IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 9, SEPTEMBER 1992

Necessary and Sufficient Conditions on Block Codes
Correcting/Detecting Errors of Various Types

J. H. Weber, C. de Vroedt, and D. E. Boekee

Abstract— Necessary and sufficient conditions are given for a block
code to be capable of correcting up to ¢; symmetric errors, up to f
unidirectional errors, and up to t3 asymmetric errors, as well as detecting
from ¢; + 1 up to d, symmetric errors that are not of the unidirectional
type, from t> + 1 up to d> unidirectional errors that are not of the
asymmetric type, and from ¢3 + 1 up to d3 asymmetric errors. Many
known conditions on block codes concerning error correction and/or
detection appear as special cases of this general result. Further, some
codes turn out to have stronger error correcting/detecting capabilities
than they were originally designed for.

Index Terms— Asymmetric errors, error correction, error detection,
symmetric errors, unidirectional errors.

1. INTRODUCTION

We consider discrete channels with an (input and output) alphabet
A = {0,1,---,a — 1}(a > 2). For reliable transmission of data
over such a channel we can use a block code C' of length n over
the alphabet A, i.e., C C A". Most block codes have been designed
to correct and/or detect errors with a symmetric nature, such as the
errors caused by the a-ary symmetric channel (cf. [7]), on which
Py|z)=c¢ifz#yand Ply|la)=1—-(a—1eifz =y
(with 0 < € < 1/(a — 1)), where P(y|z) denotes the probability
of receiving the symbol y € A when the symbol z € A is sent.
However, in some applications, such as optical communications, the
errors have a highly asymmetric nature. Channels causing this kind
of error can often be modeled by the a-ary asymmetric channel
(cf. [4]), on which P(y|z) = O for all y > z. Further, in some
recently developed memory systems, the errors appear to be of a
unidirectional nature. These memory systems can be modeled by
an a-ary unidirectional channel (cf. [1]), that behaves for a certain
codeword either like the a-ary asymmetric channel or like the inverted
a-ary asymmetric channel, on which P(ylx) =0 forall y < z.

Based on the preceding statements, we shall now formally define
the error types that will be considered in this paper. First we define

N(w,v) = Hilui < wi}l,
d(u,v) = N(u,v) + N(v,u) = |[{ilu; # v;}| (Hamming distance),

for u = (uy,ug, -+, un) v = (vy,v2,---,v) € A". The vector u
is said to cover the vector v (v > v) if N(u,v) = 0. When sending
a codeword ¢ € C and receiving a vector y € A", we say that ¢ has
suffered ¢ asymmetric errors if ¢ covers y and d(c,y) = t, that ¢ has
suffered t unidirectional errors if ¢ covers or is covered by y and
d(c,y) = t, and that u has suffered t symmetric errors if d(c. g)_z t.

Manuscript received September 10, 1990; revised September 16, 1991.

J. H. Weber and D. E. Boekee are with the Department of Electrical
Engineering, Information Theory Group, Delft University of Technology, 2600
GA Delft, The Netherlands.

C. de Vroedt is with the Department of Mathematics and Informatics, Delft
University of Technology, 2600 AJ Delft, The Netherlands.

IEEE Log Number 9103100.

1189

In accordance with the three error types, we define three kinds of
spheres with radius r for each z € A":

Ssy(z,r)={y € A" | d(z,y) <r}.
Su(z.r)={y € A" |d(z.y) <rA(x>yVy >}
Sas(z,r)={y € A" |dz,y) <rAz >y}

For the sake of convenience we also define a super-sphere
S(z,7r1,72,73) = Ssy(z,71) U Sv(z.72) U Sas(z, 73)

for each ¢ € A™ and 0 < r; < rp < r3. Each sphere Sx (¢, t)
contains the vectors that can be received when codeword ¢ is
sent suffering ¢ or less errors of type X (with X =Sy(mmetric),
X =Uq(nidirectional), or X =As(ymmetric), respectively). Hence we
say that a code C' can correct up to t errors of type X if the spheres
Sx (¢, t) are disjoint for any two distinct codewords. On the other
hand, we say that a code can detect up to d errors of type X if
the sphere Sx (c.d) does not contain other codewords than ¢ for all
¢ € C. Necessary and sufficient conditions are known for a code
to be capable of correcting or detecting errors of each of the three
types. But sometimes a combination of correction and detection is
required, or even simultaneous correction and/or detection of errors of
various types. For example, some authors (see, e.g., [1], [2], [9]) have
considered codes correcting up to ¢ symmetric errors and detecting
all (¢t 4+ 1 or more) unidirectional errors, since it was observed that
in some memory systems the number of unidirectional errors can be
unlimited, whereas the number of symmetric errors is limited with
high probability. A necessary and sufficient condition for this case
was derived in [2]. To be able to deal with such cases it is interesting
to look for necessary and sufficient conditions for all combinations
of correction and detection for the three error types considered here.

We call a code t;-SyEC t3-UEC t3-AsEC d,-SyED d2-UED ds-
AsED (0 g 4 _<_ to S t3,0 < dy < dy < ds, t; < d,) if it can
correct up to t; symmetric errors, up to t2 unidirectional errors, and
up to t3 asymmetric errors, as well as detect from ¢; + 1 up to di
symmetric errors that are not of the unidirectional type, from ¢2 + 1
up to do unidirectional errors that are not of the asymmetric type,
and from 3 + 1 up to d3 asymmetric errors. In the context of the
spheres this means that

S(z.t1,t2,t3) N S(y,d1,do,ds) =@

for any two distinct codewords z and y.

In Section II we derive necessary and sufficient conditions for
a code to be t,-SyEC t,-UEC t3-AsEC d;-SyED d2-UED ds-
AsED. Hence we can obtain necessary and sufficient conditions
for correction and/or detection of any combination of symmet-
ric/unidirectional/asymmetric errors by making appropriate choices
for t; and d;. Some important cases are considered in Section IIL.
Many existing results appear as special cases of the general result.
In Section IV we pay attention to another error criterion. Finally,
concluding remarks are found in Section V.

I1. GENERAL CONDITIONS

In literature (see, e.g., [2], [3], [5], [6], [8], [10]) various necessary
and sufficient conditions were derived on block codes to have certain
error correcting and/or detecting capabilities. Since in each derivation
the same kinds of techniques were used, we have tried to obtain
general conditions covering all combinations of symmetric, unidirec-
tional, and asymmetric errors. The result is given in Theorem 1.

0018-9340/92803.00 © 1992 IEEE

1190

Theorem 1: A code C is t,-SyEC ¢,-UEC t3-AsEC d;-SyED ds-
UED d3-AsED (Wlth 0 <t <t S t3,0 S dy < do < ds.t; < d,)
if and only if all @,b € C with @ # b and N(a, b) > N(b, a) satisfy

d(a,b) > t2 +da + 1 A d(a,b)
>t3+da+1
2ti+ds+1AN(gb) >ds+1 if 1< Nba)<ts

d(a,b) >ts+di +1 if N(b,a) > ts + 1.

if N(b,a)=0

Proof: From the definition of a t,-SyEC ¢,-UEC t3-AsEC d; -
SyED d»-UED d3-AsED code it follows that we have to prove that
for all a,b € C with @ # b and N(a,b) > N(b,a):

S(a,t1,t2,t3) N S(b,dy,do,d3) = O
and S(b,t1,t2,t3) N S(a,dy,da,d3) = @
=4
d(a,b) > t2 +ds + 1 A d(a,b)
>ts+da+1
d(a,b) > ts +di + 1 Ad(a,b)
>ti+ds+1AN(e,b) >ds+1 if 1 < N(ba)<ts
d(a,b) > ta+di +1 if N(b,a) > t5 + 1.

if N(b,a) =0

Without loss of generality we may assume that g and b satisfy

a;=b; forl<i<a
a; >b; fora+l<i<a+p
a; <b; fora+pf+1<i<a+pf+v=n

with o = [{é | @; = b:}], B = |{i | @i > bi}|, and v = |{i |
a; < bz}l
“=”" Define z € A" as

z=a; forl<i<a

b; fora+l1<i<a+p

a; fora+p+1<i<a+8+pu

zi=b, fora+fB8+pu+1<i<a+f+y=n

&
It

where g will be filled in in accordance with the case under consid-
eration. We next consider three different cases.
1) The case N(b,a) = 0. Suppose d(a,b) < t2 +d3 or d(a,b) <
ts + do.

i) Ifd(a,b) < ta+ds, then z(with s = min{N(a, b), ds})
€ Su(a,t2) N Sas(b,ds).
ii) Ifd(a,b) < t3+ds, then z(with x = min{N(a,b), #3})
€ Su(a,d2) N Sas(b,t3).
2) The case 1 < N(b,a) < t3. Suppose d(a,b) < t3 + d; or
d{a,b) < t1 + ds or N(a,b) < ds.

i) If d(a,b) < t3 +d; and t3 < N(a,b), then z(with
p =tz)€ Ssy(a,d1) N Sas(b, ts).

ii) If d(a,b) < t3 + dy and t5 > N(a,b), then z(with
i = N(a,b)) € Sas(a,t3) N Sas(b, t3).

iii) If d(a,b) < ¢ +ds and ds < N(a,b), then z(with
B = dz)E SSy(Q» tl) n SAs(lla dB)

iv) If d(a,b) < t1 + ds and d3s > N(a,b), then z(with
n= N(Q: b))e SAs(Qv t3) n SAs(és d3)

v) If N(a,b) < ds , then z(with p = N(a,b))e
Sas(a,tz) N Sas(b,d3).

3) The case N(b,a) > t3 + 1. Suppose d(a,b) < t3 + d;.

) If dab) < t3 +di , then z(with u = t3)€
Ssy(a,di) N Sas(b, t3).

—

IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 9, SEPTEMBER 1992

Hence we have shown that z is in S(a,t1,t2,%3) N S(b,dy, d, d3)
or S(b,t1,t2,t3) N S(a,d;,d2,ds) for each case, which contradicts
the assumption that these two intersections of sets are both empty.

“<=” Suppose there exists a z € A" such that z € S(a, 11, t2, t3)N
S(b,d1,dz,d3) or z € S(b,t1,t2,t3) N S(a,dy,ds,ds). Again, we
shall find a contradiction for each case. This will only be shown for
z € S(a,ti,ta,t3) N S(b,d1,d2,ds), since it can be shown in a
completely analogous way for z € S(b, t1,t2,t3) N S(a, d1,d2,d3).
We again consider three cases.

1) The case N(b,a) = 0.

) If N(g,z) = 0, then d(a,d) = N(a,b) < N(z,b) <

d(z,b) < ds.
i) If N(a,z) > 1, then d(a,b) < d(a,z) + d(z,b) <
tQ + d3.
2) The case 1 < N(b,a) < t;.
) If N(a,z) > 1 and N(z,a) > 1, then d(g,b) <

d(a,z) + d(z,b) < t1 + da.

i) If N(a,z) = 0, then N(a,b) < N(z,b) < d(z,b) <
d3.

iii) If N(z,a) = 0and N(z,b) > 1 and N(b,z) > 1, then
d(a,b) < d(a,z) + d(z,b) < t2 + di.

iv) If N(z,a) = 0 and N(z,b) = 0, then N(a,b) <
N(a,z) < d(a,z) < ta.
v) If N(z,¢) = 0 and N(b,z) = 0, then N(b,a) <
N(b,z) = 0.
3) The case N(b,a) > t3 + 1.
i) If N(bz) > 1 and N(z,b) > 1, then d(a,b) <

d(a,z) + d(2,b) < ts + dr.
i) If N(z,b) =0, then N(b,a) < N(a,b) < N(g,2) <
i) If N(b,z) = O, then N(b,a) < N(z,2) < d(z,0) <
t3. D

Sometimes a code turns out to have stronger error correct-
ing/detecting capabilities than it was originally designed for, as can
be seen from the next theorem.

Theorem 2: Any t,-SyEC t,-UEC t3-ASEC d;-SyED d»-UED d;-
AsED code (with 0 < t; <ty <13,0 < dy <dp <ds,t; < d;)is
also a t7-SyEC t,-UEC t4-AsEC d}-SyED d5-UED d}-AsED code
with

t) = max{t;,t3 +di — da},
ty = max{ts,ts + da — d3}, 5 = t,
dll = ma,x{dl,min{tg + 1,8 +ds — tg}},
dy = max{da, ts 4+ ds — t3},ds = ds.
Proof: First, observe that t + d3 = t3 + d5. Next, since
0 <t <t =max{ti,ts +d\ —ds} < max{ty,th —db +d,}
<ty = max{ts,ts + d2 —d3} < ta = t5,
0<di <dy <max{di,ds +t —t3} < max{dz,d} — t5 +t:}
< dy = max{da,ds + t2 — t3} < d3 = dj,
t, = max{ti,t3 + di — d3} < di < di, th
= max{ta,ts +dz — d3} < d2 < 3, t5 = t3 < dy = dj,
we may apply Theorem 1 to obtain necessary and sufficient conditions

for a code to be t}-SyEC #5-UEC t5-AsEC d}-SyED d5-UED dj-
AsED. Finally, we show that these conditions are implied by the

IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 9, SEPTEMBER 1992

necessary and sufficient conditions for a code to be t,-SyEC t,-UEC
f:;-ASEC dl-SyED dQ-UED ds-ASED.
1) The case N(b,a) = 0.
l) Ift3+d2Ztg-{-dg,then«l(g,b)2t3+d2+1=
ty+dy+1 =1t +dy+1.

ll) Ift3 +do < to +ds , then d(a,b) > t2+ds +1 =
th+dy+1=1t;+db+1.

2) The case 1 < N(b.a) < t3.

l) Iftg+d1>t1+d3,thend(Q)2f3+d1+1——
ty+di+1 =ti+ds+1and N(a,b) > ds+1 = d5+1.
ll) Ift3+d1<t1+d3,thendgb)2t1+d5+l—
ti+ds+1 > t5+di+1and N(a,b) > ds+1 = d3+1.

3) The case N(b,a) > t3 + 1.

i) Iff3+1 S d[or t; +d3 Stg—f—dl,then EI(Q,Q) Z
ts+di+1=1t5+d +1.

ii) Ifts+1>dy and t; +ds > t3 + d1, then d(a,b) >
263 +2 > t5 +dy + 1. O

[II. SpeciaL CASES

In this section we consider some important ¢,-SyEC ¢2-UEC ¢3-
ASEC d,-SyED d2-UED d3-AsED codes (with 0 < t; < t2 <
t3,0 < dy < d2 < ds,t; < d;). Many known results on error
correcting/detecting codes will appear as special cases of the general
theorem, and also some interesting new results will show up.

If we want to restrict ourselves to correction only, we substitute
d; = t;(i = 1,2,3) into Theorem 1. Hence a code C is ¢;-SyEC
t2-UEC t3-AsEC if and only if all ¢,b € C with @ # b and
N(a,b) > N(b,a) satisfy

if N(b,a)=0

if N(b,a) > 1.

d(a,b) > ta+t5+1
d(a,b) > ti +t3 +1AN(a,b) >tz +1

If we want to restrict ourselves to detection only, we substitute
t; = 0(= 1,2,3) into Theorem 1. Hence a code C is d,-SyED
d2-UED d3-AsED if and only if all a,b € C with ¢ # b and
N(a.b) > N(b,a) satisfy

d(a.b) > ds +1
d(a,b) 2 di +1

if N(b.
if N(b,

From this (and also from Theorem 2) it follows that any d;-SyED
d2-UED d3-AsED code is also a d;-SyED d3-UED d3-AsED code.
Thus we only have to consider d,-SyED d2-UED codes.

When considering combinations of correction and detection, it is
interesting (also from a practical point of view) to look at ¢, -SyEC t5-
UEC d2-UED codes. By substituting t3 = t2,d; = ¢, and d3 = d»
into Theorem 1, we find that a code C is ¢;-SyEC t2-UEC d2-UED if
and only if all a,b € C with a # b and N(a,b) > N(b, a) satisty

d(a,b) > ta+d2+1
d(a.b) >t +d2 +1
AN(a.b) > d2+1

if N(b.a)=0

if 1 < N(ba) < ta.

By substituting t; = 0.t = ¢, and d2 = d into the previous result,
we find that a code C is t-UEC d-UED if and only if all ¢,b € C'
with @ # b and N{a.b) > N(b.a) satisfy

d(a.b) > t+d+1V(N(b.a) > 1AN(a,b) > d+1)VN(b,a) > t+1.

Note that this is a correction of a result presented earlier by Lin and
Bose in [5] (Theorem 2.1), in which they claim that a binary (a = 2)

1191

code C is t-UEC d-UED if and only if all ¢,b € C with a # b and
N(a.b) > N(b,a) satisfy

d{a,b) > t+d+1V N(ba)>t+1

This condition is indeed sufficient for a code to be t-UEC d-
UED, but not necessary. The latter can be seen from the code
C = {10000,01111} which is 2-UEC 3-UED, but does not satisfy
the condition of Lin and Bose.

Next we consider codes detecting all errors of a certain type. To
this end we first investigate ¢, -SyEC t5-UEC t3-AsEC d,-SyED d--
UED AASED (all asymmetric error detecting) codes. By substituting
d3 = n into Theorem 1, we find that a code C is ¢;-SyEC ¢2-UEC
t3-AsEC d;-SyED d»-UED AASED if and only if all a,b € C' with
a # band N(a,b) > N(b,a) satisfy

d(a,b) > ts+di +1AN(ba) > ts + 1.

From this it follows that any ¢,-SyEC ¢2-UEC ¢3-AsEC d;-SyED d»-
UED AASED code is also a t3-SyEC ¢3-UEC t3-AsEC (max{d;.t3+
1})-SyED AUED AASED code. Hence we can restrict ourselves to ¢-
SyEC d-SyED AUED codes, which are characterized by the necessary
and sufficient condition

d(a,b) > t+d+1AN(ba) >t +1

for all a,b € C with ¢ # b and N(a.b) > N(b,a). Note that any
t-SyEC AUED code is also a ¢-SyEC (t + 1)-SyED AUED code.

Finally, the results of this section are summarized in Table I,
which also contains a few other interesting resuits. In this table, all
conditions for a code C to have the denoted error correcting/detecting
capability must hold for all ¢,b € C with @ # b and N(a,b) >
N(b,a). The values of ¢; and d; denote the substitutions that must
be made to derive the relevant condition from Theorem 1.

IV. ANOTHER ERROR CRITERION

In this paper the number of errors when sending a codeword ¢ and
receiving a vector y has been defined to be the number of coordinates
in which the two vectors differ:

i e # v}l

How much these coordinates differ is not important in this definition.
If one wishes to take into account the magnitude of each symbol
error, a suitable and widely used (cf. [4]) definition for the number
of errors is

ZIG - yil.

Note that there is no difference between these two definitions in the
binary case (¢ = 2).

All the results on ¢;-SyEC t2 -UEC t3-AsEC d,-SyED d2-UED
d3-AsED codes derived in this paper while counting the number of
errors as |{ilc; # y:}| are also valid when counting the number
of errors as Y |e; — yi|, if we adapt the definitions of N(a.b) and
d(a,b) for the latter case as follows:

N(a,b) Zmax {b; — a:,0},

d(a,b) = N(a.b) + N(b,a) =

S -l

Another thing we must adapt is the vector z in the “=” part of the

1192

IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 9, SEPTEMBER 1992

TABLE 1
NECESSARY AND SUFFICIENT CONDITIONS ON ERROR CORRECTING/DETECTING CODES
EC/ED ili iti
capability 1:l t2 13 dl d2 d condition
t-SyEC t |t [t t |t | dla,b)z2t+1
t-UEC Ot |t |0t |t | dla,b)z2t+l v
(N(b,a)z1AN(a,b)zt+1)
t-AsEC 00 [t 0|0 |t | N(a,b)zt+l
_S - >
t, yEC t2 UEC tl t2 tz tl t2 t d(g,g)>2t2+1 v
(N(g,g)zu\N(g,g)ztzﬂA
d(_a_,g)ztlnzﬂ)
t‘—SyEC ta-AsEC L t1 t:s L t1 t d(_a_,g)ztl+t3+l A N(g_,p_)zt3+l
tz—UEc ta-AsEC 0 tlt, 0 t[t N(_a_,_Q)Zt2+t3+l v
(N(Q,QJZIAN(E,Q)ZtGH)
tl—SyEC t,-UEC ta-AsEC tt, st tolts N(g,g)ztznsﬂ v
(N(_b_,g)zlAN(g,g)ztaﬂA
d{a,b)zt +t_+1)
- 1 3
d-SyED d |d | d(a,b)zd+l
d-UED 0 d | d(a,b)zd+l v N(b,a)zl
d -SyED d -UED 0idid,ld | d(a,b)=d +1 v
(N(g,g)zlr\d(g,g)zdlﬂ)
t-SyEC d-SyED tft |t {d d(a,b)zt+d+1
t-SyEC d-UED t |t |t d(a,b)=zt+d+1 v N(b,a)zt+l
t-UEC d-UED 0Ot it |O d(a,b)zt+d+1 v N(b,a)zt+l v
(N(b,a)=1AN(a,b)=d+1)
t, -SyEC t,-UEC d-UED tlt, 0t d |d d(g,p_)zt2+d+1 v N(g,g)ztzﬂ v
(N(b,a)=1AN(a,b)zd+1A
d(g_,g)ztl+d+l)
t-AsEC d-AsED 010 |t [0]0 {d | N(a,b)zd+l v N(b,a)zt+l
AUED 0|0 |0 |0 (|n |n | N(b,a)zl
t-SyEC AUED t|t |t |t n |n| N(b,alzt+l
d-SyED AUED 0|0 |0 |d|n |n | N(b,a)zl A d(a,b)zd+l
t-SyEC d-SyED AUED tit it |dn |n| N(b,a)zt+l A d(a,blzt+d+l

proof of Theorem 1:

zi = a; forl1<i<a
2z = b; fora+1<i<a+p
zi = a; fora+8+1<i<a+8+pu
Z; —b,‘
at-B4u
A= X J—ar]) fori=a+B+pu+1
k=a+p+1
provided that u < v —1
zi = b; fora+ﬁ+u+2§
t<a+8+y=n
with
atA3+j
p=max{j [0<j <A Y |be—ax| <A}
k=a+A+1
and
ty in the cases 1) ii), 2) i), 3) i)
A=< ds in the cases 1) i), 2) iii),
n(a —1) in the cases 2) ii), 2) iv), 2) v).

Finally, in order to obtain the results on ¢-SyEC d-SyED AUED
codes, d» and d3 must be substituted by n(a — 1) in stead of n.

V. CONCLUSION

In this paper we have given general necessary and sufficient
conditions for codes to correct and/or detect errors of three different
types. This covers earlier results as well as new interesting results.
Some codes turn out to have stronger error correcting/detecting
capabilities than they were originally designed for. An extension has
also been given to another error criterion.

(1

(2

3]

REFERENCES

B. Bose and D. K. Pradhan, “Optimal unidirectional error detect-
ing/correcting codes,” IEEE Trans. Comput., vol. C-31, pp. 564-568,
June 1982.

B. Bose and T. R. N. Rao, “Theory of unidirectional error correct-
ing/detecting codes,” IEEE Trans. Comput., vol. C-31, pp. 521-530,
June 1982.

S. D. Constantin and T. R. N. Rao, “On the theory of binary asymmetric
error-correcting codes,” Inform. Contr., vol. 40, pp. 20-36, 1979.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 9, SEPTEMBER 1992

[4] T. Klgve, “Error correcting codes for the asymmetric channel,” Rep.
18-09-07-81, Dep. Mathematics, Univ. Bergen, July 1981.

[5] D.J. Lin and B. Bose, “Theory and design of t-error correcting and
d (d > t) unidirectional error detecting (t-EC d-UED) codes,” IEEE
Trans. Comput., vol. C-37, pp. 433-439, Apr. 1988.

[6] F.J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting
Codes. Amsterdam, The Netherlands: North-Holland, 1977.

[7] R. 1. McEliece, The Theory of Information and Coding. Reading, MA:
Addison-Wesley, 1977.

[8] D. Nikolos, “Theory and design of t-error correcting/d-error detecting
(d > t) and all unidirectional error detecting codes,” IEEE Trans.
Comput., vol. C-40, pp. 132-142, Feb. 1991.

[9] D. Nikolos, N. Gaitanis, and G. Philokyprou, “Systematic ¢-error cor-

recting/all unidirectional error detecting codes,” IEEE Trans. Comput.,

vol. C-35, pp. 394-402, May 1986.

D. K. Pradhan and S. M. Reddy, “Fault-tolerant failsafe logic networks,”

in Proc. IEEE COMPCON, San Francisco, CA, Mar. 1977, p. 363.

[10]

Detailed Modeling and Reliability Analysis
of Fault-Tolerant Processor Arrays

N. Lopez-Benitez and J. A. B. Fortes

Abstract— A method for the generation of detailed models of fault-
tolerant processor arrays, based on Stochastic Petri Nets (SPN) is pre-
sented in this paper. A compact SPN model of the array associates with
each transition a set of attributes that includes a discrete probability
distribution. Depending on the type of component and the reconfiguration
scheme, these probabilities are determined using simulation or closed-
form expressions and correspond to the survival of the array given that a
number of components required by the reconfiguration process are faulty.

Index Terms—Fault-tolerance, Markov models, processor arrays, reli-
ability, stochastic Petri nets.

I. INTRODUCTION

As is the case with many systems, Markov models can be used
to evaluate the reliability of processor arrays. However, reliability
estimations are mostly based on the failures of processing elements
only [1]. Components other than processing elements become very
important in the analysis of fault-tolerant processor arrays because
of their susceptibility to faults and the added hardware complexity
of the overall array. This fact has played an important role in the
derivation of the mathematical framework developed by Koren et al.
[2] to evaluate yield improvement and performance-related measures
of different array architectures. A detailed modeling of fault-tolerant
processor arrays, which explicitly takes into consideration the failure
statistics of each component as well as their possible interdependen-
cies, entails not only an explosive growth in the model state space
but also a difficult model construction process. This paper proposes
a systematic method to construct Markov models for evaluating the

Manuscript received September 11, 1990; revised October 21, 1991. This
work was supported in part by the Innovative Science and Technology Office
of the Strategic Defense Initiative Organization and was administered through
the Office of Naval Research under Contracts 00014-85-k-0588 and 00014-
88-k-0723.

N. Lopez-Benitez is with the Department of Electrical Engineering,
Louisiana Tech University, Ruston, LA 71272,

J. A. B. Fortes is with the School of Electrical Engineering, Purdue
University, West Lafayette, IN 47907.

IEEE Log Number 9200308.

1193

reliability of processor arrays. The method is based on the premise
that the fault behavior of a processor array can be modeled by a
Stochastic Petri Net (SPN). However, in order to obtain a more
compact and efficient representation, a set of attributes is associated
with each transition in the Petri net model. This set of attributes
allows the construction of the corresponding Markov model as the
reachability graph is being generated. Included in these attributes is
a discrete probability distribution such that the effect of faulty spares
in the reconfiguration algorithm is captured each time a configuration
change occurs. This distribution includes the probabilities of survival
given that a number of components required by the reconfiguration
process are faulty. Depending on the type of component and the
reconfiguration scheme, these distributions are determined using
simulation or closed-form expressions. The application of this method
is illustrated by the detailed analysis of the SRE reconfiguration
scheme [3]; also, analytical expressions to estimate probabilities of
survival are derived for this scheme. Other applications that include
schemes such as ARCE (Alternate Row-Column Elimination) {3} and
DR (Direct Reconfiguration) [4], are reported in [5].

Once the Petri net model and the corresponding reachability graph
have been obtained, all the information required to build the transition
matrix of the corresponding Markov chain is available. Reliability
evaluation tools such as ARIES [6] and SHARPE [7] can be used to
evaluate the models developed here.

The second section of this paper discusses some basic notation
and concepts which include array configurations and Petri nets; also,
the large state space inherent in the models generated is illustrated.
The third section discusses MSPN models as an extension of SPN’s.
Throughout these two sections the SRE reconfiguration scheme is
used as an application. In the fourth section a procedure used in
generating the reachability graph is described. Finally, results on
reliability analysis are reported in Section V.

II. PRELIMINARIES

A. Array Configurations

To analyze a fault-tolerant array architecture with k types of
components, the configuration of an array is represented as a k-tuple:

i = 0.1 - .|C]

where 7;; denotes the number of elements of component type ! and
C is the set of all possible configurations of the array. Examples of
component types include processing elements, links, switches, spare
links, and spare processing elements. The occurrence of faults and
the application of the reconfiguration algorithm define a sequence
of configurations that begins with Co as the initial configuration;
any other configuration can correspond to the failure state or an
operational state of the array. The latter will be referred to as an
operational configuration.

Upon detection of a faulty component, the reconfiguration algo-
rithm may not send the array to an operational configuration if any
of the following happens:

Ci = (i M2is =0+ ki)

1) The reconfiguration circuitry failed. This possibility can be
considered through a coverage factor (denoted by c) defined
as the probability of successful reconfiguration given that a
fault has occurred [8]. This is a measure of the probability of
successful operation of all circuitry related to fault detection,
isolation, and reconfiguration. The coverage factor is assumed
constant and it will be associated with failures of active
components only.

0018-9340/92$03.00 © 1992 IEEE

