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A B S T R A C T

This paper presents a method to consider uncertainties in the distortion prediction of additive manufacturing
processes within robust topology optimization. The random variable of the stochastic additive manufacturing
process is the inherent thermomechanical strain, typically determined by process characterization experiments.
The value of the inherent strain per se encompasses uncertainty due to differences between characterization
and production geometries, uncontrolled process variations, hatching pattern choices, and other effects not
captured in layer-by-layer part-scale additive manufacturing simulation. These effects can be represented by
different inherent strains for each realized layer, therefore, model the variability in part distortion. Instead of
employing a more detailed simulation approach, requiring significantly more process data and computation
time, our method aims at generating a robust design in this setting, to obtain parts exhibiting reduced distortion
regardless of uncertainties in distortion prediction. The formulation benefits from the superposition potential
within the employed process simulation. For robust optimization, the expected part distortion and its estimated
variance are included in the standard density-based topology optimization algorithm’s objective function. The
effectiveness of the approach is demonstrated by simultaneously optimizing structural performance combined
with a minimized additive manufacturing part distortion under uncertain process conditions.
1. Introduction

Topology Optimization (TO) and Additive Manufacturing (AM)
have achieved an unprecedented scale of application in industry and
academia in the last three decades. On the one hand, TO alone has
reached a mature status as an efficient and versatile computational
design process. On the other hand, AM has established itself as a highly
flexible and economically viable fabrication alternative for end-use
parts. The advantages of AM have boosted the production of complex
topology-optimized parts, which would otherwise be impossible to pro-
duce using classical methods [1]. These developments have encouraged
researchers to explore strategic techniques to bring these two distinct
disciplines together [2].

Considering the challenges of AM fabrication, extensions of TO pro-
cedures to reduce support requirements through control of overhanging
regions have received the most attention (see, e.g. [3–5]). Proposed
methods typically only involve geometric criteria of the design that can
be evaluated at a low computational cost. However, for a variety of
potentially fatal defects (e.g., overheating, distortion, recoater collision
predictions, etc.), a computationally demanding AM process simulation
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is essential. Nonetheless, the physical simulation of the AM process
alone has achieved significant improvement in the context of distortion
prediction, allowing practical part-scale simulations ([6]). Addition-
ally, several recent studies have proposed incorporating AM process
simulation into TO framework (see, e.g., [7–11] and the references
therein).

Another important fact to highlight, in this regard, is that consider-
able variability of the distortion prediction is attributed to the presence
of uncertainties in the AM process parameters. The comparison results
in [12] reveal that deterministic models are not trustworthy for prac-
tical usages due to large variations in the prediction of the distortion
during the AM process simulation. This fact indicates a clear need for
a framework for the robust optimization of parts, given the uncertainty
present in the AM parameters. The consideration of uncertainties within
a design optimization can be carried out in various ways [13], for
instance, by treating the uncertain parameters as stochastic variables
(probabilistic approach) or as bounded parameters (see, e.g., [14,15]).
Using probabilistic approaches and targeting to reduce the variability
of some response functions is referred to as robust design optimization
vailable online 4 November 2023
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and, in combination with topology optimization, as robust topology op-
timization (RTO) (see, e.g., [16–18]). Many works consider the applied
load (direction) as a random variable [19,20], and some also study
material stiffness properties and/or geometric deviations [16–18]. In
a few studies, manufacturing simulations alone have been carried out
probabilistically (e.g., [21]). Still, AM manufacturing variables have
thus far yet to be embedded into a robust topology optimization.

In this paper, we address this gap by considering uncertainties in the
inherent-strain-based mechanical AM process simulation and embed
this into a robust topology optimization. The considered uncertainties
arise due to differences between inherent strain characterization exper-
iments and the actual part geometry, uncontrolled process variations,
hatching pattern choices, and other physical effects not captured in
the layer-by-layer AM simulation. In this study, we assume that the
aggregation of these effects can be represented by different inherent
strains (IS) for each realized layer, which can be combined by the em-
ployed layer-by-layer process simulation. From the point of view of the
simulation process, the magnitude of the layer-wise inherent strains is
treated as stochastic. Consequently, the outcome of the AM simulation
is a distribution of distortion fields. We focus on a single aggregated
distortion measure for simplicity but without loss of generality. An
example of layer-wise distortion control to prevent recoater collisions
in TO can be found in [7,11]. In this paper, we consider a multiob-
jective minimization problem, combining both structural compliance
and global distortion using the weighted sum approach. The distortion
minimization ensures the compatibility and functionality of the part
with its surroundings. Following [6], mutatis mutandis, the AM process
simulation under linearity assumptions is broken down into decoupled
process steps, each of which comprises the simulation of one layer
addition. In this setting, the principle of superposition clears the way
to leverage parallelization while preserving the accuracy cf. [6].

Our contribution is a novel stochastic Design for Additive Manu-
facturing (DfAM) framework. We propose an effective incorporation of
the uncertainty in the selected AM process parameter, a fast stochas-
tic AM process simulation, and its integration into the established
density-based TO framework.

We use the 𝑝-mean of the displacement field to measure the dis-
tortion quantity resulting from the AM process simulation. Further, we
propose, implement and validate three formulations for the stochastic
distortion quantity:

1. Monte Carlo estimation with superimposed realizations and sensitiv-
ity, viz. MC (𝑝 = 2).

2. Monte Carlo estimation with superimposed realizations, viz. MC (𝑝 >
2).

3. First-Order-Second-Moment estimation of the statistical quantities
and sensitivity, viz. (FOSM).

The first two approaches presented in this work are based on the
Monte Carlo simulation of all the realizations, and they benefit from
the computational breakdown coming from the superposition exploited
in the AM process simulation. The difference between the first and the
second formulation is that when 𝑝 = 2, we can also superimpose each
sensitivity calculation, thus further reducing the algorithm’s overall
computational cost.

The last formulation of the stochastic process, namely FOSM, is
based on the Taylor series expansion of the statistical quantities, mean
value and standard deviation, around the mean value of the process
parameter. In this way, in a single loop, i.e., for only one realization
we determine the mean value, the variance of the distortion quantity
and their sensitivity [18].

The different formulations are studied using 2D numerical exam-
ples, since, in spite of the parallelization of the AM distortion predic-
tion, computational cost remains high. Nevertheless, no fundamental
obstacle prevents the extension of the proposed approaches to 3D.

This paper is organized as follows. First, we outline the problem
2

definition in Section 2. Section 2.3 provides the fundamentals of the
Fig. 1. Illustration of the considered problem setting. The solid gray color Domain
𝛺 indicates the part that needs to be optimized and 3D-printed, while the light gray
regions indicate the parts that need to be compatible. The optimized part’s interfaces
(𝑆1 and 𝑆2) need to remain compatible with the adjacent parts.

AM simulation method used in this work. Section 2.4 explains how an
aggregate solver for distortion prediction is constructed by assembling
independent solutions for each layer partition of the entire model.
Subsequently, Section 2.5 outlines how this concept extends to mul-
tiple realizations of the process simulation and the associated robust
optimization problem is formulated. Section 3 contains all the deriva-
tions of the stochastic quantities and their subsequent sensitivities.
In Section 4 these quantities are arranged in an algorithm and its
performance is studied using several examples in Section 5. Ultimately,
Section 6 concludes this paper. All additional derivations can be found
in Appendices A and D.

2. Problem setting

2.1. Deterministic formulation

Our goal is to build a new DfAM framework, which will facilitate
the study of the robust design of a topology-optimized structure, min-
imizing stochastic AM process part-distortion, see Fig. 1. Let us, as a
starting point, consider a representative problem, the minimization of
the compliance 𝐶 for a structural part.

min
𝒙

𝐶(𝒙) = 𝒖𝑜(𝒙)𝑇𝑲(𝒙)𝒖𝑜(𝒙) (1)

s.t.:
𝑽 (𝒙)
𝑽 0

≤ 𝑣𝑓𝑟𝑎𝑐

𝑲(𝒙)𝒖𝑜(𝒙) = 𝒑𝑙
0 ≤ 𝑥𝑒 ≤ 1 for all 𝑥𝑒 in 𝒙

(2)

Here 𝑥𝑒 represents the elements’ density and is a component of the
vector 𝒙, which comprises the elements’ density of the whole design
domain, 𝑣𝑓𝑟𝑎𝑐 is the maximum volume fraction, 𝒖𝑜 is the displacement
field from the operation, 𝑲 is the global stiffness matrix, 𝑽 (𝒙) is
the volume of the ultimate design layout, 𝑽 (0) is the initial volume
of the design domain and 𝒑𝑙 is the external load vector. In this pa-
per, the minimization of the compliance of 3D-printed components is
considered.

The SIMP interpolation given in Eq. (3) has been used for the
parametrization of the discretized design domain [22].

𝐸𝑒(𝑥𝑒) = 𝐸𝑚𝑖𝑛 + 𝑥𝑝𝑒𝑒 (𝐸0 − 𝐸𝑚𝑖𝑛). (3)

For a component to fit in an assembly, see Fig. 1, it is essential to
limit its distortion due to the printing process, particularly at part–
part interfaces. Thus, while this part is additively manufactured, we
also want that it features minimum distortion. We name this distortion
quantity 𝛤 . The distortion effect is not considered in computing the
compliance as it is small enough to be negligible for this matter, but big
enough to compromise the compatibility of the part with its adjacent
elements. This yields a multi-objective problem, which is scalarized by
weighted summation with weight 𝜅1 as shown in Eq. (4). Here, the
compliance 𝐶 is divided by the applied load in order to scale it to
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the same order of magnitude as the distortion measure 𝛤 . We refer
to this case as deterministic distortion minimization, or in short, the
deterministic case.

min
𝒙

𝑓 (𝒙) = 𝜅1𝐶(𝒙) + (1 − 𝜅1)𝛤 (𝒙) (4)

s.t:
𝑽 (𝒙)
𝑽 0

= 𝑣𝑓𝑟𝑎𝑐

(𝒙)𝒖𝑜(𝒙) = 𝒑𝑙
0 ≤ 𝑥𝑒 ≤ 1 for all 𝑥𝑒 in 𝒙

(5)

𝑲𝑘(𝒙)𝒖𝑘𝑗 (𝒙) = 𝑓𝑘
𝑗 (𝒙)

𝑘 = 1...𝑁

𝑗 = 1...𝑚

(6)

where:

𝑘 index of the layer.

𝑁 total number of layers.

𝑗 index of the realization.

𝑚 total number of realizations.

Here Eq. (6) represents the layer-by-layer AM distortion simulation
following the linearized inherent strain approach [6], involving 𝑘 steps

hich we discuss in Section 2.3. Note that in this paper, no Einstein
ummation convention is used for repeated indices unless explicitly
entioned.

.2. Stochastic formulation

Using a probabilistic formulation, we acknowledge the fact that the
M process simulation comprises uncertainty, which will propagate to

he estimation of the distortion quantity 𝛤 . To this end, we introduce
n integrated stochastic AM process simulation in Section 2.3.

There are numerous applications in which it is desirable that a
opology-optimized structure is robust with respect to AM-induced
istortion. In the present problem setting, we assume that the mag-
itude of the inherent strain is uncertain. However, based on expert
nowledge and experience, a distribution of the stochastic magnitude
arameter can be provided. Furthermore, the stochastic parameter,
.e., the magnitude of the inherent strain, is assumed to vary per layer,
hich corresponds to the finest resolution of the employed AM process
odel.

To this end, we introduce the nominal inherent strain 𝛥𝜖𝑘, as well as
stochastic scaling factors 𝛼𝑘 of the 𝑘-th process step, where the scaling

actors 𝛼𝑘1 and 𝛼𝑘2 of different process steps 𝑘1 and 𝑘2 may correlate.
ence, the vector 𝜶 is the random vector containing the correlated

andom factors for all steps. This random vector can be considered as
discretized one-dimensional random field in the build direction. The

pproach implies the assumption that the scaling factor 𝛼𝑘 is constant
n each process step 𝑘. This is certainly a strong simplification, but this
ssumption is a prerequisite for the approaches proposed in this paper
nd consistent with layer-by-layer modeling.

Under these considerations, following, e.g. [18], we define the sub-
equent constrained stochastic optimization problem with the objective
unction 𝑓 (𝒙,𝜶) as the weighted summation of the compliance and a
erm composed of the mean and standard deviation, of the distortion
uantity, see Eq. (7).

min 𝜅 𝐶(𝒙) + (1 − 𝜅 )
[

𝜅 𝜇 (𝒙) + (1 − 𝜅 )𝜎 (𝒙)
]

(7)
3

𝒙 1 1 2 𝛤 2 𝛤 t
s.t:
𝑽 (𝒙)
𝑽 0

= 𝑣𝑓𝑟𝑎𝑐

𝑲(𝒙)𝒖𝑜(𝒙) = 𝒑𝑙
𝑘(𝒙)𝒖𝑘𝑗 (𝒙) = 𝑓𝑘

𝑗 (𝒙)

= 1...𝑁

= 1...𝑚

≤ 𝑥𝑒 ≤ 1 for all 𝑥𝑒 in 𝒙

𝛤 (𝒙) = 𝐸[𝛤 (𝒙,𝜶)]

𝛤 (𝒙) =
√

𝐸[𝛤 (𝒙,𝜶) − 𝜇𝛤 ]2

𝜶 ∼  (𝜇𝛼 , 𝜎2𝛼)

(8)

The distortion quantity 𝛤 (𝒙,𝜶) now is a function of the random vector
𝜶.
In this work, we consider that the compliance 𝐶(𝒙) is not exposed to
uncertainty for the same reason as stated earlier. Ergo, the compliance
formulation and its sensitivity are taken the same as in the deterministic
compliance minimization problem.
𝜕𝐶(𝒙)
𝜕𝒙𝑒

= −𝑝𝑒𝑥
𝑝𝑒−1
𝑒 (𝐸0 − 𝐸𝑚𝑖𝑛)𝒖𝑇𝐊0𝒖 (9)

ere, 𝐊0 is the element stiffness matrix for an element with unit
oung’s modulus. The new components of the objective function and
heir respective sensitivity are 𝜇𝛤 (𝒙), 𝜎𝛤 (𝒙),

𝜕𝜎𝛤 (𝒙)
𝜕𝑥𝑒

and 𝜕𝜇𝛤 (𝒙)
𝜕𝑥𝑒

. The for-
ulation of these quantities, and their algorithmic implementation, is

he focus of this work. Since these quantities are a direct outcome of the
M process simulation, we first present in Section 2.3 its mathematical
epresentation, together with the adequate simplifications, which we
everage to facilitate its practical implementation.

.3. Additive manufacturing process modeling: fundamentals

Using a high-fidelity simulation of a stochastic AM process in an
ptimization framework requires excessive computational effort. This
omputation intensity is due to both the temporal and spatial scales
nvolved and the fact that the exact physics of the AM process are
overned by nonlinear equations, which need to be solved for each
ealization at each optimization iteration. In light of this challenge,
ertain simplifications are introduced, that facilitate an approximate
fast) solution scheme, rather than a strictly accurate (computationally
ntense) one. A first and common simplification is to consider the
rinting process as a sequence of layer additions, instead of resolving
he detailed scanning sequence used. The driving physical event of the
M process is the heat flow generated during the processing of each

ayer. This heat flow distributes the thermal energy that the newly
dded layer contains, to the surrounding environment, i.e., already-
uilt layers and the base plate. High-temperature gradients result in
build-up of thermal stress and, consequently, distortion of the part.

his thermo-mechanical process is influenced by many different pa-
ameters, such as hatching pattern choices, scan strategy (path and
peed), pre-heating temperature, layer thickness, beam size and power,
owder size, and morphology. The ultimate effect can be estimated to
ome extent using a fully coupled transient thermal process simulation.
owever, this has a formidable computational cost. Moreover, all the

nfluencing parameters encompass uncertainties [23]. It is accepted
hat not all physical effects correlated to these processes can be simu-
ated precisely [6,23]. To overcome the computational bottleneck and
nable consideration of AM process effects within TO, a simplified
M process model is required. The Inherent Strain (IS), representing
compound effect of all the physical events and their uncertainties,

as been established as a reasonable compromise between accuracy and
omputational cost, and has been applied in deterministic TO studies
nvolving AM distortion measures (e.g., [9,11]). In the IS method,

he residual plastic strain, is considered at the hatching region when
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the new layer is activated. From this strain, the thermal stresses and
their consequent effects are computed. We follow the scheme proposed
by Munro et al. [6], which exploits a linearized version of the IS
modeling approach. Details are provided in the next subsection. The
IS is typically obtained from characterization experiments with test
geometries [23]. Note that differences between the actual part and test
geometry may already result in differences in actual local IS values.
This uncertainty is one of the motivations to use a robust optimization
approach in conjunction with the IS approach.

The AM process is decoupled into linear sub-processes for each layer
without compromising accuracy. Afterward, the superposition of all in-
dividual sub-process deformations obtains the final thermo-mechanical
deformation. Recognizing that the individual process step deformations
scale with IS magnitude, we perform these simulations using nominal
IS values. This recognition allows us to construct realizations with
different IS magnitudes at low cost simply using the superposition of
these nominal process step deformations, scaled appropriately.

This concept forms the core concept of the computational model for
stochastic AM process simulation, where the uncertainty of the process
model is introduced in the IS magnitude.

2.4. Additive manufacturing process simulation — nominal simulation

In this section, the formulation of the AM process simulation is
given. An illustrative structure, presented in Fig. 2, has been partitioned
into several sub-models, each of which consists of one lumped layer
built during the AM process. Assuming that there is a finite element
discretization of the mechanical equation, representing the single pro-
cess on each sub-model, the AM-like process’s simulation follows the
element birth and death method. It consists of iteratively activating
layers of finite elements in the mesh to simulate the process of in-
crementally adding solid material to the structure. In this model, the
physics involved contains only the IS as an external effect. Furthermore,
the elements of every single layer are added simultaneously, and each
single layer addition can then be solved separately.

For the implementation of the process described above material, and
geometrical, linear assumptions from the spirit of Munro et al. [6] are
utilized, with adjustments for efficient stochastic process consideration
as discussed in the next subsection.

Nevertheless, only the thermal stress, triggered by the inherent
strain activated in the individual hatching regions of the newly added
layer, will propagate in the built layers [23]. These considerations,
together with linearity assumptions, allow the decoupling of the AM
process, which comprises the incremental layer activation. Each layer
addition is simulated separately while applying a nominal value for the
driving physical parameter, i.e., the inherent strain (IS). We call this
the nominal AM process simulation. Hence, under these assumptions, a
holistic view of the physical process can be seen as two main sub-steps
for each layer activation, see [6].

– The stress-free merging of the newly added layer to the last layer,
i.e., the liquid (melted) layer, is placed on the previous sequential
layer.

– The addition effect coming from the newly added layer.

Excluding any other external forces during the printing process, the
incremental displacement field will be calculated only from the solidifi-
cation and the contraction of the newly added layer, while considering
all the previous layers at the fully solid-state [6].

From an implementation viewpoint, the equilibrium equations are
mapped to each decoupled process. Each of them represents the de-
formation due to the deposition of the 𝑘−th layer. Following standard
finite element procedures (see e.g., [24]), for an ordinary realization,
each displacement field 𝒖𝑘 of the added layer 𝑘 is evaluated as follows:

𝑘(𝒙)𝒖𝑘(𝒙) = 𝒇𝑘(𝒙) (10)
4

s

𝑘(𝒙) =
𝑛𝑒

A
𝑒=1

𝒌𝑘𝑒 (𝑥𝑒) (11)

𝒇𝑘(𝒙) =
𝑛𝑒

A
𝑒=1

𝒇𝑘
𝑒 (𝑥𝑒) (12)

here:
𝑛𝑒

A
𝑒=1

assembly operation.

𝒌𝑘𝑒 (𝑥𝑒) = ∫𝑉
𝑩𝑇𝑫(𝑥𝑒)𝑩𝑑𝑣 element stiffness matrix.

𝒇𝑘
𝑒 (𝑥𝑒) = ∫𝑉

𝑩𝑇𝑫𝑒(𝑥𝑒)𝛥𝝐𝑘𝑑𝑣 nominal element force vector.

𝑫𝑒(𝑥𝑒) = 𝑫𝑚𝑖𝑛 + 𝑥𝑝𝑒𝑒
(

𝑫𝑚𝑖𝑛 −𝑫0
)

constitutive.

The strain matrix 𝐵:

=

⎡

⎢

⎢

⎢

⎣

𝜕𝑁𝑖
𝜕𝜉 0 𝜕𝑁𝑖+1

𝜕𝜉 0 𝜕𝑁𝑖+2
𝜕𝜉 0 𝜕𝑁𝑖+3

𝜕𝜉 0

0 𝜕𝑁𝑖
𝜕𝜂 0 𝜕𝑁𝑖+1

𝜕𝜂 0 𝜕𝑁𝑖+2
𝜕𝜂 0 𝜕𝑁𝑖+3

𝜕𝜂
𝜕𝑁𝑖
𝜕𝜂

𝜕𝑁𝑖
𝜕𝜉

𝜕𝑁𝑖+1
𝜕𝜂

𝜕𝑁𝑖+1
𝜕𝜉

𝜕𝑁𝑖+2
𝜕𝜂

𝜕𝑁𝑖+2
𝜕𝜉

𝜕𝑁𝑖+3
𝜕𝜂

𝜕𝑁𝑖+3
𝜕𝜉

⎤

⎥

⎥

⎥

⎦

𝑖 is the index of the shape function 𝑁𝑖.
𝜉 𝑎𝑛𝑑 𝜂 are the local coordinate in the 𝜉 𝑎𝑛𝑑 𝜂 direction.

The entire displacement field for 𝑁 additive manufacturing steps can
be obtained by applying the superposition principle:

𝒖 =
𝑁
∑

𝑘=1
𝒖𝑘 (13)

The displacement field is represented in a vector and it expands as
the number of layers increases. Therefore, a reference vector of the
displacement field will be allocated with the size equal to the design do-
main’s total DOFs. The displacement field increments will be summed
up at this reference vector after each layer addition, consistent with
their DOFs.

2.5. Additive manufacturing stochastic process

In Section 2.4 we clarify the linear behavior of our formulation un-
derlying each layer addition step, and that the superposition principle
holds. This formulation is extended naturally to an arbitrary number
of realizations 𝑚 following the same principle. The key feature of this
formulation is that the displacement field of a distinct process step 𝑘
scales linearly with the scaling factors 𝛼𝑘 of the inherent strains.

To account for the variability of the IS, 𝛼𝑘 will act as a scaling factor.
First, we run the simulation for 𝑗 = 0 and 𝛼𝑘0 = 1 (i.e., a vector filled

ith unity values), which would generate the nominal distortion field
𝑘. In a Monte Carlo simulation with 𝑚 realization, each 𝒖𝑘𝑗 is obtained
rom the linear operation between the scaling factor 𝛼𝑘𝑗 and the nominal
istortion field 𝒖𝑘.
𝑘
𝑗 = 𝛼𝑘𝑗 𝒖

𝑘 for 𝑗 = 1...𝑚 (14)

onsecutively, the total displacement field at a given realization is
omputed as follows.

𝑗 =
𝑁
∑

𝑘=1
𝛼𝑘𝑗 𝒖

𝑘 for 𝑗 = 1...𝑚 (15)

graphic visualisation of the superposition of the displacement field
s given in Fig. 3. Following this principle, each realization can be
enerated from the nominal AM simulation in Section 2.4. The to-
al displacement field of each realization can be obtained using the

uperposition introduced.
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Fig. 2. The decoupling of the layerwise AM-process, illustrated with a representative part (left-hand side) where 𝑘 indicates the layer number. This separation scheme is made
for the nominal simulation. The effect of each layer deposition step is superimposed on the final AM part (right-hand side).
Fig. 3. The superposition of each realization. The first row from the bottom indicates the nominal simulation. Each row thereafter, from bottom to top, represents the superposition
of each realization.
3. Distortion minimization objective function and sensitivity for-
mulation

3.1. Deterministic objective function formulation

As a basis for our formulation, we take Eq. (15) outlined in Sec-
tion 2.5 to formulate the displacement field 𝒖𝑗 . Given a realization 𝑗
of the scaling factors 𝜶𝑗 , the distortion quantity 𝛤𝑗 is evaluated as a
p-mean of the displacement field coming from the AM process at the
interface(s) where we choose to control distortion, see Eqs. (16)–(18).

𝒗𝑗 = 𝜣𝒖𝑗 (16)

In Eq. (16), the matrix 𝜣 is a diagonal matrix containing node density
𝑥𝑛𝑜𝑑𝑒. Whereas the nodal density is calculated as the weighted value of
the element’s density 𝒙𝑒 that surrounds the analyzed node.

𝜣 =

{

𝑥𝑛𝑜𝑑𝑒 =
∑𝐼𝑛𝑡𝐸𝑙

𝑒=1 𝑥𝑒
𝐼𝑛𝑡𝐸𝑙 for interface DOFs

0 otherwise
(17)

where: 𝐼𝑛𝑡𝐸𝑙 is the number of elements intersecting with the analyzed
node located at the targed edges (see Fig. 5 and Fig. 8).
5

We can define the distortion quantity as the 𝑝−mean of the vector
𝒗𝑗 .

𝛤𝑗 =
(

1
𝑁𝑛

)1∕𝑝
(

𝟏𝑇 𝒗◦(𝑝)𝑗

)1∕𝑝
𝑓𝑜𝑟 𝑗 = 1...𝑚 (18)

where ◦ indicates the Hadamard operator, which in this case implies
𝑝-power computed component-wise (when placed at exponential) and
the product when it is placed in the middle.

The vector 𝟏 is filled with ones and has the same size as 𝒗𝑗 .
We include a division by the number of interface nodes 𝑁𝑛, to

decouple the distortion quantity from mesh refinements. For a more
detailed explanation, see Appendix D.

3.2. Robust objective function

We propose three different formulations for the problem outlined
in Section 2, minimization of the distortion under stochastic process
along with compliance. The distortion measure 𝛤 (𝜶) is a function of the
random vector 𝜶 ∼  (𝜇𝛼 , 𝜎2𝛼) with probability density function 𝑓 (𝜶).
The mean and the variance of the distortion measure 𝛤 (𝜶) are given
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as:

𝜇𝛤 = ∫

+∞

−∞
𝛤 (𝜶)𝑓 (𝜶)𝑑𝜶 (19)

𝜎𝛤 = ∫

+∞

−∞
[𝛤 (𝜶) − 𝜇𝛤 ]2𝑓 (𝜶)𝑑𝜶 (20)

As a subsequent step, we estimate these quantities using the Monte
Carlo (MC) method and the First-Order-Second-Moment (FOSM)
method. For the MC-method we distinguish between two cases, 𝑝 = 2
and 𝑝 > 2, as will be explained in the subsequent section. The prob-
abilistic approach is embedded in the overall density-based topology
optimization algorithm.

3.3. Monte Carlo approach

The FEM procedure, by its very nature, is discrete. Therefore, the
displacement fields coming from FE are discrete and consequently,
the distortion quantity 𝛤 is evaluated from discrete quantities, the
displacement fields. Eventually, the statistical characteristics of the
distortion quantities are evaluated with respect to the random vector 𝜶
as follows.

𝜇𝛤 (𝒙) = 𝐸[𝛤 (𝒙,𝜶)] ≈ 1
𝑚 − 1

𝑚
∑

𝑗=1
𝛤 (𝒙,𝜶𝑗 ) (21)

𝜎𝛤 (𝒙) =
√

𝐸[𝛤 (𝒙,𝜶) − 𝜇𝛤 ]2

≈

√

√

√

√

1
𝑚 − 1

𝑚
∑

𝑗=1
(𝛤 (𝒙,𝜶𝑗 ) − 𝜇𝛤 (𝒙))2

(22)

From these equations, the derivatives of the mean value 𝜕𝜇𝛤
𝜕𝑥𝑒

and

tandard deviation 𝜕𝜎2𝛤
𝜕𝑥𝑒

, given in Eqs. (23) to (25).

𝜕𝜇𝛤 (𝒙)
𝜕𝑥𝑒

= 𝐸
[

𝜕𝛤 (𝒙,𝜶)
𝑥𝑒

]

(23)

𝜕𝜎𝛤 (𝒙)
𝜕𝑥𝑒

= 1
2𝜎𝛤

𝜕𝜎2𝛤 (𝒙)
𝜕𝑥𝑒

(24)

where
𝜕𝜎2𝛤 (𝒙)
𝜕𝑥𝑒

= 𝐸
[

𝜕𝛤 (𝒙,𝜶)
𝜕𝑥𝑒

−
𝜕𝜇𝛤 (𝒙)
𝜕𝑥𝑒

]2
(25)

To compute the sensitivity of the response 𝜕𝛤 (𝒙,𝜶𝑗 )
𝜕𝑥𝑒

, given realization
, we use the adjoint formulation. Hence, the augmented distortion
easurement is given as (𝒙,𝜶𝑗 ).

(𝒙,𝜶𝑗 ) = 𝛤 (𝒙,𝜶𝑗 ) +
𝑁
∑

𝑘=1
𝛼𝑘𝑗 𝝀

𝑘𝑇
𝑗

(

𝑲𝑘𝒖𝑘 − 𝒇𝑘) (26)

where 𝝀𝑘𝑇𝑗 is the vector containing Lagrange multipliers. Here we keep
𝛼𝑘𝑗 out of the brackets to facilitate the isolation of ∑𝑁

𝑘=1 𝛼
𝑘
𝑗
𝜕𝒖𝑘
𝜕𝑥𝑒

later in
the derivations, which are given in Appendix A.

Subsequently, we obtain the operator 𝜕𝛤 (𝒙,𝜶𝑗 )
𝜕𝑥𝑒

and all the derivations
re given in Appendix A, Eqs. (51) to (56).

𝜕𝛤 (𝒙,𝜶𝑗 )
𝜕𝑥𝑒

=
(

1
𝑁𝑛

)1∕𝑝
(

𝟏𝑇 𝒗◦(𝑝)𝑗

)
1
𝑝−1 𝒗◦(𝑝−1)

𝑇

𝑗
𝜕𝜣
𝜕𝑥𝑒

𝒖𝑗

+
(

1
𝑁𝑛

)1∕𝑝 𝑁
∑

𝑘=1
𝛼𝑘𝑗 𝝀

𝑘𝑇
𝑗

(

𝜕𝑲𝑘

𝜕𝑥𝑒
𝒖𝑘 −

𝜕𝒇𝑘

𝜕𝑥𝑒

)

(27)

Eq. (27) is then organized in a compact form.

𝜕𝛤 (𝒙,𝜶𝑗 )
𝜕𝑥𝑒

= 𝑷 𝑗 +
(

1
𝑁𝑛

)1∕𝑝 𝑁
∑

𝑘=1
𝛼𝑘𝑗 𝝀

𝑘𝑇
𝑗 𝑺𝑘 (28)

here:

𝑗 =
(

1
)1∕𝑝

(

𝟏𝑇 𝒗◦(𝑝)
)

1
𝑝−1 𝒗◦(𝑝−1)

𝑇 𝜕𝜣 𝒖𝑗 (29)
6

𝑁𝑛
𝑗 𝑗 𝜕𝑥𝑒
n Eq. (28) we can superimpose 𝑷 𝑗 using 𝒖𝑗 and 𝒗𝑗 , whereas 𝑺𝑘 is
nvariant to the realizations, and it is defined in Eq. (30).

𝑘 = 𝜕𝑲𝑘

𝜕𝑥𝑒
𝒖𝑘 −

𝜕𝒇𝑘

𝜕𝑥𝑒
(30)

where:
𝜕𝑲𝑘

𝜕𝑥𝑒
=

𝜕𝒌𝑒
𝜕𝑥𝑒

= −𝑝𝑒𝑥
𝑝𝑒−1
𝑒 ∫𝑉

𝑩𝑇𝑫0𝑩𝑑𝑣
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

𝒌0

= −𝑝𝑒𝑥
𝑝𝑒−1
𝑒 𝒌0 (31)

and

𝜕𝒇𝑘

𝜕𝑥𝑒
=

𝜕𝒇𝑘
𝑒

𝜕𝑥𝑒
= −𝑝𝑒𝑥

𝑝𝑒−1
𝑒 ∫𝑉

𝑩𝑇𝑫0𝛥𝜖
𝑘
𝑒 𝑑𝑣

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝒇𝑘
0

= −𝑝𝑒𝑥
𝑝𝑒−1
𝑒 𝒇𝑘

0 (32)

Ultimately, the last component 𝝀𝑘 is obtained by the solution
of Eq. (33) and its superposition is studied in detail in Sections 3.3.1
and 3.3.2.

𝑲𝑘𝝀𝑘𝑗 = −
(

𝟏𝑇 𝒗◦(𝑝)𝑗

)
1
𝑝−1 𝜣𝒗◦(𝑝−1)𝑗 (33)

Eventually, we compute the complete sensitivity of 𝛤 (𝒙,𝜶𝑗 ) through
superposition, and subsequently, compute the sensitivity of the mean
value, variance and standard deviation, using respectively Eqs. (23)–
(25).

3.3.1. Sensitivity formulation for p = 2
For the case when 𝑝 = 2, the right-hand side of the adjoint formula-

tion given in Eq. (33) becomes a linear combination of 𝛼𝛽𝑗 and 𝒖𝛽 , see
Eq. (34). Thus, it can easily be decoupled. To discern the advantages
of this case, we expand and substitute 𝑝 = 2 to 𝒗𝑝−1𝑗 which gives the
adjoint system of equations as a linear summation on the right-hand
side. Considering Eqs. (15) and (16), this reduces the order of 𝒗 to a
linear combination of 𝛼𝛽𝑗 and 𝒖𝛽 , thus allowing for the superposition of
the solution of Eq. (34).

𝑲𝑘𝝀𝑘𝑗 = −
(

𝟏𝑇 𝒗◦(𝑝)𝑗

)− 1
2 𝜣2

𝑁
∑

𝛽=1
𝛼𝛽𝑗 𝒖

𝛽 (34)

At each layer 𝑘 and with system matrix 𝑲𝑘, we compute 𝝀𝑘 for the
summation of the total displacement field ∑𝑁

𝛽=1 𝛼
𝛽
𝑗 𝒖

𝛽 . This displacement
field is computed from the nominal AM-simulation settings. The 𝑘th
index on the left-hand side of Eq. (34) varies during the solution,
whereas the index 𝛽 on the right-hand side is fixed to the summation
of the total number of layers N. Thus, to avoid any ambiguity, we have
purposely introduced a new notation 𝛽 on the right-hand side for the
index of the layer.

𝑲𝑘𝝀𝑘𝑗 = −
(

𝟏𝑇 𝒗◦(𝑝)𝑗

)− 1
2 𝜣2

𝑁
∑

𝛽=1
𝛼𝛽𝑗 𝒖

𝛽 (35)

We perceive that the combination of 𝛼𝛽𝑗 𝒖
𝛽 is linear. To superimpose 𝝀𝑘𝑗

for each realization 𝜶𝛽
𝑗 we proceed as follows. First, we solve for 𝝀𝛽,𝑘 at

each layer 𝑘 for the displacement field of each nominal layer-up process
𝒖𝛽 , see Eq. (36). Afterward, we generate 𝝀𝑘𝑗 for each realization as the
linear combination of 𝛼𝛽𝑗 and 𝝀𝛽,𝑘, Eq. (37).

𝐾𝑘𝝀𝛽,𝑘𝑗 = −
(

𝟏𝑇 𝒗◦(𝑝)𝑗

)− 1
2 𝜣2𝒖𝛽 𝑓𝑜𝑟 𝑘 = 1...𝑁 (36)

𝝀𝑘𝑗 =
𝑁
∑

𝛽=1
𝛼𝛽𝑗 𝝀

𝛽,𝑘 (37)

Thus, in this case, we solve only the adjoint system for the nominal AM
process simulation, and then we can superimpose the solutions for all
the other realizations 𝝀𝑘𝑗 , thus leading to 𝑁 × 𝑁 number of equations
to be solved. This is, therefore, a sound approach when the number of
realizations is smaller than the number of layers.
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Fig. 4. Algorithm workflow: integration of the stochastic AM-process simulation into the traditional density-based TO.
3.3.2. Sensitivity formulation for p>2
For the case when the exponent, 𝑝 > 2, in Eq. (34) there is no

significant improvement in the derivations and computational speed-
up since the right-hand side of Eq. (33) is highly nonlinear and hard to
decouple. The solution of the adjoint needs to be done at each layer 𝑘
for all the realizations 𝑚, which leads to a total 𝑚×𝑁 number of system
of equations to be solved.

3.4. FOSM objective function formulation

The computational cost of performing a Monte Carlo simulation is
enormous if 𝑝 > 2. An alternative, less expensive approach is the First-
Order-Second-Moment (FOSM) method. To estimate the mean value
and variance of the distortion measure, 𝛤 is approximated by a Taylor
series expansion at the mean value vector 𝝁𝜶 of the random vector 𝜶.

𝛤 (𝜶) = 𝛤 (𝝁𝜶) +
𝑁
∑

𝑘=1

𝜕𝛤 (𝝁𝜶)
𝜕𝛼𝑘

(

𝛼𝑘 − 𝜇𝑘
𝛼
)

+ 1
2

𝑁
∑

𝑘1=1

𝑁
∑

𝑘2=1

𝜕2𝛤 (𝝁𝛼)
𝜕𝛼𝑘1𝜕𝛼𝑘2

(

𝛼𝑘1 − 𝜇𝑘1
𝛼

)(

𝛼𝑘2 − 𝜇𝑘2
𝛼

)

+⋯

(38)

This approximation is used to approximate Eqs. (19) and (20), respec-
tively. Note 𝑘1 and 𝑘2 are equal to 𝑘 and here they also indicate the
layer number.

Considering only the first-order terms of the Taylor series in Eq. (38)
they provide respectively the approximation of the mean value and the
7

variance w.r.t. the random vector 𝜶.

𝜇𝛤 ≈ 𝛤 (𝝁𝛼)

𝜎2𝛤 ≈
𝑁
∑

𝑘1=1

𝑁
∑

𝑘2=1

𝜕𝛤 (𝝁𝛼)
𝜕𝛼𝑘1

𝜕𝛤 (𝝁𝛼)
𝜕𝛼𝑘2

cov
(

𝛼𝑘1 , 𝛼𝑘2
) (39)

where cov
(

𝛼𝑘1 , 𝛼𝑘2
)

is the covariance of two entries of the input vector
𝜶. In Eq. (39) the distortion quantity 𝛤 (𝜇) is computed using Eqs. (14),
(15) and (18) at the mean value 𝜇𝜶 of the scaling factor 𝜶.

Computing the variance with Eq. (39) requires the derivatives of
𝜕𝛤 (𝝁𝛼 )
𝜕𝛼𝑘 , which are given in Eq. (40).

𝜕𝛤 (𝝁𝛼)
𝜕𝛼𝑘

= 1
𝑝
(𝟏𝑇 𝒗𝑗 )

1
𝑝−1𝟏𝑇 𝑝𝒗◦(𝑝−1)𝑗 ◦𝜣𝒖𝑘 (40)

For the derivation of this equation, refer to Appendix B, with the
end form Eq. (60).

3.5. FOSM sensitivity formulation

The computation of the sensitivity for the mean value simply equals
the deterministic derivative, evaluated for the mean value of the input
parameter vector, i.e., executing Eq. (40) for 𝝁𝛼 . For an efficient com-
putation of the gradient of the variance 𝜎2 , we build the augmented
𝛤
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formulation 𝜒(𝒙,𝜶) using the adjoint method.

(𝒙,𝜶) = 𝜎2𝛤 (𝒙) +
𝑁
∑

𝑘=1
𝛼𝑘𝝀𝑘𝑇

(

𝑲𝑘𝒖𝑘 − 𝒇𝑘)

=
𝑁
∑

𝑘2=1

𝑁
∑

𝑘2=1

𝜕𝛤 (𝝁𝜶)
𝜕𝛼𝑘2

𝜕𝛤 (𝝁𝜶)
𝜕𝛼𝑘2

cov
(

𝛼𝑘2 , 𝛼𝑘2
)

+
𝑁
∑

𝑘=1
𝛼𝑘𝝀𝑘𝑇

(

𝑲𝑘𝒖𝑘 − 𝒇𝑘)

(41)

fter further derivations, given in Appendices B and C, we obtain the
ensitivity as:

𝜕𝜎2𝛤 (𝒙)
𝜕𝑥𝑒

= 𝑴1 +
𝑁
∑

𝑘=1
𝛼𝑘𝝀𝑘𝑇𝑺𝑘 (42)

here 𝑺𝑘 is the same as in Eq. (30) evaluated at 𝝁𝜶 , and 𝑴1 is given
s follows.

1 = 2
𝑁
∑

𝑘2=1

𝑁
∑

𝑘2=1

(

1
𝑁𝑛

)1∕𝑝
𝑨𝑠

𝜕𝛤 (𝝁𝜶)
𝜕𝛼𝑘2

cov
(

𝛼𝑘2 , 𝛼𝑘2
)

(43)

and 𝝀𝑘 is computed from the solution of the adjoint system of equations
t each layer 𝑘.

𝑘𝝀𝑘 =

[

−2
𝑁
∑

𝑘1=1

𝑁
∑

𝑘2=1

(

1
𝑁𝑛

)1∕𝑝
𝑩𝑠

𝜕𝛤 (𝝁𝜶)
𝜕𝛼𝑘2

cov
(

𝛼𝑘1 , 𝛼𝑘2
)

]𝑇

(44)

4. Algorithm workflow and computational cost

In this section, we organize the algorithm workflow in relation to
each formulation of our framework, see Fig. 4.

Important features for each method respectively are the number of
systems of equations needed to be solved for the objective function and
sensitivity, as these mainly drive the computational cost. All the results
are summarized in Table 1. Each method requires the same number
of systems of equations to be solved for evaluation of the objective
function, precisely 𝑁 . FOSM requires the least number of equations
to be solved for the sensitivity, namely 𝑁 systems of equations. The
MC (𝑝 > 2) case requires the most significant number of equations to
be solved for sensitivity 𝑁×𝑚, whereas for the other case, MC (𝑝 = 2),
this number is smaller, namely (𝑁2). This case is more computationally
efficient when the number of realizations 𝑚 is smaller than the number
of layers 𝑁 . Yet, this computational improvement comes at a cost
in memory allocation. Therefore, the use of each method is more
case-related.

5. Numerical examples

5.1. Test setup

The performances of the proposed optimization formulations are
presented and analyzed in this section. To confirm the minimization
of the distortion quantity, we compare the proposed formulations with
the case when only compliance is minimized. From the latter case,
we obtain a reference distortion. Afterward, we run the optimization
while accounting for the AM process simulation without variability
in the process parameter, i.e., deterministic distortion minimization.
We name this case shortly deterministic case. Hence, to illustrate the
robustness of designs obtained with our framework, we compare the
proposed stochastic formulations with the deterministic case, as well as
the comparison of the stochastic formulations FOSM and MC with each
other. As a demonstrative example, we take a cantilever beam with the
dimensions of length 𝑙 = 150 mm, height ℎ = 50 mm and thickness of
𝑑 = 10 mm, see Figs. 5 and 8. Due to the considerable computational
cost, as well as the clarity of presentation of results, all examples are
8

in 2D.
Algorithm 1: Stochastic AM- simulation
Input : 𝒙 -density field, 𝜶𝑗 -control parameters and building

orientation.
Output: statistical measures of the distortion and its gradient

1 𝜣 𝑎𝑛𝑑 𝜕𝜣
𝜕𝑥𝑒

// Compute nodal densities matrix and
their derivative (17),(47)

2 𝑈 [𝑑𝑜𝑓𝑠, 𝑘],𝑺𝑘 ← 𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎.𝟐 // Displacement field
3 if Monte Carlo then
4 if 𝑝 ≺ 2 then
5 for 𝑗 ← 1 j to ← 𝑚 (𝑛𝑜. 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠) do
6 𝛤𝑗 // Comp. (18)
7 end for
8 else
9 for 𝑗 ← 1 j to ← 𝑚 (𝑛𝑜. 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠) do
10 𝛤𝑗 , 𝑃𝑗 // Comp. (18), (19)
11 end for
12 end if
13 else
14 𝛤 ,𝑴1 // Comp. (39), (43),
15 end if
16

𝜕𝛤𝑗 (𝒙)
𝑥𝑒

𝑜𝑟 𝜕𝛤 (𝒙)
𝑥𝑒

← 𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎.𝟑 // Gradient

17 𝜇𝛤 , 𝜎𝛤 ,
𝜕𝜇𝛤
𝜕𝑥𝑒

𝑎𝑛𝑑 𝜕𝜎𝛤
𝜕𝑥𝑒

// Comp. (21) or (22), (23), (24)

18 return 𝜅2𝜇𝛤 (𝑥𝑒) + (1 − 𝜅2)𝜎𝛤 (𝑥𝑒)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑝𝑎𝑟𝑡−𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛

𝜅2
𝜕𝜎𝛤
𝜕𝑥𝑒

+ (1 − 𝜅2)
𝜕𝜎𝛤
𝜕𝑥𝑒

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

Algorithm 2: Stochastic AM-process Objective function
Input : 𝒙 -density field, 𝜶𝑗 -control parameters and building

orientation.
Output : 𝒖[𝑑𝑜𝑓𝑠,𝑘] & 𝑺𝑘 -displacement field and its sub-part

of the sensitivity.
1 𝜣 𝑎𝑛𝑑 𝜕𝜣

𝜕𝑥𝑒
// Retrieve nodal densities matrix

2 for 𝑘 ← 1 to 𝑘 ← 𝑁 (𝑛𝑜. 𝑙𝑎𝑦𝑒𝑟𝑠) do
3 𝐿𝑎𝑠𝑡(𝑘) & 𝑏𝑢𝑖𝑙𝑡(𝑘) // Identify the lastly-added

and already-built layer
4 𝛥𝑓𝑘; 𝜕𝛥𝑓

𝜕𝑥𝑒
; // Comp. (12), (32)

5 𝛥𝑲𝑘; 𝜕𝛥𝑲
𝜕𝑥𝑒

; // Comp. (11), (31)
6 𝒖[𝑑𝑜𝑓𝑠,𝑘] ← 𝛥𝒖𝑘 // Solve (10) for 𝛥𝒖𝑘 and store for

layer 𝑘
7 𝑺𝑘 // Compute from (30) and store for layer-𝑘
8 𝑒𝑚𝑝𝑡𝑦 𝛥𝑓𝑘; 𝜕𝛥𝑓

𝜕𝑥𝑒
;𝑲𝑘

9 end for
10 return 𝒖[𝑑𝑜𝑓𝑠,𝑘] & 𝑺𝑘

Table 1
Number of systems of equations needed to be solved for the objective function and
sensitivity considering the number of realizations 𝑚 and the number of layers 𝑁 .

Method MC (𝑝 > 2) MC (𝑝 = 2) FOSM

Objective function 𝑁 𝑁 𝑁
Sensitivity m × 𝑁 𝑁 × 𝑁 𝑁

Material properties are Young’s modulus 𝐸 = 115 GPa and Poisson’s
ratio 𝜈 = 0.3. For AM-process simulation we borrow the IS (𝛥𝝐 = 0.05)
from the use case example presented in [6]. Plane strain formulation
is used for the FEM implementation. We normalize the compliance by
the applied load and account for the objective function contribution
to the structural analysis. Consequently, we get the magnitude of the
compliance comparable to the distortion coming from the AM-process

with the unit [mm]. For the SIMP interpolation we set the penalization
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Algorithm 3: Sensitivity
Input : 𝒙,𝜶𝑗 ,𝑷 𝑗 ,𝑴1.
Output: 𝜕𝛤𝑗 (𝑥𝑒)

𝑥𝑒
𝑜𝑟 𝜕𝛤 (𝑥𝑒)

𝑥𝑒
1 for 𝑘 ← 1 to 𝑘 ← 𝑁 (𝑛𝑜. 𝑙𝑎𝑦𝑒𝑟𝑠) do
2 𝑏𝑢𝑖𝑙𝑡(𝑘) // Identify already-built layer
3 if Monte Carlo then
4 if P=2 then
5 for 𝛽 ← 1 to 𝛽 ← 𝑁 (𝑛𝑜. 𝑙𝑎𝑦𝑒𝑟𝑠) do
6 𝝀[𝑑𝑜𝑓𝑠,𝑘,𝛽] ← 𝝀𝛽,𝑘 // Comp. (36) and

store-layer 𝛽
7 end for
8 for 𝑗 ← 1 j to ← 𝑚 (𝑛𝑜. 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠) do
9 𝝀𝑘𝑗 ←

∑𝑁
𝛽=1 𝜶

𝛽
𝑗 (𝝀

𝛽,𝑘)𝑇 // Comp. (37)

10
𝜕𝛤𝑗 (𝑥𝑒)

𝑥𝑒
// Comp. (28)

11 end for
12 else
13 for 𝑗 ← 1 j to ← 𝑚 (𝑛𝑜. 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠) do
14 𝝀[𝑑𝑜𝑓𝑠,𝑘,𝑗] ← 𝝀𝑘𝑗 // Comp. (36)

15
𝜕𝛤𝑗 (𝑥𝑒)

𝑥𝑒
// Comp. (28)

16 end for
17 end if
18 else
19 𝝀𝑘𝑗 // Comp. (44)

20
𝜕𝛤𝑗 (𝒙)
𝑥𝑒

// Comp. (28)
21 end if
22 end for
23 return 𝜕𝛤𝑗 (𝒙)

𝑥𝑒
𝑜𝑟 𝜕𝛤 (𝒙)

𝑥𝑒

𝑝𝑒 = 3.5, which is fixed for all cases, and for the density filter scheme
we choose the radius to 𝑟𝑚𝑖𝑛 = 1.7 elements. We choose a low 𝑟𝑚𝑖𝑛
parameter to allow for a reasonably black-and-white design layout in
this context. The volume fraction is set to 0.5. As a penalization factor
for the 𝑝-mean we choose 𝑝 = 12 and 𝑝 = 2. The optimization is
performed for each of the following cases while keeping the same
parameters using MMA from [25] and as convergence criteria are used,
the threshold volume change of 0.05 and as termination criteria 200
iterations. To summarize, the cases that are considered are as follows:

– Only compliance
– Deterministic case
– FOSM
– MC (𝑝 = 2)
– MC (𝑝 > 2) precisely (𝑝 = 12)

We start from the half-full solid design, i.e., 𝑥𝑒 = 0.5. As a scaling
factor we assume 𝛼𝑘𝑗 to have a normal distribution with mean 𝜇 = 1 and
standard deviation 𝜎 = 0.1, i.e. 𝛼𝑘𝑗 ∼  (1, 0.1). Despite that a coefficient
of variation of 10% is not unreasonable, there is no real justification
for this choice. In practical application, the stochastic distribution of
𝛼 should originate from experimental data. To test the method on a
different example, we vary the orientation angle of the 3D-building
process and add a distributed load on the considered edge (see Table 5).

5.2. First example—printing orientation 0◦

The cantilever beam example given in Fig. 5 with a 0◦ orientation
for the AM process simulation is considered as a first example. The
degrees of freedom on the left-hand side are fixed, and a single load
𝑃 = 80𝑘𝑁 is applied to the upper right corner. The short edges of the
domain are taken as interfaces of interest where distortion is measured.
The design domain is discretized by 𝛺 = 300 × 120 elements in the
9

Fig. 5. Case 0◦ printing orientation: The cantilever beam. The loading condition is
indicated by gray color, and the strong black color marks the AM process.

respective horizontal and vertical directions. The number of layers is
fixed to the number of vertical elements, particularly 120 layers. For
MC simulation, 100 realizations are taken into consideration. Note that
𝑚 < 𝑁 , therefore sensitivity analysis for 𝑀𝐶(𝑝 = 2) will be less costly
than 𝑀𝐶(𝑝 > 2). The weighting factor 𝜅1 is set to 0.2 implying that
compliance is 20% of the objective, and distortion parts 80%. On the
other hand, the other weighting factor 𝜅2 is set to 0.4, which likewise
means splitting 40% of the weight on the mean distortion and 60% on
the standard deviation. First, we optimize the structure only for com-
pliance minimization. Afterward, the optimization is performed while
including both, compliance and part-distortion, and we refer to this as
the deterministic case. Ultimately, the latter optimization is performed
taking into consideration the uncertainties in IS while employing our
three proposed stochastic methods. Comparisons of the design layout
are given in Fig. 6, together with the distorted configurations of the
optimized designs, obtained from the nominal AM-process simulation.

For the following comparisons, we refer to the case where we
minimize only compliance to evaluate how the distortion is suppressed
when it is compared to the deterministic case. Eventually, to evaluate
the robustness of our formulation, we compare the deterministic case
with the proposed stochastic methods of this work. Note that only
the distortion of the left and right edges of the design is relevant to
this optimization, distortions within the domain are not included. The
motivation for this is that in practical applications it is typically the
edge of a structure that represents the interface to another structure and
therefore, the deviation from the ideal structure should be controlled
here. This can be accomplished by modifying the selection matrix 𝜣
accordingly. As evident in the zoomed-in, right-hand side, edges taken
into consideration in Fig. 6, all the cases when distortion is included
into the optimization process, i.e., case (b) to (e), lead to a different
blueprint, and significantly lower distortion values, when compared
to the case when only compliance is minimized, case (a). This also
holds for the inner part of the design domain, which is not explicitly
considered in the optimization, since it is coupled with the distortions
at the edges. Furthermore, it is observed that the pairs deterministic
case with FOSM and MC (p = 2) with MC (p>2) generate a similar
layout with respect to each other. This pattern comes from the fact that
for the FOSM approach, less standard deviation is quantified into the
objection function, as evident in Table 3. Thus, this does not lead to
much deviation from the deterministic case. On the other hand, for
the cases MC (p=2) with MC (p>2), more contribution comes from
the standard deviation to the objective function, therefore, leading to
a more similar design layout.

The results in Fig. 6, all show overhanging regions that would
require support to enable printing. This is accepted in this study, as our
focus is on including and studying the effect of AM process uncertainty.
If desired, various methods exist in the literature to control overhanging
regions and/or add support structures.

Noticeable in Fig. 7, during the early iterations, the compliance
quantity decays rapidly for each case, whereas the distortion quantity
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m

Table 2
Case 0◦ printing orientation: comparisons of the statistical quantities of the distortion with the deterministic case and the compliance with the case when only compliance is

inimized using MC with 100 realizations.
Method 𝜇𝐷𝑖𝑠𝑡. w.r.t (1) w.r.t (2) 𝜎𝐷𝑖𝑠𝑡. w.r.t (1) w.r.t (2) Compliance

(1) Only compliance 11.875 4.68 × 10−1 9.8071
(2) Deterministic case 7.7442 ↓ 35.6% 3.2 × 10−1 ↓ 31.4% 10.1732 ↑ 3.7%
(3) FOSM 2.844 ↓ 76% ↓ 62.7% 2.52 × 10−1 ↓ 46.16% ↓ 21.4% 10.8203 ↑ 10.3%
(4) MC (p=2) 1.45 ↓ 88.7% ↓ 81% 3.6 × 10−2 ↓ 92.2% ↓ 88.6% 11.2650 ↑ 14.8%
(5) MC (p>2) 0.45 ↓ 96.2% ↓ 94% 1.2 × 10−2 ↓ 92% ↓ 88.6% 11.2650 ↑ 14.8%
Table 3
Case 0◦ printing orientation: comparisons of the statistical quantities of the distortion while evaluated with FOSM and MC with 100 realizations.

Method 𝜇𝐹𝑂𝑆𝑀 𝜇𝑀𝐶 𝜎𝐹𝑂𝑆𝑀 𝜎𝑀𝐶

FOSM 2.78 2.844 ↑ 2.2% 2.09 × 10−2 2.52 × 10−1 ↑ 91.7%
spikes. Afterward, due to local reconfiguration of the design layout, the
distortion quantities decay swiftly for each method too. This switch of
magnitudes happens because the compliance contribution is larger than
the distortion quantity at the initial state, and so does the respective
sensitivity. Hence, the algorithm will emphasize the compliance contri-
bution more than the distortion measure during early iterations. After
approximately 50 iterations, the optimizer balances these two quanti-
ties to a comparable magnitude. Thereafter, both quantities follow a
slow, yet steady, decay. However, each case has some fluctuation in
the distortion quantity throughout the iterations.

While comparing the deterministic case with the stochastic cases,
not only the standard deviation is strongly minimized, but also the prin-
cipal distortion quantity, the mean value, is further minimized. In this
example, the MC (p>2) result shows the highest robustness against dis-
tortion. Of the robust cases, the FOSM case shows the least robustness
improvement, with a standard deviation reduction of 21.47% w.r.t. the
deterministic case, as opposed to 88.65% and 96.1% reductions for both
MC cases. All these improvements in the distortion quantity come with
a slight increase in compliance. More specifically, for this particular
example, we see a 3.7% increase in compliance for the deterministic
case, 10.3% for FOSM and 14.8% for MC (𝑝 > 2) . This is expected and
can be seen as the cost of the increased robustness against AM-induced
distortions. The statistical quantities of the distortion summarized in
Table 2 are evaluated using MC simulation on the final design. We
do so because FOSM lacks accuracy on capturing all these quantities
precisely. Because the FOSM method is used for graphically quantifying
statistical quantities in the optimization process for the FOSM case,
we do a comparison of their statistical quantities using MC and the
results are summarized in Table 3. For the mean value, the difference
between FOSM and MC distortion evaluation is small: 2.6% for the
deterministic design, and 5% for the FOSM design. Considering the
far lower computational cost of FOSM, this is acceptable. However,
the standard deviation is 91% larger for both designs, which is a
large difference. This may explain why the FOSM design also showed
only modest improvements in robustness compared to the MC cases
(Table 2).

Finally, it is noted that in this particular case, we may see a
significant improvement of the distortion because for the compliance
minimization design case the majority of the elements associated with
the interface nodes of interest become void, on the left and right
boundary of the domain. This also removes their contribution from
the distortion measure. For this reason, a second example is considered
where this is much less the case.

5.3. Second example—printing orientation 90◦

This section presents the second application of the proposed ap-
proach. The cantilever beam is loaded with a distributed load of
8 𝑘𝑁∕𝑚 on the right edge, see Fig. 8. In this case, a significant
10
difference is also that the AM process simulation is performed while
the design domain is orientated at 90◦.

In this example, the design domain is discretized by 𝛺 = 90 ×
300 elements in respectively horizontal and vertical directions. The
number of layers is fixed to the number of vertical elements, in this
case, 300 layers. For MC simulation, 100 realizations are taken into
consideration.

Note that again 𝑚 < 𝑁 and by a larger factor than in Example 1,
therefore again, sensitivity analysis for 𝑀𝐶(𝑝 = 2) will be less costly
than 𝑀𝐶(𝑝 > 2). Multiobjective weights are kept the same as in the
first example, i.e., 𝜅1 = 0.2 and 𝜅2 = 0.4.

Fig. 8 illustrates the initial domain. The other parameters are as-
signed the same values as used in the first example too. Therefore, the
goal is to find a design layout, which has both, (1) minimal compliance
and (2) minimal distortion’ statistical components. The optimization is
again performed for the five formulations, and the design layouts are
given in Fig. 9 while maintaining the same order as in Example 1.

From Fig. 10 we observe that the mean value and the standard
deviation have a smoother behavior when it is compared to the first
example. This behavior is because the edge taken into consideration in
this case always remains solid with respect to compliance minimization.
Hence, there is no sudden large void, as opposed to the first example,
which leads to sharp decay in the distortion quantity followed by
continued fluctuations.

For this problem, see Fig. 9, it is observed that designs have con-
verged to a clear solid/void solution. Furthermore, in this example,
all the cases when distortion is included into the optimization process
lead to a different blueprint, i.e., the edges have darker blue, hence less
distortion. This is observed when these blueprints are compared to the
case when only compliance is minimized. Unlike the first example, it
is observed that only the pairs MC (p=2) with MC (p>2) generate a
similar layout. The other robust optimization cases, FOSM, generates
a different design layout when compared to deterministic case and MC
(p=2) & (p>2). This pattern comes from the fact that for the FOSM
the standard deviation is underestimated less in the objective function,
when compared to the first example, see Table 3. On the other hand, for
the cases MC (p=2) and MC (p>2) do not suffer from this inaccuracy,
therefore, leading to a more similar design layout and different from
the other two cases.

More specifically, for this particular example, we see 47.5% increase
in compliance for the deterministic case, 48.2% for FOSM, 70% for MC
(p=2) and 50% for MC (𝑝 > 2) . The results are summarized in Table 4.

Clearly, for this example, distortion control is more demanding, and
a stronger trade-off is needed w.r.t. the compliance of the design. In
comparison to the deterministic case, FOSM again shows only modest
robustness improvements (2.7% reduction of the mean distortion, and
10.2% reduction in standard deviation). As before, the MC formulations
achieve larger distortion robustness gains. MC (p=2) shows again the

strongest performance with 81% and 87% reductions in mean and
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Fig. 6. The optimized design layout for respectively (a) Only compliance ; (b) Deterministic case; (c) FOSM ; (d) MC (𝑝 > 2) and (e) MC (p=2). On the right-hand side are given
the deformed structures from the fabrication process, with distortion magnitude in mm. The AM process simulation is performed while the design domain is orientated 0◦.
Table 4
Case 90◦ printing orientation: comparisons of the statistical quantities of the distortion with the deterministic case and the compliance with the case when only compliance is
minimized using MC with 100 realizations.

Method 𝜇𝐷𝑖𝑠𝑡. w.r.t (1) w.r.t (2) 𝜎𝐷𝑖𝑠𝑡. w.r.t (1) w.r.t (2) Compliance

(1) Only compliance 6.01 8 × 10−2 77.53
(2) Deterministic case 4.77 ↓ 20% 3.9 × 10−2 ↓ 51.3% 114.42 ↑ 47.5%
(3) FOSM 4.5691 ↓ 23% ↓ 2.7% 3.5 × 10−2 ↓ 56.2% ↓ 10.2% 114.9 ↑ 48.2%
(4) MC (p=2) 0.8843 ↓ 41% ↓ 81% 5.1 × 10−3 ↓ 93.6% ↓ 86.9% 132.4 ↑ 70%
(5) MC (p>2) 3.77 ↓ 37% ↓ 20.9% 2.09 × 10−2 ↓ 73.8% ↓ 46.4% 116.88 ↑ 50%
11
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Table 5
Case 90◦ printing orientation: comparisons of the statistical quantities of the distortion while evaluated with FOSM and MC
with 100 realizations.

Method 𝜇𝐹𝑂𝑆𝑀 𝜇𝑀𝐶 𝜎𝐹𝑂𝑆𝑀 𝜎𝑀𝐶

FOSM 4.36 4.569 ↑ 4.4% 3.8 × 10−3 3.5 × 10−2 ↑ 89.1%
Fig. 7. Case 0◦ printing orientation: The evolution of (a) compliance, and (b) the mean
value for the distortion quantity together with (c) standard deviation.
12
Fig. 8. Case 90◦ printing orientation: Design domain and the loading scheme. The
distributed loading condition is indicated by gray color, and the strong black color
marks the AM process.

standard deviation, respectively. MC (𝑝 > 2) also performs clearly
better than FOSM, but with less statistical distortion quantity reductions
of 21% and 46.4%, respectively.

6. Conclusion

Controlling process-induced part distortion is an important topic
in design for Additive Manufacturing (AM). Failing to limit distortion
in critical regions leads to unfit parts and even build failures. While
AM process simulations such as the inherent strain method can be
used to predict distortion, there is inherent uncertainty regarding the
applicability of certain calibrated strains for a new part. This paper
proposes the first method to address this challenge by including the
inherent uncertainty within the AM process model into a multiobjective
topology optimization, aimed at maximizing both part performance and
robustness against process-induced distortion.

The inclusion of stochastic AM process simulation provides an en-
hanced and effective means to control part distortion and provides new
avenues in robust design.

The two considered robust formulations, namely, Monte Carlo (𝑀𝐶)
and First-Order-Second-Moment (𝐹𝑆𝑂𝑀), perform satisfactorily in op-
timizing a distortion measure simultaneously with structural compli-
ance.

In this paper, the inherent strain magnitude in each deposited
layer is chosen as a stochastic variable to demonstrate this concept.
In combination with a linearized inherent strain-based AM process
simulation, significant computational gains were obtained to limit the
additional cost of a robust versus a deterministic optimization. The
proposed approach implies the assumption that the random parameters
are constant in each layer, and only vary in build direction. If a full
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Fig. 9. The optimized design layout for respectively (a) Only compliance (b) Deter-
ministic case; (c) FOSM ; (d) MC (p=2), (e) MC (𝑝 > 2) . On the right-hand side, the
distortion from the fabrication process is shown, with distortion magnitude in mm. The
AM process simulation is performed for a design domain orientated 90◦ with respect
to the longest dimension.

two- or three-dimensional random field is considered, we do not see an
alternative to using plain Monte Carlo simulations.

The adversarial nature of compliance and part distortion induces the
optimizer to frequently reconfigure the design layout during the initial
iterations. It is observed that improvements in the distortion measure
come with an increase in compliance.

Compared to a compliance-only design, all proposed methods are
capable of achieving significant distortion reductions. Compared to a
deterministic case, including robustness leads to both a lower mean
and standard deviation of the distortion measure. Furthermore, it was
found that the FOSM method for standard deviation estimate was
considerably less accurate than an MC reference. This explains the
less significant reductions in standard deviations obtained in robust
optimization of the part topology using FOSM, relative to results using
MC.

In terms of computational cost, each method requires the same
number of systems of equations to be solved for the evaluation of the
13
Fig. 10. Case 90◦ printing orientation: The evolution of (a) compliance, and (b) the
mean value for the distortion quantity together with (c) standard deviation.

objective function, proportional to the number of layers 𝑁 . Regarding
the sensitivity analysis, FOSM requires the least number of additional
systems of equations to be solved for the sensitivity, namely 𝑁 . The
𝑀𝐶 cases, in general, require 𝑁2 additional systems of equations to
be solved for the sensitivities. An exception holds for the case where
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the distortion measure is defined as a 2-norm. In that case, MC case
is more computational efficient when the number of realizations 𝑚 is
smaller than the number of layers 𝑁 , but this improvement comes at a
memory cost.

This study involves only 2D examples due to the high computational
effort associated with the general MC formulation. As the MC formu-
lation using a 2-norm distortion measure showed good performance
and reduced computational effort, as future work, it is recommended to
develop a 3D version of the algorithm based on this approach. While
robust optimization against part distortion is more expensive than a
deterministic approach, large distortion reductions have been observed.
Accounting for uncertainty in AM process models may well be a more
practical direction than increasing the fidelity and computational cost
of the models themselves.
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Appendix A

Here we derive the sensitivity for one realization using the adjoint
method. Although the quantity of interest 𝛤 (𝒙,𝜶𝑗 ) is dependent on both
𝒙 and 𝜶𝑗 , for the sake of brevity, we acknowledge this, and we keep
these parameters outside the left-hand side of the equation notation.
First, we decompose the functions 𝛤 (𝒙,𝜶𝑗 ), and write their respective
derivatives.

𝛤𝑗 =
(

1
𝑁𝑛

)1∕𝑝
(𝐿𝑗 )

1
𝑝

𝜕𝛤𝑗
𝜕𝐿𝑗

=
(

1
𝑁𝑛

)1∕𝑝 1
𝑝 (𝐿𝑗 )

1
𝑝−1

𝑗 = 𝟏𝑇 𝒇 𝑗
𝜕𝐿𝑗
𝜕𝒇 𝑗

= 𝟏𝑇

𝑗 = 𝒗◦(𝑝)𝑗
𝜕𝒇 𝑗
𝜕𝒗𝑗

= 𝑝𝒗◦(𝑝−1)𝑗

𝒗𝑗 = 𝜣𝒖𝑗
𝜕𝒗𝑗
𝜕𝑥𝑒

= 𝜕𝜣
𝜕𝑥𝑒

𝒖𝑗 +𝜣 𝜕𝒖𝑗
𝜕𝑥𝑒

𝑗 =
∑𝑁

𝑘=1 𝛼
𝑘
𝑗 𝒖

𝑘 𝜕𝒖𝑗
𝜕𝑥𝑒

=
∑𝑁

𝑘=1 𝛼
𝑘
𝑗
𝜕𝒖𝑘
𝜕𝑥𝑒

(45)

Then, we use the chain rule to formulate the sensitivity w.r.t. design
parameter 𝑥𝑒.
𝜕𝛤𝑗

𝜕𝑥𝑒
=

𝜕𝛤𝑗

𝜕𝐿𝑗

𝜕𝐿𝑗

𝜕𝒇 𝑗

𝜕𝒇 𝑗

𝜕𝒗𝑗
◦
𝜕𝒗𝑗
𝜕𝑥𝑒

(46)

We then substitute the sub-parts of the chain rule, Eq. (45), to Eq. (46)
and we get the following equation.

𝜕𝛤𝑗

𝜕𝑥𝑒
=
(

1
𝑁𝑛

)1∕𝑝 1
𝑝

(

𝟏𝑇 𝒗◦(𝑝)𝑗

)
1
𝑝−1 𝑝𝑒𝑇

(

𝒗◦(𝑝−1)𝑗 ◦
𝜕𝒗𝑗
𝜕𝑥𝑒

)

=
(

1
)1∕𝑝

(

𝟏𝑇 𝒗◦(𝑝)
)

1
𝑝−1 𝟏𝑇

(

𝒗◦(𝑝−1)◦
𝜕𝒗𝑗

)

(47)
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𝑁𝑛
𝑗 𝑗 𝜕𝑥𝑒
here:
𝜕𝒗𝑗
𝜕𝑥𝑒

= 𝜕𝜣
𝜕𝑥𝑒

𝒖𝑗 +𝜣
𝜕𝒖𝑗
𝜕𝑥𝑒

(48)

𝜣 =
{

𝑥𝑛𝑜𝑑𝑒 for interface DOFs
0 otherwise (49)

𝜕𝜣
𝜕𝑥𝑒

=

{ 𝜕𝑥𝑛𝑜𝑑𝑒
𝜕𝑥𝑒

for interface DOFs
0 otherwise

(50)

Afterward, we build the adjoint formulation for one realization, the
nominal simulation, upon which we will then superimpose all the other
realizations.

𝑗 = 𝛤𝑗 +
𝑁
∑

𝑘=1
𝛼𝑗

𝑘𝝀𝑘𝑇
(

𝐾𝑘𝒖𝑘 − 𝒇𝑘) (51)

Then we proceed with further derivations w.r.t 𝑥𝑒.

𝜕𝑗

𝜕𝑥𝑒
=
(

1
𝑁𝑛

)1∕𝑝

▷
▷1
𝑝

(

𝟏𝑇 𝒗◦(𝑝)𝑗

)
1
𝑝−1

▷𝑝𝟏
𝑇
(

𝒗◦(𝑝−1)𝑗 ◦
𝜕𝒗𝑗
𝜕𝑥𝑒

)

+
(

1
𝑁𝑛

)1∕𝑝 𝑁
∑

𝑘=1
𝛼𝑘𝑗 𝝀

𝑘𝑇
𝑗

(

𝜕𝑲𝑘

𝜕𝑥𝑒
𝒖𝑘 +𝐾𝑘 𝜕𝒖𝑘

𝜕𝑥𝑒
−

𝜕𝒇𝑘

𝜕𝑥𝑒

)

(52)

Note: The operation 𝟏𝑇
(

𝒗◦(𝑝−1)𝑗 ◦
𝜕𝒗𝑗
𝜕𝑥𝑒

)

can be rewritten as a normal

vector multiplication 𝒗◦(𝑝−1)
𝑇

𝑗
𝜕𝒗𝑗
𝜕𝑥𝑒

, thus we eliminate Hadamard product.

𝜕𝑗

𝜕𝑥𝑒
=
(

1
𝑁𝑛

)1∕𝑝
(

𝟏𝑇 𝒗◦(𝑝)𝑗

)
1
𝑝−1 𝒗◦(𝑝−1)

𝑇

𝑗

𝜕𝒗𝑗
𝜕𝑥𝑒

+
𝑁
∑

𝑘=1
𝛼𝑘𝑗 𝝀

𝑘𝑇
𝑗

(

𝜕𝐾𝑘

𝜕𝑥𝑒
𝒖𝑘 +𝑲𝑘 𝜕𝒖𝑘

𝜕𝑥𝑒
−

𝜕𝒇𝑘

𝜕𝑥𝑒

)

(53)

After rearrangements, we group according to 𝛼𝑘𝑗
𝜕𝒖𝑘
𝜕𝑥𝑒

.

𝜕𝑗

𝜕𝑥𝑒

=
𝑁
∑

𝑘=1

(

(

1
𝑁𝑛

)1∕𝑝
(

𝟏𝑇 𝒗◦(𝑝)𝑗

)
1
𝑝−1 𝒗◦(𝑝−1)

𝑇

𝑗 𝜣 + 𝝀𝑘𝑇𝑗 𝑲𝑘

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=0 adjoint equation

𝛼𝑘𝑗
𝜕𝒖𝑘
𝜕𝑥𝑒

+
(

1
𝑁𝑛

)1∕𝑝
(

𝟏𝑇 𝒗◦(𝑝)𝑗

)
1
𝑝−1 𝒗◦(𝑝−1)

𝑇

𝑗
𝜕𝜣
𝜕𝑥𝑒

𝒖𝑗

+
𝑁
∑

𝑘=1
𝛼𝑘𝑗 𝝀

𝑘𝑇
𝑗

(

𝜕𝑲𝑘

𝜕𝑥𝑒
𝒖𝑘 −

𝜕𝒇𝑘

𝜕𝑥𝑒

)

(54)

Solving the adjoint system of equations given in Eq. (55) at each layer
𝑘, for all the realizations 𝑗 we get 𝝀𝑘𝑗 .

𝑘𝝀𝑘𝑗 = −
(

1
𝑁𝑛

)1∕𝑝
(

𝑒𝑇 𝒗◦(𝑝)𝑗

)
1
𝑝−1 𝜣𝒗◦(𝑝−1)𝑗 (55)

𝜕𝑗

𝜕𝑥𝑒
=
(

1
𝑁𝑛

)1∕𝑝
(

𝟏𝑇 𝒗◦(𝑝)𝑗

)
1
𝑝−1 𝒗◦(𝑝−1)

𝑇

𝑗
𝜕𝜣
𝜕𝑥𝑒

𝒖𝑗

+
𝑁
∑

𝑘=1
𝛼𝑘𝑗 𝝀

𝑘𝑇
𝑗

(

𝜕𝑲𝑘

𝜕𝑥𝑒
𝒖𝑘 −

𝜕𝒇𝑘

𝜕𝑥𝑒

)

(56)

After computing the multipliers with Eq. (55), we substitute 𝝀𝑘𝑗 in
Eq. (56), and eventually the final form of the sensitivity will be as
obtained.
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Appendix B

Here, we write the direct derivative of the variance 𝜎2𝑓 of 𝛤 for the
OSM approach. To compute the variance 𝜎2𝑓 , given in Eq. (57), we
eed 𝜕𝛤 (𝜇𝜶 )

𝜕𝛼𝑘 .

2
𝛤 =

𝑁
∑

𝑘1=1

𝑁
∑

𝑘2=1

𝜕𝛤 (𝝁𝜶)
𝜕𝛼𝑘1

𝜕𝛤 (𝝁𝜶)
𝜕𝛼𝑘2

cov
(

𝛼𝑘1 , 𝛼𝑘2
)

(57)

ence, we derive 𝜕𝛤
𝜕𝛼𝑘 using the chain rule

𝛤 =
(

1
𝑁𝑛

)1∕𝑝
(𝐿)

1
𝑝 𝜕𝛤

𝜕𝐿 =
(

1
𝑁𝑛

)1∕𝑝 1
𝑝 (𝐿)

1
𝑝−1

= 𝟏𝑇 𝒇 𝜕𝐿
𝜕𝒇 = 𝟏𝑇

𝒇 = 𝒗◦(𝑝) 𝜕𝒇
𝜕𝒗 = 𝑝𝒗◦(𝑝−1)

𝒗 = 𝜣𝒖 𝜕𝒗
𝜕𝒖 = 𝜣

𝒖 =
∑𝑁

𝑘=1 𝛼
𝑘𝒖𝑘 𝜕𝒖

𝜕𝛼𝑘 = 𝒖𝑘

(58)

𝜕𝛤
𝜕𝛼𝑘

=
(

1
𝑁𝑛

)1∕𝑝 1
𝑝
(𝐿)

1
𝑝−1 𝜕𝐿

𝜕𝛼𝑘

𝜕𝛤
𝜕𝛼𝑘

=
(

1
𝑁𝑛

)1∕𝑝 1
𝑝
(𝐿)

1
𝑝−1 𝜕𝐿

𝜕𝒇
𝜕𝒇
𝜕𝒗

◦
𝜕𝒗
𝜕𝒖

𝜕𝒖
𝜕𝛼𝑘

(59)

𝜕𝛤
𝜕𝛼𝑘

=
(

1
𝑁𝑛

)1∕𝑝 1
𝑝
(𝐿)

1
𝑝−1𝟏𝑇 𝑝𝒗◦(𝑝−1)◦𝜣𝒖𝑘 (60)

As a next step, we compute 𝜕𝛤
𝜕𝑥𝑒

using again the chain rule, and we

substitute it in Eq. (60) to obtain 𝜕2𝛤 (𝝁𝜶 )
𝜕𝛼𝑘𝜕𝑥𝑒

, which is needed to solve the
djoint system in Eq. (73).

𝜕𝛤
𝜕𝑥𝑒

= 𝜕𝛤
𝜕𝐿

𝜕𝐿
𝜕𝒇

𝜕𝒇
𝜕𝒗

◦
𝜕𝒗
𝜕𝑥𝑒

(61)

𝛤 =
(

1
𝑁𝑛

)1∕𝑝
(𝐿)

1
𝑝 𝜕𝛤

𝜕𝐿 =
(

1
𝑁𝑛

)1∕𝑝 1
𝑝 (𝐿)

1
𝑝−1

= 𝟏𝑇 𝒇 𝜕𝐿
𝜕𝒇 = 𝟏𝑇

𝒇 = 𝒗◦(𝑝) 𝜕𝒇
𝜕𝒗 = 𝑝𝒗◦(𝑝−1)

𝒗 = 𝜣𝒖 𝜕𝒗
𝜕𝑥𝑒

= 𝜕𝜣
𝜕𝑥𝑒

𝒖 +𝜣 𝜕𝒖
𝜕𝑥𝑒

=
∑𝑁

𝑘=1 𝛼
𝑘𝒖𝑘 𝜕𝒖

𝜕𝑥𝑒
=
∑𝑁

𝑘=1 𝛼
𝑘 𝜕𝒖𝑘
𝜕𝑥𝑒

(62)

After we substitute the sub-parts of the chain rule, particularly Eq. (62),
into Eq. (61) we get

𝜕2𝛤 (𝝁𝜶)
𝜕𝛼𝑘𝜕𝑥𝑒

=
(

1
𝑁𝑛

)1∕𝑝 1
𝑝

(

1
𝑝
− 1

)

(𝐿)
1
𝑝−2

(

𝜕𝐿
𝜕𝒙𝑒

)

𝟏𝑇 𝑝𝒗◦(𝑝−1)

◦𝜣𝒖𝑘

+
(

1
𝑁𝑛

)1∕𝑝 1
𝑝
(𝐿)

1
𝑝−1𝟏𝑇 𝑝

𝜕𝒗◦(𝑝−1)

𝜕𝑥𝑒
◦𝜣𝒖𝑘

+
(

1
)1∕𝑝 1 (𝐿)

1
𝑝−1𝟏𝑇 𝑝𝒗◦(𝑝−1)◦𝜣 𝜕𝒖𝑘

(63)
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𝑁𝑛 𝑝 𝜕𝑥𝑒
Afterwards, we isolate 𝛼𝑘
∑𝑁

𝑘=1
𝜕𝒖𝑘
𝜕𝑥𝑒

and we get:

𝜕2𝛤 (𝝁𝜶)
𝜕𝛼𝑘𝜕𝑥𝑒

=

(

1
𝑁𝑛

)1∕𝑝 1
𝑝

(

1
𝑝
− 1

)

(𝐿)
1
𝑝−2

[

𝟏𝑇 𝑝𝒗◦(𝑝−1)◦
(

𝜕𝜣
𝜕𝑥𝑒

𝒖
)]

𝟏𝑇 𝑝𝒗◦(𝑝−1)◦𝜣𝒖𝑘

+
(

1
𝑁𝑛

)1∕𝑝 1
𝑝
(𝐿)

1
𝑝−1

[

𝟏𝑇 𝑝(𝑝 − 1)𝒗◦(𝑝−2)◦
(

𝜕𝜣
𝜕𝑥𝑒

𝒖
)]

◦𝜣𝒖𝑘

+
(

1
𝑁𝑛

)1∕𝑝 1
𝑝

(

1
𝑝
− 1

)

(𝐿)
1
𝑝̄−2

(

𝟏𝑇 𝑝𝒗◦(𝑝−1)◦𝜣𝒖𝑘
)

[

𝟏Tp𝒗◦(𝑝−1)◦
(

𝜣
𝑁
∑

𝑘=1
𝛼𝑘 𝜕𝒖

𝑘

𝜕𝑥𝑒

)]

+
(

1
𝑁𝑛

)1∕𝑝 1
𝑝
(𝐿)

1
𝑝−1𝟏𝑇 𝑝(𝑝 − 1)𝜣𝒖𝑘◦𝒗◦(𝑝−2)

◦

[

𝜣
𝑁
∑

𝑘=1
𝛼𝑘 𝜕𝒖

𝑘

𝜕𝑥𝑒

]

+
(

1
𝑁𝑛

)1∕𝑝 1
𝑝
𝛿𝑟𝑠

1
𝑝
(𝐿)

1
𝑝−1𝟏𝑇 𝑝𝒗◦(𝑝−1)◦𝜣 1

𝛼𝑘

𝑁
∑

𝑘=1
𝛼𝑘 𝜕𝒖

𝑘

𝜕𝑥𝑒
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=0 𝑓𝑜𝑟 𝑟≠𝑠

(64)

where:

𝛿𝑟𝑠 =

{

1 if 𝑟 = 𝑠
0 otherwise

(65)

Because we want to isolate 𝜕𝒖𝑘
𝜕𝑥𝑒

to solve the adjoint equation we
rewrite Eq. (65) while grouping relevant terms for our purpose.

𝜕2𝛤 (𝝁𝜶)
𝜕𝛼𝑘𝜕𝑥𝑒

=
(

1
𝑁𝑛

)1∕𝑝

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
𝑝

(

1
𝑝 − 1

)

(𝐿)
1
𝑝−2

[

𝟏𝑇 𝑝𝒗◦(𝑝−1)◦
(

𝜕𝜣
𝜕𝑥𝑒

𝒖
)]

𝟏𝑇 𝑝𝒗◦(𝑝−1)◦𝜣𝒖𝑘

+ 1
𝑝 (𝐿)

1
𝑝−1

[

𝟏𝑇 𝑝(𝑝 − 1)𝒗◦(𝑝−2)◦
(

𝜕𝜣
𝜕𝑥𝑒

𝒖
)]

◦𝜣𝒖𝑘

⎫

⎪

⎪

⎬

⎪

⎪

⎭

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑨𝑠

+

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1
𝑝

(

1
𝑝 − 1

)

(𝐿)
1
𝑝−2

(

𝟏𝑇 𝑝𝒗◦(𝑝−1)◦𝜣𝒖𝑘
)

(

𝟏𝑇 𝑝𝒗◦(𝑝−1)◦𝜣
)

+

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1
𝑝 (𝐿)

1
𝑝−1𝟏𝑇 𝑝(𝑝 − 1)𝜣𝒖𝑘◦𝒗◦(𝑝−2)◦𝜣

+ 𝛿𝑟𝑠
1
𝛼𝑘

1
𝑝
(𝐿)

1
𝑝−1𝟏𝑇 𝑝𝒗◦(𝑝−1)◦𝜣

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=0 for 𝑟≠𝑠

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑩𝑠

(

1
𝑁𝑛

)1∕𝑝 𝑁
∑

𝑘=1
𝛼𝑘 𝜕𝒖

𝑘

𝜕𝑥𝑒

(66)

ence, we observe the compact form of 𝜕2𝛤 (𝝁𝜶 )
𝜕𝛼𝑘𝜕𝑥𝑒

.

𝜕2𝛤 (𝝁𝜶)
𝑘 =

(

1
)1∕𝑝

𝑨𝑠 +
(

1
)1∕𝑝

𝑩𝑠

𝑁
∑

𝛼𝑘 𝜕𝒖
𝑘

(67)

𝜕𝛼 𝜕𝑥𝑒 𝑁𝑛 𝑁𝑛 𝑘=1 𝜕𝑥𝑒
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𝑨

𝑨

𝑩

W

a
e

A

𝑝

𝛶

where 𝑨𝑠 and 𝑩𝑠 are given respectively in Eq. (69) and Eq. (71). Since
𝜕𝒖𝑘
𝜕𝑥𝑒

is expensive, we use the adjoint method for the variance.

𝑠 =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

1
𝑝

(

1
𝑝 − 1

)

(𝐿)
1
𝑝−2

[

𝟏𝑇 𝑝𝒗𝑝−1◦
(

𝜕𝜣
𝜕𝑥𝑒

𝒖
)]

𝟏𝑇 𝑝𝒗◦(𝑝−1)◦𝜣𝒖𝑘
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑨1

+ 1
𝑝 (𝐿)

1
𝑝−1

[

𝟏𝑇 𝑝(𝑝 − 1)𝒗◦(𝑝−2)◦
(

𝜕𝜣
𝜕𝑥𝑒

𝒖
)]

◦𝜣𝒖𝑘
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑨2

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

(68)

𝑠 = 𝑨1 +𝑨2 (69)

𝑠 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑝
(

1
𝑝 − 1

)

(𝐿)
1
𝑝−2

(

𝟏𝑇 𝑝𝒗◦(𝑝−1)◦𝜣𝒖𝑘
)

(

𝟏𝑇 𝑝𝒗◦(𝑝−1)◦𝜣
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑩1

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
𝑝
(𝐿)

1
𝑝−1𝟏𝑇 𝑝(𝑝 − 1)𝜣𝒖𝑘◦𝒗◦(𝑝−2)◦𝜣

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑩2

+ 𝛿𝑟𝑠
1
𝛼𝑘

1
𝑝
(𝐿)

1
𝑝−1𝟏𝑇 𝑝𝒗◦(𝑝−1)◦𝜣

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=0 for 𝑟≠𝑠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑩3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(70)

𝑩𝑠 = 𝑩1 + 𝑩2 + 𝑩3 (71)

Appendix C

Given the augmented formulation 𝜒(𝒙,𝜶) of variance 𝜎𝛤 2(𝒙) com-
puted using the adjoint method:

𝜒(𝒙,𝜶) = 𝜎2𝛤 (𝒙) +
𝑁
∑

𝑘=1
𝛼𝑘𝝀𝑘𝑇

(

𝑲𝑘𝒖𝑘 − 𝒇𝑘)

=
𝑁
∑

𝑘1=1

𝑁
∑

𝑘2=1

𝜕𝛤 (𝝁𝜶)
𝜕𝛼𝑘1

𝜕𝛤 (𝝁𝜶)
𝜕𝛼𝑘2

cov
(

𝛼𝑘1 , 𝛼𝑘2
)

+
𝑁
∑

𝑘=1
𝛼𝑘𝝀𝑘𝑇

(

𝑲𝑘𝒖𝑘 − 𝒇𝑘)

(72)

e differentiate 𝜒 w.r.t. the design parameter 𝑥𝑒:

𝜕𝜒(𝒙,𝜶)
𝜕𝑥𝑒

= 2
N

∑

𝑘1=1

𝑁
∑

𝑘2=1

𝜕2𝛤 (𝝁𝜶)
𝜕𝑥𝑒𝜕𝛼𝑘1

𝜕𝛤 (𝝁𝜶)
𝜕𝛼𝑘2

cov
(

𝛼𝑘1 , 𝛼𝑘2
)

+
𝑁
∑

𝑘=1
𝛼𝑘𝝀𝑘𝑇

(

𝜕𝑲𝑘

𝜕𝑥𝑒
𝒖𝑘 +𝑲𝑘 𝜕𝒖𝑘

𝜕𝑥𝑒
−

𝜕𝒇𝑘

𝜕𝑥𝑒

)

(73)

In Eq. (73) we substitute 𝜕2𝛤 (𝝁𝜶 )
𝜕𝛼𝑘𝜕𝑥𝑒

=
(

1
𝑁𝑛

)1∕𝑝
𝑨𝑠 +

(

1
𝑁𝑛

)1∕𝑝
𝑩𝑠

∑𝑁
𝑘=1

𝛼𝑘 𝜕𝒖𝑘
𝜕𝑥𝑒

, given in Eq. (66) in Appendix A, for the mixed partial derivative
𝜕2𝛤 (𝝁𝜶 )
𝜕𝛼𝑘𝜕𝑥𝑒

.

𝜕𝜒(𝒙,𝜶)
𝜕𝑥𝑒

= 2
𝑁
∑

𝑘1=1

𝑁
∑

𝑘2=1

(

1
𝑁𝑛

)1∕𝑝
(

𝑨𝑠 + 𝑩𝑠

𝑁
∑

𝑘=1
𝛼𝑘 𝜕𝒖

𝑘

𝜕𝑥𝑒

)

𝜕𝛤 (𝝁𝜶)
𝜕𝛼𝑘2

cov
(

𝛼𝑘1 , 𝛼𝑘2
)

+
𝑁
∑

𝛼𝑘𝝀𝑘𝑇
(

𝜕𝑲𝑘
𝒖𝑘 +𝑲𝑘 𝜕𝒖𝑘 −

𝜕𝒇𝑘)

(74)
16

𝑘=1 𝜕𝑥𝑒 𝜕𝑥𝑒 𝜕𝑥𝑒
Afterwards, we rearrange Eq. (74).

𝜕𝜒(𝒙,𝜶)
𝜕𝑥𝑒

=2
𝑁
∑

𝑘1=1

𝑁
∑

𝑘2=1

(

1
𝑁𝑛

)1∕𝑝
𝑨𝑠

𝜕𝛤 (𝝁𝜶)
𝜕𝛼𝑘2

cov
(

𝛼𝑘1 , 𝛼𝑘2
)

+
𝑁
∑

𝑘=1
𝛼𝑘𝝀𝑘𝑇

(

𝜕𝑲𝑘

𝜕𝑥𝑒
𝒖𝑘 −

𝜕𝒇𝑘

𝜕𝑥𝑒

)

+ 2
𝑁
∑

𝑘1=1

𝑁
∑

𝑘2=1

(

1
𝑁𝑛

)1∕𝑝
𝑩𝑠

( 𝑁
∑

𝑘=1
𝛼𝑘 𝜕𝒖

𝑘

𝜕𝑥𝑒

)

𝜕𝛤 (𝝁𝜶)
𝜕𝛼𝑘2

cov
(

𝛼𝑘1 , 𝛼𝑘2
)

+
𝑁
∑

𝑘=1
𝛼𝑘𝝀𝑘𝑇

(

𝑲𝑘 𝜕𝒖𝑘
𝜕𝑥𝑒

)

(75)

Here we isolate ∑𝑁
𝑘=1 𝛼

𝑘 𝜕𝒖𝑘
𝜕𝑥𝑒

.

𝜕𝜒(𝒙,𝜶)
𝜕𝑥𝑒

=2
𝑁
∑

𝑘1=1

𝑁
∑

𝑘2=1

(

1
𝑁𝑛

)1∕𝑝
𝑨𝑠

𝜕𝛤 (𝝁𝜶)
𝜕𝛼𝑘2

cov
(

𝛼𝑘1 , 𝛼𝑘2
)

+
𝑁
∑

𝑘=1
𝛼𝑘𝝀𝑘𝑇

(

𝜕𝑲𝑘

𝜕𝑥𝑒
𝒖𝑘 −

𝜕𝒇𝑘

𝜕𝑥𝑒

)

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2
𝑁
∑

𝑘1=1

𝑁
∑

𝑘2=1

(

1
𝑁𝑛

)1∕𝑝
𝑩𝑠

𝜕𝛤 (𝝁𝜶)
𝜕𝛼𝑘2

cov
(

𝛼𝑘1 , 𝛼𝑘2
)

+ 𝝀𝑘𝑇𝑲𝑘

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=0 (adjoint equation)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑁
∑

𝑘=1
𝛼𝑘 𝜕𝒖

𝑘

𝜕𝑥𝑒

(76)

Demanding the term in brackets to equal zero provides the adjoint
system to be solved. In the end, we obtain the sensitivity of 𝜎2𝛤 (𝒙).

𝜕𝜎2𝛤 (𝒙)
𝜕𝑥𝑒

=
𝜕𝜒(𝒙,𝜶)

𝜕𝑥𝑒
=

2
N

∑

𝑘1=1

𝑁
∑

𝑘2=1

(

1
𝑁𝑛

)1∕𝑝
𝑨𝑠

𝜕𝛤 (𝝁𝜶)
𝜕𝛼𝑘2

cov
(

𝛼𝑘1 , 𝛼𝑘2
)

+
𝑁
∑

𝑘=1
𝛼𝑘𝝀𝑘𝑇

(

𝜕𝑲𝑘

𝜕𝑥𝑒
𝒖𝑘 −

𝜕𝒇𝑘

𝜕𝑥𝑒

)

(77)

nd 𝝀𝑘 is obtained from the solution of Eq. (44) the adjoint system of
quations.

ppendix D

Let us consider two formulations for the objective function namely,
-norm 𝛶 and 𝑝-mean 𝛤 given respectively in Eqs. (78) and (79):

=
(

𝟏𝑇 𝒗◦(𝑝)
)1∕𝑝 (78)

𝛤 =
(

1
𝑁𝑛

𝟏𝑇 𝒗◦(𝑝)
)1∕𝑝

(79)

Here 𝑁𝑛 is the number of nodes taken into consideration, which in
the examples considered are the nodes along the vertical edges of the
design space. For 𝑝-norm case, we have observed an increase in the
distortion as we refine the mesh, i.e., more nodal contributions are
summed, which is an artefact. Therefore, to solve this issue, we simply
divide the 𝑝-norm quantity by the number of nodes, so we decouple
the distortion quantity from the mesh refinement and call this new
formulation 𝑝-mean.
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