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Abstract

In Intensity Modified Proton Therapy, the number of energy layers and the num-

ber of beamlets determine the radiation time and the plan calculation time. The

purpose of this research project is to test the `1-norm and the `1/`2-norm on

the reduction of beamlets and energy layers.

A data set for a prostate cancer patient, that contains 18777 beamlets in 40 en-

ergy layers, and a reference plan, generated by 1705 beamlets of a regular grid

in 37 energy layers, were included in this project. Both norms were added to the

weighted sum. The weights of the objectives were extracted from a sequential

ε-constraint optimisation. After deletion of beamlets and energy layers, sequen-

tial ε-constraint optimisation was performed to calculate the output plan. The

Dose Volume Histogram (DVH) of the output plan and reference plan are com-

pared to evaluate the plan quality.

The addition of an `1-norm is a useful tool for selecting beamlets. Using a weight

for the norm, that is smaller than the lowest weight in the weighted sum, an out-

put plan was generated by 1260 beamlets in 37 energy layers. If the weight of the

norm was too large, it was not possible to generate an acceptable output plan

with the beamlets that were selected.

The selection of 28 up to 40 energy layers using the `1/`2-norm did not differ

much from the selection without the norm. The selection of fewer energy layers

was different which resulted in a difference in the DVH for the selection of 21

energy layers. In all these selections on energy layers, the plans were generated

by more than 14900 beamlets. The `1/`2-norm gave a good result for deleting

both beamlets and energy layers, although more than double the number of the

beamlets in the reference plan needed to be selected.

Using both the `1-norm and `1/`2-norm an almost equivalent plan to the out-

put plan of the `1/`2-norm could be achieved with a reduction of another thou-

sand beamlets.

The results encourage additional testing of the sparsity inducing norms on a

data set with more energy layers and implementation of the `1-norm for the re-

duction of beamlets.
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1
Proton therapy

Radiotherapy is used in the treatment of cancer, sometimes in addition to surgery,

chemotherapy or hyperthermia therapy. The goal of radiotherapy is to irradiate

the tumour cells, whilst sparing the healthy cells as much as possible. The in-

troduction of proton therapy and the problem definition will be given in this

chapter.

1.1. Proton radiation
When protons travel through matter, they ionise the material and leave a dose

behind. The radiation damages and eventually kills cells in the body. Hence,

radiation is an effective way of treating cancer. A typical dose deposition as a

function of depth is visualised in the Bragg curve in Figure 1.1.

The dose a proton deposits during its travel is relatively low in comparison to

the dose it deposits at its maximum. After reaching its peak, the dose deposition

goes to zero. This limits the negative effects on the healthy tissue and organs.

The range depends on the energy of the proton and the electron density of the

tissue [1, 2]. This phenomenon is visualised in the Bragg curve. A detailed expla-

nation of the Bragg curve and different interaction methods of the proton will be

given in Chapter 2

1



2 1. Proton therapy

Figure 1.1: Schematic representation of a single Bragg curve. Adaptation from [1]

1.2. Treatment

As healthy cells repair much quicker than tumour cells and to avert side-effects,

the treatment is spread out over multiple treatment fractions.

Figure 1.2: Normal tissue cells repair much quicker than cancerous cells. The cancerous cells will be
killed whilst sparing the healthy cells. [3]

Each fraction usually takes twenty minutes to one hour of which most of the

time is used for positioning the patient. The patient is irradiated for less than

ten minutes. [4]

During the treatment, the patient should lie as still as possible. When the patient

moves, the actual dose that is delivered might not correspond to the dose that

was planned.
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1.2.1. Treatment plan
Before the treatment can be performed, a personal treatment plan is created,

since each patient is anatomically unique. The plan is based on various different

constraints, such as a minimum dose for the volume of the tumour, the Plan-

ning Target Volume (PTV), and objectives, such as minimising the maximum

doses for different organs, the organs-at-risk (OARs). The PTV of a prostate can-

cer patient is depicted in Figure 1.3. This makes it a multi-criteria problem. The

objectives and constraints are contained in a wish list with their priorities.

Table 1.1: Wish list with all constraints and objectives. The priority of the objective indicates in
which order the sequential ε-constraint optimisation optimises. A low number will be optimised
first. PTV is planning targeting volume and Gp is gigaprotons

Constraints Name Type Limit (Gy)

PTV-high Minimum 71.78
PTV-intermediate Minimum 54.45
PTV-low Minimum 54.45

Objectives Name Type Goal (Gy) Priority

f1 PTV-high Maximum 79.18 1
f2 PTV-intermediate Maximum 79.18 1
f3 PTV-low Maximum 58.85 1
f4 Conformity ring PTV-high Maximum 79.18 2
f5 Conformity ring PTV 0-10mm Maximum 58.85 2
f6 Conformity ring PTV 10-15mm Maximum 49.5 2
f7 Femural heads Maximum 50 3
f8 Rectum Mean 1 4
f9 Large and small intestines Mean 1 5
f10 Bladder Mean 1 6
f11 Femural heads Mean 1 7
f12 All conformity rings Mean 1 8
f13 Rest of the conformity rings Maximum 1 8
f14 Total spot weight Mean 1 Gp 9

A sequential ε-constraint optimisation as described by Breedveld [5] is used in

the computation of a dose distribution that satisfies the requirements in the

wish list as good as possible. The optimisation method is explained briefly in

Section 3.2.1. The goal of the optimisation is to keep the dose in the OARs as

low as possible whilst satisfying the minimum dose in the tumour to eradicate

all malignant cells. If the plan is clinically acceptable, a treatment planning soft-

ware computes the plan that is used within the treatment device.



4 1. Proton therapy

Figure 1.3: The PTV-high is an expansion of the prostate. The PTV-low consists of the expanded
seminal vesicles and lymph nodes, that is not contained in PTV-intermediate, the 15 mm transition
region between PTV-low and PTV-high. The conformity ring of PTV-high is the PTV-high with a 15
mm expansion. The conformity ring of PTV-full is the area within 10 mm outside the PTV-full, the
PTV-high conformity ring and PTV-low. [6]

1.2.2. Treatment device
In External Beam Radiotherapy (EBRT) protons exit the treatment device through

the head. The head contains magnets to steer a bundle of protons to different

positions in the patient. The energy of the proton determines the range of the

Bragg peak. The positioning of the proton using magnets will be explained in

more detail in Chapter 2.

The treatment device most commonly used in EBRT can be seen in Figure 1.4.

Figure 1.4: The machine most commonly used for radiotherapy. The gantry can rotate 360◦ to irra-
diate the patient from different angles. The table can move and rotate. Adapted from [7]
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The machine can irradiate the patient from different directions, as the gantry

can rotate around the patient and the table can turn. In this report we will only

consider two opposite beam directions.

1.3. Movement of the patient and the PTV
Treatment with protons is very precise and the majority of the dose ends up

in the tumour, which spares the surrounding tissues quite well. However, this

precision has a downside when the tumour or OAR are displaced from their

positions on the scan. As a consequence, the dose at the edge of the tumour

might not be sufficient to prevent the tumour from growing back. Another con-

sequence is that the dose in the surrounding organs might be too high.

The shift can be caused by several reasons. One of them is a natural movement

as a cause of expanding organs such as the stomach or bladder in between the

different treatment fractions. Another cause is the slight movement of the pa-

tient during the procedure even though the patient is held as still as possible.

The longer the procedure, the higher risk of movement.

1.3.1. Movement of organs in between fractions
If the movements of organs is to be taken into account, a CT scan should be

made before each treatment session. Using this CT scan a modified plan can be

made. However, making a new plan for each session is time consuming, as the

optimisation contains a large number of variables.

Reducing the number of variables enables us to make personalised plans for

each treatment.

1.3.2. Movement of the patient during treatment
In order to reduce the risk of body movement during the treatment, the radiation

time should be reduced. This does not include repetitive movements such as

breathing. The length of the session depends among others on the number of

different energies that are used. These energies can be ordered into layers; all

beamlets with the same energy are in the same layer. Currelty switching between

energy layers takes two to five seconds. Most of this time is used for calibrating

the magnets in the head of the collimator. As the time of radiation is usually less

than ten minutes, having a lot of energy layers is a major contribution on the

total radiation time of the treatment. Besides the lower risk on movement, more

patients can be treated due to the decrease in radiation time.
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1.3.3. Reduction of energy layers and beamlets
The aim of this research project is to reduce the number of beamlets and energy

layers used in the optimisation using sparsity inducing norms. The sparsity in-

ducing norms will be introduced in Chapter 4 and in Chapter 5 it is described

how the sparsity inducing terms are added.



2
Tumour coverage

The proton pencil beam can be modified to fully irradiate the tumour. This can

be achieved by changing the energy of the proton, to choose the range of the

proton, the intensity, to modify the size of the dose and the magnetic deflection,

to steer the proton. [2]

Protons of different energies will create a spread-out Bragg peak (SOBP). The

spread-out Bragg peak, range calculation and magnetic deflection will be cov-

ered in this chapter.

2.1. Spread-out Bragg peak
Intensity Modulated Proton Therapy, (IMPT), allows the alteration of the inten-

sity of the proton beam. In order to get a sufficient dose in the tumour, the tu-

mour is irradiated with protons of different energies and intensities. This results

in the spread-out Bragg peak pictured in Figure 2.1.

2.1.1. Proton interaction mechanisms
The proton loses energy due to three main interactions, which are depicted in

Figure 2.2.

Inelastic Coulomb scattering between the proton and atomic electrons causes

energy loss and determines the range of the proton. The deflection of the proton

is negligible as the mass of the proton is much greater than the mass of electrons.

7



8 2. Tumour coverage

Figure 2.1: Schematic representation of a Bragg peak with the relative dose to the depth in tissue. a)
A single Bragg peak. b) The spread-out Bragg Peak, obtained by irradiating with protons of different
energies and intensities. Adapted from [1]

Figure 2.2: Three main interactions mechanisms. (a) Inelastic Coulomb scattering, (b) elastic
Coulomb scattering and (c) non-elastic Coulomb scattering. p depicts a proton, e an electron, n
a neutron and γ a gamma-ray. [8]

As the loss per interaction is small, the proton is continuously slowing down.

Elastic Coulomb scattering changes the trajectory of the proton. The proton

experiences a repulsive force from the nucleus of the atom, which also has a

positive charge, and is deflected from its original path.

A non-elastic nuclear interaction is less predictable. When the proton enters

the nucleus, a deuteron, secondary proton, triton or heavier ion or one or more

neutrons can be emitted. [8, 9]
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2.1.2. Stopping power
The rate of energy loss of the projectile is defined as the quotient of the change

in energy dE and the travelled path dx. This is the stopping power, S.

S(E) =−dE

dx
(2.1)

The Bethe formula appears to be an accurate formula to approximate the stop-

ping power for radiotherapy.

S = 4πnz2

me c2β2

(
e2

4πε

)2 [
ln

2me c2γ2β2

I
−β2

]
(2.2)

n is the electron density of the material, z the atomic number of the projectile,

me the mass of an electron, c the speed of light, e the electric charge and ε0 the

permittivity of vacuum. β = v/c, where v the velocity of the projectile. γ = (1−
β2)−

1
2 is the Lorentz factor and I the mean excitation potential of the absorbing

material. [8, 10]

2.1.3. Bragg curve
Using Einsteins famous relationship for kinetic energy, it becomes clear that the

velocity is high for high energy particles.

Ek = (γ−1)mp c2 (2.3)

Where mp is the mass of the proton and γ the Lorentz factor. The Lorentz factor,

γ= (1−β2)−
1
2 , is larger for large v .

As the particle has a certain velocity, the stopping power is not zero and energy

is deposited to the tissue. With the decrease of energy, the velocity and thus

β decreases as well. This results in a larger stopping power. At low energy, as

β → 0, S increases causing a peak in the deposition of energy to occur. This

results in the Bragg-Peak that is depicted in Figure 2.1. Under the assumption

that the path of the proton is straight and that protons lose energy continuously

the range can be calculated.

R(E) =
∫ E

0

1

S(E ′)
dE ′ (2.4)

R is the range in m. [8]
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2.2. Active scanning
To get a full tumour coverage, active scanning is used. Magnets in a magnetic

scanner deflect the path of the pencil beam to specific positions in a vertical

plane. A sketch of different paths of the pencil beam is given in Figure 2.3. [1, 11]

Figure 2.3: Pencil beam active scanning. The pencil beam is deflected to points on a vertical plane
perpendicular to the initial pencil beam. [11]

The deflection of the particle will be explained with the Lorentz-force.

FL = qE+qv×B (2.5)

All bold variables are vectors. FL is the Lorentz force on the particle with charge

q and velocity v. E and B are the electric field and magnetic field respectively.

The force on the proton is summation of a force perpendicular on both the ve-

locity of the particle and direction of the magnetic field and a force in the direc-

tion of the electric field.

Consider the situation where E = 0 and B = B ŷ is constant in the y-direction.

The direction of the velocity is in the z-direction. This is sketched in Fig-

ure 2.4.

In this situation, the Lorentz force simplifies to a simple equation.

FL =−qB(vz x̂ − vx ẑ) (2.6)

x̂ and ẑ are the unit vectors in the x-direction and z-direction respectively.

Using Newton’s law of motion the centripetal force is given as

Fc =
mp v2

r
(2.7)

With mp the mass of the proton and r the radius of the circle. Solving
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Figure 2.4: The incident particle is deflected in a circular path towards the negative x-direction under
the influence of a uniform magnetic field in the y-direction. [12]

these equations for the initial velocity of vx = 0, r can be calculated. The

proton will travel in a circular path with radius r .

Changing the strength and direction of the magnetic field the path of the proton

can be modified.





3
Treatment plan optimisation

In the optimisation of treatment plans, discretised values are used. In this chap-

ter the discretisation of the patient’s volume and the beam positioning is cov-

ered. Next, the sequential ε-constraint optimisation method will be compared

with the weighted sum optimisation method for the multi-criteria problem.

3.1. Discretisation

A beam source of high energy protons exits the head of the treatment device as

shown in Figure 1.4. From the beam source, the protons travel through the head

to the patient. The modulation device is divided into beamlets, xi , and the vol-

ume of the patient into voxels, di . A simple figure of the discretisation of the

patient and the modulation device is pictured in the following figure.

13



14 3. Treatment plan optimisation

Figure 3.1: The modulation device is discretised into beamlets, xi . A beam source sends out ionis-
ing radiation, that is deflected through the grid of the modulation device. The patient’s volume is
discretised into voxels, d j . The higher the intensity of the beam, the higher the resulting dose in the
patient. Adapted from [7]

The numerical value of xi is the intensity of the pencil beam that passes through

the grid element. Using the dose influence matrix A, the discretised dose in the

patient, d j , can be calculated. There is a different dose influence matrix for each

organ in order to optimise different organs separately. d is a vector with all doses

d j and x of all beamlets xi .

d(x) = Ax (3.1)

The total dose distribution is pictured in a 3D dose distribution, overlayed on the

CT. The 2D representation can be given in a Dose Volume Histogram (DVH). To

keep the problem as small as possible, the most important volumes are sampled

with a higher sampling resolution than less important volumes. [7]

3.2. Optimisation
In radiotherapy various multi-criteria optimisation methods can be used, such

as weighted sum optimisation and sequential ε-constraint optimisation. The

two methods are interesting, because it is possible to switch between these. The

switch between the two methods is useful, as it is easier to add, modify or delete

objectives and constraints in a weighted sum than in a sequential ε-constraint

optimisation. This way all treatment objectives are optimised simultaneously

while preserving patient specific trade-offs.

In this section the sequential ε-constraint optimisation and the weighted sum
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optimisation are introduced. The objectives are denoted as fi where i ∈ {1, . . . , s}

and s the number of objectives and the constraints on the tumour as g j where

j ∈ {1, . . . ,r } and r the number of constraints. The constraints g j are combined

in g(x), such that g(x) ≤ 0. [5]

An example of a wish list can be found in Table 1.1.

3.2.1. Sequential ε-constraint optimisation

The method of sequential ε-constraint optimisation, starts by minimising the

dose in the OAR with the highest priority, f1, whilst satisfying all constraints

g(x). This will generate a plan that has a minimal dose everywhere in the tu-

mour and the lowest dose possible in the OAR with the highest priority. When

this optimisation is finished, the result will be relaxed by a value ε1 and added

as a constraint in the next steps in the optimisation. Relaxation is necessary to

allow clinically interesting trade-offs.

In the next step the OAR with the second to highest priority will be minimised

satisfying all the new and old constraints. This will generate a plan that has a

minimal dose everywhere in the tumour and a dose in the OAR with the highest

priority that is smaller than ε1.

These steps are repeated until all OARs have been processed. The optimisation

problem of the i ’th step is given below.

minimise fi (x) (3.2)

subject to g(x) ≤ 0

fk (x) ≤ εk k ∈ {1, ..., i −1}

All the objectives fk , with a higher priority than fi , are added as constraints with

value εk :

εk =
bk fk (x∗)δ≤ bk

fk (x∗)δ fk (x∗)δ> bk

(3.3)

bk is the goal set for the minimisation of the objectives and δ the relaxation

value. In most cases the relaxation value is 1.03 (3%). Without relaxation of the

result, it might occur that further calculations do not give a solution. A detailed

explanation can be found in Breedveld [5].
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3.2.2. Weighted sum optimisation
In the weighted sum method, the objective function is obtained by summing the

objectives fi with a specific weight wi for each objective.

minimise
∑

wi fi (x) (3.4)

subject to g(x) ≤ 0

3.2.3. Comparison weighted sum and ε-constraint optimisation
To switch between the two optimisation methods, it needs to be confirmed that

the methods give similar results. The optimal solutions of both methods will be

calculated and compared.

First the optimal solution is calculated using the ε-constraint method. In Breed-

veld it is proven that if particular weights are chosen, the weighted sum optimi-

sation results in an optimal solution identical with the optimal solution of the

ε-constraint optimisation. [5]

Therefore, these particular weights will be extracted from the plan generated

with the sequential ε-constraint method and used in the weighted sum method.

Figure 3.2: DVH of a treatment plan generated by ε-constraint optimisation and by the weighted
sum optimisation.

It appears that the solutions are quite similar. Numerical and rounding errors

can be a cause for the differences in the solutions.



4
Sparsity inducement using

norms

In this chapter the cost function Ω(x) for sparsity-induced optimisation is de-

scribed. The goal of a sparsity-inducing cost function is to make the solution

more sparse. A vector or matrix is sparse when more elements are zero than

non-zero.

Such a criterion should be active during optimisation of each objective, making

inclusion in the sequential ε-constraint method impractical. As an alternative,

the weighted-sum formulation is used, that is described in Section 3.2.2. The

sparsity-induced cost function is added by some small weight λ.

minimise
∑

wi fi (x)+λΩ(x) (4.1)

subject to g(x) ≤ 0

It is suggested that the sparsity is induced by an `1-norm or a mixed `1/`p -

norm. [13, 14]

In Chapter 5 the inclusion of the sparsity-induced cost functions on the optimi-

sation of a treatment plan in radiotherapy is explained.

17
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4.1. `1-norm sparsity term
At first glance, it is not immediately clear why an addition of an `1-norm induces

sparsity. In order to understand this, the `1-norm is sketched and compared to

the general `q -norms. The `q -norm is defined as ‖x‖q = (
∑n

i=1 |xi |q )
1
q .

4.1.1. `q in a simple 2D problem
In Figure 4.1a ‖x‖q = xq

1 + xq
2 = 1 is sketched for q = 1,2 and 10. In this figure

an important result can be seen. The curve of ‖x‖q = 1 is a diamond if q = 1,

a circle if q = 2 and tends to look like a square if q = 10. For q → ∞ the curve

approaches a square. For all other q , where a ≤ q ≤ b, the curve of ‖x‖q = 1 is

positioned outside the curve of ‖x‖a = 1 and inside the curve of ‖x‖b = 1.

In Figure 4.1b only the positive quadrant is taken into account. A simple opti-

misation problem with only one constraint, x2 + 3
2 x1 ≥ 2, is considered. Then all

points on and above the red line satisfy the constraint. The objective is the min-

imisation of x2+ 3
2 x1. Then all points on the red line are possible solutions. Now,

Ω(x) = ‖x‖q is added with weight λ= 1 to the problem with the single constraint.

Thus the goal of the optimisation is to choose the smallest c, such that ‖x‖q = c

and the red line intersect. This can be visualised as an expanding balloon, where

the balloon is inflated until it touches the line of the constraint.

As the curve of ‖x‖1 = c is a diamond, the point of intersection is very likely to

be on one of the axes, which results to a sparse solution. The curve of ‖x‖10 = c

resembles a square. Therefore, the intersection is very likely to be in the middle

of the line and the solution is not sparse at all. The `2-norm is not as straightfor-

ward. In that case, the probability of getting a sparse or almost sparse solution

is quite low. We say that the solution is almost sparse if x1 or x2 is small in com-

parison to the other.

Visually, it is very clear that the addition of an `1-norm increases sparsity and

the addition of an `q -norm where q ≥ 2 does not.

4.1.2. Extension of `q to a larger problem
In the previous section a problem with two variables and one constraint is con-

sidered. This can be extended to a problem with more constraints and variables.

The extension to a problem with multiple variables is rather straightforward.

Then, the surface can be seen as a hypervolume and the minimisation of the

norm corresponds with expanding the volume until it intersects with the con-

straint.
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(a)

(b)

Figure 4.1: a) ‖x‖q = 1 for q = 1,2 and 10. b) ‖x‖q = c and constraint x2 + 2
3 x1 ≥ 2 for positive values

x1 and x2. The point of intersection is indicated with dots.

If there is more than one constraint in the problem, the same thought process

can be used. Even though the intersection of ‖x‖1 with the constraints might not

be exactly at one of the axis, the probability of getting a sparse or almost sparse

solution is higher.
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4.2. `1-grouped sparsity term
A grouped sparsity term, `q /`p -norm, is used if the goal is to induce sparsity in

a problem, where all variables of a group in a partition should either be selected

or ignored. The `q /`p is defined as

Ω(x) = (
∑

g∈G

∥∥xg
∥∥q

p )
1
q (4.2)

G is a partition of the set S =⋃
xi , the set with all xi . g is an element of partition

G and therefore a subset of S.
∥∥xg

∥∥
p denotes the `p -norm performed on all xi

that are in set g .

The grouped sparsity term will be clarified using a simple example.

Consider Figure 4.2 with set S = {xi : i ∈ [1,6]} and assume that the vari-

ables of set S are either red, blue or green. Each subset S1, S2 and S3 corre-

sponds to one of these colours. G = {{x1}, {x2, x5}, {x3, x4, x6}} = {S1,S2,S3}

is a partition of the set with elements S1, S2 and S3 based on the different

colours.

x1
x1

x6

x4

x2

x3

x5

S

x6

x4

x2

x3

x5

S1
S3

S2

Figure 4.2: Set S can be divided in three disoint sets S1, S2 and S3 based on the colour of xi .

The `p -norm of each group is

S1 :
∥∥xS1

∥∥
p = p

√
xp

1

S2 :
∥∥xS2

∥∥
p = p

√
xp

2 +xp
5 (4.3)

S3 :
∥∥xS3

∥∥
p = p

√
xp

3 +xp
4 +xp

6

Calculating the `q /`p -norm results in

Ω(x) = q

√
p
√

xp
1

q
+ p

√
xp

2 +xp
5

q
+ p

√
xp

3 +xp
4 +xp

6

q
(4.4)
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Logically, the `1-norm is used on the disjoint groups, as the goal is to select or

ignore whole groups. Another norm will be used on the variables of the groups.

The norm on the variables within the group depends on the preferred result.

If the variables need to be equal, it is advised to use an `p -norm with high p,

whereas a low p is advised if the sparsity of the variables within the group need

to be induced even more. These norms are combined in a mixed `1/`p -norm.

Ω(x) = ∑
g∈G

∥∥xg
∥∥

p (4.5)

Now the `1-norm is calculated over the `p -norm of each group,
∥∥xg

∥∥
p .

The `1/`2-norm is defined on the coloured groups of set S as,

Ω(x) =
√

x2
1 +

√
x2

2 +x2
5 +

√
x2

3 +x2
4 +x2

6 (4.6)





5
Method

The goal of this research project is to reduce the number of energy layers and

the number of beamlets, that are used in a radiotherapy treatment plan. In this

chapter it is described how to add the sparsity inducing terms to the weighted

sum and to find a solution with fewer beamlets and energy layers.

First the data set and scripts that are used are described. Second, the overall

process is explained using a workflow. Then the `1-norm and `1/`2-norm are

written in forms such that these can be included in the optimisation problem.

Finally the method that is used for the selection of beamlets is explained.

5.1. Data set and scripts
The data set includes the details of two laterally opposing beams, the wishlist

(see Table 1.1) of a prostate cancer patient, a CT scan of the patient and other in-

formation that is required to visualise the data. In total there were 18777 beam-

lets in 40 energy layers, 18 in the first beam and 22 in the second beam.

All plans and calculations are made in the house-build program iCycle using

already existing routines such as "cons2weights", to extract the weights for the

weighted sum optimisation, "primaldual" to solve an optimisation problem by

a weighted sum and "mcopt" to calculate a plan using sequential ε-constraint

optimisation. The script "cons2weights" is based on the theory in Breedveld. [5].

The scripts "primaldual" and "mcopt" are able to optimise for objectives and

23
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constraints that have a specific cost function. For each function the function

value, gradient and Hessian need to be defined given a matrix or vector that is

specific for this function.

Take for example the minimisation of the dose in an OAR. The function is

defined as d = Ax, with A dose influence matrix. If the matrix A is known,

the function value, gradient and Hessian can be calculated.

5.2. Process of making a sparse treatment plan
The workflow sketched below will be used to reduce the number of beamlets

and energy layers.

Energy layer
selection

Output plan

Beamlet selection

Output plan

Weighted sum
optimisation
with `1-norm

Beamlet and
energy layer

selection

Output plan

Weighted sum
optimisation with
`1 and `1/`2-norm

Weighted sum
optimisation

with `1/`2-norm

ε-constraint
optimisation

ε-constraint
optimisation

ε-constraint
optimisation

Weight extraction

Input plan

Figure 5.1: Workflow of the reduction of spots, energy layers or reduction of spots and energy layers.

The input plan is a plan created with sequential ε-constraint optimisation on all

18777 beamlets in the data set. In all cases the weighted sum method is used

with the addition of one or two sparsity inducing terms as described in Chap-

ter 4. The plans with the added norm(s) will be called "intermediate plans".
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These intermediate plans will be compared with the plan calculated with the

weighted sum method without the addition of a norm. This comparison is used

to analyse the influence of the norms on the weighted sum.

The selection of beamlets and energy layers is performed on the intermediate

plans. Using the remaining beamlets and energy layers a new (output) plan is

created that satisfies the minimum doses in the PTVs, using the sequential ε-

constraint optimisation.

The output plan is then compared to the reference plan in Figure 5.2. The refer-

ence plan is created with beamlets on a "regular grid" with a lateral spacing of 6

mm and a relative energy spacing of 2. All beamlets of this reference plan were

included in the data set.

Figure 5.2: The reference plan of a prostate cancer patient. The plan is generated by 1705 beamlets
in 37 different energy layers.

5.3. `1-norm
As all x ≥ 0, the `1-norm simplifies to ‖x‖i=1 = ∑n

i=1 xi , where n is the number

of beamlets. The norm results in a linear cost function and is denoted in matrix

form as

‖x‖1 = cx (5.1)

c =
[

1 1 . . . 1
]

where c is a 1×n matrix.

The function value f , the i ’th element of the gradient ∇f, ∂ f
∂xi

, and element hi ,k
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of the Hessian, H =∇2 f , of a linear function are defined as,

f =
n∑

i=1
ci xi (5.2)

∂ f

∂xi
= ci (5.3)

hi ,k = 0 (5.4)

Where ci is the i ’th element of the cost function vector c.

5.4. Energy layer reduction
In the previous chapter it is stated that an `1-grouped sparsity term is a useful

tool to induce sparsity in a problem where there is a partition of all variables. In

this part the `1-grouped sparsity term is applied to energy layers and a mixed

`1/`2-norm is written in a form that can be added to the optimisation problem.

5.4.1. Energy layers

As mentioned in Chapter 1, protons of different energies are used during treat-

ment. Additionally to the spatial information, each beamlet also contains the

information of the energy of the protons passing through the head. So each

beamlet comes from a specific position and is in a certain energy level.

Therefore, a partition, E , of beamlets based on the energy can be constructed. E

is a set with elements E j , where j ∈ {1, . . . ,m} and m the number of energy lay-

ers. E j is the set containing all beamlets that are in energy layer j such that the

union of all E j is an exact cover of the set with all beamlets, S. Using this exact

cover, a grouped sparsity term can be added.

S =
m⋃

j=1
E j (5.5)

The mixed `1/`p -norm is an `1-norm on all
∥∥∥xE j

∥∥∥
p

for E j ∈ E . The grouped

sparsity term will result in the fact that whole energy layers can be neglected.

5.4.2. `1/`2-norm

The `1/`2-norm does not have a simple function value that can be written in a

linear or other simple matrix form. First, the function value f will be calculated.
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f =
m∑

j=1
z j (5.6)

z j is the `2-norm of layer j .

z j =
√

n∑
i=1

x2
E j

(5.7)

f can be divided into a part that is dependent on a specific xi that is in energy

layer E j and a part that is not.

f = z j (xi )+ g (xk ) (5.8)

Where g (xk ) is a function on all xk ’s that are not in the same energy layer as xi ,

xk ∉ E j . The gradient of the i ’th element that is in the j ’th energy layer is the

derivative of z j (xi ).
∂ f

∂xi
= xi

z j
(5.9)

The Hessian has the following elements hi ,k where i ,k ∈ {1, . . .n} with n the num-

ber of beamlets and j ∈ {1,2, . . .m} with m the number of energy layers.

hi ,k =


− x2

i

z3
j
+ 1

z j
i = k

− xi xk

z3
j

xi , xk ∈ E j

0 otherwise

(5.10)

Using the script that is given in Appendix A, the function value, gradient an Hes-

sian matrix can be calculated with matrix B . b j ,i , where i ∈ {1,2, . . . ,n} with n the

number of beamlets and j ∈ {1,2, . . . ,m} with m the number of energy layers, is

an element of B .

b j ,i =
1 xi ∈ E j

0 otherwise
(5.11)

B is m×n matrix, where m indicates the number of energy layers and n the total

number of beamlets. Each b j ,i indicates whether beamlet xi with i ∈ {1,2, . . . ,n}

is in energy layer E j with j ∈ {1,2, . . . ,m}.
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5.5. Selection of beamlets and energy layers
The plan that is generated by the weighted sum with either the `1-norm and/or

`1/`2-norm contains all of the beamlets and energy layers that were used in the

input plan. Depending on the weight of the norm, a number of the numerical

values of the beamlets or energy layers will be small or zero. Selecting all beam-

lets and energy layers that have a large numerical value (or deleting the lower

ones), hopefully a new clinically acceptable plan can be made with fewer beam-

lets and energy layers.

5.5.1. Selection of beamlets
All beamlets xi ≥ b will be selected, where b is the lower bound. In the results

there will be looked at different values of b for different weights for the sparsity

terms. Deleting xi < b will delete two kinds of beamlets; beamlets with a nu-

meric value that is zero or that is non-zero.

The deletion of the beamlets with zero contribution can be done without any

problem if the plan of the weighted sum is clinically acceptable. In that case the

resulting xi ’s still satisfy the constraints and a plan without the norm will result

in an equivalent or better plan. In the final optimisation, using the ε-constraint

optimisation, the optimisation is performed on all the beamlets and energy lay-

ers that were selected without the extra term. Thus the DVH might result in

a better plan, as the minimisation of the norm(s) is not one of the objectives

anymore. The minimisation of the norms caused that different trade-offs were

made.

However, after deleting the beamlets with a non-zero numeric value the inter-

mediate plan is insufficient to satisfy the minimal dose in the tumour and the

numeric value of other beamlets need to change. To explain this consider the

following case.

Suppose that the dose in the tumour is sufficient after the deletion of

beamlets and the numerical value of the beamlets is non-zero. Then, the

deletion will only influence the maximum doses in organs and in the tu-

mour. However the dose in all organs and in the tumour is minimised.

Thus these beamlets would have been zero or the dose in the tumour is

not sufficient anymore.

As a result of an insufficient dose, the numerical values of other beamlets need

to increase. This will cause the DVH to change negatively for the healthy organs.
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The lower the numerical value of the beamlets, the less the numerical values of

other beamlets need to change. Thus ideally the beamlets with a low numerical

value are deleted given that the DVH is clinically acceptable.

5.5.2. Selection of energy layers
The same thought process and selection process as in the previous subsection

can be used with energy layers instead of beamlets.

Vector y = Bx will be introduced, the vector of y j . The numerical value of y j =∑
xi∈E j

xi is the sum of all xi in the j ’th energy layer. B is the matrix that is defined

in Section 5.4.2. Then, the energy layer can be deleted in full if y j is small.

If the goal is to have a plan with m’ energy layers, the m’ energy layers with the

largest value for y j will be selected en the other layers deleted.





6
Results

In this chapter the intermediate results and output plans after spot and/or en-

ergy layer reduction using different sparsity-inducing terms will be discussed.

In all cases the goal of the output plans is to approximate the reference plan in

number of beamlets, energy layers and in the 2D dose distribution.

First the results of the `1-norm will be analysed, followed by the mixed `1/`2-

norm. Finally, the results of the addition of both of these norms will be shown.

The weighted sum optimisation was performed with the weights given in Table

6.1.

31
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Table 6.1: Weights for all the objectives in the weighted sum. PTV is planning targeting volume and
Gp is gigaprotons

Objectives Name Type Weight

f1 PTV-high Maximum 3.30e-02
f2 PTV-intermediate Maximum 3.60e-03
f3 PTV-low Maximum 3.75e-01
f4 Conformity ring PTV-high Maximum 1.58e-02
f5 Conformity ring PTV 0-10mm Maximum 6.18e-02
f6 Conformity ring PTV 10-15mm Maximum 1.82e-03
f7 Femural heads Maximum 4.08e-06-4.73e-03
f8 Rectum Mean 1.42e-01
f9 Large and small intestines Mean 3.45e-08-2.13e-01
f10 Bladder Mean 9.89e-02
f11 Femural heads Mean 1.93e-02-2.09e-02
f12 All conformity rings Mean 3.96e-08-2.03e-03
f13 Rest of the conformity rings Maximum 1.75e-03-2.81e-03
f14 Total spot weight Mean 2.26e-07

6.1. `1-norm
To examine the effect of the `1-norm, the intermediate solutions using differ-

ent weights for the sparsity inducing term will be compared to the result of the

weighted sum without an added sparsity term. In this section addition of the `1-

norm with weights λ= 1e-4, λ = 1e-6, λ = 1e-8 and λ= 1e-10 will be compared.

The DVHs are given in Figure 6.1.

(a)
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(b)

(c)

(d)

Figure 6.1: DVHs of the solution of the weighted sum without a sparsity term and of the intermediate
result of the weighted sum method with addition of an `1-norm with weight λ. (a) λ= 1e-4, (b) λ =
1e-6, (c) λ = 1e-8 and (d) λ = 1e-10.

In the intermediate result with weight λ = 1e-4 large differences in the DVH

can be seen. Adding the norm with this weight a different trade-off is made, as

the minimisation of the `1-norm weighed against minimising some maximum

doses, which were not hard constraints in this formulation. This happens if the

weight of the norm is higher than the weights of the objectives of the weighted

sum. This, however, does not imply that the solution after the reduction of the

beamlets and re-optimisation is not acceptable. But, it might also be possible
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that the norm with a higher weight λ caused the wrong beamlets to be selected.

The intermediate plans with weights λ = 1e-6, λ = 1e-8 and λ = 1e-10 have very

similar DVHs as the weighted sum. This is not surprising, as the weights λ = 1e-8

and λ = 1e-10 are lower than the lowest weight of the objectives and λ = 1e-6 is

smaller than most weights in the weighted sum. As weight λ = 1e-6 is larger than

some of the objectives it was expected that the dose distribution changed a bit

more. The only noticeable difference is the change of dose in the femurs.

Adding the sparsity term with one of these weights, the optimisation can be per-

formed with enough freedom to minimise the maximum doses whilst trying to

make the `1-norm as low as possible.

6.1.1. Sparsity of the intermediate solutions

Now remains the question if the intermediate solutions are sparser than the

weighted sum. In the table on the next page the number of beamlets that have a

higher numeric value than b = 0.01, 0.1, 1 and 10, is shown, that is |{xi : xi ≥ b}|.
The lower the numbers, the sparser the solution. Ideally |{xi : xi ≥ b}| is small

when b is small and the DVH is almost identical. Then, all these beamlets can

be deleted and since the beamlets already have a low value, the DVH will not

change a lot.

Table 6.2: Indicates the number of beamlets that have a numerical value higher than b = 0.01, 0.1, 1
and 10, |xi ≥ b|. The total number of beamlets is 18777. λ indicates the weight, that is used to add
the `1-norm to the weighted sum. "Weighted sum" and "ε-constraint" are plans without a sparsity
term calculated using a weighted sum and the sequential ε-constraint optimisation.

b = 0.01 b = 0.1 b = 1 b = 10

λ = 1e-4 18757 5512 2363 1271
λ = 1e-6 18777 16973 11193 2874
λ = 1e-8 11868 5375 2149 1771
λ = 1e-10 12137 5915 2228 1775
weighted sum 18777 17328 11850 4178
ε-constraint 10698 3931 2042 1758

As can be seen in Table 6.2, the `1-norm does indeed increase the sparsity in the

solution as all values of the plans with a sparsity term are lower than or close to

the values of the weighted sum without an added `1-norm. It appears that the

solution of the ε-constraint optimisation is already quite sparse in comparison

to the other plans, especially in comparison to the weighted sum method. By

optimising over a different set of beamlets it appeared that this does not always
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need to be the case.

As expected, the sparsity increases for weights λ = 1e-10 and λ = 1e-8 whilst

keeping the DVH almost similar. Then for λ = 1e-6 the solution is less sparse in

comparison to the plans with a lower weight, which is not what was expected.

Then the sparsity is again increased for λ = 1e-4. In this case, the number of

beamlets that is larger than b = 0.01, thus |xi ≥ 0.01|, is high, whereas the num-

ber of beamlets that is larger than b = 10 is lower than in every other method.

Thus a lot more beamlets have a value in the interval 0.01 ≤ xi < 10. It can be

concluded that in order to reduce some beamlets, other beamlets cannot be re-

duced to almost zero. This is different from with weights λ = 1e-8 and λ = 1e-10,

where a lot more beamlets could be reduced to a value of xi < 0.01.

As a large number of beamlets have a low value in the intermediate results of

λ = 1e-8, λ = 1e-10 and the ε-constraint optimisation and the DVHs are similar,

these plans will very likely result in an acceptable output plan. λ = 1e-4 does

have a large number of beamlets that have a value xi < 1 as well, however the

corresponding DVH is not acceptable and it is not certain that re-optimisation

will return an acceptable plan.

6.1.2. Spot reduction to 1705 beamlets

Now the results of the second sequential ε-constraint optimisation with 1705

beamlets is shown. The beamlets are selected using the method described in

Section 5.5 using different values of b for each weight λ. By comparing the out-

put plan and the reference plan both with the same number of beamlets, the

quality of the norms with different weights can be discussed. Besides that the

different values for b, that are chosen for the same reduction, can be compared.

Table 6.3: b, the lower bound, for each intermediate plan such that |{xi : xi ≥ b}| = 1705. b is rounded
off to one decimal digit. λ indicates the weight, that is used to add the `1-norm to the weighted sum.
"Weighted sum" and "ε-constraint" are plans without a sparsity term calculated using a weighted
sum and the sequential ε-constraint optimisation.

b

λ = 1e-4 2.3
λ = 1e-6 47.7
λ = 1e-8 22.0
λ = 1e-10 21.6
weighted sum 60.6
ε-constraint 17.0
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b for λ = 1e-4 is very low. This means that all beamlets that are deleted already

had a small numeric value. Due to the high weight of the norm present in the

weighted sum, the quality of the plan calculated with ε-constraint optimisation

might increase. This is different from b = 60.6 in the weighted sum and b = 47.7

in the addition with weightλ = 1e-10, where b is quite large and the beamlets are

selected more randomly. Then, the numeric values of the other beamlets need

to change more and it is not certain this will result in an acceptable output plan.

The DVHs of the plans with 1705 beamlets in comparison to the reference plan

are given in the figures below.

(a)

(b)

(c)
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(d)

(e)

(f)

Figure 6.2: Solution of sequential ε-constraint optimisation using 1705 beamlets in comparison with
the reference plan. The selection of beamlets was performed on the solution of the weighted sum
with addition of an `1-norm with weight λ. (a) λ= 1e-4, (b) λ = 1e-6, (c) λ = 1e-8 and (d) λ = 1e-10,
(e) the weighted sum without an extra term and (f) the sequential ε-constraint optimisation of all
18777 beamlets.

The plan which was calculated after the selection based on the `1-norm with

weight λ = 1e-4 differs from the reference plan quite a lot. The plan did not get

better after the re-optimisation without the sparsity-inducing term. Looking at

the DVH, the selection from the intermediate plan with λ = 1e-4 did not result

in an admirable selection as the maximum doses increased. The `1-norm with a

higher weight caused the wrong choices in the selection of beamlets to be made

as suggested in the previous section.
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The rest of the DVHs are nearly identical to the reference plan. In almost all

plans the maximum dose of the left thighbone (Femur l) is increased. Besides

that, there is a trade-off between the two thighbones (Femur l and Femur r).

As the DVHs are nearly identical, it can be concluded that is possible to achieve

a similar plan only using the result of the sequential ε-constraint optimisation

or the weighted-sum with or without the addition of an `1-norm. But, it might

be a lucky case that the solution of the ε-constraint optimisation is sparse.

In the table below the number of similar selected beamlets of two intermediate

plans is shown.

Table 6.4: Number of similar beamlets, that were selected from the intermediate plans. λ indicates
the weight, that is used to add the `1-norm to the weighted sum. "WS" and "ε-constr" are plans
without a sparsity term calculated using a weighted sum and the sequential ε-constraint optimisa-
tion.

λ = 1e-4 λ = 1e-6 λ = 1e-8 λ = 1e-10 WS ε-constr

λ = 1e-4 388 316 312 342 308
λ = 1e-6 388 1313 1307 1376 1282
λ = 1e-8 316 1313 1683 1468 1542
λ = 1e-10 312 1307 1683 1469 1546
WS 342 1376 1468 1469 1426
ε-const 308 1282 1542 1546 1426

As suggested before, the plan with λ = 1e-4 selected very different beamlets than

the rest of the plans. Only 300-400 beamlets out of the 1705 beamlets were simi-

lar as the selected beamlets of other plans. On the other hand, the beamlets that

were selected from the plan with λ = 1e-8 and λ = 1e-10 are very similar and only

32 beamlets were not the same.

As the output plan with λ = 1e-4 is significantly worse than the other plans and

is not clinically acceptable, this plan will not be considered in further reduction

of the beamlets.

6.1.3. Further reduction of beamlets

It appears that a good plan with 1705 beamlets can be made using different in-

termediate plans even though according to Table 6.4, the beamlets that are se-

lected are not the same. Thus it is interesting to reduce the beamlets even more

and see if any differences between the plans arise. In this subsection the number

of beamlets is reduced to 1260 beamlets. All beamlets larger than b are selected

with b in Table 6.5.
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Table 6.5: b for each intermediate plan such that |{xi : xi ≥ b}| = 1260 rounded off to one decimal.

b

`1, λ = 1e-6 121.0
`1, λ = 1e-8 149.9
`1, λ = 1e-10 145.5
weighted sum 126.0
ε-constraint 149.0

As all b’s are quite large, deviations from the reference plan are expected.

In the following figures, the DVHs are shown of the plans generated by 1260

beamlets.

(a)

(b)
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(c)

(d)

(e)

Figure 6.3: Solution of sequential ε-constraint optimisation using 1260 beamlets in comparison with
the reference plan with 1705 beamlets. The selection of beamlets was performed on the solution of
the weighted sum with addition of an `1-norm with weight λ. (a) λ = 1e-6, (b) λ = 1e-8 and (c) λ =
1e-10, (d) the weighted sum without an extra term and (e) the sequential ε-constraint optimisation
of all 18777 beamlets.

Even with 1260 beamlets, the DVHs are quite similar. A difference in maximum

dose appears in the DVH of the weighted sum and a small difference in the other

DVHs. The weighted sum does not have enough freedom to keep the dose in

PTV-low at 60 Gy whilst satisfying the dose constraints in the tumour. In all cases

further reduction of the beamlets increases the maximum doses of PTV-low and
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eventually all other volumes. This is shown in the next figure.

Figure 6.4: DVHs of the ε-constraint optimisation with 1260, 1150 and 1000 beamlets. The beamlets
are selected from the result of the weighted sum with an `1-norm with weight λ =1e-8.

Even though b is larger for λ = 1e-8 than λ = 1e-10 and the weighted sum, this

does not result in a worse plan. As stated before, the numerical value of some

beamlets need to increase in order to decrease other beamlets. In case of weight

λ = 1e-8, more beamlets have a smaller numerical value and therefore the nu-

merical value of other beamlets have already changed. This way, the re-optimisation

with the selected beamlets will result in a better plan. The next example will clar-

ify this.

Consider beamlets x1, x2 and x3 that have numerical values x1 = 4, x2 = 6

and x3 = 12. Due to the sparsity term with a higher weight the new values

are x1 = 0, x2 = 13, x3 = 9 and with the lower weight x1 = 3, x2 = 7 and

x3 = 10. Then assume b = 10 for the higher weight and b = 8 for the lower

weight. In the first case, x1 and x3 are deleted, whereas in the second

case x1 and x2 are deleted. In both cases x2 needed to increase to allow

the other beamlets to become smaller. In the second case however the

weight was not high enough to make x3 < x2. As a result when two xi ’s

are deleted, x2 is deleted instead of x3 in the case of the lower weight.

6.2. `1/`2-norm
Another goal is to reduce the number of energy layers that are used in the treat-

ment of the patient. To reduce the number of energy layers it was suggested to

add an `1/`2-norm to the weighted sum. The norm is added with weights λ =

1e-4,λ = 1e-6,λ = 1e-8. The solutions of these optimisations are compared to the
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solution of the weighted sum without the added norm. In the previous section it

was concluded that the solution of the sequential ε-constraint optimisation was

a good plan to reduce the spots if the plan is already sparse. This might also be

the case with energy layers. Therefore this plan will also be used to reduce the

energy layers.

(a)

(b)

(c)

Figure 6.5: DVHs of solution of the weighted sum without a sparsity term and of the intermediate
result of the weighted sum method with addition of an `1/`2-norm with weight λ. (a) λ= 1e-4, (b)
λ = 1e-6 and (c) λ = 1e-8.
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Just like the `1-norm, the plan with the addition with weight λ = 1e-4 has the

largest difference in the DVH with the weighted sum without the sparsity term.

The other plans look quite similar to the weighted sum without the added `1/`2-

norm

6.2.1. Selection of energy layers
Using matrix B , introduced in Section 5.4.2, vector y is calculated. Recall that

y is the vector of all y j = ∑
xi∈E j

xi , the sum of all xi in every energy layer. The

values for y j of the solutions of the intermediate results are given in Appendix

B. These values are sorted from lowest to highest for each intermediate plan. In

the table an interesting result can be seen. The order of the first eight layers is

the same for all plans and the values of the solution with weight λ = 1e-8 is quite

similar to the solution of the ε-constraint optimisation. In the layers 9 to 12 a

minor change in order can be observed. The only large difference can be seen

in layer 39. That layer became very large in the weighted sum with λ = 1e-4.

As the order of the energy layers is the same for most layers, deleting an arbitrary

number of layers up to the eighth layer or all the lowest twelve layers without

deleting spots will result in the same DVH. In the figures below the DVHs with

the highest 37, 32 and 28 energy layers will be compared with the reference plan.

(a)



44 6. Results

(b)

(c)

Figure 6.6: DVHs with the reference plan and plans with (a) 37, (b) 32 and (c) 28 energy layers gener-
ated by sequential ε-constraint optimisation.

The plan with 37 energy layers is very similar with the reference plan. Deleting

more than these three layers does not change the DVH as much, only the dose

in both the femurs is changed and the dose in the bladder increases as more

energy layers are deleted. In all plans, more than 15000 beamlets are used in

the optimisation, thus having more than enough freedom to make a plan. 19 or

even more more layers can be deleted, when there is no selection on beamlets.

6.2.2. Beamlet and energy layer reduction

As the plans in the previous section have a large number of beamlets, the num-

ber of beamlets will be reduced as well. In Section 6.1 it was shown that the `1-

norm is not always necessary to reduce the number of beamlets. It was already

covered that the deletion of the first 8 layers will be similar if the deletion was

performed on the input result or the intermediate result with any `1/`2-norm.

This is useful if the outcome plans after deletion of spots is compared, as the

deletion of different energy layers cannot be the cause of different DVHs.
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In Figure 6.7 the DVHs of plans with 5000 beamlets and 32 energy layers will be

compared with the reference plan.

In contrast to the `1-norm, the norm with weight λ = 1e-4 results in the best

plan and all other plans have large deviations. This might be the result of the

shift in numerical values of the beamlets in this plan. As the weight is higher, a

larger number of numerical values of the beamlets became smaller. As a result

the beamlets that should take over the contribution of the beamlets that are in

the layers that will be deleted, are larger and thus not deleted.

(a)

(b)

(c)
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(d)

Figure 6.7: Solution of sequential ε-constraint optimisation with 5000 beamlets and 32 energy layers
in comparison with the reference plan with 1705 beamlets and 37 energy layers. The selection of
beamlets was performed on the solution of the weighted sum with addition of an `1/`2-norm with
weight λ. (a) λ= 1e-4 , (b) λ = 1e-6 and (c) λ = 1e-8 and (d) the sequential ε-constraint optimisation
of all 18777 beamlets.

6.3. `1-norm and `1/`2-norm
The `1-norm is a useful tool to reduce beamlets and the `1/`2-norm to select

energy layers. However if both reductions are wanted, these norms individually

are not satisfactory. In this section an improvement will be made on the plan

with the selection on the intermediate plan of the `1/`2-norm with weight λ =

1e-4.

6.3.1. Improvement on Figure 6.4

In Section 6.2.2 a plan was shown with 5000 beamlets in 32 energy layers. In

this section the `1-norm and `1/`2-norm will be used to find an equivalent plan

with less beamlets.

For the removal of beamlets, an `1-norm with weights λ = 1e-6 and λ = 1e-8

seem to give a good result. For the selection of energy layers it is better to use

a higher weight on the `1/`2-norm, for example λ = 1e-4. Therefore a selection

was made from the intermediate result with λ = 1e-8 for the `1-norm and λ =

1e-4 for the grouped norm.

The addition of the `1-norm with λ = 1e-8 to the `1/`2-norm with weight λ =

1e-4 did however not change the number of beamlets that were needed for the

optimisation. Looking at the beamlets that were selected of the intermediate

plans it could be concluded that almost 100 percent of the beamlets that were

selected were similar. Then λ = 1e-6 was used for the `1-norm. This did not im-

prove the DVH as well. In this case 97 percent of the beamlets were similar to
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the selection from the intermediate plan of the `1/`2-norm alone.

A smaller weight than λ = 1e-4 for the `1/`2-norm in combination with the `1-

norm with weightλ = 1e-8 orλ = 1e-6 gave worse results. Just like in the addition

of the `1/`2-norm alone, the numeric values of the beamlets in a specific energy

layer did not change enough that a good selection was made (see Section 6.2.2).

Using a weight for the `1/`2-norm that is higher than λ = 1e-4 was to aggressive

on the energy layers. For example with λ = 1e-3, if 5000 beamlets are selected,

these beamlets were only in 17 different layers.

It seems as if the addition of a higher weight for the `1-norm is better to influ-

ence the selection of beamlets when the `1/`2-norm is also present. Using a

weight for the `1-norm that was bigger than λ = 1e-6 did give some interesting

results, for example in the case of λ = 1e-5. In that case, the number of beam-

lets that were small increased a lot and due to the `1/`2-norm the numbers of

layers that had beamlets with a small numeric value increased even more. This

resulted in the fact that, for example, the selection 4000 beamlets immediately

included that only 30 energy layers were used instead of 37 energy layers with

the `1-norm alone or 34 with the `1/`2-norm alone. The DVH of the output

plan is given below in comparison to both the reference plan and the output

plan of the selection on the `1/`2-norm with weight λ = 1e-4. In order to keep

the comparison fair, the plan is compared with a plan that contains 4000 beam-

lets in 30 energy layers.

Figure 6.8: DVH of the reference plan, selection of the intermediate result with an `1/`2-norm,
weight λ = 1e-4, and an `1-norm, weight λ = 1e-5 and selection from from the intermediate result
with an `1/`2-norm, weight λ = 1e-4. The plans from the intermediate results have 4000 beamlets
in 30 energy layers.

The result is better than the result of only the `1/`2-norm in the doses of the
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PTVs. However, the dose in the bladder increased in both plans a lot in com-

parison with the reference plan. The addition of both norms made a trade-off

between the dose in the PTVs and the bladder in order to reduce the numeric

values in the beamlets.

Thus the weights of the norms should be closer to each other to have an effect

and not too high such that too many energy layers are deleted.

6.3.2. Difference in number of beamlets
λ = 1e-5 for the `1-norm and λ = 5e-5 for the `1/`2-norm are chosen. The DVHs

of the output plans will be compared to both the reference plan and the output

plan of the selection on the `1/`2-norm with weight λ = 1e-4.

Figure 6.9: DVH of the reference plan, selection of the intermediate result with an `1/`2-norm,
weight λ = 5e-5, and an `1-norm, weight λ = 1e-5 and selection from from the intermediate result
with an `1/`2-norm, weight λ = 1e-4. The plans from the intermediate results have 3500 beamlets
in 32 energy layers.

The result is better in almost organs and PTVs. The dose in the bladder is slightly

increased, but the maximum dose is the same. Further reduction of beamlets

while keeping the number of energy layers the same was not possible. In the fol-

lowing figure the DVH of the output plan with the `1/`2-norm and both norms

are shown containing 32 energy layers and a different number of beamlets, so

that the DVHs are quite similar.

The DVHs in the figure are quite similar even though the plan with both norms

contains 3000 beamlets and the plan with only the `1/`2-norm 4000. Thus the

combination of both norms indeed increases the ability to reduce the beamlets

even further given a number of energy layers.

A similar result can be seen with 21 energy layers.

Now, the plan with the selection on the intermediate plan with the `1/`2-norm
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Figure 6.10: ε-constraint optimisation of different selections of beamlets and the reference plan with
1705 beamlets in 37 energy layers. Selection of 3000 beamlets in 32 energy layers from the interme-
diate result with an `1/`2-norm, weightλ = 5e-5, and an `1-norm, weightλ = 1e-5. Selection of 4000
beamlets in 32 energy layers from the intermediate result with an `1/`2-norm, weight λ = 1e-4.

Figure 6.11: ε-constraint optimisation of different selections of beamlets and the reference plan with
1705 beamlets in 37 energy layers. Selection of 3500 beamlets in 21 energy layers from the interme-
diate result with an `1/`2-norm, weightλ = 5e-5, and an `1-norm, weightλ = 1e-5. Selection of 4500
beamlets in 21 energy layers from the intermediate result with an `1/`2-norm, weight λ = 1e-4.

contains 4500 beamlets and the plan with the selection on both norms 3500

beamlets. In both cases the addition of both norms reduced the number of

beamlets with 1000 beamlets.

From these figures it can be concluded, that there is a trade-off between the re-

duction of energy layers and beamlets. The more energy layers that are deleted,

the more beamlets should be selected. It would be interesting to see, what com-

bination of number of energy layers and beamlets is the most time efficient.

In all cases, the weights that are chosen might not give the best results, thus it

might be possible that better output plans can be achieved by choosing differ-
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ent weights. As the combination of the two norms has two weights that can be

modified, these results can most likely be improved.
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Conclusion

The numeric values of the beamlets could be influenced with the `1-norm, so

that after selecting beamlets with the highest values, the DVH of the output plan

was similar to that of the reference plan. In this data set the input plan was

already quite sparse. Thus the same result could be achieved by selecting beam-

lets on the solution of the initial ε-constraint optimisation. Using the `1-norm

with a weight that is slightly lower than the weights of the objectives, the best

result can be achieved with an output plan of 1260 beamlets. If a weight is cho-

sen that is too high, there might be a selection of the wrong beamlets. When

the weight is too low, the numeric values are not changed enough, resulting in a

more random selection of beamlets.

The `1/`2-norm did not change the order of the energy layers in most cases.

However it did influence the optimisation in such a way that the numeric val-

ues of the beamlets were shifted and, besides energy layers, beamlets could be

deleted because of this shift. The addition of both norms resulted in a plan with

less energy layers but still a larger number of beamlets than the reference plan,

namely 5000 instead of 1705.

With the addition of both norms, the numeric values of the beamlets and energy

layers can be reduced. However there is a trade-off between energy layers and

beamlets. This resulted in an output plan with less beamlets than with the addi-

tion of the `1/`2-norm alone.

It might be possible to refine the exact weights to improve the output plans even

51
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more. Furthermore, it can be interesting to investigate the radiation time of all

plans so that the trade-off between the number of energy layers and beamlets

can be made.



A
Scripts

1 %calculate L2−norm of each group

2 L2_group = sqrt (B* ( x . * x ) ) ; %vector m( groups ) x1

3

4 %calculate function value , f and gradient , grad

5 f = sum( L2_group ) ;

6 grad = x . / ( B’ * L2_group ) ; %vector n( beamlets ) x1

7

8 % calculate Hessian

9 hess = diag(−x . * x ) ; %matrix n( beamlets ) xn

10

11 for i = 1 : s i z e (B, 1 )

12 group = (~any (B ( : , 1 : ( end−i ) ) ~= B ( : , ( i +1) : end) ) ) ’ ;

13

14 i f sum( group ) == 0 %then x_i and x_k are

15 break %not in the same

16 end %group anymore

17

18 D = group .*( −x ( 1 : ( end−i ) ) . * x ( ( i +1) : end) ) ;

19 hess = hess + diag (D, i ) + diag (D, − i ) ;

20

21 end

22

53
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23 hess = hess . / ( B ’ * ( L2_group . ^ 3 ) ) + diag ( grad . / x ) ;



B
Table of energy layers
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Table B.1: λ indicates the weight, that is used to add the `1/`2-norm to the weighted sum. "Weighted
sum" and "ε-constraint" are plans without a sparsity term calculated using a weighted sum and the
sequential ε-constraint optimisation. The number of "Layer" is the index of the beam. All numbers
1 to 18 are in the first beam and numbers 19 to 40 in the second beam. The lowest value of each
beam corresponds to the layer with the lowest energy.

λ = 1e-4 λ = 1e-6 λ = 1e-8
# y j Layer y j Layer y j Layer

1 0,0 40 0,1 40 0,1 40
2 2,9 19 4,5 19 1,4 19
3 12,3 1 7,6 1 2,0 1
4 20,1 20 299,0 20 318,6 20
5 167,9 2 707,6 2 669,6 2
6 1315,4 21 2322,9 21 2087,2 21
7 1661,3 22 3226,2 22 3078,8 22
8 2544,5 3 3754,1 3 3385,6 3
9 3394,8 23 5553,6 23 5625,2 24

10 3895,3 4 5848,5 4 5993,6 23
11 4035,1 5 6792,4 24 6254,5 4
12 4531,5 24 7675,0 5 8272,4 5
13 6305,6 25 8794,1 39 10468,1 25
14 7548,8 6 10712,6 25 10651,6 39
15 8152,7 27 10820,8 6 10877,0 6
16 8421,8 26 12464,7 27 12203,7 27
17 10238,3 28 13500,9 26 13015,1 14
18 11518,9 7 13562,5 14 13258,0 26
19 12381,2 29 14676,7 35 14773,5 35
20 13361,6 14 15145,2 28 15080,4 28
21 13580,7 8 17248,0 8 16762,5 18
22 14729,8 39 17395,1 18 16778,3 8
23 14948,8 18 18083,5 7 16860,0 7
24 16895,4 35 18660,6 29 18990,6 29
25 19610,6 30 19696,4 15 19020,7 15
26 22617,7 9 22812,0 30 23111,6 30
27 22866,9 31 24442,6 34 25804,8 34
28 27088,2 34 26780,5 9 27757,4 9
29 28650,4 15 27657,6 31 28188,5 31
30 28999,1 10 31398,2 36 32072,6 10
31 33114,0 13 33013,1 10 32715,4 36
32 35797,1 36 37562,7 13 37840,3 13
33 36916,5 32 39600,5 32 39311,2 32
34 40028,8 11 42813,7 16 40556,2 16
35 42152,8 33 43153,7 33 43921,4 11
36 49224,5 12 43555,0 11 43979,6 33
37 54991,0 38 46865,9 17 45252,7 38
38 57214,0 16 46973,6 38 46615,7 17
39 61394,5 17 54980,2 37 54310,7 37
40 73182,4 37 56759,8 12 57407,3 12
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λ = 1e-10 Weighted sum ε-constraint
# y j Layer y j Layer y j Layer

1 0,2 40 11,0 40 0,1 40
2 3,0 19 178,0 19 1,4 19
3 4,3 1 285,1 1 1,8 1
4 322,0 20 708,8 20 309,3 20
5 672,8 2 991,7 2 668,2 2
6 2105,1 21 2446,9 21 2106,4 21
7 3036,7 22 3616,5 22 3022,9 22
8 3371,0 3 3790,3 3 3378,8 3
9 5638,3 24 6220,9 23 5666,8 24

10 5996,4 23 6434,3 4 5942,2 23
11 6249,7 4 6485,7 24 6246,5 4
12 8281,8 5 8662,2 5 8203,9 5
13 10224,8 25 10119,4 39 9722,0 39
14 10682,1 39 11182,7 25 10275,7 25
15 10843,2 6 11369,7 6 10796,8 6
16 12053,2 27 12900,4 27 12114,2 27
17 12979,4 14 13430,4 26 13231,9 14
18 13714,5 26 13814,0 14 13579,2 26
19 14833,6 35 15442,0 28 15108,9 28
20 15084,6 28 15571,4 35 16086,2 8
21 16452,4 8 16276,8 18 16305,9 35
22 16738,2 18 17684,5 7 16656,1 7
23 16837,0 7 18329,5 8 17456,0 18
24 19021,8 15 19763,9 29 18926,0 29
25 19025,6 29 19880,1 15 18963,4 15
26 23136,5 30 24446,5 30 23098,3 30
27 25834,2 34 27322,8 34 25265,5 34
28 28168,6 31 28609,8 9 28408,6 31
29 28196,9 9 29151,1 31 28646,6 9
30 32117,6 10 33099,8 36 32370,5 10
31 32827,2 36 34044,3 10 32589,3 36
32 37763,4 13 39194,1 13 37949,9 13
33 39281,2 32 40333,3 16 38962,5 32
34 40580,3 16 41197,1 32 41946,2 16
35 43918,1 11 44027,5 17 43660,6 11
36 43978,0 33 45198,3 38 43711,6 33
37 45257,9 38 45233,3 33 44777,6 38
38 46636,0 17 45402,3 11 46512,8 17
39 54220,7 37 52043,5 37 53525,0 37
40 57458,9 12 58704,7 12 57273,5 12
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