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Abstract

Spin-waves, the propagation of circular preccession of spins, have been offered as a way to replace electric
currents as information carriers. The overwhelming advantage being the lack of moving charges and Ohmic
losses. In this context, the search for an efficient method of detection of becomes crucial. Nitrogen vacancy
centers in diamond offer a highly sensitive and effective solution. These diamond lattice defects have quan-
tum and optical features allowing them to be used to quantify the surrounding magnetic field. This project is
composed of a theoretical study of spin waves followed by an experimental section where AC magnetometry
is tried out as a detection method. First the computations for the dispersion relation of spin waves in a ferro-
magnetic material where done. A simplified version assuming homogeneity in one direction is presented and
then an expansion considering a wave mode of the first order in the previously constant direction is attempted.
An analysis on the efficiency of spin wave generation outlines the conditions on the wavelength and the po-
larisation needed to correctly drive spin waves while being able to measure them using NV centers. Then the
experimental setup and steps of AC magnetometry are layed out. The results of a measurement are shown and
are in alignment with the theoretical predictions, proving this to be a valid method.
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1
Introduction

The discovery of spin waves has brought forth a new way to encrypt and transport information by encoding it
in the spin of an electron. This science called Spintronics [4] offers the advantage of absence of Ohmic losses
due to charge movement, which would be a great advantage in the quest to faster computing times. Spin waves
are the propagation of a precessional motion of spins through a magnetic insulator. The study of these waves
is called Magnonics, based on the name of the spin wave quanta magnons.

When developing this new way of information it is in our interest to learn to detect the spin waves as they
propagate through a material. In this project, NV magnetometry, is looked at as high sensitivity way to detect
spin waves using quantum sensors in diamond [12]. NV (for nitrogen vacancy) centers are defects that can
be etched into diamond that display quantum properties ( they have spin S=1) sensitive to the surrounding
magnetic field. The optical dependance of the quantum states allows us to use the photo-luminescence (or
PL) of the NV centers as a quantifier. They have been proven to be great magnetometers in a 0-100 MHz fre-
quency range and in many research fields. In this instance they are used to detect and quantify the magnetic
field generated by spin waves and subsequently the spin waves themselves. One of the complications of NV
sensing, in the 1-100 GHz frequency band of spin waves, in it’s simplest form is that it relies on tuning a strong
external magnetic, that can alter the properties of the waves, to a specific resonant frequency of the NV spin
(the ESR frequency). To remedy this an off-resonant detection method called difference-frequency generation
is used.

In our experiments spin waves are generated by induction using a microwave current sent through a gold
strip line laid on top of a YIG (Yttrium iron garnet) sample. This material is used as it has a low Gilbert damp-
ing factor allowing the spin waves to spread. A square diamond piece containing NV centers is placed on top
of the sample. A laser is used to stimulate the PL needed for the detection.

In this paper a first approach to understanding spin-waves is made by exploring the computations leading
to the dispersion relation associated with them in YIG and in Permalloy. A reproduction of the computations
made in previous papers is done and an attempt to complete them by adding a dimension to the problem is
presented. An analysis on how to efficiently generate spin waves in our sample is also done. The second part
of the project is an experimental observation of the spin waves and of the detection process associated with
them. The looked at technique is AC magnetometry, which is advantageous because it is time sensitive.
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2
Magnetometry with NV centers in diamond

The nitrogen-vacancy colour center is a point defect in the diamond crystal lattice. This defect is magnetic
and shows quantum behaviour at room temperature. It has electronic spin which can controlled and readout
and is also dependant on the magnetic conditions. In this chapter we discuss the nature and properties of the
NV centers and how they can be used as powerful magnetometers.

2.1. NV centers in diamonds
Electronic structure
The NV center consists of a nitrogen atom and a vacancy both replacing carbon atoms as in figure 2.1. There
are two versions of this defect denoted NV0 and NV− respectively with 5 and 6 electrons. The latter is generally
used for magnetometry and quantum measurements. In this version 2 electrons are from the nitrogen atom,
3 are lose bonds from the missing carbon atom and the last atom captured from the environment [12]. The
neutrally charged state is not magneto-optically active and therefore rarely used in NV experiments. In the rest
of this report, the term NV center will refer to the negatively charged state. Because of the lattice symmetry
there are 4 possible orientations of the NV centers that are differ from each-other by an angle of 71.

Figure 2.1: Lattice structure of NV centers within the diamond lattice. One green carbon atom is replaced with the purple vacancy an
one with a nitrogen atom (yellow). There are 4 possible orientations for the NV centers within the crystal lattice.Image from [1]

Spin dependent optical properties
In 2.2 the energy diagram of an NV center is depicted. NV centers have three energy levels; a triplet ground
state, an excited triplet state and an intermediate singlet state. The triplet states are further split into three spin
levels (ms =±1, ms = 0) because they have spin S = 1. The energy difference (or so called "zero-field splitting"
)between these states is D = 2.87 GHz for the ground state and Dex = 1.42 GHz for the excited state. Transitions
between the states can be driven optically using a green laser exciting the spin state from the ground state
to the excited state. Relaxation can occur either radiatively while emitting red photons or non radiatevely
via the intermediary singlet state from which subsequent decay happens mostly into the ms = 0 state. The
ms = 0 decays non-radiatively less often than the ms = ±1 states. The net effect of these properties upon
optical pumping is that the system gets initialized in the ms = 0 state and that the photo luminescence is
much brighter when in the ms = 0 state.
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Figure 2.2: Energy levels of the NV center in diamond. Optical excitation from the ground state can happen by use of a green laser.
Decay can successively happen either radiatively (emitting red light) or non radiatively (no red light emitted) passing by the singlet state.

Relaxation from the ms =±1 states is more likely to happen through the singlet state (stronger non radiative decay). When an external
magnetic field B is applied the degeneracy of the ms =±1 is lifted by a 2γB energy difference. D and De x are the zero-field splittings for

the ground and excited energy levels. THe green arrows represent the spin-conserving non-resonant optical excitation with a laser with a
wavelength of 532nm. The red arrows represent decay via the spin conserving optical transition, here red photons with a 600−800nm

wavelength are emitted.

2.2. NV magnetometry
NV centers are sensitive to the surrounding magnetic fields through their ESR frequency which is dependent
on any present static field. An oscillating field at the ESR frequency causes optically detectable transitions
of the NV spins. These features form the base of Nv magnetometry. In this chapter we explain the magnetic
properties of NV centers.

2.2.1. Electron spin resonance
The simplest NV magnetometry technique is based on the transitions between ms = 0 and ms = ±1 states
that happen at certain frequencies. These frequencies are called Electron Spin Resonance (ESR) frequencies.
When an oscillating magnetic field at the resonant frequency is applied to the NV centers that where optically
initialized into the ms = 0 state, ESR transitions drive the spins into the ms =±1 states. This causes the detected
photo luminescence to dip significantly. The ESR frequency is dependent on the presence of a static magnetic
field, this feature is used the detect the applied oscillating field.

2.2.2. NV centers in magnetic fields
The magnetic sensing methods are based on the degeneracy lift of the ms = ±1 states that happens when
a (Static) magnetic field is applied as depicted in 2.2, this is the Zeeman effect. The ESR frequency of an NV
center is dependent on the presence of a magnetic field. When there is a magnetic field the Zeeman effect splits
the ms =±1 states resulting in theω± resonances as shown in figure 2.3. To understand how the magnetic field
affects the resonance frequencies one must look at the NV center Hamiltonian [2]:

H = DS2
z +γB ·S (2.1)

for an NV center with it’s axis along the z direction direction, γ being the electronic gyromagnetic ratio, and
S = [Sx ,Sy ,Sz ] the Paul Spin operators for a spin-1 system and B a static external magnetic field perfectly
aligned with the considered NV center. Here we neglect strains and electric fields. The Hamiltonian in matrix
form is then

H =

 D +γBz
γp
2

(Bx − i By ) 0
γp
2

(Bx + i By ) 0 γp
2

(Bx − i By )

0 γp
2

(Bx + i By ) D −γBz

 (2.2)
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notice that the magnetic field causes the shift in the eigenfrequencies of the Hamiltonian which are ω± =
D ±γBz . As said before this is only the case for NV centers aligned with the magnetic field, other families
experience a transverse field. When a magnetic field is present there are two ESR dips which are separated by
a 2γB frequency difference, measuring this difference therefore allows a qualitative estimate of the magnetic
field. In figure 2.3 an ESR measurement plot is shown. Two distinct dips in photo-luminescence are apparent
and match with the predicted ESR frequencies. ‘
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Figure 2.3: ESR frequencies predicted and measured (a) ESR frequencies versus the external static magnetic field when the field is
aligned with the magnetic field (blue lines) and for the three other families (red lines) which are degenerate and experience the same

field. Here the energy difference due to Zeeman splitting is apparent. The black line marks the B = 376G point on the horizontal axis to
compare the theoretical ESR frequencies with the ones measured in (b). (b) ESR measurement done with presence of a static magnetic

field of 376 G. On the x-axis the frequency of the applied microwave field which is swept across frequencies around the resonant
frequency. On the y-axis we have the counts per seconds, or the measured red photo-luminescence coming from the NV centers in the
observed sample. The data is fitted to determine the frequency of the ESR dips. We observe two dips, one at 1.8160(2) GHz and one at

3.9273(2) GHz which match with f and f+ as predicted in figure (a).

2.2.3. Measuring Rabo oscillations to quantify oscillating magnetic fields
In order to quantify the oscillating magnetic field generated by the spin waves so called ’Rabi’ oscillations are
measured. When a resonant magnetic field is applied to the NV centers, it’s state coherently oscillates between
the ms = 0 and the ms =±1 states (depending on the chirality of the magnetic field) with the frequency given
by [2]:

ΩR = γB ACp
2

(2.3)

assuming the oscillating magnetic field is B AC . This process is schematized in figure 2.4. To ensure there is
resonance an ESR measurement is always done first. In order to measure Rabi oscillations a pulsed control
scheme is applied: the spins are first initialized in the ms = 0 state with a laser pulse, microwave of increasing
duration rotate the Nv spin between the ms = 0 and the ms = ±1 states. The Rabi frequency and thus the
magnitude of the oscillating magnetic field can be deduced from the period of the luminescence oscillations.
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Figure 2.4: Schematizations of electron spin in a magnetic field. (a) In the laboratory frame the spin precesses around the static
magnetic field it is subject to. (b) When an oscillating magnetic field is applied, the spin precesses around the vector sum of the static

magnetic field and the oscillating magnetic field. (c) In a reference frame rotating at the same frequency as the oscillating field, the spin
precesses around the transverse field.Figures from [2].

When the Rabi oscillations frequency is known, the length of a π pulse which would prepare the spin in the
ms = 1 or ms = −1 state is accessible. Choosing the pulse length corresponding to the first minimum in the
luminescence oscillations.

2.2.4. A non-linear mixing method to detect broader frequency bands
A big limitation of the previously explained NV measurement technique is that it relies on tuning the external
magnetic field to select the needed ESR frequency to detect the external magnetic field we are trying to detect.
This limits the range of detectable frequencies. To broaden this range would require big external magnetic
fields which are not realisable experimentally. A solution used to remedy this implies the detection of off res-
onant frequencies. In the measurements described further in the paper the Difference-frequency generation
method is used. Here the target signal frequency fs is locally converted to the NV spin resonance frequency by
mixing with a ’pump’ frequency fp and therefore becomes detectable. When the difference frequency

∣∣ fs − fp
∣∣

becomes equal to the NV ESR frequency the transverse magnetization experiences a beating and a dip in pho-
toluminence is perceivable making fs an accessible quantity.

2.2.5. AC magnetometry
AC magnetometry [5] is a time sensitive measurement method for the oscillating magnetic field generated
by the spin waves. It uses a series of well timed π and π/2 pulses creating a phase difference to the situa-
tion where there is no oscillating field which translates into a population difference and therefore to a photo-
luminescence difference. This phase difference is proportional to the amplitude of the magnetic field we are
trying to measure by the relation:

∆θ∝ γB AC T (2.4)

where T is the total evolution time of the used measurement sequence. The measurement technique is illus-
trated in figure using a Bloch sphere : the spin is initialized in the ms = 0 state by a laser pulse which is along
the z-axis on the Bloch sphere. A π/2 pulse is applied getting the spin into the x y plane of the Bloch sphere
where it oscillates (therefore it’s phase oscillates) if an oscillating magnetic field is present. The phase differ-
ence is maximized by applying a series of π pulses as the spin is at one of the extremities of it’s oscillations
(when at a half period). A final π/2 pulse gets the spin out of the x y plane ready to be readout. Because of the
dephasing not as many spins will be in the ms = 0 state causing a contrast in PL. The measurements are made
by variating the time τ between the π pulses, when this matches a half period of the oscillating field we should
observe a maximal contrast in photoluminescence.
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Figure 2.5: Spin manipulations made during an AC magnetometry measurment. In the left most image the spin in initialized and move
to the x y plane by a π/2 pulse. In the center figure the spin starts dephasing because of the oscillating magnetic field, the averaged phase
difference is nul. It is in the ’sensing’ phase that a series of π pulses are applied. On the left the spin has been flipped back to the y z plane

before the readout, there is now a population difference. Image taken from [5]
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3
Spin waves theory

Spin waves are a propagating disturbance in magnetic materials. The spins in the material are aligned along
the magnetic field, this is their equilibrium position. A disturbance can appear or be driven by an oscillating
magnetic field, the spin will precess around it’s equilibrium position. Since the neighbouring spins are coupled
by the exchange and dipolar interactions this excitation can propagate by exchanging torque with it’s neigh-
bour spins. The frequencies of these waves range from GHz to THz. A schematisation of this wave is shown
in figure 3.1. In this section the dispersion relation the spin waves propagating through thin ferromagnetic
films (either YIG or Permalloy) is derived. The situation is analyzed were the external bias field is taken in the
z direction such that B0 = B0 ẑ . In this report the eventual out of plane components of the magnetic field are
neglected, since the effect of the out of plane components can be neglected and we take the on plane pro-
jection of B0 as the field. We will also look at how the spin waves in the sample can be efficiently generated
considering the setup that is used in the measurements.

3.1. Magnetization dynamics as described by the Landau-Lifshitz-Gilbert
equation

In this section an analysis of the dynamics of the magnetization within a thin Ytrium iron garnet film (or YIG)
sample is done. YIG is often used in spin-wave research because of it’s low gilbert damping αY IG = 2.7(5)×
10−5 [2]. The situation is sketched in figure 3.2; the sample lays in the lab reference frame within a static
magnetic field B0. We study the magnetization denoted M as function of time and space. k (for an overview of
the characters and definitions see the annex) is the wave vector and it makes angle φ with the regards to the
equilibrium magnetization. Which is described by the Landau-Lifshitz-Gilbert (LLG) equation as defined by

Figure 3.1: Visualisation of a spin wave adapted from [11]. The neighbouring spins’s magnetization precess around their equilibirum
position meq each with slight phase difference resulting in a wave with wavelength λ.
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Figure 3.2: Geometry of the sample. A thin film of the sample in the y z plane with an external magnetic field B0 applied along the z-axis.
The spin waves propagate through the sample in the k direction with an angle φ with regards to the magnetization M. The unit vectors

are defined as ex,ey,ez.

Gilbert [6]:
∂M

∂t
=−γM× (Beff +BAC)− αG

Ms
Ṁ×M, (3.1)

We will look at the unit moment m = M
Ms

∂m

∂t
=−γm× (Beff +BAC)−αG ṁ×m, (3.2)

where Beff is the effective magnetic field which is elaborated further and BAC is the drive field used to generate

Figure 3.3: Magnetization dynamics of the spins within a ferromagnetic material with Gilbert dampingα in an effective field Beff. This

schematisation shows the action of the two terms in the LLG equation on the variation of the magnetization. The term −αG
dM
dt ×M

accounts for the damping of the magnetization towards the effective field and −M ×Beff creates the precession movement of the
magnetization. Image taken from [2]

the spin waves in the sample. The constants are the electron gyromagnetic ratio γ ratio and αG , the Gilbert
damping. Ms is the saturation magnetization which is dependant on the material. As shown in figure 3.3
the first term in the equation describes the precession of the magnetization around it’s equilibrium position
while the second term accounts for the damping of the precession towards the equilibrium position. The
effective magnetic field is resulting from all the magnetic interactions taking place within the sample which
are described by the magnetic free energy density F ;

F =−Ms m ·
(

B0 + BD

2

)
+ D

2

∑
α,β=x,y,z

(
∂mα

∂β

)2

. (3.3)

This equation gives the following effective magnetic field

Beff = B0 +BD +Bex (3.4)

The contribution of an anisotropy energy is in this report neglected considering the materials we are using in
the experiments (YIG and permalloy) are "soft magnetic materials", the anisotropy is minimized within these
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samples and it is a fair assumption to neglect the effects in our computations. The contributions of the other
interactions coming forth in the free density energy are further elaborated in the following sections.

Zeeman energy
The static magnetic bias field B0 causes a Zeeman effect which results in the following energy:

FZ =−Ms m ·B0 (3.5)

with Ms the saturation magnetization of the studied sample. We define ω0 = B0γ to simplify the following
computations.

Demagnetizing field
The demagnetizing field can be interpreted as the way the spins reacts to the dipolar field caused by surround-
ing spins. The magnetic field generated by a magnetization Ms m(r) is given by Ref. [8]

BD(r) =µ0Ms

∫
Γ

(
r− r′

)
m(r′)dr′ (3.6)

Where Γ(r) is the dipolar tensor with derivatives of the "Coulomb kernel" as components.

Γα,β(r,r′) = ∂2

∂α∂β′
1

4π |r− r′| , with α,β= x, y, z (3.7)

The 2D Fourrier transform1 of the magnetic field is:

BD(x,k) =µ0Ms

∫
Γ(k, x −x ′)m(k, x ′)dx ′ (3.8)

where k = (ky ,kz ) as shown in figure 3.2. Assuming the magnetization is homogeneous through the thickness
of the sample we define the following

m(x, y, z) =
{

m(y, z) for −h < x < 0

0 elsewhere
(3.9)

And thus m(k) is the Fourrier transform of m(y, z) within the sample. Inserting this notation into equation 3.8
gives when averaged over the film thickness

BD(k) = µ0Ms

h

∫ 0

−h

∫ 0

−h
Γ(k, x −x ′)dxdx ′m(k). (3.10)

Using the identity
1

|r− r′| =
1

2π

∫
e−k|x−x′|

k
e i k·(ρ−ρ′)d2k (3.11)

with ρ = xx̂+ y ŷ and m(k) is the 2D Fourrier transform of m(y, z) the components of the dipolar tensor in
Fourrier space can be derived giving:

Γα,β(x,ky ,kz ) = 1

2


−e−k|x−x′|k −2δ(x −x ′) for α=β= x,

−e−k|x−x′| kαkβ
k for α,β= y, z,

−i kβe−k|x−x′|sign(x −x ′) for α= x and β= y, z
−i kαe−k|x−x′|sign(x −x ′) for α= y, z and β= x

(3.12)

which when inserted into 3.10 gives the final formula

BD(k) =µ0Ms


f −1 0 0

0 − k2
y

k2 f − ky kz

k2 f

0 − ky kz

k2 f − k2
z

k2 f

m(k) =µ0Ms

 f −1 0 0
0 −sin2φ f −sinφcosφ f
0 −sinφcosφ f −cos2φ f

m(k) (3.13)

where f = 1− 1−e−kh

kh with h the thickness of the film andφ is as defined in figure 3.2 the in plane angle between
the wave vector and the magnetization, we also define ωD = γµ0Ms .

1Here the 2D Fourrier transform is defined as F
{

f (k)
} = ∫ ∞

−∞
∫ ∞
−∞ f (r)e−i ky y−i kz z d yd z with inverse transform f (r) =

1
4π2

∫ ∞
−∞

∫ ∞
−∞F

{
f (k)

}
ei ky y+i kz z dky dkz . In this paper we use the notation f (k) as the 2D Fourrier transform in the sample plane.
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Exchange energy
The exchange energy for an isotropic sample (like Yttrium-Iron-Garnet or Permalloy) is given by,

Fex(r) = D

2

∑
α,β=x,y,z

(
∂mα

∂β

)2

(3.14)

where D is the spin stiffness [3]. The 2D Fourrier transform of this energy over the y z plane is

Fex(x,k) =−D

2
k2

(
m2

y (x,k)+m2
z (x,k)

)
+ D

2

∑
α=x,y,z

(
∂mα(x,k)

∂x

)2

(3.15)

In the following computations we assume a constant magnetization through the film thickness (in the x di-
rection). This is however not necessarily true as spin wave modes can appear in the x direction. This will be
explained later in the report. For now, with constant magnetisation in the x direction, the exchange energy
therefore contributes an effective field which is zero in the x direction and for the y an z coordinates is:

Bex,α(k) =− 1

Ms

∂F

∂mα
=−ωex

γ
k2mα(k), with α= y, z (3.16)

Bex,x = 0 (3.17)

Where ωex = γD/M .

3.1.1. Dispersion relation and susceptibility
We assume a weak response of the spins in the x y plane, thus we can make the following approximation:

mz =
√

1−m2
x −m2

y ≈ 1. Linearizing the LLG equation 3.2 and taking the Fourrier transform over time2:

−iωmx =−γ(my Bz −By mz )+ iωαmy

−iωmy =−γ(Bx mz −mx Bz )− iωαmx
(3.18)

Where B = Be f f +BAC taking into account the contributions of the magnetic fields within the samples gives

γBx =ωD
(

f −1
)

mx −ωexk2mx +γB AC ,x

γBy =−ωD sinφ2 f my −ωexk2my +γB AC ,y

γBz =ω0

(3.19)

where higher order terms of the magnetization (like m2
y ) are neglected. Defining

ω1 =ω0 +ωexk2

ω2 =ω1 +ωD
(
1− f

)
ω3 =ω1 +ωD f sin2φ

(3.20)

we get the linearized equation in matrix form:(
ω2 − iαω iω

−iω ω3 − iαω

)(
mx

my

)
= γ

(
B AC ,x

B AC ,y

)
(3.21)

Inverting this equation get us the form m = χBAC which describes how the system reacts to the applied mi-
crowave drive field B AC . χ is the susceptibility and is a Lorentzian function of ω which peaks around its reso-
nance frequency and the width of the peak is dictated by the Gilbert damping factor.

χ= γ

(ω2 − iαω) (ω3 − iαω)−ω2

(
ω3 − iαω −iω

iω ω2 − iαω

)
(3.22)

Looking for the resonant frequencies by finding the singularities of the susceptibility:

(ω2 − iαω) (ω3 − iαω)−ω2 = 0 (3.23)

2In this case we go from time to frequency domain with F
{

f (t)
}= ∫ ∞

−∞ f (t)e−iωt d t with inverse transform f (r) = 1
2π

∫ ∞
−∞F

{
f (t)

}
eiωt dω

10



finding the complex solutions for ω

ω=−iα
ω2 +ω3

2
(
1+α2

) +
√√√√ ω2ω3

1+α2 − α2(ω2 +ω3)2

4
(
1+α2

)2 (3.24)

the spin-wave dispersion appears. For small Gilbert damping we can neglect α2 terms

ωsw ≈p
ω2ω3 (3.25)

and the spin wave line-width is:

∆ωsw ≈ α (ω2 +ω3)

2
(3.26)

Some cases are interesting to highlight and relate to the dispersion relation:

• When the the spin waves propagates in direction transverse to the magnetization (or φ = π/2), we talk
about the Damon-Eshbach (or DE) regime. The DE dispersion relation is

ωsw =
√(

ω1 + f ωD
)(
ω1 + (1− f )ωD

)
(3.27)

• When the the spin waves propagates in the magnetization direction (orφ= 0), we talk about the Backward-
Volume (or BV) regime because of the negative group velocity in this case. The BV dispersion relation
is

ωsw =
√
ω1

(
ω1 + (1− f )ωD

)
(3.28)

• The situation where k = 0 is the ferromagnetic resonance mode (FMR).

ωsw =
√
ω0 (ω0 +ωD ) (3.29)

The DE and BV dispersion relations are plotted in 3.4. The spin waves considered in the experiments per-
formed in the lab are in the DE regime.

Figure 3.4: Calculated spin wave dispersion for YIG film. The thickness was taken to be 235nm with saturation magnetization
Ms = 1.42×105 A/m. On the left the Damon-Eshbach spin waves propagating in the y direction and on the right the Backwards-Volume

spin waves propagating in the z direction. Notice that the FMR point gets higher with higher magnetic field.
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3.2. Dispersion relation with transversal modes
Spin waves mostly exist in the sample plane but at some frequencies will appear in the thickness direction
of the film due to scattering into the first transversal spin mode. This effect has been observed during NV
measurements of spin waves in the lab as can be seen in figure 3.5, where a decrease in photo luminescence
on the ESR axis is seen. In this chapter a method to include the spin wave modes appearing in the thickness
direction of the YIG sample is presented. It is an attempt to simplify the calculations made in [10] using a
similar method as in the previous chapter. First analyzing the situation with ’pinned’ surface spins and then
’unpinned’ surface spins.

Figure 3.5: Normalized photo luminescence of a diamond film superposed on a YIG sample as a function of the microwave (thus spin
wave frequency) and the static magnetic field. The theoretical ESR is given by the dotted line and the FMR is given by the black line. The

appearance of the first transversal mode is marked by the thinner black line.

3.2.1. Pinned surface spins
We first look at the situation where the surface spins are pinned, this is the term used to describe the boundary
conditions of the magnetization on the upper and lower edges of the sample in [10]. In the pinned case they
are mx=0,−h = 0 or zero magnetization at the edges.

Exchange energy
In the same way as previously the 2D Fourrier transform of the Free Exchange energy over the y z plane is

Fex (x,k) =−D

2
k2

(
m2

y (k, x)+m2
z (k, x)

)
+ D

2

∑
α=x,y,z

(
∂mα (x,k)

∂x

)2

(3.30)

Now assuming we have a first order mode for the magnetization in the x direction (direction of the thickness)
of the sample and as said before pinned edges:

m(x, y, z) =
{

m(y, z)sin
(
πx
h

)
for −h < x < 0

0 elsewhere
(3.31)

where m(y, z) = mx (y, z)x̂+my (y, z)ŷ+mz (y, z)ẑ. Taking the 2D Fourrier transform on the y z plane:

m (x,k) =
{

m(k)sin
(
πx
h

)
for −h < x < 0

0 elsewhere
(3.32)
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with now m(k) = mx (k)x̂+my (k)ŷ+mz (k)ẑ, mx (k) being the 2D Fourrier transform of mx (y, z). Inserting this
into the Free energy equation we have the following:

Fex (x,k) =−D

2
k2 sin2

(πx

h

)(
m2

y (k)+m2
z (k)

)
+ Dπ2

2h2 cos2
(πx

h

)(
m2

x (k)+m2
y (k)+m2

z (k)
)

(3.33)

We average the exchange energy over the thickness of the sample

Fex(k) = 1

h

∫ 0

−h
Fex (x,k)dx = −D

4
k2

(
m2

y (k)+m2
z (k)

)
+ Dπ2

4h2

(
m2

x (k)+m2
y (k)+m2

z (k)
)

(3.34)

using the definition

Bex,α(k) =− 1

Ms

∂F

∂mα
, with α= x, y, z (3.35)

the exchange field is then

Bex,α =
−ωexπ

2

2γh2 mα (k) if α= x

−ωex
γ

(
π2

2h2 − k2

2

)
mα (k) if α= y, z

(3.36)

Demagnetizing field
For the demagnetizing field we use the same steps as in the previous section but using assumption 3.31. Equa-
tion 3.8 gives

BD (x,k) =µ0Ms

∫
Γ

(
x −x ′,k

)
m

(
x ′,k

)
dx ′ (3.37)

Inserting the magnetization from 5.1 into 3.64 we get

BD (x,k) =µ0Ms

∫ 0

−h
Γ

(
x −x ′,k

)
sin(

πx ′

h
)dx ′m(k) (3.38)

We define the following functions in order to simplify the coming computations

ϵ(x,k) =
∫ 0

−h
e−k|x−x′| sin(

πx ′

h
)dx ′ = h

k2h2 +π2

(
2kh sin

(πx

h

)
−πe−k(x+h) −πekx

)
(3.39)

δ(x,k) =
∫ 0

−h
e−k|x−x′|sign(x −x ′)sin(

πx ′

h
)dx ′ = h

k2h2 +π2

(
−2πcos

(πx

h

)
−πe−k(x+h) +πekx

)
. (3.40)

we simplify the matrix for the demagnetizing field

BD (x,k) =µ0Ms

∫ 0

−h
Γ

(
x −x ′,k

)
sin

πx ′

h
dx ′m(k) = (3.41)

BD (x,k) = µ0Ms

2


−kϵ(x,k)−2sin(πx

h ) −i kyδ(x,k) −i kzδ(x,k)

−i kyδ(x,k) −ϵ(x,k)
k2

y

k −ϵ(x,k)
ky kz

k

−i kzδ(x,k) −ϵ(x,k)
ky kz

k −ϵ(x,k)
k2

z
k

m(k). (3.42)

Computing the first mode of the demagnetizing field:

BD(k) = µ0Ms

h

∫ 0

−h

∫ 0

−h
Γ

(
x −x ′,k

)
sin(

πx ′

h
)sin

(πx

h

)
dx ′dxm(k) (3.43)

Defining the function

σ(k) = 1

h

∫ 0

−h
ϵ(x,k)sin

(πx

h

)
dx = kh2

k2h2 +π2 + 2π2h(
k2h2 +π2

)2

(
e−hk +1

)
(3.44)

and

µ(k) = 1

h

∫ 0

−h
δ(x,k)sin

(πx

h

)
dx = 2hπ2(

k2h2 +π2
)2

(
e−hk +1

)
. (3.45)

The final equation for the demagnetizaing field is

BD(k) = µ0Ms

2


−kσ(k)−1 −i kyµ(k) −i kzµ(k)

−i kyµ(k) −σ(k)
k2

y

k −σ(k)
ky kz

k

−i kzµ(k) −σ(k)
ky kz

k −σ(k)
k2

z
k

m(k). (3.46)
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Dispersion relation
Using the same method as before the new susceptibility matrix can be computed. Still considering mz =√

1−m2
x −m2

y ∼ 1 we insert the new effective magnetic field into the LLG equation obtaining

−iωmx =−γ(my Bz −By mz )+ iωαmy

−iωmy =−γ(Bx mz −mx Bz )− iωαmx
(3.47)

where the notations are

γBx =−ωexπ
2

2h2 mx − ωD

2

(
(kσ(k)+1)mx + i kyµ(k)my + i kzµ(k)mz

)+γB AC ,x

γBy =−ωex

(
π2

2h2 − k2

2

)
my − ωD

2

(
i kyµ(k)mx +σ(k)

k2
y

k
my +σ(k)

ky kz

k
mz

)
+γB AC ,y

γBz =ω0 −ωex

(
π2

2h2 − k2

2

)
mz − ωD

2

(
i kzµ(k)mx +σ(k)

ky kz

k
my +σ(k)

k2
z

k
mz

)
.

(3.48)

In the linear regime we neglect higher order terms like m2
x ,m2

y ,m2
z and my mx yielding the following equations

−iωmx =−ω0my + ωD

2

(
σ(k)

k2
z

k
my − i kyµ(k)mx −σ(k)

k2
y

k
my

)
+γB AC ,y + iωαmy

−iωmy =ω0mx + ωD

2

(
(kσ(k)+1)mx + i kyµ(k)my −σ(k)

k2
z

k
mx

)
+ ωexk2

2
mx −γB AC ,x − iωαmx

(3.49)

which can be rewritten for easier transcription to a matrix

mx

(
−iω+ i

ωD

2
kyµ(k)

)
+my

(
ω0 − ωD

2

(
σ(k)

k2
z

k
−σ(k)

k2
y

k

)
− iωα

)
= γB AC ,y

my

(
−iω− i

ωD

2
kyµ(k)

)
+mx

(
−ω0 − ωD

2

(
kσ(k)+1−σ(k)

k2
z

k

)
− ωexk2

2
+ iωα

)
=−γB AC ,x

(3.50)

Defining the following

ω′
1 =

ωD

2
kyµ(k)

ω′
2 =ω0 + ωexk2

2
+ ωD

2

(
kσ(k)+1−σ(k)

k2
z

k

)
ω′

3 =ω0 − ωD

2

(
σ(k)

k2
z

k
−σ(k)

k2
y

k

) (3.51)

we get the same form as in chapter 3.1 from which we want to exclude the susceptibility m =χBAC:(
ω′

2 − iαω i (ω′
1 +ω)

i (ω′
1 −ω) ω′

3 − iαω

)(
mx

my

)
= γ

(
B AC ,x

B AC ,y

)
(3.52)

.

χ′ = γ(
ω′

2 − iαω
)(
ω′

3 − iαω
)+ω′2

1 −ω2

(
ω′

3 − iαω −i (ω+ω′
1)

i (ω−ω′
1) ω′

2 −αω
)

(3.53)

Solving for the singularities:

ω=−iα
(ω2 +ω3)

2
(
1+α2

) ±
√√√√ω2ω3 +ω′2

1

1+α2 − α2(ω2 +ω3)2

4
(
1+α2

)2 (3.54)

In Yig the damping is very small so we assume α<< 1:

ω′
sw ≈

√
ω′

2ω
′
3 +ω′2

1 (3.55)

The dispersion relation in the DE regime is plotted in 3.6.
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3.2.2. Unpinned spins on the edges
In this section we look at the situation where the edges are unpinned; with the boundary conditions ∂m

∂x x=0,−h =
0. The 2D Fourrier transform of the Free Exchange energy over the y z plane with k = ky ŷ+kz ẑ and k =

√
k2

y +k2
z

is

Fex (x,k) =−D

2
k2

(
m2

y (k, x)+m2
z (k, x)

)
+ D

2

∑
α=x,y,z

(
∂mα (x,k)

∂x

)2

(3.56)

Now assuming we have a first order mode for the magnetization in the x direction (direction of the thick-
ness) of the sample with unpinned edges, that has the following dependence on x:

m(x, y, z) =
{

m(y, z)cos(κn x) for −h < x < 0

0 elsewhere
(3.57)

where κn = πn
h and m(y, z) = mx (y, z)x̂+my (y, z)ŷ+mz (y, z)ẑ. Taking the 2D Fourrier transform on the y z

plane:

m (x,k) =
{

m(k)cos(κn x) for −h < x < 0

0 elsewhere
(3.58)

with now m(k) = mx (k)x̂+my (k)ŷ+mz (k)ẑ. Inserting this into the Free energy equation we have the following:

Fex (x,k) =−D

2
k2 cos2 (κn x)

(
m2

y (k)+m2
z (k)

)
+ Dκn

2h2 sin2 (κn x)
(
m2

x (k)+m2
y (k)+m2

z (k)
)

(3.59)

We average the exchange energy over the thickness of the sample

Fex(k) = 1

h

∫ 0

−h
Fex (x,k)dx = −D

2
k2

(
m2

y (k)+m2
z (k)

)
+ Dκ2

n

4

(
m2

x (k)+m2
y (k)+m2

z (k)
)

(3.60)

using the definition

Bex,α(k) =− 1

Ms

∂F

∂mα
, with α= x, y, z (3.61)

the exchange field is then

Bex,α =
−ωexπ

2

2γh2 mα (k) if α= x

−ωex
γ

(
π2

2h2 − k2

2

)
mα (k) if α= y, z

(3.62)

Demagnetizing field
Equation 3.8 gives

BD (x,k) =µ0Ms

∫
Γ

(
x −x ′,k

)
m

(
x ′,k

)
dx ′ (3.63)

Inserting the magnetization from 5.1 into 3.64 we get

BD (x,k) =µ0Ms

∫ 0

−h
Γ

(
x −x ′,k

)
cos(κn x)dx ′m(k) (3.64)

Using these notations

ϵ(x,k) =
∫ 0

−h
e−k|x−x′| cos(

πx ′

h
)dx ′ = h2k

k2h2 +π2

(
2cos

(πx

h

)
+e−k(x+h) −ekx

)
(3.65)

δ(x,k) =
∫ 0

−h
e−k|x−x′|sign(x −x ′)cos(

πx ′

h
)dx ′ = 1

k2h2 +π2

(
2hπsin

(πx

h

)
+kh2e−k(x+h) +kh2ekx

)
(3.66)

we simplify the matrix for the demagnetizing field

BD (x,k) =µ0Ms

∫ 0

−h
Γ

(
x −x ′,k

)
cos

πx ′

h
dx ′m(k) = (3.67)

BD (x,k) = µ0Ms

2


−kϵ(x,k)−2cos(πx

h ) −i kyδ(x,k) −i kzδ(x,k)

−i kyδ(x,k) −ϵ(x,k)
k2

y

k −ϵ(x,k)
ky kz

k

−i kzδ(x,k) −ϵ(x,k)
ky kz

k −ϵ(x,k)
k2

z
k

m(k). (3.68)
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Computing the first mode of the demagnetizing field:

BD(k) = µ0Ms

h

∫ 0

−h

∫ 0

−h
Γ

(
x −x ′,k

)
cos(

πx ′

h
)dx ′ cos

(πx

h

)
dxm(k) (3.69)

we find

σ(k) = 1

h

∫ 0

−h
ϵ(x,k)cos

(πx

h

)
dx = kh2

k2h2 +π2 − 2h2ke−hk(
k2h2 +π2

)2

(
ehk +1

)
(3.70)

and

µ(k) = 1

h

∫ 0

−h
δ(x,k)cos

(πx

h

)
dx = 0. (3.71)

Thus we have an equation for the demagnetizing field

BD(k) = µ0Ms

2


−kσ(k)−1 0 0

0 −σ(k)
k2

y

k −σ(k)
ky kz

k

0 −σ(k)
ky kz

k −σ(k)
k2

z
k

m(k). (3.72)

Using the same steps as before the susceptibility matrix is deduced.

Dispersion relation

Looking at the magnetization transverse to the equilibrium position. Still considering mz =
√

1−m2
x −m2

y ∼ 1

−iωmx =−γ(my Bz −By mz )+ iωαmy

−iωmy =−γ(Bx mz −mx Bz )− iωαmx
(3.73)

Where

γBx = ωex

4γ

(
k2 −κ2

n

)
mx − ωD

2
(kσ(k)+1)mx +γB AC ,x

γBy = ωex

4γ

(
k2 −κ2

n

)
my − ωD

2

(
σ(k)

k2
y

k
my +σ(k)

ky kz

k
mz

)
+γB AC ,y

γBz =ω0 + ωex

4γ

(
k2 −κ2

n

)
mz − ωD

2

(
σ(k)

ky kz

k
my +σ(k)

k2
z

k
mz

) (3.74)

In the linear regime we neglect higher order terms like m2
x ,m2

y ,m2
z and my mx yielding the following equa-

tions

−iωmx =−ω0my + ωD

2

(
σ(k)

k2
z

k
my −σ(k)

k2
y

k
my

)
+γB AC ,y + iωαmy

−iωmy =ω0mx + ωD

2

(
(kσ(k)+1)mx −σ(k)

k2
z

k
mx

)
+ ωexk2

2
mx −γB AC ,x − iωαmx

(3.75)

−iωmx +my

(
ω0 − ωD

2

(
σ(k)

k2
z

k
−σ(k)

k2
y

k

)
− iωα

)
= γB AC ,y

−iωmy +mx

(
−ω0 − ωD

2

(
kσ(k)+1−σ(k)

k2
z

k

)
− ωexk2

2
+ iωα

)
=−γB AC ,x

(3.76)

Defining the following

ω′
2 =ω0 + ωexk2

2
+ ωD

2

(
kσ(k)+1−σ(k)

k2
z

k

)
ω′

3 =ω0 − ωD

2

(
σ(k)

k2
z

k
−σ(k)

k2
y

k

) (3.77)
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we get the same form as in chapter 3.1 from which we want to exclude the susceptibility m =χBAC:(
ω′

2 − iαω iω
−iω ω′

3 − iαω

)(
mx

my

)
= γ

(
B AC ,x

B AC ,y

)
(3.78)

.

χ′ = γ(
ω′

2 − iαω
)(
ω′

3 − iαω
)−ω2

(
ω′

3 − iαω −iω
iω ω′

2 −αω
)

(3.79)

Solving for the singularities:

ω=−iα
(ω2 +ω3)

2
(
1+α2

) ±
√√√√ ω2ω3

1+α2 − α2(ω2 +ω3)2

4
(
1+α2

)2 (3.80)

In YIG the damping is very small (α<< 1) therefore we neglect α2 terms:

ω′
sw ≈

√
ω′

2ω
′
3 (3.81)

The dispersion relations for the unpinned and pinned situations plotted against the 2D relations computed in
the earlier chapter are given in figure 3.6.

Figure 3.6: Calculated spin wave dispersion for YIG (on the left) and for Permalloy ( on the right). Calculation made for a film of 235nm
thick with saturation magnetization Ms = 1.42×105 A/m. The external magnetic field is taken to be B=100mT. All the calculations

methods shown in the paper are represented here; 2D (or without taking the transversal modes into consideration) and 3D pinned (from
section 3.2.1) and unpinned (from section 3.2.2).

3.3. Efficiency of the generation of spin waves
The spin waves in the sample are excited by application of an oscillating current through a narrow strip-line
embedded in the sample. Due to Oersted’s law, this oscillating current generates an oscillating magnetic field at
microwave frequencies. The magnetic field generated by the strip line is deduced in this section. This magnetic
field couples to the spins in the YIG which start precessing and spin waves are excited at the frequency of the
oscillating magnetic field. In this section it is deduced that only spin-waves with certain values of k can be
excited efficiently. A current is sent through the strip-line in the z direction with current density J(r) . Ref. [9]
gives the magnetic field as created by the current going through the strip-line of volume V using the Biot-Savart
law

B(r) = µ0

4π

∫
V

J(r′)× (r− r′)
|r− r′|3 dr′ = µ0

4π

∫
V

J(r′)×−∇
(

1

|r− r′|
)

dr′ = µ0

4π
∇×

∫
V

J(r′)
|r− r′|dr′ (3.82)

Now since B =∇×A, we can derive the magnetization vector potential

A(r) = µ0

4π

∫
V

J(r′)
|r− r′|dr′ (3.83)
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We now consider the more general case where the current is time dependent, taking into account the arrival
time of the electromagnetic ’message’ we get the retarded potential as given by [7].

A(r, t ) = µ0

4π

∫
V

J(r′, tr )

|r− r′| dr′ (3.84)

which included the retarded time tr ≡ t−|r−r′|
c , c being the speed of light. This permits the step to the frequency

domain:

A(r,ω) = µ0

4π

∫
V

J(r′,ω)e i k|r−r′|
|r− r′| dr′ (3.85)

In our experiments, we consider a microstrip of width w , length l and thickness δ the current flowing in the
direction of the external magnetic field, in the z direction. This implies A = Aẑ and therefore Bz = 0. The
microwave field can now be deduced using the definition of A, assuming the current density is homogeneous.Bx

By

Bz

=


∂Az
∂y

− ∂Az
∂x
0

 (3.86)

Using Weyl’s identity 3 we find

Az (x, y, z) = µ0 J (ω)

4π

∫ δ
2

−δ
2

dx ′
∫ w

2

−w
2

dy ′
∫ l

2

−l
2

dz ′ e i k|r−r′|
|r− r′| (3.87)

Az (x, y, z) = µ0 J (ω)

4π

∫ δ
2

δ
2

dx ′
∫ w

2

−w
2

dy ′
∫ l

2

−l
2

dz ′ i

2π

∫
dky dkz

e i kx |x−x′|+i ky (y−y ′)+i kz (z−z ′)

kx
(3.88)

Az (x,ky ,kz ) = µ0 J (ω)

2

∫ δ
2

−δ
2

dx ′
∫ w

2

−w
2

dy ′
∫ l

2

−l
2

dz ′ e i kx |x−x′|−i ky y ′−i kz z ′

kx
(3.89)

where kx =
√

k2 −k2
y −k2

z and k =ω/c. Computing the integrals gives

Az (x,ky ,kz ) = 2iµ0 J (ω)
e−i kx x (e i kxδ−1)

k2
x kz ky

sin
ky w

2
sin

kz l

2
e−i kz zi (3.90)

from which we can deduce using 3.86 that

Bx (x,ky ,kz ) = 2iµ0 J (ω)
e−i kx x (e i kxδ−1)

k2
x kz

sin
ky w

2
sin

kz l

2
e−i kz zi (3.91)

By (x,ky ,kz ) =−2iµ0 J (ω)
e−i kx x (e i kxδ−1)

kx ky kz
sin

ky w

2
sin

kz l

2
e−i kz zi (3.92)

With zi the center of the strip line. The generated magnetic field is perpendicular to the axis of the strip line.
Also since the strip line is much longer than wide (l >> w) the oscillations are quickest from the second si-

nus term in the equations of the magnetic field. In our experiments we can assume kx =
√

k2 −k2
y −k2

z ≈
i
√

k2
y +k2

z ≡ iκ leading to :

Bx (x,ky ,kz ) =−2iµ0 J (ω)
eκx (e−κδ−1)

κ2kz
sin

ky w

2
sin

kz l

2
e−i kz zi (3.93)

By (x,ky ,kz ) =−2µ0 J (ω)
eκx (e−iκδ−1)

κky kz
sin

ky w

2
sin

kz l

2
e−i kz zi (3.94)

From theses equations we can deduce that not every wavelength of spin waves can be efficiently gener-
ated by the strip line as can be seen in figure 3.7.when an integer number of wavelengths fits under the mi-
crostrip width (k = n ∗2π/w) the excitation efficiency vanishes. In figure 3.4 the dispersion relations for YIG
and Permalloy are plotted with the x-axis limited by the first integer amount of the strip line width.

3The Weyl identity is ei k
∣∣r−r′∣∣

|r−r′| = i
2π

∫
dky dkz

ei kx
∣∣x−x′∣∣+i ky (y−y ′)+i kz (z−z′)

kx
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Figure 3.7: Effect of the strip line shape and dimensions of the generated spin waves. A strip line of thickness w = 5µm and length
l = 100µm can generate spin waves with large ky but not large kz

In our experiments the polarization of the spin waves is of importance because [2] shows that ESR transi-
tions are driven by circularly polarized magnetic fields. Depending on the polarization they drive either ms = 0
to ms =−1 ESR transitions or ms = 0 to ms =+1 ESR transitions. Thus to be measured correctly the magnetic
field the spin-waves generate need to be circularly polarized. Notice the relation Bx = i ky By /κ. When in the
backward volume regime (|ky | << |kz |) this relation becomes |By | << |Bx | so the field becomes linearlised in
the x direction. But in the Damon-Eshbach regime (|kz | << |ky |) the relation becomes Bx = i By which repre-
sents a circularly polarized spin wave field. The stray field created by the spin waves above the YIG sample, in
the diamond which is therefore measured by the NV centers is also computed in [2]. For the DE regime this is
also circularly polarized but of opposite handedness.

In conclusion the right propagating (+ky ) DE spin waves which we measure in our experiments create a
stray field in the diamond which is left circularly polarized and therefore drives the ms = 0 to ms = −1 ESR
transitions.
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4
Experimental results

4.1. Experimental setup
During this project I assisted a few lab sessions where we tried to fix issues with the measuring setup. The
purpose of the measurements where to broaden the accessible frequencies of the measured spin waves using
AC magnetometry and the difference frequency generation method. Our experimental setup consist of a YIG
sample into which gold striplines are embedded in order to generate the spin waves in the material. Our mag-
netometer is a diamond chip with a high density of NV centers which is placed at a distance of approximately
1 µm from the sample. A green laser is shined on the diamond sample to initiate the NV centers in the ms = 0
and generate the needed PL to do the measurements.

strip-
line spin-wave stray�eld

strip-line �eld 

spin-wave 
YIG

high density NV-sensoren
diamond

Figure 4.1: Schematization of the positions of the sample, the golden strip-line and the diamond containing NV centers. The strip-line
generates a magnetic field that inductively starts the precession of the spins in the YIG sample. The spins generate their own circularly

polarized strayfield which gets detected by the NV centers in the diamond above.

4.2. Confocal microscope
The setup used in the measurements that where made is a custom-build confocal microscope. Here we give a
simple overview of the setup and it’s components.
A 515nm laser is used to initialise the NV in the diamond like shown in 4.2. To get the fastest possible modu-
lation of the light an acousto-optic modulator (AOM) is used. Scanning mirrors are used to position the light
on the sample, these are controlled by the graphical user interface showed in 4.3. An objective focuses the
light beam on the sample and the diamond containing the NV centers. A dichroic mirror divides the incoming
green light from the red light returning from the sample. The red PL photons coming from the NV centers
are detected using two avalanche photon detectors (APD) to allow for higher counts without surpassing the
maximum intensity. Before getting to the APD the light is filtered a last time to remove the remaining green
photons and split equally to the two APD’s. Throughout the light’s parkour there are items correcting the light’s
polarisation because the efficiency of the excitation of the NV centers is best when the polarisation is aligned
with the looked at NV center family.
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Figure 4.2: Simplified schematisation of the experimental setup. A few interposed pinholes and lenses improving the laser path and
plates correcting the light polarisation where removed from this image to simplify it.

4.3. Steps of the measurement scheme
The measurements made during this project are a combination of the difference-frequency generation method
and AC magnetometry.

A location on the YIG sample is chosen and measurements are made there, this is done using the Graphical
user interface presented in figure 4.3. This image also shows an NV scan of the YIG sample, the stripline is
apparent in red and the rest of the sample is blue.
To start the measurements the ESR frequency for the currently applied static magnetic field needs to be de-

termined, a simple ESR sweep is done and fitted to find it. The static magnetic field chosen during the mea-
surements made below is B = 376G which resulted in an ÈSR frequency of fNV = 1.817GHz.
To start the measurements the Bloch sphere rotations needed to perform the AC magnetometry pulse scheme
(the π and π/2 pulses) need to be calibrated by measuring the Rabi oscillations frequency. A Rabi oscillation is
shown in 4.4. After the pulses have been calibrated an AC magnetometry measurement as described in section
2.2.3 can be performed. The results of this are shown in figure 4.5. Here we used a XY4 pulse sequence, which
consists of two πX pulses interleaved with two πY pulses. With a final +π/2 pulse (which results in the ms = 0
state when no oscillating field is present)or −π/2 pulse (which results in the ms =−1) before readout. In figure
2.5 a clear contrast is observable which attest that the spin has a maximal phase difference. The frequency of
the applied oscillating magnetic field was f = 1.25MHz. This measurement validates the AC magnetometry
method since the collapse in figure 2.5 is visible at τ= 200ns. The interpulse time between the π pulses being
2τ, the theory predicts the collapse at τ= T /4 = 200ns with T the period of the oscillating field.
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Figure 4.3: Screenshot of the GUI positioning the scanner on the sample. The ’Scanner location’ indicates where the red dot on the
sample is located and where the NV measurements will take place. The image on the right is an NV scan of the sample; which measured

the PL counts as a function of their location (which is given in Volts). On the image the gold stripline in apparent on the blue background
which is the YIG sample.

Figure 4.4: Rabi oscillations measurements. Measurement made to calibrate the π pulses needed for the AC magnetometry scheme. On
the y axis is the measured PL and on the x axis is the length of the microwave pulse applied. The length of a π pulse can here be deduces

from the period.
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Figure 4.5: AC magnetometry measurement. On the y axis the probability that the NV centers are in the mS = 0 state after readout this is
inferred from the measured PL. On the x-axis the time passed between the π pulses. The black lines are the reference lines, measured

without oscillating magnetic field. The blue lines are with oscillating magnetic field. The upper lines have a final +π/2 pulse and the lowr
lines a −π/2 pulse. A contrast is observable around 200ns.
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5
Outlook

To see whether our analysis of the dispersion relation taking into account the perpendicular modes was suc-
cessful we can compare it to the calculations made by Kalinikos and Slavin in [10]. Their calculations for the
n = 0 mode give the results shown in figure 5.1. The magnetic field used for these calculations in unclear but
it gives an indication on how the curves should look. In the geometry of this project the angle θ between the
normal of the sample and the magnetic field is 90ř as situation A in 5.1. The curves from our derived equations
look very different. The next goals for the dispersion relation was to generalize to higher order modes within

Figure 5.1: Dispersion relations plotted in the paper by Kalinikos. Image taken from [10].Dispersion curves for the lowest spin wave
eigen-wave (n = 0) propagating in the film with totally unpinned surface spins along the projection of the bias magnetic field. Different

curves correspond to the different polar angles 8: (A), 90"; (B), 45"; (C), 0"; between the film normal and the bias magnetic field (see
figure 1). Sample with thickness 5 pm and pinned spin surfaces.

the thickness of the sample, this means finish the calculations with κn and the following assumption

m (x,k) =
{

m(k)cos(κn x) for −h < x < 0

0 elsewhere .
(5.1)

And then compare them to the higher order results from [10]. The first order mode was apparent in the mea-
surements but it would have been interesting to see if higher modes could be measured experimentally. Next
step would have been to see how the modes, n and n’, interact with each-other. For instance taking the overlap
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between the demagnetizing field of two modes, changing equation 3.69 into

BD(k) = µ0Ms

h

∫ 0

−h

∫ 0

−h
Γ

(
x −x ′,k

)
cos(κn′x ′)dx ′ cos(κn x)dxm(k) (5.2)

As to the experimental part of this project, the next step would have been to try to analyse the data accumu-
lated in figure 2.5 and try to quantify the magnetic field we where trying to detect by understanding the exact
computations of the relation between the contrast that is observed in figure 2.5 and the oscillating magnetic
field.
One of the goals described in the project description was to start measurements using a new material as sam-
ple: Permalloy. The interest of Permalloy would have been it’s conductive properties. The golden strip for
instance could not be embedded directly onto the Permalloy sample since it has a conductance, it was placed
at a 5µm distance from the sample. This raises the question of whether the spin waves could even be generated
and detected from this sample.
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6
Conclusion

In this project we looked at the underlying theory of spin waves in ferromagnetic materials. Considering the
geometry of our experiments there are conditions which the microwaves need to satisfy in order to efficiently
generate spin-waves in our sample and to be able to detect them properly. If an integer number of wave-
lengths fits under the microstrip width the efficiency vanishes. We need to generate a circularly polarized
magnetic field to properly drive the ESR transitions needed to detect the field. The correctly polarized waves
are generated in the Demon-Eshbach regime, thus for waves propagating in the +y direction (to the ’right’ of
the stripline).

The dispersion relation for a 2D situation, not taking into account the transversal modes was computed
and gave the following result:

ωsw =
√(

ω1 + f ωD
)(
ω1 + (1− f )ωD

)
(6.1)

with variables defined as in equations 3.20. An attempt to add to the model was made by considering the
modes appearing in the thickness of the sample in the calculations of the dispersion relation which gave for
unpinned spin edges:

ω′
sw ≈

√
ω′

2ω
′
3 (6.2)

with variables as defined in equations 3.77. For pinned edges the dispersion was given by

ω′
sw ≈

√
ω′

2ω
′
3 +ω′2

1 (6.3)

with variables defined as in equations 3.51.
The experimental setup was detailed and the steps of an AC measurement where presented. The theory of
this method predicted a contrast in probability to find the spin in the ms = 0 state between the situation with
oscillating magnetic field and without at a certain interpulse time. This contrast was apparent in the measure-
ments and was at the expected time location. This results makes AC magnetometry a successful method to be
used in further experiments. For instance to be tried out with the Permalloy sample.
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A
Appendix

A.1. Table of definitions

28



Constants
Notation Definition Description

γ Electron gyromagnetic ratio
αG Gilbert damping
µ0 Magnetic permeability
Ms Saturation magnetization
D Zero field splitting of the ground state of the NV

center
De x Zero field splitting of the excited state of the NV

center
ΩR Rabi frequency
ωex γD/Ms

ωD γµ0Ms

ωsw depends on the chapter Spin wave dispersion
Vectors

Notation Definition Description
B0 External static magnetic field
BD Demagnetizing field
BZ Zeemann splitting field
Bex Effective field created by the exchange energy
BAC Oscillating magnetic field to be detected

r r = xex + yey + zez Position vector
m = m(r) m = mx x̂+my ŷ+mz ẑ = M/Ms Normalized magnetization within the sample as

function of time and place
k k = ky ŷ+kz ẑ Wave vector in the sample plane

J(r) Current density in the strip line
A(r) magnetization vector potential from the current

in the strip line
Energies

F Free density energy in the sample
FZ See equation 3.5 Zeemann energy density

Functions
Γα,β(r,r′) Coulomb kernel

Fourrier transforms
f(x,k) 2D spatial fourrier transform over the sample

plane
Γα,β(x,k) Coulomb kernel Fourrier transformed onto the

y z plane
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