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Summary
Marine biofouling is known as the undesired adverse effect of living organisms growing on submerged
surfaces. Biofouling creates roughness on the hull and propeller and thus additional frictional resis-
tance and loss of propeller efficiency, also referred to as an additional sea margin for ships due to
biofouling. The International Maritime Organization (IMO) identified marine biofouling as one of the
primary problems from both economic and ecologic points of view. Biofouling threatens the ecological
balance of world seas by transferring invasive aquatic species and causes a reduction in hydrody-
namic performance of ships, which in turn increases fuel costs and greenhouse gas (GHG) emissions.
Superyachts are especially heavily exposed to fouling, as they are stationary longer than commercial
vessels, often staying in ports or being anchored across sea and in high tropical temperatures.

In this thesis focus is put on predicting marine biofouling growth together with its effects on ship per-
formance to improve ship design, together with operation and maintenance. This is done together
with Feadship, the largest superyacht builder in the Netherlands. To do so, a grey box approach has
been applied, combining white box with black box models. White box models are first principle and
either physics or experimental based, and easily interpretable. On the other hand, black box models
are trained on given data, with no prior knowledge about a system. While white box can be applied
for all predictions, black box can often perform better on data within the range its trained for on hard
to understand problems. With grey box modeling, advantages and disadvantages from both can be
combined into a working model.

For the white box modeling, first the ship resistance with a smooth hull was predicted. This was done
with the calm water resistance based on ship speed, combined with a contribution from wind, waves
and temperature difference. After this, marine biofouling growth was predicted with help of a exper-
imental based model. With this model, a prediction can be made on the level of roughness present
on the ship. Next, the roughness can be used to find and increase in frictional resistance and loss of
propeller efficiency. Last, these are combined to make a power prediction for a fouled ship in a given
condition.

The grey box model uses the white box fouled ship power prediction and its used data, together with
anchorage and sailing days since clean ship. Furthermore, average anchorage temperature and sailing
speed is also taken into account together with ship motions. To capture the problem, a deep extreme
learning machine was used, which uses a feedforward neural network. With use of deep learning prin-
ciples, the model can learn as more data is presented and start to find patterns. Finally, it was found
that with this data-driven model, predictions could be made over a 2-year dataset with an accuracy of
around 91.4% ± 0.2%. In comparison, on this same dataset, white box predictions gave an accuracy
of around 85.3% ± 0.3%, using the mean absolute percentage error to determine both. With a margin
missing on the smooth ship power, the accuracy of predictions was later increased to 89.4% ± 0.3%.
Last, a black box configuration was worked out, not making use of the white box prediction. Here, an
accuracy of 89.8% ± 0.2% was found. In conclusion, it was found that the grey box model showed the
highest prediction accuracy.

With the developed model, relevant questions have been answered from both a research and industry
perspective. For Feadship, the developed model was applied for their yachts to give insight in power in-
crease, fuel increase, maintenance increase, speed loss, range loss and added cost due to biofouling.
Next to this attention was payed to fouling resistance for regions with higher and lower flow, together
with a comparison of different antifouling coatings available.

With implementation of the proposed grey box and white box models, predictions can be made for
ships varying in all ranges of available data. With an indication of ship profile and parameters, biofoul-
ing and its resulting sea margin can be estimated with high accuracy in early stage ship design.
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I
Problem Introduction & Exploration

In the first part of this report, an introduction to the problem will be given in chapter 1. Next in chapter 2,
a deeper problem analysis will be presented. In chapter 3, the method to be used for this research will
be explored. After this, the chosen methodology will be worked out in detail in Part II.

1



1
Introduction

Marine biofouling is known as the undesired adverse effect of living organisms growing on submerged
surfaces. Biofouling creates roughness on the hull and propeller and thus additional frictional resis-
tance and loss of propeller efficiency. This is also referred to as an additional sea margin for ships
due to biofouling. The International Maritime Organization (IMO) identified marine biofouling as one of
the primary problems from both economic and ecologic points of view (Castro, 2013). The IMO states
that the problem of marine biofouling threatens the ecological balance of the world seas by transfer-
ring invasive aquatic species and causes a reduction in hydrodynamic performance of ships, which in
turn increases fuel costs and greenhouse gas (GHG) emissions. Especially superyachts are heavily
exposed to fouling, mainly due to their operational profile. Superyachts are stationary longer than com-
mercial vessels, often staying in ports or being anchored across sea (Chambers et al., 2006). Within
the fleet of superyacht builder Feadship, many vessels only sail around 10% of the time (Feadship,
personal communication, 2022).

The global yacht fleet is increasing over the last years and is expected to grow onward, as shown
in Figure 1.1. With an increasing yacht fleet, the importance of yacht design and their environmen-
tal footprint is starting to grow. For this reason, sustainable yachting is developing with more green
ways to sail. As one of the industry leaders, Feadship has already build yachts powered hybrid diesel-
electric (Feadship, 2015; 2020; 2021b), and is currently developing yachts powered by methanol and
hydrogen, moving towards zero-emission yachting.

Figure 1.1: Growing yacht fleet worldwide, from Lindstad et al. (2015).

Not only is the superyacht industry working towards more sustainable yachting, the entrance of envi-
ronmental policies concerning superyachts are also starting to take shape. With the Paris Agreement
in 2015, the goal has been set to limit global warming to well below 2 degrees Celsius (United Nations,
2016). However, it is important to mention that the Paris Agreement depends on National Determined
Contributions (NDCs), and does not set specific targets for sectors. For this reason the IMO set the goal

2
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for GHG emissions from shipping to reduce 40% by 2030 and 70% by 2050 (MEPC, 2018). It must be
mentioned that this is mainly focused on shipping and the CO2 emissions per transport work. Here, the
main ambition was the decline of the carbon intensity of the shipping industry through implementation
of further phases of the energy efficiency design index (EEDI). To meet specifically with yacht design,
the Yacht Environmental Transparency Index (YETI) has recently been developed to clearly indicate a
yachts impact on the environment (Letschert, 2020). A system that is not only supported by policy but
also by the industry, giving yacht designers and builders the opportunity to make a distinction with their
ship when it comes to sustainability. This also helps to add more qualification to the eco-friendly level
of yachts, with the ’green’ card currently being overplayed and blurry lines on what constitutes green
yachting credentials (SuperyachtNews, 2019).

With already 66 yachts worldwide over 100 meters, yacht size is also increasing and these types of
ships are no longer neglectable (Superyacht Times, 2022). An increase in fleet size, yacht dimensions
and yacht environmental policies & goals strengthen the importance for study on yacht design. With
an increase in industry size and movement towards more sustainable yachting, vessel optimization is
essential. It is noteworthy to mention that yachts have different operational profiles than other vessels,
which opens possibilities for yacht research. The operational profile of each superyacht can be very
different and change over time, which increases the complexity for the problem of marine biofouling
on yachts. However, researching marine biofouling for the field of superyachts, with different sailing
times, locations and parameters can give important new insight to this problem.

To give a better description of the problem and its background, first the problem of marine biofoul-
ing will be addressed in section 1.1. Next, in section 1.2 antifouling and fouling mitigation measures
will be presented. In section 1.3, the development of antifouling systems is further outlined. After this,
in sections 1.4 and 1.5, prediction methods and modeling trends within the maritime industry will be
discussed. In section 1.6, Feadship & De Voogt Naval Architects shall be introduced. Next, in sec-
tion 1.7, the literature consulted for this research is presented. In section 1.8, the research questions
shall be presented. Last, in section 1.9, the research outline and main scope is presented.

1.1. Marine Biofouling
Marine fouling is the accumulation of micro and macro-organisms on immersed surfaces (Bressy and
Lejars, 2014). According to Bressy and Lejars, more than four thousand fouling organisms have been
identified worldwide. Among them, bacteria, diatoms, and algae spores are the main micro-organisms
which settle on ship hulls. Barnacles, tubeworms, bryozoans, mussels, and algae are the most com-
mon macro-organisms. These micro- and macro-organisms grow on ships when in water, which can be
seen as an inevitable process. This not only includes the ship hull but also the propeller and sea-water
intakes. The attachment on ships of marine biofouling not only has negative influences on vessel per-
formance, but also gives the possibility for organisms to change locations and thus ecosystems. This
way, organisms can arrive in waters where they have little to no natural enemies, with the risk of losing
the ecological balance of world seas (Alghamdi and Quijada Cordova, 2019).

Traditionally, the fouling process can be separated into four general stages, which starts the growth
from microfouling to macrofouling (Yebra et al., 2004). In the first minute the water causes the sub-
merged surface of the clean hull to be covered with a conditioning film of organic polymers. A process
that Yebra and others describe and is essentially governed by physical forces such as Brownian motion,
electrostatic interaction and van der Waals forces. In the next 24 hours, this first layer of film allows
bacteria and diatoms to get attached to the hull, initiating the form of biofilm and microfouling. In the
next week, the biofilm basis allow secondary colonizers as spores of macroalgae and protozoa to grow.
After two to three weeks, macrofouling has started to grow as the tertiary colonizer. An overview of this
process is shown in Figure 1.2.

The growth of these organisms depends on a lot of variables, making marine biofouling a complex
problem.

”The settlement ofmarine fouling organisms is influenced by several factors including salin-
ity, pH, temperature, nutrient levels, flow rates and the intensity of solar radiation. These
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factors vary seasonally, spatially and with depth” (Bressy and Lejars, 2014, p. 12).

All these variables presented by Bressy and Lejars only add to the difficulty of the problem, making
it harder to understand and make possible predictions. With dependency on temperature and solar
intensity, one can see that the climate at a certain location can have a large impact on the level of fouling.
The problem of biofouling is site-, season and substratum-specific and the control methods effective at
a given geographical location may not hold good elsewhere (Flemming et al., 2009). Accumulation of
marine biofouling is faster when a vessel is frequently stationary or in high-temperature tropical waters,
a combination that is often applicable for yachts (Stevens, 1937). Flemming and others state that
antifouling measures are taken all over the world with very unequal levels of success. The authors
conclude that there is no such thing as an universal solution to the biofouling problem.

Figure 1.2: Temporal structure of settlement, from Abarzua and Jakubowski (1995).

1.2. Antifouling & Fouling Mitigation Measures
Currently, shipping companies try to mitigate the problem of hull and propeller fouling by applying
antifouling paints on the underwater ship and by regularly cleaning the hull and propeller(s) (Lam and
Lai, 2015). Within this process, a trade off is often made between the extra maintenance cost to keep
the ship clean compared to the additional operational cost of sailing with a fouled hull. However, the hull
and propeller are often cleaned when other maintenance is scheduled, which does not ensure optimal
cleaning schedules (Kjær et al., 2018). This is mainly due to the high cost of either dry-docking or lifting
a vessel (Figure 1.3) or placing it on a ship slipway, together with sometimes limited time or availability
at different shipyards. Furthermore, the ship must sail to the yard and has downtime, this is mainly a
costly process for commercial and service vessels. For the hull cleaning of the vessel, it is important
that the fouling and antifouling that comes off the vessel is filtered and does not go back into the ocean,
river or sewage.

Figure 1.3: Yacht out of the water for hull cleaning and antifouling application, from Marine Travelift (2022).
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Apart from getting the vessel out of the water for maintenance, divers or special machines can also
clean the hull with the vessel still in the water (Fleet Cleaner, 2022; HullWiper, 2022). For underwater
cleaning, the use of hard coatings is preferable, which can last for at least 10 years andmay even extend
the life of the hull. Hard coatings can be cleaned underwater and are neutral to the ocean because
the waste generated by cleaning does not contaminate the marine environment (Morrisey and Woods,
2015). It should be noted that manual hull cleaning is commonly performed on small ships. Concluding
in Figure 1.4, an overview is given between all parameters that influence marine antifouling systems.

Figure 1.4: Key interactive parameters affecting an antifouling coating system, from Chambers et al. (2006).

For antifouling coatings, different paints are present on the market. Operators often apply biocidal self-
polishing types, chemical substances that kill or deter microorganisms responsible for biofouling and
prevent the formation of biofilm. If desired to use less toxic antifoulings, fouling release paints can also
be used. These paints are silicon or hydrogel based, and improve possible fouling detachment at higher
ship speeds. However, it should be noted that this type of antifouling coating also changes the texture
of the ship hull. For example, while ship lifting and docking is no problem, a ship slipway is not advised
with the risk of the ship not keeping its position. Not only is the type of antifouling coating decisive for
ship performance, it also determines how reapplication can be done. Some paints can more easily be
cleaned of the hull than others, and with some it is more difficult to clean the fouling off. This process
is also important to prepare a clean hull so that new antifouling can be applied. Ship owners could
also look at different levels and sorts of antifouling for different sections of the vessel. For example,
more could be invested into locations with high Reynolds numbers and sections close to the propeller.
An extra investment could also be done with ultrasonic antifouling systems, where transducers are
mounted in the ship to send ultrasonic waves through the hull to the surrounding water, killing micro-
organisms that form the initial fouling sequence. In Table 1.1, a small overview is created for different
measures, their effectiveness, applicability and cost. For antifouling paints and dry cleaning, it can be
noted that these two go hand in hand and require dry-docking or placement of the vessel onshore,
which is a costly and time consuming process. This is dependent on close by yards, their facilities,
their occupation, the local economy/currency, and ship type & size.

Method Effectiveness Applicability Cost
Antifouling paints Dependent on ship oper-

ation & surrounding cli-
mate, helps significantly
with decrease of fouling
growth.

Ship needs to be docked
or taken onshore, hull
preparation dependent
on type of previous an-
tifouling coating applied.

$100 - $1000 per 5L ma-
terial cost + man hours
(International Marine,
2022c).

Dry cleaning Clears fouling from ship,
important to do periodic
together with new an-
tifouling application.

Ship needs to be docked
or taken onshore.

High pressure cleaner +
man hours.
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Periodic underwater
cleaning

Effectiveness depending
on method, important
that quality of antifouling
stays intact and only
fouling is removed.

Can be performed at ev-
ery location, more diffi-
cult with large ship.

Cost of diver for smaller
ships or underwater
cleaning device.

Ultrasonic system Well proven effective-
ness, but avoiding
the growth of marine
biofouling is complex.
Can assist on import
locations.

Large applicability, only
initial investment and lo-
cations for transducers
required.

Investment in power
control and transducers
placed in the ship.

Table 1.1: Antifouling & fouling mitigation measures.

The table above does not make a differentiation in types of antifouling coatings. For this reason, a case study
performed by Feadship is provided, that gives insight in the cost of antifouling coatings over a 10 year basis.
Within this case study, biocidal, silicone release coating, hydrogen release coatings and hard coating antifoulings
have been taken into account from different suppliers. This case study is especially beneficial since most research
papers often do not give insight into overall cost for antifouling paints. Getting insight into overall cost for a product
over a lifetime requires longtime experience, something the ship and yacht industry has and can help with. For
the case study, biocide antifouling by Micron99 was taken as the starting point since it was applied at the moment.
For privacy reasons, the first application of biocide antifouling is selected as the nominal price of 100% to plot the
results. This way, internal cost calculations and quote prices are remained secret while differences in application
cost and fuel cost reductions are clearly visualized. It is important to mention that docking/lifting costs are not
yet taken into the equation, as they heavily depend on ship size, location and yard facilities. However, it can be
assumed that docking costs for superyachts are high and would show effect in total cost calculation for different
antifouling options. Furthermore, the following considerations have been made for this case study (Feadship,
personal communication, 2022):

• Material and application cost are based on supplier information.
• Fuel cost estimations are based on sailing profile of reference vessel, vessel engine performance diagrams
and average MGO price.

• Seamargin predictions are based on a two year mean value for various Feadships, which will be discussed in
the next section. Sea margins for alternative systems are judged by Feadship based on supplier information.

• Docking/lifting cost are very significant when required solely for cleaning and application of the anti-fouling
system.

• Cleaning cost of e.g. hard coating could be significantly reduced when conducted by the crew itself.
In Figure 1.5, the result of the case study is presented to see how antifouling coating costs relate to each other
together with their influence on fuel costs.

Figure 1.5: Antifouling cost case study performed by Feadship.
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It is important to mention that the case study presented in the previous figure was build upon very rough fouling
predictions and supplier information. With better modeling for specific vessels, a better overview could be given on
most optimal antifouling paints. With fouling having a large influence on both vessel operation and maintenance
cost, assessing and predicting the sea margin with high accuracy to determine best antifouling measures and ship
operation is very important.

1.3. Development in Antifouling Strategies
With possible antifouling systems clear, it is important to explain the historic development of antifouling systems
and current trends, as industry and research need to work towards better protective and more environmental
friendly antifouling systems. Since ships have sailed the oceans, people have been encountered to the problem
of biofouling, resulting in strategies on how to deal with this problem. For example, Christopher Columbus also
experienced the problem of biofouling, and added the following (ABS, 2011):

“All ships’ bottoms were covered with amixture of tallow and pitch in the hope of discouraging barna-
cles and teredos, and every few months a vessel had to be hove-down and graved on some convenient
beach. This was done by careening her alternately on each side, cleaning off the marine growth, re-
pitching the bottom and paying the seams.”

Over time, antifouling approach has come from use of lead and copper, to use of TBT coatings, towards more
environmentally friendly and fouling release paints. An overview of this is shown in Table 1.2, where major events
are identified.

Timeline Major events
1500-300 BC Use of lead and copper sheets on wooden vessels
1800-1900s Heavy metals (copper, arsenic, mercury) incorporated into coatings
1800s-present Continued use of copper in AF coatings
1960s Development of TBT conventional coatings
1974 Oyster farmers report abnormal shell growth
1977 First foul release AF patent
1980s Development of TBT SPC coatings allowed control of biocide release

rates
1980s TBT linked to shell abnormalities in oysters (Crassostrea gigas) and im-

posex in dogwhelks (Nucella lapillus)
1987-1990 TBT coatings prohibited on vessels <25 m in France, UK, USA, Canada,

Australia, EU, NZ and Japan
1990s-present Copper release rate restrictions introduced in Denmark and considered

elsewhere e.g. California, USA
2000s Research into environmentally friendly AF alternatives increases
2001 International Maritime Organisation (IMO) adopts ’’AFS Convention’’ to

eliminate TBT from AF coatings from vessels through:
2003 – prohibition of further application of TBT
2008 – prohibition of active TBT presence

2008 IMO ‘AFS Convention’ entered-into-force

Table 1.2: Historical development of the antifouling strategies, from Demirel et al. (2013).

The presented trends are important, as it can be seen that fouling is a hard to handle problem with constant
development on how to approach it. Furthermore, fouling is handled by placing toxic products on the ship to kill
and prevent organism growth. However, this also means that antifouling products can be bad for the environment.
While TBT coatings showed the most optimal performance against biofouling accumulation, research later showed
that these paints had toxic effects towards, oysters, molluscs and marine organisms, through which they could
also enter the food chain (Alzieu et al., 1986; Gibbs and Bryan, 1986; Okay, 2004). As a consequence, TBT
paints have been banned from 2003 for application and since 2008 for operation by the IMO with the International
Convention on the Control of Harmful Anti-fouling Systems on Ships (IMO, 2001). Nevertheless, it can be seen
that it has often been replaced with other toxic biocidal products, with similar problems as TBT coatings and
less protection. Towards the future, the goal will be to develop better protective and more environmental friendly
antifouling systems.

1.4. Importance of Accurate Prediction Methods
Gaining new insight into biofouling and its added sea margin can help considerably with yacht design, maintenance
and operation. It can be noted that biofouling has a large influence on the required power of ships, and that small
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reductions can have significant impact on power consumption. Hence, providing accurate information on added
sea margin due to fouling can help decision making for initial yacht design and later maintenance. Furthermore, if
prediction methods are improved, these can also be used by others within the maritime industry, since this prob-
lem is not only limited to yachts. Therefore, it can also help shipping companies and possibly policy makers into
improving decision making when it comes to the problem of marine biofouling. Investing more in keeping ships
clean could save large amounts in fuel cost, greenhouse gas emissions and propulsion maintenance (Coraddu
et al., 2019).
Making accurate predictions when vessels are still being designed can take this one step further. With better in-
sight in the problem of fouling beforehand, choices can be made to invest more in mitigation measures and keep
low sea margin during operation. Not having additional fouling sea margins of 35% and over could result in alter-
native propulsion systems becoming more feasible for ships. This is due to the fact that all alternative propulsion
systems require either more space or weight in the vessel compared to current used fuels (Sui et al., 2020). For
this reason, keeping the required power from the propulsion system as low as possible is an important factor in
accelerating the implementation of alternative propulsion systems in ships and yachts.

Currently, yacht and vessel owners do not have enough insight into biofouling growth and its consequences for
one ship. Even though averages within the industry are well known, predictions are not done for specific vessels.
Big steps could be taken for yacht builders and designers, an industry where every vessel is a one of a kind with
different operational profiles and climates they sail in. Currently, Feadship takes into account an average sea
margin for their yachts over time (Feadship, personal communication, 2021). In Figure 1.6, a prediction for the
added sea margin over time across 4 Feadship yachts is provided. In this figure, it is also directly visible that within
the Feadship fleet, large differences are present between different yachts. This conclusion can be drawn from a
small study of the datasets acquired from the Feadship fleet. With differences in fuel use over time clearly visible
for different yachts, conclusions can be drawn that biofouling has at least a large influence. With clear differences
between different vessels, study could be done into this data to get a deeper understanding on the problem of
biofouling.

Figure 1.6: Estimation of added sea margin due to marine biofouling for 4 Feadship yachts based on fuel use trends over time.

Gaining insight into marine biofouling growth for current and new designed yachts could help significantly with
customised hull and yacht maintenance. Last, it is important to mention that the level of marine biofouling itself
cannot be measured directly on the hull when operational, and only when out of the water. For this reason, it is
important that research is done into the problem, predictions are made, and that these are also validated when
ships go into dock.

1.5. Modeling Trends within the Maritime Industry
Marine biofouling and its added sea margin are very difficult to predict and there is currently no accurate and uni-
versal method for doing so (Propulsion Committee of the 28th ITTC, 2017). The standard approach for estimating
the speed loss can be carried out by applying ISO 19030 (ISO 19030-2, 2016). This approach prescribes methods
for measuring changes in hull and propeller performance to give an indication for hull and propeller efficiency.
However, this lacks a clear method on how to predict added sea margin due to fouling for ship design. As such,
only low-fidelity analytical expressions exist recommended by the Propulsion Committee of the 28th ITTC, having
an average error of around 20%. Therefore, making reliable predictions can only be done by gathering data and
studying a large variety of ships.
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Using principles as black box modeling and machine learning, can help with improving traditional maritime models
to make predictions. Artificial intelligence has been used to improve white box model resistance methods, reducing
a relative error ranging from 17.9% to 28.1%, to a relative error in the range of 1.6% to 2.7% (Pedersen and Larsen,
2009). Odendaal (2021), Zwart (2020) and Bakker (2021) have shown great potential with combining white box
and black box models into grey box models with significant increase in prediction accuracy’s to improve early stage
ship design and ship operation. Here theory and physical relations/findings are combined with data-driven models.
The white box ensures prediction accuracy outside of the data that the black box is trained with, since the black
box is better at interpolation but can lack extrapolation capacity, due to no actual knowledge on the problem.
Last, it can be noted that black box models are especially beneficial when a system’s behaviour is not fully un-
derstood or when white box models lack either predictability or accuracy (Leifsson et al., 2008), as is the case
with modeling of biofouling and its sea margin. For example, more research is focused on the effects of fouling
on ship performance rather than making biofouling growth predictions for ships. For different ships and situations,
both towing tank test, mathematical models, and Computational Fluid Dynamics (CFD) calculations have been
performed to asses added resistance for different fouled ships and plates. However, this is always focused on a
given ship and a given fouling situation and is not flexible. Making marine biofouling growth predictions would take
this one step further. But even then, fouling changes during sailing are still not taken into account, as predictions
are limited to static modeling rather than dynamic. It can be noted that both are very complex problems depending
on many variables. However, this does make it interesting for grey box modeling, since new insight based on data
can be achieved. For this reason and also others, it is the hypothesis that grey box modeling can in many ways
assist in solving this problem.

1.6. Feadship & De Voogt Naval Architects
The research outlined in this report will be done in cooperation with Feadship and Delft University of Technology.
Here, Feadship and De Voogt Naval Architects will share both their ideas, key knowledge, and extensive amounts
of yacht data to help answer the research questions. In this section, first an introduction to Feadship and De Voogt
Naval Architects will be given. Next, their experience with the problem of biofouling and internal business case will
be discussed.

1.6.1. Company Introduction
As one of the industry leaders, Feadship Dutch Royal Shipyards is specialized in custom built superyachts. ”Over
the years, the name Feadship has become synonymous with the finest quality luxury motor yachts” (Boat Interna-
tional, 2022). Feadship is a cooperative venture between De Vries Shipyards and Royal van Lent Shipyards, with
de Vries having their main yards located in Aalsmeer and Makkum and van Lent having their main yards located in
Amsterdam and de Kaag. De Voogt Naval Architects is owned by both companies, and is the main naval architect
and marine engineer on all projects for the Feadship group located in Hoofddorp. In Figure 1.7, De Vries Shipyard
in Makkum and the Royal van Lent Shipyard in Amsterdam are shown.

(a) De Vries Shipyard, Makkum location. (b) Royal van Lent Shipyard, Amsterdam location.

Figure 1.7: Illustration of one of the yards for both Feadship families, from Feadship (2021a).

De Voogt Naval Architects (Figure 1.8) is not only the main naval architect and marine engineer on all Feadship
projects, Research & Development together with Knowledge & Innovation for the Feadship group are also operated
from De Voogt Naval Architects. Feadship does research into numerous yacht topics to design better and more
sustainable yachts. Feadship sees this as both social responsibility as an opportunity to stay competition ahead.
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Figure 1.8: De Voogt Naval Architects, Hoofddorp, from Feadship (2021a).

1.6.2. Business Case
As mentioned in the previous sections, marine biofouling is a problem that the full maritime industry has to deal
with. Each company has its experience with it, and tries to make more informed decisions to mitigate the problem.
Here it is important that the problem of fouling does not have one solution, and has many variables that influence
the problem. Hence, information on the problem and deeper understanding can be very valuable to make better
sea margin predictions in ship design and improve so-called condition based maintenance.

Feadships De Voogt Naval Architects Knowledge & Innovation team does all kind of research to develop yacht de-
sign and broaden knowledge within the organization. One of the projects is the development of its 7SEAS Portal,
an initiative that tries to collect data from the full fleet. Within 7SEAS, all AIS data from the vessels is collected,
including wind, weather, resistance and ship parameters. This way the operational profiles can be captured for
research and predictions. One thing that is missing within the platform is ship specific predictions for marine bio-
fouling. Currently, assumptions are made based on known patterns, such as shown in Figure 1.6, where the trends
for added sea margin due to marine biofouling were plotted. To improve this model, the goal is to develop a ship,
environment and operation specific method that can predict a ships marine biofouling level over time. Furthermore,
this model should also give insight into what yacht crew and owner can expect, so that custom advice can be given.

Within this thesis the method will developed for Feadship and their 7SEAS Portal. Not only is integration important,
the model must also be evaluated to see what this means for Feadship yachts specific. To do so, a business case
is developed and several questions can be outlined that are important for Feadships business case:

• Which type of antifouling should be applied for which yacht?
• What is the difference between the influence of salt and fresh water on the marine biofouling growth?
• How does anchor location relate to the problem of biofouling?
• How influential is the propeller to the problem of fouling and how/when should it be treated?
• Should vessels be cleaned and provided with new antifouling prior to yacht transits?
• Can it be useful to use more antifouling on some regions of the ship than others, e.g. regions with higher
Reynolds numbers?

To answer these questions and others, the different parameters outlined should be covered within the model. Since
these questions cannot directly be answered with research currently done, it can be seen that the outcome will be
both beneficial to Feadship and to the field of maritime and marine biofouling research.

1.7. Literature Retrieval
For this research, databases of the Delft University of Technology Library have been taken as a starting point to
find relevant sources covering the main research question (Delft University of Technology, 2022). This helped
with identifying relevant work done, and a possible research gap. In this process, papers closest to the proposed
research have been taken as a reference to what is currently known and unknown in science when it comes to the
problem of marine biofouling and its added sea margin. Furthermore, Google Scholar has been used to find the
more recent and often cited work (Google, 2022). Keyword combinations likeMarine Biofouling,Marine Biofouling
Resistance Prediction, Data-Driven Fouling Prediction, Yacht Fouling and Fouling Resistance Methods have been
used to get a first understanding of the topic and its key challenges.

However, knowledge on the topic is not only limited to papers published by various authors. With help of both
Feadship and Delft University of Technology, different experts have leaned on in their view of the problem to share
their knowledge and expertise. From the side of Feadship, this has helped with getting a better image on how this
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problem relates directly to yachts and is handled within the industry. From Delft University of Technology, this has
helped with getting a clearer view on the science behind marine biofouling, understanding of theories developed
and potential research gaps. With help from both industry and science, the believe is that a good overview can be
created on the problem, with confidence for possible improvements. Since Feadship is a larger organisation, the
plan is to not only talk with research and design employees, but also plan meetings with their refit & services sec-
tion for a more field view of this problem. The main goal is to listen to as many angles as possible for this problem,
to get the best possible view on how to answer the research question and deliver significant improvement to both
Feadship and the scientific community.

1.8. Research Questions
To get greater insight into the added sea margin from marine biofouling for yachts, the following main question
must be answered:

”How can Feadship use in-house & onboard sensor data to accurately predict the added sea margin
as a result of marine biofouling over time for yacht design, operation & maintenance?”

To help answer this question, different sub questions can are set to find and develop an accurate prediction method:
• What are the current methods, both white box and black box, to predict added sea margin due to marine
biofouling?

• What are the method requirements to model the effects of fouling?
• What methods are suitable to meet the method requirements, and if suitable how can machine learning and
grey box modeling assist in solving the problem?

Once a prediction method is developed and the literature for this problem is studied, different sub questions can
be answered:

• Does the model show difference in added sea margin for different antifouling systems, and can this form a
basis for antifouling system selection?

• How much do vessel parameters, operational profile and location influence marine biofouling growth?
• How accurate is the model compared to the current sea margin predictions used in Feadship and general
ship design, and if required should adaptions be made?

The questions presented above are both important for marine engineers, ship designers and Feadship. The
overall goal is to give new insight on the problem of marine biofouling for improvement of ship design, operation &
maintenance.

1.9. Research Scope & Outline
The report outline consists for the first part in the current introduction and exploration of the problem. The second
part of the report contents the main methodology. After this, the third part contains the model validation, application
and the business case. The last part contains the conclusion and discussion. Overall, it should be noted that the
report is written from a Ship Design perspective. Main focus is put on model results and how they can influence
and improve current ship design practices. Furthermore, focus is set on improvement from a production and
operation perspectives. This also means that in the report, simplifications and assumptions will be made to come
to best educated guesses so that modeling can be improved and modeling tools can be used in a practical way.
An overview of the outline is shown in Figure 1.9.

Figure 1.9: Research outline.
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Problem Analysis

With the problem of the added sea margin from marine biofouling for yachts introduced, this chapter will give a
deeper analysis of the problem. First in section 2.1, marine biofouling and its place within ship & yacht design will
be discussed. Next, current methods to predict the added sea margin from marine biofouling will be presented in
section 2.2. However, the added seamargin frommarine biofouling is not only a result of added hull resistance. For
this reason, section 2.3 shall go deeper into the effects of marine biofouling on the ship propeller. In section 2.4,
some recent research into black box modeling with marine engineering applications is studied. After this, the
data available by Feadship will be presented in section 2.5. With data available and current methods known, in
section 2.6, the method requirements will be set up for this research.

2.1. Marine Biofouling within Ship & Yacht Design
When a contract is signed to design a new ship, naval architects often pass through various steps to work out
a concept and later deliver a more detailed design. Within this process, a greater picture of the yacht is created
together with its looks and performances. In Figure 2.1, the design approach for Feadship is shown with the role
of De Voogt Naval Architects highlighted.

Figure 2.1: De Voogt Naval Architects design approach, from Odendaal (2021).

The approach used by De Voogt Naval Architects is inline with the traditional design spiral approach as shown in
Figure 2.2. In both figures it becomes visible how all aspects of the design are repeated multiple times, with its level
of detail increasing over time. Added in the design spiral are the different aspects of design covered numerous
time. When it comes to marine biofouling, this can be seen as both an operational & maintenance problem as a
design problem. It occurs during operation, is fixed when in maintenance, and should be taken into account and
mapped when a ship or yacht is designed.

When it comes to marine biofouling for ship design, this problem can be taken into account either within hydrody-
namics or within powering requirements of the vessel. This mainly depends on the level of detail of the assessment
that is made for the problem of biofouling. When only an average sea margin is taken into account, it can be seen
that this is likely done within powering calculations. Nonetheless, in a more detailed approach, future roughness
and added frictional resistance is modelled in hydrodynamic calculations, while loss of propeller efficiency due to
fouling is taken into account in power requirements.
With the current research the goal will be to use hydrodynamic calculations together with ship parameters and
operational profile, to predict future marine biofouling growth and added sea margin. With this overview of sea
margin over time for vessels, better powering estimations can be done. This way there can be a better assurance

12
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that vessels do not only meet their design requirements with initial sea trails, but also during lifetime operation.
Furthermore, better vessel maintenance and operation instructions can be presented to the client after ship launch.

Figure 2.2: Traditional design spiral approach used by De Voogt Naval Architects, from Evans (2009).

With marine biofouling and its added resistance assessment also being part of early stage design, it can be seen
that this adds extra weight on the decision making process. In this phase, little knowledge is yet available and
many decisions and choices must be made. However, for the problem of marine biofouling, insight in planned
operational profile by the client, overall vessel parameters and ship shape & powering can already give data to
work with when it comes to making predictions. This little amount of data is not enough for developing a new tool,
but can be used with a model already in place powered by reference vessels and their data. This is also why
research on current ships is important for ship design. As shown in Figure 2.3, within the early stages of design a
lot is still unknown while a lot of costs are committed early in the process. This makes models & tools based on
previous ships & data very valuable. This is also the case for Feadship, building models on vessel data and their
profiles can significantly help with future yacht design. This is not only the case for marine biofouling but also for
other hard to predict and important problems.

Figure 2.3: Relationship of design freedom, knowledge, and committed cost, from Mavris and DeLaurentis (2000).
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2.2. Added Ship Resistance & Marine Biofouling Modeling
Marine fouling generates surface roughness which increases the frictional resistance of a ship moving through wa-
ter and consequently increases fuel consumption and emission of greenhouse gases (Bressy and Lejars, 2014).
It is known that fouling can lead up to an additional sea margin of up to 35% with a fully fouled hull (Uzun et al.,
2019). This is a problem widely known within the maritime industry. Furthermore, extensive amounts of research
have been done into the problem with attempts to improve fouling predictions and antifouling systems selection.
However, within research fouling is also known as a very complex problem. With dependencies on a lot of vari-
ables, marine biofouling growth can be different in every case.

In Table 2.1, some of the relevant research is shown together with their method, accuracy, applicability and last
the number of citations based on Google Scholar (2022). After introduction of this, the different available methods
will be discussed together with their pros and cons based on the current papers.

Source Method Accuracy Applicability Citations
Data-driven ship digital
twin for estimating the
speed loss caused
by the marine fouling
(Coraddu et al., 2019)

Data-Driven

Significant improve-
ment compared to
conventional ISO 19030
method.

Method largely appli-
cable, requires non-
indifferent amount of
data from ship to be
investigated.

49

Practical added re-
sistance diagrams to
predict fouling impact
on ship performance
(Demirel et al., 2019)

First-
Principle

Experimental
Based

Noteworthy margin of er-
ror, model limited to fric-
tional resistance and flat
plate modeling.

Comprehensive appli-
cability, model using
surface condition, ship
length and ship speed.
However, fouling con-
dition is an input rather
than an output.

24

A CFD model for the
frictional resistance
prediction of antifouling
coatings (Demirel et al.,
2014)

CFD

Frictional resistance in-
crease predicted within
0.14% to 2.5%.

Model limited to frictional
resistance increase
and fixed biofouling
conditions.

94

Time-Dependent Bio-
fouling Growth Model for
Predicting the Effects of
Biofouling on Ship Re-
sistance and Powering
(Uzun et al., 2019)

First-
Principle

Experimental
Based

Ability to predict change
in required effective
power within a 4%
range of validation ship.
However, not all fouling
conditions represented
and sailing process not
taken into account.

Highly applicable due to
input parameters for both
fouling simulation and re-
sulting additional resis-
tance & power.

20

Predicting the effect
of biofouling on ship
resistance using CFD
(Demirel et al., 2017)

CFD

Total resistance coeffi-
cient estimated within
1.17% with a numerical
uncertainty of 0.74%.
Larger deviation for
required effective power.

Gives greater insight into
problem under the effect
of a rotating propeller.
However, CFD compu-
tations are based exclu-
sively on the vessel &
fouling case imported.

134

Table 2.1: Literature for added ship resistance & marine biofouling modeling.

When it comes to predicting the added sea margin due to fouling, research has been done for first-principle exper-
imental based models, more extensive Computational Fluid Dynamics (CFD) calculations and even data-driven
modeling. Here it should be noted that these predictions can be split up in two processes: the prediction of marine
biofouling growth and its following added sea margin. When it comes to CFD research, it is important to mention
that this research is focused on a fouling case as a starting point, and the modeling of its additional resistance as
main part of the research.

First-principle experimental based models are more friendly to use when obtained and are more practical to com-
pute expected fouling and added sea margin. Furthermore, using and studying these models give greater insight
into the physical phenomenons behind fouling. However, in these more conventional methods approximations
are often made. An example can be found in modeling the added sea margin as a result of fouling by computing
the added frictional resistance of a flat plate as discussed by Demirel et al. (2019). Moreover, Uzun et al. (2019)
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confirm this and explain how in conventional models not all fouling situations can be represented and models are
often limited to static growth of fouling, not change in fouling that occurs when sailing.

On the other hand, CFD methods could be used to determine the added sea margin of the researched fouling
condition with high accuracy. Demirel and others (2014, 2017) have shown promising results with only few per-
centages deviation between predicted resistance and power compared to verified results. However, the results
are limited to the chosen ship hull, and working out CFD computations for all possible fouling conditions is close
to impossible and insufficient. Additionally, doing a large variety of CFD computations can be considered very
expensive.

As with CFD, data-driven models show great potential to predict added sea margin for marine biofouling. This
relatively technique can help with giving new insights and accounting all variables without simplifications, it is also
a lot cheaper than performing extensive CFD calculations for new vessel design (Coraddu et al., 2019). With
data-driven modeling, the system is trained to find patterns between data input and output. This also means that
the model is not built on physical knowledge, which can be seen as both a pro and a con. While the disadvantage
is that the user has less insight in the problem and obtained solution, a clear advantage is that the model can cover
the full problem. This including parts that current theory finds hard to cover. Boundary conditions for data-driven
methods are their requirement for a large and accurate data collection and its lack of extrapolation predictions.

It is important to emphasize that while many research is done on the problem of fouling, little models exist that are
able to capture and predict marine biofouling growth for ships. Models often use different types of fouling, barnacle
type, height and coverage as a starting point. By doing so, most models and papers available focus on added
resistance as a result of marine biofouling for ships, rather than predicting the biofouling growth itself. Furthermore,
studies into marine biofouling itself are often more detailed and focusing on specific characteristics to get a deeper
understanding of the complex fouling problem, with so many variables and different sorts of fouling. For an ideal
biofouling growth model, function 2.1 can be consulted with all parameters that have an influence shown (Babin
et al., 2008):

𝐵𝐺 = 𝑓1(𝑆𝑆𝑇, 𝑝𝑠𝑢, 𝑝𝐻, 𝑣, 𝐼, 𝑆, 𝑡,𝑚𝑡, 𝜎, 𝜃𝑐, 𝑅𝑡, 𝜂𝑐) (2.1)
Where:
𝐵𝐺 = Biofouling growth
𝑆𝑆𝑇 = Seawater surface temperature
𝑝𝑠𝑢 = Salinity (dissolved salt content of the water)
𝑝𝐻 = Acidity
𝑣 = Speed of the water flow
𝐼 = Light intensity
𝑆 = Concentration of nutrients
𝑡 = Time of exposure to the water
𝑚𝑡 = Micro-texture of the surface
𝜎 = Surface potential
𝜃𝑐 = Contact angle (measure of wettability)
𝑅𝑡 = Roughness parameter
𝜂𝑐 = Antifouling coating performance parameter

However, generating a model with all the parameters is difficult, especially with the complexity of the problem.
Even the ideal model may not capture all parameters, and it is currently not known how all these parameters relate
to each other. For now, only which variables play a role, how much, and how they influence biofouling growth
positively or negatively is known. For this reason, current research is focused on models that rather use the most
dominant parameters of the fouling problem. With simplifications, it becomes easier to make predictions and also
to verify and validate model accuracy. Models can only be based on experiments and obtained data, rather than
using first-principle physical relations.

2.3. Ship Propeller & Marine Biofouling
Ship propulsion and vessel speed is mainly dependent on the ship hull, propeller and engine (Atlar et al., 2018).
The added sea margin due to marine biofouling, is mainly the result of both added hull resistance and decreased
propeller efficiency. In the previous section, different methods to determine added hull resistance as a result of
marine biofouling were discussed. In this section, the relation between the ship propeller and marine biofouling
will be presented.

Some of the different methods available when it comes to marine biofouling & ship propellers are shown in Ta-
ble 2.3, in which the type of method, accuracy, applicability and numbers of citations are indicated for each source.
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Source Method Accuracy Applicability Citations
The impact of biofoul-
ing on the propeller per-
formance (Farkas et al.,
2020a)

CFD

Accurate change
in open water effi-
ciency predictions
for researched cases
with help of CFD.
Proven to have rela-
tively low numerical
uncertainties.

Gives greater insight into
flow around fouled propeller
in open water condition. In-
vestigation of biofilm and
hard fouling for propeller per-
formance investigated sep-
arately for different surface
conditions.

7

Performance predic-
tion method for fouled
surfaces (Farkas et al.,
2020b)

First-
Principle

Experimental
Based

Simulation uncertain-
ties ranging up to 5%.

Model is applicable for dif-
ferent ship types and sur-
face conditions. Model uses
propeller characteristics to-
gether with drag and lift coef-
ficients to determine rough-
ness effects on open water
characteristics based on ini-
tial roughness values.

6

Investigating the effect
of biofouling on pro-
peller characteristics
using CFD (Owen et al.,
2018)

CFD

High accuracy be-
tween validation
experiment and CFD
results.

Model limited to both fouling
condition, ship type and cho-
sen PPTC propeller. How-
ever, model does give good
insight into results of different
levels of fouling with high ac-
curacy of results.

57

Penalty of hull and
propeller fouling on ship
self-propulsion perfor-
mance (Song et al.,
2020a)

CFD

Simulation uncertain-
ties mostly around
1%.

Model limited to used ship
hull and propeller. Greater
insight is achieved by in-
vestigating combinations be-
tween clean and fouled hull
and propeller scenarios for
different surface conditions.

40

Table 2.3: Literature for ship propeller & marine biofouling.

Both hull cleaning and propeller polishing are performed to remove unwanted fouling particles and increase vessel
efficiency. However, the effect of fouling on a propeller is not given as much attention as hull fouling, resulting in a
lack of material on this subject (Owen et al., 2018). One possible reason is that it might be difficult to study using
model-scale experiments incorporating all different fouling types (Korkut, 2012). For this reason, most work on
this topic is done in recent years with help of CFD. By using CFD, flow around a fouled propeller can be visualized
properly, as shown by Farkas et al. (2020a) in Figure 2.4.

Overall, modeling with help of CFD increases fidelity and accuracy of results. However, this also means that
results are always limited to the imported hull and/or propeller and fouling condition. On the other hand, a first-
principle experimental based model as the one proposed by Farkas et al. (2020b) decreases fidelity but increases
applicability.

(a) Wall shear stress distribution for smooth (left) and fouled (right) KP505.
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(b) Vorticity magnitude for smooth (upper) and fouled (lower) KP505.

Figure 2.4: Illustration of differences in vorticity and shear stress for smooth and fouled propeller, from Farkas et al. (2020a).

2.4. Black Box Modeling
Making use of black box models is a recent development for predictions within the maritime industry. It is found
that black box models powered by machine learning principles can help by improving prediction accuracy and
covering complex problems. With potentials shown, different types of regression techniques could be used. In the
table below, some relevant papers are provided that show the use of black box modeling techniques within the
maritime research field related to propulsion and ship performance.

Source Methodology Research Problem Citations
Prediction of Full-Scale
Propulsion Power using
Artificial Neural Networks
(Pedersen and Larsen,
2009)

Artificial Neural
Network

Use of propulsion power, ship speed,
wind and sea & air temperature to pre-
dict propulsion power with high accuracy.
Hull and propeller fouling mentioned but
not accounted in method due to complex-
ity.

57

Statistical modelling for ship
propulsion efficiency (Pe-
tersen et al., 2012) Gaussian

Processes &
Artificial Neural

Network

Investigation and comparison of both
Gaussian processes and artificial neural
networks to model fuel efficiency in ship
propulsion. White box modeling trends
applied to account for fouling.

85

Physics-based shaft power
prediction for large mer-
chant ships using neural
networks (Parkes et al.,
2018)

Artificial Neural
Networks

Shaft power prediction of large mer-
chant ships in different weather condi-
tions based on large data collection of
multiple vessels over a 27 month period,
making use of artificial neural networks.
Biofouling not mentioned within paper.

20

Data-driven ship digital twin
for estimating the speed
loss caused by the ma-
rine fouling (Coraddu et al.,
2019)

Deep Extreme
Learning Machine

Digital vessel twin is developed with data
shortly after leaving dock. Difference in
ship speed over time is later evaluated
and predicted due to biofouling.

49

Table 2.4: Literature for black box modeling within maritime industry for propulsion and ship performance.
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2.5. Available Data
Within this research, a large amount of data with different sources will be provided by Feadship. This gives the
opportunity for detailed modeling and possible new insight into the problem. In Table 2.5, an overview of the
available data is shown. It can be noted that this available data is in line with data presented in a recent Master
Thesis by Odendaal (2021). However, it should be mentioned that after contact with Feadship, small adaptions
have been made. The available data contains ship design specifications, various captain logs, and maintenance,
engine, motion, voyage report and auxiliary power data. Outlining this data and evaluating which data is available
and which is not, is essential to set up method requirements.

Data Type Data Source Description
Ship design specifications Inhouse design department

databases
Ship design parameters: hull shape
information (𝐿, 𝐵, 𝐶𝑏, 𝐶𝑝) design load-
ing conditions (𝑇, 𝑣𝑠, range), LCG,
LCB, propulsion systems, engine
specifications, propeller selection,
general arrangements.

Maintenance data In house maintenance and shipyard
databases

State of the hull and propeller foul-
ing, date of last hull cleaning

Engine and motion data Sensor monitoring Main engine and generator power
(shaft power), tank levels (consump-
tion), ship motions (pitch and roll).

Voyage report data 7SEAS Portal Initiative Onboard feedback monitoring: ship
speed and heading, wave condi-
tions (height, period and directions),
wind conditions (speed and direc-
tion) and corresponding measured
operational profiles from Feadship
fleet. Also includes all weather re-
lated parameters associated to past,
present, and future climate condi-
tions.

Auxiliary power data Influx database format Additional hotel load system feed-
back monitoring: recorded total aux-
iliary loads (incl. sampling rates),
AC power (voltage, amperage, and
fan speed), air and sea temperature,
and exterior relative humidity.

Voyage logs Captain logs from different vessels Relative feedback on yacht perfor-
mance, travel logs & functioning of
systems onboard.

Table 2.5: Available dataset types, locations and descriptions, adapted from Odendaal (2021).

2.6. Method Requirements
With the problem of marine biofouling and its added sea margin for yachts identified, a model is proposed to make
accurate predictions in early stage design and ship operation. The goal is to evaluate the Feadship fleet and
its collected data, and find both patterns and outcomes to make forecasts. Furthermore, the goal is to combine
existing white box models will be combined with a newly set up black box model powered by Feadships data.
Before the model selection will be done in the next chapter, first the method requirements have been set as stated
below:
MR.1 A white box model that predicts marine biofouling growth overtime.
MR.2 A white box model that predicts added hull resistance as a result of marine biofouling.
MR.3 A white box model that predicts reduced propeller efficiency as a result of marine biofouling.
MR.4 A black box model that successfully captures ship-specific and environmental phenomena.
MR.5 A black box model that improves approximations and knowledge gaps of white box model.
MR.6 A black box model that successfully extracts level of marine biofouling from ship dataset.
MR.7 A grey box model that combines the white and black box models.
MR.8 A method that is based on available data within Feadship & De Voogt Naval Architects.
MR.9 A method that is based on various vessels within Feadship fleet.
MR.10 A method that can filter out errors in voyage data.



3
Method Exploration

In this chapter the main methodology for the model and current research will be explored. The goal is to formulate
a method that will give accurate fouling and fouling effect predictions and will fit to the method requirements, as set
up in section 2.6 and referenced by MR and their number. In this chapter, first in section 3.1, the white box model
will be selected. Next, in section 3.2, the black box model will be selected. In section 3.3, the configuration for the
grey box model will be presented. Finally, in section 3.4, the method requirements as proposed in section 2.6 will
be evaluated.

3.1. White Box Modeling
With the problem analysis performed and different available methods and research known, first method selection
will be done for the white box. Here, the different methods presented in the previous chapter will be assessed
for the current research. For the white box modeling, the goal is to split the computation up into two models.
Inline with MR.1, a model will be developed to predict marine biofouling growth. This model will be presented in
subsection 3.1.1. Inline with MR.2 and MR.3, a white box model will be developed to predict the added sea margin
as a result of marine biofouling. This model will be presented in subsection 3.1.2. By dividing the white box up into
two models, both different physical processes that are occurring can be separated. This way a better overview
of what is happening in and around the yacht is created and higher fidelity calculations can be used. Last, in
subsection 3.1.3, the level to which the problem is covered by the white box model will be assessed. Based on
this assessment, the parts of the problem that are not yet covered can be identified. This gives the opportunity to
cover the last open points with the black box. As mentioned, black boxes can be very successful to cover complex
problems and when a systems behaviour is not fully understood. Combining both white box and black box model
will provide a powerful and accurate grey box model.

3.1.1. Marine Biofouling Growth
In the previous chapter different methods to predict ship roughness due to fouling were presented. With foul-
ing conditions known, added hull resistance and loss of propeller efficiency can be predicted. In section 2.2 and
section 2.3, different methods were discussed to predict added resistance and loss of propeller efficiency due to
marine biofouling. Multiple of these recent papers show the great potential of using Computational Fluid Dynamics
(CFD) to predict vessel performance with fouling conditions. Separate from this, first-principle experimental based
models where also discussed together with data-driven methods.

For the current proposal, data-driven modeling will be used in the black box configuration, which will be discussed
in section 3.2. This leaves both CFD modeling as well as using a first-principle experimental based model open for
the current white box. CFD requires more work and computation time, in return the user achieves higher fidelity
and a more precise answer. However, the current model will be developed to run for a large variety of vessels,
operations, locations and datasets. Therefore, it is important to create a model that can do lots of computations
while working with changing variables. Furthermore, the model should also serve as an early stage design tool.
To compute CFD calculations, a detailed model is required as input. Inline with that, this research supposes that
more can be gained by using a first principle based modeling rather than using a CFD model. Here it is important
to mention that the white box model will be integrated with the black box model, with the expectation of increasing
model accuracy and problem coverage. Overall, the goal of the model is to create a deeper understanding of ma-
rine biofouling growth, and give predictions of marine biofouling and its effects for different yachts and operational
profiles. To select the most useful method for the current method, a trade off is made based on the different papers
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discussed in section 2.2, of which an overview is presented in Table 3.1, together with the pros and cons of each
method. Here the usefulness is indicated with positive, neutral, or negative sign.

Source Usefulness1 Pros & Cons
Data-driven ship digital twin for es-
timating the speed loss caused by
the marine fouling (Coraddu et al.,
2019)

Paper covers both marine biofouling growth and ef-
fect on ship speed. However, this is a data-driven
model rather than a white box model, and thus
more applicable for section 3.2.

Practical added resistance dia-
grams to predict fouling impact on
ship performance (Demirel et al.,
2019)

Added resistance diagrams could be used as a
start point for fouling resistance predictions. How-
ever, model does not predict fouling. Resistance
diagrams lack fidelity and are not custom to yachts,
their environment and operational behaviour.

A CFD model for the frictional resis-
tance prediction of antifouling coat-
ings (Demirel et al., 2014)

A CFD model is considered unpractical for the cur-
rent research. The goal is to compute fouling and
resulting resistance for multiple yachts in a lot of sit-
uations, rather than detailed calculations for only
little situations. With many iterations required, a
first-principle model is preferred over CFD.

Time-Dependent Biofouling Growth
Model for Predicting the Effects of
Biofouling on Ship Resistance and
Powering (Uzun et al., 2019)

Best model for current research to the authors
knowledge. Covers both marine biofouling growth
predictions in a first-principle experimental based
model as the computation of the added resistance
resulting from this.

Predicting the effect of biofouling on
ship resistance using CFD (Demirel
et al., 2017)

A CFD model is considered unpractical for the cur-
rent research. The goal is to compute fouling and
resulting resistance for multiple yachts in a lot of sit-
uations, rather than detailed calculations for only
little situations. With many iterations required, a
first-principle model is preferred over CFD.

Table 3.1: Model selection for added ship resistance & marine biofouling modeling (MR.1 & MR.2).

To predict marine biofouling growth over time, the model used will be based on the time dependent biofouling
growth model by Uzun, Demirel, Corradu and Turan (2019). This model is one of the newer and more advanced
models to make predictions for biofouling growth in different regions, with an increasing frictional resistance pa-
rameter due to biofouling as a result.

The basis for the model of Uzun et. al (2019) are fouling measurements performed for different types of foul-
ing over time. This includes measurements for slime, non-shell organisms and calcareous fouling. With these
measurements, a Gaussian fit type was found that corresponds best to the data and growth patterns. This was
done by applying a half-bell curve to satisfy the saturation phase at maximum fouling point. Extensive field test
data was provided by a paint company which were conducted for over 3 years. The authors add:

”Biofouling growth on coated and immersed plateswas assessed according to ASTMD6990-05 (2011),
and ASTMD3623-78a (2012) performance standards and evaluations were recorded for mainly three
types of biofouling accumulations through monthly observations” (Uzun et al., 2019, p. 8).

It is important to mention that the process of fouling change when sailing is not taking into account. Uzun et
al. mention that modeling is limited to static data and that with detachment it is not realistic to reach the required
shear stresses in order to overcome the adhesion strengths of biofouling organisms on biocidal antifouling coatings
(Uzun et al., 2019; Oliveira and Granhag, 2016). However, this also means that the model is less representative
for coatings where fouling detachment is possible at certain speeds. Since this will also be evaluated within this
research, this is a point that partly needs to be covered by the black box. As mentioned, shortcomings of the white
box will be listed at the end of this section.

Since the model tests were only performed around the Equator and Mediterranean region, the authors propose to
inter- and extrapolate the results as a function of water temperature. To do so, Uzun et al. make use of a function
that can approximate the surface water temperature based on the latitude degree of a ships location. This way
the found patterns can be computed for all regions around the world, assuming water temperature as the most
dominant fouling parameter. Last, the authors go into detail on the high added resistance when more barnacles
1Reflecting on usefulness in regard to practicality for the current model, not functioning as a review to the paper.
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are attached to the hull. For this reason, the authors present a logarithmic function that can determine the area
covered by calcareous fouling. Based on how high this level is, a selection can be made on whether fouling rating
or calcareous surface coverage is the dominant fouling parameter.

With the accumulative fouling rating formula, growth predictions for calcareous fouling, non-shell organisms and
slime can be done. Here again attention can be paid to the growth process of biofouling, as discussed in sec-
tion 1.1. It was presented how first slime is formed around the hull, followed by non-shell organisms and finally
the more heavy calcareous fouling. This can all so be seen back in different fouling diagrams that can be made.
In Figure 3.1, calcareous fouling growth predictions for both the Equatorial region and the Mediterranean region
are presented. For the Mediterranean region, it can be seen that it takes over a year for both slime and non-shell
organisms have settled around the ship, and growth of macrofoulers can start.

(a) Equator region. (b) Mediterranean region.

Figure 3.1: Calcareous fouling growth shown over 800 days with a maximum fouling rating of 100, from Uzun et al. (2019).

With insight in fouling rating and calcareous surface coverage, the equivalent sand roughness height (𝑘𝑠) can now
be computed. This parameter will be determined in micrometers, and represents the roughness thickness present
on the ship surface. The equivalent sand roughness height is often used in marine biofouling studies to quantify the
biofouling present on the ship, and translate this it added hull roughness. It can be noted that with this, the marine
biofouling growth can now be determined at any point and time for any location with roughness as a result. As a
next step, roughness present on the ship can be computed to added sea margin. With this, the method exploration
for the marine biofouling growth process is now finished. In the next chapter, the methodology selected will be
presented in detail. However, first the other methods must be selected to form the model.

3.1.2. Added Sea Margin as a Result of Marine Biofouling
In the previous section it was determined how marine biofouling growth predictions can be made, with the equiv-
alent sand roughness due to biofouling (𝑘𝑠) as a result. Next, in this section the added sea margin as a result of
the predicted marine biofouling will be calculated.

Added Hull Resistance
To start with vessel resistance, first it is important to mention the relation between the required effective power (𝑃𝐸),
total ship resistance (𝑅𝑇) and ship speed (𝑉𝑆), as shown in Equation 3.1. Next, in Equation 3.2, it can be seen how
the total resistance can be split up into its different factors, including frictional resistance (𝑅𝐹), increase in frictional
resistance due to biofouling (Δ𝑅𝐹), residual resistance (𝑅𝑅) and air drag resistance (𝑅𝐴𝐴).

𝑃𝐸 = 𝑅𝑇𝑉𝑆 (3.1)
𝑅𝑇 = 𝑅𝐹 + Δ𝑅𝐹 + 𝑅𝑅 + 𝑅𝐴𝐴 (3.2)

In the function above, the residual resistance includes wave resistance, the viscous pressure resistance, and the
additional resistance due to the form or curvature of the hull. This means that this parameter is also dependent on
weather condition, something that has to be accounted for and has an influence on the total sea margin of the ship.
To account for both still water resistance and resistance in different weather conditions, Feadships initial design
calculations, resistance measurements and VoogtWAVE & 7SEAS Portal will be used. With use of this model,
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all different weather conditions can be taken into account and evaluated. Here it can be noted that VoogtWAVE
method makes use of the regular wave height, incoming wave direction and other parameters to compute the
added resistance as a result of the wave. This is embedded in 7SEAS Portal, where predictions based on wind
and weather conditions are made. With this method, all other factors that play a role in the resistance of the ship
are taken into consideration, so that the additional contribution from biofouling can be identified and later validated.
Based on the previous function, the added frictional resistance due to fouling could be calculated, as shown in the
equation below.

Δ𝑅𝐹 =
1
2𝜌𝑆Δ𝐶𝐹𝑉

2
𝑆 (3.3)

To find the added frictional coefficient due to biofouling (Δ𝐶𝐹), the resulting equivalent sand roughness height from
the marine biofouling growth model can be used. For this conversion, three different methods were studied and
evaluated:

• Experiments performed by Schultz (2007), conversion of equivalent sand roughness (𝑘𝑠) height into rough-
ness function (Δ𝑈+). Use of Granvilles (1987) similarity law to find the added friction resistance coefficient
due to biofouling (Δ𝐶𝐹).

• Experiments performed by Farkas et al. (2018), model based on equivalent sand roughness height (𝑘𝑠) and
diatoms surface coverage (𝑆𝐶) to find roughness function (Δ𝑈+). Use of Granvilles (1987) similarity law to
find the added friction resistance coefficient due to biofouling (Δ𝐶𝐹).

• Model by Townsin (2003) that directly computes the added frictional resistance coefficient due to biofouling
(Δ𝐶𝐹) based on the equivalent sand roughness height (𝑘𝑠), ship length (𝐿𝑊𝐿), and Reynolds number (𝑅𝑒).

The first method would combine multiple steps including reading out a figure instead of using a function, which is
not preferred for the current method. Furthermore, it can be noted that this method also applies only for certain
surface coverage conditions (Schultz, 2007). It can be noted that the functions of the second option are based on
diatoms surface coverage, a microfouling. This is not inline or close to the calcareous surface coverage fouling
predicted within the current model. Therefore, this method would heavily under predict the roughness and thus
resistance due to biofouling for this model. The last and most optimal method to the authors knowledge is the func-
tion proposed by Townsin (2003). This function has a direct approach to the problem and is also recommended by
the ITTC (2014) as the performance prediction method to calculate added frictional hull resistance due to biofouling
roughness.

With the additional frictional resistance coefficient due to biofouling (Δ𝐶𝐹) now able to be determined, it can be
used to compute added frictional ship resistance as explained and the loss of propeller efficiency.

Loss of Propeller Efficiency
Similar to the models for added resistance and marine biofouling, a trade-off will also be made to select the best
fit model for the modeling of ship propeller & marine biofouling. In Table 3.2, the papers presented in section 2.3
are evaluated and a comparable overview as above is presented. Based on this evaluation, the performance
prediction method for fouled surfaces by Farkas, Degiuli, Martić and Ančić (2020b) will be used as a basis for
modeling of propeller efficiency loss.

Source Usefulness2 Pros & Cons
The impact of biofouling on the pro-
peller performance (Farkas et al.,
2020a)

This model is a follow up on Performance pre-
diction method for fouled surfaces (Farkas et al.,
2020b). this paper gives good insight into propeller
performance due to biofouling but uses CFD rather
than a first-principle relations.

Performance prediction method
for fouled surfaces (Farkas et al.,
2020b)

Best model for the current research to the authors
knowledge. Gives practical formulas to calculate
change in open water efficiency as a result of dif-
ference in lift and drag propeller coefficients due to
fouling.

Investigating the effect of biofoul-
ing on propeller characteristics us-
ing CFD (Owen et al., 2018)

A CFD model is considered unpractical for the cur-
rent research. With many iterations required, a
first-principle model is preferred over CFD.

2Reflecting on usefulness in regard to practicality for the current model, not functioning as a review to the paper.
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Penalty of hull and propeller fouling
on ship self-propulsion performance
(Song et al., 2020a)

Model does give great insight into differences in
clean/fouled hull and propeller and combinations.
This helps with understanding of hull and propeller
interaction when it comes to fouling. However, a
CFD model is considered unpractical for the cur-
rent research.

Table 3.2: Model to predict reduced propeller efficiency as a result of biofouling (MR.3).

As with added frictional resistance, the loss of propeller efficiency will also be computed based on the predicted
roughness. By calculating changes in lift (identified with subscript 𝐿) and drag (identified with subscript 𝐷) for the
propeller due to fouling, the new open water efficiency can be computed from smooth (identified with subscript
𝑆) to rough condition (identified with subscript 𝑅). In order to do so, Equations 3.4 and 3.5 will be used (Farkas
et al., 2020b). These function are based on the added frictional resistance coefficient (Δ𝐶𝐹) for the propeller and
different propeller characteristics. It should be noted that the added frictional resistance for the propeller is not yet
predicted, since it is dependent on the propeller plate length. According to Farkas et al., the plate length can be
taken as the chord length at 0.75𝑅 and will be implemented into Townsins function. For propeller characteristics,
original design parameters from Feadship and their yacht propellers will be used to find the new operation points.

𝐾𝑇𝑅 = 𝐾𝑇𝑆 − Δ𝐾𝑇𝐷 − Δ𝐾𝑇𝐿 (3.4)
𝐾𝑄𝑅 = 𝐾𝑄𝑆 − Δ𝐾𝑄𝐷 − Δ𝐾𝑄𝐿 (3.5)

With changes in propeller performance due to biofouling now computable, the new open water efficiency can be
calculated. In order to do so, Equations 3.6 and 3.7 can be used (Klein Woud and Stapersma, 2002).

𝐽 = 𝑣𝑎
𝑛𝐷 (3.6)

𝜂𝑂 =
𝐽
2𝜋
𝐾𝑇
𝐾𝑄

(3.7)

Resulting Added Sea margin due to Biofouling
The open water efficiency of the propeller is important for power transfer from propeller to effective power. As
shown by Klein Woud and Stapersma, the effective power is a result of the number of propellers (𝑘𝑝), multiplied by
the power from each propeller (𝑃𝑃) factored by the open water (𝜂𝑂), hull (𝜂𝐻) and relative rotative (𝜂𝑅) efficiencies.
Based on this function for the fouling condition, the rough effective power (𝑃𝐸,𝑅) at a given speed or the rough
ship speed (𝑉𝑆,𝑅) at a given power output can be determined. These two follow from an increase in resistance,
decrease is propulsion efficiency and given ship power or speed. By selecting ship speed and finding rough power
consumption compared to the smooth situation, added cost in fuel can be found and trade-offs can be made be-
tween this and investing in clean ships.

With this last step, the white box model is complete and a white box model is proposed that predicts marine
biofouling growth overtime (MR.1), added hull resistance due to biofouling (MR.2) and reduced propeller effiency
due to biofouling (MR.3). For this method available data from Feadship & De Voogt Naval Architects will be used
as outlined in section 2.5. Here, it is important to mention that all other relevant data concerning ship resistance
and propeller characteristics are already available for the yachts. For this reason, only computing changes due to
biofouling for resistance and propeller is satisfactory. With this model, predictions will be made for multiple yachts
within the Feadship fleet, inline with method requirements MR.8 and MR.9. Last it is important that all data entering
the white box is checked to filter out errors in voyage data. This will be done by applying Chauvenet’s criterion.
With Chauvenets criterion, the dataset is filtered to find errors that have to large deviation, based on a Gaussian
distribution and the standard deviation of the dataset for each variable.

Next to filtering errors with help of Chauvenet’s criterion, other filtering might also be applied. For example, a
minimum speed of 𝑣𝑠 > 2𝑘𝑡𝑠 can be applied to filter noise out for clear anchoring / mooring AIS data compared
to yacht sailing. However, this will depend on data accuracy and patterns once the dataset will become familiar.
With implementations of functions for filtering errors out of voyage data, MR.10 is met. In chapter 4, this selected
method will be explained in detail.

3.1.3. White Box & Problem Coverage
Within this subsection, the proposed white box will be assessed to check its ability to capture the complex problem
of marine biofouling. The goal is to identify the gaps that are difficult to cover with current theory, and use this
as follow up for the black box model in section 3.2. This way, fleet data can be used to predict hard to capture
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phenomena and successfully cover the problem in a grey box model, which will be presented in section 3.3. Based
on the current section, with help of the developed white boxes the model can now compute:

• Marine biofouling growth predictions based on regional and environmental parameters resulting in equivalent
sand roughness height.

• Convert growth predictions into added frictional resistance coefficient with help of the Reynolds number,
ship length and equivalent sand roughness height.

• Use increase in frictional resistance biofouling coefficient to predict added ship resistance due to biofouling.
• Use increase in frictional resistance biofouling coefficient to derive change in drag & lift coefficient to predict
reduction of open water efficiency due to biofouling.

However it can be noted that the problem is not yet fully covered with the proposed model. Even though the model
can now predict added sea margin due to marine biofouling, still several assumptions and simplifications have
been made. These need to be mapped and properly covered where required. The following assumptions and
shortcomings can be listed:

• The marine biofouling growth predictions are based on logarithmic functions developed from field lab data
performed only within the Mediterranean and Equator regions, and several simplifications have been made
compared to the ideal biofouling growth model to increase practicality. A black box model could improve
prediction accuracy and expand region coverage.

• Marine biofouling growth predictions are derived from field lab data for SPC coating. However, for the case
study and research it is desired to study effects of different antifouling measures. Using this as a parameter
in the black box could show potentials and effects of different systems. Results obtained can improve
maintenance and operation choices based on a cost benefit analysis.

• While biofouling growth is predicted, the fouling process when vessels sail is not covered within the current
model. For this reason, this fouling process must be predicted for different antifouling coatings with help of
the black box model.

• Hull & propeller interaction within fouling situation is not yet clear or taking into account. Currently both
systems are covered separately. However, biofouling also changes water flow to the propeller and possible
other propeller performance as discussed by Song et al. (2020a).

Based on the shortcomings listed above, it can be seen that the white box model does not successfully cover
the full problem. However, with first-principle models, it is often difficult to capture all parameters that have an
influence on the problem, as model simplifications are often done for practicality. In return, the current method is
good for both understanding and extrapolation. Using a grey box model would give the opportunity to attack the
problem from another angle and give different coverage of the theory.

The current list will form a basis to fulfill MR.5: A black box model that improves theoretical parts with assumptions,
approximations or knowledge gaps of white box model. Based on this, MR.5 can be identified as follows:
MR.5.1 A black box model that can predict marine biofouling growth, taking into account full effect on ship per-

formance for different antifouling systems.
MR.5.2 A black box model that can predict marine biofouling during sailing, taking into account full effect on ship

performance for different antifouling systems.
With MR.5.1, marine biofouling growth predictions can be improved, while antifouling systems can be taken into
account together with possible hull & propeller interaction effects. With MR.5.2, marine biofouling detachment
predictions can bemade, while antifouling systems can be taken into account together with possible hull & propeller
interaction effects.

3.2. Black Box Modeling
A black box can be viewed as a system which gives outputs based on inputs, without clarity of what happens inside
the system and without the system having any physical knowledge. For this reason, black boxes are based on
data-driven modeling as they require large data input and need to be trained to give correct data output. By doing
so, the black box starts to recognize patterns and increase its intelligence about the system, also called artificial
intelligence. This way the system becomes a program that can sense, reason, act and adapt. The discussion of
black boxes and artificial intelligence often comes hand in hand with the term machine learning. Machine learning
is a part of artificial intelligence, where algorithms improve over time as they are exposed to more data.

With machine learning principles, various prediction & modeling methods have been improved for different fields
of research. Instead of trying to model all phenomena and physics involved with this problem, the black box sim-
ply uses and compares data to give predicted output, without any physical understanding of either ships, water,
resistance or powering. This has both its benefits and its downsides. Using a black box can improve modeling
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accuracy significantly. However, it is difficult to assess which patterns the system has found as one cannot see
or understands what happens within the black box. Since all patterns are found within the range of trained data, it
should also be mentioned that the black box can lack extrapolation accuracy. This means that both white box and
black box modeling are important in the field of research to come to better results and learn more.

For data-driven models, deep learning represents the state-of the art technique (Coraddu et al., 2019). Here,
the word ’deep’ refers to the use of multiple layers within the method, instead of a single layer model. With use
of multiple layer neurons, deep learning attempts to simulate the human brain to ’learn’ from large amounts of
data (IBM Cloud Education, 2020). In Figure 3.2, an overview of deep learning within machine learning & artificial
intelligence is given. Before machine learning principles or even deep learning can be used, first models have to
selected to overcome the different problems identified.

Figure 3.2: Artificial Intelligence, Machine Learning & Deep Learning, from Bansal (2019).

3.2.1. Learning Machine Selection
Based on the defined problem and available data, a model must be selected. As mentioned, data-driven modeling
will be used to give predictions on parts that are difficult to cover with the white box model, which were highlighted
in subsection 3.1.3. The goal is to use machine learning algorithms so that it can learn from the data that it is
provided with. With large quantity of data available and the goal of data-driven modeling, using a deep learning
technique would be optimal for this case. However, there are many different models and an appropriate model
must be selected.

Selecting the best model is difficult, even advanced practitioners and researchers often fail to perform model
selection and error estimation in the correct way (Oneto, 2018). Oneto argues that model selection and error
estimation will always be necessary since there will never be a golden learning algorithm able to solve all data
related problems in the optimal way. While model selection contains both the selection of a learning machine and
hyperparameters, first the type of machine must be selected. With the focus on deep learning, obvious choice
could be to make use of artificial neural networks (ANN). These can be seen as one of the most applied meth-
ods within the maritime industry. Pedersen and Larsen (2009) were one of the first to train an ANN to predict
propulsion power for container vessels. Parkes (2018) modelled shaft power prediction of shipping vessels with
high accuracy. Next to this, Petersen et al. (2012) compared ANN with Gaussian Process (GP) for the modeling
of ship propulsion efficiency. Nonetheless, when attention is paid at the closest case compared to the current
research, instead of most research within the maritime industry, it can be found that a Deep Extreme Learning Ma-
chine (DELM) can successfully predict ship speed loss due to fouling effects. Corradu et al. (2019) showed this
with Extreme Learning Machines (ELM) that make use of feedforward neural networks. This overcomes problems
posed by backward-propagation training algorithm with potentially low convergence rates, critical tuning of opti-
mization parameters, and presence of local minima that call for multi-start and re-training strategies (Huang, 2014;
2015; Ridella et al., 1997; Rumelhart et al., 1986). With some of these advantages outlined, and a DELM already
applied to biofouling modeling, this machine is selected in the first stage of model selection. This way multiple
hidden layers with neurons can be used to train the model for accurate and fast predictions for marine biofouling
and its effects. An overview of the trade off is shown in Table 3.3, where the papers presented in section 2.4 are
evaluated.
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Source Usefulness3 Pros & Cons
Prediction of Full-Scale Propulsion
Power using Artificial Neural Net-
works (Pedersen and Larsen, 2009)

Paper does give insight into application of ANN for
capture of ship data. However, fouling process not
taken into account since it was hard to capture.

Statistical modelling for ship propul-
sion efficiency (Petersen et al.,
2012)

Papers shows differences between ANN and GP
for ship specific problem. Furthermore, fouling was
modelled in a simplified way so that paper gives
additional insight for modeling choice.

Physics-based shaft power predic-
tion for large merchant ships us-
ing neural networks (Parkes et al.,
2018)

Papers shows again possibilities of ANN for mod-
eling ship data and characteristics. However, foul-
ing is not covered within the model making it less
representative for the current case.

Data-driven ship digital twin for es-
timating the speed loss caused by
the marine fouling (Coraddu et al.,
2019)

Closest model to current case. Model uses DELM
to build digital ship twin and find relation in speed
loss overtime as a result of marine biofouling. With
this paper and black box selection as a proven
method for marine biofouling capture within data,
this method is the best choice to the authors knowl-
edge.

Table 3.3: Evaluation of applied black box models within maritime industry.

It can be seen that in this case, the last layer of the DELM makes use of supervised learning., which tries to model
relations between the variable and the input parameters, using labeled datasets. This means that before the train-
ing process, part of the modeling is labeling all input and output parameters. Doing so, the model can measure its
accuracy and learn over time. On the other hand, unsupervised learning uses algorithms to analyze and cluster
unlabeled datasets. Tissera and McDonnel (2016) have shown that supervised learning can significantly improve
network training time and memory usage for Extreme Learning Machines.

The first Extreme Learning Machine was built as a single layer feed-forward neural network, called Shallow ELM
(Huang et al., 2006). Later, the configuration of multiple layers was added to present the DELM. Both extreme
learning machines are presented in Figure 3.3.

(a) SELM structure. (b) DELM structure.

Figure 3.3: Extreme Learning Machines, from Coraddu et al. (2019).

3.2.2. Model Application
The black box model will be specifically programmed to improve the white box model shortcoming as discussed in
subsection 3.1.3. This means that both MR.5.1 & MR.5.2 must be met, so that these shortcomings are covered.
In the sections below, a proposal is done for how both fouling development during anchorage and sailing can be
captured.
3Reflecting on usefulness in regard to practicality for the current model, not functioning as a review to the paper.
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This part of the grey box should cover MR.5.1: A black box model that can predict marine biofouling growth,
taking into account full effect on ship performance for different antifouling systems together with MR.5.2: A black
box model that can predict marine biofouling detachment, taking into account full effect on ship performance for
different antifouling systems. To do so, it is important that the black box can find performance difference over time
compared to the ships clean hull & propeller situation in different environmental conditions. Coraddu et al. (2019)
solved this problem by developing a data-driven ship digital twin with help of deep learning principles. Data is used
after vessel launch in different weather conditions so that the model can predict expected speed when power and
other conditions are known, developing a smooth ship digital twin. Then, relations can be found between predicted
speed and actual speed with a fouled hull over time. For the current research, both assessment on how to predict
speed loss and increase in power will be explained, as the problem can be seen from two angles:

• Ship power stays equal and marine biofouling growth results into loss of ship speed
• Ship sails at constant speed and marine biofouling results into additional required power

Even though both are explained, increase in power will be used as the main parameter for this research. This is
due to the fact when increase in required power in known, additional fuel cost can easily be estimated. Building
a digital twin ship is a time consuming process, and in this case a lot of relevant data is already available within
Feadship. Since the goal is not to develop an all data-driven/black box model but rather to fill gaps with a black box
model, the choice will be made to use Feadship data for ship power prediction in non-fouled condition. This choice
has also been made since sensor data with clean ship is not always available. With a smooth ship prediction,
calculated predictions can be made on expected power in a fouled situation, providing the black box with a full
white box prediction and all data for fouling predictions.

With relevant data on ship condition, weather and water conditions, and vessel speed compared to power, fouling
relations can be found over time. With given speed and outside conditions, for each situation the expected smooth
power can be predicted. The real power then shows the difference due to biofouling. According to Calder (1992),
the main engine degrades very slowly in time and related effects are only noticeable after years of operations
apart from regularly maintenance. On the other side, fouling effects are visible within months of operation. To
this extent, it can be assumed that almost all change in power within a short period of time follows from fouling
effects. This can also be validated by comparing data prior and after hull & propeller treatment. The goal is to
find to what extent different parameters, as some of the presented above, weigh on total biofouling growth, so that
future marine biofouling margin can be predicted. With this black box proposal, MR.5.1 and MR.5.2 can be met.
More information on how the black boxes will be set up will be discussed in chapter 5.

3.2.3. Black Box & Problem Coverage
With the following steps taken the black box model is now fully explained. With the selection of the DELM, a
black box model that can capture ship-specific and environmental data is selected, inline with MR.4. Furthermore,
the black box model will be specifically programmed to improve the white box shortcoming as discussed in sub-
section 3.1.3. With this MR.5 will be fulfilled. This is done with proposal of a black box that can predict marine
biofouling growth (MR.5.1) and fouling change during sailing (MR.5.2) while taking into account full effect on ship
performance and antifouling systems. For MR.6, it was important that the black box model could extract the level
of marine biofouling from the ship data set. With both marine biofouling development during anchorage and sailing
available, predictions can be made on future power increase over time. Being able to predict this added sea margin
over time gives insight into the marine biofouling growth over time. With this, MR.6 is met. Next, it can be noted
that the black box model will be based on available data within Feadship & De Voogt Naval Architects (MR.8) and
that the model is based on various vessels within the Feadship fleet (MR.9). Last, it is important that all data used
for the model is checked to filter out errors in voyage data. To do so the same function(s) will be used as for the
white box model, inline with MR.10.

3.3. Grey Box Modeling
With both the white box (section 3.1) as the black box (section 3.2) discussed, last the the grey box model will be
discussed. The grey box is where both models have to be combined to come to the final model, able to fulfill all
method requirements and give all required output. Grey box modeling is a technique used more and more within
the maritime industry to combine classical white box models with new vessel data and improve models and pre-
dictions with both strong inter- and extrapolation. For example, Leifsson and others (2008) simulated operational
optimization of ocean vessels. Yang et al. (2019) modelled fuel consumption of ships towards sustainable shipping
with a grey box model. As part of Delft University of Technology, fellow researchers and recent graduates have
also shown promising results when it comes to grey box modeling. Trim optimization for ships in service has been
optimized by Zwart (2020), a reference-based design approach has been developed by Bakker (2021) and early
stage energy consumption predictions have been made by Odendaal (2021).
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To combine both white box and black box models, either a parallel and series configuration can be chosen, as
shown in Figure 3.4. Series configuration uses data computed by one box to partly power the other. Parallel
configuration adds different results of both boxes or finds a desirable average.

(a) Serial configuration.

(b) Parallel configuration.

Figure 3.4: Grey box modeling, from Leifsson et al. (2008).

For the current case, a serial configuration will be used. This means that all the data that is used in the model is
both applied to the black box and white box. However, white box predictions are not final, as these are used as
extra input for the black box, making the model grey. As discussed in subsection 3.1.3, the white box does not
cover all aspects of the complex problem of biofouling or all aspects. In the white box, first the equivalent sand
roughness height is computed as discussed in subsection 3.1.1. Next, the added frictional resistance is calculated
together with the loss of propeller efficiency to find the added sea margin due to biofouling growth, as discussed in
subsection 3.1.2. The black box can make predictions for changes in fouling for both anchorage and sailing. Next,
white box predictions are used as additional input to give a better prediction for ship fouling sea margin. Overall,
this will result into the grey box as shown in Figure 3.5. With the flow of white box and all data into the black box,
the requirement to make this a grey box model (MR.7) is satisfied.

Figure 3.5: Proposed grey box model.

3.4. Method Requirement Assessment
As a last step, in Table 3.4, each method requirement is reviewed to check if it integrated into the final solution.
As can be seen in the table, the final grey box model corresponds to all method requirements set in the problem
analysis. With this, the main goal of the method exploration is met.

White
Box

Black
Box

Grey Box

A white box model that predicts marine biofouling
growth overtime.

MR.1

A white box model that predicts added hull resis-
tance as a result of marine biofouling.

MR.2

A white box model that predicts reduced propeller
efficiency as a result of marine biofouling.

MR.3
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A black box model that successfully captures ship-
specific and environmental phenomena.

MR.4

A black box model that improves approximations
and knowledge gaps of white box model.

MR.5

A black box model that can predict marine biofoul-
ing growth, taking into account full effect on ship
performance for different antifouling systems.

MR.5.1

A black box model that can predict marine biofoul-
ing detachment, taking into account full effect on
ship performance for different antifouling systems.

MR.5.2

A black box model that successfully extracts level
of marine biofouling from ship dataset.

MR.6

A grey box model that combines the white and
black box models.

MR.7

A method that is based on available data within
Feadship & De Voogt Naval Architects.

MR.8

A method that is based on various vessels within
Feadship fleet.

MR.9

A method that can filter out errors in voyage data. MR.10

Table 3.4: Method requirements assessment.



II
Methodology

Within the methodology, the grey box that was proposed as part of the problem introduction and exploration in
Part I will be presented in detail. In chapter 4, the physical model to find the fouled ship power is presented. Here,
the method to find the smooth ship resistance is explained, together with marine biofouling growth and its resulting
added sea margin, which contains the hull resistance increase and the propeller efficiency loss. In chapter 5,
the data-driven model is presented, which contains the black box for marine biofouling development during both
anchorage and sailing. Here the white box prediction is added as an initial input to make the model grey. For
clarity, an overview of this is shown in Figure 3.6, which is based on Figure 3.5. After the methodology, the model
outcome will presented and will be used for the business case in Part III.

Figure 3.6: Methodology coverage for chapters 4 & 5.
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4
Physical Model

Within the previous chapter, the method to answer the main research questions have been explored. As a result,
first a white box prediction will be made to find the fouled ship power. In section 4.1, the ship resistance is predicted
based on a given condition for a smooth ship. Next in section 4.2, the model to predict marine biofouling growth
will be discussed. After this, in section 4.3 the models to predict added sea margin due to the biofouling growth
are presented. Last in section 4.4, the fouled ship power is predicted.

4.1. Smooth Ship Resistance
With the chosen grey box approach, first a white box prediction has to bemade for the fouled ship power. Therefore,
first the resistance for a smooth ship will be determined. Combining expected power in a smooth condition with
additional fouling effects will then give a fouled ship power prediction. To make this prediction, Feadship yacht
data and the calm water resistance will be used as a basis. After this, environmental conditions will be taken into
account to compute resistance changes. With this, the smooth ship resistance will contain the following elements:

• Calm water resistance
• Wind resistance
• Wave resistance
• Resistance change due to water temperature difference

4.1.1. Calm Water Resistance
As a basis for the resistance prediction in any given condition, the calm water resistance is computed based on
the ship speed. Here it is important that the speed over water is taken, rather than the speed over ground as
measured with AIS. To find the speed over water, ship heading and speed is used together with the water current
heading and speed, as shown below:

𝑉𝑆,𝑥 = 𝑉𝐺 ⋅ cos(𝜃𝐺) + 𝑉𝐶 ⋅ cos(𝜃𝐶) (4.1)
𝑉𝑆,𝑦 = 𝑉𝐺 ⋅ sin(𝜃𝑆) + 𝑉𝐶 ⋅ sin(𝜃𝐶) (4.2)

𝑉𝑆 = √𝑉2𝑆,𝑥 + 𝑉2𝑆,𝑦 (4.3)

𝜃𝑆 = arctan(
𝑉𝑆,𝑦
𝑉𝑆,𝑥

) (4.4)

Where:
𝑉𝑆,𝑥 = Ship speed in 𝑥-direction [m/s]
𝑉𝑆,𝑦 = Ship speed in 𝑦-direction [m/s]
𝑉𝐺 = Ground speed [m/s]
𝜃𝐺 = Ground heading [𝑟𝑎𝑑]
𝑉𝐶 = Current speed [m/s]
𝜃𝐶 = Current heading [𝑟𝑎𝑑]
𝑉𝑆 = Ship speed [m/s]
𝜃𝑆 = Ship heading [𝑟𝑎𝑑]

With the speed over water known, the calm water resistance (𝑅𝑐𝑎𝑙𝑚) can be determined based on the ship data,
where the resistance at each speed is known for the given vessel. The calm water resistance forms the main body
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for the resistance prediction. As an example, the calm water resistance relation is displayed in Figure 4.1 for one
of the Feadship yachts.

Figure 4.1: Calm water resistance for one of the Feadship yachts, only displaying relation and not values for privacy reasons.

4.1.2. Wind Resistance
To determine the added resistance due to wind, the wind resistance coefficient (𝐶𝑋), area of maximum transverse
section exposed to wind (𝐴𝑋𝑉), air density (𝜌𝐴) and relative wind speed (𝑉𝑊𝑅) are used (ITTC, 2014). Here, the
relative wind speed is based on the ship speed (𝑉𝑆), wind speed (𝑉𝑊) and wind direction (𝜃𝑊) (Aijjou et al., 2020).
To compute the relative wind speed, Equation 4.6 can be used. To find the total air drag resistance, Equation 4.5
can be used.

𝑅𝐴𝐴 =
1
2 ⋅ 𝐶𝑋 ⋅ 𝐴𝑋𝑉 ⋅ 𝜌𝐴 ⋅ 𝑉𝑊𝑅

2 (4.5)

𝑉𝑊𝑅 = √𝑉𝑆2 + 𝑉𝑊2 + 2 ⋅ 𝑉𝑆 ⋅ 𝑉𝑊 ⋅ cos(𝜃𝑊) (4.6)

4.1.3. Wave Resistance
To determine the added wave resistance, Feadship partly uses their privately developed VoogtWAVE method
together with the Jonswap Spectral Density. VoogtWAVE gives a prediction of the added thrust in waves (𝑡𝑎𝑤)
based on ship speed, heading, length, displacement and waterplane coefficient of the foreship. This method
is based on the SPAWAVE method and adjusted for Feadship yachts (Grin, 2015). To maintain confidentiality,
VoogtWAVE is not further presented and SPAWAVE will be introduced briefly to understand how the added thrust
waves (𝑡𝑎𝑤) is formed for the Jonswap Spectral Density. Added resistance due to waves is induced by radiated
waves as a result of ship motions, together with reflected waves as a result of incoming waves reflecting against
the ships hull. On short and long waves, the following can be noted (Burger, 2017):

• Short waves do not influence the motion of the vessel as the wave height of short waves is limited. Wind
waves are generally short waves and give the largest contribution to wave reflection.

• Longwaves or swell waves provide the largest contribution to wave radiation. For wave radiation calculations
it is important to take into account the loading condition as this determines the motion response.

In Figure 4.2, the parameters that influence the non dimensional added thrust in waves are shown. For more
information, the paper by Grin (2015) can be consulted.

Figure 4.2: Influence of length between perpendiculars (Lpp), width (B), Froude number (Fn), waterline coefficient (Cwp), ship
heading (𝜇) and wave length (𝜆) on the non dimensional added thrust in waves 𝑡𝑎𝑤𝑛𝑑 in SPAWAVE, from Grin (2015).
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With the added thrust in waves known, next the added wave resistance must be found. An actual sea state is
normally described by a wave spectrum such as the Pierson-Moskowitz (1964). To allow for flexible spectrum
shapes, the spectrum is multiplied with the peak enhancement factor (𝛾), defining the JONSWAP spectrum as
expressed below (Hasselmann et al., 1973):

𝑆 = 𝛼𝑔2
𝜔5 exp [54 (

𝜔𝑝
𝜔 )] 𝛾

exp[ (𝜔−𝜔𝑝)
2

2𝜎2−𝜔𝑝2
]

(4.7)

For the added wave resistance, it is important to notice that irregular waves can be represented as linear super-
position of the components of regular waves. This resistance can be elaborated as follows:

’The mean resistance increase in short crested irregular waves (𝑅𝑊) is calculated by linear superpo-
sition of the directional wave spectrum (𝐸), and the response function of mean resistance increase in
regular waves (𝑅𝑤𝑎𝑣𝑒)’ (ITTC, 2014, p. 8).

Here, the directional wave spectrum (𝐸) is found by multiplying the JONSWAP spectrum (𝑆) with the angular
distribution function (𝐺). Overall, the wave added resistance can be written as displayed in function Equation 4.8.

𝑅𝑊 = 2∫
2𝜋

0
∫
∞

0

𝑅𝑤𝑎𝑣𝑒(𝜔, 𝛼, 𝑉𝑆)
𝜁𝐴2

𝐸(𝜔, 𝛼)𝑑𝜔 𝑑𝛼 (4.8)

The method proposed is largely inline with the ITTCs advice for the added wave resistance, with detailed compu-
tation of regular wave thrust (𝑡𝑎𝑤) and extension of JONSWAPS peak enhancement factor.

4.1.4. Displacement & Temperature Difference Resistance Change
Last, a correction can be accounted for difference in resistance due to change of temperature (Δ𝑅Δ𝑇) and change
of displacement (Δ𝑅Δ𝐷) of the ship, caused by a change in water properties. This approach is taken since the
predicted resistance is build upon the ships calm water resistance, rather than computing all factors of the ships
resistance. With the ship resistance known at a certain water temperature, density and salinity condition, the
resistance changes for the current condition must be taken as a correction. The approach taken is based on the
change in density of the water (𝜌, 𝜌0, 𝐶𝑇0) and change of frictional resistance coefficient for given water temperature
and salinity (𝐶𝐹, 𝐶𝐹0), as displayed below (ITTC, 2014; 26th ITTC Specialist Committee on Uncertainty Analysis,
2011):

Δ𝑅Δ𝐷 = 𝑅𝑇0 (
𝜌
𝜌0
− 1) (4.9)

Δ𝑅Δ𝑇 = 𝑅𝐹 (
𝐶𝐹0
𝐶𝐹

− 1) (4.10)

Within these equations, the total resistance for the reference water temperature and salt content (𝑅𝑇0) and the
frictional resistance for actual water temperature and content (𝑅𝐹) can be determined as follows:

𝑅𝑇0 =
1
2𝜌0𝑆𝑉𝑆

2𝐶𝑇0 (4.11)

𝑅𝐹 =
1
2𝜌𝑆𝑉𝑆

2𝐶𝐹 (4.12)

For the frictional resistance (𝑅𝐹), two things must be considered:
• Frictional resistance is also covered in the white box approach (subsection 4.3.1) together with the approx-
imation of the frictional resistance coefficient (𝐶𝐹, subsection 4.3.2)

• Difference in this section compared to the white box is that numbers for a clean hull are used rather than
already taking into account an added resistance factor (Δ𝑅𝐹), since the goal is to compare predicted clean
hull performance to actual rough hull performance

4.2. Marine Biofouling Growth
In this section, further elaboration will be given on how the marine biofouling growth is computed over time.

• Model basis: Uzun, D., Demirel, Y., Coraddu, A., & Turan, O. (2019). Time-dependent biofouling growth
model for predicting the effects of biofouling on ship resistance and powering. Ocean Engineering, 191.
https://doi.org/10.1016/j.oceaneng.2019.106432.

• Goal: Using anchor locations and time to find the increase in biofouling roughness on the ship.

https://doi.org/10.1016/j.oceaneng.2019.106432
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The chosenmodel makes use of twomain principles: a fouling rating and the fouling surface coverage for barnacles
and calcareous fouling. The fouling rating forms a basis for the model, combining slime, non-shells organisms and
calcareous fouling into one overall fouling rating. Overall, this gives a good indication on the level of fouling present
on the ship and its resulting roughness. However, when calcareous fouling is present on the ship, its level of surface
coverage can be a dominant factor. Due to this, the calcareous surface coverage was introduced by the authors
as an additional parameter. Based on the levels for these two parameters, the roughness thickness present on
the ship can be determined, which is modelled with the equivalent sand roughness height. An overview of this
process is shown in Figure 4.3. For all functions, variables, and a detailed formulation of the model, Appendix A
can be consulted.

Figure 4.3: Marine biofouling growth & resulting equivalent sand roughness height determination, illustrative overview of model
by Uzun et al. (2019).

4.2.1. Model Usage & Limitations
In the introduction of this section, it was shown how roughness is a found by either using fouling rating or surface
coverage. However, in between these two, there is a gap, as they do not connect. It can be found that the
fouling rating can be used until a fouling rating of 70, which leads to a total equivalent sand roughness height of
1,000.2 micrometers. The calcareous surface coverage can only and must be used when this value passes the
5%, and results in a equivalent sand roughness height of 1003.1 micrometers. With only a small difference in
roughness between them and enough time, interpolation to connect both was used. An overview of the suggested
interpolation for both regions is shown in Figure 4.4.

(a) Equator. (b) Mediterranean.

Figure 4.4: Equivalent sand roughness height based on Uzun et al. (2019) together with proposed interpolation for missing
values.

Since the data is limited to the Equator and Mediterranean regions, the authors suggest to interpolate and ex-
trapolate found patterns based on sea surface temperature as the dominant fouling parameter. In case only ship
location is known, Equation 4.13 is introduced. The function can be used to compute the Sea Surface Temperature
(SST) for any location, where it is important to note that differences in temperature due to longitude changes were
neglected as these differences are relatively small compared to latitude changes (Uzun et al., 2019; Pielke, 2012).
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Interpolation and extrapolation can then be done with Equation 4.14, where the sea surface temperatures and
antifouling performance parameters are used from locations 𝑥 and 𝑦 are used. With help of this function, biofoul-
ing growth trends found for the Equator and Mediterranean can be inter- and extrapolated for all locations. Last,
the authors also propose to scale all logarithmic constants for the calcareous surface coverage curves. However,
doing so results into strange and unrealistic curves. For this reason, the curves are first formed based on the
constants and are then interpolated and extrapolated based on sea surface temperature.

𝑆𝑆𝑇𝑎 = 12.5 + 15(𝑐𝑜𝑠 (
𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 𝑑𝑒𝑔𝑟𝑒𝑒

28.64 )) (4.13)

𝜂𝑐𝑎(Δ𝑆𝑆𝑇) =
𝜂𝑐𝑦(𝑆𝑆𝑇𝑎 − 𝑆𝑆𝑇𝑥) + 𝜂𝑐𝑥(𝑆𝑆𝑇𝑦 − 𝑆𝑆𝑇𝑎)

𝑆𝑆𝑇𝑦 − 𝑆𝑆𝑇𝑥
(4.14)

With marine biofouling predictions now available for all locations, last it is important how these anchorage studies
can be combined over ships operational time. The current model is based on static measurements over a longer
period, thus lacking information of fouling changes during sailing. With a SPC coating for the current model, the
assumption has been made by the authors that marine biofouling detachment is not occurring, as it is not realis-
tic to reach the required shear stresses in order to overcome the adhesion strengths of biofouling organisms on
biocidal antifouling coatings (Uzun et al., 2019; Oliveira and Granhag, 2016). This also means that the model is
less suitable for use with coatings that rely on fouling detachment processes, as corrections should be accounted
for sailing periods. Nevertheless, in the method exploration of this study, it was determined that fouling changes
during sailing can be found within the grey box model.

For the current model, no fouling changes during sailing means that the ship will go into a new anchor location with
the same fouling rating and surface coverage as in the previous region. For the current model, it is important that
when a new region is entered, it is obtained at which day in the growth process the biofouling currently is in this
new region. This is an important step since a year in the Equator does not result into a year in the Mediterranean.
Thus when a new region is reached, this means that the ship is at a different day in the growth process for this
region.

For the current research the steps explained above are taken. In case a more simple approach is desired, users
could also obtain roughness curves for both regions first (as shown in Figure 4.4), and then interpolate and extrap-
olate accordingly. Last it is important to mention that when a vessel is cleaned and antifouling is reapplied, both
surface coverage and fouling rating are set back to zero. With ability of combining marine biofouling growth during
anchorage intervals over a ships operational time for all locations, the resulting equivalent sand roughness height
can now be computed for each ship. Overall, the most important model limitations can be summarized as follows:

• Model is based on Equator and Mediterranean fouling measurements, with interpolation and extrapolation
recommended based on only sea surface temperature, making the model less applicable for regions colder
than the Mediterranean.

• Measurements taken over a longer period throughout different seasons, which are not filtered or identified.
• Model based on salt water, it is known that salinity has a substantial effect on fouling growth. Furthermore,
different species grow and live in salt water then in sweet water, making the model less applicable for sweet
water locations.

• Model based on SPC coating, fouling changes during sailing not taken into.

4.3. Added Sea Margin due to Biofouling
Within this section, the computation of added hull resistance and loss in propeller efficiency will be explained. As
part of resistance changes, some attention is also given to change wave making resistance due to fouling. The
approaches taken is based on the choices made within the method exploration.

• Model basis resistance: Townsin, R. (2003). The ship hull fouling penalty. Biofouling, 19(S1), 9–15
• Model basis propeller: Farkas, A., Degiuli, N., Martić, I., & Ančić, I. (2020b). Performance prediction
method for fouled surfaces. Applied Ocean Research, 99. https://doi.org/10.1016/j.apor.2020.102151

• Goal: Compute the added hull resistance and loss of propeller efficiency based on the equivalent sand
roughness height, to find the increasing sea margin as a result of marine biofouling growth over time.

4.3.1. Added Resistance
The total resistance of a ship can be seen as a combination of frictional, residual and air drag resistance, as shown
in the equation below.

𝑅𝑇 = 𝑅𝐹 + 𝑅𝑅 + 𝑅𝐴𝐴 (4.15)
Here, the residual resistance can mainly be divided into the wave making resistance and to the viscous pressure
resistance. By using the form factor (1 + 𝑘), viscous pressure and friction resistance can be combined. It can

https://doi.org/10.1016/j.apor.2020.102151
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be seen that an increase of biofouling will result into an increase of the frictional resistance due to biofouling.
Therefore, the equation can be written as followed (Demirel et al., 2017,Oliveira et al., 2018):

𝑅𝑇 = (1 + 𝑘)𝑅𝐹 + Δ𝑅𝐹 + 𝑅𝑊 + 𝑅𝐴𝐴 (4.16)

Added Frictional Resistance
The added resistance as a result of marine biofouling can mainly be captured in increase in frictional resistance.
To do so, the increase in frictional resistance coefficient will be computed, as shown in Equation 4.17. Here the
change in frictional resistance coefficient (Δ𝐶𝐹) is calculated based on the equivalent sand roughness height (𝑘𝑠),
the ship waterline length (𝐿𝑊𝐿) and the Reynolds number (𝑅𝑒).

The determination of the Reynolds number is shown in Equation 4.18, where 𝑢 is the flow speed and 𝜈 is the
kinematic viscosity (Klein Woud and Stapersma, 2002). Here, the viscosity is dependent on water temperature for
either fresh or salt water (26th ITTC Specialist Committee on Uncertainty Analysis, 2011). The flow speed is taken
as a average number across the hull. In subsection 4.3.3, an approach will be discussed into dividing the flow
speed and the frictional resistance coefficient across different regions of the ship. With this approach, answers
within the business case that was mapped out can be answered to estimate the weight of different ship sections
in the total added frictional resistance.

Δ𝐶𝐹 = 0.044 [(
𝑘𝑠
𝐿𝑊𝐿

)
1
3
− 10 ⋅ 𝑅𝑒−

1
3 ] + 0.000125 (4.17)

𝑅𝑒 = 𝑢𝐿𝑊𝐿
𝜈 (4.18)

Next, the added frictional resistance coefficient can be computed to the increase in frictional resistance, as shown
in Equation 4.19 and outlined in the method exploration.

Δ𝑅𝐹 =
1
2𝜌𝑆Δ𝐶𝐹𝑉

2
𝑆 (4.19)

It is known that the total ship resistance is a combination of frictional resistance, air drag resistance and residual
resistance, where the latter includes wave resistance, viscous pressure resistance, and the additional resistance
due to the form or curvature of the hull. Not only does biofouling have an influence on frictional resistance, also
the wave making resistance can change as a result of biofouling.

Change in Wave Resistance
Although marine biofouling mainly has an influence on the frictional resistance of the ship, it can be noted that it
also has effects on the wave resistance. One of the key findings by Demirel et al. (2017) is the decreasing wave
resistance with an increasing surface roughness. This trend was later also found by Oliveira et al. (2018), Song
et al. (2020b), and Kanninen et al. (2022). It is important to mention that these findings go against the traditional
view that wave-making resistance is not affected by hull-roughness (Institution and of Ships, 1952):

”The findings by Demirel et al. agree well with other numerical studies that demonstrated viscous
effects on wave patterns, namely that the boundary layer thickness (which is increased by hull rough-
ness) changes the stern pressure field, leading to dampening of the stern wave system” (Oliveira et al.,
2018, p. 8).

In Figure 4.5, the changes in wave pattern for a smooth and heavy calcareous fouled hull are presented. In these
figures, the characterised damping of the stern wave system in the fouled situation is clearly visible.

(a) Smooth condition. (b) Heavy calcareous fouling condition.

Figure 4.5: Wave patterns for smooth and heavy calcareous fouling condition (𝑉𝑠 = 24 knots), from Demirel et al. (2017).
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Oliveira et al. re-analyzed the results by Demirel et al. to determine the extent to which the form of the hull can
affect the penalty due to hull roughness. This was done for speeds of 19 knots and 24 knots, for 7 different fouling
scenarios. With little additional research yet done in this field to the authors knowledge, the found changes in
resistance wave coefficient can be used as a basis in case the added wave resistance must be computed with
fouling present on the hull. It can be noted that this part is not fundamental to find an overall sea margin for
calm water resistance, but can improve calculations for ship performance with fouling in waves. It is proposed to
interpolate and extrapolate between both speeds and fouling to get an average percentage correction for wave
coefficient (Δ𝐶𝑊). The corrections used are shown in Table 4.2.

Equivalent Sand Roughness Height (𝑘𝑠) 19 knots 24 knots
0 (𝜇m) - -
30 (𝜇m) -1 -1
100 (𝜇m) -7 -10
300 (𝜇m) -12 -15

1,000 (𝜇m) -17 -22
3,000 (𝜇m) -22 -27
10,000 (𝜇m) -18 -30

Table 4.2: Percentage change in Δ𝐶𝑊 at 19 and 24 knots, from Oliveira et al. (2018).

Oliveira et al. show that as fouling increases along the ship, the wave resistance continuously decreases. It can
be seen that this effect is larger for a higher velocity, which can be attributed to the fact the contribution of the
viscous effects becomes more important on lower speeds.

It needs to be emphasized that the chosen approach is a very rough approximation of the change in wave re-
sistance due to biofouling. However, with lack of empirical models available, this gives the opportunity to account
for this change without large additional steps taken, as this is not the main part of this research or a crucial step
within the model. Furthermore, the change in viscous resistance is taken into account with the ship and speed
specific form factor, as the other part of the residual resistance. It is the author belief that this is a better approach
as not accounting for this change at all. Overall, realizing that wave resistance decreases with increase of bio-
fouling instead of a traditional approach were no changes are identified, can be seen as an important relation and
understanding.

4.3.2. Propeller Efficiency Loss
In the method exploration, the model by Farkas et al. (2020b) was selected to compute the change in thrust and
torque coefficient due to biofouling, and find a new open water efficiency / operating point of the propeller. This is
done by finding the change in drag and lift for both coefficients, as highlighted in Equations 4.20 and 4.21. Here
subscript 𝑆 and 𝑅 represent the smooth and rough condition.

𝐾𝑇𝑅 = 𝐾𝑇𝑆 − Δ𝐾𝑇𝐷 − Δ𝐾𝑇𝐿 (4.20)
𝐾𝑄𝑅 = 𝐾𝑄𝑆 − Δ𝐾𝑄𝐷 − Δ𝐾𝑄𝐿 (4.21)

The chosen method makes use of the added frictional resistance due to roughness, and uses propeller charac-
teristics as propeller pitch (𝑃), diameter (𝐷), number of blades (𝑍), chord length (𝑐) and maximum thickness (𝑡).
Here it is important to mention that both chord length and maximum thickness are taken at radius 0.75𝑅. First the
changes as a result of drag coefficient will be determined, as shown in the functions below:

Δ𝐾𝑇𝐷 = −Δ𝐶𝐷 ⋅ 0.3
𝑃
𝐷
𝑐𝑍
𝐷 (4.22)

Δ𝐾𝑄𝐷 = Δ𝐶𝐷 ⋅ 0.25
𝑐𝑍
𝐷 (4.23)

However, in order to perform these steps, first change in drag coefficient (Δ𝐶𝐷) must be computed. This can be
done by taking into account drag coefficient in smooth condition (𝐶𝐷𝑆) and the drag coefficient in rough condition
(𝐶𝐷𝑅) as functions of the frictional resistance coefficients for smooth (𝐶𝐹𝑆) and rough condition (𝐶𝐷𝑅).

Δ𝐶𝐷 = 𝐶𝐷𝑆 − 𝐶𝐷𝑅 (4.24)

𝐶𝐷𝑆 = 2(1 +
𝑡
𝑐 ) ⋅ 𝐶𝐹𝑆 (4.25)

𝐶𝐷𝑅 = 2(1 + 2
𝑡
𝑐 ) ⋅ 𝐶𝐹𝑅 (4.26)
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It can be noted that at this point, the added frictional coefficient due to biofouling (Δ𝐶𝐹) can be computed with help of
the function of Townsin, as discussed in subsection 3.1.2, where the chord length at radius 0.75R can serve as the
plate length. To compute the frictional resistance coefficient in smooth (𝐶𝐹𝑆) and rough (𝐶𝐹𝑅) state, first the frictional
resistance coefficient for smooth condition (𝐶𝐹𝑆) must be found, which can be done by either using Schroenherrs
friction line (Equation 4.27) or with the ITTC-1957 skin friciton line (Equation 4.28). To save computational time,
the latter will be chosen (Farkas et al., 2020b; ITTC, 2011).

0.242
√𝐶𝐹𝑆

= 𝑙𝑜𝑔(𝑅𝑒 ⋅ 𝐶𝐹𝑆) (4.27)

𝐶𝐹𝑆 =
0.075

(𝑙𝑜𝑔(𝑅𝑒) − 2)2 (4.28)

With the change in drag coefficient (Δ𝐶𝐷) now known, changes as a result of the lift can now be found. Changes
as a result of reduced value of lift coefficient (Δ𝐶𝐿) can be determined for both the thrust and torque coefficient with
the equations below. Here, 𝐽 represents the advance coefficient, used to express propeller speed as a function of
advance velocity, propeller speed and propeller diameter.

Δ𝐶𝐿 = −1.1Δ𝐶𝐷 (4.29)

Δ𝐾𝑇𝐿 = Δ𝐶𝐿
𝑐𝑍
𝐷 ⋅ 0.733 + 0.132𝐽

2

√1 + 0.18 ( 𝑃𝐷)
2

(4.30)

Δ𝐾𝑄𝐿 = Δ𝐶𝐿
𝑐𝑍
𝐷 ⋅ 0.117 + 0.021𝐽

2

√1 + 0.18 ( 𝑃𝐷)
2

(4.31)

With changes as shown in Equations 4.20 and 4.21, the new propeller open water efficiency for the rough condition
(𝜂𝑂𝑅) can now be calculated with the functions below (Klein Woud and Stapersma, 2002).

𝐽 = 𝑣𝑎
𝑛𝐷 (4.32)

𝜂𝑂𝑅 =
𝐽
2𝜋
𝐾𝑇𝑅
𝐾𝑄𝑅

(4.33)

4.3.3. Non Uniform Distribution of Added Frictional Resistance
One of the goals set in the business case of Feadship (subsection 1.6.2) was to be able to see effect of regions
with high flow on total fouling resistance. It is known that added roughness has a larger effect on regions with
high flow and thus higher Reynolds numbers. For this reason, it could be interesting for Feadship to invest extra
in high flow regions compared to low flow regions. Example could be to use different type of products for special
regions. For Equation 4.17, this would mean that the equation must be split up into different regions of the yacht
with different levels of flow speed. The equation can be split up into regions with different wetted surface areas with
different equivalent sand roughness heights. Even though it is hard to predict how fouling growth would change
with more/different antifouling coating, a different fouling level for these locations does give insight into its effect on
total ship resistance. Here, it is important to note that for these different regions, the different Reynolds numbers
can be taken into account as well, to get a better overview on their total weight on the added ship resistance.

Splitting up Equation 4.17 is however more complicated than it seems. The wetted surface area can easily be
split and summed up for different regions. With these regions, different equivalent sand roughness heights and
Reynolds numbers could be entered to compute differences. However, with waterline length powered to the one
third, splitting this factor is more complicated. This is the case since the function is based on flat plate friction.
Friction at the beginning and end of plates is higher than in the center. For this reason, it is powered by one third
and multiple plates with shorter length weigh heavier combined to one long plate. This leaves two options to deal
with waterline length in this function, as discussed below and shown in Figure 4.6.
(a) Use waterline length of each separate section for determination added frictional resistance coefficient due

to biofouling, with differentiation in wetted surface area, equivalent sand roughness heights, and Reynolds
number. Each section is seen as separate plate with length powered to the one third.

(b) Use waterline length of full ship and for equation and then factor by percentage of section length. This way,
the different length sections summed will have an equal weight in the added frictional resistance coefficient
compared to when the formula was not split up. Each section is seen as part of full waterline length of ship
that is powered to the one third.
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(a) Waterline length in function of Townsin based on section length, 𝐿𝑊𝐿
1
3 for each section.

(b) Waterline length in function of Townsin based on fraction of full waterline length of ship in equation, 𝐿𝑖
𝐿𝑊𝐿

⋅ 𝐿𝑊𝐿
1
3 for each section.

Figure 4.6: Options for waterline length division in function of Townsin.

The goal for the business case is to give insight in possible changes on the total added seamargin due to biofouling,
and what investments can possibly be best. This means that both functions are a best educated guess, rather than
a physically correct approximation. This is the case since a powered function cannot be split up into multiple factors
in a correct mathematical way. However, in this case it is most important that the formula that is split up does give
equal result when same fouling and Reynolds numbers are entered into the equation, compared to the normal
formula. This is a verification step that has to be taken to make sure the function keeps a correct formulation. For
this reason, the second proposed option has to be chosen. Here it can be noted that when different values are
entered, the formula is the best approximation for the full picture with use of Townsins function. Here it is important
to mention that there is currently no function to do a comparable approximation. If there was more interest in this
strategy, both towing tanks tests and CFD calculations could be performed to find more accurate answers. With
limited time within this research and this point not being the main scope, the proposed formula adaption does seem
like a good approximation to give some additional insight for the business case. If antifouling application plans are
made later based on this function, it could be validated to what extent this approximation was true. Since this is not
the main port the current research, the proposed adaption of the formula of Townsin seems sufficient to give some
additional information as part of the already developed method, without doing a full new research. An overview
on how the added frictional resistance due to biofouling can be approximated with ship length split up is shown
below:

Δ𝑅𝐹 =
𝑛

∑
𝑖=1
(12𝜌𝑆𝑖𝑉

2
𝑆 (0.044 [𝑘𝑠,𝑖

1
3 ⋅ 1
𝐿𝑊𝐿,𝑖/𝐿𝑊𝐿 ⋅ 𝐿𝑊𝐿1/3

− 10 ⋅ 𝑅𝑒−
1
3

𝑖 ] + 0.000125))
𝑖

+

(12𝜌𝑆𝑖+1𝑉
2
𝑆 (0.044 [𝑘𝑠,𝑖+1

1
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1
3
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2
𝑆 (0.044 [𝑘𝑠,𝑛

1
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𝐿𝑊𝐿,𝑛/𝐿𝑊𝐿 ⋅ 𝐿𝑊𝐿1/3

− 10 ⋅ 𝑅𝑒−
1
3𝑛 ] + 0.000125))

𝑛

(4.34)
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4.4. Fouled Ship Power Prediction
With smooth ship resistance outlined and fouling growth and effects predicted, next a fouled ship power prediction
can be made. First the total resistance (𝑅𝑇) can be found based on the calm water resistance (𝑅𝑐𝑎𝑙𝑚), the air drag
resistance (𝑅𝐴𝐴), the wave resistance including changes due to biofouling (𝑅𝑊 + Δ𝑅𝑊), friction changes due to
temperature (Δ𝑅Δ𝑇), changes due to displacement (𝑅Δ𝐷), and added frictional resistance due to biofouling (Δ𝑅𝐹),
as shown below.

𝑅𝑇 = 𝑅𝑐𝑎𝑙𝑚 + 𝑅𝐴𝐴 + 𝑅𝑊 + Δ𝑅𝑊 + Δ𝑅Δ𝑇 + Δ𝑅Δ𝐷 + Δ𝑅𝐹 (4.35)
Next, the fouled brake power (𝑃𝐵𝑅) can be predicted, with the help of the found total resistance for the fouled
situation together with ship speed, hull efficiency (𝜂𝐻), rough open water efficiency, relative rotative efficiency (𝜂𝑅),
propulsive efficiency (𝜂𝐷), gearbox efficiency (𝜂𝐺𝐵) and shaft efficiency (𝜂𝑆) (Klein Woud and Stapersma, 2002):

𝑃𝐸 = 𝑅𝑇𝑉𝑆 (4.36)
𝜂𝐷 = 𝜂𝐻 ⋅ 𝜂𝑂𝑅 ⋅ 𝜂𝑅 (4.37)

𝑃𝐷 =
𝑃𝐸
𝜂𝐷

(4.38)

𝜂𝑇𝑅𝑀 = 𝜂𝐺𝐵 ⋅ 𝜂𝑆 (4.39)

𝑃𝐵𝑅 =
𝑃𝐷
𝜂𝑇𝑅𝑀

(4.40)

In the function above the efficiencies are defined as follows:
𝜂𝐷 = Propulsive efficiency [-]
𝜂𝐻 = Hull efficiency [-]
𝜂𝑂 = Open water efficiency [-]
𝜂𝑅 = Relative rotative efficiency [-]
𝜂𝑇𝑅𝑀 = Transmission efficiency [-]
𝜂𝐺𝐵 = Gearbox efficiency [-]
𝜂𝑆 = Shaft efficiency [-]

It can be seen that in the functions above, the brake power of the engines is computed towards effective towing
power for the ship, and vice-versa. Here efficiencies for the shaft and gearbox (transmission), together with the
hull and propeller (propulsive) efficiency are taken into account. An overview of this process is shown in Figure 4.7,
where the brake horsepower (BHP) at the engine is converted to shaft horsepower (SHP), delivered horsepower
(DHP) into effective horsepower (EHP). Note that the thrust horsepower (THP) is identified rather than effective
horsepower, as this forms a part of the power transfer from delivered to effective power.

Figure 4.7: Simplified ship drive train, from United States Naval Academy (2022).

With these functions, the added sea margin as a result of marine biofouling is now clear. By finding power con-
sumption compared to the smooth situation, added cost in fuel can be found and maintenance plans can be made
to reduce cost. As shown in the function below, the mass flow of fuel is a direct result of the specific fuel consump-
tion (𝑠𝑓𝑐) and the given brake power (𝑃𝐵). Note that the conversion from effective power to brake power depends
on numerous factors, as the power delivered by the main engines is not equal to the effective power transferred
into the water to tow the ship.

�̇�𝑓 = 𝑠𝑓𝑐 ⋅ 𝑃𝐵 (4.41)

In case the speed loss due to biofouling would have to predicted, it can be seen that instead of combining measured
speed and computed total resistance, a combination of measured power and total resistance could be used to find
the new ship speed in a similar way. Last, in case it is desired to find the power increase due to biofouling, the same
equations as above can be used. However, this time without the different fouling contributions in Equation 4.35
and with the smooth propeller efficiency rather than the rough in Equation 4.37.



5
Data-Driven Model

Within this chapter, the data-driven model as proposed in the method exploration will be presented (section 3.2).
First, attention will be payed to the to be used input data for the grey box prediction in section 5.1. Next, in
section 5.2, the data preparation for the model is presented. Last, the use of the Deep Extreme Learning Machine
(DELM) will be further explained in section 5.3.

5.1. Grey Box Input
Before a model can be build, it should first be determined what information the grey box should be provided with,
so that it can learn from this data and find a pattern. With the chosen approach, the available data is first used
for a white box prediction, and then this prediction is combined with the original input data into a grey box predic-
tion. This means that input parameters for the data-driven model include the physical model fouled ship power
prediction, the variables that were used for finding the smooth ship resistance, the variables that were used for the
fouling growth prediction, and variables that were used for finding the power based on these.

The smooth ship resistance prediction includes ship speed & direction, wave height, direction & period, and wind
speed & direction. Next to this, additionally available motions data is used to improve the power prediction in
general, including the smooth ship condition. To find fouling roughness, the average sea surface temperatures
on anchorage locations were used together with the anchorage days. Therefore, in the current model both will be
used as an input parameter, where the average sea surface temperature is taken over all anchorages. Next to
anchorage, sailing days since clean ship and average speed when sailing are also taken into account. With the
physical model lacking a prediction for fouling change during sailing, this is a part where a grey box prediction can
improve accuracy to the total found power. The input information can be summarized as shown in Table 5.1.

Input variables Output variable
White box fouled ship power prediction
Ship speed
Ship direction
Wave height
Wave direction
Wave period
Wind speed
Wind direction
Average sea surface temperature Fouled ship power
Anchorage days since clean ship
Sailing days since clean ship
Average ship speed
Mean roll
Mean pitch
Roll deviation
Pitch deviation

Table 5.1: Input and output variables for grey box model.

41
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Currently the research will be focused on single vessels, with a data-driven model developed for specific ship
predictions. However, oncemore vessel data becomes available, this introduces the possibility of learning relations
between ships. For this reason, the important ship specific parameters can be entered into the model. From the
physical model, it was learned that waterline length and wetted surface area are the main parameters that are
important to determine added fouling sea margin. Furthermore, it can be seen that the type of antifouling has a
very dominant influence on the level of fouling attachment and possible detachment, in case of a fouling release
paint. Furthermore, this is also one of the most interesting parameters to study, as it gives insight in product
scores. Last, it must be mentioned that when different ships are entered into the model, it is important that enough
ships are entered, and that differences between some ships are not to big, so that relations on ship parameters
on fouling growth can properly be learned by the algorithm. Summarized, when more ship data is available, the
following variables can be added to the model:

• Ship length over waterline
• Ship wetted surface area
• Type of antifouling

With this chosen approach, a sailing factor could be computed separate, which could give a correction on white
box predictions. This was an important step in the formation of the grey box model (section 3.3). With this, the
information that goes into and out of the grey box is not determined. However, data must still be prepared and the
grey box itself must still be built. This will be explained in sections 5.2 & 5.3 respectively.

5.2. Data Preparation
In section 2.5, the data available for this project was presented. This data was mainly available within three
information sources:

• Marin reports: Ship design specifications clustered per ship
• Environmental database: Voyage report data clustered per ship based on AIS. Used to project speed, water
temperature, waves, etc.

• Sensor datafiles: Engine and motion data for yachts equipped with sensor monitoring

The first two information sources, are available for a large part of the recent fleet and are sufficient for white box
calculations, as presented in chapter 4. Once a data-driven model is built, these databases can also be used
to make new predictions. However, to develop a data-driven model, the third information source is required,
containing sensor data, with as most important variable the measurements of brake power of both engines. Next
to integrating these data sources, data preparation consists of filtering, calculations and data scaling. An overview
of this process is visualized in Figure 5.1 and explained throughout this section.

Figure 5.1: Data Preparation.

5.2.1. Input Data
Before further data preparation is presented, it is first important to get a better understanding of the data available.
For this reason, some figures have been added which provide information on the ships operational profile and use.
First in Figure 5.2, a logarithmic distribution is displayed for one of the yachts most frequent speeds and power
used. The logarithmic scale has been chosen here since the vessel only sails roughly 15% of the time, which
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would otherwise cause in only a largely visible frequency at zero speed and power.

(a) Ship speed in knots. (b) Delivered brake power in kilowatts.

Figure 5.2: Logarithmic distribution of most frequent speeds sailed and total brake power delivered by the main engines.

To get an overview of the performance of the yacht, both the propeller speeds and ship speed are displayed for
ship brake power output. In Figure 5.3, both these relations are visualized based on the sensor data available for
a taken yacht. Here, a clear difference between both figures can immediately be identified. While the so-called
propeller law (𝑃𝐵 ∝ 𝑛𝑝3) is very visible in the first figure, the second figure clearly shows a less standard output
between ship speed and power. This output is expected as efficiencies are far more predictable within the ship
rather than ship input to ship outside performance. Here, all resistance adding factors including fouling play a role.

(a) Propeller speed [rpm] against ship brake power [kW]. (b) Ship speed [knots] against ship brake power [kW].

Figure 5.3: Comparison of propeller speed (left) and ship speed (right) at ship brake power.

To give some better insight into the operational profile of the displayed yacht, Figure 5.4 is added. Here, the
ships speed over a 2-year period is displayed together with the measured water temperature over this time. In
Figure 5.4b, it is clearly visible that ship is exposed to varying water temperatures as it moves across the globe
and through different seasons, which can have large influence on the level of biofouling growth when anchoring in
these locations.

(a) Ship speed [knots] over time. (b) Water temperature [∘C] over time.

Figure 5.4: Speed and water temperature over time.
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Since waves are not measured directly, ship performance in waves is a slightly more rough part of the method.
Only motions data could give more accurate information on ship performance in waves. This means that the
power as predicted for smooth hull is an overall good approach, but lacks some accuracy for ship wave resistance
predictions. To overcome this inaccuracy, the grey box will also be provided with motion data at the time points
of power predictions, so that the learning machine can better understand where possible extra margin can come
from. It is expected that when ship motions are high, additional power was used. In Figure 5.5, insight is given
into the most frequent roll and pitch mean motions. It can be noted that the deviation of roll and pitch motions is
also available.

(a) Mean roll motion [deg]. (b) Mean pitch motion [deg].

Figure 5.5: Most frequent roll and pitch motions.

Before further steps are taken, a first evaluation was done to check if biofouling growth trends are actually visible
within the data. This was an important step to get insight in patterns that are tried to be captured. To do so, ship
speed was filtered between 13.4 and 13.6 knots, with 13.5 knots as one of the most frequently sailed speeds.
For this speed, it is visible in Figure 5.6 that there is a drift in power increase during operation. Furthermore, in
periods of cleaning, as was performed in the beginning of 2020, it is visible that power again decreases back to
lower values. This validates the assumption that speed increase visible is a result of marine biofouling, and not for
example decrease of other propulsion system components.

Figure 5.6: Power usage over time at a speed of 13.5 knots.

5.2.2. Data Integration
For the data integration, the different information sources must be combined. Note that Marin reports contain ship
parameters, and are therefore independent of time. However, sensor data is acquired at different moments in time,
which also applies for AIS data. Since the goal is to do power predictions and compare this to real power usage,
the moments of power sampling are leading in the data integration. Note that sensor data also includes pitch and
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roll motions, as well as wind speed and direction. In the AIS data, predictions for weather, waves and currents have
been made based on ship location. Furthermore, ship speed over ground is also derived from AIS. Since wave
and current predictions are not measured but based on calculations, these are predicted on 3 hour intervals and
are interpolated over time. Here the ships location was taken at its point in time, together with near surroundings
and weather conditions to compute the sea state and relevant parameters. This data is then integrated over the
time spots with known ship sensor data to provide some information about sea state that the ship was currently in.

5.2.3. Data Filtering
As mentioned in the method exploration in subsection 3.1.2, the data will be filtered with help of Chauvenet’s
criterion. With this criterion, errors that have large deviation will be found, based on a Gaussian distribution and
the standard deviation of each dataset column. In Equation 5.1, 𝑒𝑟𝑓𝑐 is the complementary error function, Δ𝑖
represents the difference between the 𝑖th datum and the mean value over the dataset, 𝜎 is the standard deviation
of the variable of interest, and 𝑁 the size of dataset column (Chauvenet, 1863).

𝑒𝑟𝑓𝑐 ( Δ𝑖
𝜎√2

)𝑁 < 0.5 (5.1)

5.2.4. Combining Input Data
With the input data set filtered, the white box fouled ship power predictions are made, as was explained in detail in
the previous chapter. To select data for which these predictions have been made, both ship speed and wind have
played a role. For the ship speed, all data above 10 knots have been used, as these contain the most frequently
sailed speeds and a fouling pattern should be clearly visible here (as was shown in Figure 5.2a). Furthermore,
the change in speed was also taken into account, as a too large change in a rapid time would mean that the ship
was accelerating or slowing down, which gives wrong predictions on the expected power and would result into bad
analysis data. With data sampling every 3 minutes, the choice has been made to only analyse ship speeds where
the previous speed was within a one knot range. This was first not implemented, but then inaccurate predictions
were sometimes made, as a static approach is taken and previous ship motions are not taken into account. For
the wind speed, only data with winds below 8 m/s have been used, as higher winds would mean bad weather con-
ditions, where ship performance is hard to predict. This last approach was taken based on Coraddu et al. (2019).
Last it can be noted that sufficient data was available, so that the chosen filtering does not affect the required level
of data for the modeling.

To provide ship history leading to the current fouled situation, anchor & sailing time together with average speeds
and anchor temperatures are provided. As main ship parameters, ship length and type of antifouling are added.
This data can then be scaled to use in grey box training, testing and predictions.

5.2.5. Data Scaling
Data scaling is an import part of the data preparation. The machine learning algorithm must find relations between
different values to predict the target outcome. However, when some values have a different magnitude than others
and are far higher, the risk is present that the model cannot correctly learn the importance of these characters.
With all values equally scaled, the model can give weight to more important variables and does not need to learn
about invariance, speeding up training times. The normalization is done with the function below:

𝑥𝑖,𝑛𝑜𝑟𝑚 =
𝑥𝑖 − 𝑥𝑚𝑖𝑛
𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

(5.2)

This also means that the target variables will be scaled, and that the grey box will thus give scaled predictions.
Therefore, grey box predictions can be transformed back to real values with the following function, taking the
maximum and minimum value of the original used grey box dataset for the target vector:

𝑥𝑖 = 𝑥𝑖,𝑛𝑜𝑟𝑚 ⋅ (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) + 𝑥𝑚𝑖𝑛 (5.3)

Last it can be seen that only numerical values can enter the grey box to find relations, this means that words,
terms or categories cannot be used directly. However, these can also be translated to standards values, so that
the algorithm can learning relations with these categories. For example, to model the type of antifouling, each type
of coating can be computed to a different number. With One Hot Encoding, categorical variables are represented
as binary vectors. For the terms ’red’, ’blue’, ’green’, the vector below would be translated as follows:

[’green’ ’green’ ’red’ ’blue’ ’red’ ’green’] (5.4)

[1 1 0 0.5 0 1] (5.5)
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5.3. Deep Extreme Learning Machine
As part of the method exploration, the choice was made to build the data-driven model for marine biofouling growth
with help of a Deep Extreme Learning Machine (DELM, subsection 3.2.1). With the information going into the grey
box now clear, the formation of the DELM will be explained in detail. Extreme Learning Machines (ELM) have been
developed for feedforward neural networks, which overcomes problems posed by backward-propagation training
algorithm with potentially low convergence rates, critical tuning of optimization parameters, and presence of lo-
cal minima that call for multi-start and re-training strategies (Huang, 2014; 2015; Ridella et al., 1997; Rumelhart
et al., 1986). These are some of the advantages as outlined in the method exploration for feedforward training
over backward-propagating training for the current research and environmental and physical phenomena that the
model must simulate.

The goal of any black or grey box model is to configure the given input to output. By providing the model with
data, it can be trained to find these relations. Between the input and output are neurons, in the DELMs case with
weights and without any bias (Huang, 2014). This problem can be seen as a regression problem, as the goal is to
predict a scalar / single value. A generalization approach is taken, where the goal is that the machine fits the data
instead of memorizing it. The network is trained (slowly adjusting weights) with every piece of new information. The
goal is that when we present the network with a new example, it can accurately predict its result. In this section,
first in subsection 5.3.1 the background of the extreme learning machine is discussed. Next, in subsection 5.3.2
the working of a shallow extreme learning machine will be presented. After this, in subsection 5.3.3, the conversion
from shallow to deep extreme learning machine is explained. Last, in subsection 5.3.4, the hyperparameters are
selected.

5.3.1. Background of Extreme Learning Machines
Back-propagation (BP) learning algorithms have been playing dominant roles in training feedforward neural net-
works. However, it is well known that BP learning faces several challenges such as local minima, trivial human
intervention and time consuming in learning (Huang, 2014). ELM was originally inspired by biological learning
and proposed to overcome the challenging issues faced by BP learning algorithms, using features of the brain
such as zero time and human intervention in learning. In the ELM, Extreme means to move beyond conventional
artificial learning techniques and to move toward brain alike learning. ELM aims to break the barriers between the
conventional artificial learning techniques and biological learning mechanism:

‘Extreme learning machine (ELM) represents a suite of machine learning techniques in which hidden
neurons need not be tuned. This includes but is not limited to random hidden nodes, it also includes
kernels. On the other hand, instead of only considering network architecture such as randomness and
kernels, in theory ELM also somehow unifies brain learning features, neural network theory, control
theory, matrix theory, and linear system theory which were considered isolated with big gaps before’
(Huang, 2014, p. 3).

5.3.2. Working of a Shallow Extreme Learning Machine
First, the working of a single layer ELM, a Shallow Extreme Learning Machine (SELM), will be discussed. In the
ELMs case, the network consists of both an initial randomized weight matrix by the size of the input layer and
the number of neurons. The weights and input data are entered into the activation function, so that the neural
network can produce non-linear results based on non-linear activation functions. The type of activation function is
a hyperparameter (ℋ) that must be selected. Next, the output weights must be fitted to the data to find answers
closest to the desired output. Overall, this can be summarized as shown below, where 𝛽 is the output weights, 𝜙
the activation function, 𝑤𝑗 the random input weights, and 𝑥𝑖 the inputs of the network (Akusok et al., 2015).

𝐿

∑
𝑗=1
𝛽𝑗𝜙(𝑤𝑗𝑥𝑖) (5.6)

For the training procedure, the relation between the estimated outputs 𝑦𝑖, the target output 𝑡𝑖 is shown below. Here
the error 𝜖 summarizes the difference between the target and estimated output that contains both random noise
and dependency on variables not present in the input variables 𝑋.

𝑦𝑖 =
𝐿

∑
𝑗=1
𝛽𝑗𝜙(𝑤𝑗𝑥𝑖) = 𝑡𝑖 + 𝜖𝑖 (5.7)

Next, the output weights 𝛽𝑗 must be found to estimated the outputs 𝑦𝑖. The ELM solution will be found with help
of the Moore-Penrose generalized inverse (†), also referred to as pseudoinverse (Radhakrishna Rao and Mitra,
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1972). This basic implementation of ELM uses the minimal norm least square method, and can be summarized
as follows:

𝐻𝛽 = 𝑇 (5.8)
𝛽 = 𝐻 † 𝑇 (5.9)

Where:

𝐻 = [
𝜙1(𝑤1𝑥1) … 𝜙(𝑤𝐿𝑥1)

⋮ ⋱ ⋮
𝜙(𝑤1𝑥𝑁) … 𝜙(𝑤𝐿𝑥𝑁)

] (5.10)

𝛽 = (𝛽1𝑇…𝛽𝐿𝑇)
𝑇

(5.11)

𝑇 = (𝑦1𝑇…𝑦𝐿𝑇)
𝑇

(5.12)

To improve generalization performance, a regularization term can be added as introduced by Deng et al. (2009):

𝛽 = (𝐻𝑇𝐻 + 𝜆𝐼)† 𝐻𝑇𝑇 (5.13)

A model with good generalization ability will have the best trade-off between empirical risk and structural risk, so
that overfitting by the algorithm is avoided. This is a hyperparameter that must be selected. Since the ELM only
contains feedforward training, the error 𝜖 is not used for backward propagation. This means that with the found
weight matrices and chosen activation functions, new data can be entered into the machine to make predictions.
The prediction ability of the machine will be discussed in a later stage of this section.

5.3.3. From SELM to DELM
Between the input and output can be different amounts of layers, a group of neurons. Using more than one layer
provides deep learning, which can be helpful to find more complex relations. The number of neurons per layer and
number of layers are both hyperparameters (ℋ) that must be selected. Each hidden layer and its output weights
will be trained to find the desired output of the system, by adding additional hidden layers.

Kasun et al. (2013) describe the process of adding extra layers to the ELM network and making deep-learning
predictions, which is also used by others to use ELM-based autoencoder (AE) as its building block, resulting in a
sort of DELM (Tissera and McDonnell, 2016; Coraddu et al., 2019). With this approach, each hidden layer gen-
erates an autoencoded version of the original data, with the last hidden layer computing the target variable. The
autoencoded version of the original data can be seen as an intermediate vector in between two hidden layers, with
similar size as the input data. This process is shown in the Figure 5.7. Once the network has been trained, the
output weights of the first hidden layer (𝑊𝑜1) and the random weights for the second hidden layer (𝑊𝑝2) can be
combined into one weight matrix (𝑊ℎ12 = 𝑊𝑝2𝑊𝑜1).

Figure 5.7: Configuration of multiple hidden layers in a DELM, from Tissera and McDonnell (2016).
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To compute the so-called intermediate vectors, first the sizes of the input layer and the hidden layer have to be
compared. When the layers have equal size, Equation 5.14 must be used to find the intermediate vector. It is
important that the correct function is chosen for correct transformation from the feature space to input data. When
the size is not equal, Equation 5.15 must be used. The output layer can be found with Equation 5.13 (Kasun et al.,
2013). Without a regularization term, Equation 5.15 can be written as Equation 5.16.

𝛽 = 𝐻−1𝑇 (5.14)

𝛽 = (𝐻𝑇𝐻 + 𝜆𝐼)† 𝐻𝑇𝑋 (5.15)
𝛽 = 𝐻 † 𝑋 (5.16)

Overall, for a DELM neural network with 3 input vectors, 2 hidden layers of both 5 neurons, and 1 output vector
the system could be summarized in a graphical overview as shown in Figure 5.8. It is important to notice that each
hidden layer is a combination of incoming random weights and output weights. Furthermore, while the size of each
hidden layer can differ, the intermediate vector will always be the size of the input vector.

Figure 5.8: Neural network illustration for a DELM with 3 input vectors, 2 hidden layers of 5 neurons, and 1 output vector.

5.3.4. Hyperparameters
With the DELM now configurable and the mathematical computations behind it explained, the last step is to select
the hyperparameters. This is part of the Model Selection process which includes choosing between different
learning algorithms, setting the hyperparameters of a learning algorithm and choosing the structure of the learning
algorithm. For the second, the goal is to find a set of hyperparameters that produce the best neural network, or
other machine learning model. The hyperparameters include in this case the number of hidden layers, the number
of neurons, but also the type of activation functions used. Note that an optimization function is not applicable
as back-propagation training is not done. Unfortunately, there is no golden learning algorithm able to solve all
data-related problems in an optimal way, and thus model selection is always required. This also means that it
can be seen as a time consuming process, and has to be done with care, since even advanced practitioners and
researchers sometimes fail to perform model selection in a correct way. (Oneto, 2018).

Number of Hidden Layers
As discussed in the method exploration, going beyond one hidden layers introduces a deep framework, which
is able to understand complex relations. This improvement in relation capture with more then one layer is part
of the selecting process for the number of hidden layers and thus the model architecture. Prior to deep-learning,
problems that require more than two hidden layers were rare, as two or fewer layers were often sufficient for simple
data sets. However, with complex data involving for example time series, additional layers can be helpful. Heaton
(2015) summarized the capabilities of several common layer architectures as follows (van der Bos, 2021):

Number of Hidden Layers Result
none Only capable of representing linear separable functions of decisions.
1 Can approximately any function that contains a continuous mapping

from one finite space to another.
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2 Can represent an arbitrary decision boundary to arbitrary accuracy
with rational activation functions and can approximate any smooth
mapping to any accuracy.

>2 Additional layers can learn complex representations (sort of auto-
matic feature engineering) for layer layers.

Table 5.2: Number of hidden layers and their capabilities, adapted from Heaton (2015).

With the provided information and comparable neural networks with marine engineering applications researched,
a grid search for networks with 1, 3 and 5 hidden layers will be validation with help of cross validation. This will be
done in section 6.3.

Number of Neurons per Layer
To select the number of neurons per layer, the most important thing to consider is the balance between the level of
information and the amount of neurons. While not enough neurons will mean that not all patterns can be captured,
to many neurons will result in neurons that cannot be trained due to lack of information. The first will result in an
underfit, while the second will result in overfitting. The latter is not always visible since the machine might continue
to perform better on training data. However, in this situation more unrealistic patterns will be found, and this will
result in a poor result on testing / validation data. An overview of this process is found in Figure 5.9, where on the
right the underfit, overfit, an optimal solution are illustrated for a data set. On the left, the optimal point is indicated
with the vertical dotted line while the overfit becomes visible increase in validation error.

Figure 5.9: Model error comparison (left) and corresponding fitting relations (right), from Odendaal (2021), based on Da Silva
et al. (2017).

Finding the optimal number of neurons comes down to a process of trial and error, using the grid search method.
For this reason, neural networks can be studied to get a first impression on the number of neurons per hidden
layer. However, it can be seen that little models are available with similar application. Therefore, neural networks
with power prediction application are reviewed, something which is applied in ship design & marine engineering.
Since the number of neurons must fit the amount of information available in the grey box and the ability to predict
the target variable, the number of input and output vectors together with number of neurons and hidden layers are
displayed in Table 5.3. These numbers will be taken as a starting point to get some identification of network size,
and grid search will be used to find the optimal number of neurons.

Reference Input Vectors Output Vectors Hidden Layers Neurons
Pedersen and Larsen (2009) 9 1 1 12
Parkes et al. (2018) 6 1 3 50, 50, 50
Zwart (2020) 13 1 1 15
van der Bos (2021) 17 1 3 24, 12, 9
Odendaal (2021) 5 1 2 30, 40

Table 5.3: Neural network architectures with marine engineering applications.

For selecting the amount of neurons per hidden layer, it is important that there is a balance between the level
of information provided and the models ability to process this information and capture it. In the validation of the
model, a cross validation will be performed where different hyperparameters will be researched with help of a grid
search method. This will be further explained in section 6.3. Here, performance will be evaluated with help of
the mean absolute percentage error (MAPE), as shown in Equation 5.17. For the grid search 10, 25, 50, 75 and
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100 neurons per layer will be validated over the learning dataset. Note that with more neurons there was a risk of
overfitting, and thus the to be explored neurons per layer are not very extreme.

|𝜖%| =
100
𝑁

𝑁

∑
𝑖=1
| 𝑦𝑖 − 𝑡𝑖𝑡𝑖

| (5.17)

Activation Functions
To make the network able to give non-linear output, the activation function was added. Since different functions
could be used, this is a hyperparameter that must be selected. Below some of the more frequently used activation
functions in ELM’s and neural networks are shown. To introduce non linearity into the model, the Sigmoid function
is advised as a frequently used activation function in ELMs and DELMs.

1. Sigmoid function:

𝑓 = 1
1 + exp(−𝑤𝑥) (5.18)

2. Fourier function:
𝑓 = sin(𝑤𝑥) (5.19)

3. Gaussian function:
𝑓 = exp (||𝑤 − 𝑥||2) (5.20)

4. Rectified linear activation function:

𝑓 = {𝑤𝑥 if 𝑤𝑥 ≤ 0
0 else

(5.21)

Regularization Coefficient
As mentioned, the regularization parameter allows to trade between a small training error and a small regular-
ization term, which enforces smoothness and regularity, and is a hyperparameter that must be tuned. With a
regularization term close to zero, emphasis is placed on a small training error and the model reduces to an em-
pirical risk minimization (ERM) principle. With a regularization term approaching infinity, emphasis is placed on a
small regularization term and the model reduces back to the problem as explained in Equation 5.9. The proposed
mathematical model of Regularized ELM algorithm can be described as shown below, where 𝐷𝜖 is a combination
the model errors 𝜖 with their weight factor 𝐷 (Deng et al., 2009):

min
1
2 ||𝛽||

2 + 12𝐶||𝐷𝜖||
2 (5.22)

As last hyperparamater and part of model selection, the regularization term will also be determined by cross
validation in section 6.3. Here, research will be done into a regularization term of 0, 0.001, 0.01 and 0.1.

Summary of Hyperparameters Selected
In Table 5.4, the hyperparameters selected and to be researched in the cross validation in section 6.3 are shown.

Hyperparameter Selection
Number of hidden layers [1 3 5]
Number of neurons per layer [10 25 50 75 100]
Activation function Sigmoid function
Regularization term [0 0.001 0.01 0.1]
Input variables 17
Output variables 1

Table 5.4: Hyperparameters summary.



III
Validation & Business Case

In this part the outcome of the proposed model from Part I will be presented. In Part II, each part of the model
was explained in detail. In chapter 6, the outcome of the model will be shown and the model will be verified and
validated. Next in chapter 7, the questions set for the Feadship Business Case will be answered with the model.
After this, in Part IV, results from the research will be discussed so that conclusions can be drawn.
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6
Verification & Validation

In the previous chapters the methodology has been explained and a model was formed. In this chapter, first model
outcome is shown in section 6.1. Next, in section 6.2, the verification steps taken in this research are discussed.
After this insection 6.3, the model is validated. Last, in section 6.4, the final model is discussed.

6.1. Model Outcome
In this section the model outcome is presented. Here the results of the white box model as proposed in chapter 4
are presented. This process gives insight into application of the current model. With the current model outcome
visualized, results can be validated and conclusions can be drawn. First in subsection 6.1.1 the marine biofouling
growth and its resulting equivalent sand roughness height are presented. Next in subsection 6.1.2, the increase
in frictional resistance and loss of propeller efficiency are presented based on the obtained roughness.

6.1.1. Marine Biofouling Growth
In section 4.2, the model to predict marine biofouling growth was explained. This model uses ships anchorage
locations together with their time and water temperature. Based on this information, the ships fouling rating and
calcareous surface coverage can be computed over the period of time since hull cleaning and antifouling appli-
cation. As a result, the equivalent sand roughness height was formed, which represents the roughness present
on the ship. In Figure 6.1, the development of the equivalent sand roughness height is presented for the stud-
ied Feadship yacht. It is visible that over a period of more than 400 days, the equivalent sand roughness height
develops to a value over 500 micrometers.

Figure 6.1: Equivalent sand roughness height development for Feadship yacht.
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6.1.2. Added Sea Margin due to Biofouling
In this subsection, the model outcome for the added resistance and propeller efficiency loss is presented. This
shows the performance of the white box model and will later be validated together with the data-driven model.

Added Resistance
In Figure 6.2, the increase in calm water resistance over time is presented as a result of biofouling and its rough-
ness. The graph shows a similar development as shown in Figure 6.1. In the presented period, the ship resistance
increase in calm water condition has increased from slightly above 255 kN to over 275 kN, an increase of more
than 9%. This increase in resistance follows from an increase in frictional resistance due to biofouling, which was
approximated by the function of Townsin as explained in subsection 4.3.1.

Figure 6.2: Resistance increase development over time for Feadship yacht.

Propeller Efficiency Loss
In Figure 6.3, the change in open water efficiency is displayed in the maximum fouling situation, which was derived
from Figure 6.1. For the design speed of 15 knots, the open water efficiency at the operating point of the propeller
reduces from 0.599 to 0.572, also visual by the distance between the purple and brown line around an advance
ratio of 0.65. Overall, this can be seen as a reduction in the propeller efficiency of slightly less than 5%. Here, the
frictional roughness on the propeller was used together with propeller parameters and performance characteristics
for smooth condition, as explained in subsection 4.3.2. Together with the added resistance, this means that 14.3%
more power is required in the latest fouled situation to reach the design speed.

Figure 6.3: Open water efficiency change for Feadship yacht.
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6.2. Verification
With white model outcome presented, the verification steps that have been taken are discussed to ensure proper
modeling. This contains both verification steps for the physical model discussed in subsection 6.2.1, as for the
data-driven model discussed in subsection 6.2.2. Here the main goal is to ensure that the model is implemented
correctly (Sargent, 2010).

6.2.1. Physical Model
For the white box approach, the entire model has been checked to see if each part was implemented as supposed
and gave outcome as expected. For the biofouling growth model, this meant that for the Equator and Mediter-
ranean, the fouling curves were given as output as shown in section A.4. For all models, the verification mainly
included debugging, making sure no errors are present, and using hand calculations to verify results. Last, the
model was also tested with slightly different parameters as a continuity test, with extreme parameters as a de-
generacy test, and with doubled or half values as a consistency check as explained by Sargent (2010). Even
though proof of verification is impossible, it can be seen that efforts have been taken to ensure proper model
implementation.

6.2.2. Data-Driven Model
For black box verification, an additional approach can be taken. First, it was checked if functions are entered
correctly and worked as supposed to. However, with the neural network set, any pattern can be attempted to find.
This also means that the model should detect clear pattern and predict with very high accuracy. This way it can be
verified if the black box itself functions as expected, so that the fouling can be properly evaluated later, knowing
the machine and neural network are working. To do so, the power prediction for smooth condition, which was
discussed in section 4.1, will be reproduced with use of the black box in a proof of concept. Since this is all based
on first principle modeling with given functions, it can be expected that with their variables given, the model should
reproduce the results. The goal is perform these steps before hyperparameters are tuned with help of cross vali-
dation, so that it is verified that a working model was implemented. For this verification, number of hidden layers
was set at 3, number of neurons per layer was chosen as 25, and the regularization term was chosen as 0.

The predicted power in smooth condition is a function of calm water, air drag, wave, and temperature differ-
ence resistance. The calm water resistance follows from the speed over water, which also provides the air drag
resistance together with the wind speed and direction. For the current ship, variables that cause change in wave
resistance are: ship & wave direction, wave height & period, and speed of the ship. In Figure 6.4 it is visible that
when these variables are entered into the machine to predict the smooth power, an accuracy with an absolute
error can be obtained of 0.9854 over a test dataset. Furthermore, when all separate resistance components are
processed and entered into the black box, it can predict the smooth power with an accuracy of 0.9999.

(a) Based on ship speed & direction, wave height, direction & pe-
riod, wind speed & direction, and sea temperature.

(b) Based on calm water, air drag, wave, and temperature differ-
ence resistance.

Figure 6.4: Test of DELM for smooth power prediction.

From Figure 6.4b it becomes clear that if all information is known, the black box can perfectly make predictions
and draw relations. However, it is not yet assessed how the neural network predicts with a lack of information. For
this purpose, the first prediction is used (Figure 6.4a) and the most dominant parameter, the ship speed, is left out
of the equation. By doing so, the black box reduces its accuracy to 0.878 and increases variation, as shown in
Figure 6.5. It should be noted that most of the researched data has a smooth power of around 2500 kW, if data
for more different speeds were used, the prediction accuracy would be lower. By comparing Figures 6.4a & 6.5,
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the difference when ship speed is and is not given, becomes clearly visible.

Figure 6.5: Test of DELM with similar input as in Figure 6.4a, except ship speed.

6.3. Validation
In this section the model will be validated to asses performance. In the previous section, verification was done to
check if the model is implemented as supposed. However, this does not ensure if the model chosen is the correct
model. For this section, the main goal is to ensure that the model is an accurate representation of the real system
(Sargent, 2010). With the goal of predicting current and future power, taking into account biofouling development,
the dataset that is available will be used to validate both the white and black box model.

As mentioned, the accuracy of the white box can directly be validated by testing it to the test dataset, and this
will be done in subsection 6.3.1. Next, the developed grey box model, will be validated in subsection 6.3.2. After
this, to properly evaluate the model, the data-driven model is worked out without a white box input in subsec-
tion 6.3.3, making it a black box model.

6.3.1. White Box
Ship sensors provide optimal data to validate the model. For the white box, this is a great option to evaluate
its performance based on real ship data. In Figure 6.6, the white box predictions are shown over the dataset
against actual power measurements. Here, each white box prediction was performed by combining the smooth
ship prediction as explained in the previous chapter together with an increase in frictional resistance, a change in
wave resistance and a loss of propeller efficiency as explained in chapter 4.

Figure 6.6: White box predictions over dataset.

In Figure 6.6 it is visible how white box predictions are most often lower than actual used power, and sometimes
higher. Overall, the white box attains an accuracy with mean absolute error over the test dataset of roughly 85%.
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With white box predictions also too low shorty after cleaning, the conclusion can be drawn that while an attempt
has been made to incorporate all factors in the white box, it sometimes still misses an additional power factor.
Overall fouling fits within the larger image of a so called sea margin, which can be described with the function
below (Klein Woud and Stapersma, 2002).

sea margin = 𝑓(fouling, displacement, sea state, water depth) (6.1)

For the white box approach, it can be seen that a part of the sea margin or a design margin is still missing. For
this reason, the missing white box margin is researched based on the given data. In case clean ship data was
available, themissingmargin could best be found over this data. However, with only data available in already fouled
situations, the choice is made to look for the margin which gives the white box the highest prediction accuracy over
the dataset. In the figure below, the white box accuracy over the dataset is visualized for an additional margin from
zero to twenty percent over smooth ship power. In this figure, it can be seen that when a 12.5% margin is applied
over a ships power required in smooth condition (thus excluding added power due to fouling), prediction accuracy
of the white box is the highest. For Figure 6.6, this would mean that all the white box predictions (orange) now
predict slightly higher power (move up), with the result that they are closer to the real power measurements (blue).

Figure 6.7: White box accuracy with additional margin over smooth ship power.

In Figure 6.8, the prediction accuracy of the white box with and without the found margin for smooth ship power.
Here it is clearly visible how the additional margin moves predictions from predictions that are too low to more
correct findings.

(a) White box predictions without smooth ship margin. (b) White box predictions with 12.5% smooth ship margin.

Figure 6.8: White box predictions with and without smooth ship margin.

This would mean that for the most accurate white box prediction of required power at any moment in time, the
function below can be used. Note that the margin is taken over the power prediction for smooth ship, after which
the power contribution due to biofouling is added. This approach is taken since it is the believe that an additional
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factor on ship propulsion itself is missing rather than a factor on biofouling contribution. This was derived from the
fact that white box prediction accuracy was also considerably lower with low levels of biofouling.

𝑃𝑏 = 𝑃𝑏,𝑆 ⋅ 1.125 + Δ𝑃𝑏,𝑅 (6.2)

6.3.2. Grey Box
As part of model selection, a DELM was chosen as type of learning machine or the current application in the
method exploration (subsection 3.2.1). Additionally, with this model selection, research has been done into different
hyperparameters. This was performed in subsection 5.3.4, and next cross validation will be used to find remaining
hyperparameters, together with error estimation. For this cross validation, a selection will be made between a
time series cross validation, and a 𝑘-Fold Cross Validation. Time series cross validation could be done, since the
problem involves a time-dependent problem. In this case, the dataset will be split into 5 samples of equal size,
and forward validation will be used to asses model performance on a test dataset later in time (Shrivastava, 2020;
Hjorth and Hjort, 1982). An overview of this is shown in Figure 6.9.

Figure 6.9: Cross validation in time series, from Shrivastava (2020).

However, it is also known that different types of fouling growth show a Gaussian type trend, and can change in
time. Furthermore, when calcareous fouling settles, ship roughness increases more rapidly. Since the model is
based on days since cleaning, its best to find the pattern within the days trainable, and not use the DELM for large
extrapolation. Therefore, the choice will be made to find the remaining hyperparameters with help of 𝑘-Fold Cross
Validation (KCV) (Kohavi et al., 1995; Anguita et al., 2009). First the dataset available is split into a training dataset
and test dataset, where the test data is not used until model selection is done. Within model selection, the training
dataset is split into 𝑘 independent subsets (namely, the folds), each one consisting of 𝑛/𝑘 samples: (𝑘 − 1) parts
are used, in turn, as a training set (ℒ), and the remaining fold is exploited as a validation set (𝒱). The procedure
is iterated 𝑘 times (Coraddu et al., 2015). An overview of this process is shown in Figure 6.10.

Figure 6.10: Example of a 5-fold cross validation, from Benner (2020).
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As a last step of the model selection, a grid search was applied for tuning of the following hyperparameters:
• Number of hidden layers: [1 3 5]
• Number of neurons per layer: [10 25 50 75 100]
• Regularization term: [0 0.001 0.01 0.1]

This meant that the model was run for a total of 3 × 5 × 4 = 60 combinations, where each iteration contained the
model being trained 5 times on the different possibilities in the validation and training folds. As a result, the best
performance was found for a neural network with 3 hidden layers, 25 neurons per layer, and a regularization term
of 0.01. Below, the vector with the results for the different validation folds and its average value is shown below.
To give better insight into which extent this number is true, a 95% confidence level interval is applied. With the
function below, this results into the average error on the validation sets of 87.9% ± 1.8%.

⎡
⎢
⎢
⎢
⎣

87.8%
90.0%
88.1%
89.5%
84.3%

⎤
⎥
⎥
⎥
⎦

1.96√𝜎
2

𝑛

[87.9% ±1.8%]
Last, the suggested hyperparameters can be used for the reserved test dataset. With the grey box only able to
detect fouling patterns within the data range it was trained for, the choice was made to use the test set with random
sampling, instead of at the end of the dataset. It is important to mention that this still means that the random 15%
sampled points for this test were excluded from model training. Building the test dataset from random sampling
was done to avoid that the model was trained until for example 150 anchorage days, and tested over 150-200
anchorage days, as other fouling patterns might occur. This is inline with the recommendation and goal only to
use the grey box for data within its range, and not outside of trained data. It can be seen that the performance
over the test set is equal to 91.4% ± 0.2%, with thus a mean absolute percentage error of 8.6% ± 0.2%. In
Figure 6.11a, the scatterplot for grey box predictions compared to actual power measurements over the test set is
shown, together with the error distribution.

(a) Grey box predictions compared to real power measurements. (b) Error distribution.

Figure 6.11: Grey box performance over test dataset.

Last, the model selection can be summarized as presented in Table 6.1.

Hyperparameter Selection
Learning machine Deep Extreme Learning Machine
Number of hidden layers 3
Number of neurons per layer 25
Activation function Sigmoid function
Regularization term 0.01
Mean absolute errors estimated 12.1% ± 1.8% (𝒱), 8.6% ± 0.2% (𝒯)
Input variables 17
Output variables 1

Table 6.1: Model selection summary.
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6.3.3. Black Box
Separate from the developed white box and grey box model, a black box model could be developed similar to the
grey box model. In this case the only difference would be that the black box does not have the white box prediction
as input, which made the model grey. An overview of this is shown in Figure 6.12, together with the input and
output parameters for the black box model in Figure 6.2.

Figure 6.12: Black box model setup.

Input variables Output variable
White box fouled ship power prediction
Ship speed
Ship direction
Wave height
Wave direction
Wave period
Wind speed
Wind direction
Average sea surface temperature Fouled ship power
Anchorage days since clean ship
Sailing days since clean ship
Average ship speed
Mean roll
Mean pitch
Roll deviation
Pitch deviation

Table 6.2: Input and output variables for black box model.

For model selection, the same basis as the grey box model will be used to compare black box model performance.
However, with different information available and processing of this information, the k-fold cross validation will
again be applied in a similar way as for the grey box. This will make sure that both models are compared with
their best set of hyperparameters. For the black box configuration, it was found that a model with 5 hidden layers,
25 neurons per layer, and a regularization term of 0.001 showed the highest accuracy over the validation sets.
With mean absolute percentage accuracy’s of 87.9%, 88.7%, 87.5%, 90.1% and 80.5%, an average error on the
validation sets was found of 86.9%± 2.9%. On the remaining test set that was not yet used in this learning process,
an accuracy was found of 89.8% ± 0.2%. An overview of the predictions and error distribution over this test set
for the black box is shown in Figure 6.13.

(a) Black box predictions compared to real power measurements. (b) Error distribution.

Figure 6.13: Black box performance over test dataset.

It can be seen that the black box predictions and error distribution show a similar trend compared to the grey box
predictions, as was shown in Figure 6.11. However, it as also found that performance was slightly better for the
grey box predictions, outperforming the black box by several percentages. With the black box configuration for this
model now worked out. Next, all models can be compared and evaluated in the following section. Developing the
black box version of this model is an important step into assessing the added value of a white box prediction, and
grey box modeling. After the models are compared, the final recommended model will be discussed in different
situations.
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6.3.4. Model Comparison
Last, the white box, black box and grey box models will be compared. This will first be evaluated over the dataset,
and after this some insight will be given in performance outside the dataset. To evaluated performance over the
dataset, a comparison will be made between prediction accuracy over the test dataset, that was not used in the
learning process of both the grey and black box machines. In Table 6.3, an overview is shown for the different
models and their mean absolute percentage accuracy, in addition with a 95% confidence level interval.

Accuracy with Mean Absolute Percentage Error
White Box 85.3% ± 0.3%
White Box with 12.5% margin over smooth power 89.4% ± 0.3%
Black Box 89.8% ± 0.2%
Grey Box 91.4% ± 0.2%

Table 6.3: Performance comparison over test dataset.

Based on Table 6.3, it can be seen that the following conclusion can be drawn for performance over the test dataset:
𝐺𝐵 > 𝐵𝐵 > 𝑊𝐵. However, it should be noted that when a missing margin on the smooth ship power is added
for the white box, predictions come very close with accuracy compared to the black box predictions. Furthermore,
when a 95% confidence interval is taken into account, model accuracy partly overlaps as white box predictions
with margin can outperform black box predictions. Nonetheless, it can be seen that the additional information that
the grey box model is provided with, helps this model to make the most accurate predictions within the data range
it has learned from.

As a next step, some short evaluation will be done on model performance outside of trained data. While power
measurements are not made here, model predictions can be compared and first assumptions on what is realistic
and what is not can be made. In Figure 6.14, the model was applied over a longer period of time. To do so, all
values expect anchorage days, sailing days, and the white box predictions were taken at their mean value within
the dataset. For the combination of anchorage and sailing days, the activity of the yacht was used where sailing
was done 16% of the time.

The model was ran a total of 30 times to give statistical meaningful results. Here, it should be reminded that
deep learning models are stochastic models, making use of randomness while being fit on the data. In the figure,
the mean predictions for the black and grey box are drawn with a line, while the prediction area between the aver-
age over the first 15 runs and the average over the last 15 runs is filled with shade. Here it is important to mention
that the lines drawn are not the upper and lower bound of possible predictions. However, this simple but effective
approach does give insight into where predictions are mostly equal, and where predictions show large variance.
The author believes that this makes this figure more valuable as readers can better interpret where the model can
be accurate, and where not.

Figure 6.14: Comparison between white box, black box and grey box prediction for longer period of time.



6.4. Final Model 61

Based on Figure 6.14, the following main points can be highlighted:
• Black box and grey box show similar trend within trained range. However, white box predictions are lower
as smooth ship margin is missing, resulting in an under prediction compared to the measured data. It can be
seen than when 12.5% margin is added over the smooth power, which is around 2350 kW in this situation
(day 0), the white box line moves up 294 kW and follows the patterns found by the black and grey box.

• Outside of the trained data range, both the grey box model as the black box model show large variance in
predictions, together with a often very different pattern than white box physical predictions.

• Points where the white box predictions show a large increase can be compared to grey box predictions.
Here it becomes visible that the grey box predictions also shown an increases here, but a lot less than the
white box model. This indicates that while the grey box uses the white box partly for its predictions, its mostly
build upon the other variables.

• It is visible that within the data range that the grey box and black box model was trained for, it shows an
increase in power with an increase in time and anchorage days. However, both before the known timeframe
and after, it can be seen that the model often gives a decrease in power with the same input, while the white
box model does not. This shows a poor extrapolation capacity, as it is also visible that model uncertainty
becomes larger here.

6.4. Final Model
With the model validated and performance measured over actual ship data, the final model can now be proposed.
In the previous section, it was found that a trained grey box has good performance for a ship and time range its
trained for, and has poor extrapolation performance on a different ship. Based on this, the grey box should have a
different configuration when its used for a ship where the grey box is not trained for. In subsection 6.4.1, the grey
box model is further worked out for a ship with data for a grey box model. In subsection 6.4.2, the grey box model
is worked out for a ship without data to train a grey box model. Last, in subsection 6.4.3 the final model will be
summarized.

6.4.1. Ship with Data for Trainable Grey Box Model
As mentioned, a grey box should be trained on a ship to properly use it for this ships predictions. However, this is
not the only variable that determines the applicability of the grey box for the situation. For the different parameters
involved, their boundaries within the dataset are also important to determine applicability for new predictions. For
the smooth power of the ship, it can be seen that the ship has sailed all speeds within its range during the given
time period, this was already evaluated in section 5.1 where the given data was presented. Here in Figure 5.2, the
most frequent speeds and output powers where shown. Besides this, it can be seen that also the average speed
and temperature together with the number of anchorage and sailing days are variables the grey box was trained
upon. For the latter two, Figure 6.15 shows the dataset for the given vessel and the trained anchorage and sailing
days since cleaning. Based on this figure, it is advised to only use the grey box for the known time limit, in this
case around one year. This is also important since fouling growth does not show a constant or linear pattern, and
thus large extrapolation could result into inaccurate predictions, as was shown in Figure 6.14.

Figure 6.15: Trained days for anchorage and sailing days since clean ship.
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Next, the average temperatures the ship encounters will be evaluated. Here it can be noted that this is the average
temperature over ship anchorages since cleaning. The encountered sea water temperatures and average values
since cleaning are shown in Figure 6.16. Here it can be seen that even though the network is trained with average
temperatures ranging from around 15 to 26 degrees, still not all temperatures are covered. With yachts all around
the globe, found patterns are not enough for all predictions that could have to be made. Despite the fact that the
white box model fouling curves are also not based on cold water locations, it is expected that these could better
be scaled and extrapolated than found grey box curves. For this reason, it would be good to not use the grey box
for sea temperatures which do not fall within the range of the encountered ones.

(a) Over time. (b) Average values.

Figure 6.16: Average sea temperatures and sea temperature over time encountered.

With the data ranges known that the grey box is trained for, it can be determined if ship fouled power should be
predicted with help of the grey box or not. Next, predictions for ships without data for a grey box model will be
explained.

6.4.2. Ship without Data for Grey Box Model
In chapter 4, the white box model was explained to make biofouling growth predictions and compute its resulting
added resistance and loss in propeller efficiency. In section 6.3 of this chapter, this model was validated against
actual ship data. One of the things that stood out in this comparison was that the power predictions were often not
high enough, which was also visible in situations shortly after cleaning. This gave the indication that some factor
was still missing. Additionally, in the white box model, the following main limitations were found to be present:

• Fouling growth curves extrapolated based on measurements in Equator and Mediterranean, making it less
applicable for regions colder than the Mediterranean.

• Fouling pattern when sailing was not taken into account.
• Model based on used type and thickness of antifouling and original measurements, meaning that it might
not fully correspond for current ship antifouling system.

The fact that no additional measurements in colder regions are available is a limitation that cannot be overcome
at this moment. However, the other limitations can be tried to minimize with the following efforts:

• Missing margin: Compute missing margin for smooth ship power, as proposed in white box model evalu-
ation.

• Fouling pattern when sailing: Derive fouling pattern from real ship data / grey box model, as proposed in
chapter 3.

• Model based on used type and thickness of antifouling: Find correction factor for antifouling system
based on real ship data.

With the proposed steps as listed above, it can evaluated if these attempts to overcome some of the model limita-
tions could help improve the white box model. The suggested improvements could then be tested and validated
against the ship dataset available. To do so, first the changes during sailing will be worked out. Here, it must
be mentioned that instead of computing differences due to sailing with the grey box, mean values for each input
sample will be used together with a changing value for sailing days. With this approach, the goal is to find a gen-
eral pattern in fouling change during sailing. From this, a sailing factor can be derived and implemented in the
white box approach. This approach is taken in discussion with Feadship, were preference was to derive results
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into a mathematical factor. It is expected with this only implemented, white box prediction model accuracy would
at first be lower, as this value was already under predicted. However, it was already found that this is partly the
case because of a missing margin. Furthermore, it is also mentioned that the antifouling system is not equal as
modelled. Therefore, after implementing the sailing factor, different combinations of antifouling factor and smooth
ship sea margin will be evaluated to find the best fit, and see if model accuracy can overall be improved.

On the ship investigated in this research, a SPC (Self Polishing Copolymeer) coating was used as antifouling
system, comparable to a SPC coating used in the current white box approach (Uzun et al., 2019). However, even-
though more detachment is expected on a fouling release coating, ship speed is still the most important factor for
fouling detachment, and some decrease in power due to fouling was visible in the dataset. Based on the patterns
found within the grey box, the fouling power change during sailing was as shown in Figure 6.17.

Figure 6.17: Detachment pattern captured in grey box model during sailing.

First it is important to mention that this pattern was found in between periods of anchorage, and that this is not a
pattern that fits for a continuance of 75 days, but rather 75 within a maximum of 350 anchorage days encountered.
This means that within this year, after periods of anchorage, the grey box captures some decrease when sailing.
Note that this decrease in power means a decrease in roughness, which can either be the result of the antifouling
polishing or fouling detachment. This also means that if longer periods would be sailed directly, this would not
guarantee to result into the same phenomena. However, in a trained period of roughly 1 year, during 75 days of
sailing this power decrease was found. Overall it can be seen that within these 75 days, the power goes from
3,980 kW to 3,750 kW, showing a reduction in required power of 230kW. Compared to the original smooth ship
power, this is a percentage of around 6.5%. The reduction in added power from 455kW to 225kW can be seen
as a reduction of -50.5% due to sailing. On average, the sailing factor (𝑠𝑓) for each day of sailing (𝑡𝑠𝑎𝑖𝑙) could be
taken as follows:

𝑠𝑓𝑡𝑠𝑎𝑖𝑙 = 0.495 (6.3)

𝑠𝑓 = 75√0.495 (6.4)

For the current case, this leads to a sailing factor of 0.99 on the added power due to biofouling per sailing day.
With this approach, the believe is that always an equal fraction of the added power due to biofouling is lost due to
when sailing. Furthermore, this also means that this factor can be applied and that it will never lead to a negative
fouling contribution, which is important since it should only lower the fouling contribution. The power after a sailing
(𝑃𝑏,𝑛𝑒𝑤) can now be found with help of the power before sailing (𝑃𝑏,𝑜𝑙𝑑), sailing days (𝑡𝑠𝑎𝑖𝑙), smooth ship power (𝑃𝑏,𝑆)
and sailing factor (𝑑𝑓):

𝑃𝑏,𝑛𝑒𝑤 = (𝑃𝑏,𝑜𝑙𝑑 − 𝑃𝑏,𝑆) ⋅ 𝑠𝑓𝑡𝑠𝑎𝑖𝑙 + 𝑃𝑏,𝑆 (6.5)
Overall, this simple derivation can be used to work out a sailing factor on the known fouling on the ship. In
Figure 6.18, the suggested function is added to the found pattern to see the difference. It can be seen that some
show equal flow, especially within the given data range.
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Figure 6.18: Detachment pattern and suggested sailing function.

With the new fouling pattern found for sailing, the proposed white box curves can now be corrected. Over a given
period of a year, it can be seen that the found pattern is small but still visible in Figure 6.19. For a longer period with
more sailing days, the fouling change in sailing plays a more significant role. However, it should be kept in mind
that the pattern was found for a ship with a time period of a year after cleaning. With different stages of fouling
growth, the detachment of some of the earlier fouling does not mean that other fouling like barnacles would also
partly release. Furthermore, polishing effects of the antifouling also depend on lifetime of the product. Both could
be seen as model extrapolation, where good results are not guaranteed.

Figure 6.19: White box prediction with and without sailing detachment correction.

Last, the antifouling factor and the ship margin can be assessed. However, with only anchorage data for a little
bit more then a year, measured and predicted white box fouling contributions are still relatively small. This means
that correcting the antifouling factor only has a relative small effect on the given error, especially compared to the
smooth ship margin. In the one year period, a smooth power use of around 3,500 kW has now gone up to 3,800
kW. Changing the antifouling factor on the maximum 300kW difference (and smaller earlier) does not have much
effect compared to the changing the margin on the original 3,500kW smooth power. Furthermore, it was already
noted that most differences come from instabilities in power compared to speed for the ship itself, rather than errors
in fouling predictions. For this reason, the choice has been made to not apply an antifouling factor, as a solid basis
for this could not be formed. However, if longer periods of data were available or antifouling curves for different
types of coating, a more applicable curve could be selected. Overall, the conclusion is that the white box can still
predict with high accuracy, which is the main goal. This also means that the overall margin for the ship will not be
changed, and is thus taken as 12.5%.



6.4. Final Model 65

6.4.3. Model Proposal
With the model now worked out for a ship with trainable data and a ship without trainable data, fouling predictions
can be made for each ship. This means that the current tool can work for both design support as for planning future
maintenance and predicting to be expected and current fouling. Overall, the grey box model can be summarized
in as shwon in Figure 6.20 for a single ship.

Figure 6.20: Final grey box model.

Once more ships are trained with a data-driven model and the relations for ship size and type of antifouling become
familiar, ships without sensor data available can also make use of a data-driven prediction, on the condition that
the desired output is within the range of the trained data. Last, it should be mentioned that when a ship has no
sensor data, or desired output from the model falls outside of the trained data range, a full white box approach
with data based improvements will be taken as shown in Figure 6.21.

Figure 6.21: Full white box approach with data based improvements.



7
Business Case

In this chapter the Feadship Business Case will be discussed and presented. First, the model as validated in the
previous chapter is applied to a part of the fleet in section 7.1. Next these curves are used to find changes in
operation, which will be presented in section 7.2. After this, the model is used to study possible effects of different
intervals of propeller cleaning and their effects section 7.3. To study local effects of fouling, section 7.4 will take a
closer look at regions with higher and lower flow. As a last part of the business case, some additional attention is
payed to different type of antifouling coatings. In section 7.5, antifouling coatings together with their effectiveness,
roughness, and characteristics are discussed. Next in section 7.6, information is provided on how antifouling
coatings can be tested and implemented into the developed model. With this done, the the questions as outlined
in subsection 1.6.2 will be answered in section 7.7.

7.1. Fouling Growth Curves for Feadships
Based on the current model, different fouling growth curves can be developed for Feadships, which can be used
for future maintenance and in early stage design. Along the Feadship fleet 3 profiles can be identified:

• Profile A: European sailing profile
• Profile B: Europe & Caribbean Ocean sailing profile
• Profile C: Worldwide sailing profile

Based on different ships in the profiles that are currently active and their data, predictions curves can be developed.
Note that cleaning is not yet taken into account, as it needs to be studied when yachts must be cleaned. The
European profile ships are mostly active in the Mediterranean Sea, and sail on average only 5% each year, with
other time either spend in dock, anchored, or in harbour. As for profile A, the same can be done for the second
profile, which contains ships operating not only in Europe but also in the Caribbean Ocean, sailing averagely
around 10% of the time. As a reference, a yacht in this profile has been taken that was first anchored in the
Caribbean, and later in Europe. Both ships are shown and labeled in Figure 7.1, where a 80 meter ship was used
for profile A and a 60 meter ship for profile B.

Figure 7.1: Fouling development on ship from profiles A & B.

66



7.1. Fouling Growth Curves for Feadships 67

Last, the same process has been done for profile C. Since this contains yachts sailing all across the globe, different
fouling patterns can occur. Furthermore, these yachts are also again more active, sailing 15% averagely. For this
reason, multiple profile C yachts and their fouling development are visualized in Figure 7.2. It can be seen that for
the yacht that is shown over the longest period, a more rapid increase starts again in 2018, this is the case since
after a longer time, barnacles and calcareous fouling starts to grow all over the ship if not cleaned. The different
ships are labelled by their waterline lengths.

Figure 7.2: Fouling development on ships from profile C, labeled by waterline length of the ships.

For profile C, it becomes visible that different ships can have different fouling patterns. For this reason, as a
next step general plots have been developed based on water temperature, ship activity, and ship length, based
on Feadship yachts. As a reference a 55, 65, 80 and 100 meter Feadship have been taken. For each yacht,
three figures are developed, containing five percent, ten percent and fifteen percent sailing, as these are the most
common values within the fleet. In each figure, the expected brake power increase from fouling is presented. This
is done over a 3-year period, for water temperatures of zero, ten, twenty and thirty degrees. First a five year period
was chosen, with most products having a warranty for either 2 or 5 years and ships often going out of water for
renewal surveys or even intermediate survey. However, it can be noted that within this period all maximum power
increases are attained within the first 3 years, which was therefore chosen as the new timeline. As an example,
one is presented in Figure 7.3, where the fouling curves are given for the studied 100 meter ship, sailing 15% of
the time.

Figure 7.3: Fouling development for 100 meter yacht with 15% sailing, showing increases in power based on different sea surface
temperatures.
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With the following obtained fouling curves for Feadships, the following two goals can be achieved:
• Hull cleaning & antifouling application intervals can be determined for current and to be designed Feadships,
together with type of antifouling.

• Based on antifouling choices, future additional power requirements are known, and a better choice for engine
margin can be made.

For the second point it can be noted that currently, engines are selected based on fixed margins and fouling is only
accounted very roughly, without any specific procedure. For Feadships, this is done by applying an average mar-
gin that was build upon a case study of 4 Feadships, as was presented in the introduction of this thesis (chapter 1).
In general ship design, either the same approach is taken, or a yearly factor is applied. For example, Klein Woud
and Stapersma (2002) propose a yearly factor of 1.07 to account for fouling.

With the current study applied to Feadships and results worked out across the fleet, the goal is that a more specific
value can be used to calculate power requirements and find a better fit. In the following sections, more investigation
is done into biofouling and its effects for the marine propulsion system.

7.2. Changes in Yacht Operation due to Biofouling
With added sea margin due to biofouling now predictable, next the changes as a result of this for ship operation
can be found. In Table 7.1, it is presented how the fouling curve as shown in Figure 7.3 can be used. For the
current table, the 20 degrees sea surface temperature curve was selected. Here, the average increase of power
over 6 months is converted into increase of power, loss of speed, loss of range, increase of fuel consumption, and
with that added cost. To perform this calculation, average power used when sailing was taken from the studied
ship, together with an MGO price of 1,250.00 $/mt. This value is based on its average in the beginning of June
2022, while it is also visible that this was rapidly changing. As an example, the MGO price development in the six
months prior to this number is shown for the Port of Rotterdam in Figure 7.4. For the fuel rate, the product sheet
of the installed engine was used, where interpolation was done between the closest given power and respective
fuel rates. This approach is inline with the performance diagram of the engine, as shown in Figure 7.5a. With this,
it can also be seen that tables as below are an important evaluation, as the outcome of the model and the best
decision accordingly is not fixed. Hence, it should continuously be checked whether current fouling management
strategies are still optimal. Note that Feadship yachts often are in temperatures even higher than presented in this
table, resulting in more severe consequences for yacht operation.

Time
[months]

Average increase
of power over
year

New
power use
[kW]

Top
speed
[knots]

Fuel
rate
[L/h]

Total added
fuel consump-
tion [mt]

Loss of
range
[Nm]

Estimated
added cost

Start 0% 2,215 20.0 544 0 0 $0.00
0-6 2% 2,259 19.9 554 3 182 $4,367.52
6-12 17% 2,592 18.0 623 30 1,279 $37,123.95
12-18 35% 2,990 16.2 707 61 2,325 $76,431.66
18-24 47% 3,256 15.2 762 82 2,885 $102,636.80
24-30 62% 3,588 14.1 832 108 3,491 $135,393.22

Table 7.1: Operational changes as a result of biofouling for 100 meter yacht at 20 degrees sea surface temperature and 15%
sailing over 2.5 years.

Figure 7.4: Development of price of MGO in Port of Rotterdam during period of current research, from Ship & Bunker (2022).

In the section above it was shown how the current model can be used to make scientific based estimates for
changes of yacht operation. Here, it became clear that due to biofouling, more power is required to sail the same
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speed. To increase the output power of the engine, the fuel rate (�̇�𝑓) is increased, as shown in the equation below
(Stapersma, 2022). Here, it is visible that the increase in fuel rate results into an increase in engine cycles (𝑓).

𝑃𝐵 =
�̇�𝑓
𝑠𝑓𝑐 =

𝑚𝑓 ⋅ 𝑓
𝑠𝑓𝑐 (7.1)

Each cycle requires heat input (�̇�𝑓), the engine than transfers this thermal energy into mechanical energy, resulting
in the work (𝑊𝑒) provided by the engine. Here, the efficiency between the transfer of heat to work is noted as the
engine efficiency (𝜂𝑒). The more cycles the engine does in the same time frame, the more heat required, and the
more work and power delivered.

𝜂𝑒 =
𝑃𝐵
�̇�𝑓

(7.2)

𝑃𝐵 = 𝑊𝑒 ⋅ 𝑓 (7.3)

The exhaust flow rate of the engine (�̇�𝑜𝑢𝑡), is a combination of the air flow into the engine (�̇�𝑖𝑛) and the fuel rate,
as shown below.

�̇�𝑜𝑢𝑡 = �̇�𝑖𝑛 + �̇�𝑓 (7.4)
Therefore, with increase in power, a greater mass and thus volume of exhaust gas passes through the exhaust
valve in the same amount of time. As a result, the exhaust temperature increases, together with the temperature
of the engine itself. This process is shown in Figure 7.5, where the engine performance diagram is also presented.

(a) Marine Engine Performance Diagram, from Caterpillar
(2022a).

(b) Exhaust gas temperature variation with engine power, from Bari and Hos-
sain (2013).

Figure 7.5: Relation between engine power, engine speed, fuel rate, and exhaust temperature.

However, fouling does not relate to just higher exhaust temperatures. Often marine engines make use of open
cooling systems, using sea water as a refrigerant, as shown in Figure 7.6a, where the water intake is noted with
1. When fouling is present on the ship, it often also settles within the water intakes, as shown in Figure 7.6b. In
this situation, the diameter of water intake becomes smaller and less sea water is available for the cooling system.
The combination of both can lead to improper cooling of the propulsion system, where temperatures become too
high. This can result into malfunctions, breakdowns, and with that downtime.

(a) Ship engine cooling system. (b) Fouled sea water intake.

Figure 7.6: Marine engine open cooling system using sea water.
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Not only does the problem described above increase the risk of engine breakdowns, it can also be seen that the
increase in fuel use causes more required maintenance. In Table 7.2, the maintenance intervals are shown for the
installed engine of the studied ship. From this it can be found that when more fuel is used, as shown in Table 7.1,
the engines need maintenance faster and with that more regularly.

Interval Maintenance task(s)
When required Used filter inspection
Daily Engine crankcase oil, cooling system, walk-around inspection, marine

transmission oil, air starter lubricator oil, air tank, engine air cleaner, en-
gine oil filter differential pressure, engine fuel filter differential pressure

Every 50 service hours or weekly Zinc rods, engine air cleaner
Every 250 service hours or 121,375
L (32,030 gal) of fuel

Scheduled oil sampling, engine oil and filters, cooling system, batteries,
alternator belts, fuel tank, initial valve lash and injector timing

Every 500 service hours or 242,750
L (64,060 gal) of fuel

Air cleaner elements

Every 1000 service hours or
485,500 L (128,125 gal) of fuel

Engine protective devices, crankcase breather, fuel filters

Every 2000 service hours or
971,000 L (256,250 gal) of fuel

Engine valve lash, vibration damper & engine mounts

Every 3000 service hours or
1,456,500 L (384,375 gal) of fuel

Performance analysis report

Every 4000 service hours or
1,942,000 L (512,500 gal) of fuel

Electric starting motor, fuel injectors, top end overhaul, cooling system

Every 6000 service hours or
2,913,000 L (768,750 gal) of fuel

Alternator, air starting motor, water pumps, thermostats

Every 7500 service hours or
3,885,000 L (1,025,000 gal) of fuel

Turbochargers, overhaul, after failure overhaul

Table 7.2: Maintenance Management Schedules for installed engine, from Caterpillar (2022b).

From this table the conclusion can be drawn that a fuel consumption of 485.5 L / hour is a critical value, as above
this value most maintenance is done based on fuel consumption. This critical value is achieved when the engine
uses 1,445 kW of power. With two of these engines installed, for the current yacht this would mean that when it
sails around 14 knots or higher, required engine maintenance starts to increase. Furthermore, this situation is also
met with the average speed of 13 knots, when the increase in power due to biofouling is 30% or higher. Thus, the
conclusion can be drawn that engine downtime will occur more frequently due to biofouling.

An overview of this is shown in Figure 7.7, where both the studied increase in power and maintenance frequency
are presented. In this figure, it is clearly visible that for the current ship, the critical fuel consumption is reached
at an increase in brake power of 30%. Starting from this value, all major engine maintenance is now done on
a fuel basis, resulting in more frequent service due to biofouling. At this point possible engine malfunctions and
additional downtime due to biofouling are not yet taken into account.

Figure 7.7: Increase in maintenance frequency due to biofouling fuel increase.
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7.3. Propeller Cleaning
One of the questions outlined for the business case was how influential the propeller was when it comes to the
problem of biofouling, and when or how it should be treated. In Figure 7.8, the total added power due to biofouling
is visualized. Here, both the added power due to hull resistance and the added power due to loss of propeller
efficiency, are shown.

Figure 7.8: Propeller and hull contribution to total added power.

Tominimize the added power due to biofouling, both the hull and propeller can be cleaned, so that the ship becomes
smooth again, getting rid of the rough surface which causes friction. When the hull and propeller are compared, it
can be seen that the hull has a far larger underwater surface than the propeller. However, their contribution to the
added power due to fouling shows a far more even distribution. While cleaning both is optimal, it must be noted
that cleaning the propeller also shows significant decrease in added power. Furthermore, propellers can also be
cleaned underwater if the appropriate or no coating is applied. Note that underwater hull cleaning is also possible,
both with divers as with robots. However, due to the curves of the Feadship yachts, cleaning robots perform less
optimal on Feadships compared to for example container vessels. Furthermore, cleaning the full hull of these
large yachts can be time consuming, while the propeller is cleaned faster with quick result. In the figure below, an
overview of the total added power due to biofouling is given with different propeller cleaning intervals.

Figure 7.9: Effect of different propeller cleaning intervals on total added power.
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7.4. Location Specific Antifouling
In subsection 4.3.3, a method was introduced to split the added resistance of a ship from fouling up per ship
section. With this approach, the goal is to find how different ship sections each have their weight on added fouling
resistance, and how location specific antifouling treatment might improve overall performance. At this moment,
often the following antifouling treatment is applied for new build Feadships:

1. Ship hull is built and primer is applied, after which the yacht sails to yard within one week to go into dry dock
again, as primer does not protect against fouling.

2. Two layers of antifouling are applied to the ship.
3. One additional antifouling layer is applied from the waterline to the first one meter of the ship, also referred

to as a ’belly-band’.
4. At some time in the building process, the dock is filled with water. Around 3-6 months after antifouling had

become active with water, ship is launched and starts sailing.
The current part of the business case dives deeper into a more specific and aware antifouling approach. Biocidal
antifouling coatings are often only active for 2 years, as industrial parties recommend. For new build Feadships,
this would sometimes mean that the ship should not go out of the water after 2 years, but already after 1.5 years,
which is not always realized. Furthermore, regions closer to the surface can expect more sunlight and higher water
temperatures, and thus more fouling growth. Additionally, fouling results into an even higher resistance where flow
numbers across the ship are higher. All of this combined can lead to a region specific approach on antifouling
application, which is discussed in this section.

(a) Oblique view aft body.

(b) Bottom view.

Figure 7.10: Streamlines and pressure distribution on the hull.
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In Figure 7.10, the pressure coefficient is shown over the ship underwater hull, which can be described with the
function as shown below:

𝐶𝑝 =
𝑝 − 𝑝∞
1
2𝜌∞𝑈∞

2 (7.5)

It can be seen that the current function has both flow speed and pressure across the hull as input. However, with
help of Bernoulli’s equation and the assumption of incompressible flow, the function can be simplified as follows:

𝐶𝑝|𝑀𝑎≈0 = 1 − (
𝑢
𝑢∞
)
2

(7.6)

For the stream line figures, 𝐶𝑝 ranges from -0.5 to 0.5. For locations where 𝑢 = 𝑢∞, it is visible that 𝐶𝑝 = 0. Based
on the figures, three main observations can be made:

• Pressure is equally distributed over the hull, with only small differences present in general
• Pressure is highest at the bow
• Pressure is lowest at the stern, indicating higher flow speeds here

Based on the current observations and the patterns found between hull friction due to biofouling and appropriate
antifouling application, it can be seen that the stern is an important region. Not only is it more important to keep
this section clean, fouling release coatings could also have more optimal working here, as fouling detachment will
occur at lower speeds compared to the rest of the ship.

In subsection 4.3.3 the function of Townsin was worked out in more detail to find resistance per area. With this,
both the influence of different levels of biofouling and different flow speeds can be found. When we want to break
down the resistance between the low flow region of the bow, the midship with average flow, and the high flow
region around the stern, the function can be written as follows:

Δ𝑅𝐹 =
𝑛

∑
𝑖=1
(12𝜌𝑆𝑖𝑉

2
𝑆 (0.044 [𝑘𝑠,𝑖

1
3 ⋅ 1
1.5/100 ⋅ 1001/3 − 10 ⋅ 𝑅𝑒

− 13
𝑖 ] + 0.000125))

𝑖
+

(12𝜌𝑆𝑖+1𝑉
2
𝑆 (0.044 [𝑘𝑠,𝑖+1

1
3 ⋅ 1
97/100 ⋅ 1001/3 − 10 ⋅ 𝑅𝑒

− 13
𝑖+1] + 0.000125))

𝑖+1
+

(12𝜌𝑆𝑛𝑉
2
𝑆 (0.044 [𝑘𝑠,𝑛

1
3 ⋅ 1
1.5/100 ⋅ 1001/3 − 10 ⋅ 𝑅𝑒

− 13𝑛 ] + 0.000125))
𝑛

(7.7)

Note that the function was written in such a way that if we took the normal function of Townsin, this would still result
into the same sum of values as with the equation written above. However, in this case we want to reevaluate the
weight of each fraction, we can find the new Reynolds number as shown below. For the high flow stern region, the
equation can be solved as shown in Equations 7.9 and 7.10.

𝑅𝑒 = 𝑢𝐿𝑊𝐿
𝜈 (7.8)

( 𝑢𝑢∞
)
2

= 1.3 (7.9)

𝑢 = 1.14𝑢∞ (7.10)

In case Equation 7.7 is used with normal flow and a given fouling situation, the added frictional resistance for the
aft section of the ship is 40.5 kN. When the real and higher flow speed is taken into account for this region, it can
be seen that this value goes up to 52.7 kN, and is 23.2% higher. Note that the same approach can be taken for
the front of the ship to find a similar lower resistance here. Based on these findings, it can be seen that biofouling
effects across the hull can differ largely. Especially for ships with a less even distribution of flow, finding important
regions could be valuable, with possible different antifouling approaches for these locations as a result.

Even with a rounded hull Feadship yacht and almost equal flow across the entire hull, at the studied locations
it was already clear that a region with higher flow has a significantly higher biofouling resistance. This means that
this is an interesting topic from both a ship design and operation point of view. If ships have larger differences
in flow speed across the hull, attention could be given to applying different products for different locations. As
mentioned, foul release coatings are characterized for their smooth application, compared to often more rough
biocidal coatings, and can have optimal working in locations with high flow.
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7.5. Antifouling Coatings
Within this research, it was already discussed that antifouling coatings are the primary protective measure to miti-
gate the problem of marine biofouling for ships. In section 1.2 an introduction was given into different antifouling
solutions, while in section 1.3, the development of different antifouling measures was presented. Today’s antifoul-
ing coatings can be classified into two main categories based on their compositions: biocidal and non-biocidal
coatings (Demirel et al., 2013). To compare the different types of coatings, an overview of different type of biocidal
and non-biocidal coatings is presented in Table 7.3.

Coating Composition Effectiveness Characteristics
Controlled Depletion
Polymer (CDP)

Biocidal Up to 3 years (Van
Rompay, 2012)

Use of hydration process and release of
biocides. Mainly applied to ships with short
drydock intervals operating in low fouling re-
gions (Atlar, 2008).

Self-Polishing
Copolymers (SPC)

Biocidal Up to 5 years (Van
Rompay, 2012)

Good initial hydrodynamic performance ow-
ing to their smooth surfaces and better an-
tifouling ability. Preferred for vessels with
longer drydock intervals (Taylan, 2010).
Full recoating down to bare steel 2 or 3
times in 25 years. Not suitable for alu-
minium hulls.

Hydrid SPC Biocidal Life span between 3
and 5 years

Biocide releasemethod regarded as hybrid,
between hydrolysis and hydration.

Foul release (FR) Non-biocidal 3-5 years before
FR coat needs
repair/reapplication

Prevent the attachment of marine species
on hull owing to surface properties. Not
appropriate for slow ships and for ships
spending long time in ports, as coating re-
quires shear force from higher speeds to
detach the marine organisms. Full recoat-
ing required 1-3 times in 25 years.

Table 7.3: Antifouling coating comparison, adapted from Demirel et al. (2013).

Note that biocidal coatings as discussed consist of either soluble matrix biocide releasing coatings and insoluble
releasing coatings, as shown in Figure 7.11. Both coatings rely on the release of biocide, and it is visible that loaded
antifoulant is released to the environment over time. However, with the soluble matrix, the coating becomes more
thin as the unloaded part of the paint is also detached during operational time. Therefore, the type of biocidal
coating is also important for antifouling reapplication and cleaning at a later stage, as the level of coating thickness
is important for durance of protection and the adhesion strength of the antifouling.

Figure 7.11: Schematic of (a) soluble matrix biocide releasing coating and (b) insoluble biocide releasing coating. ● Antifoulant
loaded, ○ depleted antifoulant, from Chambers et al. (2006).
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With the characteristics and basis of the different type of coatings explained in Table 7.3, next it is valuable to get
insight into the performance of these different type of coatings. However, it can be seen that since these different
types of coatings have different workings, coatings can be more or less effective for ships with certain applications.
Nonetheless, it is important to get insight into the effectiveness in the coatings presented. Currently there is limited
scientific data available on contributors to added drag of in-service ships, represented by modern-day coating
roughness and biofouling, either separately or combined (Yeginbayeva and Atlar, 2018). For the prediction of
biofouling growth, one of the first mathematical models by Uzun et al. (2019) was used to make fouling roughness
predictions. For product comparison, very little information is available, and companiesmust mainly rely on supplier
information. To give some insight into product comparison, in the table below the expected effective power increase
is shown for a CDP, SPC and FR coating for clean, low and high hull roughness at 19 knots. Here it should be
noted that this case study was worked out for a benchmark container vessel (KRISO Container Ship, KCS), which
has different hull shape, and largely different operational profile than Feadship yachts. However, as this study only
shows expected power with a given roughness situation, and not expected fouling growth, the second is less a
problem. Even though increase of power might not be as expected for Feadships, this comparison does give good
insight the roughness of products themselves, and their resulting added power.

Roughness Condition CDP type SPC type FR type
Smooth 5.5% 3.5% 1.3%
Low hull roughness 13.6% 11.4% 4.7%
High hull roughness 14.8% 12.5% 6.1%

Table 7.4: Increase of effective power (%Δ𝑃𝐸) for KRISO Container Ship (KCS) at 19 knots, adapted from Atlar et al. (2018).

In the table above, it can be seen that regardless of level of biofouling on the ship, FR type antifoulings are the most
smooth, while CDP type coatings have the most rough texture. However, this does not give insight into how fast
these levels of biofouling are being reached with these coatings. Even though it is known that this is dependent
on a large number of variables, as was discussed in section 2.1, product comparisons in fixed conditions would
help to do product choice on a more scientific basis. Furthermore, this would also help into translating the current
developed model for different types of SPC coatings and possibly other antifouling paints. Nevertheless, the ship
owners rely mostly on experience with products and advice from antifouling company experts. The only thing that
is provided by these companies if any about product performance, is expected speed loss and fuel consumption
over the product before docking. An overview of this is shown in Table 7.5. Note that fuel savings is not always
provided, and thus only shown where available.

Product Type Speed loss over
docking cycle

Fuel savings over
docking cycle

Interswift 6800HS Copper Acrylate SPC 3.3%
Intercept 7000 Linear Polishing (LPP) 2.7%
Intersmooth 7465HS SPC 2%
Intersmooth 7465Si SPC 2%
Intersmooth 7475Si SPC 1.5%
Intercept 8500 Linear Polishing (LPP) 1.3%
Intersleek 1100SR FR 1.2% 9%
Jotun HPS Silyl methacrylate-based coating 1% 14.7%
Hempel Hempaguard X7 Silicone coating with biocide-

activated hydrogel surface
1.4% 6%

Table 7.5: Antifouling speed loss and fuel savings over docking cycle based on International Marine (2022a; 2022b), Hempel
(2022) and Jotun (2022).

For better insight into product choice, it would be optimal if antifouling suppliers either shared static and dynamic
tests of their coatings, or if research is done into biofouling growth with different antifouling coatings applied. With
this, the model as worked out throughout this research can be improved. As one of the industry leaders, Feadship
wants to move from a stage of experience and trial & error to a more scientific approach were they can make
an accurate assessment on the best products for their yachts. They want to look beyond antifouling marketing,
supplier promises, and experts, and level in the conversation based on own knowledge and measurements from
products. For this reason, the procedure for static antifouling panel testing and implementing results into the model
is outlined in the following section.



7.6. Antifouling Panel Testing and Model Implementation 76

7.6. Antifouling Panel Testing and Model Implementation
In this research a method was developed to make fouled power ship predictions with a physical model, and im-
prove these predictions with a data-driven model. For the physical model, the prediction of biofouling growth is
based on a SPC coating of which the exact type is unknown, together with growth measurements for this coating
in the Mediterranean and Equator region. To improve the model and gain new insight from both an industry and
research perspective, it would be optimal to gain insight into growth measurements for different coatings, at differ-
ent locations. With antifouling applied to panels and static measurements, biofouling growth can be analyzed and
captured. When more regions are captured, ship owners can give more accurate predictions for fouling growth and
its effects. When more coatings are captured, ship owners can make more scientific based choices for antifouling
coating, not only relying on supplier experts. With this added insight, a better trade-off can be made between costs
of products and their effects.

To get an understanding of how this done, one can start with consulting ASTM D6990-05 (2011). In this docu-
ment, the standard practice for evaluating biofouling resistance and physical performance of marine coatings is
explained. Here, the testing and installation settings are discussed, together with safety hazards and materials
to be used. In the different procedure steps, ASTM D3623-78a (2012) is highlighted, the standard test method
testing antifouling panels in shallow submergence. This method is designed as a screening test in evaluating
antifouling coating performance, where systems that provide positive comparisons with standard systems should
be considered acceptable for use in protecting underwater marine structures. Since the degree and type of fouling
relies heavily on the environment, as outlined in section 2.2, a fouling census on a nontoxic surface should be
taken. For the exposure to be valid, the nontoxic surface should show heavy fouling, and the standard test should
show significantly less fouling. In the test method, a clear procedure is given on required panels, how the panels
need to prepared including pretreatment and antifouling, and how fouling should be evaluated/tested.

For application to the current model, Uzun et al. (2019) next explain how these analyses were supported with
image processing, which enables obtaining colour contrast and having a more accurate quantification of the fouled
area, number, and size of the attached fouling organisms. Note here that the image processing does not supply a
fouling rate itself, but simply is a useful tool to better asses the fouled plate. Here biofouling accumulations on the
test panels were categorised into three main groups:

• Slime, including absorbed inorganic and organic matter, trapped silt and detritus and other unidentified
slimes (Rating 0–20).

• Non-shell organisms (shorter than 5 mm): Plants, soft-bodied organisms, weed, very isolated (limited) bar-
nacle accumulation (Rating 0–50).

• Calcareous type fouling (higher than 5 mm): Barnacles, mussels, tubeworms, etc. (Rating 0–100).
The maximum rating of each biofouling group varies considering their hydrodynamics effect on frictional drag, for
which the paper of Uzun et al. can be consulted for a clearer few on how these ratings were formed. To go from
the processed images and their fouling patterns to the fouling rating for the three main groups, Uzun et al. use the
Braun-Blanquet scale method, as shown in Figure 7.12. With this the surface coverage of each type of fouling can
be converted to a fouling rating for this fouling, fitting in between the ratings as listed above.

Figure 7.12: Braun-Blanquet scale method, from Braun-Blanquet et al. (1932).

Uzun et al. identified a delay, growth and saturation phase within the fouling growth of each type, proposing a
Gaussian function for proper fit, with a half-bell curve to satisfy the saturation phase. Note that for the surface
coverage of calcareous fouling, an additional curve is made. Here, instead of transferring the numbers to a fouling
rating, the surface coverage is captured throughout the period and fit with a logistic curve.

With this approach antifouling coatings can now be compared and modeled with static tests. Note that this does
not include the more complex problem of biofouling changes during sailing, which is especially important for foul
release coatings. In the current research, an attempt has been made to capture this phenomena with the grey
box model. Dynamic tests could also be performed where panels are either tested on a drum or are placed under
a ship. Nonetheless, it is important that these tests are performed for different levels of biofouling at different
speeds, as adhesion strengths can differ largely. Once a pattern is captured, this can be taken into account to
change either fouling rating and calcareous surface coverage, equivalent sand roughness height, or simply added
power due to biofouling, depending on modeling fidelity.
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7.7. Answers to Business Case
In this section the answers to the questions as outlined in subsection 1.6.2 will be answered, based on the infor-
mation provided in this chapter and throughout the thesis report.

Which type of antifouling should be applied for which yacht?
With the developed model, fouling predictions can be made for all ships and trade offs can be made for the product
which can best be applied. However, further research into comparisons of different products and their performance
would help significantly. For this reason, the advice is to do antifouling coating tests for more product, with a de-
tailed guideline given in section 7.6.

What is the difference between the influence of salt and fresh water on the marine biofouling growth?
In this research, it was found that salinity values are largely different for salt water as for fresh water. This means
that fouling relations that are found in one do not fully apply in the other. Furthermore, some micro organisms can
only live in either salt or fresh water, effecting ships moving in between both.

How does anchor location relate to the problem of biofouling?
In the developed model, it can be seen how anchorage location and its environmental conditions have a large
influence on biofouling development. With figures, it was visualized how increase in brake power can differ largely
as a result of sea surface temperature. Furthermore, these increases in power where then used to show changes
for a largely variety of ship operational parameters.

How influential is the propeller to the problem of fouling and how/when should it be treated?
In the white box model outcome, it was found how ship resistance increased with 9% over the researched period,
while the propeller efficiency decreased with 5%. With the propeller having a large effect on biofouling added
power compared to its size, cleaning ship propellers during operation can be seen as a valuable step for efficiency
improvements. This recommendation is trend with research performed on ship grooming as part of antifouling
approach. Furthermore, insight was created into the potential effectiveness of propeller cleaning in section 7.3.

Should vessels be cleaned and provided with new antifouling prior to yacht transits?
This question can be answered case specific with the developed model together with docking and antifouling costs
known from prior projects done within Feadship. In this chapter it became clear that added costs and decrease
in operational performance due to biofouling can be very large, and that cleaning before transit can be a smart
strategy. This is not only to minimize fuel cost and regular maintenance, but also to remain speed and range, and
decrease risk of engine malfunctions.

Can it be useful to use more antifouling on some regions of the ship than others, e.g. regions with higher
Reynolds numbers?
While flow is fairly equal distributed over the researched ship hull, it can be seen that even on small regions with
higher and lower flow, differences in resistance due to fouling were clearly visible. While regions with high pressure
might require more antifouling for proper adhesion strengths, for regions with high flow different products as foul
release coatings can be applied. Foul release coatings showed that they were smoother compared to biocidal
coatings, and the cleaning / detachment phenomena required for this coating is reached at lower speeds in these
areas.



IV
Conclusion & Discussion

In the previous part of this report the model outcome was evaluated and the business case was produced based on
the model. In this last part, conclusions based on the results will be drawn in chapter 8 and discussed in chapter 9.
Based on this, model limitations will be summarized and recommendations will be given in chapter 10, together
with main contributions made.
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8
Conclusion

In this chapter the different research questions that were proposed in section 1.8 will be answered. First, in
section 8.1 the sub questions regarding the methodology will be answered. Next, in section 8.2 the questions
regarding the model results will be answered. Last, in section 8.3 the main research question will be answered.

8.1. Methodology
Different sub questions have been pointed out to find and develop an accurate prediction method. These questions
have been answered in the problem analysis (chapter 2) and method exploration (chapter 3) and answers can be
summarized as below.

What are the current methods to predict added sea margin due to marine biofouling?
Different methods exist to predict added sea margin from fouling, with the simplest methods advising to either use
a constant yearly fouling factor or to use a standard factor for a one or two year period. However, these coefficients
give large inaccuracy, as fouling is dependent on a lot of variables and can variate by large numbers. Even though
many research has been done in marine biofouling, little models have yet been developed to predict the level of
biofouling on ships. This is mainly due to the fact that we do not yet know how all fouling variables physically
combine into types of biofouling growth. However, models have been developed that measure different types
of fouling overtime, and build functions based on how this process develops and results into roughness. Then,
roughness can be interpolated and extrapolated with sea surface temperature as the dominant fouling parameter.
It can be seen that more research has been done into biofouling effects on hull resistance, ship performance in
waves, and propeller efficiency loss. Here, both first-principle experimental based models can be used together
with the use of Computational Fluid Dynamics (CFD). Last, together with an increasing trend in the full maritime
research field, first attempts have been made to use data-driven modeling to derive added sea margin as a result
of marine biofouling growth.

What are the method requirements to model the effects of fouling?
The methods requirements are set in section 2.6, and are assessed in section 3.4 to verify that all requirements are
met in the worked out methodology. This contains white box requirements for the modeling of biofouling, added
hull resistance and propeller efficiency loss. Furthermore, requirements have also been set to overcome white box
limitations with help of black box modeling, turning the delivered model into a grey box model. Last, errors should
be filtered out of voyage data to obtain accurate and realistic results.

What methods are suitable to meet the method requirements, and if suitable how can machine learning
and grey box modeling assist in solving the problem?
Based on the method requirements, a grey box model has been proposed to deal with the problem. With this
model, the option is given to predict biofouling with both a data-driven model as with a more mathematical formu-
lated model. This means that when large amounts of data are available, it can be used to derive fouling patterns
for the studied ship. However, either when this data is not available, or when predictions must be made for new
conditions, it can be seen that it is better to use a white box approach, as the grey box model will have less accu-
racy due to extrapolation. The proposed model can be found back in section 3.3, while the final model and its use
is shown in subsection 6.4.3.
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8.2. Model Results
With the methodology worked out in chapter 4 and chapter 5, model outcome was worked out and is validated
in chapter 6. Furthermore, in chapter 7, additional information was derived from the model to answer relevant
questions. As a result, the sub questions lined out regarding model results can now be answered.

Does the model show difference in added sea margin for different antifouling systems, and can this form
a basis for antifouling system selection?
First, it can be seen that the current model does not yet have different antifouling systems configured. The model
build from white box predictions contains a SPC type antifouling coating. Differentiation into types of SPC and
other antifouling coatings is not yet made, as the authors of the biofouling growth model recommend this for future
research. Not only is it in this research not included, to the authors knowledge there is little research available yet
into antifouling performance of different products available on the market. While pros and cons are known and
highlighted, it is often not known how well products actually perform compared to each other, or how much fouling
growth they can prevent at all. When it comes to fouling change during sailing, it can be seen that little information
is available on this either. Nonetheless, a first attempt was made to predict change in fouling when sailing with
help of the data-driven model for the researched Feadship yacht, which resulted into some detachment present
when sailing. It can be seen that for coatings that rely on fouling detachment as fouling release coatings, this
phenomena will be even more strongly visible. Overall, the model gives insight into the predicted fouling in the
future for a SPC coating. Considering this together with the profile of the yacht, the fuel penalty can be calculated
together with cost of antifouling, docking and cleaning. Based on that, a decision can be made on the optimal
antifouling system. Last, it can be seen that when sensor data is available, the data-driven model can be trained to
find patterns in the data. While this is now done for one ship, researching this for multiple vessels can give insight
into performances of different antifouling systems. With little to no calculations and predictions now involved in
antifouling system selection and maintenance intervals at Feadship, the conclusion can be drawn that the model is
a big step towards a more scientific approach for these problems. With possibility of processing different ships in a
data-driven model and labeling antifouling systems, patterns can be learned directly from to be collected ship data.

How much do vessel parameters, operational profile and location influence marine biofouling growth?
Since the data-driven model was currently only developed for one ship, multiple vessels with different parameters
can in this model not yet be compared to asses differences. However, in the white box model large attention was
given to the effects of roughness on ship performance. The friction coefficient resulting from biofouling roughness
is dependent on the length of the ship, while this constant can then be applied over the hull wetted surface to find
added resistance. This means that with an increase in ship length and ship underwater area, marine biofouling
effects will be larger. It is expected that biofouling growth is larger along the waterline, as this area gets more light
and has higher sea temperatures. However, from a study in the business case, it can also be seen that differences
from ship parameters are relatively small on the percentage of added power required compared to the effects of
water temperature and the amount of ship sailing. It was found that ship location and thus water conditions have
the largest influence on biofouling growth, with sea temperature as the strongest parameter. Especially in waters
with high temperatures, the accumulation of barnacles on the ship can start at a fast point in time, with high rough-
ness and sea margin as a result. Regarding the operational profile, it can be seen that marine biofouling can best
settle on the ship in anchoring profile. While it is expected that biofouling cannot settle on the ship above a certain
speed, a detachment phenomena was even found over sailing data. Overall, this means that the more active the
ship, the less fouling will be on the ship, and vice versa.

How accurate is the model compared to the current sea margin predictions used in Feadship and gen-
eral ship design, and if required should adaptions be made?
From a ship design perspective, fouling sea margin predictions are either not made, or often with very simple
approximations. Overall, powering calculations and ship speeds assessments are made for clean hull, as the
problem of biofouling is more dealt with in ship maintenance and production than in the design stage. However,
even in early stages of ship design, often already a lot of relevant information is known to make first predictions
on biofouling development, and this thesis has been an attempt to support doing so. In the business case, fouling
curves have been developed based on parameters of different Feadship yachts together with different levels of
sailing and encountered sea temperatures. This together with incorporation of the obtained model in Feadships
7SEAS portal should give the Naval Architects from De Voogt more insight into the problem of biofouling, from a
ship design perspective. In agreement with Feadship, it is currently being worked out how now known margins
can be better incorporated in the ship design process, to make better decisions for both antifouling systems and
desired engine margin / propulsion lay-out. In the different design stages, discussions can be made with clients on
proposed antifouling systems and engines margins, together with predictions on future biofouling growth and their
desired operational profile. With the model developed, additional insight is gained and information shared will not
only be based on experience but also accompanied by research and science.
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8.3. Main Research Question
For this research, the main question was formulated as follows:

”How can Feadship use in-house & onboard sensor data to accurately predict the added sea margin
as a result of marine biofouling over time for yacht design, operation & maintenance?”

By answering the outlined sub questions, it has been described how a grey box model has been worked out to
process sensor data and use neural networks to make predictions of fouling sea margin within the boundaries
of the dataset. Furthermore, a white box approach has been worked out to obtain results and get a deeper
understanding of settlement of slime, micro organisms, and calcareous on the hull resulting in hull roughness. This
information can then be used to find increase in frictional resistance over the hull and loss of propeller efficiency.
With implementation of the proposed grey box model, predictions can be made for ships varying in all ranges of
available data. This means that even in the earliest stages of design, once ship parameters are estimated and
insight in operational profile is obtained, predictions can be worked out at a more accurate level then currently
available. These predictions are specific for selected profile and dependent variables as water temperatures and
time, instead of constants, improving ship design. With the development of this tool for Feadship and their fleet,
and contributions made to this field of research, the main goals of this thesis have been met.



9
Discussion

In this chapter the main results and conclusions drawn from the research are discussed. This is first done from a
scientific and economic point of view in section 9.1, and then from social and ethical point of view in section 9.2.
After this, recommendations for ship design and operation are given based on these in section 9.3. Last, in
section 9.4 additional recommendations are given for yacht design and operation in specific.

9.1. Findings from Scientific & Economic Point of View
With the current research, a model has been worked out to get a deeper understanding of the problem of marine
biofouling, and make ship and situation specific calculations for the level and effects of it. With this, the problem
is translated from a largely unpredictable problem which was lacking interpretation to something that is better
captured. With this, additional information is provided for yachts based on their profile. For the design process
this includes the assessment for better engine margins, and clearer expectations on possible outcomes. For
operational use of the yacht, information is now available on added fuel use, loss of range and loss of speed, and
increase in maintenance for a better cost-benefit analysis on ship cleaning and antifouling application. Shipowners
often rely on ways how things are always done, while it was found this can continuously change. For example,
the prices of MGO more than doubled within time of this thesis, having a large effect on operational costs of the
ships. Therefore, having a model with predicted fouling growth supports quick assessments on when ships should
be docked. With the use of a physical model together with use of ship data, an attempt has been made to best
capture the problem in a scientific way, so that an optimal trade-off from an economic point of view can be made.

9.2. Findings from Social & Ethical Point of View
In this research, it was found that marine biofouling is one of the major problems in the maritime world. This is not
limited to added cost for ship owners, but also includes the increase in greenhouse gasses and balance of the world
oceans. To minimize biofouling accumulation, ship owners often use toxic antifouling coatings, and kill organisms
to try and mitigate the problem. Nonetheless, biofouling still accumulates and ships sail around with fouled hulls
and propellers. Not only is this a problem for sailing in the region where the biofouling attached, transferring in-
vasive aquatic species around the world threatens the ecological balance of our seas. As a result, countries as
New Zealand and Australia have already set rules for ships entering their country, requiring ships to clean prior to
arrival and avoid entrance of new biogrowth organisms. However, each country follows different guidelines and
procedures, and not each place is as strict in their policies. In most countries, these rules are not yet effective,
and in some countries in water cleaning is not even a problem, regardless of whether toxic antifouling coatings
are released directly into the water or not. Summarized, it can be seen that both the detachment of antifouling
products and fouling itself comes with both risks and responsibilities, so that the quality of our waters and the life of
aquatic species is maintained. Furthermore, the decrease of ship efficiency currently results into large additional
fuel use and greenhouse gas pollution by ships.

To fulfill the goals set in this research, a grey box approach was chosen, which makes use of machine learn-
ing principles. Here, benefit was taken from data available to improve physical model predictions and learn more
on this problem. Nevertheless, the use of machine learning principles and their ethical and social concerns should
also be taken into account when applying these practices. For artificial intelligence, three major areas of ethical
concern for society include: privacy and surveillance, bias and discrimination, and the role of human judgement.
These are important to take into account, as the extensive use of artificial intelligence is a fast increasing trend,
without many regulation yet around the development on this technology. For Feadship and this research the first
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is most applicable, as the privacy of ship owners who provide sensor data should always be in the best interest.
Therefore, it is important that this process remains as disclosed as possible, and that the data is handled with
great care. Nonetheless, it can be seen that the application of artificial intelligence also gave great new insight
into this model, and the decision process is always done by humans in combination with the interpretation of more
understandable and transparent physical models. Concluding, users should always be aware of ethical and social
concerns to machine learning principles, and weigh of ethical concerns when developing new algorithms.

9.3. Recommendations for Ship Design & Operation
Based on the findings discussed above for both points of view, for new ships that are designed it is first advised to
improve fouling growth predictions. When these are made for the to be designed ship with suggested operational
profile, proper engine margins can be selected which cover for example a 2 or 3 year period. Furthermore, more
attention can be given to choice of antifouling coating, frequency of ship cleaning and care of collecting toxic
substances and biogrowth when cleaning. Also from a economic point of view, it was found that more frequent
ship cleaning can improve total ownership cost, not yet discussing otherwise negative effect in also loss of range.
Furthermore, the benefits of more frequent propeller cleaning were also outlined in this thesis. If owners wish to
use ships in an even more responsible way, it would be advised to use non-toxic products such as fouling release
coatings. Here, instead of killing organisms, focus is put on making the surface of the ship hard to settle on, and
stimulate a natural cleaning phenomena when sailing. Next to this, for warmer waters, yearly full ship cleaning
would be advised to use the ship in a more efficient way, and avoid large increases in power due to biofouling. In
case the ship operates in a colder region, cleaning at least every two years is advised. However, not only does
this depend on water temperature, also other factors have a significant role, including frequency of ship use and
sailing. In general, the author advises to look into relevant literature mentioned in the current report and figures
developed within this research, to draw some first approximated conclusions on when ships could be cleaned to
improve performance. Last, the advice is given to clean the ship if it was first in one place for a longer time and
is then prepared for a long transit. This would avoid the travel of aquatic species, and will also improve the range
in this transit and fuel use. Last, it can be seen that fouling not only results into increases in power, but can also
settle around the sea water intakes, and thus reduces effectiveness of the onboard cooling systems. Requiring
more power from the ship propulsion system in combination a cooling system lacking optimal performance can
result into engine malfunctions and possible downtime, with high costs as a result.

9.4. Recommendations for Yacht Design & Operation in Specific
Next to the points addressed above, it can be seen that yachts sail far less than most ships, and are often stationary
in warmwaters and during daytime. Therefore, the problem of biofouling is an even larger problem for yachts. From
a yacht owners perspective, it can be seen that economic is not the main driver, and that the yacht quality and
performance is most important. Therefore, separate from the economic incentive to clean the ship, more value
should be considered at ships reaching design speed, having a long range, and experiencing minimal downtime.
In this research, it was found that yacht owners only sail their ship 15% of the time or even lower. This short time
that is available to sail the yacht is very valuable for owners, and comes at the high yearly costs of maintaining
the ship. This means that downtime when yachts are wished to be used, is very undesirable. For the problem
of biofouling, this puts additional importance for yacht owners to not only invest in crew, maintenance and proper
quality of the ship above the waterline, but also below the waterline of the yacht. Based on the current research,
the advise is therefore to clean yachts on a yearly basis and incorporate sufficient engine margin in the design
process. Furthermore, with the yacht industry being a leader in innovation and progress towards more sustainable
shipping, it is advised to move towards non-toxic antifouling coatings. With clients becoming more interested in
green shipping alternatives, recommendations given for propulsion should come inline with additional advice for
proper antifouling systems and ship cleaning. Hence, the recommendation is also added to clean ships before
large transits, such as sails from the Caribbean to the Mediterranean, or back to one of the yards in Holland. When
fouling release coatings are used, it should be kept in mind that the yacht should not be stationary too long, as
the desired detachment process of fouling would not be as good as desired with adhesion strengths becoming
too strong. Inline with the fact that also for ship propulsion systems it is important to function regularly, it is thus
advised to sail ships at least shortly every month, sailing a speed of at least 12 knots for proper fouling detachment,
depending on applied product. With trends fouling trends that were identified in the current research, it can be
seen that a desired future state and an expected one is a situation where ships are applied with non-toxic products,
and are cleaned regularly. Next to this, it is expected and desired that ships only make large transits with a clean
hull, reducing the environmental footprint of the yacht. This is not only something that is desired from a social or
ethical point of view, but also something which is inline with a desired state for yachts and superyachts, taking
optimal care of the ship. In conclusion the recommendations above are something were the yacht industry and
Feadship can take the lead, and give better and more suited advise for their clients.



10
Limitations, Contributions &

Recommendations
In this chapter, first the models that formed the basis for the current model and are most applicable for biofouling
predictions, are presented together with their limitations in section 10.1. Next, it is assessed how some of these
limitations have been overcome, and how new insight was created in the current model in section 10.2, which
can be seen as the research contributions of this research. Based on current and remaining modeling limitations,
some future recommendations will be given for both Feadship to improve in-house modeling and for the field of
research in marine biofouling in section 10.3.

10.1. Model Limitations
In the table below, the main models used together with their limitations an applicability are presented.

Model Main Limitations Applicability to Model
Time-dependent
biofouling growth
model for predict-
ing the effects of
biofouling on ship
resistance and
powering (Uzun
et al., 2019)

• Derived fouling patterns based on
Equator and Mediterranean and inter-
and extrapolated.

• Model based on one type of SPC coat-
ing.

• Model based on static measurements,
fouling changes when sailing not yet
predicted.

• Experimental based model, derived
from physics but without full under-
standing yet.

This model forms the basis for the white box
model, and thus the limitations to the single
coating and limited fouling locations are also
present in the current model. However, when
ship data is available, the data-driven model
can be used so that current coating is taken
into account and the model can also work for
regions where this method is less accurate.

The ship hull
fouling penalty
(Townsin, 2003)

• Added frictional coefficient derived
from experimental study for large num-
ber of surfaces with roughness.

• Found frictional coefficient used with
pattern over flat plate found to model
resistance over round ship.

• Experimental based model, derived
from physics but without full under-
standing yet.

Limitations of the model are present in the
current study, as all alternatives have similar
limitations. Model was used for its practical
use and simplicity. Furthermore, limitations
not applicable for data-driven model

Performance pre-
diction method for
fouled surfaces
(Farkas et al.,
2020b)

• Changes in thrust and torque coeffi-
cients due to fouling derived from open
water tests.

• Open water tests for roughness
heights up to 500 micrometers, less
accurate on higher levels.

Most applicable method to the authors knowl-
edge where obtained roughness can be used
to predict changes in propeller characteris-
tics for fouled conditions and thus changes
in propeller performance and open water effi-
ciency. Furthermore, limitations not applica-
ble for data-driven model.
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Data-driven
ship digital twin
for estimating
the speed loss
caused by the
marine fouling
(Coraddu et al.,
2019)

• Variance that occurs in ship sensor
data makes it more difficult to derive
patterns.

• Speed loss was not always positive, as
input of perfect clean state wasmissing
for digital twin.

• Linear robust regression for capture of
fouling capture, only time-dependent
with no distinction between anchorage
or sailing.

• Method requires non-indifferent
amount of data.

For the data-driven approach taken in the
current grey box, difference can be seen in
smooth ship power prediction, where a white
box approach is used rather than a trained
ship digital twin. Limitations as variance in
data and requirement of large and long pe-
riod data were also experienced in the cur-
rent data-driven problem. Instead of deriving
a time-dependent linear pattern for biofouling
speed loss, in the current data-driven model
the choice was made to train a DELM on an-
chorage days, average anchorage tempera-
tures, and sailing days for more insight in the
biofouling problem.

Table 10.1: Main models used, limitations, and applicability to final grey box model.

10.2. Research Contributions
Next to mentioned limitations, it can be seen that while many research is performed into either biofouling or rough-
ness effects on ships, little practical models currently exist to predict biofouling growth for a ship and calculate
effects for ship propulsion. Most research is focused on given fouling situations and given ships, with then mea-
sured effects on ship performance with CFD or in a towing tank, making models very specific and less suitable for
different situations. Especially the hard to capture biofouling problem is very difficult to describe. For this reason,
the author is grateful for more practical developed models as used in the table above, and their usefulness to make
predictions for ships based on input parameters, trying to become as accurate as possible. This thesis has been
a work trying to combine the effects that are known and available, and improving where possible. Summarized,
the main research contributions can be listed as follows:

• First proposal for use of grey box to model biofouling and its effects.
• Proposal to use smooth ship power with white box prediction for black box predictions, and model fouling
based on anchorage days and average temperature, together with sailing days as second time-dependent
variable, including all sensor data available and used for white box predictions.

• First proposal for determining fouling changes during sailing from data-driven model, leading to sailing factor
that showed detachment trend in the current data-driven model.

• Combination of different available white box models, complimented with additional data-derived design / sea
margin and sailing fouling changes to come to biofouling predictions for all ships.

• Research into different combinations of white box predictions and sensor measurements for optimal black
box model performance.

10.3. Future Recommendations
With the model still containing limitations and new insight gained during the thesis, the following recommendations
can be given for future research:

• Expansion of current biofouling growth model with measurements in new locations and for different types of
antifouling coatings, including both biocidal and foul release coatings, as outlined in section 7.6.

• More research into fouling changes during sailing. Currently data-derived pattern was taken as a first esti-
mate. However, more research and dynamic test for antifouling paints and fouling changes would help to
provide choice in different types of systems.

• Gathering of additional data from different ships from data-driven model. Can give additional insight in
influence on both type of antifouling and ship parameters for problem of biofouling. Here capture of speed
over water instead of speed over ground would help to minimize noise in processed data.

• Research into improvement on antifouling systems, with biocidal and toxic products that can experience
increasingly though legislation’s, the demand is clear for optimization of antifouling systems that are envi-
ronmental friendly and provide protection for clean and smooth sailing during a longer period of time.

• Monitoring and measurements of biofouling for yachts arriving back at the yards, together with evaluation of
locations visited and time spend since last cleaning.

• Monitoring of ship hull and fouling development during last months of ship construction in water, gives insight
in fouling levels already obtained. Good for information on when yacht should come back into dock, together
with trade-off for possible in dock or underwater cleaning before launch.



Personal Reflection
Working on the master thesis for the past months has been a fun and challenging experience. Personally, I was
really looking forward to the kick-off for this project. With many courses followed, reports delivered, and exams
done during my period in Delft I was ready to start with something different at Feadship. Planning some time in
advance to look for a nice research option with a company that excites you is something I could advise everybody.
Your thesis for is for a longer period of time so its important that you like what you do, and this also gives the
opportunity to still work in a company, with no internship in the master program.

During the master thesis I learned a lot of new things, not only about my subject, but also about how to han-
dle a larger project together with overall communication and work skills. In general, I am happy with the result of
the project and the work delivered. During my thesis, I got valuable personal feedback from my supervisors at TU
Delft and Feadship. Sometimes I already think, before I listen to what they have to say, which is something I can
improve. Even though I can be energized to talk about the subject, its always important to listen to what others
say with care, as they often share new knowledge and bring important points. Next to this, I also experienced that
everything is very time consuming, and that it is important to be careful with what you promise to deliver, as there
is the tendency to wanting to do everything even though time is limited. Below you find an attempt to summarise
some of my main experiences during the master thesis, which I hope are valuable to other students.

• Project start: The literature study is at the beginning of the project, and at times you are not sure what to
work on. Even though there is a large project ahead of you that you know should take much time, at the
beginning you will not always have a clue on where to start. During the literature study, I found that paper
introductions are a great way to familiarize yourself with a research topic. While a paper itself is often about
a very specific topic within a research field which is still new, the paper introduction or abstract covers work
done within this field of research. Not only is important work cited, a summarized story is given on what is
currently known and unknown, and what the main challenges are. Reading this gives you better background
on the topic, which is valuable for the understanding of the problem.

• Literature study: At first I was not sure what the literature study was all about, and saw this mostly as
book of knowledge and sum up of the performed research close to your topic. However, I found that this
part of the project is much more about laying the ground work and making a research plan. The goal is to
identify the gap and propose a method for your research, together with a plan on how to do this and relevant
questions to be answered. You also have the false impression that the project takes forever and that there
is a lot of time after the literature study, but this is shorter than expected. Therefore, I found that everything
that I had worked out in detail in the literature study was very valuable. On the contrary, I realized that less
time was available then expected with stuff I did not work out yet.

• Modeling and writing: Writing takes time, so for me it worked best to write what I have modelled once a
clear part or section of the model was finished. While writing everything after the model will mean that you
can get in problem with time, waiting until you can write full sections helps with spending not to much time on
writing alone, and putting your focus on the model. For me it always works best to do all writing first, and then
reread and check everything after, instead of worrying to much on each sentence when writing. However, I
also found that rereading everything done can be a lot of work, and should not be underestimated.

• Planning and keeping focus: With a big project as a master thesis, it really helps to plan stuff out and
get a sense of where you are in the project. When I had the sense that I had forever to finish the project,
planning from the next deliverable back to when I should have a concept, to when I should have finished a
certain chapter or section, and what this means for now usually helped with getting a sense of where I was
in the project. Not only is it good to be on planning, this also helps with keeping your focus. Doing research
requires a lot of attention and effort, and it can be challenging to keep focus on your work. This is something
I also experienced, as a lot of things you are working on are new and require a lot of attention and energy.
For me it always helped when I knew what to do, so I could have goals for each day on what to finish, even
if they were small. Also, I try not to worry to much if my head is not in there for a day or two. Relaxing is
also important together with doing fun things, not putting to much pressure on yourself helps, and keeps a
good balance.

• Results vs conclusions: From the master thesis and some peoples approach towards this, you can get
the expectation that you should deliver ground breaking research, fixing all problems found in the literature
study. However, this is unrealistic and can lead to bad decisions or too much pressure on yourself. The goal
is not to get the best or perfect results, but to draw the best conclusions based on your results and research.
Its far more important to be critical, this includes your own work as well as work of others. You and everyone
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involved in the project agreed on the approach taken, with a hypothesis on the outcome. This is something
I experienced throughout the project, as I first was not sure on where the main emphasis was. However,
from this thesis I learned that doing the research in the best way and sharing outcomes and experiences in
a clear and critical way is more valuable than just showing good results. After this you can draw conclusions
and give the best recommendations. While good results would be beneficial, you need to prove yourself
as a researcher and work out your research gap. Either if its a good result or a bad result, if you do this,
you can still make real contributions to your research field, which is worth more than results that no one can
replicate or are not realistic.

• Working with data: This is something that should not be underestimated, and can be misleading. While we
often work with physical modeling, where output is always as expected, this is not the case for data-driven
models. Not only does it require a lot of work to clean a dataset and get everything working as supposed,
results that are supposed to be found are not always visible right away. Everyone can expect some of the
standard hurdles when it comes to data science and handling larger datasets, and enough time should be
saved to reach the desired goals. Personally, I learned a lot from a data science oriented project. I did
underestimate parts of it, and sometimes had to make big changes to get things working or stay on track. It
was also realized that especially data-driven modeling, is very different than what I was used to as a marine
engineer. You start almost from scratch again, and I even had trouble just reading papers, as I was not used
to the language and terms used throughout. In this case its very helpful to ask for advice. The latter I did
not do in the beginning, but having this certainly helps to make improvements and do things as they are
supposed to be done.

• Being on top of your project: Yes it is your own project, so you are in charge and in the lead during
the project. However, this is not the reason that I wrote this. Being on top of your project, together with its
planning, communication, and work, gave me an overall good feeling. Being aware of when meetings should
be planned, being in the lead with your project and on time, taking responsibility overall, gives yourself a good
and confident feeling. On the contrary, I also found that when I was lacking with something, or when I did
not know things, this was a less nice experience. With this I found that being actively involved costs energy,
but also feels more rewarding. Even planning the next meeting with your thesis or company supervisor
or making a presentation and preparing questions, can sometimes be a way more simple task than your
research, but with a lot more satisfaction.

• TU Delft repository: I found using the TU Delft repository to be very helpful. You can access all other work
by students and each thesis before you. Look at different projects to get inspiration and a general sense of
what is expected. With each supervisor having a slightly different view of what is desired in a thesis, it also
really helps to look at projects of students that were also supervised by the same person as you. I found
that recommendations given to me where often already given to others, and this just safes a lot of work and
thinking for both you and your supervisor. Not only is the repository useful for your final thesis, it is also a
great support for your literature study, as each persons first chapters or part of the thesis still contain the
work done in the literature study. Overall, seeing what is expected and the way its done saves time and is
of great help.

Concluding I really enjoyed the thesis project and learned a lot, but was also relieved when at the end, which I
hope and think is normal. For the people that read this, I hope my experience and recommendations are helpful
to you, and good luck with your own project.



Bibliography
26th ITTC Specialist Committee on Uncertainty Analysis. (2011). FreshWater and Seawater Properties.

ITTC - Recommended Procedures.
Abarzua, S., & Jakubowski, S. (1995). Biotechnological investigation for the prevention of biofouling. i.

biological and biochemical principles for the prevention of biofouling.Marine Ecology-progress
Series - MAR ECOL-PROGR SER, 123, 301–312. https://doi.org/10.3354/meps123301

ABS. (2011). Fall 2011 (Surveyor, Ed.). RetrievedMay 25, 2022, from http://www.eagle.org/eagleExternalPortalWEB/
ShowProperty /BEA%5C%20Repository /News%5C%20&%5C%20Events /Publications /
Quarterly/Surveyor/2011/Surveyor_2011Fall

Aijjou, A., Bahatti, L., & Raihani, A. (2020). Wind energy for shipboard electric power needs. Interna-
tional Journal, 9(1.5).

Akusok, A., Björk, K.-M., Miche, Y., & Lendasse, A. (2015). High-performance extreme learning ma-
chines: A complete toolbox for big data applications. IEEE Access, 3, 1011–1025. https://doi.
org/10.1109/ACCESS.2015.2450498

Alghamdi, S. A., & Quijada Cordova, R. A. (2019). The impact of biofouling on marine environment: A
qualitative review of the current antifouling technologies.

Alzieu, C., Sanjuan, J., Deltreil, J., & Borel, M. (1986). Tin contamination in arcachon bay: Effects on
oyster shell anomalies. Marine pollution bulletin, 17(11), 494–498.

Anguita, D., Ghio, A., Ridella, S., & Sterpi, D. (2009). K-fold cross validation for error rate estimate in
support vector machines. DMIN, 291–297.

ASTM D3623-78a. (2012). Standard Test Method for Testing Antifouling Panels in Shallow Submer-
gence.

ASTM D6990-05. (2011). Standard Practice for Evaluating Biofouling Resistance and Physical Perfor-
mance of Marine Coating Systems.

Atlar, M., Yeginbayeva, I., Turkmen, S., Demirel, Y., Carchen, A., Marino, A., & Williams, D. (2018). A
rational approach to predicting the effect of fouling control systems on” in-service” ship perfor-
mance. GMO Journal of Ship and Marine Technology, 24(213), 5–36.

Atlar, M. (2008). An update on marine antifoulings. 25th ITTC Group Discussions 3–Global Warming
and Impact on ITTC Activities.

Babin, M., Roesler, C., & Cullen, J. (2008).Real-time Coastal Observing Systems for Marine Ecosystem
Dynamics and Harmful Algal Blooms: Theory, Instrumentation and Modelling.

Bakker, M. (2021). A Reference-based Design Approach: in Preliminary Ship Design. Retrieved De-
cember 22, 2021, from http://resolver.tudelft.nl/uuid:3b4f713f-13f2-45c8-9fed-f3ab7e1ac8f7

Bansal, H. (2019).AI, ML&Deep learning overview.Retrieved January 15, 2021, from https://becominghuman.
ai / how - to - get - the - perfect - start - in - ai - ml - as - newbie - learn - the - art - in - just - 5 - mins -
cba28d2705e4

Bari, S., & Hossain, S. N. (2013). Waste heat recovery from a diesel engine using shell and tube heat
exchanger. Applied Thermal Engineering, 61(2), 355–363.

Benner, J. (2020).Cross-Validation and Hyperparameter Tuning: How to Optimise your Machine Learn-
ing Model. Retrieved May 30, 2022, from https://towardsdatascience.com/cross-validation-
and-hyperparameter-tuning-how-to-optimise-your-machine-learning-model-13f005af9d7d

Boat International. (2022). Feadship Yachts. RetrievedDecember 17, 2021, from https://www.boatinternational.
com/profiles/feadship--21859

Braun-Blanquet, J. et al. (1932). Plant sociology. the study of plant communities. Plant sociology. The
study of plant communities. First ed.

Bressy, C., & Lejars, M. (2014). Marine fouling : An overview. Journal of Ocean Technology, 9, 19–28.
Burger, R. (2017). Improving the Predictions of Ship Speed and Fuel Consumption for Heavy Lift Ves-

sels. Retrieved April 20, 2022, from http://resolver.tudelft.nl/uuid:dd79c53c-9e9f-44f9-8d71-
f981eba12798

Calder, N. (1992). Marine diesel engines: Maintenance, troubleshooting, and repair. International Ma-
rine.

88

https://doi.org/10.3354/meps123301
http://www.eagle.org/eagleExternalPortalWEB/ShowProperty/BEA%5C%20Repository/News%5C%20&%5C%20Events/Publications/Quarterly/Surveyor/2011/Surveyor_2011Fall
http://www.eagle.org/eagleExternalPortalWEB/ShowProperty/BEA%5C%20Repository/News%5C%20&%5C%20Events/Publications/Quarterly/Surveyor/2011/Surveyor_2011Fall
http://www.eagle.org/eagleExternalPortalWEB/ShowProperty/BEA%5C%20Repository/News%5C%20&%5C%20Events/Publications/Quarterly/Surveyor/2011/Surveyor_2011Fall
https://doi.org/10.1109/ACCESS.2015.2450498
https://doi.org/10.1109/ACCESS.2015.2450498
http://resolver.tudelft.nl/uuid:3b4f713f-13f2-45c8-9fed-f3ab7e1ac8f7
https://becominghuman.ai/how-to-get-the-perfect-start-in-ai-ml-as-newbie-learn-the-art-in-just-5-mins-cba28d2705e4
https://becominghuman.ai/how-to-get-the-perfect-start-in-ai-ml-as-newbie-learn-the-art-in-just-5-mins-cba28d2705e4
https://becominghuman.ai/how-to-get-the-perfect-start-in-ai-ml-as-newbie-learn-the-art-in-just-5-mins-cba28d2705e4
https://towardsdatascience.com/cross-validation-and-hyperparameter-tuning-how-to-optimise-your-machine-learning-model-13f005af9d7d
https://towardsdatascience.com/cross-validation-and-hyperparameter-tuning-how-to-optimise-your-machine-learning-model-13f005af9d7d
https://www.boatinternational.com/profiles/feadship--21859
https://www.boatinternational.com/profiles/feadship--21859
http://resolver.tudelft.nl/uuid:dd79c53c-9e9f-44f9-8d71-f981eba12798
http://resolver.tudelft.nl/uuid:dd79c53c-9e9f-44f9-8d71-f981eba12798


Bibliography 89

Castro, M. C. (2013). International Maritime Organization (IMO) for the Control and Management of
Ship’s Biofouling to Minimize the Transfer of Invasive Aquatic Species.

Caterpillar. (2022a). Commercial Propulsion Engines - 3516C IMO II. Retrieved June 14, 2022, from
https : / / www . cat . com / en _US / products / new / power - systems /marine - power - systems /
commercial-propulsion-engines/18408926.html#

Caterpillar. (2022b). Operation & Maintenance Manual - 3516 High Output Marine Engine. Retrieved
June 18, 2022, from https://catpublications.com/

Chambers, L., Stokes, K., Walsh, F., & Wood, R. (2006). Modern approaches to marine antifouling
coatings. Surface and Coatings Technology, 201, 3642–3652. https : / / doi . org / 10 . 1016 / j .
surfcoat.2006.08.129

Chauvenet, W. (1863). Manual of spherical and practical astronomy ii, 4.
Coraddu, A., Oneto, L., Baldi, F., & Anguita, D. (2015). Ship efficiency forecast based on sensors data

collection: Improving numerical models through data analytics. OCEANS 2015-Genova, 1–10.
Coraddu, A., Oneto, L., Baldi, F., Cipollini, F., Atlar, M., & Savio, s. (2019). Data-driven ship digital twin

for estimating the speed loss caused by the marine fouling. Ocean Engineering, 186, 106063.
https://doi.org/10.1016/j.oceaneng.2019.05.045

Da Silva, I. N., Spatti, D. H., Flauzino, R. A., Liboni, L. H. B., & dos Reis Alves, S. F. (2017). Artificial
neural networks. Cham: Springer International Publishing, 39.

Delft University of Technology. (2022). Library. Retrieved September 26, 2021, from https://www.tudelft.
nl/library

Demirel, Y., Khorasanchi, M., Turan, O., & Incecik, A. (2013). On the importance of antifouling coat-
ings regarding ship resistance and powering. 3rd International Conference on Technologies,
Operations, Logistics and Modelling for Low Carbon Shipping.

Demirel, Y., Khorasanchi, M., Turan, O., Incecik, A., & Schultz, M. (2014). A CFDmodel for the frictional
resistance prediction of antifouling coatings. Ocean Engineering, 89, 21–31. https://doi.org/10.
1016/j.oceaneng.2014.07.017

Demirel, Y., Song, S., Turan, O., & Incecik, A. (2019). Practical added resistance diagrams to predict
fouling impact on ship performance. Ocean Engineering, 186. https : / / doi . org / 10 . 1016 / j .
oceaneng.2019.106112

Demirel, Y., Turan, O., & Incecik, A. (2017). Predicting the effect of biofouling on ship resistance using
CFD. Applied Ocean Research, 62, 100–118. https://doi.org/10.1016/j.apor.2016.12.003

Deng,W., Zheng, Q., & Chen, L. (2009). Regularized extreme learningmachine. 2009 IEEE symposium
on computational intelligence and data mining, 389–395.

Evans, J. (2009). Basic design concepts. Journal of the American Society for Naval Engineers, 71,
671–678. https://doi.org/10.1111/j.1559-3584.1959.tb01836.x

Farkas, A., Degiuli, N., & Martić, I. (2018). Towards the prediction of the effect of biofilm on the ship
resistance using cfd. Ocean Engineering, 167, 169–186. https://doi.org/https://doi.org/10.
1016/j.oceaneng.2018.08.055

Farkas, A., Degiuli, N., & Martić, I. (2020a). The impact of biofouling on the propeller performance.
Ocean Engineering, 219, 108376. https://doi.org/10.1016/j.oceaneng.2020.108376

Farkas, A., Degiuli, N., Martić, I., & Ančić, I. (2020b). Performance predictionmethod for fouled surfaces.
Applied Ocean Research, 99. https://doi.org/10.1016/j.apor.2020.102151

Feadship. (2015). Savannah. Retrieved December 13, 2021, from https : / / www . feadship . nl / fleet /
savannah

Feadship. (2020). Moonrise. Retrieved December 13, 2021, from https : / / www . feadship . nl / fleet /
moonrise

Feadship. (2021a). Feadship Royal Dutch Shipyards. Retrieved December 7, 2021, from https://www.
feadship.nl/

Feadship. (2021b). Viva. Retrieved December 13, 2021, from https://www.feadship.nl/fleet/viva
Fleet Cleaner. (2022). Keep your fleet clean without operational impact using safe and sustainable

robot technology. Retrieved May 28, 2022, from https://www.fleetcleaner.com/
Flemming, H.-C., Murthy, S., Venkatesan, R., & Cooksey, K. (2009). Marine and industrial biofouling.

https://doi.org/10.1007/978-3-540-69796-1
Gibbs, P., & Bryan, G. (1986). Reproductive failure in populations of the dog-whelk, nucella lapillus,

caused by imposex induced by tributyltin from antifouling paints. Journal of the Marine Biolog-
ical Association of the United Kingdom, 66(4), 767–777.

https://www.cat.com/en_US/products/new/power-systems/marine-power-systems/commercial-propulsion-engines/18408926.html#
https://www.cat.com/en_US/products/new/power-systems/marine-power-systems/commercial-propulsion-engines/18408926.html#
https://catpublications.com/
https://doi.org/10.1016/j.surfcoat.2006.08.129
https://doi.org/10.1016/j.surfcoat.2006.08.129
https://doi.org/10.1016/j.oceaneng.2019.05.045
https://www.tudelft.nl/library
https://www.tudelft.nl/library
https://doi.org/10.1016/j.oceaneng.2014.07.017
https://doi.org/10.1016/j.oceaneng.2014.07.017
https://doi.org/10.1016/j.oceaneng.2019.106112
https://doi.org/10.1016/j.oceaneng.2019.106112
https://doi.org/10.1016/j.apor.2016.12.003
https://doi.org/10.1111/j.1559-3584.1959.tb01836.x
https://doi.org/https://doi.org/10.1016/j.oceaneng.2018.08.055
https://doi.org/https://doi.org/10.1016/j.oceaneng.2018.08.055
https://doi.org/10.1016/j.oceaneng.2020.108376
https://doi.org/10.1016/j.apor.2020.102151
https://www.feadship.nl/fleet/savannah
https://www.feadship.nl/fleet/savannah
https://www.feadship.nl/fleet/moonrise
https://www.feadship.nl/fleet/moonrise
https://www.feadship.nl/
https://www.feadship.nl/
https://www.feadship.nl/fleet/viva
https://www.fleetcleaner.com/
https://doi.org/10.1007/978-3-540-69796-1


Bibliography 90

Google. (2022). Scholar. Retrieved September 26, 2021, from https://scholar.google.nl
Granville, P. S. (1987). Three Indirect Methods for the Drag Characterization of Arbitrarily Rough Sur-

faces on Flat Plates. Journal of Ship Research, 31(01), 70–77. https://doi.org/10.5957/jsr.
1987.31.1.70

Grin, R. (2015). On the prediction of wave-added resistance with empirical methods. Journal of Ship
Production and Design, 31(03), 181–191.

Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Enke, K., Ewing, J., Gien-
app, A., Hasselmann, D., Kruseman, P., et al. (1973). Measurements of wind-wave growth and
swell decay during the joint north sea wave project (jonswap). Ergaenzungsheft zur Deutschen
Hydrographischen Zeitschrift, Reihe A.

Heaton, J. (2015). Artificial Intelligence for Humans, Vol 3: Neural Networks and Deep Learning.
Hempel. (2022). Hempaguard X7. Retrieved June 19, 2022, from https://www.hempel.com/en-us/

products/brand/hempaguard/hempaguard-x7
Hjorth, U., & Hjort, U. (1982). Model selection and forward validation. Scandinavian Journal of Statistics,

95–105.
Huang, G.-B. (2014). An insight into extreme learning machines: Random neurons, random features

and kernels. Cognitive Computation, 6(3), 376–390.
Huang, G.-B. (2015). What are extreme learning machines? filling the gap between frank rosenblatt’s

dream and john von neumann’s puzzle. Cognitive Computation, 7(3), 263–278.
Huang, G.-B., Zhu, Q.-Y., & Siew, C.-K. (2006). Extreme learning machine: Theory and applications.

Neurocomputing, 70(1-3), 489–501.
HullWiper. (2022). Revolutionising Underwater Hull Cleaning. Retrieved December 16, 2021, from

https://www.hullwiper.co/
IBM Cloud Education. (2020). What is deep learning? Retrieved January 16, 2021, from https://www.

ibm.com/cloud/learn/deep-learning#:~:text=Deep%5C%20learning%5C%20is%5C%20a%
5C%20subset,from%5C%20large%5C%20amounts%5C%20of%5C%20data.

IMO, I. (2001). International convention on the control of harmful anti-fouling systems on ships. Entry
into force: 17 September 2008, AFS/CONF/26.

Institution, W. H. O., & of Ships, U. S. N. D. B. (1952). Marine fouling and its prevention. United States
Naval Institute.

International Marine. (2022a). Biocidal Antifoulings. Retrieved June 19, 2022, from https : / / www .
international-marine.com/in-focus/antifouling

International Marine. (2022b). Foul Release. Retrieved June 19, 2022, from https://www.international-
marine.com/in-focus/foul-release-coatings

International Marine. (2022c). The industry’s most environmentally sustainable hull management pack-
age. Retrieved December 16, 2021, from https://www.international-marine.com/

ISO 19030-2. (2016). Ships and Marine Technology Measurement of Changes in Hull and Propeller
Performance - Part 2: Default Method. International Organization for Standardization.

ITTC. (2011). Recommended Procedures and Guideline Practical Guidelines for Ship CFD Applica-
tions. ITTC - Recommended Procedures and Guidelines.

ITTC. (2014). Analysis of Speed/Power Trial Data. ITTC - Recommended Procedures and Guidelines.
Jotun. (2022). Jotun HPS. Retrieved June 19, 2022, from https://www.jotun.com/ww-en/industries/

news-and-stories/news/regulatory-and-commercial-advantage-easily-unlocked-for-owners-
with-the-right-antifouling-says-jotun/

Kanninen, P., Peltonen, P., & Vuorinen, V. (2022). Full-scale ship stern wave with the modelled and
resolved turbulence including the hull roughness effect. Ocean Engineering, 245, 110434.

Kasun, L. L. C., Zhou, H., Huang, G.-B., & Vong, C. M. (2013). Representational learning with elms for
big data.

Kjær, L., Pigosso, D., McAloone, T., & Birkved, M. (2018). Guidelines for evaluating the environmen-
tal performance of product/service-systems through life cycle assessment. Journal of Cleaner
Production, 190. https://doi.org/10.1016/j.jclepro.2018.04.108

Klein Woud, H., & Stapersma, D. (2002). Propulsion and Electric Power Generation Systems. The
Institute of Marine Engineering, Science; Technology.

Kohavi, R. et al. (1995). A study of cross-validation and bootstrap for accuracy estimation and model
selection. Ijcai, 14(2), 1137–1145.

https://scholar.google.nl
https://doi.org/10.5957/jsr.1987.31.1.70
https://doi.org/10.5957/jsr.1987.31.1.70
https://www.hempel.com/en-us/products/brand/hempaguard/hempaguard-x7
https://www.hempel.com/en-us/products/brand/hempaguard/hempaguard-x7
https://www.hullwiper.co/
https://www.ibm.com/cloud/learn/deep-learning#:~:text=Deep%5C%20learning%5C%20is%5C%20a%5C%20subset,from%5C%20large%5C%20amounts%5C%20of%5C%20data.
https://www.ibm.com/cloud/learn/deep-learning#:~:text=Deep%5C%20learning%5C%20is%5C%20a%5C%20subset,from%5C%20large%5C%20amounts%5C%20of%5C%20data.
https://www.ibm.com/cloud/learn/deep-learning#:~:text=Deep%5C%20learning%5C%20is%5C%20a%5C%20subset,from%5C%20large%5C%20amounts%5C%20of%5C%20data.
https://www.international-marine.com/in-focus/antifouling
https://www.international-marine.com/in-focus/antifouling
https://www.international-marine.com/in-focus/foul-release-coatings
https://www.international-marine.com/in-focus/foul-release-coatings
https://www.international-marine.com/
https://www.jotun.com/ww-en/industries/news-and-stories/news/regulatory-and-commercial-advantage-easily-unlocked-for-owners-with-the-right-antifouling-says-jotun/
https://www.jotun.com/ww-en/industries/news-and-stories/news/regulatory-and-commercial-advantage-easily-unlocked-for-owners-with-the-right-antifouling-says-jotun/
https://www.jotun.com/ww-en/industries/news-and-stories/news/regulatory-and-commercial-advantage-easily-unlocked-for-owners-with-the-right-antifouling-says-jotun/
https://doi.org/10.1016/j.jclepro.2018.04.108


Bibliography 91

Korkut, E. (2012). An experimental investigation of the effect of foul release coating application on
performance, noise and cavitation characteristics of marine propellers. Ocean Engineering,
41. https://doi.org/10.1016/j.oceaneng.2011.12.012

Lam, J. S. L., & Lai, K.-h. (2015). Developing environmental sustainability by anp-qfd approach: The
case of shipping operations. Journal of Cleaner Production, 105, 275–284. https://doi.org/10.
1016/j.jclepro.2014.09.070

Leifsson, L., Sævarsdóttir, H., Sigurdsson, S., & Vésteinsson, A. (2008). Grey-boxmodeling of an ocean
vessel for operational optimization. Simulation Modelling Practice and Theory, 16, 923–932.
https://doi.org/10.1016/j.simpat.2008.03.006

Letschert, M. (2020). A Process Design Towards the Yacht Environmental Transparency Index. Re-
trieved December 10, 2021, from http://resolver.tudelft.nl/uuid:e49b703f-07ab-4d9d-8ce5-
dee5150ef016

Lindstad, H., Verbeek, R., Blok, M., van Zyl, S., Hübscher, A., Kramer, H., Purwanto, J., Ivanova, O., &
Boonman, H. (2015). GHG emission reduction potential of EU-related maritime transport and
on its impacts. TNO.

Marine Travelift. (2022). Yacht in 1000MT Marine Travelift. Retrieved December 7, 2021, from https:
//www.marinetravelift.com/

Mavris, D., & DeLaurentis, D. (2000). Methodology for examining the simultaneous impact of require-
ments, vehicle characteristics, and technologies on military aircraft design.

MEPC. (2018).Meeting Summary of theMarine Environment Protection Committee (MEPC), 72nd Ses-
sion. Maritime Environmental Protection Committee (MEPC), Part of the Internation Maritime
Organization (IMO), London, United Kingdom.

Morrisey, D., & Woods, C. (2015). In-water cleaning technologies: Review of information.
Odendaal, K. (2021). Enhancing early-stage energy consumption predictions using dynamic oper-

ational voyage data. Retrieved December 20, 2021, from http : / / resolver . tudelft . nl / uuid :
949882f3-60c4-484b-8268-40ce38f43830

Okay, O. (2004). Antifouling içeren gemi boyalarının uluslararası kurallar çerçevesinde kirletici etki-
lerinin incelenmesi. Gemi Mühendisliği ve Sanayimiz Sempozyumu, 24–25.

Oliveira, D., & Granhag, L. (2016). Matching forces applied in underwater hull cleaning with adhesion
strength of marine organisms. Journal of Marine Science and Engineering, 4(4), 66.

Oliveira, D., Larsson, A. I., & Granhag, L. (2018). Effect of ship hull form on the resistance penalty from
biofouling. Biofouling, 34(3), 262–272.

Oneto, L. (2018). Model selection and error estimation without the agonizing pain. Wiley Interdisci-
plinary Reviews: Data Mining and Knowledge Discovery, 8(4), e1252.

Owen, D., Demirel, Y., Oguz, E., Tezdogan, T., & Incecik, A. (2018). Investigating the effect of biofouling
on propeller characteristics using cfd. Ocean Engineering, 159. https : / /doi .org /10 .1016/ j .
oceaneng.2018.01.087

Parkes, A., Sobey, A., & Hudson, D. (2018). Physics-based shaft power prediction for large merchant
ships using neural networks. Ocean Engineering, 166. https://doi.org/10.1016/j.oceaneng.
2018.07.060

Pedersen, B., & Larsen, J. (2009). Prediction of full-scale propulsion power using artificial neural net-
works. COMPIT ’09, 537–550.

Petersen, J. P., Jacobsen, D. J., &Winther, O. (2012). Statistical modelling for ship propulsion efficiency.
Journal of marine science and technology, 17(1), 30–39.

Pielke, R. A. (2012). Sea Surface Temperature Trends as a Function of Latitiude Bands by Roger A.
Pielke Sr. and Bob Tisdale. Climate Science.

Pierson Jr, W. J., & Moskowitz, L. (1964). A proposed spectral form for fully developed wind seas
based on the similarity theory of sa kitaigorodskii. Journal of geophysical research, 69(24),
5181–5190.

Propulsion Committee of the 27th ITTC. (2014). 1978 ITTC Performance Prediction Method. ITTC -
Recommended Procedures and Guidelines.

Propulsion Committee of the 28th ITTC. (2017). 1978 ITTC Performance Prediction Method. ITTC -
Recommended Procedures and Guidelines.

Radhakrishna Rao, C., & Mitra, S. K. (1972). Generalized inverse of a matrix and its applications.
Proceedings of the Berkeley Symposium on Mathematical Statistics and Probability, 1, 601–
620.

https://doi.org/10.1016/j.oceaneng.2011.12.012
https://doi.org/10.1016/j.jclepro.2014.09.070
https://doi.org/10.1016/j.jclepro.2014.09.070
https://doi.org/10.1016/j.simpat.2008.03.006
http://resolver.tudelft.nl/uuid:e49b703f-07ab-4d9d-8ce5-dee5150ef016
http://resolver.tudelft.nl/uuid:e49b703f-07ab-4d9d-8ce5-dee5150ef016
https://www.marinetravelift.com/
https://www.marinetravelift.com/
http://resolver.tudelft.nl/uuid:949882f3-60c4-484b-8268-40ce38f43830
http://resolver.tudelft.nl/uuid:949882f3-60c4-484b-8268-40ce38f43830
https://doi.org/10.1016/j.oceaneng.2018.01.087
https://doi.org/10.1016/j.oceaneng.2018.01.087
https://doi.org/10.1016/j.oceaneng.2018.07.060
https://doi.org/10.1016/j.oceaneng.2018.07.060


Bibliography 92

Ridella, S., Rovetta, S., & Zunino, R. (1997). Circular backpropagation networks for classification. IEEE
transactions on neural networks, 8(1), 84–97.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating
errors. nature, 323(6088), 533–536.

Sargent, R. G. (2010). Verification and validation of simulation models. Proceedings of the 2010 winter
simulation conference, 166–183.

Schultz, M. (2007). Effects of coating roughness and biofouling on ship resistance and powering. Bio-
fouling, 23, 331–41. https://doi.org/10.1080/08927010701461974

Ship &Bunker. (2022).World Bunker Prices -MGO. Retrieved June 1, 2022, from https://shipandbunker.
com/prices#MGO

Shrivastava, S. (2020). Cross Validation in Time Series. Retrieved May 18, 2022, from https://medium.
com/@soumyachess1496/cross-validation-in-time-series-566ae4981ce4

Song, S., Demirel, Y., & Atlar, M. (2020a). Penalty of hull and propeller fouling on ship self-propulsion
performance. Applied Ocean Research, 94. https://doi.org/10.1016/j.apor.2019.102006

Song, S., Demirel, Y., De Marco, C., Tezdogan, T., & Atlar, M. (2020b). Fouling effect on the resistance
of different ship types. Ocean Engineering, 216, 107736. https://doi.org/10.1016/j.oceaneng.
2020.107736

Stapersma, D. (2022). Diesel Engines Volume 1 Performance Analysis, Lecture notes MT44100 (In-
ternal Combustion Engines A). Retrieved June 14, 2022, from https://onlinereaders.tudelft.nl/
index.php?orderableObject=301077

Stevens, E. (1937). The increase in frictional resistance due to the action of water on bottom paint.
Journal of the American Society of Naval Engineers, 49(4), 585–588.

Sui, C., de Vos, P., Stapersma, D., Visser, K., & Ding, Y. (2020). Fuel consumption and emissions
of ocean-going cargo ship with hybrid propulsion and different fuels over voyage. Journal of
Marine Science and Engineering, 8, 588. https://doi.org/10.3390/jmse8080588

Superyacht Times. (2022). 100m+ Yachts Worldwide. Retrieved December 13, 2021, from https://www.
superyachttimes.com/yachts/100m+

SuperyachtNews. (2019). Discovering the YETI. Retrieved December 10, 2021, from https : / /www.
superyachtnews.com/fleet/discovering-the-yeti

Taylan, M. (2010). An overview: Effect of roughness and coatings on ship resistance. Internatonal
Conference on Ship Drag Reduction, 20–21.

Tissera, M. D., & McDonnell, M. D. (2016). Deep extreme learning machines: Supervised autoencoding
architecture for classification. Neurocomputing, 174, 42–49.

Townsin, R. (2003). The ship hull fouling penalty. Biofouling, 19(S1), 9–15.
United Nations. (2016). Decisions Adopted by the Conference of the Parties: Adoption of the Paris

Agreement. Framework Convention on Climate Change.
United States Naval Academy. (2022). Principles of Ship Performance. Retrieved April 13, 2022, from

https://www.usna.edu/NAOE/academics/en400.php
Uzun, D., Demirel, Y., Coraddu, A., & Turan, O. (2019). Time-dependent biofouling growth model for

predicting the effects of biofouling on ship resistance and powering. Ocean Engineering, 191.
https://doi.org/10.1016/j.oceaneng.2019.106432

van der Bos, J. (2021). Towards energy efficient shipping. Retrieved April 20, 2022, from http://resolver.
tudelft.nl/uuid:4d0ae29f-3534-420e-91c5-88d12574451f

Van Rompay, B. (2012). Surface treated composites white book. Hokapress (pp. 243–262).
Yang, L., Chen, G., Rytter, N. G. M., Zhao, J., & Yang, D. (2019). A genetic algorithm-based grey-box

model for ship fuel consumption prediction towards sustainable shipping. Annals of Operations
Research, 1–27.

Yebra, D., Kiil, S., & Dam-Johansen, K. (2004). Antifouling technology - past, present and future steps
towards efficient and environmentally friendly antifouling coatings. Progress in Organic Coat-
ings, 50, 75–104. https://doi.org/10.1016/j.porgcoat.2003.06.001

Yeginbayeva, I., & Atlar, M. (2018). An experimental investigation into the surface and hydrodynamic
characteristics of marine coatings with mimicked hull roughness ranges. Biofouling, 34(9),
1001–1019.

Zwart, R. (2020). Trim optimization for ships in service: A grey-box model approach using operational
voyage data. Retrieved December 22, 2021, from http://resolver.tudelft.nl/uuid:599cfbd1-489f-
406f-8ddf-64416fd7a53b

https://doi.org/10.1080/08927010701461974
https://shipandbunker.com/prices#MGO
https://shipandbunker.com/prices#MGO
https://medium.com/@soumyachess1496/cross-validation-in-time-series-566ae4981ce4
https://medium.com/@soumyachess1496/cross-validation-in-time-series-566ae4981ce4
https://doi.org/10.1016/j.apor.2019.102006
https://doi.org/10.1016/j.oceaneng.2020.107736
https://doi.org/10.1016/j.oceaneng.2020.107736
https://onlinereaders.tudelft.nl/index.php?orderableObject=301077
https://onlinereaders.tudelft.nl/index.php?orderableObject=301077
https://doi.org/10.3390/jmse8080588
https://www.superyachttimes.com/yachts/100m+
https://www.superyachttimes.com/yachts/100m+
https://www.superyachtnews.com/fleet/discovering-the-yeti
https://www.superyachtnews.com/fleet/discovering-the-yeti
https://www.usna.edu/NAOE/academics/en400.php
https://doi.org/10.1016/j.oceaneng.2019.106432
http://resolver.tudelft.nl/uuid:4d0ae29f-3534-420e-91c5-88d12574451f
http://resolver.tudelft.nl/uuid:4d0ae29f-3534-420e-91c5-88d12574451f
https://doi.org/10.1016/j.porgcoat.2003.06.001
http://resolver.tudelft.nl/uuid:599cfbd1-489f-406f-8ddf-64416fd7a53b
http://resolver.tudelft.nl/uuid:599cfbd1-489f-406f-8ddf-64416fd7a53b


A
Marine Biofouling Growth

In this chapter, the model by Uzun et al. (2019) is explained in detail. To get an overview of where the model fits in
the full methodology, chapter 4 can be reviewed. In section A.1, the fouling rating is explained. Next, in section A.2,
the calcareous surface coverage is determined. Based on both, the equivalent sand roughness height is computed
in section A.3. Last, in section A.4, the relevant biofouling growth curves are displayed.

A.1. Fouling Rating
In Equation A.1, the formula for the fouling rating is shown, where 𝐹𝑅 is the rated biofouling growth, 𝑎 is the
maximum rating, 𝑡 is the sum of idle time, 𝑡0 is the time that rating reaches to the maximum point and 𝜏 is the half-
width of the bell curve (Uzun et al., 2019). Here, the authors mention that 𝑡0 and 𝜏 are taken as coating performance
parameters. In Table A.1, the variables used to compute the fouling rating are presented. It can be noted that in the
method exploration (subsection 3.1.1), the calcareous fouling rating curves for the Mediterranean and the Equator
were shown. An overview of all marine biofouling time-dependent curves can be found in section A.4

𝐹𝑅 = 𝑎𝑒[−(
𝑡−𝑡0
𝜏 )

2
]

(A.1)

Type of fouling Location 𝑡0 𝜏 𝑎
Calcareous fouling Equatorial 379.4 187.2 100

Mediterranean 726.4 129.7 100
Non-shell organisms Equatorial 271.4 73.11 50

Mediterranean 383.5 124.4 50
Slime Equatorial 87 37.08 20

Mediterranean 271.9 99.31 20

Table A.1: Antifouling coating performance parameters for each type of fouling (Uzun et al., 2019).

With the functions above, the fouling rating for a single anchorage can be computed. By repeating this process
for each time and region, the accumulative fouling rating over a period of operation can be written as given below
in Equation A.2. Note that interpolation and extrapolation can be used to find fouling growth in regions other than
the Equator and Mediterranean, as explained in section 4.2.

𝐹𝑅𝑡𝑜𝑡 =
𝑛

∑
𝑖=0
(𝜕𝐹𝑅𝜕𝑡 )𝑖

𝑡𝑖 + (
𝜕𝐹𝑅
𝜕𝑡 )𝑖+1

𝑡𝑖+1 + (
𝜕𝐹𝑅
𝜕𝑡 )𝑛

𝑡𝑛 (A.2)

A.2. Surface Coverage
For the calculation of the surface coverage, Uzun and others propose a logistic growth model to predict calcareous
type fouling surface coverage (𝑆𝐶) as a function of time, as shown in Equation A.4. The logistic function curves
were fitted on field test data with help of logistic curve constants. In Table A.2, the constants for both the Equator
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and Mediterranean region are presented. The accumulative surface coverage can be computed with a similar
equation as the accumulative fouling rating over time, as shown in Equation A.3.

𝑆𝐶𝑡𝑜𝑡 =
𝑛

∑
𝑖=0
(𝜕𝑆𝐶𝜕𝑡 )𝑖

𝑡𝑖 + (
𝜕𝑆𝐶
𝜕𝑡 )𝑖+1

𝑡𝑖+1 + (
𝜕𝑆𝐶
𝜕𝑡 )𝑛

𝑡𝑛 (A.3)

𝑆𝐶 = 𝑃 − 𝑝
1 + (𝑒𝑥𝑝𝑏−𝑐𝑡) +

𝑑
1 + (𝑒𝑥𝑝𝑓−𝑔𝑡) (A.4)

Constant Equator Mediterranean
P 100 0.00517
b 16 10
c 0.0407 40
d 3.5 50
f 10.32 32.81
g 0.7759 0.04715
p 3.101 0

Table A.2: Constants for calcareous surface coverage logistic curves (Uzun et al., 2019).

A.3. Equivalent Sand Roughness Height
As a last step of the marine biofouling determination, the equivalent sand roughness height will be computed. This
parameter will be determined in micrometers, and represents the roughness thickness present on the ship surface.
The equivalent sand roughness height is often used in marine biofouling studies to quantify the biofouling present
on the ship, and translate this to added hull roughness.

When the total calcareous surface coverage (𝑆𝐶𝑡𝑜𝑡) is below or equal to 5%, the equivalent sand roughness height
(𝑘𝑠) is determined with help of the total fouling rating (𝐹𝑅𝑡𝑜𝑡) with Equation A.5. Calcareous surface coverage
becomes the dominant parameter when this value is above 5%, in which case 𝑘𝑠 will be determined with help of
function Equation A.6. Last, it can be seen that with this a gap can be present between a fouling rating of 70 and
surface coverage of 5%. section 4.2 can be consulted for a suggested interpolation of results in between both
curves.

𝑘𝑠(𝑡) = {
0.007143𝐹𝑅2𝑡𝑜𝑡 + 13.36𝐹𝑅𝑡𝑜𝑡 + 30 if 0 < 𝐹𝑅𝑡𝑜𝑡 ≤ 70
30 if 𝐹𝑅𝑡𝑜𝑡 = 0

(A.5)

𝑘𝑠(𝑡) = {
2.4669𝑆𝐶2𝑡𝑜𝑡 − 24.84𝑆𝐶𝑡𝑜𝑡 + 1065.7 if 5 < 𝑆𝐶𝑡𝑜𝑡 ≤ 50
80𝑆𝐶𝑡𝑜𝑡 + 2000 if 50 < 𝑆𝐶𝑡𝑜𝑡 ≤ 100

(A.6)

A.4. Resulting Growth Curves

(a) Equator region. (b) Mediterranean region.

Figure A.1: Calcareous fouling growth with a maximum fouling rating of 100.
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(a) Equator region. (b) Mediterranean region.

Figure A.2: Non-shell organisms growth with a maximum fouling rating of 50.

(a) Equator region. (b) Mediterranean region.

Figure A.3: Slime growth with a maximum fouling rating of 20.

(a) Equator region. (b) Mediterranean region.

Figure A.4: Calcareous type fouling surface coverage development.
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