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Some Problems Concerning the Accuracy and
Efficiency of Self-Consistent Iterative
Calculations in Magnetic Recording

H. JANSEN, J. FLUITMAN, anp P. WESSELING

Abstract—There is an increasing interest in the so-called dynamic
self- consistent iterative calculations to predict flux reversal patterns in
magnetic recording. In the literature one can observe a certain amount
of incoherence in the choice of approximations and of numerical meth-
ods. The effect of some of the usual approximations are investigated
in a systematic way and a new approach in the formulation of the prob-
lem is introduced which leads to a considerable gain in efficiency.

I. INTRODUCTION

N SEVERAL PAPERS on the subject of magnetic recording

use is made of self-consistent iterative calculations to pre-
dict the magnetization pattern or the output voltage of digitally
written information. In order to keep such calculations trac-
table, it is always necessary to accept physical and numerical
approximations of the initial problem and an important ques-
tion is then, of course, how accurate the results are with re-
spect to the exact solution (that cannot be obtained) and,
after that, how the results compare with experimental data.
Since an exact solution does not exist, one can only reach an
insight in the relative accuracy or compare directly with ex-
perimental results. In case of deviations it is very difficult
then to decide whether the physical model is inaccurate or
the numerical methods have been too crude, or both. Even
in the case of good looking results, one can feel uneasy about
the fact that a happy coincidence of compensating approxi-
mations cannot be ruled out. In this study we draw on the
work of Portigal [1] and Nishimoto [2], who demonstrated
the significance of using accurate hysteresis models, Lindholm
[3], who computed the influence of the head gap on the
image field, and Bertram [4], who has studied the efficiency
of the iteration process.

It is the purpose of this paper to give an overview of the in-
fluence of the approximations which are often used and to
present a numerical procedure which seems to be more ef-
ficient than the methods presented thus far. In Section II
we will present our starting points, Section III pays atten-

Manuscript received December 12, 1977, revised April 21,1978,

H. Jansen was with Twente University of Technology, Enschede, The
Netherlands. He is now with the Technical Research Department, Neth-
erlands Institute for Fishery Investigation, [jmuiden, The Netherlands.

J. Fhliitman is with Twente University of Technology, Enschede, The
Netherlands.

P. Wesseling was with Twente University of Technology, Enschede,
The Netherlands. He is now with the Mathematics Department, Delft
University of Technology, Delft, The Netherlands.

24

Z

tion to the effect of numerical approximations and Section
IV to the effect of approximations in the physical model.
Comments and conclusions are the subjects of Section V.

Fig. 1. Head-medium geometry.

II. STARTING POINTS

The problem that has to be solved is mathematically formu-
lated as follows:

He, 1) = Hoe, M) + Hofe, 1 0
e I L @
M(x) = m(H, history of H) 3)

where x is the coordinate fixed to the recording head (see
Fig. 1), ¢ the time, M(x) the magnetization of the medium, H,
the head field, H; the demagnetizing field, and H the total
field. G is the Green function of the problem. Equation (3)
is a symbolic expression referring to a hysteresismodel of the
material of the recording medium.

The following assumptions are made.

1) The geometry and the material properties are independent
of the z-coordinate (z-axis perpendicular on the plane of
Fig. 1).

2) Only the x-components of magnetization and magnetic
fields are considered.

3) The magnetization is constant over the layer thicknessd
and its value is equal to the value calculated in the middle
of the layer.

4) The recording head material has an infinite permeability.

The influence of these assumptions is not discussed in this
paper.

0018-9464/78/1100-1141$00.75 © 1978 IEEE



1142

1. NUMERICAL APPROXIMATIONS
Discretization

To transform (1)-(3) into a form suitable for numerical
processing, some method of discretization is required. A
straightforward way to do so is to divide the medium into
segments (of length Ax) and perform calculations in only
the center points of the segments (Fig. 1). The functions
H(x) and M(x) are thus reduced in discrete vectors, whose
components H; and M; tell what the values of H and M are
in the center of the jth segment. The demagnetizing field
H; can be calculated from the M;-values by interpolation,
differentiation, and solution of (2).

A unified view on the possible interpolation schemes can be
developed with the help of sets of basis functions which build
up an M(x):

M(x) = 3 M fi(x) @)

I
where f;(x) belongs to a set of basis functions and {M;} is the
representation of M(x) with respect to this set. We require
that the representation is identical with the one mentioned
above where M; is the value of M(x) at the center of the jth
segment. Thus our basis functions must fulfill the requirement

M(x;) = M;= 3" M; fi(x;) %)
which is true for
fi(xj)=58; ()

where §;; is the Kronecker delta function.
Two sets of basis functions have been studied: 1) hat func-
tions (Fig. 2(a)) with

filx)=f(x - x;)

and
) 1, for-Ax/2<x<Ax/2 o
X)=
d 0, elsewhere
and 2) Hemmite splines (Fig. 2(b)) with again
[i(x)=fCx - x;)
but now
h*(x - Ax) - h*(x + Ax)
= +
£6)=h(x) o ®
where
3 2
Z(El) -3 (B—') +1, forlx|<Ax
h(x)= Ax Ax
0, elsewhere
2
x(l—l{l—) , for x| <Ax
h*(x) = Ax

0, elsewhere.

The description with hat functions is identical with the usual
approximation of the integral expression (2) (approximation
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Fig. 2. Basic functions f(x). (a) Hat. (b) Hermite spline.

of differentials by differences and integration by parts). The
Hermite splines form an example of a “smooth” interpolation
scheme in the expectation that such a scheme might speed
convergence and/or reduce the number of mesh points.

For significant time reduction the influence of the head-
field must be restricted to a finite number of elements (-n
to n), and it must also be assumed that the demagnetizing
field in any point j is composed of the contributions of only
a finite number of neighboring elements (j- p toj+p). In
general there is no relation between p and n. The formulas
(1)-(3) are transformed now to a set of matrix formulae

H=H;+H, aH
Hy=A-M 2)

m(H;, history;), lil<n ,
M‘={M,.<°), n<lil<n+p )

where M(® is the starting value of M;, and H,M,and A repre-
sent matrices of the form

’M_,, .

LM +n+pd
respectively. The elements of A are given by

1 df;(®)
Ays 217_‘:“ G(x;, £) pn dg, li-jl<p ©
0, li-jl>p.

The interpolation scheme and the values of Ax, n, and p are
determined from the criterion that the error in M is within
1 percent of the saturation magnetization. Generally, an
exact solution is unknown so that a variation of Ax,n,and p
must give information whether or not the result is close
enough to the limiting case with Ax -0 and nAx, pAx —> oo,
There is one representative case, however, which can be solved
analytically.

This test case is described by van Herk and Wesseling [5]
and refers to the situation that (3) is reduced to

M=Mr(H/Hc - 1)
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Fig. 3. Inaccuracy versus segment length for the basis functions hat (+)
and Hermite spline (o) for the testcase with d =1 pm, y,, = 1 um,
2=3 um,M,=2.4H,,n=p =20 pm/Ax. The inaccuracy is related
to the amplitude of M (inaccuracy = magnetization error divided by
(Mmax - Mmin)/2). The remaining error for Ax — 0 is caused by the
fact that n and p are not infinite.

with M, and H,, constants, and G is approximated by
G=d/(t- x)

with d the medium thickness. Furthermore, the Karlquist
field is used for the head field. Although the physical ap-
proximations are rather severe in this case, it can be used
without hesitation to test the accuracy of numerical methods
and approximations. A complete test has been performed with
d=y, =1um,2g= 3 um,M,=24H,,and n=p =20 um/Ax
(symbols explained in Fig. 1). In Fig. 3 the deviation of the
computed results from the exact solution is displayed as a
function of Ax, the segment length. In this case n and p are
chosen sufficiently large to cause only a negligible error
(0.1 percent for Ax—0). It is seen that the choice of the
basis functions to represent M(x) is of minor importance for
the accuracy (as it proved to be with respect to the efficiency)
and segment lengths up to about 1 um (so  and p values of
about 20) can be used for this case. In this way an indication
of the error due to the discretization procedure can be ob-
tained in all cases.

In the course of our work we have felt the need of some
standard situation in order to be able to compare our results
with the work of other authors. Therefore, we have chosen
the patterns described by Nishimoto et al. [2] characterized
by M@ M =085 (premagnetized state), M, = 800 000A/m,
H, =56 000A/m, Hy = 320 000A/m, d = 0.05 um, y,, = 0325
um, and 2g = 1 um. Following the procedure outlined above,
the error due to discretization proved to be smaller than 1
percent, for the choice Ax =0.125 ym,n=30,p = 15. Unless
stated otherwise, this characteristic case is used throughout
the paper.

Approximation of the Green Function

The Green function G(x, £) and the fringe field H,(x, ¢)
can be computed exactly by conformal mapping. Mostly,
G and H, are approximated by neglecting the head gap in
the image field and assuming the magnetic potential to vary
linearly across the head gap (Karlquist approximation). G
and A, can then be expressed as follows:

' +
G(x, £) = Gy (x, £) = 2 arctan Eil-/lx - arctan ZJ’_?____;E
+ arctan 3%—‘43 (10)
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Hy(¢ + -
H,(x, )= Hy(x, 1) = —il_ (arctan 7% 4 arctan u)
n Ym Ym
amn

where H, is the deep gap field, y,, the distance between the
head and the center of the medium, and d the layer thick-
ness. Sometimes Gy is simplified further as follows:

d____dE-x)
E-x (E-x) +ay,
where the index @ denotes the fact that the arctan is approxi-
mated by its argument.

To evaluate the effect of approximating G(x, £) by G(x, £),

i.e., ignoring the head gap, we consider the matrix 4 as defined
in (9) but now written as

A=Ay + Ay
with

Gil(x, §) 2 Giolx, £) = 12)

IO af(E - xp)
(A = ;J; Gilx;, &) T dt.

Here Aj; can be considered as representing the gap influence.

We have studied the effect of omission of Aj; on the result-
ing M(x) and have found that the error made does not exceed
1 percent of M, even in a case for which 2¢/y,, = 10. So,
notwithstanding the influence of the presence of the gap on
the image field, as shown by Lindholm [3] the effect on the
write process is negligible. This can be made plausible when
it is realized that in front of the gap where the influence of
the approximation is expected to be large the medium is al-
ways driven into saturation.

Sometimes it is seen that G is approximated by Gy, (12).
This approximation only has disadvantages. Ay or Ay, has
only to be computed once so there is hardly a gain in com-
puting time while the influence on the results may be con-
siderable for relatively thick layers (see Fig. 4). The error in-
creases with the medium thickness and with the bit density.

Method of Iteration

In the literature the following iteration procedure is mostly
used:

A& D =g® 4 8. @D - B + 1) a13)

with B8 a relaxation parameter matrix and k the number of the
iteration step. Hg’”” is computed from M = m(H (%) history).

An attractive alternative is the second-order iteration pro-
cedure according to Newton-Raphson from which is derived
(see Appendix I):

a-4"- A(")) .(H(kﬂ) - H(k))=H§k”) - &) +H,.

(14)

Here 1 is the identity matrix, A" is derived from 4 by omitting
the columns -n- p to -n- 1 and n+1 to n+p, and A® is
the diagonal matrix with elements dM/dH, evaluated from the
hysteresis model at H;, M;. Equation (13) can be transformed
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Fig. 4. Influence of approximating the arctan by its argument for a bit
density of 108 bits/m and hysteresis curve II (see Fig. 6). (a) Ap-
proximated Green function Gy, for all layer thicknesses d with
My+«d=0.04A. (b) Not-approximated Green function Gy, M=
80 000A/m, d= 0.5 um. N.B. Only part of the pattern is shown
here (as is the case for Fig. 7 and 8 as well). In the full computa-
tion Hy(f) is taken periodic (in the way depicted fromx=7 to x =
11 gm) forx = -1 tox = 11 gm, and fromx = 12 to x = 18 pm.

into (14) by putting
B=(1-4"- A (15)

and our set of basis functions which yields 4 now leads to a
simple expression for an optimal relaxation factor. Very fast
(second order) convergence can be obtained with this method,
once the result is close enough to the final result. A disad-
vantage may be that it can take several steps before the New-
ton process starts to show second-order convergence. Bertram
[4] has suggested an iterative method which can be formu-
lated similar to (14) except for A, which is not taken to be
dM/dH. In his paper the method is described for a simple
MH-curve, going through the origin. In that case A(,.f) is re-
placed by x{:

P =MDl

but this idea can be extended for an arbitrary hysteresis curve
so that we have

) MO - MO
Xii Hi(k) - H}(o) .

Applying this formula for A(if.‘) has the advantage that in the
first stage of the iteration convergence is faster, but when
second-order convergence sets in Bertram’s method is con-
siderably slower. It goes without saying that an alternative
which combines both methods is promising, and therefore we
have studied the procedure derived from the Newton-Raphson
process (14) but taking 1}/§:‘) instead of A(,-f) where

M - gD

—————H_(k) TR fork>0

P =q S (16)
%Ig, fork=0.
(4

In doing so the process starts in the way proposed by Bertram
(second step) and then gradually transforms into the Newton
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PER STEP 15 EQuAL 1OR AL). CAsEs) FOR THE Cast MentIONED IN THE TeEXT
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Fig. 5. CPU-time versus bandwidth b for the case mentioned in the text
and hysteresis curve 11, iteration stopped when lHl-(k D Hi(k)]max <
107¢ « H,. (Maximum bandwidth is 2p + 1.)

process. This results in a general increase of the efficiency as
is demonstrated in Table I.

Another point of interest is the possibility to change the ma-
trix A'. A change of A’ is of no influence on the accuracy of
the final result (as long as there is convergence) but influences
the rate of convergence. We have studied the effect of a trans-
formation of A’ into a bandmatrix of bandwidth & (all elements
outside a band around the diagonal are set equal to zero).
Since each iteration step requires the solution of a set of linear
equations with matrix 1- A’ - A®), reduction of A in the
above sense may result in a gain in CPU-time which is larger
than the accompanying loss caused by an increasing number
of iteration steps. This is shown in Fig. 5. The CPU time is
determined by the strict convergence criterion, the complex
hysteresis model and the detailed intermediate printout we
have used in our computations (carried out on a DEC system
10 computer).

The Write and Read Process

It is assumed that the magnetization follows the driving
fields instantaneously, so that (1)~(3) describe the magnetiza-
tion properly in the dynamic case as well. A justification of
this assumption can be found in the literature [6]. A com-
plete write operation involves a number of iterations with the
lateral head/medium position shifted continually over discrete
intervals, for instance of length Ax. When the magnetization
is coming out of the range of the head field, the pattern must
be recalculated while removing the image to simulate the re-
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moved head situation. Reading can be simulated by first re-
calculating M in the presence of image fields from the read
head and then calculate the readback voltage utilizing the
reciprocity theorem.

The choice of the length of the shift intervals is important
in order to simulate the dynamic process correctly. Itistempt-
ing to choose this interval equal to Ax but this is sometimes
inaccurate, sometimes inefficient. We will analyze the situa-
tion by considering linear transitions (with transition time 7).

For small values of T, ie., for vT < 21H,/(dH ,/dx)\min, all
layer segments will experience a headfield that increases or de-
creases (depending on the polarity of the reversal) monoto-
nously during the reversal (the proof is in Appendix 11). If the
same holds for the total field A (and this can be proven, see Ap-
pendix II) then there is no need to carry out intermediate cal-
culations during the reversal, because the magnetization in any
segment remains on one minor loop, from the start to the end
of the reversal. So we can conclude that it is inefficient to main-
tain a shift interval Ax, when Ax <vT < 2|H,/(dH,/0x)|min-
In the case that vT > 2|H,/(0H,/0x)|min there are field ex-
trema, felt by the medium, during the transition. Generally,
|H,/(dH ,/0x) | min is larger than Ax so that shifting over Ax
may give good results. In that case it must be checked whether
the error is tolerable or not. When |H,/(0H,/9x)|min < Ax it
is necessary to reduce the shift intervals to values smaller than
Ax.

In the calculation of the magnetization patterns of Figs. 4,7,
and 8 the “small rise time criterion” mentioned above is ful-
filled, so computations are only carried out at the start (end)
of a headfield transition. However, in the interval without a
transition (interval 11-12 um) the shift must be much smaller
and is taken to be equal to the segment length (Ax =0.125
pm in our case). Figs. 4,7, and 8 display only a part of the
computed patterns (see caption to Fig. 4).

We have recalculated the patterns on removing the head
(¥m = ). In this process the mirror images disappear and we
have found that there are occasions when segments experience
a field extremum during this process so that a gradual (step-
wise) removal should be simulated rather than a removal in
one step. However, this effect is probably of minor importance
and in fact we have found no difference in the results whether,
for the patterns of Figs. 4,7,and 8, the removal was simulated
in one step or in several steps. The same remarks are valid for
the opposite case when the head returns to its original position.

IV. PHYSICAL APPROXIMATIONS
Hysteresis Model

For the hysteresis loop m(H, history) we use the model
devised by Fluitman and Uilhoorn [7] which can be seen as
an extended combination of the major loop model of Maziéres
and Fourquet [8] and the minor loop description of Nishimoto
[2]. The major loop in the first quadrant is expressed by the
formula '

M- M) H/H, - rMiM; - 1) =qM an

where M, is the saturation magnetization, r a parameter to
express the shear of the loop, and g a curvature parameter.
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Fig. 6. The first quadrant of (I): a square looking (#=10"4,4=0.1765),
(II): a Potter and Schmulian like (r=0.75, ¢= 0.064), and (III): a
sheared (r=1.178, ¢ = 10™%) hysteresis curve (parameters from eq.
(17)). (N.B. The M/Mgaxis is not drawn at the origin of the HIH
axis, but at H/H,=1!)
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Fig. 7. Magnetization calculated with (I) a square looking, (II) a Potter
and Schmulian like, and (III) a sheared hysteresis model at a bit
density of 106 bits/m. Other parameters are as mentioned in the
text.

Minor loops of any order are derived from this hyperbolic
major loop by a geometrical multiplication process, and they
reflect the characteristics of the major loop. The derivations
of the minor loops is analogous to the procedure of Nishimoto
et al. with the extension that the geometrical direction of the
multiplication is another free parameter to fit to actual hyster-
esisloops. The details are in [7]. The model is more accurate
than preceding models and flexible enough to represent, by
proper choice of the parameters, the more simple models of
Potter and Schmulian [9] or of Tjaden and Tercic [10], for
instance. So this model is very suitable for studying the effect
of accurate modeling.

We have performed the following test. A choice was made
of the parameters M, and H,, we put M, =085 M, and
then the remaining parameters in (17) were chosen in such
a way that we had a square-looking, a Potter-Schmulian-like,
and a sheared major loop (Fig. 6). Using these curves in the
calculations led to results which differ drastically among each
other (Fig. 7). So a proper choice is very important. But this
immediately draws the attention to the question whether the
“bulk” hysteresis curve, taken from samples cut from tapes
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Fig. 8. Magnetization calculated with (a) exact and (b) Karlquist head
field. Parameters as mentioned in the text (except 2g=3 um, Hp =
160 000A/m), hysteresis curve I

or disks, represents the effective hysteresis on a microscale.
We have misgivings concerning the accuracy of calculations,
even if the results look trustworthy, if the hysteresis model
does not closely conform to reality.

Head Fields

For the headfield the Karlquist approximation H,y (11) may
be used instead of H,, as long as 2g/y,, <4. But even for larger
values of 2g/y,, the errors are small, as is shown in Fig. 8 for
the extreme situation 2g/y,, = 10. Another point is whether
the experimental head field of the micro-ferrite heads in disk
drives do indeed have an appearance like H,. Reliable experi-
mental data are needed, but for the time being we have some
doubt (as in the case of the choice of hysteresis model) about
the appreciation of apparently good results of computations
relying on the Karlquist field.

V. CONCLUSIONS

We have studied the effect of a number of measures and
approximations in the calculation of one-dimensional mag-
netization patterns. A unified method in defining approxi-
mated M(x) functions has been introduced to treat the prob-
lem in a systematic way. Errors resulting from discretization
have been calculated by comparison with analytic results and
have been shown to be small, if the right precautions are
taken. The influence of the gap on the image field was found
to be negligible. Approximating arctan functions by their
arguments (in the Green function) may lead to unnecessarily
large errors. A procedure of iteration, derived from the
Newton-Raphson method, has been introduced which re-
sults in a reduction of CPU-time. The influence of the choice
of a hysteresis model was found to be important and the
attention has been drawn to the necessity of investigating
the hysteresis or the particle interaction model on a micro-
scale as well as the structure of head fields of practical record-
ing heads.

APPENDIX 1
Substitution of (2') and (1") leads to

H=A -M+H, (18)
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A-M is rewritten as A' M’ + A" - M" where A" is the (n * n)
matrix which results from A by omitting the columns -n - p
to -n-1and +n+ 1 to +n+p, and M’ is the (n # 1)-vector
derived from M by omitting the components M_,, -, to M,
and M,p,, t0 Myp,p. A" is derived from A4 by putting all
A;;=0 for |if, 1j|<n, and M" is derived from M by putting
M; =0 for |i| <n. One obtains

H=A""M'+A" -M"+H,. (19)

A" +M" is the contribution to Hy from the magnetic charges
outside the computation region, and this contribution remains
constant during the iteration. To solve (19) is to find the zero
of

G({{):H-Ha-A"M'—A"'M" (20)
or, with the help of (3'),
G(H)=H-H, - A' - m(H history) - A" -M". 1)

Let H* be the solution of G(H)=0, then, using Taylor’s
series, we have as a first approximation :

DG(H) - (H* - H)=-G(H). (22)
DG(H) is found by differentiating (21)
DGH)=1-4"-A (23)

with Ay =(dm/dH)|g,, Ay=0, i#j. From (22) and (23)
the iteration can be derived:

(A- A" A) @D - HOY = -GEHP), (24)

ArPENDIX II

It can be shown that, if AH, > 0(<0) for all i, then AH; >
0(<0) for all i. The proof relies on some properties, which
are valid for the matrix 4 in the case of the representation
with hat functions (and neglecting the influence of the head

gap):

n
A,-,i=A,~,j>0(i¢j),A,~,,~<0 and Z A,’!<0
j=-n
The last property is a consequence of the fact that the demag-
netizing field is zero when the magnetization is a constant
everywhere. Then Hy=A4 M=0 or Z;A4; ;M;=0 or, since
M; is constant, ZjA; ;=0. The matrix we use is a truncated
one with j from -n to n, so Zit_,4; ; <0 since only positive
terms are neglected in the approximation. From (19) it fol-
lows AH=A'-AM'+A" - AM" + AH,. Since AM" = 0 (out-
side computation region), it follows that AH=A"- AM'+ AH,
or with AM = AAH

(1-A'-A)AH= AH,. 25)

Suppose now that AHa,- > 0 for all i; then we must show that
AH;>0 (all {). Suppose that the latter is not true and that
there is a set of i-values (ip: p=1, -, m) with AHip <0.
From (25) we select equations with index i, for which the
general expression reads

-4 Ap nAH -t (l/Aip,,-p -

~AipnPn,nOHy = AHy,

Aip, i) Aip,ipAHip

(26)

ip, -n
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Fig. 9. (a) Head field H, (drawn) and —-H [/ (dHy/dx) (————- ) as a func-
tion of x. (b) Set of (x, t)-values for which there is an extremum at
Xy =% — vt (double drawn curves). Two situations are indicated. In
the case 7 = T there will be no particle in the layer experiencing a
ﬁeldéextremum during the transition (extremum may occur at edge
t=4%T,).

Since A;, ;> 0, for all #, all terms on the left side with column
index i # i, are negative since AH;>0, for i #1i,. When all
these terms are transported to the right side, the right side
only consists of positive terms which means that the remainder
on the left side must be positive as well. So we arrive at a set
of m inequalities which can be denoted as follows:

(YA 1, - Ag i) Ny, AH -0

“Aip, i, Miyi, A,
Since the sum of all terms are positive in each inequality the
same must be true for the total sum of all terms together.

Let us now consider the summation of all terms in another
order, namely, column for column. The first column of

terms in (27) gives
{Q/Ay 1, - Ai 1)~ iy, -~ Aig,i, Y A 1 AHGL . (28)

Since Zft_pd;;<0 it follows that E,’,"=1A,~p,,- <0 (again
only positive terms are left out). Together with AH; <0and
A; i, >0 this gives a negative result. The same is true for all
columns, of course, so that we now find that an addition of all
terms in (27) gives a negative result in contradiction with the
foregoing. So the supposition that there are AH; » <0 leads
to a contradiction and this proves that AH; > 0 for all i.

AppeNDix III
The extreme fields, experienced by a particle moving through
a time-dependent head field, are calculated by setting the time
derivative of H, = H (x)f(f) equal to zero under the condi-
tion that x,, is a constant. Here x,, is the particle coordinate
with respect to the medium (remember that x is the particle

c- (1A
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coordinate with respect to the head, so we have x,, =x - vt
with v the lateral head/medium velocity). From this it fol-
lows that

H, dx (29)

In the case of a linear transition with rise time T, (29) trans-
forms into

1 dH, 1 1 1

e~ _or<i<=

H, dx ot 2T 27

1 dH, 1

— ez, t1>—T. 30
H, dx Lk (0)

In Fig. 9(a), -H,/(dH,/dx) is given as a function of x. Since
(30) is valid, the ordinate equals vt for -5T <z < 3T, while
for |¢|> 1T, (1/H,) (dH,/dx)=0, which can only be true
for x=0. For x-values outside the indicated interval in Fig.
9(b) and x # 0, the extreme field values are reached neither
inside nor outside the transition but exactly at the edge
t= %T (boundary extreme). So with these elements the
set of (x, #)-values, for which an extremum appears, is com-
plete (double lines in Fig. 9(b)). It is immediately clear
that there will be no extremum during the transition as long
as vT/2 < |H,/(dH,/dx)|;min (T =T, in Fig. 9(b); extremum
may occur at edge ¢ = 4 T5). When vT/2 > |H,/(dH,/d%) | mia
there are extrema in the intervals indicated in the figure
(T'=T,). This case is completely worked out in [11].
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Magnetic Traction Force in an HGMS with an
Ordered Array of Wires: |

ITAMAR EISENSTEIN

Abstract—The magnetic traction force, experienced by a paramagnetic
spheze inside an infinite ordered array of wires that forms the matrix of
an HGMS, is calculated. A comparison is made, for a particular case,
with the forces (exact and approximate) due to a single wire and to two
wires, It is found that the single wire forces are reasonably good ap-
proximations for high applied fields and small filling factors provided
they are made to vanish midway between two adjacent wires.

I. INTRODUCTION

HE SEPARATING medium in a high-gradient magnetic

separator (HGMS) contains a ferromagnetic matrix that
consists of a large number of filamentary wires. Still, theo-
retical treatments of such separators rely on models that in-
volve one wire only. This is comprehensible in view of the
difficulty in treating the availing “chaotic” matrices such as
stainless steel wool. Recently, however, matrices that consist
of an ordered array of wires were considered [1]-[3] and
proved to be more promising than the disordered ones. Ordered
matrices are more easily accessible to a theoretical treatment
and, accordingly, it is the aim of this paper to treat the mag-
netostatics of such a matrix. Actually, we shall consider an
infinite ordered array of wires and shall calculate the magnetic
force experienced by a paramagnetic particle inside the array.
Such an infinite array is often a good approximation to an ac-
tual finite one and should point at qualitative differences be-
tween a many-wires-matrix and a single wire. The magnetic
force in the array involves an infinite lattice sum over the field
contributions of the individual wires. For an arbitrary position
of the paramagnetic particle this sum cannot be reduced to a
single-term expression and should be evaluated numerically.
The problem is that the convergence is very slow and the result
depends on the order of summation. The first difficulty is
treated by using a lattice sum technique that converts the
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original sum into a rapidly convergent one. The second diffi-
culty is treated by assigning a physical significance to the
order of surmmation. The resulting magnetic force is calcu-
lated numerically and compared with computations pertinent
to a single wire.

II. PRELIMINARIES

We consider an infinite array of parallel ferromagnetic wires
that lie along the z-axis. Each wire is infinitely long, it has a
circular cross section with a radius a, and it is saturated to a
magnetization M along the x axis by an external field Hy along
the same axis. The cross section of the array in the x -y
plane forms a simple rectangular lattice with lattice constants
a4, and a, along the x and y axes, respectively (Fig. 1).

Consider now a paramagnetic sphere with a radius b inside
the array (Fig. 2). Choose the z = 0 plane to pass through the
center of the sphere (which, due to the independence on z, in-
volves no loss in generality) with the origin of coordinates on
the axis of a wire. Let R be the distance of the center of the
sphere from the origin and @, the angle between the x axis
and the direction along which R is measured. Let H be the
total magnetic field in the array and U the corresponding mag-
netostatic potential:

H=-YU=-V({Up+ U)) Q)
where Uy is the magnetostatic potential due to Ho,
U = ‘Hox (2)

and U, is the magnetostatic potential due to the lattice mag-
netization. The magnetic energy of the paramagnetic sphere
is

E= _% (Xp - Xm) (VU)2 dv (3)

where X, and X, are the susceptibilities of the paramagnetic
sphere and the inter-wire medium, respectively, and the inte-

0018-9464/78/1100-1148500.75 © 1978 IEEE



