (0,1) with Dirich-

let boundary conditions and initial condition u0 2 L
p0 (≠;L

2(0,1)) for some p0 2 [2,1]. We

reformulate this equation into an equation of the form

dut = A(ut ) dt +B(ut )dWt . (4.22)

The Gelfand triple that will use for this is
°
H

1
0 (0,1),L

2(0,1), H
°1(0,1)

¢
. We interpret the de-

terministic term as an operator A : H
1
0 (0,1) ! H

°1(0,1) with

hA(u), vi=°
Z

(0,1)
Du Dv dx +

Z

(0,1)
u Du v dx for u, v 2 H

1
0 (0,1). (4.23)

The diffusion part of the equation is defined as an operator B : H
1
0 (0,1) ! L

2(0,1) with

B(v) = ∞Dv for v 2 H
1
0 (0,1). (4.24)

Proposition 4.3. Let p0 2 [2,1) and u0 2 L
p0 (≠;L

2(0,1)). Then for p 2 [2, p0], a unique so-

lution of equation (4.21) in L
p (≠;C ([0,T ];L

2(0,1))) exists. Furthermore, we get the following

energy estimate:

kukLp (≠;C ([0,T ];L2(0,1))) +kuk
Lp (≠;L2([0,T ];H 1

0 (0,1))) ∑C
p

pku0kLp (≠;L2(0,1) (4.25)

where C only depends ∞. Moreover, if u0 2 L
1(≠;L

2(0,1)), then for any p 2 [2,1]:

kukLp (≠;C ([0,T ];L2(0,1))) ∑C
0ku0kLp (≠;L2(0,1)) (4.26)

where C
0

only depends on ∞.

Proof. As in previous instances, it suffices to check assumptions H1 to H5, in order to apply
Theorem 3.2. Specifically, we want to apply remark 3.3, which means we also need to show
that KB = Kc = 0 in H3 and H5. We skip H1 to move to H2 immediately. For u, v 2 H

1
0 (0,1),

we have:
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hA(u)° A(v),u ° vi=°
Z

(0,1)
D(u ° v)D(u ° v)dx +

Z

(0,1)
(uDu ° vDv)(u ° v)dx

=°ku ° vk2
H

1
0 (0,1)

°
Z

(0,1)
(uDu ° vDv)(u ° v)dx.

(4.27)

We analyze the second term on the RHS. Using integration by parts, we obtain:
Z

(0,1)
(uDu ° vDv)(u ° v)dx =

Z

(0,1)

1
2

D(u
2 ° v

2)(u ° v)dx

=
Z

(0,1)

1
2

(u
2 ° v

2)(D(u ° v))dx

=
Z

(0,1)

1
2

(u ° v)2
D(u ° v)dx +

Z

(0,1)
v(u ° v)D(u ° v)dx.

(4.28)

The first term on the RHS is zero by using integration by parts:
Z

(0,1)

1
2

(u ° v)2
D(u ° v)dx =°

Z

(0,1)

1
2

D((u ° v)2)(u ° v)dx

=
Z

(0,1)
(u ° v)2

D(u ° v)dx.
(4.29)

By substracting the LHS from the RHS, we obtain

1
2

Z

(0,1)
(u ° v)2

D(u ° v)dx = 0, (4.30)

which implies that the first term in expression (4.28) is zero. Returning to equation (4.27),
we get:

hA(u)° A(v),u ° vi=°ku ° vk2
H

1
0 (0,1)

°
Z

(0,1)
v(u ° v)D(u ° v)dx

∑°ku ° vk2
H

1
0 (0,1)

+kvkL4(0,1)ku ° vkL4ku ° vk
H

1
0 (0,1)

(4.31)

We use the Sobolev-Gagliardo-Nirenberg and Poincaré inequality to obtain the estimate:

kukL4(0,1) ∑Ckuk
3
4
L2(0,1)

kuk
1
4

H
1
0 (0,1)

∑C
0kuk

1
2
L2(0,1)

kuk
1
2

H
1
0 (0,1)

, (4.32)

where C ,C
0 ∏ 0. This can be used to obtain H2 in the following way:

hA(u)° A(v),u ° vi ∑°ku ° vk2
H

1
0 (0,1)

+kvkL4(0,1)ku ° vkL4ku ° vk
H

1
0 (0,1)

∑°ku ° vk2
H

1
0 (0,1)

+CkvkL4(0,1)ku ° vk
1
2
L2(0,1)

ku ° vk
3
2

H
1
0 (0,1)

Young
∑ ("°1)ku ° vk2

H
1
0 (0,1)

+C"kvk4
L4(0,1)ku ° vk2

L2(0,1)

∑ ("°1)ku ° vk2
H

1
0 (0,1)

+C"kvk2
L2(0,1)kvk2

H
1
0 (0,1)

ku ° vk2
L2(0,1),

(4.33)

where we used Young’s inequality in the third line, choosing some " 2 (0,1). Now we com-
bine with (4.24) to get:
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2hA(u)° A(v),u ° vi+kB(u)°B(v)k2
L2(0,1)

∑ (∞2 +2"°2)ku ° vk2
H

1
0 (0,1)

+C"(1+kvk2
L2(0,1)kvk2

H
1
0 (0,1)

)ku ° vk2
L2(0,1)

∑ (∞2 +2"°2)ku ° vk2
H

1
0 (0,1)

+C"

≥
1+kvk2

L2(0,1)

¥≥
1+kvk2

H
1
0 (0,1)

¥
ku ° vk2

L2(0,1)

(4.34)

where u, v 2 H
1
0 (0,1). We see that H2 holds with Æ= 2, Ø= 2, since " 2 (0,1).

For H3, we first inspect the quantity
kB(v)§vk2

U

kvk2
H

with v 2 H
1
0 (0,1) and v 6= 0. Now, note that

the following holds by using integration by parts
Z

(0,1)
(∞Dv)vdx =°

Z

(0,1)
(∞Dv)vdx = 0 (4.35)

In order to derive H3, take v 2 H
1
0 (0,1), v 6= 0. This leads to:

2hA(v), vi+kB(v)k2
L2(0,1) + (p0 °2)

kB(v)§vk2
U

kvk2
H

=°2kvk2
H

1
0 (0,1)

+
Z

(0,1)
v

2
Dvdx +∞2kvk2

H
1
0 (0,1)

(4.36)

The middle term on the RHS can be treated by using integration by parts:
Z

(0,1)
v

2
Dv dx =°

Z

(0,1)
2v

2
Dv dx. (4.37)

By adding the RHS to the LHS, we see that this quantity vanishes. Therefore,

2hA(v), vi+kB(v)k2
L2(0,1) + (p0 °2)

kB(v)§vk2
U

kvk2
H

= (°2+∞2)kvk2
H

1
0 (0,1)

(4.38)

We see that H3 holds with Æ = 2. We also require ∞2 < 2. Let u, v 2 H
1
0 (0,1). For H4, we

inspect the following quantity:

|hA(u), vi|∑
Z

(0,1)
|Du||Dv |dx +

ØØØØ
Z

(0,1)
u(Du)vdx

ØØØØ . (4.39)

By Cauchy-Schwarz, the first term on the RHS is estimated as:
Z

(0,1)
|Du||Dv |dx ∑ kuk

H
1
0 (0,1)kvk

H
1
0 (0,1). (4.40)

The second term is estimated by using integration by parts, Hölder’s inequality and the
Sobolev-Gagliardo-Nirenberg inequality:

ØØØØ
Z

(0,1)
uDuvdx

ØØØØ=
ØØØØ
Z

(0,1)

1
2

u
2
Dvdx

ØØØØ

∑ 1
2
kuk2

L4(0,1)kvk
H

1
0 (0,1)

∑CkukL2(0,1)kuk
H

1
0 (0,1)kvk

H
1
0 (0,1)

(4.41)
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This results in the following estimate for H4:

|hA(u), v |∑
≥
kuk

H
1
0 (0,1) +CkukL2(0,1)kuk

H
1
0 (0,1)

¥
kvk

H
1
0 (0,1) (4.42)

We use that Æ was set Æ= 2 in H2, to obtain:

kA(u)k2
H°1(0,1) ∑C

0
≥
kuk

H
1
0 (0,1) +kukL2(0,1)kuk

H
1
0 (0,1)

¥2

∑C
00
≥
1+kuk2

H
1
0 (0,1)

¥≥
1+kuk2

L2(0,1)

¥ (4.43)

Last but not least, for v 2 H
1
0 (0,1) it is clear that kB(v)k2

L2(0,1)
= ∞2kvk2

H
1
0 (0,1)

. Therefore,

H5 holds with Æ = 2. Since we have shown all assumptions for our theory, we can apply
Theorem 3.2 and remark 3.3.

4.4. Stochastic Navier-Stokes equations in 2D
Having treated the stochastic Burgers’ equation, we now turn to the stochastic Navier-
Stokes equations. The deterministic version is a system of PDEs given by:

(
@ut

@t
+ut ·rut °∫¢ut =°rp

r ·u = 0,
(4.44)

with initial condition
u(x,0) = u0(x). (4.45)

and viscosity ∫ > 0. We use boldface typography u to denote that the above equation is
really a system of equations. This notation will not be used in the sequel. One solves this
system of equations by finding a velocity field u and a pressure function p that satisfy the
above equation. In R3, this leads to one of the famous open Millenium problems posed by
the Clay Mathematics Institute. Given any C

1, divergence free vector field u0(x), one has
to show that there exist smooth functions p and u such that the above equation is satisfied
(see [15] for the official formulation). In R2, this equation has already been solved in the
deterministic setting (R1 is not interesting because of the divergence-free condition), but
these methods do not seem to generalize to R3. We will treat the stochastic version in 2D as
introduced in [5].

It turns out that the stochastic Navier-Stokes equations with multiplicative noise arise nat-
urally from physical considerations as shown in [5]. This can be done by considering that
the supposedly solution of the Navier-Stokes equations can be decomposed as the sum of
an average field and a fluctuating field. Therefore, we are led to the following equation:

dut = (∫¢ut ° (u,r)u)dt +
1X

k=1
[(b

k ,r)u]dW
k (t )° (rp)dt (4.46)

where the components bk are vectors of divergence free vector fields.

Assumptions 4.4. Consider equation (4.46) on a domain D µ R2
with C

1
boundary, ∫ > 0

and vectors b
k

consisting of divergence free vector fields. We denote its components by b
i k

,
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where i 2 {1,2}. Since b
i k

produces a vector in R2
, we denote the components of that vector

by b
i k

∞ , where ∞ 2 {1,2}. We take the following Gelfand triple, following [4]. Define

V = {v 2W
1,2

0 (D;R2) : r · v = 0 a.e. on D}, kvkV :=
µZ

D

|rv |2dx

∂ 1
2

, (4.47)

and set H to be the closure of V with respect to the norm

kvkH :=
µZ

D

|v |2dx

∂ 1
2

. (4.48)

In order to formally treat equation (4.46), we introduce the Helmholtz-Hodge projection PHL

which is defined as the orthogonal projection

PHL : L
2(D;R2) ! H . (4.49)

This is well-defined, since H is a closed subspace of the Hilbert space L
2(D;R2). Applying the

Helmholtz-Leray projection to both sides of (4.46), removes the pressure term and leads us to

consider the following equation:

dut = (∫PHL(¢ut )°PHL[(u,r)u])dt +
1X

k=1
PHL[(b

k ,r)u]dW
k (t ) (4.50)

We reformulate this into an equation of the form

dut = (Aut +F (ut ))dt +
1X

k=1
B

k (ut )dW
k (t ) (4.51)

where we define A to be an operator A : V !V
§

given by

Au = ∫PHL(¢u), u 2V.

We define F to be a nonlinear operator F : V !V
§

given by

F (u) =°PHL[(u,r)u], u 2V.

Finally, we define the components B
k

to be operators B
k : V ! H given by

B
k (u) =PHL[(b

k ,r)u], u 2V.

We assume the following coercivity condition:

√
2∫°

1X

k=1

2X

i , j=1
b

i k

∞ b
j k

∞

!
ªiª j (¥∞)2 ∏ ∑|ª|2|¥|2, for all ª,¥ 2R2 (4.52)

Proposition 4.4. Given assumptions 4.4, let p0 2 [2,1). Then, for any u0 2 L
p0 (≠; H), there

exists a unique solution u to equation (4.50). Furthermore, there exists a constant C only

depending on ∑ such that for all p 2 [2, p0]:

kukLp (≠;C ([0,T ];H)) +kukLp (≠;L2([0,T ];V )) ∑C
p

p
£
ku0kLp (≠;H)

§
. (4.53)

In particular, for any u0 2 L
1(≠; H), there exists a unique solution u to equation (4.50) with

energy estimate

kukL1(≠;C ([0,T ];H)) ∑C
£
ku0kL1(≠;H)

§
. (4.54)
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Remark 4.2. A similar result can be found in [5] using the semigroup approach.

Remark 4.3. One can also consider extra body forces in the equation by using extension
3.3.

Remark 4.4. The above coercivity condition is slightly artificial and the author was not able
to find a better condition in the literature. Intuitively, the condition makes sense, since the
noise is not allowed to dominate the smoothing of the equation.

Proof. In order to apply our framework (theorem 3.2), we need to show that assumptions
H1 to H5 hold. Specifically, we want to use Remark 3.3, which means that KB = Kc = 0 in H1
to H5. We will only show H2, H3 and H5, since the other assumptions have already been
shown in [28] and [4]. Let u, v 2 V . We will first consider the quantity hA(u)° A(v),u ° vi.
Then,

hA(u)° A(v),u ° vi= ∫hPHL(¢(u ° v)),u ° vi
= ∫(¢(u ° v),u ° v)

=°∫
Z

D

r(u ° v) ·r(u ° v)dx

=°∫ku ° vk2
V

,

(4.55)

where the second line follows by definition of A and the fact that orthogonal projections
are self-adjoint. The last line follows by definition of V . We also need to inspect hF (u)°
F (v),u ° vi. From [28] we see that

hF (u)°F (v),u ° vi ∑ ∫

2
ku ° vk2

V
+ C

∫3 kvk4
L4(D;R2)ku ° vk2

H
(4.56)

where C 2 (0,1). We continue by inspecting the second term for H2:

1X

k=1
kB

k (u)°B
k (v)k2

H
∑

1X

k=1
k[(b

k ,r)(u ° v)]k2
H

=
1X

k=1

2X

i , j=1

Z

D

b
i k

∞ b
j k

∞ @i (u ° v)∞@ j (u ° v)∞dx,
(4.57)

where the first line follows since projections are contractive. The second line follows by
writing out the terms. Combining all terms in H2 and applying the coercivity assumption
(4.52), we obtain

2hA(u)+F (u)° (A(v)+F (v)),u ° vi+
1X

k=1
kB

k (u)°B
k (v)k2

H

∑°∫
Z

D

r(u ° v) ·r(u ° v)dx + ∫

2
ku ° vk2

V
+ C

∫3 kvk4
L4(D;R2)ku ° vk2

H

=°∫
2
ku ° vk2

V
+ C

∫3 kvk4
L4(D;R2)ku ° vk2

H

∑°∫
2
ku ° vk2

V
+ C

0

∫3 kvk2
V
kvk2

H
ku ° vk2

H

∑°∫
2
ku ° vk2

V
+ C

0

∫3 (1+kvk2
V

)(1+kvk2
H

)ku ° vk2
H

,

(4.58)
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where C
0 2 (0,1). The third line follows by Sobolev embedding (see [28], appendix H). The

above implies that H2 holds with Æ= 2. To show H3, we note that from (4.55) it follows that

hA(u),ui=°∫kuk2
V

. (4.59)

We also note that hF (u),ui= 0, which follows by writing out the definition and using inte-
gration by parts. Therefore, the only term that remains to be estimated is

kB
§(u)uk2

`2(N)

kuk2
H

.

This will turn out to be 0, by using that the components of b
k are divergence free vector

fields. Consider (B
§(u)u)k . Then,

(B
§(u)u)k

=
Z

D

h
(b

k ,r)u

i
·udx

=
Z

D

(b
1k

1 @1u
1)u

1 + (b
1k

2 @2u
1)u

1dx

| {z }
A

+
Z

D

(b
2k

1 @1u
2)u

2 + (b
2k

2 @2u
2)u

2dx.
(4.60)

We will only treat A , since the other term is treated in a similar way. Using integration by
parts, we see:

A =°
Z

D

@1(b
1k

1 u
1)u

1 +@2(b
i k

2 u
1)u

1dx

=°
Z

D

@1(b
1k

1 )(u
1)2 +b

1k

1 (@1u
1)u

1dx °
Z

D

@2(b
i k

2 )(u
1)2 +b

i k

2 (@2u
1)u

1dx

=°
Z

D

≥
@1(b

1k

1 )+@2(b
2k

2 )
¥

(u
1)2dx °

Z

D

(b
1k

1 @1u
1)u

1 + (b
1k

2 @2u
1)u

1dx

=°
Z

D

(b
1k

1 @1u
1)u

1 + (b
1k

2 @2u
1)u

1dx.

(4.61)

Since the last line and A are equal, this implies that (B
§(u)u)k = 0 for all k 2N. We there-

fore conclude that the coercivity condition H3 is as follows:

2hA(u)+F (u),ui+
1X

k=1
kB

k (u)k2
L2(D;R2) ∑°∑kuk2

V
. (4.62)

We are only left to show H5, for which we can re-use H3. From H3, it follows that

1X

k=1
kB

k (u)k2
L2(D;R2) ∑°∑kuk2

V
+2|hA(u),ui|

∑ (2∫°∑)kuk2
V

(4.63)

We see that H3 and H5 hold with KB = Kc = 0. Therefore, we can use remark 3.3 to conclude
that the theorem holds.
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4.5. Stochastic p-Laplacian
Instead of using the Laplacian as a driver for a parabolic equation, one can also admit more
nonlinear operators. One such variant is the so-called p-Laplacian. This is an equation on
Rd of the form

@ut

@t
=r · (|rut |Æ°2rut )

where Æ > 2. Since we want to reserve p for the coercivity condition H3, we use Æ instead
of p in the p-Laplacian. We present the following stochastic version of the p-Laplacian:

dut =r · (|rut |Æ°2rut )dt +
1X

k=1
B

k (ut )dW
k

t
. (4.64)

We will specify restriction on the operators B
k in the assumptions section. Subsequently,

we will prove existence, uniqueness and another energy estimate. Some of the exposition
is based on work David Šiška and Neelima Varshney [38].

Assumptions 4.5. Let Æ> 2 and consider equation (4.64) on a C
1
-domain D with Dirichlet

boundary conditions. The collection {W k }k∏1 consists of real-valued, independent Wiener

processes. The Gelfand triple used for this equation is

(W 1,Æ
0 (D),L

2(D),W
°1,Æ(D)).

Here, W
°1,Æ(D) is the dual of W

1,Æ
0 (D). We define the operator A : W

1,Æ
0 (D) !W

°1,Æ(D) as:

hA(u), vi=°
Z

D

|ru|Æ°2ru ·rvdx for all u, v 2W
1,Æ

0 (D).

Furthermore, we assume that the operators B
k : W

1,Æ
0 (D) ! L

2(D) satisfy two conditions:

B(0) = 0 and the following bound for u, v 2W
1,Æ

0 (D):

kB
k (u)°B

k (v)k2
L2(D) ∑ ∞2

k
k|ru|

Æ
2 ° |rv |

Æ
2 k2

L2(D) +C
2
k
ku ° vk2

L2(D),

where we assume
P
∞2

k
∑ ∞2

with ∞2 < 8(Æ°1)
Æ2 and

P
C

2
k
<1. Last but not least, we let p0 2h

2, 2
∞2 +1

¥
and u0 2 L

p0 (≠;L
2(D)).

Proposition 4.5. Given assumptions 4.5, there exists a unique solution u to equation (4.64).

Furthermore, for any p 2 [2, p0], there exists a constant C depending on ∞, Æ and p such that

the following estimate holds:

E sup
t2[0,T ]

kutkp

W
1,Æ
0 (D)

+E
Z

T

0
kutkp°2

L2(D)
kutkÆ

W
1,Æ
0 (D)

dt +E
µZ

T

0
kutkÆ

W
1,Æ
0 (D)

dt

∂ p

2

∑Ce
C TEku0kp

L2(D)

(4.65)

Remark 4.5. One could pick B
k (u) = ∞k |ru|Æ2 as noise operator, for instance.

It is interesting to see how there is an interplay between the constants Æ, ∞ and the inte-
grability p0. For example, a very large Æ will also allow for large ∞. The problem is that a ∞
that is too large will not allow for integrability in ≠. It is of course very well possible that
the condition derived on p0 based on the coercivity condition is not optimal. We also ob-
serve that we don’t recover the results from section 4.1 if we let Æ! 2, though the noise is
different.
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Proof. We show that H1 to H5 hold for equation (4.64) and can therefore apply Theorem
3.2. Assumption H1 can be found in [28][p. 82]. For H2, take u, v 2 W

1,Æ
0 (D) and consider

the following inequality which follows from [28][p. 82]:

2hA(u)° A(v),u ° vi ∑°2
Z

D

°
|ru|Æ°1 ° |rv |Æ°1|

¢
(|ru|° |rv |)dx (4.66)

We now consider the other term for H2:

kB(u)°B(v)k2 ∑
1X

k=1
kB

k (u)°B
k (v)k2

L2(D)

∑
1X

k=1
∞2

k
k|ru|

Æ
2 ° |rv |

Æ
2 k2

L2(D) +
kX

i=1
C

2
k
ku ° vk2

L2(D)

∑ ∞2k|ru|
Æ
2 ° |rv |

Æ
2 k2

L2(D) +Cku ° vk2
L2(D)

(4.67)

Combining bounds (4.66) and (4.67), we obtain:

2hA(u)° A(v),u ° vi+kB(u)°B(v)k2

∑°
Z

D

°
|ru|Æ°1 ° |rv |Æ°1|

¢
(|ru|° |rv |)+∞2(|ru|

Æ
2 ° |rv |

Æ
2 )2dx +Cku ° vk2

L2(D)

(4.68)

To finish H2, it is sufficient to prove that the first term on the RHS of the inequality is nega-
tive. To do this, it suffices to show the following real-valued inequality for all x, y > 0:

2
°
x
Æ°1 ° y

Æ°1¢ (x ° y)°∞2(x
Æ
2 ° y

Æ
2 )2 ∏ 0. (4.69)

Without loss of generality, we can take x > y . By homogeneity, it suffices to prove the fol-
lowing inequality for x > 1:

2(x
Æ°1 °1)(x °1)°∞2(x

Æ
2 °1)2 ∏ 0 (4.70)

For proof, we refer to the appendix (A.1). Since the inequality holds, H2 has been shown.

We continue by showing H3. Let v 2W
1,Æ

0 (D). For the first terms in H3, we have:

2hA(v), vi=°2
Z

D

|rv |Ædx =°2kvkÆ
W

1,Æ
0 (D)

(4.71)

We only need to inspect the p-dependent term. Using Cauchy-Schwarz, we obtain:

k(Bt (v))§vk2
Rd

kvk2
L2(D)

∑ kBt (v)k2
`2(N;L2(D)) (4.72)

Therefore, we get the following p-dependent condition for H3:

2hA(v), vi+kBt (v)k2
L2(D) + (p0 °2)

k(Bt (v))§vk2
Rd

kvk2
L2(D)

∑
°
(p0 °1)∞2 °2

¢
kvkÆ

W 1,Æ(D) +Ckvk2
L2(D)

(4.73)



4.6. An application to systems of SPDEs 63

The first term on the RHS is negative by assumption. Therefore, H3 holds with Æ0 = Æ and
f = 0. We are only left to show H4 and H5. For v 2 W

1,Æ
0 (D), we use Hölder’s inequality to

obtain:

|hA(u), vi|∑
ØØØØ
Z

D

|ru|Æ°2ru ·rvdx

ØØØØ

∑
Z

D

|ru|Æ°1|rv |dx

∑
µZ

D

|ru|Ædx

∂Æ°1
Æ

µZ

D

|rv |Ædx

∂ 1
Æ

∑ kukÆ°1
W

1,Æ
0 (D)

kvk
W

1,Æ
0 (D)

(4.74)

Therefore, it follows for all v 2W
1,Æ(D) that

kA(v)k
Æ

Æ°1
W °1,Æ(D)

∑ kvkÆ
W

1,Æ
0 (D)

(4.75)

We omit H5, since it is clear from assumption. Application of Theorem 3.2 finishes the
proof.

4.6. An application to systems of SPDEs
Our theory can also be used to easily show certain results from other previous papers. In
particular, the authors in [13] attempted to construct a C

2+± theory for systems of SPDEs. In
order to construct a C

2+± theory, they need estimates for the system of SPDEs which can be
found using our framework (Theorem 3.1 of [13]). One of the underlying assumptions is a
so-called modified stochastic parabolicity condition, which will be similar to our coercivity
condition.

Assumptions 4.6. Consider the random field

u = (u
1, ...,u

N )0 :Rd £ [0,1)£≠!RN

described by the following linear system of SPDEs:

du
Æ =

≥
a

i j

ÆØ
@i j u

Ø+ fÆ

¥
dt +

≥
æi k

ÆØ@i u
Ø+ g

k

Æ

¥
dW

k

t
(4.76)

where the collection {W k }k∏1 are countably independent Wiener processes on some complete

filtered probability space (≠,F , (Ft )t∏0 ,P). We also use Einstein’s summation convention

(sum whenever one sees a repeated index) with

i , j = 1,2, ...,d ; Æ,Ø= 1,2, ..., N ; k = 1,2, ...

We now define the deterministic part of the equation as an operator A : H
m+1(Rd ;RN ) !

H
m°1(Rd ;RN ) such that for any u, v 2 H

m+1(Rd ;RN ):

hA(u), vi=°
Z

Rd

a
i j

ÆØ
@i u

Ø@ j u
Ædx. (4.77)
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The diffusion part of the equation is defined as an operator B : H
m+1(Rd ;RN ) ! `2(N; H

m(Rd ;RN ))
such that for any u 2 H

m+1(Rd ;RN ):

B
k

Æ(u) =æi k

ÆØ@i u
Ø. (4.78)

We assume that the coefficients a
i j

ÆØ
and æi k

ÆØ
depend only on (t ,!) and satisfy the following

condition, called stochastic modified parabolicity:

Definition 4.1. Let p 2 [2,1). The coefficients a = (a
i j

ÆØ
) andæ= (æi k

ÆØ
) are said to satisfy the

modified stochastic parabolicity (MSP) condition if there are measurable functions ∏i k

ÆØ
:

Rd £ [0,1)£≠!R with ∏i k

ÆØ
=∏i k

ØÆ
such that

A
i j

ÆØ
= 2a

i j

ÆØ
°æi k

∞Ææ
j k

∞Ø
° (p °2)(æi k

∞Æ°∏i k

∞Æ)(æ j k

∞Ø
°∏ j k

∞Ø
) (4.79)

satisfy the Legendre-Hadamard condition: there exists a constant ∑> 0 such that

A
i j

ÆØ
ªiª j¥

Æ¥Ø ∏ ∑|ª|2|¥|2 8ª 2Rd ,¥ 2RN (4.80)

everywhere on Rd £ [0,1)£≠

We are now in a position to restate Theorem 3.1 from [13]

Proposition 4.6. Let p 2 [2,1) and m ∏ 0. Suppose f 2 L
p (≠;L

2([0,T ]; H
m°1(Rd ;RN ))) and

g 2 L
p (≠;`2(N;L

2([0,T ]; H
m(Rd ;RN )))). Taking the initial condition u0 = 0, equation (4.76)

has a unique solution u 2 L
p (≠;L

1([0,T ]; H
m(Rd ;RN )))\ L

p (≠;L
2([0,T ]; H

m+1(Rd ;RN ))).

Moreover, for any multi-index s with |s|∑ m, there exists a constant C depending on d, p, ∑
and K such that:

E sup
t2[0,T ]

k@sutkp

L2(Rd ;RN )
+E

µZ
T

0
k@s@xutk2

L2(Rd ;RN )
dt

∂ p

2

∑Ce
C T

√
E

µZ
T

0
k@s ftk2

H°1(Rd ;RN )
dt

∂ p

2

+E
µZ

T

0
k@sgtk2

L2(Rd ;RN )
dt

∂ p

2
! (4.81)

Remark 4.6. The formulation of this proposition is different in a few ways from Theorem
3.1 in [13]. First of all, we have raised all quantities to the power p, since it adapts better
to our framework. Furthermore, we work on the whole space Rd instead of choosing some
region O and extending to 0 outside.

Remark 4.7. The supremum estimate in the proposition actually also holds for p =1, but
since we want to draw a comparison between the results in [13] and this master’s thesis, we
only mention it in this remark.

Proof. Without loss of generality, we can restrict to the case m = 0. By differentiating the
equation, we can obtain the other cases. We proceed to show that assumptions H1 to H5
hold for equation (4.76). We do this by first showing H1 to H5 for the equation

du
Æ = a

i j

ÆØ
@i j u

Ødt +æi k

ÆØ@i u
ØdW

k

t
(4.82)
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Recall from section 3.4 that the results with added f and g follow easily once H1 to H5 have
been shown for the above equation. We only check H3, since H1, H2, H4 and H5 are very
similar to the stochastic heat equation treated in section 4.1 underÆ= 2, Ø= 0. To this end,
let v 2 H

1(Rd ;RN ) and consider the following:

2hA(v), vi=°2
Z

Rd

a
i j

ÆØ
@i v

Ø@ j v
Ædx

=°2a
i j

ÆØ

Z

Rd

@i v
Ø@ j v

Ædx

(4.83)

We emphasize again the use of the Einstein summation convention. In this equation,
we therefore sum over Æ,Ø, i and j . Next, we use definition (4.104) to consider the term
kBt (v)k2:

kBt (v)k2
`2(N;L2(Rd ;RN ))

=
1X

k=1
k(Bt (v)))kk2

L2(Rd ;RN )

=
1X

k=1

NX

∞=1

∞∞∞æi k

∞Ø@i v
Ø
∞∞∞

2

L2(Rd )

=
1X

k=1

NX

∞=1

Z

Rd

æi k

∞Ææ
j k

∞Ø
@i v

Æ@ j v
Ødx

(4.84)

Last but not least, we look at the term k(Bt (v))§vk2/kvk2. Let v 2 H
1(Rd ;RN ), v 6= 0, then

we obtain the following:

k(Bt (v))§vk2
`2(N) =

1X

k=1
|((Bt (v))§v)k |2

=
1X

k=1

µZ

Rd

æi k

∞Ø@i v
Ø

v
∞dx

∂2 (4.85)

Now, note that the following identity holds:

æi k

∞Ø@i v
Ø

v
∞ = (æi k

∞Ø°∏
i k

∞Ø)v
∞@i v

Ø+ 1
2
∏i k

∞Ø@i (v
∞

v
Ø) (4.86)

Integrating both sides of the above expression over Rd , we can use this expression in equa-
tion (4.85) to find:

k(Bt (v))§vk2
`2(N) =

1X

k=1

µZ

Rd

(æi k

∞Ø°∏
i k

∞Ø)@i v
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∂2
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0
@
Z
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√
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∞)2

! 1
2 ≥
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∞Ø°∏
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2 dx

1
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2
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1X

k=1

√Z

Rd

NX

∞=1
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∞)2dx

!µZ

Rd

((æi k

∞Ø°∏
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∞Ø)@i v
Ø)2dx

∂

=
1X

k=1

√Z

Rd

NX
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∞)2dx

!µZ

Rd

(æi k

∞Ø°∏
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∞Ø)(æ j k

∞Æ°∏
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∞Æ)@i v
Ø@ j v

Ædx

∂

(4.87)
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We can therefore conclude the following:

k(Bt (v))§vk2
`2(N)

kvk2
L2(Rd ;RN )

∑
1X

k=1

µZ

Rd

(æi k

∞Ø°∏
i k

∞Ø)(æ j k

∞Æ°∏
j k

∞Æ)@i v
Ø@ j v

Ædx

∂
(4.88)

We are now finally in the position to derive the coercivity condition H3 from the MSP con-
dition.

2hA(v), vi+k(Bt (v))k2
`2(N;L2(Rd ;RN ))

+ (p °2)
k(Bt (v))§vk2

`2(N)

kvk2
L2(Rd ;RN )
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Z

Rd

≥
°2a

i j

ÆØ
+æi k

∞Ææ
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∞Ø
+ (p °2)(æi k

∞Ø°∏
i k

∞Ø)(æ j k

∞Æ°∏
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∞Æ)
¥
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Ø@ j v
Ædx

∑°∑
Z

Rd

|@i v
Æ|2dx

∑°∑kvk2
H 1(Rd ;RN )

(4.89)

Choosing µ = ∑, we have shown that H3 can be derived from the MSP condition.

4.7. An application to higher order SPDEs
Another result that appears in a paper by Wang and Du [39] can be obtained using our
framework (Lemma 3.1 of [39]). This paper treats higher order SPDEs of the following form:

dut =
"

(°1)m+1
X

|Æ|,|Ø|=m

AÆØ(t )D
Æ+Ø

ut + ft

#
dt +

1X

k=1

"
X

|Æ|=m

B
k

Æ(t )D
Æ

ut + g
k

t

#
dW

k

t
. (4.90)

The authors introduce an assumption on the coefficients to obtain existence, uniqueness
and an energy estimate. We will show, using our framework, that is assumption is a very
natural one.

Assumptions 4.7. Consider equation (4.90) on Rd
. The collection {W k } are countably in-

dependent Wiener processes on some complete filtered probability space (≠,F , (Ft )t∏0,P).

Furthermore, we assume that the coefficients AÆØ and B
k

Æ only depend on t and !. We also

place the following restriction on the coefficients AÆØ and B
k

Æ, which is assumed in [39] as

well:

2
X

|Æ|,|Ø=m

AÆØªÆªØ°∏
X

|Æ|=m

|ªÆ|2 ∏
p + (°1)m(p °2)

2

1X

k=1

ØØØØØ
X

|Æ|=m

B
k

ÆªÆ

ØØØØØ

2

(4.91)

where ∏∏ 0. Formally, the deterministic part of the equation is defined as a time-dependent

linear operator At : H
l+m(Rd ) ! H

l°m(Rd ), where for all u, v 2 H
l+m(Rd ):

hAt (u), vi=°
X

|Æ|,|Ø|=m

hAÆØ(t )D
Æ

u,D
Ø

vi

=°
X

|Æ|,|Ø|=m

Z

Rd

AÆØ(t )D
Æ

uD
Ø

vdx.
(4.92)

Similarly, the stochastic part is defined as a time-dependent linear operator B
k : H

l+m(Rd ) !
H

l (Rd ), where for all u 2 H
l+m(Rd ):

B
k

t
(u) =

X

|Æ|=m

B
k

Æ(t )D
Æ

u. (4.93)
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Proposition 4.7. Let p 2 [2,1) and l ,m ∏ 0. Suppose f 2 L
p (≠;L

2([0,T ]; H
l°m(Rd ))) and g 2

L
p (≠;`2(N;L

2([0,T ]; H
l (Rd )))). With u0 = 0, there exists a unique solution u 2 L

p (≠;L
1([0,T ]; H

l (Rd )))
and u 2 L

p (≠;L
2([0,T ]; H

l+m(Rd ))) for any |Ø|∑ l such that:
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∂ p

2
! (4.94)

Proof. Without loss of generality we can set l = 0. By differentiating we can still obtain the
above theorem. Furthermore, we can also set f = g = 0 by using the extension we made in
chapter 3.4. Now, consider the following Gelfand triple:

(H
m(Rd ),L

2(Rd ), H
°m(Rd )). (4.95)

We need to check assumptions H1 to H5 to apply our framework. We only check H3. From
now on, consider an arbitrary v 2 H

m(Rd ). From (4.92), we see that

2hAt (v), vi=°2
X

|Æ|,|Ø|=m

Z

Rd

AÆØ(t )(D
Æ

v)(D
Ø

v)dx. (4.96)

For kBt (v)k2
`2(N;L2(Rd ))

, we obtain:

kBt (v)k2
`2(N;L2(Rd ))

=
1X
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∞∞∞∞∞
X

|Æ|=m

B
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Æ(t )D
Æ
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=
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X
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B
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Æ(t )B
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Ø(t )(D
Æ

v)(D
Ø

v)dx.

(4.97)

Now, the last term we need to inspect is k(Bt (v))§vk2
`2(N)

. For any k 2N,

((Bt (v))§v)k =
Z

Rd

X

|Æ|=m

B
k

Æ(t )(D
Æ

v)vdx

= (°1)m

Z

Rd

X

|Æ|=m

B
k

Æ(t )(D
Æ

v)vdx,
(4.98)

where we used integration by parts in the last step. Note that for m odd, we can conclude
that ((Bt (v))§v)k = 0 for all k 2N. However, if m is even, the above doesn’t tell us anything.
Therefore, we just use Cauchy-Schwarz to make an estimate in the case m is even:

k(Bt (v))§vk2
`2(N)

kvk
L2(Rd )

2

∑ kBt (v)k2
`2(N;L2(Rd ))

. (4.99)

We also note that we have the following:

p + (°1)m(p °2)
2

=
(

p °1, if m even

1, if m odd
(4.100)
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Using the assumption made on the coefficients in 4.7, we can combine all terms to get the
following sequence of inequalities for the coercivity condition H3:

2hAt (v), vi+kBt (v)k2
`2(N;L2(Rd ))

+ (p °2)
k(Bt (v))§vk2

`2(N)

kvk
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Æ
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vdx

∑°∏
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|Æ|=m

Z
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|DÆ
v |2dx

=°∏kvk2
H m (Rd )

(4.101)

Therefore, the coercivity condition H3 holds with µ = ∏. Invoking theorem 3.2 we obtain
existence, uniqueness and the energy estimate stated in the theorem.

4.8. An application to higher order systems of SPDEs
It is natural to ask for an extension of the two previous sections. In this case, one would
consider the following higher order system of SPDEs:

du
¥ =

"
(°1)m+1

X

|Æ|,|Ø|=m

A
¥∞
ÆØ

(t )D
Æ+Ø

u
∞+ f

∞

#
dt +

1X

k=1

"
X

|Æ|=m

B
k,¥∞
Æ (t )D

Æ
u
∞+ g

k,∞

#
dw

k

t
,

(4.102)
where ¥ and ∞ denote the equation number in the system, ranging from 1 to N for some
N 2 N. Since this equation covers both examples from sections 4.6 and 4.7, we must at
minimum take the least restrictive condition such that we can apply our framework. Since
the modified stochastic parabolicity condition in second order systems (m = 1 in our set-
ting, see 4.6) is always p-dependent, we can’t expect a condition that is p-dependent only
for odd m like in the higher order equation (see 4.7). Using a different version of the MSP
condition in 4.6, we can also obtain existence, uniqueness and an energy estimate using
our framework. However, it is well-possible that the condition stated is not optimal.

Assumptions 4.8. Consider the random field

u = (u
1, ...,u

N )0 :Rd £ [0,1)£≠!RN

described by the linear system of SPDEs (4.102). The collection {W k } are again countably

independent Wiener processes on some complete filtered probability space (≠,F , (Ft )t∏0 ,P).

We repeat the use of Einstein’s summation convention (sum whenever one sees a repeated

index) with

∞,¥= 1,2, ..., N ; k = 1,2, ...

We also note that Æ, Ø 2 Nd
with |Æ| = |Ø| = m and D

Æ
u := D

Æ1 D
Æ2 ...DÆd u. We define the

deterministic part of the equation as time-dependent linear operator At : H
l+m(Rd ;RN ) !

H
l°m(Rd ;RN ) such that for any u, v 2 H

l+m(Rd ;RN ):

hAt (u), vi=°
X
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A
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ÆØ
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The diffusion part of the equation is defined as an operator B
k : H

l+m(Rd ;RN ) ! H
l (Rd ;RN )

such that for any u 2 H
l+m(Rd ;RN ):

B
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B
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We assume that the coefficients A
¥∞
ÆØ

and B
k,∞¥
Æ only depend on t and !, and satisfy the fol-

lowing condition for all ª 2Rd
, ≥ 2RN
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Proposition 4.8. Let p 2 [2,1) and l ,m ∏ 0. Suppose f 2 L
p (≠;L

2([0,T ]; H
l°m(Rd ;RN )))

and g 2 L
p (≠;`2(N;L

2([0,T ]; H
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L
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Proof. using the extension for additive noise, we can consider f and g to be zero. As always,
the coercivity condition H3 is the main trouble. Now,
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and
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Both previous terms are just as before, now problematic term is:
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We estimate this term by using Cauchy-Schwarz and then invoke the coercivity assump-
tion. This leads to:
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H m (Rd ;RN )

∑°∑kvk2
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(4.110)

I do not suspect that there is a way to obtain a nice condition that reduces to the conditions
that worked in the previous two sections. For example, if we take m = 1 in the higher order
section, we obtain a condition that does not even coincide in the case N = 1 of the second
order systems of SPDEs. With this information, we can choose to just do a Cauchy-Schwarz
estimate in (4.109), which also yields a certain condition. I am not sure how to proceed
otherwise.



�
Higher order regularity for stochastic heat

equations

One of the examples that was discussed in the previous chapter was the stochastic heat
equation with Dirichlet boundary conditions on a C

1 domain D. For completeness, this is
an equation of the form

dut = (ai j uxi x j
+b

i
uxi

+ cu + ft )dt + (æi k
uxi

+∫k u + g
k

t
)dW

k

t
, (5.1)

where the coefficients depend on x, t and! and satisfy a coercivity condition. For this equa-
tion, we obtained existence and uniqueness in L

p (≠;L
2([0,T ]; H

1
0 (D) and L

p (≠;C ([0,T ];L
2(D)))

for all p ∏ 2. In the deterministic setting, we know that the space regularity can be im-
proved. In the stochastic setting, Krylov has shown for p = 2 that we can also obtain higher
order regularity in space [20], though weighted Sobolev spaces are needed for this. To il-
lustrate why is this is the case, we will repeat a simple example given by Krylov in [20] that
shows why unweighted Sobolev spaces do not suffice. Consider the following equation:

dut = uxxdt +dWt , (5.2)

on (0,1) with Dirichlet boundary conditions and u(0, x) = 0 for all x 2 (0,1), and where Wt

is a real-valued Wiener process. This equation clearly has a solution, but the function uxx

can never be continuous for x 2 [0,1]. For if it were continuous, then the following equation
shows that we can express Wt as an integral against a continuous function:

Z
t

0
uxx(s,0)ds +Wt = u(t ,0)°u(0,0) = 0. (5.3)

This implies that Wt is of bounded variation, which is a contradiction. THerefore, uxx can
not be continuous. As Krylov shows in [20], weighted Sobolev spaces are sufficient to treat
higher order regularity for (5.1). This chapter will show that we can also obtain higher order
regularity for all p ∏ 2. In order to prove this, we will take approximately the same steps as
Krylov, though we can improve his argument at some points. For example, we are able to re-
use the framework that we have built in this thesis. We will first prove higher regularity for
a simplified version of the above equation on Rd

+ where the coefficients do not depend on
x. Subsequently, we improve the argument to space-dependent coefficients for the same
equation on Rd

+. Finally, we go to domains by straightening the boundary. In this thesis, we
only present the first step, since the other steps have not been made as of yet.
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5.1. The heat equation on Rd

+
In the case Rd

+, we set b
i = 0, c = 0, ∫k = 0, so we consider an equation of the form

dut = (ai j uxi x j
+ ft )dt + (æi k
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+ g
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t
)dW
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t
. (5.4)

Let Æ be a multi-index such that |Æ| = m, where m 2N. We then apply D
Æ and multiply by

the weight √m , where √(x) = x1. This results in the following equation:
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We still need to justify that we can actually do this. We reformulate the above equation so
that we can use our old framework. We need the following identities. When i , j 6= 1:
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If i = 1, j = 1,
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We also decompose the first term of the SPDE as follows:
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We can combine this decomposition and the above identities to rewrite the first term of the
SPDE (5.5). This results in:
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This quantity can be reinserted into the SPDE (5.5). We need to take similar steps for the
first term in the stochastic part of the equation. First consider the following identities. For
i 6= 1:
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Using identities (5.10) and (5.13), we can rewrite SPDE (5.5) as:
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Setting v =√m
D
Æ

u, we obtain the following equation:
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We apply the a priori estimates from our framework inductively. We first do this for Æ = 0
and m ∏ 2. Therefore, we first have to show the base cases m = 0 and m = 1. For m = 0,Æ= 0
SPDE (5.15) is as follows, where v = u:
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This equation was also treated before, from which we obtained the existence of a unique
solution v 2 L

p (≠;C ([0,T ];L
2(Rd

+))) and v 2 L
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))) for all p ∏ 2 and we

can obtain the following a priori estimate:
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We now move to m = 1,Æ= 0, which results in the following version of SPDE (5.15), where
v =√u:
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From the case m = 1, we know that u 2 H
1
0 (Rd

+), so uxi
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Using the case m = 0,Æ= 0, we can further estimate the above inequality to obtain:
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We now continue to the case m ∏ 2,Æ= 0. Suppose (5.15) with m = k has a unique solution
v 2 L

p (≠;C ([0,T ];L
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+))) with energy estimate
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We now consider the SPDE (5.15) for m = k +1. This results in the following SPDE:
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By assumption, we know that √k
u,√k

uxi
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to obtain existence of a unique solution v 2 L

p (≠;C ([0,T ];L
2(Rd

+))) and L
p (≠;L

2([0,T ]; H
1
0 (Rd

+)))
with energy estimate

E sup
t2[0,T ]

k√k+1
ukp

L2(Rd

+)
+E

µZ
T

0
k√k+1

uk2
H

1
0 (Rd

+)
dt

∂ p

2

∑ Ek√k+1
ukp

L2(Rd

+)
+E

µZ
T

0
k√k

uxk2
L2(Rd

+)
dt

∂ p

2

+E
µZ

T

0
k√k°1

uk2
L2(Rd

+)
dt

∂ p

2

+E
µZ

T

0
k√k+1

ftk2
H°1(Rd

+)
dt

∂ p

2

+E
µZ

T

0
k√k+1

gtk2
`2(N;L2(Rd

+))
dt

∂ p

2

.

(5.23)

We can use the energy estimate from the assumption to arrive at the following estimate:
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For m = 1, |Æ| = 1, we have the following SPDE:
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Since the case m = 0, |Æ| = 0 shows us that u 2 L
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for all p ∏ 2. Also,
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Now, we find for any multi-index Æ such that |Æ| = 1, we have
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Therefore, the above energy inequality can be simplified to:
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We can then re-use the energy inequality from the case m = 0,Æ= 0 to obtain:
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Having proven the cases m = |Æ| = 0 and m = |Æ| = 1, we proceed to m = |Æ| ∏ 2. Let m =
|Æ| = k with k ∏ 2 and consider SPDE (5.15). We assume that there exists a unique solution
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We want to prove existence and uniqueness with the same type of energy estimate for m =
|Æ| = k +1. Now consider equation (5.15) with m = |Æ| = k +1. This results in the following
SPDE:

dvt =
≥ dX
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ai j vxi x j

°
dX

i=2
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t

!
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(5.31)

By assumption, we find that √k
D
∞

uxi
2 L

2(Rd

+) and √k°1
D
∞

u where |∞| = k



6
Conclusion

This master’s thesis introduces a new p-dependent coercivity condition that allows to prove
L

p (≠;L
2([0,T ]; X )) estimates for SPDEs fitting the variational framework. First, a priori es-

timates are obtained on the solution of the SPDE. Subsequently, these a priori estimates are
used to prove existence and uniqueness through a Galerkin approximation argument. The
framework that has been built with the new coercivity condition is applied to many equa-
tions, such as the stochastic heat equation with Dirichlet boundary conditions as well as
the same equation with Neumann boundary conditions. Other equations include Burger’s
equation and the Navier-Stokes equations in 2D. Last but not least, we re-obtain results
from the literature concerning systems of SPDEs and higher order SPDEs.
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A
Basic inequality

This appendix shows proofs of some of the inequalities used throughout this thesis.

Proposition A.1. Given Æ> 2, the following inequality holds for all x ∏ 1 if and only if ∞2 <
8(Æ°1)
Æ2 :

2(x
Æ°1 °1)(x °1)°∞2(x

Æ
2 °1)2 ∏ 0. (A.1)

Proof. We first prove the sufficiency. Define the function f (x) = 2(x
Æ°1°1)(x°1)°∞2(x

Æ
2 °

1)2. Since f (1) = 0, it suffices to show that f
0(x) > 0 for all x > 1. Now, calculating f

0(x)
results in:

f
0(x) = 2(Æx
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Æ
2 °1

¥
.

We notice that f
0(1) = 0. Therefore, it suffices to prove that f

00(x) > 0 for all x > 1. We
calculate f

00(x):

f
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where we define g (x) = 2
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can be shown that g (x0) = 0 for some x0 2 (0,1). Therefore, it suffices to show that g
0(x) > 0

for x > 1. Now, we calculate g
0(x):

g
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where h(x) = 2(Æ(Æ°1)Æ2 x ° (Æ°1)(Æ°2)(Æ2 °1))°∞2Æ(Æ°1)Æ2 x. Similarly for g , h(x0) = 0
for some x0 2 (0,1) as long as ∞2 < 2. Then, it suffices to show that h

0(x) > 0 for all x > 1.
Therefore, we are only left to calculate h

0(x). It follows that

h
0(x) = 2(Æ(Æ°1)

Æ

2
)°∞2Æ(Æ°1)

Æ

2
(A.2)

Using the assumption ∞2 < 8(Æ°1)
Æ2 , it follows that h

0(x) > 0 for all x 2 R. This means we are
done.

In order to show the necessity of the condition, suppose ∞2 ∏ 8(Æ°1)
Æ2 . We do a Taylor expan-

sion of f (x) around x = 1. This results in:

f (x) = f
00(1)(x °1)2 +O ((x °1)3). (A.3)

If we can show that f
00(1) ∑ 0, then f (x) ∑ 0 for some x ∏ 1. Using the above, we find that

f
00(1) = 2(Æ(Æ°1)° (Æ°1)(Æ°2))°∞2(Æ(Æ°1)°Æ(Æ°2

2 ))

∑ 2(Æ(Æ°1)° (Æ°1)(Æ°2))°4(Æ°1)

= 0.

(A.4)
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