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Abstract

Research on the interplay between the dynamics on the network and the dynam-

ics of the network has attracted much attention in recent years. In this work,

we propose an information-driven adaptive model, where disease and disease

information can evolve simultaneously. For the information-driven adaptive

process, susceptible (infected) individuals who have abilities to recognize the

disease would break the links of their infected (susceptible) neighbors to pre-

vent the epidemic from further spreading. Simulation results and numerical

analyses based on the pairwise approach indicate that the information-driven

adaptive process can not only slow down the speed of epidemic spreading, but

can also diminish the epidemic prevalence at the final state significantly. In

addition, the disease spreading and information diffusion pattern on the lattice

give a visual representation about how the disease is trapped into an isolated

field with the information-driven adaptive process. Furthermore, we perfor-

m the local bifurcation analysis on four types of dynamical regions, including

healthy, a continuous dynamic behavior, bistable and endemic, to understand

the evolution of the observed dynamical behaviors. This work may shed some
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lights on understanding how information affects human activities on responding

to epidemic spreading.

Keywords: Epidemic spreading, Information diffusion, Adaptive model,

Bifurcation analysis

1. Introduction

The spreading dynamic is one of the core issues in network science [1, 2],

where most of the related researches focus on epidemic spreading and informa-

tion diffusion in recent years. Much of the work to date focuses on the analysis of

these two processes independently, such as the spread of single contagion [3] or5

concurrent diseases [4, 5], and the diffusion of various kinds of information (e.g.,

news [6], rumor [7], innovation [8].). However, the epidemic spreading process is

closely coupled with the corresponding disease information diffusion (or saying

awareness) in the real world. For instance, during the severe acute respiratory

syndrome (SARS) outbreak in China in 2003, overwhelming number of disease10

reports have been posted. These kind of information about SARS may affect

the individuals’ behavior in keeping away from SARS and thus help to make the

disease under control [9, 10]. Therefore, disease information diffusion may play

an important role in the control of the epidemic outbreak, but it is not easy to

quantitatively measure the strength of its impact [11].15

Nowadays, some models have been proposed to model the interaction be-

tween epidemic spreading and information diffusion on complex networks [11,

12, 13, 14]. The fundamental assumption is that, when a disease starts to spread

in the population, people may get the disease information from their friends or

media before the advent of the epidemic and take some preventive measures to20

keep away from being infected [12, 15, 16]. By depicting preventive measures as

the reduction of transmitting probability [17, 18] or particular states of individ-

uals (immune or vaccination) [19], previous models showed that the disease in-

formation diffusion indeed inhibits the epidemic spreading significantly (reduce

the epidemic prevalence as well as enhance the epidemic threshold) [12, 20].25
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Therefore, the emergence of mutual feedback between information diffusion and

epidemic spreading [11] exhibits the intricate interplay between these two type-

s of spreading dynamics. The interplay between these two types of spreading

dynamics is similar to the competing epidemics [21, 22] to some extent, that is

to say, there is a competitive mechanism between epidemic spreading and the30

information diffusion. Most of aforementioned studies of such complex interact-

ed spreading dynamics are based on static network, i.e., the network structure

stays fixed when the two processes are spreading on the network. However, in-

dividuals would sometimes cut off the connections with the infected ones when

they are aware of the disease, leading to the change of network structure. Con-35

sequently, how to characterize the mutual spreading process on the adaptive

networks is a crucial issue we want to address in this work.

Generally, the network dynamic researches could be classified into two lines:

(i) one is the dynamics of the network, which focuses on the time evolution

of network structure [23, 24, 25]; (ii) the other is considered as the dynamics40

on the network, which concerns the state change of the nodes (or interactions)

on networks, such as the epidemic spreading and information diffusion process

[26, 27], the evolutionary game [28] and so forth. Currently, researchers became

to study how the epidemic would spread on adaptive networks, i.e., considering

one epidemic spreading process on dynamical changing networks [29]. In [29],45

the author proposed a model by considering that the susceptible individuals are

allowed to protect themselves by rewiring their links from the infected neighbors

to some other susceptible ones [30, 31, 32]. Many researches indicate that seg-

regating infected (or susceptible) individuals with the adaptive behavior is an

efficient strategy to reduce the fraction of susceptible-infected (SI) interactions,50

as well as hinder the outbreak of the whole epidemic spreading [33, 34, 35]. In

addition, abundant temporal behaviors are presented to illustrate the spreading

dynamics on the adaptive network, such as the coexistence of multiple stable

equilibrium and the appearance of an oscillatory region, which are absent in

the spreading dynamics on static networks [29, 36]. Besides the edge rewiring55

strategy, the link cutting or temporarily deactivating is also a commonly used
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rule in the adaptive models[37, 38].

In this work, we consider a more complicated case that two dynamical pro-

cesses (i.e., epidemic spreading and disease information diffusion) are spreading

on adaptive networks. Therefore, three dynamical processes are coupled in this60

case, we aim to illustrate how the adaptive behavior can affect the interplay

between epidemic spreading and information diffusion. The adaptive behavior

is aroused by the individuals awareness of the disease. In this model, those who

have been informed of the emergence of disease can break their neighbouring

connections to prevent further infection. Additionally, epidemic spreading and65

disease information diffusion are described by the SI and SIS model, respective-

ly. The disease information generation of the infected individuals is considered

to form a mutual feedback loop between these two types of spreading dynamics

[17]. Therefore, the effect of information diffusion on epidemic spreading could

be interpreted by two aspects: (i) reduce the epidemic spreading probability70

with protective measures; and (ii) cut off SI links with the information-driven

adaptive process. Both numerical analyses based on the pairwise approach and

simulation results indicate that the information diffusion and the adaptive be-

havior of the nodes can inhibit the epidemic outbreak significantly. In addition,

we present a full local bifurcation diagram to show the abundant dynamical75

behaviors in the proposed model.

The paper is organized as follows. In Section 2, we give a detailed descrip-

tion of the model as well as mathematical expressions based on the mean-field

model and the pairwise model. In Section 3, we first analyze the case of epi-

demic and disease information spreading on static network, i.e., the case of no80

adaptive behavior is taken into account. We further give the results of how the

epidemic and disease information spreading processes interact with each other

on adaptive network. The sensitivity analysis of the parameters and dynamical

characterization of the model is given in the end of Section 3. We conclude the

paper with some future direction of the work in Section 4.85
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2. Model

2.1. Model description

Figure 1: (Color online) Transmission diagram of epidemic spreading (SI model in the hori-

zontal direction) and disease information diffusion model (SIS model in the vertical direction).

We give a detailed illustration of our model in Fig. 1. The vertical trans-

formation describes the diffusion of disease information by an SIS model, where

individuals can be at one of the two states: (i) +: indicates that the individu-90

als have known the existence of the disease, denoted as the informed ones; (ii)

-: indicates that the individuals have not known the existence of the disease.

At each time step, the informed nodes will transmit the information to their

unknown (-) neighbours with probability α, and each informed individual may

forget the information of the disease with a probability λ. Besides, the one who95

has been infected by the disease will become to know the information of the

disease with a corresponding rate ω [11, 13].

In the horizontal transformation of Fig. 1, the epidemic spreading is de-

scribed by an SI model. Each node is at one of two states, susceptible (S) or

infected (I). The disease can be transmitted through the SI links, where the100

S-state individuals could be infected with the probabilities β, σIβ, σSβ and

σSIβ respectively through S−I−, S−I+, S+I− and S+I+ links, where σI , σS

and σSI are the impact factors of the information on epidemic spreading. Gen-

erally, when people know the occurrence of the disease (informed individuals),

they would like to take some measures to protect themselves, leading to the105
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reduction in infectivity (0 < σS , σI < 1). In particular, the influence coefficient

of the epidemic spreading probability through S+I+ links could be calculated

as σSI = σSσI , with the assumption of the independent effect of the infected

probability.

Additionally, we consider an information-driven adaptive process which the110

informed individuals would reduce physical contacts to protect themselves or

their friends. That is to say, the informed susceptible individuals (S+) will keep

away from their infected neighbors to protect themselves from being infected,

and informed infected individuals (I+) will also avoid contacting their suscep-

tible neighbors to prevent the epidemic from further spreading. Consequently,115

the edge-breaking rule of adaptive behavior is adopted [37]. Thus, at each time

step, the S+ (I+) state individuals will break the links connected to their I

(S)-state neighbors with rate rS (rI) respectively. Specially, the breaking rate

of the S+I+ pairs could be interpreted as 1 − (1 − rS)(1 − rI) with the inde-

pendent assumption. It is worth noting that the deactivation of SI links only120

represents the avoidance of physical contacts between the S- and I-state indi-

viduals. That is to say, the edge-breaking process will not affect the diffusion of

disease information for it can be transmitted through other types of connections

such as phone, internet and so forth. The dynamic of the epidemic spreading

degenerates to a classical SI model when we set rS = rI = 0, i.e., there is no125

edge-breaking in this case.

According to the model described above, the spreading process can be sum-

marized as follows. At the beginning, an individual is randomly selected as the

I+ node, which is considered as the seed of both the epidemic spreading and

information diffusion, and all other individuals are set as S− ones. At each time130

step, (i) the infected individuals would transmit the disease to their suscepti-

ble neighbors with the corresponding probabilities; (ii) the informed individuals

would transmit the disease information to their un-informed neighbors; (iii) the

informed individuals can forget the information; (iv) the informed individual-

s would also break the links with their relevant neighbors by considering the135

adaptive mechanism. Finally, the spreading process would be terminated when
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the size of the infected individuals becomes stable.

2.2. Numerical mathematical analysis

Firstly, we develop theoretical analyses to depict the dynamic processes of140

both information diffusion and epidemic spreading. In particular, mean-field

analysis and the pairwise analysis are adopted. Let χ be the state variable, thus

[χ] denotes the expected values of individuals of different types at the population

(e.g. [S+] and [S+I+] represent the expected number of informed susceptible

nodes and expected number of links connecting an informed susceptible node145

to an informed infected node respectively).

Therefore, with the classical mean-field approach, we can obtain:

d[I+]

dt
= ⟨k⟩[S+](σSβ[I−] + σSσIβ[I+])

+ α[I−]([S+] + [I+]) + ω[I−]− λ[I+]

(1)

comparatively, with the pairwise approach, we can obtain:

d[I+]

dt
= (σSβ[S+I−] + σSσIβ[S+I+])

+ α([S+I−] + [I−I+]) + ω[I−]− λ[I+]

(2)

where, the first terms of Eq.(1) and (2) describe the infection of the S+-state in-

dividuals, the second terms describe the information acceptance of the I−-state

individuals, the third terms describe the information generation of the I−-state150

individuals and the last terms represent the information loss of the I+-state

individuals. Simultaneously, the full set of differential equations based on those

two approaches can be illustrated in Appendix A. By the way, the adaptive

process could be described by the last terms of
d[S+I−]

dt
,
d[S−I+]

dt
and

d[S+I+]

dt
in the pairwise approach of Eq. (4). It should be noted that the pairwise analy-155

sis is based on a well-known closure approximation given by [ABC] =
[AB][BC]

[B]
with the assumption that the degree of each individual obeys Poisson distribu-

tion [39, 40]. In general, it might be very hard to get exact solutions of such
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complex differential equations, thus we give numerical solutions of the equations

instead of the theoretical analysis in the following analysis.160

3. Results

3.1. Simulation and numerical analysis without adaptive behaviour
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Figure 2: (Color online) The epidemic spreading dynamics of various information diffusion

probabilities α without considering the effect of adaptive process. The horizontal axis (T ) is

the time step for the Monte Carlo simulation, the vertical axis (I) is the density of infected

(the vertical axis of the inset figure is the density of informed population in the network). The

parameters are set as β = 0.3, σS = 0.5, σI = 0.7, λ = 0.2, ω = 0.75, rS = rI = 0. The inset

shows the information diffusion dynamics (Info) of various β for α = 0.6.

In this work, we perform our model on the ER network with a total popu-

lation of N = 10000 and average degree ⟨k⟩ = 6 unless otherwise stated. More-165

over, all the simulation results are under 10000 realizations. We first consider a

simple case of no adaptive behavior when the epidemic and disease information

are spreading in the network, i.e., the case of spreading on static network. Fig.

2 gives the simulation result of the fraction of infected nodes evolving with time

for various information diffusion probabilities α, with the epidemic spreading170

probability β = 0.3. For the SI process, the whole population would be infected

when β > 0 for the connected social networks, resulting in that the infected

density equals to 1 at last for all the values of α in Fig. 2. That is to say, the
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disease information diffusion cannot avoid the epidemic spreading to the whole

population when we perform our model on static network. However, we find175

that the disease information diffusion can slow down the epidemic spreading

when we increase the value of α. Furthermore, the time cost for the whole pop-

ulation becomes infected when α = 1 is about three times longer than that of

α = 0. In this sense, the diffusion of the disease information can slow down the

epidemic spreading significantly. In addition, the inset of Fig. 2 indicates that180

the epidemic spreading can enhance the disease information diffusion. Actually,

according to model illustrated in Fig. 1, on the one hand, we can realize that

the epidemic spreading could be influenced by information diffusion where the

epidemic spreading probability of the informed individuals would change; and

on the other hand, the information diffusion could be influenced by the epidemic185

spread where the social disease information level (namely Info in the inset of

Fig. 2) would be higher if more people are infected for the information gen-

eration, denoted by the parameter ω. In this way, a mutual feedback between

disease spreading and information diffusion emerges: higher prevalence of the

infected individuals makes more disease information generated in the popula-190

tion, which in turn gives rise to more informed individuals, thereby weakening

the spread of epidemic.

Fig. 3 shows a comparison of the evolution of infected density from the nu-

merical analysis according to Eq. (3) and (4) and the simulation results on ER

network. Infected density curve based on the classical mean-field approach is195

much quicker than that of the simulation result, which would be caused by the

mean-field assumption on the SI model. In the mean-field assumption, the I-

and S-state individuals are well-distributed in the system. However, in the SI

process, the I-state individuals are all well clustered, resulting in that many I-

state individuals have no chance to contact the S-state individuals. In this way,200

the classical mean-field approach can not exactly describe the SI model. How-

ever, such problem is not so significant in the pairwise approach, which consider

the time evolution of the links as well. Fig. 3 shows that the infected density

curve on the pairwise approach finds good agreement with the simulation results.
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   Mean-Field approach

Figure 3: (Color online) Comparison of simulation results with the mean-field model and the

pair approximation model without considering the effect of adaptive process. The horizontal

axis (T ) is the time step for the Monte Carlo simulation, the vertical axis (I) is the density

of infected. The parameters are set as β = 0.3, σS = 0.5, σI = 0.7, λ = 0.2, ω = 0.75, α =

0.6, rS = rI = 0.

205

3.2. Spreading dynamics with the adaptive process

In this part, we shall present the spreading dynamics with the information-

driven adaptive process, the results are shown in Fig. 4. Different from the

results of Fig. 2, the saturation value of the infected density at the final state is

much smaller than 1 in Fig. 4a. That is to say, with the adaptive process based210

on the information diffusion, many individuals could avoid being infected via

reducing some contacts. In addition, we also plot the numerical solution based

on the pairwise approach in Fig. 4a. It can be seen that the pairwise solution is

not well consistent with simulation for the spreading dynamic on the adaptive

network. The difference might be caused by the network structure variation in215

the adaptive process, where the assumption of the pairwise approach is the Pois-

son degree distribution. This conjecture is proved in Fig. 4b, where the degree

distribution of the original network is approximate to the Poisson-distribution

with mean degree around 6 (pink circle markers), while the distribution of the

network at the final state (gray diamond markers) deviates from the original220
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Figure 4: (Color online) Dynamical analysis of the spreading model with adaptive process. (a)

Comparison of the pairwise model with the simulation results, the horizontal axis (T ) is the

time step for the Monte Carlo simulation, the vertical axis (I) is the density of infected. (b)

Degree distribution of the original network and that after the adaptive process, the horizontal

axis (k) represents degree, the vertical axis (p(k)) is degree probability. The parameters are

set as β = 0.2, σS = 0.5, σI = 0.7, λ = 0.2, ω = 0.2, α = 0.5, rS = 0.15, rI = 0.1.

distribution. In addition, Fig. 4a shows that the difference becomes larger with

the increase of time, where the degree distribution deviates more away from the

original distribution when the process goes on.

Figure 5: (Color online) The fraction of infected individuals in the stationary state (colors in

the phase diagram represent the density of infected individuals at the final state, the dashed

green curve shows that the prevalence value transmits from near 0 to significantly larger than

0) versus α and β for (a) pairwise analysis and (b) simulation result. The parameters are set

as σS = 0.5, σI = 0.7, λ = 0.2, ω = 0.2, rS = rI = r = 0.1.

The information-driven adaptive process can not only slow down the speed

of epidemic spreading, but also can diminish the epidemic prevalence at the225

final state significantly according to Fig. 2 and Fig. 4. For simplicity, we

assume rS = rI = r in the following analysis. In order to exhibit the influence

11



of information diffusion in detail, we show the full phase diagram α − β with

r = 0.1 in Fig. 5, the color gives the infected density in the final state for

each combination of α and β. The Fig. 5a and 5b are the numerical solution230

of the pairwise approach and the simulation result, respectively. As stated

previously, the numerical solution is not very precise, but it can match the

overall trend of simulation result well. For a fixed epidemic spreading probability

β, epidemic outbreak size reduces with the increase of α. That is to say, the

disease information diffusion can inhibit the epidemic spreading. Analogously,235

the quicker and broader of the information diffusion (larger α) is, the more

efficient inhibition on the epidemic spreading will be. In addition, the curve of

the color mutation (the dashed green curve) in Fig. 5 could be considered as

the transition point, where the epidemic can’t spread out if α and β locate at

the area on the left of this curve (the white range). The threshold value of the240

epidemic spread probability becomes larger with the increase of α.

In order to intuitively demonstrate the epidemic spreading and the informa-

tion diffusion process on adaptive network, we show the simulation results of

those two types of spreading processes on a 100× 100 lattice with degree k = 4

in Fig. 6 for various α. We present four kinds of different levels of information245

spreading processes (corresponding to different α), and observe how the infor-

mation diffusion affects the spreading of epidemic. In addition, as the adaptive

edge-breaking process is merely executed on the epidemic spreading process,

while these edges can still transmit information, thus the density of informed

people can still maintain at a high level in the network. For each α in Fig. 6,250

firstly we give the fraction of the infected individuals at each time step (the red

curve in each subfigure). For some particular time steps, we show the states of

each individual with the gridding patterns, where the red dots and the gray dots

represent the infected and informed individuals respectively (the contact net-

works and the un-informed susceptible individuals are not shown in the figures).255

We can intuitively see the distribution of the infected and informed individuals

and conclude that when the diffusion of information is slower than the epidemic,

we cannot stop the epidemic from spreading (Fig. 6a and 6b), however, when
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the information is diffusing faster, the epidemic will be trapped into an isolated

area and cannot spread anymore (Fig. 6c and 6d). Furthermore, we also give260

a visualization of these two processes on a real-word network, where we obtain

the similar conclusion as on the lattice(see Appendix B).

3.3. Sensitivity Analysis of the model

The sensitivity of the edge-breaking probability on epidemic spread-265

ing dynamics. The phase diagram in Fig. 5 shows the impact of information

diffusion rate α on the epidemic spreading dynamics. In general, the adaptive

edge-breaking probability rS and rI are also important parameters in affecting

the epidemic spreading process. Fig. 7 illustrates the epidemic prevalence in

the final state versus the adaptive edge-breaking rate (r) for various information270

diffusion rate α. It can be found that the epidemic prevalence diminishes with

the increase of r, i.e., the epidemic could be controlled if people are very sensi-

tive with the disease information and subsequently keep away from the infected.

It should be noted that there is no disease information diffusion when α = 0,

but with considering the information generation, the infected individuals could275

stop contacting with the susceptible neighbors to impede the further spreading

of epidemic. With the increase of α, the epidemic prevalence reduces sharply

versus r and the continuous transition could be observed. By the way, it will

change to a total isolation of infected individuals for r = 1, which seems to be

the most effective way in controlling the contagion [41, 42].280

Dynamical characterization of the information-driven rewiring. In

order to deeply characterize the complex dynamical features of the proposed

process, we concentrate on the distribution of the infected density in the final

state (I∗) rather than the simple average value [29, 36]. Fig. 8 shows four285

different types of dynamical behavior by calculating the distribution of the final

fraction of infected for various β and r . For the distribution of Fig. 8a, we

have carried out 10000 realizations of the infected density, and above 94% of
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the infected density is 0.0001, and the maximal is 0.0007, i.e., the infected

density I∗ → 0, thus we consider this distribution indicates a healthy state (the290

disease can’t spread out) under the parameters setting here. Similarly, as to

the distribution of Fig. 8d, above 90% of the infected density is higher than

0.8, indicates a case of endemic state (epidemic outbreaks). Whereas the case

illustrated in Fig. 8c is very different, where the infected density I∗ is around

either zero or a nonzero value. This indicates that a bistable state [29] is located295

in this model, where healthy state and endemic state are both stable in this case.

In addition, a continuous dynamic behavior can also be observed in particular

parameter settings (Fig. 8b).

According to the dynamical behavior illustrated in Fig. 8 under different

parameter sets. Bifurcation diagram of the density of the infected as a function300

of infected probability β for different values of the edge-breaking rate r is given

by Fig. 9a. Without the adaptive edge-breaking mechanism (r = 0), the disease

can spread out only if β > 0 for the SI process. When r > 0, the dynamical

behaviors become more complicated, where the discontinuous phase transitions,

bistable, oscillatory are observed. A fast edge-breaking (large r) leads to a305

broad healthy and bistable state range (shows by the range in the arrows) in

Fig. 9a. In Fig. 9b, we give a full r − β bifurcation diagram according to our

simulation results, and we can clearly identify the areas of healthy, oscillatory,

bistability and endemic state in this model. At last, we present the dependence

of the average value of infected density over 10,000 independent realizations on310

r and β in Fig. 9c, where the changing of the density is consistent with the area

classification in Fig. 9b.

4. Conclusions

In order to understand the interplay between the dynamics on the network

(the spread of epidemic spreading and disease information) and the dynamics315

of the network (the time varying of network links), we present two types of

spreading dynamics with SI and SIS process respectively on an information-
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driven adaptive network, where the individuals who have known the disease

information would probably cut off their links with others. Firstly, we illustrate

the mutual feedback of epidemic spreading and information diffusion without320

considering the edge-breaking process (rS = rI = 0), where the high epidemic

prevalence preserves high disease information level, which in turn slows down

the epidemic spreading. In this case, the numerical analysis based on the pair-

wise approach is consistent with the simulation result very well. Secondly, the

results are very different when the information-driven edge-breaking process325

is considered (rS , rI > 0). The epidemic cannot spread out if the spreading

probability is smaller than the threshold (shown in Fig. 5). In addition, the

disease spreading and information diffusion pattern on the lattice give a visu-

al representation that the disease might be trapped into an isolated field with

information-driven adaptive process. Therefore, the information-driven adap-330

tive process can inhibit the epidemic spreading significantly that it can not only

slow down the epidemic spreading speed, but also reduce the epidemic preva-

lence. Finally, we give the local bifurcation analysis on four types of dynamical

phenomena, including healthy, a continuous dynamic behavior, bistable and en-

demic, indicating that the state changes from healthy to oscillatory, bistable,335

endemic state as β increases.

In summary, we study the dependence of the epidemic spreading on the

disease information diffusion and the information-driven adaptive process, with

considering the simplest spreading model (SI) and adaptive process (edge-breaking).

Recent researches show the different features between the epidemic and the in-340

formation diffusion [43, 44, 45], and this difference dynamics would also impact

the interplay between epidemic spreading and disease information diffusion sig-

nificantly. Another area for future extension is to adopt other adaptation rules

rather than the simple edge-breaking strategy, such as the temporarily deacti-

vating, where the broken links would be active again after a fixed time [38] or345

if the corresponding infected node becomes recovered [37].
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Appendix A

Denote [χ] as the expected values of individuals of different type described

in Section 2.2, the epidemic spreading is depicted by the parameters β, σIβ,355

σSβ and σSIβ, while the diffusion of disease information is controlled by the

parameters: α, λ, ω. All these parameters have been explained in Section 2.1.

According to the model described above, the the differential equations of the

mean-field approach (Eq.(3)) and pairwise approach (Eq.(4)) are given as fol-

lows.360



d[S−]

dt
=− ⟨k⟩β[I−][S−]− ⟨k⟩σIβ[I+][S−]

− α([S+] + [I+])[S−] + λ[S+]

d[S+]

dt
=− ⟨k⟩σSβ[I−][S+]− ⟨k⟩σSσIβ[I+][S+]

+ α([S+] + [I+])[S−]− λ[S+]

d[I−]

dt
=⟨k⟩β[I−][S−] + ⟨k⟩σIβ[I+][S−]

− α([S+] + [I+])[I−]− ω[I−] + λ[I+]

d[I+]

dt
=⟨k⟩σSβ[I−][S+] + ⟨k⟩σSσIβ[I+][S+]

+ α([S+] + [I+])[I−] + ω[I−]− λ[I+]

(3)
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Network N E C

Haggle 274 2124 0.0337

Table 1: Statistics of haggle network, where N,E,C represent the number of nodes, the

number of links, clustering coefficient of each system respectively.

Appendix B

We give visualization of the epidemic spreading and information diffusion

with the adaptive process on a real-world network, i.e., haggle network [46].

The contacts in this network represent connection between people measured by

carried wireless devices. The statistics of the network is given in Table 1. The365

simulation results are given in Fig. S1, which are similar to the Fig. 6.
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Figure 6: (Color online) Illustration to dynamic spreading process by considering the adaptive

effect on the lattice. The square gridding patterns show the distribution of the infected and

informed individuals in some particular time steps. The red area represents the nodes that

are infected by the epidemic, while the gray area represents the informed individuals. The red

curves (lower panels) describe the fraction of infected individuals over time with corresponding

(the horizontal axis (T ) is the time step for the Monte Carlo simulation, the vertical axis (I) is

the density of infected). (a) α = 0.1; (b) α = 0.3; (c) α = 0.5; (d) α = 0.7. Other parameters

are set as β = 0.4, σS = 0.4, σI = 0.8, λ = 0.1, ω = 0.2, rS = rI = r = 0.1.
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Figure 7: (Color online) Fraction of infected individuals versus r. Different curves correspond

to different α. Other parameters are set as β = 0.2, σS = 0.5, σI = 0.7, λ = 0.2, ω = 0.2.
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Figure 8: (Color online) Distribution of the infected density in the final state versus different

values of r and β. Each distribution is obtained by carrying out 10,000 independent realizations

for the final fraction of infected. The parameters are set as rS = rI = r = 0.7, 0.35, 0.15, 0;β =

0.05, 0.35, 0.25, 0.4 for (a), (b), (c) and (d) respectively. Other parameters are σS = 0.5, σI =

0.7, λ = 0.2, ω = 0.2, α = 0.6.
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Figure 9: (Color online) (a) Bifurcation diagram of the density of the infected I as a function

of the infection probability β for different values of the edge-breaking rate r based on the

results of simulation of the full network (diamonds). (b) Two parameter bifurcation diagram

showing the dependence on the edge-breaking rate r and the infection probability β based on

the results of simulation of the full network. (c) Full phase diagram r − β for the simulation

of the adaptive process. The parameters are the same as Fig. 8.
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d[S−]

dt
= − β[S−I−] − σIβ[S−I+] − α([S−S+] + [S−I+]) + λ[S+]

d[S+]

dt
= − σSβ[S+I−] − σSσIβ[S+I+] + α([S−S+] + [S−I+]) − λ[S+]

d[I−]

dt
=β[S−I−] + σIβ[S−I+] − α([S+I−] + [I−I+]) − ω[I−] + λ[I+]

d[I+]

dt
=σSβ[S+I−] + σSσIβ[S+I+] + α([S+I−] + [I−I+]) + ω[I−] − λ[I+]

d[S−I−]

dt
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− α
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d[S−I+]

dt
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[S−I+]2
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Figure 10: (Color online) Illustration to dynamic spreading process by considering the adaptive

effect on haggle network, while the purple, green and red circles represent individuals in S-,

S+ and I state respectively. The red curves (lower panels) describe the fraction of infected

individuals over time with corresponding parameters. (a) α = 0.02; (b) α = 0.3; (c) α = 0.5;

(d) α = 1.0. Other parameters are set as β = 0.1, σS = 0.3, σI = 0.5, λ = 0.08, ω = 0.2, rS =

rI = r = 0.08.
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