
 

 

Interactions of visual attention and quality perception 
 

Judith Redi*a, Hantao Liua, Rodolfo Zuninob, and Ingrid Heynderickxa,c 

aDelft University of Technology, Mekelweg 4, Delft, The Netherlands  2628 CD 
bUniversity of Genoa, DIBE, Via Opera Pia 11a, Genova, Italy 16145 

cPhilips Research Laboratories, Prof. Holstlaan 4, Eindhoven, The Netherlands 5656 AA 
 
 

ABSTRACT   

Several attempts to integrate visual saliency information in quality metrics are described in literature, albeit with 
contradictory results. The way saliency is integrated in quality metrics should reflect the mechanisms underlying the 
interaction between image quality assessment and visual attention. This interaction is actually two-fold: (1) image 
distortions can attract attention away from the Natural Scene Saliency (NSS), and (2) the quality assessment task in itself 
can affect the way people look at an image. A subjective study was performed to analyze the deviation in attention from 
NSS as a consequence of being asked to assess the quality of distorted images, and, in particular, whether, and if so how, 
this deviation depended on the distortion kind and/or amount. Saliency maps were derived from eye-tracking data 
obtained during scoring distorted images, and they were compared to the corresponding NSS, derived from eye-tracking 
data obtained during freely looking at high quality images. The study revealed some structural differences between the 
NSS maps and the ones obtained during quality assessment of the distorted images. These differences were related to the 
quality level of the images; the lower the quality, the higher the deviation from the NSS was. The main change was 
identified as a shrinking of the region of interest, being most evident at low quality. No evident role for the kind of 
distortion in the change in saliency was found. Especially at low quality, the quality assessment task seemed to prevail 
on the natural attention, forcing it to deviate in order to better evaluate the impact of artifacts.   
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1. INTRODUCTION  
When observing a scene, the human eye typically optimizes the information acquisition process to overcome the brain’s 
limited capacity of information processing. As a result, when humans observe images they perform some sort of 
“scanning”, focusing on selected (salient) regions and neglecting poorly informative areas [1-3]. This high-level feature 
of the Human Visual System (HVS) has lately become of interest for researchers committed in image quality perception 
modeling. It is reasonable to assume that in a freely looking situation the eye’s sensitivity to visual distortions depends 
on the saliency of the area where distortions are located. Therefore, when modeling quality perception in a freely looking 
situation, one would expect that artifacts appearing in less salient regions are less visible, thus less annoying, than 
artifacts affecting the Region of Interest (ROI). In addition, when people are requested to score the quality of distorted 
images, they may pay proportionally more attention to the most degraded areas in an image, since these areas determine 
their quality score. Provided the soundness of these assumptions, integration of saliency information into objective image 
quality metrics (e.g. [4]) might bring benefits in accuracy and possibly in computational cost saving. 

Existing studies [5-9] seem to encourage the incorporation of saliency information into objective image quality metrics 
(OIQM). The core problem in defining an effective strategy for saliency integration in OIQM is to find coherence with 
human perception. OIQM typically compute a measure for the quality degradation of a distortion on a local basis. 
Therefore, a common choice is to weight the metric value with the corresponding measured saliency location-wise (e.g. 
pixel by pixel). Studies using this approach produce contradictory results. In [5], Liu and Heynderickx prove that 
weighting PSNR and SSIM metrics with Natural Scene Saliency (NSS, i.e. the saliency distribution over the image 
obtained during free looking) provides benefits in quality prediction accuracy. On the other hand, Ninassi et Al. [6] do 
not obtain any useful contribution in accuracy for the same metrics, tested on a different dataset. Larson and others [7] 
use a similar integration strategy to compare the use of NSS and of saliency measured during a quality scoring task. They 
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conclude that the use of NSS brings higher accuracy in the quality estimates, based on results on a subset of the LIVE 
[10] dataset. Conversely, Redi et al. [8] show how integrating pure NSS information in Machine Learning based metrics 
is counter-productive. Clearly all these results are not in line with each other. Hence, a deeper understanding of how 
visual attention and quality perception interact might be beneficial for a more correct design of the integration strategy, 
which might depend on e.g. the distortion affecting the picture, and/or on its quality level.  

The assumption that annoying artifacts located outside the ROI are to a large extent neglected in a quality judgment is 
reasonable when observers freely look at images. On the other hand, OIQM target the reproduction of perceived quality 
scores, which can only be obtained during an evaluation task. Recent experiments already showed how eye-tracking data 
collected during image quality scoring differ from those collected during free looking, and how this attention deviation 
might depend on the specific kind of distortion [5, 11, 12]. Two hypotheses can be formulated for motivating this 
phenomenon, namely (1) the tendency of observers to scan the whole image in order not to disregard details in 
expressing their judgments, and (2) the distractive power of artifacts, that can move the focus of attention to heavier 
distorted areas. For particular kinds of distortions and contents, indeed, the annoyance of background artifacts can 
become so relevant that visual attention is actually deviated from the ROI [8]. Furthermore, observers might be more 
careful in equally scanning every part of the image when evaluating quality, in order to provide a sound judgment. To 
design an accurate model of image quality perception, not only the effects of saliency on quality perception should be 
considered, but also the influence of the (quality scoring) task on how the image is looked at.  

A subjective study, based on tracking eye-movements during quality assessment, is performed to better understand the 
mechanisms underlying the interaction between image quality evaluation and visual attention. The aim of the experiment 
is to analyze whether quality assessment yields a deviation in saliency from NSS, and, if so, how this deviation depends 
on the distortion kind and/or amount. Eye-tracking data are processed to obtain saliency maps, averaged across 
observers, and these maps are compared to NSS maps derived from previous experiments [5]. Results show the existence 
of a deviation from the NSS as a consequence of scoring and its dependence on the quality level of the images. The 
outcome of this study is meant to provide empirical evidence of the impact of distortions on visual attention; indeed, they 
represent a starting point for designing a strategy to include spatial saliency into objective quality assessment metrics. 

2. EYE-TRACKING DURING QUALITY SCORING: EXPERIMENTAL SETUP 
For the experimental session, subjects were requested to score the quality of distorted images in a 6 (original images) x 3 
(distortion types) x 3 (quality levels) within-subject design. During quality scoring, the eye-movements of the subjects 
were recorded. These eye-tracking data were then further processed to saliency maps, which were compared to the NSS, 
obtained during freely looking at the same six original images.  

2.1 Image Material 

The stimuli used in this experiment consisted of several distorted versions of 6 original images selected from the LIVE 
database. The original images used are shown in figure 1. They were selected such that we had a fair representation of 
different content, including images with and without a clear region of interest, images with and without humans in the 
picture, and images with various amounts of textured components. To evaluate the effect of distortion type and quality 
level, various distorted version of these original images were chosen from the LIVE database. Three kinds of distortions 
were considered, namely JPEG compression, White noise and Gaussian Blur. For each original image and distortion 

 

       
      Bikes            Light House         Painted House          Rapids                       Stream              Woman Hat    

 

Figure 1. Images involved in the experiment. Contents and all their distorted versions are taken from the LIVE dataset [10]
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type, three different quality levels were selected: a highly distorted one, one with a medium distortion level, and one for 
which the applied distortion just slightly compromised the quality. This resulted in 54 images in the final dataset, varying 
both in the distortion type and quality level (details are reported in table I).  

2.2 Instrumentation and experimental setup 

A SensoMotoric Instruments GmbH Eye Tracker was used for the experiment. It had a sampling rate of 50/60 Hz, a pupil 
tracking resolution of 0.1°, a gaze position accuracy of 0.5 - 1°, and an operating distance between the subject and the 
camera of 0.4 - 0.8 meters. The various stimuli were displayed on a 17" CRT monitor with a resolution of 1024x768 
pixels. To guarantee stability of the eye-tracking equipment a sufficiently high illumination level (~70 lux) was selected. 
The user interface for the subjective test was implemented using the Neurobehavioral Systems software Presentation. 
Subjects were kept at a fixed distance of 0.7 meters from the display using a chinrest. A total of 14 observers were 
recruited from the Delft University of Technology. Their age ranged between 22 and 35 years.  

2.3 Methodology  

After a brief oral introduction, each experiment started with a calibration of the eye-tracker. Participants were requested 
to focus on 13 different points spread over the monitor screen, and their eye fixations were recorded to calibrate the eye-
tracking data. Subsequently, the participants got a short training to make them acquainted with the kind and amount of 
distortion they could expect in the test set. Users were asked to assess quality using the Single Stimulus method with 
continuous numerical scaling [13]. The scoring scale ranged from 0 to 10, where “0” represented very low quality and 
“10” indicated very high quality. It included semantic labels (i.e. “low” and “high”) at the beginning and end of the scale, 
and it was presented on a separate screen, to avoid distraction from the image. The observation time was not constrained. 
Before presenting the stimuli, a white cross was shown at the center of the screen for one second, to force all 
observations to start from the same fixation at the centre of the screen. This choice was useful to correct possible drifts in 
calibration. 

To limit memory effects, all 54 stimuli were divided in 18 groups of 3 stimuli, sharing both content and distortion type, 
and so differing only in quality level. The experiment was then structured in 3 sessions, where in each session only one 

Table I. Objective distortion parameters for the Images involved in the visual attention study. Contents and all their distorted 
versions were taken from LIVE dataset. 

 

Gaussian Blur White Noise JPEG Compression  

Name Kernel width Name Standard 
Deviation Name Compression 

Rate  

Bikes 
img60 0.619759 img95 0.035156 img77 0.42552 High Quality 

img112 0.906218 img68 0.089844 img81 0.56447 Medium Quality 

img40 2.624972 img97 0.257813 img226 1.4875 Low Quality 

Lighthouse 

img4 0.447884 img40 0.0625 Img86 0.39 High Quality 

img102 0.82028 img43 0.019531 img44 0.42931 Medium Quality 

img97 1.479136 img96 0.171875 img231 1.2943 Low Quality 

Painted 
House 

img39 0.949187 img142 0.03125 img152 0.42863 High Quality 

img110 1.249969 img111 0.058594 img56 0.62819 Medium Quality 

img116 7.66665 img26 0.125 img228 1.4535 Low Quality 

Rapids 
img9 0.562467 img101 0.019531 img9 0.43058 High Quality 

img34 1.020802 img107 0.046875 img110 0.85997 Medium Quality 

img141 1.421844 img74 0.125 img146 1.4648 Low Quality 

Stream 

img71 0.419238 img88 0.0625 img16 0.57467 High Quality 

img126 0.834603 img2 0.1875 img185 1.0008 Medium Quality 

img58 3.083306 img106 0.3125 img137 1.6833 Low Quality 

Woman 
Hat 

img61 1.020802 img11 0.019531 img1 0.3263 High Quality 

img42 1.479136 img3 0.039063 img89 0.45313 Medium Quality 
img132 3.541641 img119 0.136719 img107 0.60102 Low Quality 
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image out of the 18 groups was selected. The selection was done randomly, but in such a way that each of the 3 images 
per group was presented in only one of the 3 sessions. We followed this procedure for selecting stimuli per session 
because we wanted to minimize carry-over effects in the scores between images, which we expected to be bigger for 
different quality levels than for different contents or distortion types. Between sub-sessions, observers were allowed to 
rest their eyes for a few minutes. Eventually, the evaluation of the whole dataset, including the breaks between the three 
sessions, lasted on average 15 minutes.  

3. PROCESSING OF EYE TRACKING DATA AND QUALITY SCORES 
The experiment produced two main outputs, eye-tracking data and quality scores. To enable their analysis, they were 
processed as follows. 

Eye-tracking equipment records the observer’s pupil movements in terms of fixation points and saccades. From these 
data, saliency maps can be extracted according to various methodologies [14]. As the focus of the experiment was to 
detect changes in spatial saliency and to retrieve, if existing, their relationship with distortion locations and intensity, no 
temporal data was included in the analysis. In other words, the fixation points were all equally weighted in the map 
construction. Saliency maps were obtained for each image I in the dataset by: 

1. determining the location of fixation points for each observer separately, 

2. averaging all points over all observers to a single fixation map FM(I)(x,y),  

3. applying a grey-scale patch to each fixation point in FM(I)(x,y). Patches had a Gaussian intensity distribution 
with variance, σ, approximating the size of the fovea (about 2° of visual angle). The saliency value, SS(I)(k,l), at 
location (k,l) of the saliency map for image I (having WI x HI pixels) was eventually defined by: 

   

2 2
( )

2
1

( ) ( )
( , ) exp[ ]
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j jI
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x k y l
SS k l

σ=

− + −
= −∑

      (1)  

where k∈[1, WI], l∈[1, HI]; (xj, yj) are the spatial coordinates of the jth fixation (j=1…T) in the averaged map 
FM(I)(x,y). 

As a result, the saliency map element SS(I)(k,l) reports the probability that location (k,l) of image I gets the average 
observer’s attention. Eventually, 54 maps resulted from the experiment: 9 maps per original image, of which 3 maps 
corresponded to a blurred version of the original image, 3 to a JPEG compressed version, and 3 to a version distorted 
with Gaussian noise. In the rest of the paper, we refer to these maps as the Deviated Scene Saliency (DSS) maps.  

In addition, for each of the 54 stimuli a Mean Opinion Score (MOS) was computed, averaging the 14 observers’ 
evaluations. When processing these MOS according to the recommendations of the Video Quality Experts Group [15] no 
outlier observer was found. Nonetheless, a relatively large discrepancy was found among the observers’ judgments, 
resulting on average in a standard deviation on the MOS of 1.35 on a 10-point scale. Figure 2 shows the MOS and its 
95% confidence interval for all stimuli.  

4. IMPACT OF DISTORTION TYPE AND LEVEL ON IMAGE SALIENCY 
Deviations in saliency are analyzed along two factors, namely 1) the dependency on the distortion type and 2) the 
dependency on the quality level. To analyze deviations in DSS related to the kind of distortion, the stimuli and the 
corresponding saliency maps are divided into three groups, each consisting of 18 images: 

− B: all “blur” images in table I (average quality level 5.56) 

− J: all “JPEG” images in table I (average quality level 5.36) 

− N: all “noise” images in table I (average quality level 4.68) 

To analyze deviations in DSS related to the quality level, the stimuli and the corresponding saliency maps are similarly 
divided into three groups, each consisting of 18 images: 

− LQ: all “low quality” images in table I (average quality level 3.06) 
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− MQ : all “medium quality” images in table I (average quality level 5.22) 

− HQ: all “high quality” images in table I (average quality level 7.38) 

The image groups can be visually inspected in figure 2. 

Deviations in saliency due to the scoring task are analyzed in two steps. First, the saliency maps obtained during scoring 
distorted images (DSS) are mutually compared to determine effects of both the distortion type and the quality level. One 
measure of consistency among saliency maps is the linear correlation coefficient [12], ρ, which quantifies the 
(symmetrical) strength of the linear relationship between two distributions. The value of ρ ranges between [-1, 1]; 1 
indicates maximum linear correlation, while 0 indicates uncorrelated samples. Negative values of ρ indicate inversely 
correlated samples (the closer to 0, the less correlated). In practice, a higher value of ρ indicates a larger similarity 
between two saliency maps.  

In a second phase, the DSS maps are compared to the NSS maps (obtained in [5]). In this case, we don’t look for mutual 
differences, but rather for deviations of DSS with respect to a reference saliency distribution, i.e., the natural scene 
saliency. Two more informative measures can be used in this scenario. The Kullback-Leibler divergence (KLD) gives a 
measure for the dissimilarity between a test distribution and a reference one. As such, it is a positive quantity; it increases 
with the dissimilarity in the distributions, and KLD = 0 only in case of identical distributions. In this paper, we adopt the 
NSS as the reference saliency distribution, and we measure the deviation of the DSS from it by computing: 

Figure 2 - Mean Opinion Scores for the stimuli in the dataset (cfr. Table I). Each panel in the graph corresponds to a given 
distortion type: i.e. Gaussian Blur (left), JPEG compression (center) and White Noise (Right). The different symbols 
in the graph correspond to different quality levels. Error bars indicate the 95% confidence interval of the MOS. 
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4.1 Analysis of deviated saliency maps 

First, we evaluate differences in DSS resulting from the various distortion types. For the same content and quality level, 
the correlation in saliency between pairs of one blurred stimulus and one JPEG compressed stimulus (B-J) is computed. 
This ρ value gives a measure of how, for a given image content and quality level, the saliency distribution changes due 
to the type of distortion applied to the image. In analogy, the ρ value between the DSS of the JPEG compressed stimulus 
and the noisy stimulus (J-N), and the ρ value between the DSS of the noisy and blurred stimuli (N-B) are computed. 
These ρ values are then averaged per group to obtain the values reported in figure 3.a. A similar analysis is repeated for 
the differences in DSS resulting from different quality levels: for the same content and distortion type, ρ is computed 
between the DSS of stimuli with low and middle quality (LQ–MQ), with middle and high quality (MQ-HQ), and with 
low and high quality (LQ–HQ). Figure 3.b shows the corresponding correlation values averaged across image content 
and distortion types. 

Figure 3.a shows how DSS maps obtained for the same quality level, but with different distortions are mutually 
correlated. The similarity between the various maps is relatively high (ρ∈[0.77, 0.80]), and no distortion seems to 
produce maps consistently different from those obtained for other distortions. This indicates that all three distortions 
bring similar saliency distributions as a consequence of scoring the image quality. A more pronounced difference in 
deviated saliency is found as a function of the quality level of the stimuli (figure 3.b). Maps obtained at LQ and MQ 
seem to be more correlated than those obtained at LQ and HQ. The main outcome is a significant decrease in correlation 
between saliency maps with increasing quality levels.  

Figure 3.c shows the average of the correlation between all possible pairs of maps for a given content in the dataset 

(given n = 9 maps per content, we have ( )21
36

2pairs

n
n

−
= =  pairs). The graph clearly demonstrates that the correlation 

between saliency maps is highly dependent on image content. In other words, depending on the specific content, saliency 
maps corresponding to different quality levels or distortion types may be more or less correlated; e.g., the maps obtained 
for the various stimuli of the image Bikes deviate more among each other than, e.g., the maps obtained for the various 
stimuli of the image Woman Hat, independent on the distortion type or quality level.   

 
(a)                                           (b)                    (c) 

Figure 3 – Correlation (ρ) among Deviated Saliency maps: comparing various types of distortions averaged over content 
and quality level (a), comparing various quality levels averaged over distortion type and content (b) and comparing 
various contents averaged over all combinations of distortion type and quality level (c). The error bars represent the 
standard error of the mean of the correlation values obtained over all pairs. 
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4.2 Discrepancies between Natural and Deviated Scene Saliency 

For the analysis between NSS and DSS we use the KLD value. The average KLD between the NSS map and the DSS 
map for the B, J and N groups of stimuli (averaged over content and quality level) is given in figure 4.a.  Similarly, 
figure 4.b shows the average KLD value obtained for the LQ, MQ and HQ stimuli (averaged over content and distortion 
type). Finally, figure 4.c reports the KLD values per image content (averaged over distortion type and quality level), 
while figure 4.d gives the KLD values per distortion type and quality level averaged over all contents. In addition, the 
correlation coefficient between the NSS and DSS map is computed for each distortion type (averaged over all contents 
and quality levels) and for each quality level (averaged over all contents and distortion types). These ρ values are 
reported in table II and allow us to compare the differences between NSS and DSS with the within-DSS differences (see 
fig. 3).  

Table II – Correlation (ρ) between Natural Scene Saliency and Deviated Saliency maps: depending on the distortion 
(columns 1 through 3) and on the quality level (columns 4 through 6) 

ρ Blur  JPEG Noise  LQ MQ HQ 
NSS 0,71 0,70 0,70 0,69 0,71 0,71 

 
Table II shows that the deviation of DSS from NSS is bigger than the one found between different DSS maps (cfr. fig.3). 
The KLD analysis gives better insight in how these deviations relate to distortion type and quality level. Results in figure 
4 suggest that the deviation in saliency from NSS is more related to the quality level of the image than to the type of 
distortion affecting it. In particular, the lower the quality, the larger is the deviation. This trend is confirmed by the graph 
in figure 4.d. The KL divergence between NSS and DSS decreases with increasing quality for each of the three distortion 

Figure 4 – Kullback-Leibler divergence (KLD) among Deviated Saliency maps: comparing various types of distortions 
averaged over content and quality level (a), comparing various quality levels averaged over distortion type and 
content (b) and comparing various contents averaged over all combinations of distortion type and quality level (c).  
Figure (d) shows the combined effect of quality level and distortion kind. The error bars represent the standard 
error of the mean of the correlation values obtained over all pairs. 
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types separately. The behavior is most evident for blurred and noisy stimuli, but the trend is visible for JPEG distorted 
stimuli too. Figure 4.c shows that the effect of image content on the change in DSS from NSS is different from what was 
found when mutually comparing distorted saliency maps (cfr. fig. 3.c). 

4.3 Investigating the spatial nature of saliency deviation 

The results reported in the previous sections point out that there is a deviation in saliency from NSS as a consequence of 
asking people to score quality of degraded images, and suggest that these deviations are more influenced by the quality 
level of the stimulus rather than by the kind of distortion applied to it. So far, however, we did not discuss how the 
saliency of the image actually spatially changes as a consequence of the scoring task. We now look into how saliency 
spatially changes both from a global and a local perspective. 

Figure 5 presents the saliency maps obtained for free looking (top row) and scoring of different versions of the image 
content rapids. In particular, maps corresponding to two images varying in blur (HQ and LQ) and two varying in 
compression rate (HQ and LQ) are compared in the middle column. At a first sight, we notice a global reduction of the 

 
Figure 5 – Comparison between NSS (top row) and DSS, obtained for a High Quality and Low Quality version of a 

blurred and compressed image of the original content Rapids. The middle column shows the saliency maps, 
whereas the right  column illustrates the corresponding ROI, obtained by binarizing the saliency maps with a 
threshold SS(k,l) > 0.25 (Y > 64).  

SPIE-IS&T/ Vol. 7865  78650S-8

Downloaded from SPIE Digital Library on 30 Jan 2012 to 131.180.130.136. Terms of Use:  http://spiedl.org/terms



 

 

spread of saliency over the image as a consequence of scoring low quality images. This tendency is further confirmed 
when analyzing the ROI, as shown in the right column of Figure 5. This ROI is defined by binarizing the saliency maps 
with a given threshold value SS(k,l). The binarized image or ROI in Figure 5 (obtained with a threshold value of SS(k,l) = 
0.25) is clearly smaller for a low quality than for a high quality stimulus.  

To quantify this tendency further, the size of the ROI is measured in terms of number of pixels covered, and normalized 
with respect to the total number of pixels in the image. This procedure is repeated for all NSS and DSS using different 
threshold values. Figure 6 shows the combined effect of distortion and quality level on the size of ROI. For a threshold 
value of SS(k,l) = 0.375 (i.e., a probability higher than 0.375 that pixel (k,l) is attended, corresponding to a Y-value of 96 
in the intensity map) the NSS ROI occupies about 15% of the whole image area. The size of the ROI in DSS tends to 
shrink with an increasing amount of distortion.  

There may be two main reasons for the shrinkage in ROI at decreasing quality level of the image: 
(1) the time of observation, and so the number of fixations, may be smaller at lower quality, 
(2) the attention may be more spread towards background regions in the image, while not contributing to the 

ROI because the individually spread fixations do not exceed the threshold.  
We indeed observed that, at lower qualities, the number of fixations necessary for the observer to produce a judgment is 
lower than at high qualities, and so is the time of observation. These quantities are quite well correlated with the MOS of 
the images, as is shown in table III.  

Table III – Pearson’s correlation coefficient between the measured Mean Opinion Score, the average image observation time 
and the average number of fixations during the observation. 

Pearson’s correlation coefficient Observation duration Number of fixations 

Mean Opinion Score 0.69 0.63 
 

A possible explanation is that at lower qualities, observers are quickly confident in judging an image, while, with the 
increase of the quality level, a more accurate observation is needed to formulate a sound judgment. Hence, the number of 
fixation points increases. As higher numbers of fixations correspond to an increase of the saliency of the whole image, 
we can state that, under a quality scoring task with an unconstrained observation time, low quality images are less salient 
than high quality images.  

 
Figure 6 - Combined effect of distortion and quality level on the size of the ROI in the DSS maps. The ratio of the image 

surface covered by the ROI (averaged over content) is reported for different values of the threshold (expressed in the 
Y-value of the intensity in the saliency map). The dashed lines represent the average size of the ROI in the NSS 
map.  
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To measure the shift of attention from the ROI to the background, we compute the number of fixation points that, for 
every DSS, fall outside of the ROI of the corresponding NSS. Figure 7 summarizes the values obtained, normalized over 
the total number of fixations, for an ROI threshold of SS(k,l) = 0.375. The effect of quality level is not so very obvious, 
except for the blurred stimuli. On average, a large part of the fixation points (50.11%, averaged over all stimuli) falls 
outside the ROI. With respect to the NSS, this represents an increase of about 20% of the number of fixations outside the 
ROI. Attention during scoring is thus more spread across the image, as typically observers scan image details before 
having enough confidence to express a judgment. Eventually, observations are still highly concentrated in the NSS ROI, 
but a shift of saliency happens from foreground to background. This may be a complementary factor in the observed ROI 
shrinking.  

5. CONCLUSIONS 
Saliency maps obtained during quality assessment of distorted images differ among each other, and these differences 
seem to be more related to the quality level of the related stimulus than to the kind of distortion affecting that stimulus. 
More prominent changes in saliency are found when comparing the various DSS maps to the NSS map. In this case, 
again the deviation seems to be most related to the amount of distortion present in the stimulus. In particular, the lower 
the quality, the more dissimilar is the DSS from the NSS. This structural change may originate from the fact that 
observers check images more carefully with an increase of the quality level, which is also confirmed by the fact that 
observation times, number of fixations per image and MOSs are well-correlated. The saliency deviation manifests itself 
through a shrinking of the ROI and a shift of attention towards the background of the image. While the shrinking 
phenomenon is again proportional to the amount of distortion for all the distortions considered, the shift of attention 
seems to depend on the quality level only for blurred images. 

In conclusion, the experiment proved that the quality assessment task modifies the natural saliency of images. Therefore, 
when modeling quality, the masking effect of saliency for distortions in background regions may be less prominent than 
in a free looking situation. When modeling interactions between visual attention and image quality perception for 
objective quality assessment, the effect of the quality level of the image on the saliency should be taken into account to 
design a more accurate integration strategy. 
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