
The parareal algorithm on the
model for combustion of

methane
by

L. van der Linden
to obtain the degree of Bachelor of Science in Applied Mathematics

at the Delft University of Technology

Student number: 4702697
Project duration: April 20, 2020 – July 10, 2020
Thesis committee: Dr. D. J. P. Lahaye, TU Delft, supervisor

Dr. J. L. A. Dubbeldam, TU Delft
Prof. dr. ir. C. Vuik, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

In this work, the parareal algorithm is analysed and executed on the model for combustion of
methane. The parareal algorithm is designed to generate an approximation to an initial value prob-
lem faster than a serial numerical time-integration method by using two propagators, the coarse
propagator and the fine propagator. With the use of two different propagators, some computations
can be carried out in parallel, which leads to a faster method. In this research, the parareal algorithm
is executed on the two-step mechanism for combustion of methane. The temperature rise due to
the combustion is assumed to be zero. The model is implemented in Python and with the use of the
library multiprocessing, computations are executed in parallel. Different time-integration methods
are implemented that can be used in the coarse and fine propagator. In this research, we will focus
on the case that the both propagators use the same time-integration method. One can distinguish
the propagators by using a different time-step for a chosen time-integration method.

With the use of the absolute error the accuracy can be examined. Because the analytic solution
to the problem for combustion of methane is unknown, a time-integration method, from which
we know that it gives a small absolute error, is used as representation of the analytic solution. The
parareal algorithm executed on the model for combustion of methane gives an accurate result for
the right choice of propagators. However, for this choice of propagators, the parareal algorithm
does not result in a significant speedup compared to the fine propagator in serial, assuming that we
have enough processors available. This is because the running time of the propagators do not differ
much. To generate a better speedup, two different time-integration methods can be considered for
the propagators. Moreover, the model for combustion of methane can be divided into more than
two partial reaction and then the multi-level parallelization [1] can be examined.

iii

Acknowledgements

I would like to express my special thanks to my supervisor Dr. Lahaye to introduce me to this fas-
cinating algorithm. With the help of him, I explored the numerous properties of parareal. Even in
these turbulent times, I enjoyed the virtual meetings with Dr. Lahaye and I hope to meet him in
person soon. I would also like to thank Prof. Dr. Sebastian Schöps for his feedback on my report.

Besides my supervisor I would like to thank the rest of my thesis committee: Dr. Dubbeldam
and Prof.dr.ir. Vuik for taking the time to read an review the report.

L. van der Linden
Delft, July 2020

v

Contents

List of used symbols 1

1 Introduction 3
1.1 Motivation . 3
1.2 Thesis statement . 4
1.3 Thesis outline. 4

2 Introduction to parareal 5
2.1 Problem description . 5
2.2 Parareal scheme . 5
2.3 Choice of propagators . 7

2.3.1 Single-step method with different time-steps 7
2.3.2 Backward Differentiation Formulas with different tolerances. 8

2.4 Speedup. 9
2.5 Convergence of the algorithm . 10

2.5.1 Order of accuracy . 10
2.5.2 Convergence . 12

3 Parallel computing 15
3.1 Multiprocessing . 15

3.1.1 Create the pool . 16
3.1.2 Define the propagators with the use of a pool 16

3.2 Code structure . 17
3.2.1 Input arguments . 17
3.2.2 Performing the algorithm . 17

4 First numerical results 19
4.1 One-dimensional test equations . 19

4.1.1 Right-hand side function independent of the solution 19
4.1.2 Right-hand side function dependent on the solution 19

4.2 Parareal visualisation for the first test equation . 19
4.3 Order of accuracy. 20
4.4 Examination of convergence . 21

4.4.1 Difference between iterations . 21
4.4.2 Error after different iterations . 22

5 Application: combustion of methane 25
5.1 One-step mechanism . 25

5.1.1 Model description . 25
5.1.2 Numerical results . 26

5.2 Two-step mechanism . 27
5.2.1 Model description . 27
5.2.2 Selection of parareal parameters for two-step mechanism 28
5.2.3 Numerical results . 30

vii

viii Contents

6 Conclusion and recommendations 33

Bibliography 35

A Implementation parareal algorithm 37

List of used symbols

A Pre-exponential factor (unit varies).
E Activation energy [J mol−1].
F (ti+1, ti ,ui) Fine propagator executed on ui .
G(ti+1, ti ,ui) Coarse propagator executed on ui .
N Number of grid points on which the approximation of x(t) is determined.
R Universal gas constant [J mol−1 K−1].
∆G(ti+1, ti ,ui) Correction term in the parareal procedure on the i th grid point.
∆T Time-step between the grid points on which the approximation of x(t) is deter-

mined.
uk

i Approximation for x(t) on the i th grid point in iteration k of the parareal algo-
rithm.

ui Approximation for x(t) on the i th grid point.
x(t) Solution to the differential equation.
x0 Initial value, i.e. value of x(t) on t = t0.
F (∆t , ti ,ui ,ui+1) Update term in one step of a single-step time-integration method executed on

ui .
T Temperature [K].
b Temperature exponent (no unit).
U k Approximation of x(t) on all the grid points in iteration k of the parareal algo-

rithm.

1

1
Introduction

In this chapter, the motivation for using the parareal algorithm is explained, the thesis statement is
introduced and the structure of the thesis is outlined.

1.1. Motivation
Today, almost every computer has multiple processors. This means multiple tasks can be com-
pleted in parallel. For large numerical simulations this seems very useful. However, most numerical
approximation methods have to be executed linearly. This means, the ability to compute in par-
allel can not be utilized. Therefore, research on parallel numerical algorithms, one of which is the
parareal algorithm, is expanding.

The parareal algorithm is first proposed by Jacques-Louis Lions, Yvon Maday, and Gabriel Turinici
in [9] in 2001. In this note, they introduce a new method to numerically solve a initial value prob-
lem. The idea of the algorithm is that you first generate a inaccurate result by a method with low
computational effort. After that you use these values to generate a more and more accurate result in
an iterative process. This method alters from most well-known numerical methods, since it enables
the computer to make parallel computations. By making parallel computations, the result can be
generated faster, required that you have enough processors.

The parareal algorithm is ideal for a model that has to be integrated on two different timescales,
since the algorithm uses two different propagators. The coarse propagator generates a rough ap-
proximation on a grid point using the value in the previous grid point. The fine propagator operates
the same, but generates a finer approximation. The combustion of methane is a combination of
multiple chemical reactions. The different chemical reactions do not have the same reaction rate
and therefore ask for integration on different timescales. The parareal algorithm allows to use nu-
merical methods on multiple timescales in only one algorithm. Hence, in this research, the parareal
algorithm is executed on the model for combustion of methane.

Even though the parareal algorithm is recently introduced, it is a subject that is widely studied.
However, it is not the first proposed algorithm that solves an evolution equation in a time-parallel
manner. The first suggestion of time decomposing is already suggested in 1964 by Nievergelt [12].
After that some parallel numerical methods were introduced such as the multiple shooting method
[7]. As previously mentioned, the parareal algorithm was firstly proposed by Lions, Maday and
Turinici in [9]. An improved version was introduced by Bal and Maday in 2002 [3]. In [1], the speedup
achieved by the parareal algorithm is analysed and improved by considering multi-level paralleliza-
tion. In [5], the use of overlap in time in parareal is considered, which will sometimes lead to a
faster algorithm. Recently, multiple adapted parareal algorithms are presented. One of which is the

3

4 1. Introduction

adapted parareal algorithm by Maday in 2019, to increase the parallel efficiency [10]. Another adap-
tation to parareal is presented by Gander et al. in 2019 [6]. In this paper, a new parareal algorithm
is presented which can deal with discontinuous right-hand side functions in ordinary differential
equations.

1.2. Thesis statement
In this thesis, I will analyse the parareal algorithm and discover its properties and benefits compared
to the in serial time-integration methods. Moreover, I will implement the algorithm in Python and
I will apply the parareal algorithm on the model of combustion of methane. This gets me to my
research question: What are the properties of the parareal algorithm and how do they appear in the
model for combustion of methane?

1.3. Thesis outline
In chapter 2 the parareal algorithm is introduced. Next to that, the choice for propagators in the
algorithm are specified. At the end of this chapter, properties of the parareal algorithm are shown
and proven. In chapter 3, I will focus on the implementation of the parareal algorithm with the
use of parallel computing in Python. In chapter 4, this implementation will be tested for two test
models. With this test, some properties of the algorithm presented in section 2.5 will be checked.
After the parareal algorithm is fully understood and the implementation behaves like expected, the
parareal algorithm is executed on the model of combustion of methane in chapter 5. Thereby, it
examines the advantages of using the parareal algorithm for this application. At last, in chapter 6,
the conclusion is made and ideas for further studies are recommended.

2
Introduction to parareal

In this chapter, the parareal algorithm is introduced. First the general initial value problem is posed.
Next, the iterative procedure is presented whereafter the used terms are explained. In the end some
properties of the parareal algorithm are mentioned and proven.

2.1. Problem description
In this research, we will consider a first order initial value problem.

x′(t) = f(t ,x(t))

x(t0) = x0
(2.1)

We want to estimate the solution x(t) on the interval t0 ≤ t ≤ T . The interval will be split into N even
subintervals of width ∆T . The solution will be approximated on the grid points, ti = t0 + i∆T . After
executing the parareal algorithm, we have found an approximation ui for i = 1, ..., N .

t0

x0

tN = T
∆T

ti

ui

Figure 2.1: Interval over which will be integrated.

2.2. Parareal scheme
The parareal algorithm is an iterative procedure. In every iteration it will update the approximation
on all the grid points. The notation for the approximation in iteration k is U k = {uk

i : i = 0, ..., N }.

We want to find an approximation for the solution to (2.1) on the grid points in the interval
t0 ≤ t ≤ T , with a grid space of∆T . The parareal algorithm uses a scheme in which it recalculates the
approximation in the grid points using an iterative update procedure. In each iteration, it updates
the approximation of the previous iteration. This is done by using a fine propagator, F (ti+1, ti ,ui),
and coarse propagator, G(ti+1, ti ,ui). The fine propagator executed on ui will give a approximation
for x(t) on t = ti+1 to the initial value problem

x′(t) = f(t ,x(t)), ti ≤ t ≤ ti+1, x(ti) = ui (2.2)

The coarse propagator will function the same, but, as the name indicates, will give a less accurate
result, though is cheaper to compute than the fine propagator. More on the coarse and fine propa-
gators will be elaborated in section 2.3.

5

6 2. Introduction to parareal

The update scheme is as follows. Given U k , U k+1 is computed as

{
uk+1

0 = x0;

uk+1
i+1 =G(ti+1, ti ,uk+1

i)+F (ti+1, ti ,uk
i)−G(ti+1, ti ,uk

i) for i = 0, ..., N −1.
(2.3)

This update scheme calculates uk+1
i+1 by executing the coarse propagator on uk+1

i and adding an cor-

rection term ∆G(ti+1, ti ,ui) := F (ti+1, ti ,uk
i)−G(ti+1, ti ,uk

i) which uses the value uk
i . The values of

uk
i from the previous iteration are all known. Therefore, the computation of the correction terms for

i = 0, ..., N−1 can be calculated at the same time, in parallel. However, the value of uk+1
i is at the start

of iteration k+1 only known for i = 0, that is why the first term in the update scheme G(ti+1, ti ,uk+1
i)

has to be computed sequentially. But this is cheap, since it only requires the coarse propagator.
To start the first iteration of the parareal algorithm, an approximation on all the grid points is re-
quired. This initial approximation will be called the zeroth approximation. It will be calculated
using the coarse propagator in serial, that is

{
u0

0 = x0

u0
i+1 =G(ti+1, ti ,u0

i)
(2.4)

Subsequently, the solution in the next iterations is calculated using the update scheme. To sum up,
the complete parareal algorithm is described in algorithm 1. The algorithm will stop when the stop
condition is satisfied. This can either be that the maximum of iterations is reached or that an error
constraint is satisfied. In chapter 4 a visualisation of the process of the algorithm is presented using
a test equation.

Algorithm 1: Parareal algorithm.

Data: x0, f(x, t)
Result: approximation for x(ti) in i = 0, . . . , N
begin

u0
0 ← x0;

for i = 0, . . . , N −1 do
u0

i+1 ←G(ti+1, ti ,u0
i);

end
k ← 1;
while true do

solve F (ti+1, ti ,uk−1
i) and G(ti+1, ti ,uk−1

i) for i = 0, . . . , N −1 in parallel;

uk
0 ← x0;

for i = 0, . . . , N −1 do
solve G(ti+1, ti ,uk

i);

uk
i+1 ←G(ti+1, ti ,uk

i)+F (ti+1, ti ,uk−1
i)−G(ti+1, ti ,uk−1

i);

end
if stop condition = true then

break;
end
k ← k +1

end
end

2.3. Choice of propagators 7

2.3. Choice of propagators
The parareal scheme uses two propagators, the fine propagator F (ti+1, ti ,ui) and the coarse propa-
gator G(ti+1, ti ,ui). Both these propagators compute an approximation for x(t) on t = ti+1 using a
time-integration method on ui . The difference is that the fine propagator is more accurate than the
coarse propagator, but more expensive to carry out as well. The choice of propagators is based on
the numerical stability and the computational effort of the propagator. For each particular model,
a suitable coarse and fine propagator has to be selected.

In this section, we will focus on certain choices for the coarse and fine propagators. First, the
choice of a single-step time-integration method with different time-steps for the coarse and fine
propagator will be treated. After that, the use of the Backward Differentiation Formulas with an
order from 1 to 5 using different tolerances for the error will be treated.

2.3.1. Single-step method with different time-steps
As first option, the coarse propagator is taken to be a single-step time-integration method with time-
step ∆t =∆T , where ∆T corresponds with the time-step of the defined grid over which we want to
approximate the solution. The fine propagator is taken to be the same single-step method using
time-step δt =∆T /m. Thereby F requires m derivations to be done to determine ui+1 using ui but
results in a more accurate approximation to x(t) than G .

A lot of single-step time-integration methods exists, and new single-methods are developed ev-
ery moment. But in this research, we will only consider the well-known single-step methods: the
Forward Euler method, the Backward Euler method, the Trapezoidal method, the Modified Euler
method and the Runge-Kutta method. More on these methods can be found in [15].

To generalise for all considered different single-step methods, the notation F (∆t , ti ,ui ,ui+1)
is used: the single-step methods we consider, are composed of the term ui and an update term
F (∆t , ti ,ui ,ui+1). This update term is written out for the single-step methods we consider in equa-
tion (2.6).

ui+1 = ui +F (∆t , ti ,ui ,ui+1) (2.5)

Forward Euler method: F (∆t , ti ,ui ,ui+1) =∆t f(ti ,ui)

Backward Euler method: F (∆t , ti ,ui ,ui+1) =∆t f(ti+1,ui+1)

Trapezoidal method: F (∆t , ti ,ui ,ui+1) = ∆t

2
(f(ti ,ui)+ f(ti+1,ui+1))

Modified Euler method: F (∆t , ti ,ui ,ui+1) = ∆t

2
(f(ti ,ui)+ f(ti+1, ũi+1))

where ũi+1 = ui +∆t f(ti ,ui)

Runge-Kutta method: F (∆t , ti ,ui ,ui+1) = 1

6
(k1 +2k2 +2k3 +k4)

where k1 =∆t f(ti ,ui)

k2 =∆t f(ti + ∆t

2
,ui + k1

2
)

k3 =∆t f(ti + ∆t

2
,ui + k2

2
)

k4 =∆t f(ti +∆t ,ui +k3)

(2.6)

The schemes for the coarse and fine propagator are written out in equation (2.7) and (2.8). ui+ j
m

is an approximation for x(t) on ti+ j
m
= ti + j ·δt . The single-step method will be executed until an

approximation on ti+1 is reached. Then the resulting value for ui+1 is assigned to G(ti+1, ti ,ui) and

8 2. Introduction to parareal

F (ti+1, ti ,ui).
solve for ui+1: ui+1 = ui +F (∆t , ti ,ui ,ui+1)

G(ti+1, ti ,ui) = ui+1
(2.7)

solve for ui+ 1
m

: ui+ 1
m
= ui +F (δt , ti ,ui ,ui+ 1

m
)

solve for ui+ 2
m

: ui+ 2
m
= ui+ 1

m
+F (δt , ti+ 1

m
,ui+ 1

m
,ui+ 2

m
)

...

solve for ui+1: ui+1 = ui+m−1
m

+F (δt , ti+m−1
m

,ui+m−1
m

,ui+1)

F (ti+1, ti ,ui) = ui+1

(2.8)

In figure 2.2, one fine and one coarse propagation are executed, with ∆t = 2 and δt = 2
8 = 1

4 . As
single-step method, a Forward Euler scheme is used, i.e. F (∆t , ti ,ui ,ui+1) =∆t f(ti ,ui). The analytic
solution is represented by the grey line. You can see that the fine propagation gives a more accurate
approximation, it is closer to the analytic solution.

Figure 2.2: One fine propagation executed on (3,1, x(1)) (red) with δt = 1/4 and one coarse propagation executed on
(3,1, x(1)) (black) with ∆t = 2 compared to the analytic solution (grey). IVP:

x′(t) = si n(2π
5 t)+ 1

2 si n(2π
10 t), 1 ≤ t ≤ 3, x0 = x(1).

2.3.2. Backward Differentiation Formulas with different tolerances
The parareal algorithm will be implemented in Python. Python offers a lot of integration methods
and it would be a pity if we did not make use of that. The function solve_ivp from the library
scipy.integrate can numerically integrate a system of ordinary differential equations given an
initial value. In our case, the initial value problem we want to solve with solve_ivp is described in
equation (2.2). We will use the solve_ivp function as both the coarse and the fine propagator.

In the function, the initial value problem as in equation (2.2) will be implemented. Also, the in-
tegration method used in the function will be defined to be the Backward Differentiation Formulas
(BDF) method. This is a family of implicit numerical time-integration methods. The order varies
from 1 to 5 and the solve_ivp function selects the order automatically based on the case. Also,
the number of time-steps taken to find the approximation is automatically selected. Therefore, we
could not distinguish the coarse and fine propagator by the time-step. To define a difference be-
tween the coarse and the fine propagators, we will make use of the optional input argument for
the tolerances. With the input arguments for absolute tolerance and relative tolerance the error es-
timates are controlled. The lower the tolerances, the better the approximation is. So for the fine
propagator low tolerances are set and for the coarse propagator, high tolerances are set.

2.4. Speedup 9

2.4. Speedup
The Parareal algorithm is developed to generate an approximation in a more time efficient manner
by using parallel computations. In this section the speedup of the algorithm is treated. The running
time of the algorithm is compared to the running time of executing the fine propagator in serial. The
following analysis of the speedup will be performed, provided that we have N

M processors available.
We will assume that the communication time between the processors is negligible.

First, we will look at the running time of one coarse propagation G(ti+1, ti ,ui) and one fine prop-
agation F (ti+1, ti ,ui). In this analysis we will only need a value for the ratio ∆t

δt , not an explicit value
for the running times of both propagators.

The analysis on the speedup asks for a different approach for either a single-step time-integration
method and the BDF method executed by solve_ivp. If a single-step method is used for both, the
coarse propagator requires to do one step of the single-step method. Therefore we will say that the
costs for one coarse propagation is equal to 1. To execute one fine propagation takes more time
integration steps, namely ∆t

δt . So the costs for one fine propagation is ∆t
δt . In the example in fig-

ure 2.2, the costs for one coarse propagation is 1, and the costs for the fine propagation is 8 (= 2
1/4).

In the case of using the BDF method, we will set the costs for one coarse propagation to 1. Yet, we
can not assign an explicit number to the ratio ∆t

δt . However, with using the solve_ivp function we
can monitor the number of function evaluations made. The more evaluations are carried out, the
longer the running time is. To determine the ratio ∆t

δt , we can examine the ratio between the func-
tion evaluations carried out in one coarse propagation and in one fine propagation. However, this
is fluctuating over the time-integration steps, since solve_ivp selects an appropriate time-step per
integration step based on the particular case. To still be able to use an constant ratio for ∆t

δt over the
grid in the following analysis, we will use the mean of this ratio over all the steps. To calculate this
mean we will execute the BDF method in the function solve_ivp with the tolerances for the coarse
propagator in serial over the grid, resulting in the number of function evaluations in each time-step,
and do the same for the BDF method with the tolerances for the fine propagator. Then take the ratio
of these function evaluations and take the mean of these ratios.

Suppose we have N
M processors available, then N

M computations can be executed in parallel. To
make optimal use of these processors, the grid will be partitioned into M sub grids with a grid size
of τ= T

M . On these sub grids, the parareal iterations will be executed.
To begin, the costs for executing k iterations on one sub grid are determined. For the zeroth

approximation, the coarse propagator is executed in serial over the whole sub grid, this costs τ
∆t . In

every next iteration, first off the parallel computations are done. In the parallel computations, N
M

fine propagators are executed and N
M coarse propagators. The N

M coarse propagations take 1 time-
unit, and the N

M fine propagations ∆t
δt . Since they are computed at the same time, the highest costs

determines the costs for the parallel computations, which is ∆t
δt . Following, the update procedure

as in equation (2.3) is done where only the coarse propagations have to be calculated in serial. This
will cost τ

∆t . Altogether, the costs for k iterations of the Parareal algorithm on one sub-grid are

τ

∆t
+k(

∆t

δt
+ τ

∆t
). (2.9)

Thus, the costs for the Parareal algorithm on M sub grids are

M(
τ

∆t
+k(

∆t

δt
+ τ

∆t
)). (2.10)

The costs for the fine propagator in serial over the entire interval are

T

δt
= M

τ

δt
. (2.11)

The speedup S is the costs for k iterations of the parareal algorithm divided by the costs for the
fine propagator in serial. The algorithm is only effective in terms of running time if the costs for

10 2. Introduction to parareal

k iterations of parareal are less than the costs for the fine propagator in serial, which is equivalent
with saying S > 1. Moreover, the speedup is ideal for a high value for S.

S =
τ
δt

τ
∆t +k(∆t

δt + τ
∆t)

= 1

(k +1) δt
∆t +k ∆t

τ

. (2.12)

To calculate the system efficiency, the speedup per processors is considered. We assume that the
number of processors is exactly the number of parallel computations that has to be done. This is
equal to the number of grid points in one sub grid.

P = τ

∆t
(2.13)

Therefore the system efficiency is

E = S

P
= 1

(k +1) τδt
(∆t)2 +k

(2.14)

The speedup is ideal if the system efficiency is close to 1. Since the numerator is always larger than
k, it is easy to see that this system efficiency is bounded by 1

k . Thus, the number of iterations that
have to be executed to meet the required accuracy, has to be significantly low to achieve speedup.

Assuming k ≥ 0, the speedup and system efficiency are maximized at k = 1 and∆t =p
2τδt [14].

Then the speedup and system efficiency are

S = τ

2∆t
, E = 1

2
. (2.15)

In [1] by Bal, more about the speedup and system efficiency can be found. In that paper, also the
speedup is increased by using multi-level parallelization. In [11], the speedup is increased by using
a pipelined version of Parareal.

Note that the above estimate for speedup and system efficiency is based on an ideal situation.
Often, the communication between processors takes a lot of time and this time can dominate the
total running time. However, the estimates do give an indication on the time advantage of using the
parareal algorithm. In section 5.2, the speedup will be analysed for the case that both the propaga-
tors use the BDF method as time-integration method.

2.5. Convergence of the algorithm
The advantage of using the parareal algorithm instead of a time-integration method in serial is the
time efficiency. Nonetheless, the parareal algorithm has some properties in terms of convergence.
In this chapter, these properties of the parareal algorithm are presented.

2.5.1. Order of accuracy
For the following theorems we assume that the fine propagator is sufficiently accurate, so that we
may use the equality x(ti+1) = F (ti+1, ti ,x(ti)). In the first publication on parareal [9], the order of
accuracy was analysed for a scalar linear case.

d x

d t
= ax, x(0) = x0, with a ∈R (2.16)

Theorem 2.5.1. Let ∆t = T
N , ti = i∆t for i = 0,1, ..., N . Consider equation (2.16). Let G(ti+1, ti ,uk

i) be
the corresponding Backward Euler approximation with time step ∆t . Then,

max1≤i≤N |x(ti)−uk
i | ≤Ck∆t k+1. (2.17)

2.5. Convergence of the algorithm 11

This means that the order of accuracy for the parareal algorithm is k +1. In [3], this proposition
is extended to the coarse propagator as a time-integration method of order p and the fine propaga-
tor as a method with sufficient accuracy. For these choice of propagators, the order of accuracy is
p(k +1).

For general systems, some more assumptions have to be added [2][1].

1. The system in (2.1) is stable for 0 ≤ t ≤ T in the sense that

||x(t)|| ≤C ||x0|| (2.18)

where C is a constant independent of x0 and t .

2. The coarse propagator is Lipschitz continuous in the sense that

||G(ti+1, ti ,u)−G(ti+1, ti ,v)|| ≤ (1+C∆t)||u−v|| for i ∈ (0, N −1) (2.19)

where C is a constant independent of ∆t , u and v.

3. The correction term ∆G(ti+1, ti ,ui) is of order p with Lipschitz regularity in the sense that

||∆G(ti+1, ti ,u)−∆G(ti+1, ti ,v)|| ≤C (∆t)p+1||u−v|| for i ∈ (0, N −1) (2.20)

This means that the coarse propagator is a discretisation of order p and satisfies a Lipschitz
regularity in its initial conditions.

Theorem 2.5.2. By assuming the above hypotheses, the order of accuracy of the Parareal algorithm
in the k th iteration is p(k +1). That is,

||x(tN)−uk
N || ≤C (∆t)p(k+1)||x0|| (2.21)

Proof. This theorem will be proven using induction. We will use the notation C for any constant.
For the case k = 0 it follows from hypothesis 1 and 3. Now suppose it holds for some given k − 1,
then it holds for k:

||x(ti)−uk
i || = ||F (ti , ti−1,x(ti−1))−G(ti , ti−1,uk

i−1)−∆G(ti , ti−1,uk−1
i−1)||

= ||G(ti , ti−1,x(ti−1))−G(ti , ti−1,x(ti−1))+F (ti , ti−1,x(ti−1))−G(ti , ti−1,uk
i−1)−∆G(ti , ti−1,uk−1

i−1)||
≤ ||G(ti , ti−1,x(ti−1))−G(ti , ti−1,uk

i−1)||+ ||∆G(ti , ti−1,x(ti−1))−∆G(ti , ti−1,uk−1
i−1)||

≤ (1+C∆t)||x(ti−1)−uk
i−1||+C (∆t)p+1||x(ti−1)−uk−1

i−1 || (by hypothesis 2 and 3)

≤ (1+C∆t)||x(ti−1)−uk
i−1||+C (∆t)p(k+1)+1||x0|| (by the induction assumption)

(2.22)
Because x(t0) = uk

0 , we can calculate this inequality repeatedly till we get an expression for i = N .

||x(t0)−uk
0 || = 0

||x(t1)−uk
1 || ≤C (∆t)p(k+1)+1||x0||

||x(t2)−uk
2 || ≤C (∆t)p(k+1)+1||x0||+C (∆t)p(k+1)+2||x0||

||x(t3)−uk
3 || ≤C (∆t)p(k+1)+1||x0||+C (∆t)p(k+1)+2||x0||+C (∆t)p(k+1)+3||x0||

...

||x(tN)−uk
N || ≤C ||x0||

N∑
j=1

(∆t)p(k+1)+ j

=C ||x0||(∆t)p(k+1)
N∑

j=1
(∆t) j

≤C (∆t)p(k+1)||x0|| for sufficiently small ∆t .

(2.23)

12 2. Introduction to parareal

Note that the inequality holds for all i , but it is only stated for n = N in the theorem.

2.5.2. Convergence
The approximation generated by the parareal algorithm will never converge better towards the so-
lution of the problem than the approximation generated by using the fine propagator in serial. This
will be proven by considering two cases. In both cases, the assumption is that the coarse and fine
propagators are numerically stable for 0 ≤ t ≤ T .

Theorem 2.5.3. When the right-hand side function f in the ordinary differential equation (2.1) does
not depend on x, the solution in every iteration of the parareal algorithm will be equal in each itera-
tion (except for the zeroth iteration). Moreover, the approximation is equal to

u0 = x0

ui+1 = F (ti+1, ti ,ui) for i = 0, . . . , N −1.
(2.24)

Proof. In this proof we consider the coarse propagator to be a single-step time-integration method
with time-step ∆t . Every time-integration step is structured like

ui+1 = ui +F (∆t , ti ,ui ,ui+1). (2.25)

The F (∆t , ti ,ui ,ui+1) depends on the method you chose. However, the ui and ui+1 in the operator
F only appears inside the function f and since f(t ,x) does not depend on x, (f(t ,x) = f(t)), without
loss of generality, we can write one time-integration step as

ui+1 = ui +F (∆t , ti). (2.26)

The coarse propagator is defined as one time-integration step.

G(ti+1, ti ,ui) = ui +F (∆t , ti) (2.27)

The fine propagator is defined as k time-integration steps with time-step ∆t/m.

ui+ 1
m
= ui +F (∆t/m, ti)

ui+ 2
m
= ui+ 1

m
+F (∆t/m, ti+ 1

m
)

= ui +F (∆t/m, ti)+F (∆t/m, ti+ 1
m

)

ui+ 3
m
= ui+ 2

k
+F (∆t/m, ti+ 2

m
)

= ui +F (∆t/m, ti)+F (∆t/m, ti+ 1
k

)+F (∆t/m, ti+ 2
m

)

...

F (ti+1, ti ,ui) = ui+1 = ui +
m−1∑
j=0

F (∆t/m, ti+ j
m

)

(2.28)

If we want to approximate the value of x on grid point i +1 in iteration k +1 we get

uk+1
i+1 =G(ti+1, ti ,uk+1

i)+F (ti+1, ti ,uk
i)−G(ti+1, ti ,uk

i)

= uk+1
i +F (∆t , ti)+uk

i +
k−1∑
j=0

F (∆t/m, ti+ j
k

)−uk
i −F (∆t , ti)

= uk+1
i +

k−1∑
j=0

F (∆t/m, ti+ j
k

)

uk+1
i+1 = F (ti+1, ti ,uk+1

i)

(2.29)

2.5. Convergence of the algorithm 13

Since uk
0 = x0 for all k, this gives that in each iteration of the parareal algorithm (except for the zeroth

one) the same solution is obtained.

Now we will consider the case that f(t ,x(t)) does depend on x. This gives a more general, but
weaker result.

Theorem 2.5.4. After i iterations of the parareal algorithm, the approximation in the i th grid point
will be constant. Moreover, the approximation in this grid point will be

uk
i = F (ti , ti−1,ui−1

i−1) for k = i , . . . , N . (2.30)

Proof. This theorem will be proven by induction. G and F are the general coarse and fine propaga-
tors.

1. To start the proof we will check it for the case i = 1.

uk
0 = x0 for k = 0,1,2, ...

uk+1
1 =G(t1, t0,uk+1

0)+F (t1, t0,uk
0)−G(t1, t0,uk

0)

it holds that uk+1
0 = uk

0 = u0
0 for k = 0,1,2, ...

So uk+1
1 = F (t1, t0,uk

0) = F (t1, t0,u0
0) for k = 0,1,2, ...

⇒ uk
1 = F (t2, t0,u0

0) for k = 1,2, ...

2. By assuming it holds for i = n, we will prove that it holds for i = n +1.

uk
n = F (tn , tn−1,un−1

n−1) for k = n,n +1, ... (assumption)

uk+1
n+1 =G(tn+1, tn ,uk+1

n)+F (tn+1, tn ,uk
n)−G(tn+1, tn ,uk

n)

it holds that uk+1
n = uk

n = un
n for k = n,n +1, ...

So uk+1
n+1 = F (tn+1, tn ,uk

n) = F (tn+1, tn ,un
n) for k = n,n +1, ...

⇒ uk
n+1 = F (tn+1, tn ,un

n) for k = n +1,n +2, ...

3
Parallel computing

The parareal algorithm is only worthwhile in terms of speedup if the corrector term can be executed
in parallel. In this chapter, the parallel implementation is highlighted with the use of multiprocessing.

3.1. Multiprocessing
Python offers different packages for parallel computing, in this paper the package multiprocessing
is used. Multiprocessing seems to work the best for CPU bound processes and is easy to under-
stand and implement. For a simple demonstration by a code, this is the perfect choice. In this
section the procedure of parallel computing with multiprocessing is presented.

After the package is imported, a Pool is created by

pool = multiprocessing . Pool (multiprocessing . cpu_count ())

The argument in the function Pool gives an restriction on how many processes can be executed in
parallel. In this way, as much computations as there are CPU’s can be executed in parallel. Note that
this does not imply that you can only assign this number of processes to the Pool. For example, if
you assign 10 processes to Pool which will all take 1 second, and you have 4 CPU’s in your com-
puter, the running time is 3 seconds in total (when neglecting the communication time between
processors).

To assign processes to the Pool, we use

r e s u l t = [pool . apply_async (job , args =(j ,)) for j in l i s t]

By applying the jobs asynchronously, they can run in parallel. If only apply is used, the Pool blocks
until the result of one job is ready, after that it will start executing the next job. This is therefore
not suitable for parallel computing. apply_async can account for this problem, therefore this is
used. Though, apply_async does ask for one more step. After applying the jobs for the Pool asyn-
chronously, the return is a list of objects. To get the result out of the list of objects, get() is used in
the following way. Note that it is in a linear manner, but it has small computational costs.

r e s u l t = [res . get () for res in r e s u l t]

At the end of the Pool, you should close the Pool by running

pool . close ()

The complete documentation on multiprocessing can be found in [13]. In the following sections,
multiprocessing is applied to the specific case treated in this research.

15

16 3. Parallel computing

3.1.1. Create the pool
First off, the pool has to be specified. Time-integration steps executed on different grid points have
to be assigned to the pool. With the knowledge of a right-hand side function, the ∆t , the time on
the grid points t , the x (possibly vector) value on the grid points and facultative tolerances, the
time-integration step can be assigned to the pool with the use of a specified method.

def solver (method , f , dt , t , x , r t o l =1e−1, a t o l =1e−1) :
Dt = t [1]− t [0]
pool = multiprocessing . Pool (multiprocessing . cpu_count ())
r e s u l t = [pool . apply_async (method , args =(f , Dt , dt , t [i] , x [i] , r t o l , a t o l)) for i in range (len (t

))]
r e s u l t = [res . get () for res in r e s u l t]
pool . close ()
r e s u l t = np . array (r e s u l t)
return r e s u l t

The method function is specified as one of the time-integration methods considered in section 2.3.
The code for different methods can be found in appendix A. Below, the Forward Euler method prop-
agator is described to get an impression.

def forwardeuler (f , Dt , dt , t , x ,dummy_1=0 ,dummy_2=0) :
t_end = t + Dt
while t < t_end :

x = x + dt * f (t , x)
t = t + dt

return x

3.1.2. Define the propagators with the use of a pool
Parallel computing will be used in the computation of the correction term ∆G(ti+1, ti ,ui). The cor-
rection term uses the fine propagator and the coarse propagator executed on all the grid points.

In both the propagators, parallel computations have to be made. In the coarse propagator the
computations involve one time-integration step over all the grid points. The rtol_g and atol_g
are the tolerances that belong to the coarse propagator.

def G(rhs , array) :
t , x = array [: −1 , 0] , array [: −1 , 1 :]
dt = t [1]− t [0]
x = solver (method , rhs , dt , t , x , r t o l =rtol_g , a t o l =atol_g)
t = np . array ([t + dt]) . T
return np . hstack ((t , x))

The fine propagator comes in two variants. If a single-step method is used in the fine propagator, the
fine propagator uses a small time-step to propagate. In addition, it carries out more propagations.
This is accounted for in the functions for different methods. The method functions propagate until
the time on the next grid point is reached in a while loop. For the coarse propagator this is simply
after one loop. For the fine propagator, this is after m loops, where m = ∆t

δt . The other variant is that
the solve_ivp function is used in both propagators. For this variant, the rtol_f and atol_f values
are used. In this case, δt is also an argument in the function solver, but is not used.

def F(rhs , array , divis ion) :
t , x = array [: −1 , 0] , array [: −1 , 1 :]
dt = (t [1]− t [0]) / divis ion
x = solver (method , rhs , dt , t , x , r t o l = r t o l _ f , a t o l = a t o l _ f)
t = np . array ([t + dt * divis ion]) . T
return np . hstack ((t , x))

You can see that the only difference in the functions for the coarse and fine propagator is the time-
step and the tolerances.

3.2. Code structure 17

3.2. Code structure
Parareal is defined as a class. In the class, two functions for the approximation are defined. The
function startvector() determines the zeroth approximation. The function iterate(k) makes
use of the external two propagator functions F and G to execute k iterations of the Parareal algo-
rithm. Both the startvector() and iterate(k) functions assign an array with the answer to the
attribute self.answer. Furthermore, functions for plotting the approximation and the error are
defined.

3.2.1. Input arguments
First, the initial value problem is described according to the structure in section 2.1 by a right-hand
side function f(x(t), t). This function is a function from Rd ×R to Rd . In Python, this means that
it asks for a d-dimensional array and a t value, and then returns a d-dimensional array. Now the
parareal algorithm can be executed on this problem.

The Parareal class asks for the following inputs

Parareal (rhs , s t a r t , end , coarsesteps , division , i n i t i a l v a l u e , i t e r a t i o n s)

The first input is the right-hand side function of the initial value problem. start and end are the
boundaries of the time interval over which will be integrated. The integer coarsesteps tells in how
many grid points the solution has to be approximated. With these values, also the time-step Dt is
calculated. The integer division indicates in how many sub intervals each interval between grid
points has to be divided for the fine propagation. initialvalue is the x0 and iterations is the
number of iterations of the parareal algorithm that has to be executed. Additionally, the method for
time-integration is specified.

start

initialvalue

end

Dt

division

coarsesteps

Figure 3.1: Interval over which will be integrated.

3.2.2. Performing the algorithm
In the zeroth approximation, the time-integration method will be performed on all the grid-points
in serial by startvector(). The resulting numpy array is shown below. This array is assigned to the
attribute self.answer.

[[t0, x0,1, x0,2, . . . , x0,d],
[t1, u0

1,1, u0
1,2, . . . , u0

1,d],

[t2, u0
2,1, u0

2,2, . . . , u0
2,d],

...
[tN , u0

N , u0
N ,2, . . . , u0

N ,d]]

(3.1)

Then k iterations of the parareal algorithm are executed. In an iteration, first the parallel compu-
tations are carried out. Note that since G and F are two distinct functions, they are not executed
in parallel. However, in the functions the propagations for each grid point are executed in parallel.
With including this, an extra term k ·1 has to be added to the numerator of the speedup. Though,
the implementation is just used as a tool to execute the algorithm and is not ideal. Therefore, this
note will be overlooked.

18 3. Parallel computing

Then the approximation in the previous iteration will be updated in serial according to the
scheme in (2.3). Next, the updated approximation will be added to the attribute self.answer. The
final self.answer includes the approximation after every iteration.

[[[t0, x0,1, x0,2, . . . , x0,d],
[t1, u0

1,1, u0
1,2, . . . , u0

1,d],

[t2, u0
2,1, u0

2,2, . . . , u0
2,d],

...
[tN , u0

N , u0
N ,2, . . . , u0

N ,d]],

[[t0, x0,1, x0,2, . . . , x0,d],
[t1, u1

1,1, u1
1,2, . . . , u1

1,d],

[t2, u1
2,1, u1

2,2, . . . , u1
2,d],

...
[tN , u1

N , u1
N ,2, . . . , u1

N ,d]],

...

[[t0, x0,1, x0,2, . . . , x0,d],
[t1, uk

1,1, uk
1,2, . . . , uk

1,d],

[t2, uk
2,1, uk

2,2, . . . , uk
2,d],

...
[tN , uk

N , uk
N ,2, . . . , uk

N ,d]]]

For the full implementation we refer to appendix A.

4
First numerical results

Before the implementation of the parareal algorithm is applied the model of interest in this research,
it will be assessed with two one-dimensional examples for the right-hand side function. With these
test problems, the algorithm process will become clear and some properties of the algorithm will be
substantiated with the results.

4.1. One-dimensional test equations
4.1.1. Right-hand side function independent of the solution
First, we will consider a periodic right-hand side function which does not depend on x. The tested
one-dimensional initial value problem is

d x

d t
(t) = f (t) = sin

2π

5
t + 1

2
sin

2π

10
t 0 ≤ t ≤ 10,

x(0) = x0 = 0.
(4.1)

The analytic solution of this differential equation is known. Therefore, we can compare the obtained
approximation with the analytic solution. The analytic solution is determined by just integrating the
right-hand side with respect to t .

x(t) =− 5

2π
(cos

2π

5
t +cos

2π

10
t)+ 5

π
(4.2)

4.1.2. Right-hand side function dependent on the solution
To test the parareal implementation for f dependent on x, we will look at the following one-dimensional
differential equation, from which the solution is known.

d x

d t
(t) = f (x(t), t) = x · t 0 ≤ t ≤ 3,

x(0) = x0 = 1

9
.

(4.3)

The solution to differential equation is x(t) = x0 ·e
1
2 t 2

.

4.2. Parareal visualisation for the first test equation
By visualising the algorithm, we can get a better understanding of the process. We will visualise the
algorithm for the first test equation (4.1). For this visualisation we will divide the interval into 8 steps.
So there are 9 grid points, where 8 of them have an unknown value for x(t). The propagators use

19

20 4. First numerical results

the Forward Euler method as time-integration method. The coarse propagator uses the same time-
step as the time-step in the grid ∆t =∆T = T

8 . The fine propagator uses the time step of the coarse
propagator divided by 6, δt = ∆t

6 . Therefore, one coarse propagation takes 1 function evaluation
and one fine propagation 6 function evaluations.

The algorithm executed on the model in equation (4.1) is visualised in figure 4.3. The blue line
indicates the approximation generated by parareal, which consists of points uk

i . The black dots are

the values for G(ti+1, ti ,uk
i) and the red dots are the (intermediate) values for F (ti+1, ti ,uk

i). The
number of function evaluations is shown at the left corner of each figure. This gives an indication of
the running time thus far.

After executing the zeroth iteration of the parareal algorithm we find the approximation shown
in figure 4.3b. Thereafter, the parallel computations in the first iteration of the parareal algorithm
are executed, which results in figure 4.3c. In figure 4.3e the approximation after one iteration is
shown, this is a result of the sum of the coarse and fine propagator on u0

i and the coarse propagator
on u1

i according to the update scheme in (2.3). The approximation after two iterations is shown in
figure 4.3h and seems to be equal to the approximation after one iteration. This conjecture corre-
sponds with theorem 2.5.3 and will be checked in section 4.4.1.

4.3. Order of accuracy

N k = 1 k = 2 k = 3 k = 4 k = 5
25 6.045 ·101 1.645 ·101 3.051 ·100 4.161 ·10−1 4.361 ·10−2

rate 0.272 0.185 0.136 0.105
50 8.948 ·100 1.143 ·100 1.048 ·10−1 7.392 ·10−3 4.193 ·10−4

rate 0.128 0.092 0.071 0.057
100 1.789 ·100 0.111 ·10−1 5.031 ·10−3 1.796 ·10−4 5.251 ·10−6

rate 0.062 0.045 0.036 0.029
200 4.029 ·10−1 1.227 ·10−2 2.776 ·10−4 4.977 ·10−6 7.375 ·10−8

rate 0.030 0.023 0.018 0.015

Table 4.1

In section 2.5, it is obtained that the parareal algorithm has an accuracy of O (∆t kp), where p is
the order of accuracy of the coarse propagation scheme and k is the number of iterations executed.
This is only true with some restrictions on the coarse propagator and with the knowledge that the
fine propagator is sufficiently accurate. In this section this property will be tested for the test equa-
tion in (4.3) (Note that this is not interesting to test for test equation in (4.1), since the error does not
change after one iteration (2.5.3)).

As coarse propagator we will take the Backward Euler method. This method has an order of
O (∆t). So we expect that the order of accuracy in the k th iterations is O (∆t k).

G(ti+1, ti ,ui) = ui

1−∆t ti+1
(4.4)

The fine propagator has to be sufficiently accurate and since we know the solution to the problem,
we will use this as fine propagator. That is, ui+1 is the solution to the following initial value problem
at t = ti+1.

d x

d t
(t) = f (x(t), t) = x · t ti ≤ t ≤ ti+1,

x(ti) = ui .
(4.5)

The solution is equal to

x(t) = ui e
1
2 t 2− 1

2 (ti)2
. (4.6)

4.4. Examination of convergence 21

First the coarse time-step ∆t = T
25 is used and 5 iterations of parareal are executed. Thereafter, the

coarse time-step will be divided by two and 5 iterations are executed. This procedure will be done
three times. In table 4.1 the absolute error at the final time is shown for different coarse time-steps
and iterations. Next to that, the rate with which the error decreases in the iteration compared to the
previous iteration is shown. The statement made before is: the parareal algorithm has an accuracy
of O (∆t kp), with p = 1 in this case. This can also be concluded from table 4.1. The rate with which
the error decreases in iteration k compared to iteration k − 1 has to be proportional to ∆t , since
O (∆t k)/O (∆t k−1) = O (∆t). This is also observed in the table: whenever the number of grid points
doubles, the rate between the error in iteration k and k −1 halves.

4.4. Examination of convergence
In this section we will use the Forward Euler scheme as time-integration method with for the coarse
propagator a time-step of ∆t = T

8 and for the fine propagator a time-step of δt = ∆t
6 = T

48 for both
test equations.

The parareal algorithm is based on a iterative process. In each iteration, the approximation of
the solution to the differential equation is updated. Therefore, the approximation in an iteration is
expected to be closer to the analytic solution than the approximation in the previous iteration. This
is brought to test for the two test equations 4.1 and 4.3. The resulting approximation after different
iterations is shown in figure 4.1. In figure 4.1b, you can see that the more iterations of the parareal

(a) Parareal algorithm executed on differential equation 4.1. (b) Parareal algorithm executed on differential equation 4.3.

Figure 4.1: Approximation by parareal after different iterations.

algorithm you execute, the closer the approximation will get to the analytic solution in the case of
the second test equation. Figure 4.1a however, suggests that after 1 iteration, the approximation
generated by the parareal algorithm will not improve for the first test equation (which is consistent
with theorem 2.5.3). This assumption will be examined by analysing the difference in the approxi-
mations for each iteration.

4.4.1. Difference between iterations
Theorem 2.5.3 and figure 4.1a give us the assumption that the approximation for the solution to
equation (4.1) will not improve after the first iteration of the parareal algorithm. This will be verified
by calculating the difference between the approximation in the iterations. Table 4.2 shows the re-
sults. After one iteration, the approximation will not differ, this agrees with the statement we made
in theorem 2.5.3.

In theorem 2.5.4, a statement about the parareal algorithm on a general initial value problem is
proven. This will be verified by the same examination above. Table 4.3 shows the results. The results

22 4. First numerical results

grid point
0 1 2 3 4 5 6 7 8

it
er

at
io

n
1 0. 0.883 0.633 -0.102 0.08 0.572 0.112 -0.527 0.
2 0. 0. 0. 0. 0. 0. 0. 0. 0.
3 0. 0. 0. 0. 0. 0. 0. 0. 0.
4 0. 0. 0. 0. 0. 0. 0. 0. 0.
5 0. 0. 0. 0. 0. 0. 0. 0. 0.

Table 4.2: Difference between the iterations in the parareal algorithm executed on problem 4.1.

are consistent with the theorem.

grid point
0 1 2 3 4 5 6 7 8

it
er

at
io

n

1 0. 0.05990422 0.14405714 0.31043192 0.68327086 1.57277914 3.79929763 9.62491861 25.53591463
2 0. 0. 0.00453648 0.0217079 0.08224442 0.29461505 1.04461981 3.72610623 13.47027277
3 0. 0. 0. 0.00050056 0.00430454 0.02672006 0.14719564 0.76632767 3.87299929
4 0. 0. 0. 0. 0.00008285 0.00117591 0.0112253 0.09043722 0.66324957
5 0. 0. 0. 0. 0. 0.00002014 0.00044017 0.00613007 0.06925802
6 0. 0. 0. 0. 0. 0. 0.00000695 0.00022137 0.00430924
7 0. 0. 0. 0. 0. 0. 0. 0.00000329 0.00014629
8 0. 0. 0. 0. 0. 0. 0. 0. 0.00000208
9 0. 0. 0. 0. 0. 0. 0. 0. 0.

Table 4.3: Difference between the iterations in the parareal algorithm executed on problem 4.3.

4.4.2. Error after different iterations
To examine whether the equality in theorem 2.5.4 is applicable, the absolute error in different iter-
ations is analysed. In addition, the serial Forward Euler scheme is executed on the model with the
time step used for the fine propagator. To give a clear visualisation, after the error in each grid point
is generated, the error is divided by the error of the serial Forward Euler scheme in that grid point.
Thus, when the scaled error reaches 1, the error using parareal is equal to the error using the serial
Forward Euler scheme. The iteration is plotted against the error in logarithmic scale in figure 4.2.
From the figure, it can be noticed that in the end, the scaled errors in each grid point will be one.

Figure 4.2: Scaled error in the grid points after different iterations compared to the error gained using the Forward Euler
scheme in serial.

That means the errors in each grid point will be the same as the error for the serial Forward Euler
scheme.

4.4. Examination of convergence 23

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.3: Visualisation of 2 iterations in the parareal algorithm procedure on equation (4.1).

5
Application: combustion of methane

In this chapter, the parareal algorithm is executed on the model for the combustion of methane.
First, the overall reaction will be introduced to get an idea of the reaction process. After that, the
total reaction will be divided into two steps and here the functionality of the parareal algorithm will
come forward.

5.1. One-step mechanism
First, we will model the total reaction. This, we will identify as the one-step mechanism of com-
bustion of methane. The parareal scheme will not give a remarkable advantage for this model. This
section is merely to give an impression of the reaction process.

5.1.1. Model description
We will study the reaction mechanism of combustion of methane. The combustion of methane is
composed of more partial reactions and the total reaction equation is (5.1). When one methane
molecule meets two oxygen molecules, they start to react and after different small reactions, one
molecule carbon dioxide and two molecules hydrogen are formed [17].

CH4 +2O2
k−−→ CO2 +2H2O (5.1)

The k represents the rate coefficient of the reaction and gives an indication on how fast the reaction
develops. In our model, it is expressed using the modified Arrhenius equation [8].

k = ATb ·e−
E

RT , (5.2)

where A is the pre-exponential factor, b is the temperature exponent, T is the temperature in Kelvin,
E is the activation energy and R is the gas constant. The pre-exponential factor, the temperature
exponent and the activation energy are different for each reaction.

To convert this reaction into a model of differential equations, the rate law is used. This is de-
scribed in [16, Chapter 6]. The rate law results in the reaction rate in equation (5.3), p is the notation
for the reaction order.

r = [CH4]pCH4 [O2]pO2 (5.3)

For reaction (5.1) the rate equation for the different components in methane combustion is

25

26 5. Application: combustion of methane

shown in equation (5.4).
d [CH4]

d t
=−k · r

d [O2]

d t
=−2k · r

d [CO2]

d t
= k · r

d [H2O]

d t
= 2k · r

(5.4)

This is a first order initial value problem in four dimensions of the form as in equation (2.1). There-
fore, it rests us to numerically approximate the solution using the parareal algorithm.

5.1.2. Numerical results
A Forward Euler scheme with different time-steps is used for the coarse and fine propagators. The
reaction order used in the implementation is 1 and 0.5 for CH4 and O2 respectively. The temperature
rise caused by the reaction is assumed to be zero. More parameters of this reaction mechanism are
summarized in table 5.1. In figure 5.1 the result of two parareal iterations with the Forward Euler

Total reaction
Activation energy (E) 1.1 ·1010

Temperature exponent (b) 0
Pre-exponential factor (A) 2 ·104

Reaction exponents (p) pC H4 = 1
pO2 = 0.5

Table 5.1: Parameters for the total reaction of combustion of methane [17].

scheme is shown. The values in table 5.2 are used. The initial value of the concentrations is taken to
be in stoichiometric ratio, that is, there is exactly enough O2 to let all the CH4 react. The resulting

Figure 5.1: One step mechanism with the initial concentrations in stoichiometric ratio.

figure gives an impression of the reaction. Though, in this research, we are interested in the parareal
algorithm executed on the two-step mechanism.

5.2. Two-step mechanism 27

Input argument Value
t0, tn 0,2 ·10−8

∆t tn
50

δt ∆t
10

T 1000 K
[CH4]t0 , [O2]t0 , [CO2]t0 , [H2O]t0 1,2,0,0 [mol/L]

Table 5.2: Inputs for Parareal for the one-step mechanism.

5.2. Two-step mechanism
5.2.1. Model description
The combustion of methane is a combination of more reactions. In this section, the two-step mech-
anism of combustion of methane is considered. The CH4 and O2 react with each other to CO and
H2O and then the formed CO reacts with the residual O2 to CO2 [4].

CH4 +0.5O2
k1−−→ CO+2H2O

CO+1.5O2
k2−−→ CO2

(5.5)

The reaction coefficients, k1 and k2, are expressed using the modified Arrhenius equation (5.2) with
different values for the constants A, b and E . With the knowledge of the reaction coefficients and
the reaction rates in (5.8), the model for the two-step mechanism of combustion of methane is
described in equation (5.6). We want to find an approximation for the solution to this model at
0 ≤ t ≤ 1 ·10−7.

d [CH4]

d t
=−k1 · r1

d [O2]

d t
=−0.5k1 · r1 −1.5k2 · r2

d [CO]

d t
= k1 · r1 −1.5k2 · r2

d [CO2]

d t
= k2 · r2

d [H2O]

d t
= 2k1 · r1

(5.6)

0 ≤ t ≤ ·10−7 (5.7)

k1 = A1Tb1 ·e−
E1

R1T ,

r1 = [CH4]pCH4 [O2]pO2,1 ,

k2 = A2Tb2 ·e−
E1

R1T

r2 = [CO]pCO [O2]pO2,2
(5.8)

The parameters for the this model are summed up in table 5.3. The second reaction develops faster
than the first reaction. To numerically approximate this model, the second reaction calls for inte-
grating over a small timescale and the first reaction for integrating over a large timescale. This can
both be achieved by using the parareal algorithm, which will be demonstrated in the following sec-
tions.

To illustrate the need for parareal, we will examine what happens if we use the time-integration
method Forward Euler, in serial. Take T = 1 ·10−7, ∆t = T

350 , the result is shown in figure 5.3. In this
figure the concentrations for O2, CO and CO2 seems to be unstable for the numerical method with
the selected time-step. These chemicals are exactly the ones which appear in the second reaction.
This suggests that the time-step is incompetent to model the second reaction. However, the result
gives the impression that the selected time-step gives a stable result for the first reaction. The result

28 5. Application: combustion of methane

first reaction second reaction
Activation energy (E) 3.55 ·10−4 1.2 ·10−4

Temperature exponent (b) 0 0.8
Pre-exponential factor (A) 4.9 ·109 2 ·108

Reaction exponents (p) pC H4 = 0.5 pCO = 1
pO2,1 = 0.65 pO2,2 = 0.5

Table 5.3: Parameters for the 2 step combustion of methane [4].

hereby illustrates the need to integrate over different timescales. To accommodate both the large
timescale for the first reaction and the small timescale for the second reaction, the parareal algo-
rithm is used. Note that, another possibility is to integrate over the small timescale on the whole
grid, but this leads to an unnecessary small time-step for integrating the first reaction.

Figure 5.2

Figure 5.3: Two-step mechanism using the Forward Euler method in serial, with T = 1 ·10−7, ∆t = T
350 .

5.2.2. Selection of parareal parameters for two-step mechanism
To start the parareal algorithm, suitable parameters have to be defined. First, we will select an ade-
quate time-integration method.

It is useful to know that, since the system in (5.6) could be stiff, a convenient choice for the time-
integration method is an implicit method. In section 2.3, three implicit methods are considered:
the Backward Euler method, the Trapezoidal method and the Backward Differentiation Formulas
brought by the solve_ipv function. In this research, we will focus on the Backward Differentiation
Formulas.

The choice for the time-step used by the coarse and fine propagator is based on the speedup
and the system efficiency. For the calculations on speedup and system efficiency, we will refer to
section 2.4. We will assume that we have enough processors available, that means M = 1, τ = T .
The number of iterations that has to be executed is based on the required accuracy. The required
accuracy rests on an upper bound for the absolute error. To calculate the absolute error, the analytic
solution to (5.6) is necessary. The analytic solution, though, is not known. Therefore we will use the
BDF method with a relative tolerance of 3 ·10−14 and a absolute tolerance of 10−20 over the grid as
representation of the analytic solution. The absolute error is given as

ε= ||x(ti)−uk
i || (5.9)

5.2. Two-step mechanism 29

First we will define the propagators. In the fine propagator we will use a relative tolerance of
3 ·10−14 and an absolute tolerance of 1 ·10−20. The coarse propagator will be decided with the use of
the speedup and system efficiency. The ratio ∆t

δt in the calculations for speedup and efficiency, is not
uniform over the whole grid, therefore we will use the average. To calculate this average, the coarse
propagator is executed over a grid with 100 grid points and the number of function evaluations for
the calculation of each grid point, is gathered. The same will be done for the fine propagator. The
average ratio between the function evaluations executed by the coarse and fine propagator gives an
indication of the ratio ∆t

δt . For some choices for the tolerances used in the coarse propagator, the
estimated ratios are

r tolF , atolF = 3 ·10−14,1 ·10−20, r tolG , atolG = 1 ·10−10,1 ·10−10,
∆t

δt
= 2.3;

r tolF , atolF = 3 ·10−14,1 ·10−20, r tolG , atolG = 1 ·10−10,1 ·10−10,
∆t

δt
= 5.3;

r tolF , atolF = 3 ·10−14,1 ·10−20, r tolG , atolG = 1 ·10−5,1 ·10−5,
∆t

δt
= 11.9;

r tolF , atolF = 3 ·10−14,1 ·10−20, r tolG , atolG = 1 ·10−1,1 ·10−1,
∆t

δt
= 26.0.

(5.10)

In section 2.4, it is stated that the optimal speedup and system efficiency are obtained at ∆t =p
2Tδt , assuming that enough processors are available. This is equivalent with saying that

∆t

δt
= 2

T

∆t
(5.11)

If we use the tolerances of 10−1 for the coarse propagator, we need

T

∆t
= 1

2

∆t

δt
= 1

2
·26 = 13 (5.12)

This means, we need 13 grid points to generate the optimal speedup. In this way, the speedup and
system efficiency are, after one iteration

S = 6.5, E = 0.5 (5.13)

Moreover, the error after one iteration is equal to

ε= 4.27 ·10−4 (5.14)

However, the number of grid points is rather small. In this case, even when 4 iterations are executed,
the second reaction can not really be observed in the simulation, see figure 5.4. Therefore, in the
following simulations we will use 100 grid points. In order to get the optimal speedup and efficiency
at N = 100, the ratio between the costs for the propagators has to be ∆t

δt = 200. This can not be
achieved by using the Backward Differentiation Formulas in solve_ivp for both the propagators
as observed in the cases in equation (5.10). Even for extreme values for the tolerances used by the
propagators, the ratio is not even close to 200. To get that large ratio, a different choice for the
time-integration method can be used for the coarse propagator. This will not be of interest in this
research, but could be examined in further research. Here, we will use the tolerances of 10−1 in the
coarse propagator, since this gives the best speedup and system efficiency (compared to the other
values in equation (5.10)). The resulting values for speedup and system efficiency after one iteration
are

∆t

δt
= 26.0, ∆t = 1 ·10−9, T = 1 ·10−7, P = 100, k = 2, S = 11.5, E = 0.12. (5.15)

30 5. Application: combustion of methane

(a)

(b) Zoomed

Figure 5.4: Approximation of two-step mechanism by four iterations of parareal in 13 grid points. The tolerances for the
fine propagator are r tolF , atolF = 3 ·10−14,1 ·10−20 and for the coarse propagator r tolG , atolG = 1 ·10−1,1 ·10−1.

Though, the speedup has increased, the system efficiency has decreased much compared to the
situation with 13 grid points. However, it gives a slightly more accurate approximation, the error
after one iteration is equal to

ε= 3.53 ·10−5 (5.16)

To decide how many iterations of the parareal algorithm have to be executed the error will be
analysed. We will restrict the error to be less or equal to 10−9 at the final grid point. With 100 grid
points and the defined coarse and fine propagators as above, this is satisfied when 5 iterations of
the parareal algorithm are executed. In this case, the error, speedup and system efficiency are

∆t

δt
= 26.0, ∆t = 1 ·10−9, T = 1 ·10−7, P = 100, k = 5, ε= 4.95 ·10−11 S = 3.56, E = 0.04.

(5.17)
The error in various iterations for these choices of parameters is displayed in figure 5.5. It is shown
that in iteration 5, the error at the final grid-point is less than 10−9. The error is calculated by using
the Backward Differentiation Formulas method with order 1 to 5 and relative and absolute toler-
ances of 10−14 and 10−20 respectively, as analytic solution. This is the reason for the error to be zero
at the first k grid points, when k iterations are executed (a result from theorem 2.5.4).

5.2.3. Numerical results
Altogether, the inputs for parareal are summarized in table 5.4. We will execute the parareal al-
gorithm with 5 iterations. The approximation of the model in equation (5.6) will be calculated on
100 grid points in the interval between 0 and 10−7 seconds. The coarse propagator uses the time-
integration method BDF in solve_ivp with the absolute and relative tolerances of 10−1. The fine
propagator uses the time-integration method BDF in solve_ivp with relative tolerance of 10−14

5.2. Two-step mechanism 31

Figure 5.5: Absolute error in different iterations for the BDF method with order 1 to 5. The error is related to the serial
approximation using BDF with order 1 to 5 and tolerances 10−14 (relative) and 10−20 (absolute). The dotted line is at

10−9 which is the criterion for the error.

and absolute tolerance of 10−20. To get to an approximation error of 10−9 or less, 5 iterations have
to be executed.

The final result is shown in figure 5.6. It is zoomed to observe the concentration of CO. Clearly, a
difference in concentration of CO is visible. The line for the concentration however, is not smooth.
This is not a result of the inaccuracy of the parareal algorithm, but of the selected grid size∆T . Since
the error is sufficient, it is not necessary to reduce this grid size.

Input argument Value
t0, tn 0,1 ·10−7

[CH4]t0 , [O2]t0 , [CO]t0 , [H2O]t0 , [CO2]t0 1,2,0,0,0 [mol/L]
T 1000 K
method Backward Differentiation Formulas with order 1 to 5
∆t tn

100
r tolG , atolG 1 ·10−1,1 ·10−1

r tolF , atolF 10−14,10−20

k 5

Table 5.4: Inputs for parareal executed on the model for the two-step mechanism of combustion of methane. The initial
concentrations are in stoichiometric ratio.

32 5. Application: combustion of methane

(a)

(b) Zoomed

Figure 5.6: Approximation of two-step mechanism by Parareal with inputs in table 5.4.

6
Conclusion and recommendations

In this research, we used the parareal algorithm to model the mechanism of combustion of methane.
First, the parareal algorithm is introduced. With this introduction to parareal, specific choices for
the coarse and fine propagator are considered. Following, the speedup, the order of accuracy and
the convergence of parareal are treated and examined using two test equations.

Speedup
The parareal algorithm is designed to generate an approximation in less time, than the fine propaga-
tor executed in serial, but with comparable accuracy. The speedup of the parareal algorithm, related
to the speed of the fine propagator in serial, is considered together with the system efficiency, that
is, the speedup per processor. The speedup and system efficiency are ideal for ∆t

δt = 2 τ
∆t and k = 1.

In this case, the speedup is S = τ
∆t and the system efficiency is E = 1

2 . However, for the case that k = 1
the approximation is could be insufficient in accuracy.

Order of accuracy
In the analysis of the order of accuracy, we assumed the fine propagator to be sufficiently accurate.
To start, we mentioned that for a scalar linear initial value problem, the parareal algorithm increases
the order of accuracy by a factor of k + 1 compared to the order of the coarse propagator, where
k is the number of iterations. Then this is proved for a non-linear initial value problem, where
more properties are needed to generate the order of accuracy increase of k + 1. First of all, the
solution to the initial value system has to be stable. Moreover, the coarse propagator has to be
Lipschitz continuous for a specific Lipschitz constant. Finally the coarse propagator has to be an
discretisation with order p and has to satisfy a Lipschitz regularity in its initial condition. If all these
constraints are met, the parareal algorithm increases the order with a factor of k +1.

Convergence
In this research, the assumption that the parareal will never converge better towards the serial fine
propagation over the grid, is proven. This is done in two cases, one where the right-hand side of
the initial value problem will only depend on the time and one where the right-hand side will also
depend on the solution to the problem.

In both cases it is proven, that after N iterations, the approximation generated by the parareal
algorithm will be equal to the approximation generated by the fine propagator executed in serial on
the grid and will not improve by executing more iterations. In the case that the right-hand side does
not depend on the solution to the problem, this theorem is even stronger: the approximation after
only one iteration of the parareal algorithm will be equal to the approximation generated by the fine
propagator executed in serial.

33

34 6. Conclusion and recommendations

Combustion of methane
The parareal algorithm is executed on the two-step combustion mechanism of methane. First, the
need for numerically integrating over two timescales is illustrated with applying the Forward Euler
method in serial on the model. The result indicates that the Forward Euler method is for a part of
the model a convenient method, but for the other part not applicable. The parareal algorithm can
integrate over two timescales in one process and is therefore the right choice.

The approximation is generated by parareal using BDF method with an (automatically selected)
order from 1 to 5, in the propagators. The coarse and fine propagators use different tolerances for
the error in the time-integration method. Though this choice for BDF method in the propagators
gives an accurate result, it does not lead to a significant speedup.

In this research, the same time-integration method, the BDF method with automatic selected
time-step and order, is used for the two propagators. The difference in computational time is not
high, even if extreme low values for the error tolerances are set in the fine propagator and extreme
high values for the error tolerances are set in the coarse propagator. The parareal algorithm exe-
cuted on this model therefore has a speedup of around 4. Which means it is 4 times faster than
applying the serial fine propagator scheme on the same time grid. This speedup is with neglecting
the communication between the processors and some implementation imperfections. The time
for these matters can outweigh the time gain by the speedup. This can even lead to a longer run-
ning time for parareal than for the serial integration. Only if the difference in running time for the
coarse and fine propagator is sufficient, there is a reasonable speedup. If different time-integration
methods are used for the coarse propagator and the fine propagator, a reasonable ratio between the
costs for executing the propagators, and therefore a reasonable speedup, can be obtained. This is
therefore a matter that can be explored in further research.

Moreover, the mechanism of combustion of methane is a process with more than two partial
equations. Further research can be about applying the parareal algorithm on the multiple (more
than two) step mechanisms of combustion of methane. To increase speedup and efficiency, the
multi-level parallelization as in [2] can be applied on this multiple-step mechanism.

Bibliography

[1] Guillaume Bal. Parallelization in time of (stochastic) ordinary differential equations. Math.
Meth. Anal. Num.(submitted), 2003.

[2] Guillaume Bal. On the convergence and the stability of the parareal algorithm to solve partial
differential equations. In Timothy J. Barth, Michael Griebel, David E. Keyes, Risto M. Niemi-
nen, Dirk Roose, Tamar Schlick, Ralf Kornhuber, Ronald Hoppe, Jacques Périaux, Olivier Piron-
neau, Olof Widlund, and Jinchao Xu, editors, Domain Decomposition Methods in Science and
Engineering, pages 425–432, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg. ISBN 978-3-
540-26825-3.

[3] Guillaume Bal and Yvon Maday. A “parareal” time discretization for non-linear pde’s with ap-
plication to the pricing of an american put. Recent Developments in Domain Decomposition
Methods, 23, 01 2002. doi: 10.1007/978-3-642-56118-4_12.

[4] B. Franzelli, E. Riber, L.Y.M. Giquel, and T. Poinsot. Large-eddy simulation of combustion in-
stabilities in a lean partially premixed swirled flame. Combustion and Flame, 159(2):621–637,
2012.

[5] Martin Gander, Felix Kwok, and Hui Zhang. Multigrid interpretations of the parareal algorithm
leading to an overlapping variant and mgrit. Computing and Visualization in Science, 19, 06
2018. doi: 10.1007/s00791-018-0297-y.

[6] Martin J. Gander, Iryna Kulchytska-Ruchka, Innocent Niyonzima, and Sebastian Schöps. A
new parareal algorithm for problems with discontinuous sources. SIAM Journal on Scientific
Computing, 41(2):B375–B395, 2019. doi: 10.1137/18M1175653. URL https://doi.org/10.
1137/18M1175653.

[7] H.B. Keller. Numerical Methods for Two-Point Boundary Value Problems. 1968.

[8] K. J. Laidler. A glossary of terms used in chemical kinetics, including reaction dynamics (iu-
pac recommendations 1996). Pure and Applied Chemistry, 68(1):149 – 192, 1996. doi: https:
//doi.org/10.1351/pac199668010149. URL https://www.degruyter.com/view/journals/
pac/68/1/article-p149.xml.

[9] Jacques-Louis Lions, Yvon Maday, and Gabriel Turinici. Résolution d’EDP par un schéma en
temps “pararéel”. C. R. Acad. Sci., Paris, Sér. I, Math., 332(7):661–668, 2001. ISSN 0764-4442.

[10] Y. Maday and O. Mula. An adaptive parareal algorithm, 2019.

[11] Michael Minion. A hybrid parareal spectral deferred corrections method. Communications in
Applied Mathematics and Computational Science, 5(2):265–301, 2011.

[12] J. Nievergelt. Parallel methods for integrating ordinary differential equations. Commun. ACM,
7(12):731–733, December 1964. ISSN 0001-0782. doi: 10.1145/355588.365137. URL https:
//doi.org/10.1145/355588.365137.

[13] Python Software Foundation. multiprocessing — process-based parallelism, 2020. URL
https://docs.python.org/3.6/library/multiprocessing.html. Accessed: 2020-06-29.

35

https://doi.org/10.1137/18M1175653
https://doi.org/10.1137/18M1175653
https://www.degruyter.com/view/journals/pac/68/1/article-p149.xml
https://www.degruyter.com/view/journals/pac/68/1/article-p149.xml
https://doi.org/10.1145/355588.365137
https://doi.org/10.1145/355588.365137
https://docs.python.org/3.6/library/multiprocessing.html

36 Bibliography

[14] Gunnar A Staff. The parareal algorithm. Science And Technology, 60(2):173–184, 2003.

[15] C. Vuik, F. J. Vermolen, M. B. van Gijzen, and M.J. Vuik. Numerical Methods for Ordinary Differ-
ential Equations. VSSD, 2018.

[16] J. Warnatz, U. Maas, and R.W. Dibble. Combustion. Springer-Verlag Berlin Heidelberg, 4th
edition, 2006. ISBN 978-3-540-25992-3.

[17] C.K. Westbrook and F.L. Dryer. Simplified reaction mechanisms for the oxidation of hydrocar-
bon fuel in flames. Combustion Science and Technology, 27(1-2):31–43, 1981.

A
Implementation parareal algorithm

The parareal algorithm is implemented in Python. The considered time-integration methods in
section 2.3 are defined. If the solution is unknown, for the representation of the solution to the
initial value problem, the BDF method with low tolerances is used.

1 from math import *
2 import numpy as np
3 import matplotlib . pyplot as p l t
4 import matplotlib . animation as animation
5 from scipy . integrate import solve_ivp
6 import time as timemodule
7 import t imeit
8 import multiprocessing as mp
9 from scipy . optimize import f s o l v e

10 #%% Time−integration methods defined ##
11
12 ## Only uncomment e x a c t l y () i f the solution to the problem i s known
13 # def e x a c t l y (f , Dt , dt , t , x ,dummy_1=0 ,dummy_2=0) :
14 # x = solution (t +Dt , t , x)
15 # return x
16
17 def forwardeuler (f , Dt , dt , t , x ,dummy_1=0 ,dummy_2=0) :
18 t_end = t + Dt
19 while t < t_end :
20 x = x + dt * f (t , x)
21 t = t + dt
22 return x
23
24 def rungekutta (f , Dt , dt , t , x ,dummy_1=0 ,dummy_2=0) :
25 t_end = t + Dt
26 while t < t_end :
27 k1 = dt * f (t , x)
28 k2 = dt * f (t +dt /2 , x+k1 /2)
29 k3 = dt * f (t +dt /2 , x+k2 /2)
30 k4 = dt * f (t +dt , x+k3)
31 x = x + 1/6*(k1+2*k2+2*k3+k4)
32 t = t + dt
33 return x
34
35 def backwardeuler (f , Dt , dt , t , x ,dummy_1=0 ,dummy_2=0) :
36 t_end = t + Dt
37 while t < t_end :
38 x_old = x
39 def equations (x_new) :

37

38 A. Implementation parareal algorithm

40 f_xnew = f (t +dt , x_new)
41 return (x_new − x_old − dt * f_xnew)
42 solved = f s o l v e (equations , x_old+dt * f (t , x_old) , ful l_output=True)
43 x = solved [0]
44 t = t + dt
45 return x
46
47 def trapezoidal (f , Dt , dt , t , x ,dummy_1=0 ,dummy_2=0) :
48 t_end = t + Dt
49 while t < t_end :
50 x_old = x
51 def equations (x_new) :
52 f_xold = f (t , x_old)
53 f_xnew = f (t +dt , x_new)
54 return (x_new − x_old − dt /2*(f_xnew+f_xold))
55 x = f s o l v e (equations , x_old+dt * f (t , x_old))
56 t = t + dt
57 return x
58
59 def solveivp (f , Dt , dt , t , x , r t o l , a t o l) :
60 solved = solve_ivp (f , (t , t +Dt) , x , method= ’BDF ’ , r t o l = r t o l , a t o l = a t o l)
61 # print (’ The number of function evaluations i s ’+ s t r (solved . nfev))
62 x _ j = solved . y [: , −1]
63 return x _ j
64
65 #%%##
66
67 def solver (method , f , dt , t , x , r t o l =1e−1, a t o l =1e−1) :
68 " " " I n t e g r a t e i n i t i a l value problem with i n i t i a l s t a t e x [i] on t [i] over range of i
69 input = t : [t0 , t1 , . . . , tn]
70 x : [x0 , x1 , . . . , xn] (p o s s i b l y xi as vector)
71 output= x : [x1_new , x2_new , . . . , x3_new] " " "
72 Dt = t [1]− t [0]
73 pool = mp. Pool (mp. cpu_count ())
74 r e s u l t = [pool . apply_async (method , args =(f , Dt , dt , t [i] , x [i] , r t o l , a t o l)) for i in range (len (t))

]
75 r e s u l t = [res . get () for res in r e s u l t]
76 pool . close ()
77 r e s u l t = np . array (r e s u l t)
78 return r e s u l t
79
80 #%%##
81
82 def G(rhs , array) :
83 " " " Coarse propagator :
84 input = [[t_0 , x_0] , [t_1 , x_1] , . . . , [t_n , x_n]]
85 output = [[t_1 , xnew−1] ,[t_2 , xnew_2] , . . . [[t_n , xnew_n]] " " "
86 t , x = array [: −1 , 0] , array [: −1 , 1 :]
87 Dt = t [1]− t [0]
88 x = solver (method , rhs , Dt , t , x , r t o l =rtol_g , a t o l =atol_g)
89 t = np . array ([t + Dt]) . T
90 return np . hstack ((t , x))
91
92 def F(rhs , array , divis ion) :
93 " " " Fine propagator :
94 input = [[t_0 , x_0] , [t_1 , x_1] , . . . , [t_n−1,x_n−1]]
95 output = [[t_1 , xnew−1] ,[t_2 , xnew_2] , . . . [[t_n , xnew_n]] " " "
96 t , x = array [: −1 , 0] , array [: −1 , 1 :]
97 dt = (t [1]− t [0]) / divis ion
98 x = solver (method , rhs , dt , t , x , r t o l = r t o l _ f , a t o l = a t o l _ f)
99 t = np . array ([t + dt * divis ion]) . T

39

100 return np . hstack ((t , x))
101
102 class Parareal (object) :
103 " " " Using the parareal algorithm to approximate the solution of dx / dt=rhs (t , x) " " "
104 def _ _ i n i t _ _ (s e l f , rhs , s t a r t , end , i n i t i a l v a l u e , coarsesteps , division , k) :
105 s e l f . i n i t i a l v a l u e = i n i t i a l v a l u e
106 s e l f . coarsesteps = coarsesteps
107 s e l f . div is ion = divis ion
108 s e l f . s t a r t , s e l f . end = s t a r t , end
109 s e l f . time = np . linspace (s e l f . s t a r t , s e l f . end , num = s e l f . coarsesteps +1)
110 s e l f . Dt = s e l f . time [1] − s e l f . time [0]
111 s e l f . rhs = rhs
112 s e l f . answer= []
113
114 s e l f = s e l f . g e t s t a r t v e c t o r ()
115 s e l f = s e l f . i t e r a t e (k)
116
117 def g e t s t a r t v e c t o r (s e l f) :
118 print (’ITERATION 0 ’)
119 timer_begin = timeit . default_timer ()
120 t = s e l f . time
121 t , x = t [0] , s e l f . i n i t i a l v a l u e
122 answer = [np . hstack ([t , x])]
123 steps = 0
124 while steps < s e l f . coarsesteps :
125 t i = answer [−1][0]
126 x i = answer [−1] [1 :]
127 x = method(s e l f . rhs , s e l f . Dt , s e l f . Dt , t i , xi , r tol_g , atol_g)
128 t = t + s e l f . Dt
129 steps += 1
130 new = np . hstack ([t , x])
131 answer . append(new)
132 s e l f . answer = np . array (answer)
133 timer_end = timeit . default_timer ()
134 print (’ running time : ’ , timer_end−timer_begin)
135 return s e l f
136
137 def i t e r a t e (s e l f , k) :
138 answer = [s e l f . answer] # get the s t a r t vector
139 t = s e l f . time
140 for j in range (k) : #execution of the parareal i t e r a t i o n s
141 old = answer[−1]
142 print (’ \n\nITERATION ’ , j +1)
143 # p a r a l l e l computations
144 timer_begin = timeit . default_timer ()
145 Garray = G(s e l f . rhs , old)
146 timer_end = timeit . default_timer ()
147 print (’ running time coarse : ’ , timer_end−timer_begin)
148 timer_begin = timeit . default_timer ()
149 Farray = F(s e l f . rhs , old , s e l f . div is ion)
150 timer_end = timeit . default_timer ()
151 print (’ running time fine : ’ , timer_end−timer_begin)
152 # non−p a r a l l e l computations
153 x = s e l f . i n i t i a l v a l u e
154 nex = [np . hstack ([t [0] , x])]
155 i = 0
156 timer_begin = timeit . default_timer ()
157 while i < s e l f . coarsesteps :
158 t i = nex [−1][0]
159 x i = nex [−1] [1 :]
160 grove = method(s e l f . rhs , s e l f . Dt , s e l f . Dt , t i , xi , r tol_g , atol_g)

40 A. Implementation parareal algorithm

161 c o r r e c t i e = Farray [i ,1 :] − Garray [i , 1 :]
162 x = grove + c o r r e c t i e
163 i += 1
164 new = np . hstack ([t [i] , x])
165 nex . append(new)
166 timer_end = timeit . default_timer ()
167 print (’ running time update scheme : ’ , timer_end−timer_begin)
168 nex = np . array (nex)
169 answer . append(nex)
170 s e l f . answer = np . array (answer)
171 return s e l f
172
173 def plot (s e l f , namen) :
174 sol = []
175 for k in range (len (s e l f . answer)) :
176 sol . append(s e l f . answer [k])
177
178 f i g = p l t . f i g u r e ()
179 ax = f i g . add_subplot (111)
180 for i in range (len (s e l f . i n i t i a l v a l u e)) :
181 # f o r k in range (i t e r a t i o n s) : #uncomment these l i n e s i f the r e s u l t has to be shown f o r

d i f f e r e n t i t e r a t i o n s
182 # ax . plot (s o l [k] [: , 0] , s o l [k] [: , i +1])
183 ax . plot (sol [−1] [: , 0] , sol [−1] [: , i +1] , l a be l = ’ [’+namen[i]+ ’] ’)
184 ax . legend ()
185
186 ax . s e t _ x l a b e l (’ time [s] ’)
187 ax . s e t _ y l a b e l (’ concentration [mol/L] ’)
188 p l t . show ()
189 return
190
191 def plotdi f ference (s e l f) :
192 time = s e l f . time
193 steps = []
194 for i in range (len (s e l f . answer)−1) :
195 step = (s e l f . answer [i +1]− s e l f . answer [i]) [: , 1 : len (s e l f . i n i t i a l v a l u e) +1]
196 steps . append(step)
197
198 f i g = p l t . f i g u r e ()
199 ax = f i g . add_subplot (111)
200 color = [’b ’ , ’ g ’ , ’ r ’ , ’ c ’ , ’m’ , ’ y ’ , ’ k ’ , ’ grey ’ , ’ chocolate ’ , ’ o l i v e ’]
201 l i n e s t y l e = [’ s o l i d ’ , ’ dotted ’ , ’ dashed ’ , ’ dashdot ’]
202 for i in range (len (s e l f . i n i t i a l v a l u e)−1) : # f o r loop over a l l the elements
203 for a , step in enumerate (steps) : # f o r loop over a l l the s t e p s
204 ax . plot (time , np . log (abs (step [: , i])) , l ab e l = ’ step ’+ s t r (a+1) , color=color [a%10] ,

l i n e s t y l e = l i n e s t y l e [i])
205
206 # Makes sure no l a b e l i s shown twice
207 handles , l a b e l s = ax . get_legend_handles_labels ()
208 labels , ids = np . unique (labels , return_index=True)
209 handles = [handles [i] for i in ids]
210 ax . legend (handles , labels , loc= ’ best ’)
211
212 # Make a second x−axis with the gridpoints
213 ax2 = ax . twiny ()
214 gridpoints = (time−s e l f . s t a r t) / s e l f . end * s e l f . coarsesteps
215 ax2 . plot (gridpoints , time *0 , alpha =0)
216 ax2 . s e t _ x l a b e l (’ gridpoint ’)
217
218 ax . s e t _ x l a b e l (’ time [s] ’)
219 ax . s e t _ y l a b e l (’ update term in logs ’)

41

220 p l t . show ()
221 return
222
223 def ploterror (s e l f , solution) :
224 f i g = p l t . f i g u r e ()
225 ax = f i g . add_subplot (111)
226 for k in range (len (s e l f . answer)) :
227 error_k = s e l f . answer [k]−solution
228 sumerror_k = np . sqrt (np .sum(error_k * *2 , axis =1))
229 print (’ error in i t e r a t i o n ’+ s t r (k) + ’ i s ’+ s t r (sumerror_k [−1]))
230 ax . plot (s e l f . time , sumerror_k , l ab e l = ’ i t e r a t i o n ’+ s t r (k))
231 ax . hlines (y=10**(−9) ,xmin= s e l f . s t a r t −0.5e−8,xmax= s e l f . end+0.5e−8, color= ’ grey ’ , l i n e s t y l e = ’

−− ’)
232
233 # Make a second x−axis with the gridpoints
234 ax2 = ax . twiny ()
235 gridpoints = (s e l f . time−s e l f . s t a r t) / s e l f . end * s e l f . coarsesteps
236 ax2 . plot (gridpoints , s e l f . time *0 , alpha =0)
237 ax2 . s e t _ x l a b e l (’ gridpoint ’)
238
239 ax . set_xlim (s e l f . s t a r t −0.5e−8, s e l f . end+0.5e−8)
240 ax . legend ()
241 ax . s e t _ x l a b e l (’ time [s] ’)
242 ax . s e t _ y l a b e l (’ error ’)
243 ax . set_yscale (’ log ’)
244 p l t . show ()
245
246 #%% Simple t e s t model ###
247 # Define rhs (t , x) ###
248 # def rhs (t , x) :
249 # ans = x [0] * t
250 ## ans = np . sin (2 / 5 * pi * t) +0.5*np . sin (2 / 1 0 * pi * t)
251 # return np . array ([ans])
252 #
253 # def solution (t , t0 , x0) :
254 # ans = x0 [0] * np . exp (0 . 5 * t **2−0.5* t0 * * 2)
255 ## C = x0 [0] + 5 / (2 * pi) * (np . cos (2 / 5 * pi * t0) +np . cos (2 / 1 0 * pi * t0))
256 ## ans = −5/(2* pi) * (np . cos (2 / 5 * pi * t) +np . cos (2 / 1 0 * pi * t)) + C
257 # return np . array ([ans])
258 #
259 # s t a r t , end = 0 ,3
260 # c o a r s e s t e p s = 8
261 # divis ion = 6
262 #x_0 = np . array ([1])
263
264 #%% Model 1−step ##
265 # Define constants ##
266 #R = 8.31446261815324
267 #T = 1000
268 #A , b , E = 1.1 e10 , 0 . 0 , 20000
269 #order = [1 , 0 . 5]
270 #
271 ## Define rhs (t , x) ###
272 #
273 #namen = [’CH4 ’ , ’O2 ’ , ’CO2 ’ , ’H2O ’]
274 #
275 ## Constant temperature
276 # def rhs (t , x) :
277 # CH4, O2, CO2, H2O = x [0] , x [1] , x [2] , x [3]
278 # k = A * T** b * np . exp(−E / (R*T))
279 # rv1 = k * CH4** order [0] * O2** order [1]

42 A. Implementation parareal algorithm

280 # dCH4, dO2, dCO2, dH2O = −rv1 , −2*rv1 , rv1 , 2* rv1
281 # return np . array ([dCH4, dO2, dCO2, dH2O])
282 # s t a r t , end = 0 ,2 e−8
283 # c o a r s e s t e p s = 50
284 # divis ion = 10
285 #x_0 = np . array ([1 , 2 , 0 , 0])
286
287 #%% Model 2−step ##
288 # Define constants ##
289 R = 8.31446261815324
290 T = 1000
291
292 A1 , b1 , E1 = 4.9E+09 , 0 . 0 , 35500
293 order1 = [0 . 5 , 0 . 6 5]
294
295 A2 , b2 , E2 = 2.00E+08 , 0 . 7 , 12000
296 order2 = [1 , 0 . 5]
297
298 # Define rhs (t , x) ###
299
300 namen = [’CH4 ’ , ’O2 ’ , ’CO’ , ’H2O’ , ’CO2 ’]
301
302 # Constant temperature
303 def rhs (t , x) :
304 CH4, O2, CO, H2O, CO2 = x [0] , x [1] , x [2] , x [3] , x [4]
305 k1 = A1 * T** b1 * np . exp(−E1 /(R*T))
306 k2 = A2 * T** b2 * np . exp(−E2 /(R*T))
307 rv1 = k1 * CH4** order1 [0] * O2** order1 [1]
308 rv2 = k2 * CO** order2 [0] * O2** order2 [1]
309 dCH4, dO2, dCO, dH2O, dCO2 = −rv1 , −1.5* rv1 −0.5* rv2 , rv1−rv2 , 2* rv1 , rv2
310 return np . array ([dCH4, dO2, dCO, dH2O, dCO2])
311 s t a r t , end = 0 ,1e−7
312 coarsesteps = 100
313 divis ion = 1
314 x_0 = np . array ([1 , 2 , 0 , 0 , 0])
315
316 #%% Execute parareal algorithm ##
317 method = solveivp
318 rtol_g , atol_g = 1e−1,1e−1
319 r t o l _ f , a t o l _ f = 3e−14,1e−20
320
321 i f __name__ == ’ __main__ ’ :
322 i t e r a t i o n s = 12
323 __spec__ = None
324 timer_begin = timeit . default_timer ()
325 approx = Parareal (rhs , s t a r t , end , x_0 , coarsesteps , division , i t e r a t i o n s)
326 timer_end = timeit . default_timer ()
327 print (’ \nRuntime : ’ , timer_end − timer_begin)
328
329 #%% Plot ##
330 approx . plot (namen)
331
332 #%% Plot d i f f e r e n c e in each i t e r a t i o n of parareal algorithm ###################
333 approx . plotdi f ference ()
334
335 #%% Calculate solution
336 rtol_g , atol_g = 3e−14,1e−20
337 method = solveivp
338 solution = Parareal (rhs , s t a r t , end , x_0 , coarsesteps * division , 1 , 0) . answer [0]
339
340 #%% Approximate er ror ###

43

341 approx . ploterror (solution)
342
343 #%% Test the order of err or (only i f solution i s known) #######################
344 # t = approx . time
345 # e rror = []
346 # f o r i in range (i t e r a t i o n s +1) :
347 # er ror . append (abs (approx . answer [i ,−1 ,1] − solution (end , s t a r t , x_0)))
348 # print (’N = ’ , c o a r s e s t e p s)
349 # print (’ 0 : ’ , e rror [0])
350 # f o r i in range (1 , i t e r a t i o n s +1) :
351 # d i f f = e rro r [i] / err or [i −1]
352 # print (i , ’ : ’ , er ror [i] , ’ r a t i o : ’ , d i f f)

	List of used symbols
	Introduction
	Motivation
	Thesis statement
	Thesis outline

	Introduction to parareal
	Problem description
	Parareal scheme
	Choice of propagators
	Single-step method with different time-steps
	Backward Differentiation Formulas with different tolerances

	Speedup
	Convergence of the algorithm
	Order of accuracy
	Convergence

	Parallel computing
	Multiprocessing
	Create the pool
	Define the propagators with the use of a pool

	Code structure
	Input arguments
	Performing the algorithm

	First numerical results
	One-dimensional test equations
	Right-hand side function independent of the solution
	Right-hand side function dependent on the solution

	Parareal visualisation for the first test equation
	Order of accuracy
	Examination of convergence
	Difference between iterations
	Error after different iterations

	Application: combustion of methane
	One-step mechanism
	Model description
	Numerical results

	Two-step mechanism
	Model description
	Selection of parareal parameters for two-step mechanism
	Numerical results

	Conclusion and recommendations
	Bibliography
	Implementation parareal algorithm

