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Abstract

This thesis contains a rigorous derivation of the path integral formulation of the Ising
model with multiple original proofs. Besides that, thesis also contains various results
of simulations of the 2D square lattice Ising Model with nearest-neighbour interactions
using the Swendsen-Wang algorithm. Using finite size scaling to find critical exponent
γ, we reported a value of γ “ 1.748 ˘ 0.004. After calculating the relaxation times τ for
various thermodynamic variables, we found the value for the dynamic critical exponent
z to be in the range of z “ 0.180 ˘ 0.004 and z “ 0.282 ˘ 0.005.
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1 Introduction

The Ising model is a model in statistical mechanics that displays a lot of features. It
is a very simple model that can explain a plethora of real world behaviours, due to its
universal nature. Historically, its main application is its accurate description of ferro-
magnetism, which was also the motivation for its invention by physicist Wilhelm Lenz,
together with his student Ernst Ising, in 1920. But since then, many more applications
have been discovered. For example, Stauffer [13] reported about the various uses of
the Ising model in social economic contexts, which include urban segregation, language
change, and economic opinions. Although it seems very strange that these topics have
anything to do with magnetism, they are unified by the Ising model.

The Ising model works in a very simple manner. Consider a certain configuration
of nodes, which each have an attribute which we call spin, which is restricted to being
either up or down. We let each of these points interact with its neighbours in a way that
each point prefers to have the same spin as its neighbour. This is because equal neigh-
bours cause the overall energy to go down and the system prefers to have low energy.
However, There is an overarching factor that disturbs this tendency, which is temperat-
ure. High temperatures trigger disorder, while low temperatures allow the nodes to do
what they prefer most, which is copying their neighbours. The behaviour that makes the
Ising model stand out most, which also happens what makes it so universal, is its second
order phase transition, which occurs at the critical temperature. It is the point where
the entropy caused by heat is exactly balanced with the nodes’ tendency to align. The
symmetry-breaking behaviour that this phase transitions brings is of great interest.

This phase transition has been studied to great detail with different analytical and
computational techniques. We will focus on computational techniques for simulations
of the Ising model. The usual method for doing Ising model simulations is to use the
Metropolis-Hastings algorithm, which flips single spins based on whether it will lower the
total energy. It is a generally fast technique, however it suffers from a slow-down around
the critical range, that becomes worse with increasing size. This is an important hurdle
to overcome, as the critical range is of great interest.

To do this, we need to look at the Ising model from another angle. We can refor-
mulate the Ising model in the language of quantum mechanics, which will allow us to
develop a powerful theoretical tool in the form of a path integral representation. This
representation gives rise to many reformulations, but we will focus of what is called
Fortuin-Kasteleyn representation or the random cluster representation. This reformula-
tion of the Ising model looks at the behaviour of clusters instead of singular spins, which
leads to a very powerful algorithm which is way better for dealing with critical behaviour.

In section 2, we will develop the theory of the Ising model and derive its path integral
representation along with the theory of random cluster models. In section 3, we will look
at different computational techniques to simulate the Ising model. Furthermore, we will
also look into how we can use this algorithm to simulate the critical behaviour of the
Ising model, using the magnetic susceptibility χ. Lastly, we will investigate how we can

1



measure the critical slowing-down of the Ising model by calculating critical exponent z.
In section 4, we will look at the results of these simulations and draw some conclusions.
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2 Theory

2.1 Ising model

This paper is oriented around a specific way of looking at the Ising model. But before we
try to understand that, we start by looking at it in the original way. Firstly, we discuss
some history about it, then we look at what it does intuitively and finally we go over the
mathematics.

2.1.1 Introduction to the Ising model

2.1.2 Classical definition

The mathematical formulation of the model is quite simple as stated before. In Definition
2.1 [6, pp. 88–89], you can find the notation of the model and the definition of the functions
that make it up. We will use this notation in the rest of the paper.

Definition 2.1. The model is formulated in terms of a couple of things. Firstly, an
undirected graph pΛ, Eq with unoriented edges e “ ti, ju P E with i, j P E . Next, each
edge has a positive coupling constant Jij ě 0 associated with it. The set of all coupling
constants is called J. The constant h P R represents a magnetic field. Each node νi P

t´1, 1u has a spin of either -1 or 1. ν is any spin configuration on Λ, or ν P ΩΛ “ t´1, 1uΛ.
The Hamiltonian of the model HΛpνq is a function on ΩΛ, where

HΛpνq “ ´
ÿ

pi,jqPE

Jijνiνj ´ h
ÿ

iPΛ

νi.

Definition 2.2. We define the configuration probability µβ,h
Λ on ΩΛ, where β ě 0 is the

inverse temperature and is assumed given, as

µβ,h
Λ “

1

ZΛpβ, hq
e´βHΛpνq

where ZΛpβ, hq is the partition function, defined as

ZΛpβ, hq “
ÿ

νPΩΛ

e´βHΛpνq. (1)

As you might have noticed, this probability distribution is what is generally called the
Boltzmann distribution, with the Hamiltonian that is specific to the Ising model. This
Hamiltonian comprises of two terms. The first determines the influence of the nodes on
each other, and since Jij is always positive, the Hamiltonian always decreases or stays the
same if two nodes have the same spin. This is what induces the ferromagnetic behaviour.
Should Jij be negative (a case that we excluded in our definition), the Hamiltonian would
encourage anti-ferromagnetic behaviour. The second term of the Hamiltonian influences
each node to favour one specific direction: if h ą 0, then νi “ 1 is preferred, and if
h ă 0, then νi “ ´1 is preferred. The role of h plays the role an external magnetic field
would play for the paramagnetic materials. h “ 0 would mean that there is no external
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magnetic field present. It should now be clear why this is good choice of Hamiltonian.

Lastly, we define µβ,h
Λ p‚q to be the expected value of ‚ under µβ,h

Λ . In particular,

µβ,h
Λ pxq “

1

ZΛpβ, hq

ÿ

νPΩΛ

xe´βHΛpνq. (2)

2.1.3 Quantum definition

We now want to redefine this model. This means that physically it will describe the same
things, but its new mathematical context will allow us to derive what we want in a more
straight forward way. In particular, we redefine our model as a quantum system. A good
place to start with this, is to create a space where each observable state corresponds to
an eigenfunction of the system, as should be in a quantum system. This could be done
in many ways, but one of the simplest is to transform each classical ν to an orthonormal
basis where each and every classical state corresponds to one eigenfunction of a vector
space. Seeing as we had 2|Λ| possible states before, we now need a 2|Λ|-dimensional vector
space.

We start by introducing the spin values ˘1 as the eigenvalues of the Pauli matrix

σ̂z
“

ˆ

1 0
0 ´1

˙

, (3)

with corresponding eigenfunctions

ψ`1 “

ˆ

1
0

˙

and ψ´1 “

ˆ

0
1

˙

. (4)

We now define the space we want to work on:

XΛ “
â

iPΛ

R2,

which is indeed a 2|Λ|-dimensional vector space. We now ‘lift’ the classical configurations
ν P ΩΛ to this space with the eigenfunctions from (4) as

Ψν “
â

iPΛ

ψνi . (5)

The collection of Ψν now forms an orthonormal basis of XΛ, with respect to the scalar
product we define as

xψν |ψν1y “
ź

iPΛ

xψνi |ψν1
i
y2, (6)

with x‚|‚y2 the standard inner product on R2 and ν, ν 1 P ΩΛ. Next, we define a set of
linear self-adjoint operators σ̂z

i for each i that acts on any ψν just like the Pauli matrix σ̂z

would act on the i-th component of that ψν , that is, it gives us the spin of that component.
In mathematical terms:

σ̂z
iΨν “ ψν1 b ... b σ̂zψνi b ... “ νiΨν . (7)

4



Furthermore, multiple of these operators can be applied without affecting each other.
This can be seen by considering

σ̂z
i σ̂

z
jΨν “ σ̂z

i νjΨν “ νjσ̂
z
iΨν “ νjνiΨν “ νiνjΨν , (8)

which holds for any pair σ̂z
i , σ̂

z
j . It is also clear for this that the operators all commute,

seeing as the application of one of them only acts upon a certain component, producing
an eigenvalue that can then be extracted by linearity. They influence do not influence
each other and can be applied on any number of components in any order.

We now have the ingredients necessary to rewrite the Ising Hamiltonian in the ‘quantum
way’, which we will denote with HΛ. It is defined as

HΛ “ ´
ÿ

pi,jqPE

Jijσ̂
z
i σ̂

z
j ´ h

ÿ

iPE
σ̂z
i . (9)

Using (7) and (8) it is easy to see that

HΛΨν “ HΛpνqΨν ,

which holds for all configurations ν. This means that HΛ is diagonal with each element of
the diagonal being equal to value of the Ising Hamiltonian for the corresponding classical
configuration. We can now rewrite the final quantities we defined in the previous chapter,
starting with the partition function ZΛpβ, hq, defined in (1). We now write it as

ZΛpβ, hq “
ÿ

νPΩΛ

e´βHΛpνq
“

ÿ

νPΩΛ

xΨν |e´βHΛ |Ψνy “ Trpe´βHΛq, (10)

where the middle equality holds because HΛ is diagonal in the chosen basis. Lastly we
can rewrite equation 2 in terms of traces, so that

µβ,h
Λ pAq “

TrpAe´βHΛq

Trpe´βHΛq
, (11)

where A is any self-adjoint matrix.

2.2 Poisson limits

This section is dedicated towards developing a way to write the Ising Hamiltonian in a
path integral representation by using Poisson limits. We will do this first with a general
setup and later apply it to the Ising Hamiltonian. Our general context is as follows:

• X is an m-dimensional vector space over R with the scalar product defined in (6)
and an orthonormal basis tΨiu.

• K1,...,Km are bounded self-adjoint operators on X.

• λ1,...,λm are positive numbers.

5



Next, we want to show that we can linearize the Hamiltonian eβ
řm

l“1 λiKi in the general
case, given β ą 0. In particular, we want

eβ
řm

l“1 λlKl “ eβ
ř

λl lim
∆Ñ0

˜

m
ź

l“1

tp1 ´ ∆λlqI ` ∆λlKlu

¸β{∆

, (12)

where I is the identity matrix. For this, we need multiple ingredients. We start by proving
the Lie-Trotter formula, similar as in [11] where it is proven for n “ 2.

Theorem 2.3 (Lie-Trotter product formula). Let A1, A2, ..., Ak be bounded, self-adjoint
matrices with k P N. Then

e
řk

i“1 Ai “ lim
nÑ8

˜

k
ź

i“1

eAi{n

¸n

. (13)

The proof for Theorem 2.3 is provided in Appendix A. To show that the linearization
in (12) holds, we need to prove one final theorem.

Theorem 2.4. Let A1, ..., An be bounded self-adjoint operators. Then

e
řn

i“1 Ai “ lim
∆Ñ0

˜

n
ź

i“1

pI ` ∆Aiq

¸1{∆

Proof. We start by applying the Lie-Trotter formula from Theorem 2.3 as follows:

e
řn

i“1 Ai “ lim
∆Ñ0

˜

n
ź

i“1

e∆Ai

¸1{∆

.

Note that we assume w.l.o.g. that 1{∆ is always an integer as ∆ Ñ 0. We now apply the
matrix exponential definition to get

lim
∆Ñ0

˜

n
ź

i“1

e∆Ai

¸1{∆

“ lim
∆Ñ0

˜

n
ź

i“1

rI ` ∆Ai ` Bis

¸1{∆

,

where Bi is a rest term that represents all the other terms in the sum, and it satisfies
}Bi} “ Op∆2q. Now, let Ti “ I ` ∆Ai so that

lim
∆Ñ0

˜

n
ź

i“1

rI ` ∆Ai ` Bis

¸1{∆

“ lim
∆Ñ0

˜

n
ź

i“1

rTi ` Bis

¸1{∆

If we now work out the product inside the brackets, it is easy to see that one term will
depend on only Ti’s and all other terms will have at least one factor with some Bi’s in
it. These Bi’s have a norm of order Op∆2q, so all these terms will be of order Op∆2q or
higher. Since the sum of a finite number of terms of order Op∆2q is still of order Op∆2q,
we can rewrite the entire product as

lim
∆Ñ0

˜

n
ź

i“1

rTis ` BpA1, ..., Anq

¸1{∆

,
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where BpA1, ..., Anq “ B is a matrix that is a function of the Ai’s and has norm of order
Op∆2q. We now almost have what we want, we only need to control the B term. In order
to do this, we consider

lim
∆Ñ0

›

›

›

›

›

›

˜

n
ź

i“1

rTis ` B

¸1{∆

´

˜

n
ź

i“1

Ti

¸1{∆
›

›

›

›

›

›

.

If we can show that norm of the difference of these two terms goes to zero, the theorem is
proven. To show that this norm goes to zero, we first take

śn
i“1 rTis “ Q. Furthermore,

remember that 1{∆ is always an integer. We now substitute k “ 1{∆ to avoid confusion
in the powers so that we now have the following limit:

lim
kÑ8

›

›

›
pQ ` Bq

k
´ Qk

›

›

›
.

Remember that Q and B do not necessarily commute, so we cannot apply the binomial
formula to pQ ` Bq

k. Instead we write out the terms one by one as

pQ ` Bq
k

“ Qk
` Qk´1B ` Qk´2BQ ` ...

We go on to take every permutation of k Q’s and B’s. Now in the norm, the first and
the last term cancel, so we only have the following terms left:

lim
kÑ8

›

›Qk´1B ` Qk´2BQ ` ...
›

› .

Now we can apply the sub-multiplicativity of the matrix norm and the triangle in-
equality to distribute the norm over every term and product in the term, where we also
use that }B} “ Op1{k2q, as well as the fact that the ‘...’ contains all permutations of Q’s
and B’s to get that:

lim
kÑ8

›

›Qk´1B ` ...
›

› ď lim
kÑ8

ˆ

k

1

˙

}Q}
k´1Op1{k2q `

ˆ

k

2

˙

}Q}
k´2Op1{k2¨2

q} ` ...

“ lim
kÑ8

k
ÿ

i“1

ˆ

k

i

˙

}Q}
k´iOp1{k2iq

ď lim
kÑ8

k
ÿ

i“1

ki}Q}
k´iOp1{k2iq

“ lim
kÑ8

k
ÿ

i“1

}Q}
k´iOp1{kiq

“ lim
kÑ8

}Q}
k´1Op1{kq

To see that this limit converges to 0, we bound }Q}k´1. Remember that Q “
śn

i“1pI`

∆Aiq. Writing out this product gives us:

n
ź

i“1

I ` ∆Ai “ I ` ∆A1 ` ∆A2 ` ... ` ∆2A1A2 ` ∆2A1A3 ` ... “ I ` ∆S ` R
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where R is the sum of all terms of second order in ∆ or higher, so that }R} “ Op1{k2q.
Recall that ∆ “ 1{k, so that Q “ I ` S{k ` Op1{k2q. Now,

lim
kÑ8

}I ` S{k ` R}
k´1

“ lim
kÑ8

}I ` S{k ` R}k

}I ` S{k ` R}
ď lim

kÑ8

p1 ` }S}{k ` Op1{k2qqk

1
“ e}S},

so that }Q}k´1 is bounded and limkÑ8 }Q}k´1Op1{kq “ 0. This proves the theorem.

We now apply Theorem 2.4 with Ai “ λipKi ´ Iq to get that

eβ
řm

l“1 λlpKl´Iq
“ lim

∆Ñ0

˜

m
ź

l“1

rI ` ∆λlpKl ´ Iqs

¸
β
∆

“ lim
∆Ñ0

˜

m
ź

l“1

rp1 ´ ∆λlqI ` ∆λlKiqs

¸
β
∆

,

which proves (12).
Next, w.l.o.g, we can assume that β

∆
P N, as this was a requirement in the proof.

Now, for each l “ 1, 2, ...,m, we consider a sequence
¯
ξi of independent Bernoulli random

variables ξi

¯
ξl “ tξlp1q, ξlp2q, ..., ξlpβ{∆qu,

where each ξlpjq has a probability of success p “ ∆λl. We assume these
¯
ξl to be inde-

pendent and let P¯
λ
β,∆ be the corresponding probability measure on

t0, 1u
β
∆ ˆ ... ˆ t0, 1u

β
∆

looooooooooooomooooooooooooon

m-times

,

where
¯
λ is the vector containing all λl. We can now the right side of (12) in terms of this

probability measure. The reason why we introduced the Bernoulli random variables in
the first place was because you can view the inside of the product in the linearization as
a ‘process of selecting either I with probability p1 ´ ∆λlq or Kl with a probability ∆λl’.
This is not really what happens, all we do is expand the product, by which you get all
permutations of the two terms, and their prefactors are exactly the probabilities of doing
the process of selection of either I or Kl, which is of course no coincidence. If we put this
underlying idea into mathematics, we get the following:

˜

m
ź

l“1

rp1 ´ ∆λlqI ` ∆λlKlqs

¸

β
∆

“
ÿ

¯
a1,...,

¯
am

P¯
λ
β,∆

˜

m
č

l“1

␣

¯
ξl “

¯
al
(

¸

K
¯
a. (14)

Here,
¯
a1, ...,

¯
am represent realisations of the

¯
ξ1, ...,

¯
ξm and

¯
a the vector containing all

those realization, just like
¯
ξ. So on the RHS, the sum cycles through all possible

¯
a1, ...,

¯
am

separately, thereby cycling through all possible realizations of the earlier described pro-
cess. K

¯
a is the product of the ‘selected’ Kl’s. In mathematical terms:

K
¯
a

∆
“ K

¯
a1,...,

¯
am “

β{∆
ź

j“1

#

m
ź

l“1

rp1 ´ alpjqqI ` alpjqKls

+

(15)
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We now want to interpret this series of Bernoulli random variables as a Bernoulli
point process and eventually we will take the limit of ∆ Ñ 0 and we will show that we
have convergence towards a Poisson point process. The idea behind this is that we will
associate arrivals of these point processes with the operators Kl. We start by defining the
Bernoulli point processes on the interval p0, βs. This we do by defining ξ∆l pAq as follows:

ξ∆l pAq “

β{∆
ÿ

j“1

ξlpjqδj∆pAq, δj∆ “

"

1 if j∆ P A
0 otherwise

(16)

where A is any measurable set in X. It should be clear that ξ∆l is only non-zero wherever
ξlpjq “ 1, so we often use the notation ξ∆l “ tj∆ : ξlpjq “ 1u. With these point processes,
we give a spatial context to the successes of the underlying Bernoulli random variables.

We now want to define a function l∆ that takes arrival times t P ξ∆
∆
“ Yξ∆i and gives

the arrival ‘type’, which is the index l of the node at which the arrival was, so that when
t P ξ∆l , we have l∆ptq “ l. This function will be crucial later. However, this function is
ill-defined, because two point processes could have an arrival at the same time. To fix
this, we need to assume that all ξ∆l are disjoint, which is reasonable considering that this
is an event that happens almost surely anyways as ∆ Ñ 0. This fact will be needed later,
so we prove it in the lemma below.

Lemma 2.5. Let ξ∆1 , ..., ξ
∆
m be a sequence of Bernoulli processes on p0, βs with spacing ∆

and probability of arrival p “ λl∆. Then

lim
∆Ñ0

P
`

@p, q P t1, ...,mu : ξ∆p X ξ∆q “ Ø
˘

“ 1

We prove Lemma 2.5 in the appendix B. We will call ξ̂∆
∆
“ Yξ̂l

∆ the restricted
measures, where all arrival times t must be disjoint, or:

t P ξ̂∆
∆
“ Yξ̂∆l “

#

j∆ :
m
ÿ

l“1

ξ̂∆l ppj∆ ´ ∆{2, j∆ ` ∆{2qq “ 1

+

The arrival type function l∆ptq is now properly defined. We can now rewrite K
¯
a from

(15) in terms of this function:

K
¯
a “

β{∆
ź

j“1

!

δ
tj∆Rξ̂∆u

I ` δ
tj∆Pξ̂∆u

Kl∆pj∆q

)

∆
“

β{∆
ź

j“1

K̃∆
j (17)

This now eliminates the second product of (15) and we are now only multiplying over
timesteps ∆. Because of this, we will be able to rewrite the expression as a path integral,
by breaking up the product of these operators. To do this, we apply the operators to a
inner product with Ψ and Ψ1, which are elements of the basis tΨiu. We can do this by
applying a formula, called the Product Expansion Formula.
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Theorem 2.6 (Product Expansion Formula). Let A1, A2, ..., An be self-adjoint matrices
and Ψ,Ψ1 two vectors in X. Then,

xΨ|A1...An|Ψ1
y “

ÿ

Ψi1
,...Ψin´1

xΨ|A1|Ψi1yxΨi1 |A2|Ψi2y...xΨin´1 |An|Ψ1
y, (18)

where the Ψil run through all elements of the basis tΨiu for all l “ 1, ..., n ´ 1.

The proof of Theorem 2.6 is provided in Appendix C. Then by the product expansion
formula, we have

xΨ|Ka|Ψ1
y “

ÿ

Ψi1
,...Ψiβ{∆´1

xΨ|K̃∆
1 |Ψi1y

β{∆´1
ź

j“2

xΨij´1
|K̃∆

j |ΨijyxΨiβ{∆´1
|K̃∆

β{∆|Ψ1
y (19)

where we also know that
A

Ψl

ˇ

ˇ

ˇ
K̃∆

j

ˇ

ˇ

ˇ
Ψk

E

“

"

δtΨl“Ψku if j∆ R ξ̂i∆

xΨl|Kl∆pj∆q|Ψky if j∆ P ξ̂∆
(20)

This holds because if j∆ R ξ̂∆, then K̃∆
j is simply the identity matrix by (17) and then

we are left with an inner product of two elements of an orthonormal basis, which is 1 if
they are the same and 0 if they are different. If j∆ P ξ̂∆, then K̃∆

j is simply Kl∆pj∆q, so
it is clear that (20) holds.

We can now finally put this into continuous time context as follows: to a given
sequence Ψ,Ψi1 , . . . ,Ψiβ{∆´1

,Ψ1 we associate a piecewise constant function Ψ∆ : r0, βs Ñ

tΨju, such that Ψ∆ “ Ψ on r0,∆q, Ψ∆pβq “ Ψ1 and

Ψ∆
“ Ψij on rj∆, pj ` 1q∆q for j “ 1, . . . , β{∆ ´ 1

We say that Ψ∆ is compatible with ξ̂∆ or Ψ∆ „ ξ̂∆ if all the discontinuities occur at the
arrival times of ξ̂∆. Then only the compatible functions contribute to the sum of (20).
Moreover, in terms of Ψ∆, the product expansion reads as follows:

@

Ψ
ˇ

ˇKa1,...,am

ˇ

ˇΨ1
D

“
ÿ

Ψ∆„ξ̂∆

ź

tPξ̂∆

@

Ψ∆
pt´q

ˇ

ˇKl∆ptq

ˇ

ˇΨ∆
ptq

D

(21)

The last important step is letting ∆ Ñ 0 and proving that the disjoint Bernoulli
processes converge to independent Poisson point processes, so that

´

ξ̂∆1 , . . . , ξ̂
∆
m, l

∆
¯

,Ñ pξ1, . . . , ξm, lq

where the ξl’s are all independent Poisson point processes with intensities λl. We define
lptq to still map arrival times t of the Poisson point processes ξl to l, which is now a well-
behaved map. We present a proof of these claims in Theorem 2.8. However, before we
go over that proof, we present an important theorem which gives us sufficient conditions
for convergence in distribution of point processes. This is found in Leadbetter, Lindgren
and Rootzen [7, Theorem A.1] and it is stated as follows:
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Theorem 2.7 (Convergence of point processes). Let Nn, n “ 1, 2, . . ., and N be point
processes on the semi-closed interval S in the real line, N being simple. Suppose that

(i) E pNnppc, dsqq Ñ EpNppc, dsqq for all ´8 ă c ă d ă 8 such that rc, ds Ă S, and

(ii) P tNnpBq “ 0u Ñ PtNpBq “ 0u for all B of the form
Ťk

1 pci, dis, with rci, dis Ă S,
for i “ 1, . . . , k; k “ 1, 2, . . . .

Then Nn
d

Ñ N.

We will omit the proof of this theorem in this thesis. Instead, we will use these known

criteria to prove that ξ̂∆
d

Ñ ξ. We do this in the following theorem.

Theorem 2.8. Let ξ∆1 , . . . , ξ
∆
m be Bernoulli point processes with spacing ∆ on the interval

p0, βs and with success probability ∆λl, l P t1, ...,mu. Next, define ξ̂∆1 , . . . , ξ̂
∆
m to be

the same as ξ∆1 , . . . , ξ
∆
m, but conditioned to be disjoint everywhere. Then the following

statements are true:

(i) pξ̂∆1 , . . . , ξ̂
∆
mq

d
Ñ pξ1, . . . , ξmq as ∆ Ñ 0, where ξ1, . . . , ξm are independent Poisson

point processes on p0, βs with rate parameters λ1, . . . , λm.

(ii) The arrival times of the point processes ξ1, . . . , ξm are disjoint P-a.s.

(iii) Let ξ “
Ťm

l“1 ξl. Then Pplptq “ l|t P ξq “
λl

λ1`...`λm

We will only prove (i) here, the rest of the proof can be found in Appendix D.

Proof. (i) We will prove this using Theorem 2.7. First of all, we check if we meet the right
conditions to use the theorem. Recall that we let ∆ converge to zero such that 1{∆ is an
integer. Next, we know that ξ̂l are in fact simple point processes, as they have weights
1 everywhere. Furthermore, we are working on the semi-closed interval p0, βs. Before
proving the conditions of Theorem 2.7, we first prove a very important intermediate step.
Let any c, d P p0, βs with c ă d. We will start by showing that

lim
∆Ñ0

E
`

ξ∆l ppc, dsq
˘

“ lim
∆Ñ0

E
´

ξ̂∆l ppc, dsq

¯

. (22)

We now let D∆ be the event that all ξ∆l are disjoint, then we can write the statement
above as

lim
∆Ñ0

E
`

ξ∆l ppc, dsq
˘

“ lim
∆Ñ0

E
`

ξ∆l ppc, dsq|D∆

˘

.

Next, we know from the law of total expectation that

E
`

ξ∆l ppc, dsq
˘

“ E
`

ξ∆l ppc, dsq|D∆

˘

P pD∆q ` E
`

ξ∆l ppc, dsq|Dc
∆

˘

P pDc
∆q

where Dc
∆ represents the complement of D∆, meaning that Xξ∆l ‰ Ø. We now aim at

controlling every factor in both of the terms. The easiest are the probabilities, as we have
already proven in Lemma 2.5 that lim∆Ñ0 P pD∆q “ 1 so if we now prove that the second
term converges to 0, we prove (22). To get started on that, notice that we can write

E
`

ξ∆l ppc, dsq|Dc
∆

˘

P pDc
∆q “ E

`

ξ∆l ppc, dsq1Dc
∆

˘

.

11



Next, we split up the event into 2 cases: either the specific ξ∆l we are considering has an
arrival time that is joined with some other set, or the other sets have the joined arrival
times. Notation-wise, we will achieve this by calling Dc

∆p,q the event that 2 processes p
and q share an arrival time. We can now write that

E
`

ξ∆l ppc, dsq1Dc
∆

˘

ď

m
ÿ

p“1,q“1
p‰q‰l

E
´

ξ∆l ppc, dsq1Dc
∆p,q

¯

`

m
ÿ

q“1
q‰l

E
´

ξ∆l ppc, dsq1Dc
∆l,q

¯

. (23)

The reason why we have an inequality is because on the RHS we count the cases
where there are two or more pairs of joined arrival times multiple times. We will find an
upper bound to these sums one by one. We start with the first sum, which is the case
where the we do not have a joined arrival on ξ∆l .

m
ÿ

p“1,q“1
p‰q‰l

E
´

ξ∆l ppc, dsq1Dc
∆p,q

¯

“

m
ÿ

p“1,q“1
p‰q‰l

E
´

ξ∆l ppc, dsq|Dc
∆p,q

¯

P
´

Dc
∆p,q

¯

Because the event Dc
∆p,q is independent from whatever happens at node l, the condi-

tioning does not change the expectation, so we get:

m
ÿ

p“1,q“1
p‰q‰l

E
´

ξ∆l ppc, dsq|Dc
∆p,q

¯

P
´

Dc
∆p,q

¯

“ E
`

ξ∆l ppc, dsq
˘

m
ÿ

p“1,q“1
p‰q‰l

P
´

Dc
∆p,q

¯

The expectation is easy to calculate, it is simply the number of points j∆, j P 1, ..., β{∆
that are in the interval pc, ds. That number can at maximum be

P

d´c
∆

T

, which we will call
N∆, where we remember that it is of order Op1{∆q. Next, the probability of Dc

∆p,q can
easily bounded from above by letting λ “ maxpλ1, ..., λmq. Then the probability of this
event, is simply the chance for 2 arrivals to coincide in time, i.e. p∆λq2, multiplied by
the number of independent times where it can happen, i.e. β{∆. The sum is simply a
sum on the permutations of p and q over m ´ 1 types, so we get:

E
`

ξ∆l ppc, dsq
˘

m
ÿ

p“1,q“1
p‰q‰l

P
´

Dc
∆p,q

¯

ď N∆∆λl

ˆ

m ´ 1

2

˙

∆2λ2
β

∆
“ Op∆q,

which means that this part of the sum converges to zero. The next sum we look at is the
other case, being the one where l does have a joined arrival on it. First, we split up the
indicator function as follows:

1Dc
∆l,q

ď

β{∆
ÿ

j“1

1tξlpj∆˘∆q“1u1tξqpj∆˘∆q“1u,

where j∆ ˘ ∆ “ pj∆ ´ ∆{2, j∆ ` ∆{2s. Again we have an inequality because we are
double counting the cases where we have 2 or more joined arrivals on j and q. This means
that the second sum in (23) is now bounded as follows

m
ÿ

q“1
q‰l

E
´

ξ∆l ppc, dsq1Dc
∆l,q

¯

ď

β{∆
ÿ

j“1

m
ÿ

q“1
q‰l

E
`

ξ∆l ppc, dsq1tξlpj∆˘∆q“1u1tξqpj∆˘∆q“1u

˘

.
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Notice now that the event tξqpj∆ ˘ ∆q “ 1u is independent from the rest, so we can
again separate its probability out:

β{∆
ÿ

j“1

m
ÿ

q“1
q‰l

E
`

ξ∆l ppc, dsq1tξlpj∆˘∆q“1u1tξqpj∆˘∆q“1u

˘

“

β{∆
ÿ

j“1

m
ÿ

q“1
q‰l

E
`

ξ∆l ppc, dsq1tξlpj∆˘∆q“1u

˘

P ptξqpj∆ ˘ ∆q “ 1uq

By calculating out the probabilities, this last sum can be simplified to the following
expression:

pm ´ 1q∆λ

β{∆
ÿ

j“1

E
`

ξ∆l ppc, dsq1tξlpj∆˘∆q“1u

˘

where λ “ maxpλ1, ..., λmq.
Lastly, we can pull the sum over j back inside the expectation to get

pm ´ 1q∆λE

˜

ξ∆l ppc, dsq

β{∆
ÿ

j“1

1tξlpj∆˘∆q“1u

¸

Notice how the sum of these indicators is nothing more than counting the number of
arrivals on p0, βs, which is exactly what ξ∆l pp0, βsq is.

pm ´ 1q∆λE

˜

ξ∆l ppc, dsq

β{∆
ÿ

j“1

1tξlpj∆˘∆q“1u

¸

ď pm ´ 1q∆λE
`

ξ∆l pp0, βsq
2
˘

The expression in the expectation is now nothing more than the second moment of a
binomial binpn, pq, which is a well known calculation that is equal to npn ´ 1qp2 ` np.
We can apply this formula to get that

pm ´ 1q∆λE
`

ξ∆l pp0, βsq
2
˘

“ pm ´ 1q∆λ

ˆ

β

∆

ˆ

β

∆
´ 1

˙

p∆λ2l q `
β

∆
λl

˙

“ pm ´ 1q∆λ
`

β2λ2l ´ βλ2l∆ ` βλl
˘

“ Op∆q.

This means that both the sums of (23) are of order ∆, which then implies that as
∆ Ñ 0, the limit of (22) also holds. We can apply condition (i) of Theorem 2.7 to the
independent Bernoulli processes ξ∆l instead of ξ̂∆l . Proving (i) is now quite trivial. We
want to show that

lim
∆Ñ0

E
`

ξ∆l ppc, dsq
˘

“ E pξlppc, dsqq .

We can calculate the left hand side with a squeeze theorem argument:

lim
∆Ñ0

tpd ´ cq{∆uq∆λl ď lim
∆Ñ0

E
`

ξ∆l ppc, dsq
˘

ď lim
∆Ñ0

rpd ´ cq{∆sq∆λl.

13



Now we have that tpd ´ cq{∆uq “ pd ´ cq{∆ ´ fracppd ´ cq{∆q, where frac(¨) is a
function that gives the fractional part of the number in the argument, and we also have
that rpd ´ cq{∆sq “ pd ´ cq{∆ ` 1 ´ fracppd ´ cq{∆q. We then have that

lim
∆Ñ0

ˆ

d ´ c

∆
´ frac

ˆ

d ´ c

∆

˙˙

∆λl ď lim
∆Ñ0

E
`

ξ∆l ppc, dsq
˘

ď lim
∆Ñ0

ˆ

d ´ c

∆
` 1 ´ frac

ˆ

d ´ c

∆

˙˙

∆λl,

which by the squeeze theorem implies that

lim
∆Ñ0

E
`

ξ∆l ppc, dsq
˘

“ pd ´ cqλl “ Epξlppc, dsqq.

Now all that remains is to prove condition (ii) of Theorem 2.7. Let B be a set
such as in that condition and let LebpBq be the Lebesgue measure of that set so that
LebpBq “

řk
i“1pdi ´ ciq. Then we can write that

lim
∆Ñ0

P
´

ξ̂∆l pBq “ 0
¯

“ lim
∆Ñ0

P
`

ξ∆l pBq “ 0|D∆

˘

.

Here, conditioning on the event D∆ means that all the processes, except l, must be
disjoint, because we are calculating the probability on an event where we do not have any
arrivals at l anyways. Let us call this event D∆,l. Furthermore, that event is independent
from process l anyways, so we can multiply their probabilities. Therefore we can say that

lim
∆Ñ0

P
`

ξ∆l pBq “ 0|D∆

˘

“ lim
∆Ñ0

P
`

ξ∆l pBq “ 0 X D∆

˘

PpD∆q

“ lim
∆Ñ0

P
`

ξ∆l pBq “ 0
˘

P pD∆,lq

PpD∆q

The probabilities PpD∆q and P pD∆,lq can be found using Lemma 2.5. Since D∆ is
simply the event that all processes ξ∆1, ..., ξ∆m are disjoint, its probability is simply 1.
Next, since D∆,l is simply the same, but with one less process, the lemma still holds, so it
has probability 1 as well. For the probability P

`

ξ∆l pBq “ 0
˘

, it comes down to a counting
problem again. We can use the same squeeze theorem argument as before to say that
the number of points j∆ in an interval pa, bs, converges to pb´ aq{∆. Remember that B

is a union
k
Ť

i“1

pci, dis, but these intervals could be overlapping. However, without loss of

generality, we can say that we can rewrite this as a union of disjoint intervals
k
Ť

i“1

pai, bis

such that Leb

ˆ

k
Ť

i“1

pai, bis

˙

“
řk

1 Leb ppai, bisq “ LebpBq. Now the counting problem

gives us that the total number of points j∆ in B as ∆ Ñ 0 is
řk

1
bi´ai
∆

“
Lebpbi´aiq

∆
Now,

we can finally say that

lim
∆Ñ0

P
`

ξ∆l pBq “ 0
˘

“ lim
∆Ñ0

p1 ´ ∆λiq
LebpBq{∆

“ e´LebpBqλi “ PpξlpBq “ 0q

Part (ii) and (iii) are proven in Appendix D.
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By Theorem 2.8 (i), we now have that point processes ξ̂l
d

Ñ ξl and ξl are Poisson point
processes. We call Pλ

β the distribution of these Poisson processes ξ1, ..., ξm. We can now

let ∆ Ñ 0 in (14), as well as in (21), where ξ̂∆ Ñ ξ and l∆ Ñ l. We know that l now
behaves properly by Theorem 2.8 (ii) and (iii). If we now take two basis elements Ψ1

and Ψ2, the inner product of those vectors applied to (14) becomes

@

Ψ1
ˇ

ˇeβ
ř

λiKi
ˇ

ˇΨ2
D

exp tβ
ř

i λiu
“

ż

Pλ
β pdξq

ÿ

Ψ„ξ

ź

tPξ

@

Ψpt´q
ˇ

ˇKlptq

ˇ

ˇΨptq
D

, (24)

where the sum and product run over all functions Ψ that are compatible to the given
realization of ξ. Here, the Ψ’s are essentially just like what Ψ∆ was in relation to ξ̂∆.
They are still piecewise constant with jumps only on successes in ξ and their boundaries
are Ψp0q “ Ψ1,Ψpβq “ Ψ2. However, the jump times are now on an interval instead of
on discrete points. There are only a finite number of these compatible functions, because
X is finite dimensional and the Poisson processes are on a finite time interval. We have
now successfully turned the expectation of an ‘Ising Hamiltonian-like exponential’ into
a path integral over the interval r0, βs. With this path integral formulation on the time
axis p0, βs, we can also express some other quantities. The trace, which is equal to the
partition function, can be expressed as follows

Tr
`

eβ
ř

λiKi
˘

exp tβ
ř

i λiu
“

ż

Pλ
βpdξq

ÿ

Ψ„ξ

xΨp0q | Ψpβqy
ź

tPξ

@

Ψpt´q
ˇ

ˇKlptq

ˇ

ˇΨptq
D

, (25)

where we added the factor xΨp0q | Ψpβqy to make sure that we only pick diagonal elements.
We can also add any adjoint matrix A in front of the exponent, and by the definition of
adjoint operators, we can pull it inside the integral and into the inner product. We then
get the following expression for the expectation of A

Tr
`

Aeβ
ř

λiKi
˘

exp tβ
ř

i λiu
“

ż

Pλ
βpdξq

ÿ

Ψ„ξ

xΨp0q|A|Ψpβqy
ź

tPξ

@

Ψpt´q
ˇ

ˇKlptq

ˇ

ˇΨptq
D

. (26)

This is the path integral we wanted to achieve, as well as reformulation of the relevant
quantities. We derived it in an even more general formulation than we had earlier with
the Ising model related operators σ̂z

ij and σ̂z
i . In the next section we will apply this

to the Ising model and decompose the Hamiltonian in order to derive what we call the
FK-representation of the Ising model.

2.2.1 FK-representation

The Ising Hamiltonian like it is written in (9) is the most simplified form to write it, but we
can also refactor it in different ways that are useful to us. To get the FK-representation,
named after the mathematicians Fortuin and Kasteleyn who originally derived it, we need
to refactor it in the following way:

´ HΛ “ ´

¨

˝

ÿ

pi,jq

Jij `
ÿ

i

h

˛

‚I `
ÿ

pi,jq

2Jij
I ` σ̂z

i σ̂
z
j

2
`
ÿ

i

2h
I ` σ̂z

i

2
. (27)
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It is not hard to see that they are in fact the same Hamiltonian. However, this way
of factoring now allows us to interpret the model in a totally different way. More spe-
cifically, we apply the path integral representation to this Hamiltonian with the Poisson

processes ξij representing the arrival of operators Kij
∆
“

I`σ̂z
i σ̂

z
j

2
with intensities Jij and ξi

representing the arrival of operators
I`σ̂z

i

2
with intensities 2h. We call the entire Poisson

process ξ “ tξij, ξiu.
Arrivals of these operators have a certain influence of the model, which we will now in-

vestigate. Suppose ν and ν 1 are two classical configurations, with corresponding elements
Ψν and Ψν1 from X. Then we get the following when either operator arrives:

xΨν |Kij|Ψν1y “ δtν“ν1uδtνi“νju and xΨν |Ki|Ψν1y “ δtν“ν1uδtνi“1u. (28)

The operators that arrive act as a sort of filter that narrows down the allowed spin
configurations, such that only specific configurations are let through. This effect is math-
ematically enacted by the delta-functions. For the Kij type operator, they insure that ν
and ν 1 are identical and that νi and νj are the same spin. Why this happens is simply
the way Kij is defined. It can be an identity matrix when it node i and j have the same
spin, or a null matrix when they are opposite. Suppose they are the same, then all that’s
left is an inner product between Ψν and Ψν1 , which gives us the other delta function. The
arrival of operators Ki is the same story but by the way it’s designed, it forces a specific
node to be 1.

We now need to define the overarching Ψ which determines compatibility. It has to be
a piecewise constant function with jumps at the arrival times of the Poisson processes. On
its constant pieces, it always equals a certain Ψν , so that Ψ : r0, βq ÞÑ tΨνu. We can also
rewrite this by letting the ν depend on time. We write Ψνp‚q where νp‚q : r0, βq ÞÑ ΩΛ.
We can now draw some conclusions from this. Firstly, given that the arrival of the any
operator has a delta-function imposes a condition of equality of the classical configuration
for the Ψν ’s ’between’ which it arrives (in the language of equation 21). This means that
there is no operator that can arrive that can change spins over time, not even the type
Ki, which does force a specific node to be of spin νi “ 1, but before that it also needed
to be 1 when it arrived. The conclusion to draw from this is that Ψνp‚q is in fact constant
in time, so we might as well call it Ψν from now on. This means that it doesn’t actually
matter when an operator arrives, and the effect of the arrival is relevant before and after
it arrives. An arrival of any Ki forces it’s corresponding spin to be νi “ 1 as stated before
and Kij forces νi “ νj. We can represent these two types of arrivals with bridges and
ˆ-marks, like in Figure 1.

Each vertical axis on the figure represents the time evolution of a particular node. For
the i-th node, we call Si

β “ r0, βq its time interval. Furthermore, we will also refer to these
as ‘sticks’. We make the plot as follows: if there is an arrival of ξi at time t, then we would
plot an ˚-mark at the coordinate pi, tq and if there is an arrival of any ξij at time t, we
would plot a bridge between points pi, tq and pj, tq. Furthermore, we also consider nodes
with red times-marks to be connected to a so called ’ghost node’ g. We now want to split
up any realization of ξ into connected components. We call sticks Si

β and Sj
β connected if

ξij ‰ Ø. This connection property is transitive, so suppose S1
β and S2

β are connected and
S2
β and S3

β are connected, then S1
β and S3

β are connected as well. If we have a connection
of this sort, we like to consider them as all being in one big connected component. This
way, we can split up any instance of ξ into maximally connected components. We call

16



Figure 1: This is a graphical representation of the Poisson process ξ. The vertical
axis is the time axis running from r0, βs, the horizontal represents the different nodes
on t1, 2, ..., 20u. In this case there are a lot of arrivals of both types. Firstly, a blue
line or bridge between node i and j represents an arrival in ξij . Secondly, a red

ˆ-mark on node i represents an arrival in ξi.

each connected component Cl, and we call Al the corresponding subset of Λ that has the
indices of the sticks that are connected, so that

Cl “
ď

iPAl

Si
β.

We call a component wired if any node in the component is connected to the ghost node
or any ξi ‰ 0 for some i P Al. It is convenient to think of all of these components as
being linked.

Let us now consider any ξ with the corresponding arrived operators Ki and Kij,

in accordance with measure PJ,h
β,Λ. Let #wpξq be the number of maximally connected

components not wired to the ghost site, then the number of classical trajectories that
are compatible to (28) is precisely 2#wpξq, as each of these non-wired components can be
either of spin 1 or ´1. Note that nodes that do not have any arrivals, have their own
component. For each of these trajectories,

ź

tPξ

@

Ψνpt´q
ˇ

ˇKlptq

ˇ

ˇΨνptq
D

“
ź

tPξ

@

Ψν

ˇ

ˇKlptq

ˇ

ˇΨν

D

“ 1.

With this information, we can calculate the trace of e´βHΛ as follows, where we use the
results of (25) and (27) to get that
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Tr
`

e´βHA
˘

“ e
ř

pi,jq Jij`
ř

i h

ż

PJ,h
β,Λpdξq

ÿ

Ψ„ξ

xΨp0q | Ψpβqy
ź

tPξ

@

Ψpt´q
ˇ

ˇKlptq

ˇ

ˇΨptq
D

“ e
ř

pi,jq Jij`
ř

i h

ż

PJ,h
β,Λpdξq

ÿ

Ψ„ξ

1

“ e
ř

pi,jq Jij`
ř

i h

ż

PJ,h
β,Λpdξq2#wpξq

“ eβp
ř

pi,jq Jij`
ř

i hqE
“

2#wpξq
‰

. (29)

We now define a new measure rPJ,h
β,Λ on the same ξ as follows

rPJ,h
β,Λpdξq

∆
“

2#wpξqPJ,h
β,Λpdξq

E r2#wpξqs
, (30)

where the expected value is taking with respect to the old measure PJ,h
β,Λ. The reason why

we do this, is because

µβ,h
Λ pνiq “ rPJ,h

β,Λpi ÐÑ gq and µβ,h
Λ pνiνjq “ rPJ,h

β,Λpi ÐÑ jq, (31)

where pi ÐÑ gq is the event that node i is connected to the ghost node and pi ÐÑ jq
is the event that node i is connected to node j. Why this holds will be shown below.

Proof. We start with the first statement of equation 31.

µβ,h
Λ pνiq “

Tr
`

σ̂z
i e

´βHA
˘

Tr pe´βHAq
(by equation 11)

“

ż

PJ,h
β,Λpdξq

ÿ

Ψ„ξ

xΨp0q | σ̂z
i | Ψpβqy

ź

tPξ

@

Ψpt´q
ˇ

ˇKlptq

ˇ

ˇΨptq
D

E r2#wpξqs

“
PJ,h
β,Λpi ÐÑ gq2#wpξq

E r2#wpξqs

“ rPJ,h
β,Λpi ÐÑ gq

The penultimate step holds because of the fact that if node i is connected to the ghost
nodes, the sum will give 2#wpξq as in (29), and if it is not connected, the σ̂z

i will contrib-
ute once 1 and once ´1 for all ξ, since there will always be two configurations that are
compatible in that case.
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The second statement of equation 31 will now be proven.

µβ,h
Λ pνiνjq “

Tr
`

σ̂z
i σ̂

z
j e

´βHA
˘

Tr pe´βHAq
(by equation 11)

“

ż

PJ,h
β,Λpdξq

ÿ

Ψ„ξ

xΨp0q | σ̂z
i σ̂

z
j | Ψpβqy

ź

tPξ

@

Ψpt´q
ˇ

ˇKlptq

ˇ

ˇΨptq
D

E r2#wpξqs

“
PJ,h
β,Λpi ÐÑ jq2#wpξq

E r2#wpξqs

“ rPJ,h
β,Λpi ÐÑ jq

The penultimate step holds because of a similar argument to the first part of the proof.

2.2.2 Random cluster measures

We now have a measure rPJ,h
β,Λ that produces the same results as the Ising model, but in a

very different way. The rPJ,h
β,Λ is called an FK-measure or a random cluster measure. They

are a class of measures that are more general in their formulation. We will briefly display
the definition of a random cluster model [3, pp. 4–6].

We start on a finite graph G “ pΛ, Eq. An edge e between node i and j is written
as e = xi, jy. We define a state space Ω for our measures as Ω “ t0, 1u|E| with members
ω P Ω. We say an edge e is open in ω, if ωpeq “ 1 and closed if ωpeq “ 0. The σ-algebra
on which the measures are defined, is the power set of omega 2Ω “ F . Similar to the
previous section, we also make connected components with these open or closed edges.
We visualize them as gates in this case, so that areas of the graph with open gates form
clusters. We call the number of maximally connected components kpωq.

The random cluster measures Φp,q are a set of measures that are distinguished by
parameters p P r0, 1s and q P p0,8q. They are given by:

ϕp,qpωq “
1

ZRC

#

ź

ePE

pωpeq
p1 ´ pq

1´ωpeq

+

qkpωq, (32)

where ZRC is the partition function, defined as follows:

ZRC “ ZRCpp, qq “
ÿ

ωPΩ

#

ź

ePE

pωpeq
p1 ´ pq

1´ωpeq

+

qkpωq. (33)

It should be clear that setting q “ 2 and p “ PJ,h
β,Λpi ÐÑ jq gives us exactly the same

distribution as rPJ,h
β,Λ, although a bit more narrow, as the λi’s of the previous chapter would

have to be constant, as well as h “ 0 so that there are no ghost nodes. It is in that sense
less general, but one could easily make p vary per node, so that degree of freedom can be
added to the random cluster measure. The degree of freedom in q is the main feature of
this model however. Setting it to 1 gives the famous percolation model, and setting it to
values of 3 or higher gives the Potts-model [3, pp. 6–7]. What were after in the first place
though, was q “ 2, which gives an Ising model, with the aforementioned simplifications,
that is.
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3 Simulations of the Ising model

In this section we introduce the methods to analyse the Ising model using simulations.
First of all we will take a quick look at what to expect from Ising model simulations
and how it is usually simulated. Next, we will analyze whether or not Ioffe’s stochastic
geometrical interpretation [6] is useful for simulations. It will quickly be obvious that
Ioffe’s interpretation is not readily applicable in simulations, but with small tweaks, we
can modify it to get a working algorithm.

3.1 Introduction to Ising model simulations

The Ising model is a commonly studied model in statistical mechanics. As in all statistical
mechanical models, you want to study at the thermodynamic behaviour of microscopic
models. This is hard, as the phase space is large. All states in the phase space have a
certain probability of occurrence, but only a limited set of them are relevant. It is usually
impossible to find these by directly evaluating the partition function as this essentially
entails a sum over the phase space. However, there exist various analytical and numerical
approaches.

An exact solution is always the best option. The problem is that it usually does not
exist or is not yet found. For example, the Ising model has only been solved in one and
two dimensions for specific lattice configurations with no external magnetic field.

When an exact solution is not available, physicists can resort to simulations, which
are usually very effective as well. Simulations of statistical mechanics problems always
include some form of Monte-Carlo method, used to sample the complex underlying prob-
ability distribution. With these samples, one can calculate the thermodynamic quantities
of the model. It should also be noted that one can often find very useful solutions to
approximations of statistical models. For example, mean field theory can produce various
useful results regarding the Ising model [12].

The most interesting behaviour of the Ising model is its phase transition in the total
magnetization, without external magnetic field. It switches for not being magnetized, to
being magnetized at a very specific point and it does so in a non-analytic, but continuous
fashion. It is not obvious that this phase transition should even exist. Ernst Ising him-
self was convinced that the model exhibits no phase transitions, because the 1D model
does not show them. The first to prove that there are in fact phase transitions in higher
dimensional Ising models was Rudolph Peierls [10].

We studied the behavious of the model near the phase-transition, results of which
will be presented later on. However, there are many more aspects to study in the Ising
model. For example, topology and dimension of the lattice and the range of the coupling
can be varied. We shall focus here on the square-lattice in two dimensions with neirest
neighbour coupling Jij “ J “ 1. We study the model near the critical phase transition,
i.e. h “ 0 and β is close to βcrt « 0.441.
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3.1.1 Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm is the standard tool for Ising model simulations [8,
pp. 46–49], and for good reasons: it is easy to implement and it is fast for many applic-
ations. Since this algorithm is not the main focus of this thesis, we will not go in depth
into why this algorithm works, but we will explain it briefly, along with its main weakness.

The algorithm is quite simple: starting from any configuration, apply the following
steps:

1. Let µ be the current state of the model.

2. Pick any site, chosen uniformly, and check whether or not flipping its spin will
increase or decrease the total energy of the system. The system with the selected
spin flipped, is called ν

3. If it decreases the energy, flip the spin. If it increases the energy, flip the spin with
probability e´βpHν´Hµq

4. Repeat from step 1.

After some time, this procedure will lead to a quasi-stable magnetization, only influ-
enced by thermal excitations, see β “ 1{kBT in step 3. As stated before, this algorithm
works well most of the time. However its major flaw is that it slows down quite harshly
when run close to critical temperatures [8, pp. 53–57]. That is because the correlation
length between nodes diverges at the critical temperature. The high correlation length
near criticality will cause thermal fluctuations at large scales. Because the algorithm is
local, it has difficulties in converging to such a state with high correlation length effi-
ciently. The main thing to look at when studying critical slowing-down of an algorithm,
is the dynamic critical exponent z, which will be explained in more detail in section 3.2.2.
According to literature, the value for this exponent z for a 2D lattice, is z “ 2.125 [15].
All algorithms suffer from this long correlation length to some degree, but some overcome
this difficulty better than others.

3.2 Simulations of cluster models

Theory section 2.2.1 considers the FK representation of the Ising model. It gives us insight
into how we can map the Ising model onto a cluster-based model. Moreover, it gives us a
very good idea as to how we can sample the Ising model using a clustering approach. The
FK representation tells us that the probability to find a certain Ising configuration can
interpreted as an expectation of the sum over all compatible bond configurations, which
are defined by Poisson processes ξij, ξi on p0, βs with intensities 2Jij and 2h. Arrival of
ξij means that nodes i and j are bridged, which can only happen if their spins are equal.
Note that the specific arrival time is not of importance, only whether there is an arrival
or not. Therefore the probability of two neighbours being bridged, is 1 ´ e´2βij . An
arrival of ξi forces node i to be of a certain spin. However, this in not of interest to us
since we always consider h “ 0, which excludes arrivals of this operator. The crux is
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then that the bridging process forms clusters and that when each clusters is weighted by
a factor of 2, we get that this clustering shows the same statistics as the Ising model.
With this information, we have a good idea of what an algorithm using this clustering
process should look like. However, to put all of it together in just the right way, it still
takes a genius. Luckily for us, Swendsen and Wang did the brilliant part already. Their
algorithm is presented in the next section.

3.2.1 The Swendsen-Wang Algorithm

The right way to incorporate the FK-representation into simulations is by using the
Swendsen-Wang algorithm [15]. Note that this version of the algorithm only works for
h “ 0, so we assume this to be the case when using this algorithm. The setup of the
algorithm is as follows: let σ1, σ2, ..., σn P t´1, 1u represent the spin of nodes 1 to n.
Note that σj denotes the spin at site number j, which is on a square lattice in our
case. Furthermore, let bij P t0, 1u represent a bond between node i and j where i and
j are nearest neighbours, where bij “ 0 represents an open bond and bij “ 1 represents
a closed bonds. Each pair of nearest neighbours i, j has a coupling strength Jij. The
Swendsen-Wang algorithm is then applied as follows:

1. Assign random spin values to each node

2. Go through all nearest neighbours i, j and apply the following logic:

• If the spins are different, let bij “ 0

• If the spins are equal, let bij “ 0 with probability e´2βJij and bij “ 1 with
probability 1 ´ e´2βJij

3. Identify the clusters made by closed bonds (bij “ 1) in the previous step and assign
a random spin to the entire cluster with equal probability of being either spin.

4. All bonds are erased.

5. Repeat form step 2.

It should be very clear that this algorithm is inspired by the FK representation we
derived. We will now prove that with this algorithm, the system saturates at the desired
distribution. For this to hold, 2 conditions must be met: ergodicity and detailed balance.
Ergodicity is trivial. One can see that from any spin state, a bond configuration with all
bonds open can be reached, from which point all other Ising configuration can be reached
with finite probability. Showing detailed balance is also not that hard. To show detailed
balance, we need to show that

PpσqPpσ Ñ σ1
q “ Ppσ1

qPpσ1
Ñ σq

where σ and σ1 are two spin configurations. Note that the algorithm also passes through
some bond configuration when going from σ to σ1. Therefore we fix a particular valid
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bond configuration, which we call b, that is a possible intermediate step between σ and
σ1. Then we can now rewrite the detailed balance condition as follows:

Ppσ1|bqPpb|σq

Ppσ|bqPpb|σ1q
“

Ppσ1q

Ppσq
.

The probability to be in any configuration, given what the originating bond configuration
was, is the same for any one of them, because the cluster spins are all chosen with equal
probabilities. This means that Ppσ|bq “ Ppσ1|bq “ p. The other side of the equality is
easily calculated by remembering that the probability of a certain Ising configuration is
simply given by the Boltzmann distribution so that we have

Ppσ1q

Ppσq
“

expp´βHpσ1qq

Z
expp´βHpσqq

Z

“ e´β∆E,

where H is the Ising Hamiltonian and ∆E is the energy difference between the spin con-
figurations σ1 and σ.

Finally we need to consider Ppb|σq and Ppb|σ1q. Each given bond configuration will
always have a certain number of closed bonds and the rest is open. The key observation is
that only the open bonds between nodes of equal spin have relevance, seeing as the other
ones are closed with probability 1. The bonds between equal spin nodes are controlled
by Bernoulli random variables with p “ 1 ´ e´2βJ . Hence, the total probability of a
particular bond configuration occurring depends on the number of failed Bernoulli bond
connections. To write this out mathematically, we let nc be the number closed bonds in b
and nopσq is the number of closed bonds in b between equal spins in the prior configuration
σ. Then Ppb|σq “ p1 ´ pqnopσqpnc and Ppb|σ1q “ p1 ´ pqnopσ1qpnc so that

Ppb|σ1q

Ppb|σq
“

p1 ´ pqnopσ1q

p1 ´ pqnopσq
“ p1 ´ pq

nopσ1q´nopσq

The next step is to see that the number of closed bonds only dependent on b and not
on σ or σ1, we can therefore write

nopσ
1
q ´ nopσq “ pnopσ

1
q ` ncq ´ pnopσq ` ncq “

ÿ

ăi,ją

δσ1
i,σ

1
j

´
ÿ

ăi,ją

δσi,σj
,

where ă i, j ą loops through nearest neighbours i and j. We now have that

Ppb|σ1q

Ppb|σq
“ e

´2βJ

ˆ

ř

ăi,ją δσ1
i
,σ1

j
´δσi,σj

˙

As a last step, notice that

∆E “ ´
ÿ

ăi,ją

J
`

σ1
iσ

1
j ´ σiσj

˘

“ ´
ÿ

ăi,ją

J
”

δσ1
i,σ

1
j

´

´

1 ´ δσ1
i,σ

1
j

¯

´ δσi,σj
`
`

1 ´ δσi,σj

˘

ı

“ ´2
ÿ

ăi,ją

J
´

δσ1
i,σ

1
j

´ δσi,σj

¯
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such that
Ppb|σ1q

Ppb|σq
“ e´β∆E,

which proves detailed balance.

As opposed to the Metropolis algorithm, the Swendsen-Wang algorithm suffers a lot
less from critical slowing-down. As published by Swendsen and Wang themselves, an
upper bound for the critical exponent is z “ 0.35 [15] as opposed to the Metropolis
algorithm z “ 2.14. This is a result that we will attempt to reproduce.

3.2.2 Critical exponent z

A full understanding of the critical exponents would require many pages of theory and
is not that much of interest to this thesis. However, a good source to read up on the
matter would be Computational Physics [16, pp. 186-192]. It is however important to
understand how the critical exponent z is defined.

Critical exponents are a tool to describe the behaviour of a model near a phase
transition. They are universal, which means that they do not depend on the details of
the interaction. For example, one could add next-nearest neighbour interactions without
changing the exponents. However, there are also dynamic critical exponents, which are
dependent on the algorithm used to simulate the model, instead of the model itself.
These exponents are dependent on dynamical quantities, as well as perhaps other critical
exponents. The critical exponent z is defined by the following relation [2]:

τ „ ξz (34)

τ is called the relaxation time and ξ is the correlation length. This τ is of great interest
to us, as it is in fact a number that tells us how many steps of the algorithm it takes for
a quantity that is not in equilibrium to return to equilibrium. ξ on the other hand is the
correlation length, and it is a measure for how far the nodes will ‘respond’ to what other
nodes are doing. The correlation length is defined in terms of the two-point correlation
function between two spins σi and σj:

xpσi ´ xσiyqpσj ´ xσjyqy “ e´|i´j|{ξ

Note here that the correlation length ξ is also determined by a critical exponent
relation, namely ξ „ |β ´ βcrt|

´ν , where ν “ 1. This is the reason why it converges
around criticality. At high temperatures, we have totally chaotic states, so one can
imagine this length being very low. On the other hand, at low temperatures we also have
a low correlation length, perhaps surprisingly. That is because nodes in that regime are
so strongly connected to their neighbours, that there is hardly any long range interaction.
At criticality however, it is infinite, meaning that every spin flip will be felt and reacted
to in every other node. Since we are obviously simulating on a finite grid, the correlation
length cannot not infinite, so close to the critical point, it is replaced by the length of the
grid L. This gives us the relation we use for simulation purposes:

τ „ Lz. (35)
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Notice that this quantity explicitly size scaling to the relaxation time, and to be clear,
a low relaxation time is exactly what you want from an algorithm, as it means that you
converge to an equilibrium state in approximately that amount of timesteps. Therefore,
a low value of z means favorable size scaling. With this in mind, it should be clear that
Swendsen and Wang’s proposed z “ 0.35 is a massive improvement over the standard
Metropolis-Hastings method with z “ 2.14.

This τ turns out to be quite difficult to pin down, as there are multiple definitions for
it. We look at the two definitions for τ that we will be using. The first is the integrated
correlation time τint. For a quantity A, the integrated correlation time is defined as:

τint “
1

2
`

8
ÿ

t“1

ρAptq, ρAptq “
cAAptq

cAAp0q
, (36)

where ρ is called the auto-correlation function and cAAptq is the time correlation function
of A with itself and it is defined as cAAptq “ xAnAn`ty ´ xAny2. This definition is very
handy, as it is easy to extract out of simulation data. Notice here that the longer the
simulation, the more accurate this sum will be. However, there is a slight problem with
its calculation and that is that we must truncate the sum, since the statistics are bad for
large t. It should be the case that ρA is monotonically decreasing in t, as the algorithm
does not produce any loops. However, for large t there is a sort of aliasing effect, which
makes the value of ρA increase. Therefore a cut-off point tmax to the sum of equation 36,
suggested by [5], is the point where ρAptmax ` 1q ą ρAptmaxq, that being the point where
ρ stops being monotonic.

Another interesting definition for the relaxation time is τexp or the exponential relax-
ation time. This one is defined as follows:

τexp “ lim
tÑ8

t

ρAptq
(37)

This quantity represents the relaxation time of the slowest decaying mechanism in
the system [5, 16]. We can approximate this quantity by curve-fitting to the following
relationship:

ρAptq „ e´t{τexp ,

where we make sure that t is as large as possible, but not exceeding tmax from the previous
part.

Once values for τexp and/or τint for multiple sizes have been obtained, it is a simple
matter of curve-fitting the data to equation 35 to find z.
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Figure 2: Graphical representation of periodic boundary conditions.

3.3 Programming cluster-based algorithms

We will now go over the process of programming a cluster-based algorithm, like the
Swendsen-Wang algorithm. For the results of this paper, Python was used, so the the
explanation will be biased towards using that language and code snippets will be in Py-
thon. Assumptions that will be made in this section, are that Jij “ J “ 1 and the lattice
that will be used is square and has periodic boundary conditions, meaning that bonds
can form between opposite edges of the system. We will also assume that the external
magnetic field h “ 0. Furthermore, we will focus on a 2D system, but it is very easy
to generalize the code to higher dimensions. We make these assumptions since most of
these assumptions will also be made in for the results.

The strategy is simple: first, initialize the space we work on, then program the neces-
sary tools to deal with clusters and lastly, run the cluster algorithm.

To initialize the environment, we start by setting all parameters of the model we want
to use, being the inverse temperature β, the couplings which choose as J “ 1. Since
the behaviour is determined by βJ , we can do this without loss of generality. Next, we
choose the shape of the model, which in our case is a square lattice of size L. Next, since
we are working on a 2D lattice, we can store the spins in an L array and the bonds in a
2 matrix, where the first dimension stores the bonds for each cardinal direction.

An important remark to make is that the type of boundary conditions will influence
the outcome of simulations. The most common one is periodic, for which the opposite
ends of the lattice are connected by bonds. This is visualized in figure 2.

One can choose different boundary condition, but this will affect the behaviour of the
parts of the lattice that are less than a correlation length away from an edge.
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Next, the most important tool of a cluster-based algorithm, is an algorithm that can
identify clusters of equal spins. This is not that trivial, since we only have information
about connections between neighbours, and nothing more. The problem of finding con-
nected components or clusters in a lattice (or any undirected graph) is well-studied and
there exist many algorithms which do this. The one we use is called the ‘depth first
search’ algorithm or DFS. The procedure is quite simple:

• Initialize each node as ‘not visited’.

• Pick any node that is not visited and add it to a stack.

• Next, repeat the following procedure

1. Mark the top node of the stack as visited and remove it from the stack

2. Create a list of all nodes that are connected to the node that was just removed
from the stack

3. Add any non-visited node from that list to the top of the stack

Once the stack is empty, you have spanned out the cluster the original node was in.
One can repeat this process for every node to get a list of all the clusters.

With this tool, we can easily carry out the steps of the Swendsen-Wang algorithm as
described in section 3.2.1.

3.4 Overview of the simulations

Now that we have established how the simulations work, we can look at what kind of sim-
ulations that were carried out. First of all we present the dynamics of the Swendsen-Wang
algorithm by simply looking at plots of a few timesteps of the algorithm. Afterwards we
do a series of simulations on different sized lattices to investigate how well we can ap-
proximate the theoretical values of thermodynamic variables. Finally we do a number of
very long simulations to find the critical exponent z.

It is important to set expectations of these simulations in order to judge the results
properly. The 2D Ising model has been studied extensively. From the analytical solution

[9] we know that the critical temperature βcrt “
ln p1`

?
2q

2
« 0.4407 and we know that

below this temperature there is an ordered phase with spontaneous magnetization, and
above the critical temperature is a disordered, chaotic phase. The solution of Yang [17]
tells us that this spontaneous magnetization is described by the following relationship:

Mpβq “
`

1 ´ sinh p2βJq
´4
˘

1
8 (38)

Note that the spontaneous magnetization is the absolute value of the average spin per
site. This equation only holds as the number of nodes in the systems goes to infinity, so
we can expect the simulations to converge towards this distribution as the size increases.
Notice here that M is the absolute value of the average of the spins. We prefer to

27



avoid working with absolute values of quantities, therefore we consider a closely related
quantity, being the magnetic susceptibility χ1 per site. This quantity can be calculated
as the variation of the average spin S “ 1

L2

ř

i σi:

χ1
“ varpSq “

1

L4
pxS2

y ´ xSy
2
q

Note that in the low temperature regime, xSy will constantly swap signs during the
simulation. Therefore taking the average over time will equal 0. This is not supposed
to happen according to thermodynamics, so it is more or less a flaw of the simulation
method. This quantity is hard to control, so we prefer not to use it. Instead we consider
the unsubtracted magnetic susceptibility per site χ

χ “
1

L4
pxS2

yq

However, instead of computing the magnetic susceptibility like this, we can use the so-
called improved estimator for this quantity [16, pp 495-496], which has the same average,
but a smaller variance. It is defined as

χ “
1

L4

C

ÿ

c

N2
c

G

(39)

where c are all clusters on the lattice and Nc represents the area or number of nodes
in each cluster. This estimator is based on a principle described by Sweeny [14], namely
that averaging over the clusters instead of the spins improves the statistics dramatically.
That is because each cluster could have been entirely of spin 1 or spins -1 with equal prob-
ability, so a bond configuration essentially holds information of 2#c possible outcomes.
Anything which is measured from the bond configuration directly, represents an average
over all possible realisations of spin configurations.

Lastly, it is important to know that the susceptibility is supposed to behave as
χ „ pβcrt ´ βq´γ for β ă βcrtc where γ is a critical exponent, which is 7

4
for the 2D

Ising model. This something we will check with simulations.

Lastly, the original paper of Swendsen and Wang stated that an upper bound to the
critical exponent of the Swendsen-Wang algorithm is z “ 0.35, but there are many studies
that show lower values ranging from 0.17 to 0.28 and it has been conjectured that this
exponent should grow to 0 [4] for larger and larger lattice sizes.
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4 Results

4.1 Swendsen-Wang dynamics

The first results we present, is a basic simulation of 10 timesteps of an Ising model sim-
ulation, using the Swendsen-Wang algorithm. The results can be found in figure 3. The
simulations was done on a 1000 ˆ 1000 lattice at β “ 0.6, so a subcritical temperature.
This means we expect a highly ordered system. And this is exactly what we observe:
we start with randomly chosen spin states for each node and after a few timesteps, we
evolve to an ordered system. Some other things to note are that we are clearly in the
magnetized phase, but even in timestep 10, we still have small specks of blue, so it is not
yet fully magnetized. Furthermore, notice that every timestep from 4 and higher, the
dominant color flips. This is more or less a coincidence, however it should be noted that
a drastic number of spin flips is expected behaviour in Swendsen-Wang dynamics. Recall
that every timestep, the spin is chosen again per cluster, which is allowed, because the
Ising Hamiltonian HΛ from definition 2.1 is symmetric under spin reversal when h “ 0.
Lastly, the critical eye will notice that this simulation was not done with periodic bound-
aries, but with free boundaries. This has no particular reason other than that it was just
the way the algorithm was implemented at the time of creating these images. All later
simulations following this will be with periodic boundaries, as that is generally favoured
to reduce finite-size effects.

4.2 Magnetic susceptibility of the Ising model

In this section we present the results of a series of simulations where we use simulations to
investigate how closely we can approximate the unsubtracted magnetic susceptibility χ,
which we will simply call susceptibility from now on, of the Ising model. We will estimate
this quantity using the improved estimator we showed in (39). To do this we run the
model at various ranges of inverse temperature β and at each timestep we calculate the
susceptibility and we take the average of all those to get an estimate of the expected mag-
netization at that temperature. Note here that we omit the first 30 timesteps, in order to
have no influence from the initial configuration. The choice of the number of timesteps to
omit is somewhat arbitrary, but it should at least be a few times the decorrelation time
τ . The maximum value we measured for this quantity (results of which will be shown
later) was around 7.5, so we chase to omit 4 ¨ 7.5 “ 30 timesteps. Furthermore, we will
compare the results of the simulations with the theoretical values for the Ising model in
the thermodynamical limit. We know that (38) gives us the magnetization for β values
larger than the βcrt and that for the subcritical values, it should be 0. Since the unsub-
tracted susceptibility we are working with is simply the square of the magnetization, we
can compare our results to the square of that function.

An important remark is that in order to get good estimates of the uncertainty in an
averaged quantity, like the susceptibility, we cannot simply apply the normal formula to
calculate the sample standard deviation. That is because the observables we are working
with, is are correlated to their neighbours. In order to decorrelate the data, we take a so
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(a) Timestep 1 (b) Timestep 2

(c) Timestep 3 (d) Timestep 4

(e) Timestep 5 (f) Timestep 6
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(g) Timestep 7 (h) Timestep 8

(i) Timestep 9 Timestep 10

Figure 3: First 10 iterations on a Swendsen-Wang simulation. This simulation was done on a
1000x1000 lattice with an inverse temperature β “ 0.6.
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Figure 4: Simulation of the susceptibility over a range of temperatures. The simulations were
done on a 64 ˆ 64 lattice for 1000 timesteps. The β values range between 0.2 and 0.8 with 500
points in between. The data left of the phase transition was fitted to a power law, while the
data right of the critical point has the theoretical curve for M2 as a reference. The orange

area represents the uncertainty in the measurements and has a width of 1 standard deviation.

called block average, where we split the data into blocks of a certain size and then we cal-
culate the sample standard deviation with that formula. Note that the block length must
be bigger than the decorrelation time, but small enough so that there are enough stat-
istics. In our case, all calculated standard deviations are with a block average of width 20.

We start by presenting the results of a simulation over a range of β-values in figure
4. This plot is the result of many different simulations on 64ˆ 64 lattices on 500 equally
spaced temperatures between β “ 0.2 and β “ 0.8. Each simulation was done for
1000 timesteps. It is clear that for β’s that are a lot lower or higher than the critical
temperature. However, right around the critical point, the results are quite bad compared
to the results of the thermodynamical limit. We have obvious finite-size scaling effects
and large standard deviations. As discussed before, this is what is expected to happen.
We expect a power law relationship for subcritical β’s that scales according to

χ „ apβcrt ´ βq
´γ, β ă βcrt. (40)

According to the theory of critical exponents, γ “ 7
4
. We filled our data for the
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susceptibility to a power law, seen in the figure as the red curve, to find out how close
we can get to the theoretical γ “ 7

4
. The value we fitted in this simulation, was γ “

1.732 ˘ 0.001. Notice however that the fit is cut off at a certain point. That is because
there is small region, close to the critical temperature, where the values are no longer
described by the power law and also not yet on the theoretical curve. This is the region
where the correlation size is greater that the lattice length. Since this region is not
described by a power law anymore, we want to exclude this region from the fit. To find a
good estimate for this cut-off point, we use another critical exponent scaling law for the
correlation length. We know that the correlation length of the 2D Ising model scales like

ξ “ c ¨ pβcrt ´ βq
´1. (41)

The point where the finite size starts to heavily influence the results, is when ξ “ L{2.
Plugging this into this relationship, we get that

βcutoff “ βcrt ´
2a

L
.

Without calculating the correlation length and then fitting it to (41), we cannot get a
good estimate of what this constant c should be. The best we can do is to visually find
some values such that cut-off point matches with the point where the graph starts to
bend off the fitted power law. The conclusion was that for c ě 1, the fit parameter for
γ stayed nearly constant, but for values c ď 1, the results got visibly worse. Therefore,
taking a “ 1 appeared to be a good choice.

With the results of the last simulation in mind, our goal is now to do a series of
simulations on increasing lattice sizes and find out whether the power law scaling stays
at a similar exponent and also to see how much the finite-size scaling effects decrease
with larger simulation sizes.

To do this, we ran simulations on sizes L P t32, 64, 128, 256, 512, 1024u. The simula-
tions were all done on r0.2, 0.5s with 500 equally spaced temperatures and they all ran
for 500 timesteps. The range of temperatures was decreased as it was obvious from the
previous simulation that extreme temperatures are not of interest to this experiment.
The results of these simulations were combined in one plot so that the effect of finite size
scaling is clearly visible. This plot is shown in figure 5 and the least square fit parameters
for these simulations are given in table 1.

L a γ
32 2.44e-4 ˘0.01e-4 1.715 ˘ 0.002
64 5.94e-5 ˘0.01e-5 1.730 ˘ 0.001
128 1.479e-5 ˘0.001e-5 1.7327 ˘ 0.0006
256 3.693e-6 ˘0.002e-6 1.7334 ˘ 0.0003
512 9.224e-7 ˘0.003e-7 1.7340 ˘ 0.0002
1024 2.3067e-7 ˘0.0006e-7 1.7337 ˘ 0.0002

Table 1: These are the results of the least square fits of the simulations with different lattice
sizes L fitted to (40).
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Figure 5: Results of simulations of magnetic susceptibility χ on lattice sizes 32 ˆ 32, 64 ˆ 64,
128 ˆ 128, 256 ˆ 256, 512 ˆ 512, 1024 ˆ 1024. The used β values range between 0.2 and 0.5

and each simulation ran for 500 timesteps.

First, we note that the amplitude a of each fit scales with 1{L2, which is expected
as we are measuring the susceptibility per spin. Next, notice that there is a clear sign
of convergence towards the theoretical distribution with increasing size. The results be-
come more and more precise and there is very little spread between the last three values.
However, instead of converging to the theoretical value of 1.75, it stagnates at around
1.734, which is 1% off the theoretical value of 1.75. It appears that we can get close to
it, but not quite there. Due to the clear sign of convergence, we cannot explain this as a
finite-size effect. There are a different number of possible reasons for this. One of them
is it has to do with the way the boundaries are set. As discussed before, we chose an
upper bound βcutoff , which was definitely a necessity to produce consistent results. How-
ever, we the only lower bound that was set, was the minimal β-value of all simulations,
which is 0.2. So the range on which the power law was fitted, was r0.2, βcutoff pLqs. To
investigate the effect, we increased the lower bound by removing more and more β-values
and fitted to the power law at each step. In figure 6, there is a plot of these γ-values on
reduced intervals. The data that was used for this, is from the 512 ˆ 512 simulations.
These results seem to get us a lot closer to γ “ 1.75, but the data clearly becomes unre-
liable after a certain point, which is due to a lack of data after cutting off most of the data.

In order to optimize this lower bound even further, we made more simulations for β in
the range of r0.4, βcutoff pLqs with 200 timesteps in this interval and on a 512 ˆ 512 grid.
The same process of removing one β at a time, that was done for figure 6, was applied to
this data with the results displayed in figure 7. It is clear that in this plot, we converge
even closer to the theoretical value. Furthermore, the theoretical value is already within
the standard deviation for a lower bound of β “ 0.415, which is clearly still within a
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Figure 6: This plot shows the estimate of parameter γ, when the lower bound for β is
steadily increased. The horizontal line shows the theoretical value for γ. The data used for

this plot is from the previously done simulation with size L “ 512.

region of stable uncertainties. More precisely, with a lower bound of β “ 0.415, we find
γ “ 1.748˘0.004. We can therefore conclude that if we take data that is simulated in an
appropriately close range to the critical temperature, we can find a critical exponent of
γ “ 1.748˘0.004, which is within one standard deviation from the true value of γ “ 1.75.

One could say that perhaps there is a confirmation bias in these results, since the
lower bound is chosen quite arbitrarily and perhaps so that it meets our expectations.
However, it should be noted that the critical exponents are supposed to hold only in the
neighbourhood of the critical point. Furthermore, the fit for γ stays around 1.748 even
after the point we chose as a minimum. The point where it starts to move away from
1.75, is clearly also the range where a lack of data starts to heavily influence the results.
Therefore still accept this as a valid result.

4.3 Determining the dynamic critical exponent z

As explained in section 3.2.2, we need to fit a number of relaxation times τ to find the
critical exponent z so we started by doing a number of very long simulations on different
sizes. The simulations that were done, range between lattice size L “ 16 to L “ 256 and
are all done at critical temperature. The precise specifications and results are presented
in table 2. Note that the results are all an average of 3 simulations per size and for all
these simulations, the values were calculated for τint andτexp for both the total energy E
and magnetization M , giving us 4 different relaxation times.
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Figure 7: This plot shows the estimate of parameter γ, when the lower bound for β is steadily
increased. The horizontal line shows the theoretical value that we are supposed to have. This
time, we used improved the data by using a smaller timescale on a more concentrated interval.

Lattice size L Timesteps τint,E τexp,E τint,M τexp,M
16 5 ˚ 105 3.32 ˘ 0.05 3.29 ˘ 0.05 3.05 ˘ 0.05 3.24 ˘ 0.05
32 5 ˚ 105 4.07 ˘ 0.05 4.17 ˘ 0.05 3.51 ˘ 0.05 4.12 ˘ 0.05
50 5 ˚ 105 4.58 ˘ 0.05 4.60 ˘ 0.05 3.79 ˘ 0.05 4.53 ˘ 0.05
64 5 ˚ 105 4.96 ˘ 0.05 5.11 ˘ 0.05 3.99 ˘ 0.05 4.99 ˘ 0.05
100 3 ˚ 106 5.51 ˘ 0.05 5.80 ˘ 0.05 4.33 ˘ 0.05 5.62 ˘ 0.05
128 2 ˚ 105 5.93 ˘ 0.05 6.22 ˘ 0.05 4.56 ˘ 0.05 6.03 ˘ 0.05
256 7 ˚ 105 7.02 ˘ 0.05 7.56 ˘ 0.05 5.07 ˘ 0.05 7.20 ˘ 0.05

Table 2: This table contains the results of simulations to calculate the relaxation times τint
and τexp for the energy E and the magnetization M . Each result for those τ ’s is the average of
3 separate simulations and the number of timesteps in each of those simulations is given in

column 2.

Note that each value of τ has an uncertainty of 0.05. It does not represent the standard
deviation within each simulation size, because we only had 3 simulations per τ . Instead,
it was assumed that all simulations have a similar deviation. Therefore we took the un-
certainty of all simulated values to be the standard deviation of the difference of each
simulation with its mean value in the table. This gave us a data set of size 72 values
instead of 24 sets of size 3. Even though this data was mostly generated in to measure
dynamic critical exponent z, it has an important meaning of its own, as explained in
section 3.2.2 on critical exponents. We used this data in order to get an estimate of
the block size average and to find how many values should be omitted at the start of a
simulation.
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Figure 8: Plot of the curve fit in order to find critical exponent z. The data of τint,M was
used for this particular fit. The resulting value of z was 0.184˘0.004.

We now go over to the results of the simulations to find the critical exponent z. As
explained before, this is done by fitting the τ values to

τ “ aLz

where a is a constant of proportionality. In figure 8 you can see the results one such fits
for τint,M . This result is definitely a success, as we can see a clear power law scaling.
Furthermore, the found value of z is 0.184, which is a lot lower than the value of 0.35
which was originally reported by Swendsen and Wang [15].

The rest of the fits for z are not shown as a plot, but we present the values in table
3. This data agrees well with results found in [1], which used very similar techniques.
Furthermore, it is clear that the value of z “ 0.35 reported by Swendsen and Wang [15]
is too high. It appears to be the case that the larger the range of lattice sizes L in the
simulations are, the smaller the z value becomes.
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z
τint,E 0.263 ˘ 0.004
τexp,E 0.292 ˘ 0.005
τint,M 0.180 ˘ 0.004
τexp,M 0.277 ˘ 0.005

Table 3: Dynamic critical exponents z for the integrated and exponential relaxation times for
both energy E and magnetization M .

Another remarkable thing to note is that the z value for τint,M is very different com-
pared to the rest of the z values. Even though there is no reason why they should all be
very close, it is still interesting to see this. The conclusion to be made is that somehow
the magnetization relaxes, on average, a lot faster that other observables, although the
exponential relaxation time scales just like the rest of the relaxation times.

It has also been hypothesized by Heermann and Burkitt [4] that the integrated and
exponential relaxation times scale logarithmically, which has since been partly corrobor-
ated by Du, Zheng and Wang [2]. They found that the τexp,E scales logarithmically, and
that τint,E stay practically constant from a certain size of around L “ 256 and onward.
However, their method is different as they measure the initial decay towards equilibrium
starting from either an ordered state or a random state, the choice of which appears to
have very little influence on the results. We sadly cannot compare results as they used
simulation sizes up to 8192, which is not feasible to reproduce on the home computer,
that was used for our simulation.
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5 Conclusion

In this thesis, we introduced the path integral representation of exponential operators as
a tool to derive the FK-representation for the Ising model. Along the way, we made sure
to include proofs, most of which are original. These results are related to the Swendsen-
Wang algorithm, which is based on the FK-representation. With this algorithm, we ran
many simulations with the goal of calculating two critical exponents. The first one was γ
which is related to the magnetic susceptibility χ and the second one was z, which is the
dynamical critical exponent with which we showed that this algorithm is more efficient
near criticality.

The results of the simulation of γ were generally good, even though we had to take our
data from a specific neighbourhood around the critical temperature. At first, the result
appeared to be γ “ 1.7337p3q which was the result for simulations of lattice size L “ 256,
L “ 512 and L “ 1024. However, forcing the lower bound closer and closer to the critical
point, gave us increasingly better results. This is because the critical exponent scaling
relation only holds close to the critical point. In the end we concluded that when letting
the lower bound approach critical point, while ensuring that there is enough data to take
an accurate fit, the simulated critical exponent γ approaches its true value of 1.75. With
this in mind, we did extra simulations with increased resolution around the critical point,
and we found a value of γ “ 1.748 ˘ 0.004.

Next, we did a range of very long simulations in order to find different relaxation
times τ . We used different definitions of τ , namely τint and τexp, to find the relaxation
times of the magnetization M and total energy E. These results themselves were not
particularly of great interest to our study. We did however find that the values for τint,M
were considerably lower than the rest, which means that, on average, the magnetization
decorrelates faster than other observables. The main purpose of these simulations was
to estimate the dynamic critical exponent z. For this we found values ranging between
0.180 and 0.292, depending on the thermodynamic variable used to generate them. This
is lower than the value originally reported by Swendsen and Wang, but is in line with
other more recent studies of this subject. It has been conjectured that this exponent
should be 0 and that the scaling is either logarithmic or constant, depending on the
variable considered. However, many more orders of magnitude need to be considered to
get an accurate depiction of whether this is true. Therefore, this study cannot deny nor
corroborate this hypothesis.

39



References

[1] Paul D. Coddington and Clive F. Baillie. The Dynamical Critical Exponents of the
Swendsen-Wang Algorithm for the 2D Ising Model.

[2] Jianqing Du, Bo Zheng and Jian-Sheng Wang. ‘Dynamic critical exponents for
Swendsen–Wang and Wolff algorithms obtained by a nonequilibrium relaxation
method’. In: Journal of Statistical Mechanics: Theory and Experiment 2006.05 (May
2006), P05004–P05004. url: https://doi.org/10.1088%2F1742-5468%2F2006%
2F05%2Fp05004.

[3] Geoffrey R. Grimmett. ‘1.2 Random-cluster model’. In: The random-cluster model.
Springer, 2006.

[4] Dieter W. Heermann and Anthony N. Burkitt. ‘System size dependence of the
autocorrelation time for the Swendsen-Wang Ising model’. In: Physica A: Statistical
Mechanics and its Applications 162.2 (1990), pp. 210–214. issn: 0378-4371. url:
https://www.sciencedirect.com/science/article/pii/037843719090439Y.

[5] M. Hennecke and U. Heyken. ‘Critical dynamics of cluster algorithms in the dilute
Ising model’. In: Journal of Statistical Physics 72.3-4 (Aug. 1993), pp. 829–844.

[6] Dmitry Ioffe. ‘Stochastic Geometry of Classical and Quantum Ising Models’. In:
Mar. 2009. isbn: 978-3-540-92795-2.

[7] M.R. Leadbetter, G. Lindgren and H. Rootzen. Extremes and Related Properties
of Random Sequences and Processes. Springer Series in Statistics. Springer New
York, 2012. isbn: 9781461254492. url: https://books.google.be/books?id=-
ofTBwAAQBAJ.

[8] M.E.J. Newman and G.T. Barkema. Monte Carlo Methods in Statistical Physics.
Clarendon Press, 1999. isbn: 9780198517979. url: https://books.google.be/
books?id=kQN6DwAAQBAJ.

[9] L Onsager. ‘A two-dimensional model with an order-disorder transition (crystal
statistics I)’. In: Phys. Rev 65.3-4 (1944).

[10] Rudolf Peierls. ‘On Ising’s model of ferromagnetism’. In: Mathematical Proceedings
of the Cambridge Philosophical Society. Vol. 32. 3. Cambridge University Press.
1936.

[11] M. Reed and B. Simon. ‘I: Functional Analysis’. In: Methods of Modern Mathem-
atical Physics. Elsevier Science, 1981, p. 295. isbn: 9780080570488. url: https:
//books.google.nl/books?id=rpFTTjxOYpsC.

[12] Dalton A R Sakthivadivel. ‘Magnetisation and Mean Field Theory in the Ising
Model’. In: SciPost Phys. Lect. Notes (2022), p. 35. url: https://scipost.org/
10.21468/SciPostPhysLectNotes.35.

[13] D. Stauffer. ‘Social applications of two-dimensional Ising models’. In: American
Journal of Physics 76.4 (Apr. 2008), pp. 470–473.

[14] Mark Sweeny. ‘Monte Carlo study of weighted percolation clusters relevant to the
Potts models’. In: Phys. Rev. B 27 (7 Apr. 1983), pp. 4445–4455. url: https:
//link.aps.org/doi/10.1103/PhysRevB.27.4445.

40

https://doi.org/10.1088%2F1742-5468%2F2006%2F05%2Fp05004
https://doi.org/10.1088%2F1742-5468%2F2006%2F05%2Fp05004
https://www.sciencedirect.com/science/article/pii/037843719090439Y
https://books.google.be/books?id=-ofTBwAAQBAJ
https://books.google.be/books?id=-ofTBwAAQBAJ
https://books.google.be/books?id=kQN6DwAAQBAJ
https://books.google.be/books?id=kQN6DwAAQBAJ
https://books.google.nl/books?id=rpFTTjxOYpsC
https://books.google.nl/books?id=rpFTTjxOYpsC
https://scipost.org/10.21468/SciPostPhysLectNotes.35
https://scipost.org/10.21468/SciPostPhysLectNotes.35
https://link.aps.org/doi/10.1103/PhysRevB.27.4445
https://link.aps.org/doi/10.1103/PhysRevB.27.4445


[15] Robert H. Swendsen and Jian-Sheng Wang. ‘Nonuniversal critical dynamics in
Monte Carlo simulations’. In: Phys. Rev. Lett. 58 (2 Jan. 1987), pp. 86–88. url:
https://link.aps.org/doi/10.1103/PhysRevLett.58.86.

[16] Jos Thijssen. Computational Physics. 2nd ed. Cambridge University Press, 2007.

[17] C. N. Yang. ‘The Spontaneous Magnetization of a Two-Dimensional Ising Model’.
In: Phys. Rev. 85 (5 Mar. 1952), pp. 808–816. url: https://link.aps.org/doi/
10.1103/PhysRev.85.808.

41

https://link.aps.org/doi/10.1103/PhysRevLett.58.86
https://link.aps.org/doi/10.1103/PhysRev.85.808
https://link.aps.org/doi/10.1103/PhysRev.85.808


Appendix A

Proof. (based on [11]) We start by setting

Tn “ e
řk

i“1 Ai{n and Sn “

k
ź

i“1

eAi{n.

Then,

T n
n ´ Sn

n “

n´1
ÿ

l“0

`

T n´l
n Sl

n ´ T n´l´1
n Sl`1

n

˘

“

n´1
ÿ

l“0

T n´l´1
n pTn ´ SnqSl

n

This is a clever telescoping sum to rewrite the difference T n
n ´ Sn

n . Now, we can bound
this with:

}Sn
n ´ T n

n } ď n pmax t}Sn} , }Tn}uq
n´1

}Sn ´ Tn}

ď n }Sn ´ Tn} expp

k
ÿ

i“1

}Ai}q

This holds because
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(matrix norm is sub-multiplicative)

ď

˜

k
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(triangle inequality)
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(triangle inequality)
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Finally,
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We now see that }Sn
n ´ T n

n } Ñ 0 in the limit, which proves the theorem.
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Appendix B

In this appendix we prove Lemma 2.5.

Lemma 2.5. Let ξ∆1 , ..., ξ
∆
m be Bernoulli processes on p0, βs with spacing ∆ and probability

of arrival p “ λl∆. Then

lim
∆Ñ0

P
`

@p, q P t1, ...,mu : ξ∆p X ξ∆q “ Ø
˘

“ 1.

Proof. We start by rewriting the event to have disjointedness to an equivalent event,
namely

P
`

@p, q P t1, ...,mu : ξ∆p X ξ∆q “ Ø
˘

“ P

˜

β{∆
č

j“1

«

m
ÿ

l“1

ξ∆l ppj∆ ´ ∆{2, j∆ ` ∆{2qq ď 1

ff¸

.

Here we split the disjointedness condition in time and say that at each time, no more
than one arrival can occur, which is an equivalent way to describe disjointedness of the
arrival times. Notice that all timesteps are independent, so we have

P

˜

β{∆
č

j“1

«

m
ÿ

l“1

ξ∆l ppj∆ ´ ∆{2, j∆ ` ∆{2qq ď 1

ff¸

“

β{∆
ź

j“1

P

˜«

m
ÿ

l“1

ξ∆l ppj∆ ´ ∆{2, j∆ ` ∆{2qq ď 1

ff¸

.

Next, we take λ “ minpλ1, ..., λmq, so now we can give a lower bound to this probability

β{∆
ź

j“1

P

˜«

m
ÿ

l“1

ξ∆l ppj∆ ´
∆

2
, j∆ `

∆

2
qq ď 1

ff¸

ě

β{∆
ź

j“1

ˆ

p1 ´ ∆λq
m

`

ˆ

m

1

˙

∆λp1 ´ ∆λq
m´1

˙

“
`

p1 ´ ∆λq
m

` m∆λp1 ´ ∆λq
m´1

˘β{∆

“ Lp∆q,

where Lp∆q is just a shorter way to write the function we ended up with. We now
take the limit of this function and apply L’Hopital’s rule to find that the limit goes to 1.
The calculations are done as follows

lim
∆Ñ0

Lp∆q “ exp
´

ln
´

lim
∆Ñ0

`

p1 ´ ∆λq
m

` m∆λp1 ´ ∆λq
m´1

˘β{∆
¯¯

“ exp

ˆ

lim
∆Ñ0

β
ln pp1 ´ ∆λqm ` m∆λp1 ´ ∆λqm´1q

∆

˙

L1H.
“ exp

ˆ

lim
∆Ñ0

β
´mλp1 ´ ∆λqm´1 ´ mpm ´ 1q∆λ2p1 ´ ∆λqm´2 ` mλp1 ´ ∆λqm´1

p1 ´ ∆λqm ` m∆λp1 ´ ∆λqm´1

˙

“ exp

ˆ

lim
∆Ñ0

β
´mpm ´ 1q∆λ2p1 ´ ∆λqm´2

p1 ´ ∆λqm ` m∆λp1 ´ ∆λqm´1

˙

“ expp0q “ 1.

Recall that this was only a lower bound to the probability of the lemma, but since a
probability cannot be greater than 1, we have proven the lemma.
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Appendix C

Theorem 5.1 (Product Expansion Formula). Let A1, A2, ..., An be self-adjoint matrices
and Ψ,Ψ1 two vectors in X. Then,

xΨ|A1...An|Ψ1
y “

ÿ

Ψi1
,...Ψin´1

xΨ|A1|Ψi1yxΨi1 |A2|Ψi2y...xΨin´1 |An|Ψ1
y, (42)

where the Ψil run through all elements of the basis tΨiu for all l “ 1, ..., n ´ 1.

Proof. We will prove this by induction, starting at n “ 2, so that

xΨ|A1A2|Ψ
1
y “

ÿ

Ψi1
PtΨiu

xΨ|A1|Ψi1yxΨi1 |A2|Ψ
1
y,

For this case, first notice that

AΨ “ A
ÿ

ΨiPtΨiu

xΨ|ΨiyΨi

“
ÿ

ΨiPtΨiu

xAΨ|ΨiyΨi

“
ÿ

ΨiPtΨiu

xΨ|A|ΨiyΨi,

where the last equality holds because A is self-adjoint. Next, we can transpose this
statement to get

xΨ|A “
ÿ

ΨiPtΨiu

xΨ|A|ΨiyxΨi|.

Now taking A “ A1 and multiplying by A2|Ψ1y gives the statement we wanted to prove,
so the case for n “ 2 holds.

Next, we assume n “ k holds and we prove n “ k ` 1. So we have

xΨ|A1...Ak|Ψ1
y “

ÿ

Ψi1
,...Ψik´1

xΨ|A1|Ψi1yxΨi1 |A2|Ψi2y...xΨik´1
|Ak|Ψ1

y, (43)

and we want to show that

xΨ|A1...AkAk`1|Ψ1
y “

ÿ

Ψi1
,...Ψik

xΨ|A1|Ψi1yxΨi1 |A2|Ψi2y...xΨik´1
|Ak|ΨikyxΨik |Ak`1|Ψ

1
y.

Notice here that we have no restrictions on Ψ, so the proof for the case n “ 2 is valid
for any Ψα P X. We now take xΨ|A1...Ak´1 “ xΨα|. Then by 43

xΨα| “
ÿ

Ψi1
,...Ψik´1

xΨ|A1|Ψi1yxΨi1 |A2|Ψi2y...xΨik´1
|.
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Now we apply the case of n “ 2 to xΨα|AkAk`1|Ψ1y to get that

xΨα|AkAk`1|Ψ
1
y “

ÿ

Ψik
PtΨiu

xΨα|Ak|ΨikyxΨik |Ak`1|Ψ
1
y.

Then simply substitute Ψα back out and we get

xΨα|AkAk`1|Ψ
1
y “ xΨ|A1...AkAk`1|Ψ

1
y

“
ÿ

Ψi1
,...Ψik

xΨ|A1|Ψi1y...xΨik´1
|Ak|ΨikyxΨik |Ak`1|Ψ

1
y,

which is exactly what we wanted to show. This proves the theorem.
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Appendix D

We now prove the rest of Theorem 2.8.

Proof of (ii). We want to prove that arrival times are disjoint. To do this we consider
the following limit

lim
ϵÑ0

P

˜

m
ÿ

l“1¯
ξlpt ´ ϵ, t ` ϵs “ 1

ˇ

ˇ

ˇ

ˇ

ˇ

Dt P ξ :
m
ÿ

l“1¯
ξlpt ´ ϵ, t ` ϵs ě 1

¸

By definition of conditional probability, we can rewrite this probability as follows

P

˜

m
ÿ

l“1¯
ξlpt ´ ϵ, t ` ϵs “ 1

ˇ

ˇ

ˇ

ˇ

ˇ

Dt P ξ :
m
ÿ

l“1¯
ξlpt ´ ϵ, t ` ϵs ě 1

¸

“

P
ˆ

m
ř

l“1¯
ξlpt ´ ϵ, t ` ϵs “ 1XDt P ξ :

m
ř

l“1¯
ξlpt ´ ϵ, t ` ϵs ě 1

˙

P
ˆ

Dt P ξ :
m
ř

l“1¯
ξlpt ´ ϵ, t ` ϵs ě 1

˙ .

It is clear that for the event in the numerator, the left part of the intersection is a
subset of the right part, so that the intersection should be just the left part. Note that
to keep the expressions a bit more compact, we substitute tϵ “ pt´ ϵ, t` ϵs We have now
simplified the limit to the following expression

P
ˆ

m
ř

l“1¯
ξlptϵq “ 1

˙

P
ˆ

Dt P ξ :
m
ř

l“1¯
ξlptϵq ě 1

˙

∆
“

PpAq

PpBq

We now calculate the probabilities of the numerator and denominator separately. We
start with the numerator

PpAq “ P

˜

m
ÿ

l“1¯
ξlptϵq “ 1

¸

“

m
ÿ

l“1

P
`

¯
ξ1ptϵq “ 0, ...,

¯
ξl´1ptϵq “ 0,

¯
ξlptϵq “ 1,

¯
ξl`1ptϵq “ 0, ...,

¯
ξmptϵq “ 0

˘

.

By independence of these events, we can write this as
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PpAq “

m
ÿ

l“1

P
`

¯
ξlptϵq “ 1

˘

m
ź

k“1
k‰l

P
`

¯
ξkptϵq “ 0

˘

“

m
ÿ

l“1

2ϵλl exp p´2ϵλlq ¨ exp

˜

´2ϵ
ÿ

k‰l

λk

¸

“ 2ϵ

˜

m
ÿ

l“1

λl

¸

exp

˜

2ϵ

˜

m
ÿ

l“1

λl

¸¸

Let us now call the sum of all λl’s, L “
řm

l“1 λl, so that we get:

PpAq “ 2ϵLe´2ϵL

Now we evaluate the denominator:

PpBq “ P

˜

Dt P ξ :
m
ÿ

l“1¯
ξlptϵq ě 1

¸

“ 1 ´ P

˜

m
ÿ

l“1¯
ξlptϵq “ 0

¸

“ 1 ´

m
ź

l“1

P
`

¯
ξlptϵq “ 0

˘

“ 1 ´

m
ź

l“1

e´2ϵλl

“ 1 ´ e´2ϵL

where L is once again
řm

l“1 λl. Now, we can evaluate the limit using L’Hopital’s rule:

lim
ϵÑ0

PpAq

PpBq
“ lim

ϵÑ0

2ϵLe´2ϵL

1 ´ e´2ϵL

L1H.
“ lim

ϵÑ0

2Le´2ϵL ´ 4ϵL2e´2ϵL

´2Le2ϵL
“

2L

2L
“ 1

This proves that we have disjoint arrival times almost surely.

Proof of (iii). From (ii), we know that arrival types are well defined. Next, we bring our
attention to the following limit

lim
ϵÑ0

P pξlpt ´ ϵ, t ` ϵs “ 1| D l1 : ξl1pt ´ ϵ, t ` ϵs “ 1q .

Here it is important to note that for the conditioning, we do not require the D! operator,
nor do we have to consider the case where ξl1pt ´ ϵ, t ` ϵs ě 1, because in the previous
part, we have already proven that arrival times are disjoint almost surely. We now use the
same strategy as in the proof of the previous part. Next, we substitute pt´ ϵ, t` ϵs “ tϵ
and we call rξlptϵq ě 1s “ A and rD l1 : ξl1ptϵq ě 1s “ B and use that

PpA|Bq “
PpA X Bq

PpBq
.
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Now notice that A is a subset of B, and therefore A X B “ A, so that

PpA|Bq “
PpAq

PpBq
.

We start by calculating PpAq:

PpAq “ Ppξlptϵq “ 1q

“ 1 ´ Ppξlptϵq “ 0q

“ 1 ´ e´2ϵλl

Next, we look at PpBq:

PpBq “ PpD l1 : ξl1ptϵq “ 1q

“ 1 ´ Pp@ l1 : ξl1ptϵq “ 0q

“ 1 ´

m
ź

l“1

e´2ϵλl

“ 1 ´ e´2ϵ
řm

l“1 λl

Now, we look at the limit of their quotient and apply L’Hopital’s rule to find the following:

lim
ϵÑ0

PpAq

PpBq
“ lim

ϵÑ0

1 ´ e´2ϵλl

1 ´ e´2ϵ
řm

l“1 λl

L1H.
“ lim

ϵÑ0

´2λle
´2ϵλl

´2 p
řm

l“1 λlq e
´2ϵλl

“
λl

λ1 ` ... ` λm
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