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Abstract

While reconstructing urban environments, the accuracy of the model is strongly related to
the quality of the input data. The initial type of input data for this process could be the
footprints of the buildings, which are typically used to reconstruct the buildings, either
through manual or automated methods. However, these data could be biased, and when
we perform a Computational fluid dynamics (CFD) simulation, they could impact our re-
sults. An example of such bias could be either translation or rotation. In our case, simple
building footprints were used to define these biases associated with the uncertainty of raw
data. Additionally, statistical analysis for representing and quantifying this uncertainty was
performed.

The Case C dataset from the Architectural Institute of Japan (AIJ) is an example of a canon-
ical case for our simulations, in which the building footprints could play an important role
in the calculation of our results. A CFD simulation on such a canonical case would typically
involve the steps of preparing the geometry, generating the mesh, setting boundary and
initial conditions, validating the results using experimental data and finally, performing un-
certainty analysis. The last step involves various ways of representing the results, like scatter
plots, box plots and contour plots. Important aspects of this analysis were the visualization
of the flow patterns, the calculation of various quantities of interest such as velocity or tur-
bulent kinetic energy, and the comparison of the simulation results with the experimental
data from the AIJ dataset. The effects were examined across multiple wind directions and
different footprint uncertainties. This approach could help us to improve the accuracy and
reliability of the CFD simulations.
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1. Introduction

1.1. Motivation

Computational Fluid Dynamics (CFD) is the scientific field that analyzes fluid flows in var-
ious applications. In the field of building design and engineering, CFD simulations play a
crucial role in predicting and optimizing airflow patterns. It is a numerical technique in
which equations describing the fluid flow are solved on a computer [Franke et al., 2004].
However, when we want to simulate wind flows in urban environments, the accuracy of
our simulation and our model is strongly related to the quality of the input data. These
data could be the geometric representation of the buildings, or just the footprint data (Fig-
ure 1.1). These footprints are typically used to reconstruct the 3D representation of the
buildings, through manual or automated methods, representing a fundamental component
in CFD simulations. However, in practice, these available data often come from sources such
as 3D laser scanners, Light Detection and Ranging (LiDAR), as well as other open sources e.g.
Open Street Map (OSM), and may contain biases or uncertainties that can impact the perfor-
mance of our predictions, and thus need to be addressed [Rottmann et al., 2022; Hecht et al.,
2013].

The building footprints define the shape, dimensions, and orientation of the building, influ-
encing the flow patterns and aerodynamic characteristics in the surrounding environment.
The quality assessment of the building footprints contains various aspects, based on the
primary data. These could be their completeness, position accuracy, shape accuracy, and
semantic accuracy [Fan et al., 2014]. Therefore, the process of acquiring building footprints
involves various factors of uncertainty and several limitations, and when we perform a CFD
simulation, these uncertainties could impact our final results. These uncertainties can arise
from inaccuracies in data collection techniques, errors in measurements, errors in recon-
struction of the 3D geometry [Pad̄en et al., 2022], or assumptions made during the modeling
process. Typical examples of such bias are translation and rotation (Figure 1.2), which can
play a significant role in the final results. Also, the level of detail (LoD) of the building
model can vary—higher LoD include roof shapes and facade details, while lower LoD might
use only the footprint outline extruded to a certain height. Higher LoDs provide relatively
more geometrical realism, but the requirements of complex data and the modeling effort are
higher [Pad̄en et al., 2022].

The uncertainties in building footprint representation can have an impact on CFD simulation
results, e.g. wind speed distributions, turbulence levels, and pollutant dispersion patterns.
Prior studies have noted that even minor geometric discrepancies can lead to notable dif-
ferences in simulation results. For instance, Ricci et al. [2017] compared CFD simulations
against wind-tunnel data for a single building block and then for a whole district, using
three levels of geometric detail (simplified, medium, and detailed) and found that the sim-
plifications introduced measurable errors in the predicted wind velocities. Similarly, Hågbo
et al. [2021] showed that using an extruded-footprint model (very simplified geometry) in a
neighborhood wind simulation led to prominent variations in the wind field compared to
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1. Introduction

(a) 3D model
Source: https://3dbag.nl/ (b) Building footprints

Figure 1.1.: Actual building footprints.

(a) Translated (b) Rotated

Figure 1.2.: Example of uncertainties in building footprints.

using a more accurate building model. In their case, a coarse model, based only on 2D foot-
prints, produced different wind speed and turbulence patterns, highlighting how sensitive
CFD results are to the fidelity of building representations. In García-Sánchez et al. [2021], the
effects of oversimplifying geometries are explored by comparing wind simulations of dif-
ferent levels of detail geometries. Eventually, these different levels of detail lead to diverse
wind patterns in built environments. For our case, we will focus on this effect, having as
purpose the evaluation of the impact of these uncertainties on the CFD simulation results,
determining their spread when the input geometry is uncertain.

Although the possible uncertainties in the data sources used to reconstruct urban areas are
acknowledged, there is currently limited understanding of how the footprint uncertainties
translate into different CFD results. Consequently, determining their effects and the extent
of their impacts can be an important contribution for several applications within the urban
wind engineering community. CFD predictions are not deterministic truths but are subject
to uncertainty from various sources. This thesis is motivated by this specific need to un-
derstand and quantify this uncertainty. Addressing a part of this issue is crucial and by
doing so, the aim is to provide guidance regarding data requirements, e.g. when a simple
footprint model is sufficient and when a detailed model is warranted. This will help wind
engineers, urban planners, CFD modellers, etc., to take more into account the uncertainty in
their analyses.
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1.2. Research questions

1.2. Research questions

The objective of this thesis is to assess the impact of building footprint uncertainty on CFD
simulations. By running multiple simulations with different geometries or wind angles,
the research aims to identify how variations in building geometry, position, and orientation
influence the flow patterns in our domain. As a result, we aim to understand the magnitude
of geometric uncertainty impact and identify the parameters that have the most significant
influence on the CFD simulation results. In more detail, the goals and research questions
are:

1. Validation of our CFD cases compared to the wind tunnel data.

2. How much do different geometry uncertainties affect the reliability of our CFD simu-
lations compared to the reference cases?

a) What is the impact of geometrical uncertainties derived from perturbing the
buildings’ geometry through translation?

b) What is the impact of geometrical uncertainties derived from perturbing the
buildings’ geometry through rotation?

c) How do all these uncertainties affect the model as we modify the incoming wind
direction?

1.3. Scope of research

By accomplishing this thesis, the goal is to improve the understanding of uncertainty in
CFD simulations. To achieve these objectives, during the research, multiple CFD simulations
will be performed. By systematically perturbing building geometries, adjusting footprint
orientations, and varying wind directions, this research aims to quantify how such uncer-
tainties propagate and influence the results. The primary goal is to assess the magnitude of
uncertainty effects on predicted wind flow patterns, ultimately identifying the most influ-
ential geometric parameters. A critical aspect of this study involves validating CFD results
against wind tunnel data from AIJ Case C (AIJ-CFD guide website), ensuring an acceptable
error margin. Additionally, the research will explore how uncertainty behaves across differ-
ent ways of altering our geometry—ranging from translation, rotation, and different wind
directions—providing insights into how modeling choices can enhance simulation accuracy
and reliability. The study’s findings will contribute to a better understanding of uncertainty
quantification in urban CFD and update the best practices for geometric representation in
wind flow modeling.

This research is subject to several limitations. It focuses solely on geometric uncertainties
related to building footprints, without modifying the shape itself, and focuses on only a
subset (rotation, translation). Also, it does not take into account other uncertainties e.g.
inflow conditions. The study is also limited to a single validation case (AIJ Case C), and
thus, the generalization of findings to more complex or varied urban configurations may
be constrained. This limitation aims to maintain a clear focus on isolating the impact of
geometric variability on wind flow predictions. Moreover, only a finite number of translation
and rotation scenarios are tested.
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1. Introduction

1.4. Thesis outline

The structure of the thesis is presented below:

• Chapter 2 presents the related work and theoretical background of the topic. It intro-
duces the different types of uncertainties and guidelines that are followed. Also, other
benchmark studies and datasets are presented, concluding in the case C that will be
analyzed.

• Chapter 3 focuses on giving us a more general picture of the process that will be
followed. First, an introduction is made to our study area and all the subcases that
will be studied. Then, the geometry and boundary conditions that will be used for
the experiment are analyzed. Afterwards, the construction of our mesh, its resolution
and dimensioning are presented. Finally, the terms of uncertainty through translation
and rotation are presented, as well as the guidelines that will be followed for the
experiment.

• Chapter 4 deals with the application of simulations and the mesh convergence analysis.
Through certain criteria, the most optimal mesh was chosen and through comparison
with experimental data, the validation process was performed.

• Chapter 5 focuses mainly on the application of the experiments and the methods
through which uncertainty is introduced into our model. Thirty simulations are per-
formed. All the metrics, code implementation, statistical approach, and visualization
techniques are presented.

• Chapter 6 answers the research questions, regarding the impact of uncertainty and
different wind angles in our simulations. Also, the limitations are presented and pro-
posals for future work and improvements are being made.
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2. Theoretical background and related
work

There are several sources of uncertainty in the results of CFD simulations. To evaluate how
well the simulations can predict real-world conditions, it is important to measure the impact
of uncertainties in full-scale simulations and validate the results using field experiments.
There are two main types of uncertainty: aleatory uncertainty, which comes from natural
variations in the system, and epistemic uncertainty, which arises from knowledge gaps or
limitations in the model [García-Sánchez et al., 2014]. For example, there might be consid-
erable uncertainty in the prediction of urban flow and dispersion because of variability in
the inflow conditions. It is important to make it clear that this is an aleatory uncertainty; it
represents physical variability inherent to the system being analyzed [García-Sánchez et al.,
2017].

Researchers have been working to identify and quantify how each of these uncertainties
influences the results. Numerous studies have compared CFD predictions with experimen-
tal data to evaluate overall model accuracy and identify uncertainty sources [Ding et al.,
2017; Liu et al., 2017]. As it is presented by Robins et al. [2000], multiple teams simulated
gas dispersion around buildings and compared their results to wind tunnel experiments.
Substantial differences between the models were reported, stemming from user-related set-
tings, differences in source modeling, boundary conditions, and numerical schemes. Also,
it was noted that none of the simulations matched exactly the measurements. Such inter-
comparison studies underscore the importance of standardized best practices and uncer-
tainty analysis in CFD. In response, the CFD community has developed guidelines e.g.
[Franke et al., 2007; Tominaga et al., 2008], to minimize some of these uncertainties by rec-
ommending best modeling practices for urban wind simulations. The guidelines provided
by Franke et al. [2007] are the set of guidelines that were followed in order to structure the
geometry of the current thesis and will be presented in Section 3.6. But, even when follow-
ing the guidelines, uncertainties cannot be completely eliminated—especially those tied to
input data like geometric details or inflow turbulence.

2.1. Geometric uncertainties and CFD

In Blocken and Stathopoulos [2013], it is highlighted: 1) the necessity of increased focus
on the assessment of pedestrian-level wind comfort and wind safety instead of only on
wind speed conditions (mean velocity and turbulence), 2) continuous sensitivity analysis,
validation studies and provision of guideline for CFD simulation of pedestrian-level wind
conditions. So, within the broader scope of CFD uncertainty research, the impact of geomet-
ric uncertainty has been a focal point in recent years. Ricci et al. [2017] provided a detailed
analysis of how geometrical simplifications affect urban wind flow simulations. In their
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2. Theoretical background and related work

study, a part of a city (a district in Livorno, Italy) was simulated (Figure 2.1) using three dif-
ferent digital models of a representative building block: one with a very simplified footprint
and height, one with an intermediate level of detail, and one with a highly detailed shape.
By comparing CFD results from these models to wind tunnel measurements, they quantified
the deviations caused purely by geometry differences. They found that the simplified model
under-predicted wind speed, whereas the detailed model showed much closer agreement
with experimental data. This work demonstrated that geometric detail is a significant source
of uncertainty: errors in mean wind velocity predictions grew as the building representation
became more crude. In a related vein, Hågbo et al. [2021] examined the influence of build-
ing geometry input data on CFD simulations for pedestrian wind comfort. Their case study
involved a suburban neighborhood in Norway for which four sets of building models were
created: varying from a model based on a national Geographic Information System (GIS)
building footprint dataset to one derived from high-resolution laser scanning, and even
an extreme case where buildings were modeled as simple extruded footprints (Figure 2.2).
Their findings highlighted the importance of geometry reliability—the simulation using the
basic extruded-footprint model showed notable deviations in wind flow patterns compared
to simulations with more accurate building shapes. Also, Hågbo et al. [2021] noted that
using the moderately detailed GIS data yielded results not far off from the laser-scanned
model, but the lowest-detail model (footprint extrusion) had clear differences. This suggests
that there may be a threshold of geometric detail beyond which additional fidelity returns
fewer improvements.

Figure 2.1.: Geometry (Digital
model)
Source: Ricci et al. [2017]

Figure 2.2.: Geometry (Footprint ex-
trusion model)
Source: Hågbo et al. [2021]

Several other works have explored geometric effects on CFD in urban contexts. For exam-
ple, Franke et al. [2012] conducted a validation of the Open Field Operation And Manipu-
lation (OpenFOAM) CFD code for micro-scale obstacle flows using a standard k–ϵ turbulence
model. They followed the German guidelines Verein Deutscher Ingenieure (VDI) for obstacle-
resolving models and compared simulation results with laboratory data for simple building
configurations. This validation effort confirmed that, with careful setup, CFD can reasonably
predict flow around buildings in a controlled environment. However, some discrepancies
were observed due to geometrical details that were difficult to resolve on the grid e.g. sharp-
edge separation points. The Franke et al. [2012] study is particularly relevant here because
it used the OpenFOAM software and the widely-adopted k–ϵ turbulence model, as do many
urban flow studies. It highlighted that even when using the same solver and model, dif-
ferences in geometry modeling (such as how to represent corners or small structures) can
lead to differences in outcomes, since geometric representation is an important contributor
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to uncertainty.

2.2. Building footprints and their importance in urban
CFD simulations

Building footprints are the geometric foundation for urban-scale CFD simulations. They are
two-dimensional (2D) representations and serve as critical input for generating digital city
models. There are several spatial data sources for acquiring building footprint data, and
OSM is one of the most commonly used. However, the completeness and positional accu-
racy of OSM data vary significantly across regions. As mentioned in Section 1.1, Fan et al.
[2014] conducted a comprehensive assessment of OSM building footprints and identified in-
consistencies in geometry and completeness. In Figure 2.3 we can see a visual comparison
between OSM and Authorative Topographic-Cartographic Information System (ATKIS) build-
ing footprints. These uncertainties in geometric representation may lead to discrepancies in
simulated wind flow patterns.

Figure 2.3.: Examples of building
footprints in OSM and ATKIS
Source: Fan et al. [2014]

Figure 2.4.: Visual example of the LoDs for a
building
Source: Biljecki et al. [2016]

Also, high-resolution LiDAR data is frequently used to extract building footprints by identi-
fying vertical discontinuities and roof structures, often combined with digital surface mod-
els (DSM)s for 3D reconstruction. Aerial imagery and photogrammetric techniques also pro-
vide valuable inputs, especially when combined with machine learning methods to detect
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2. Theoretical background and related work

building edges. In countries like the Netherlands, authoritative cadastral datasets, like the
Basisregistratie Adressen en Gebouwen (BAG), provide highly accurate footprint geome-
tries.

The concept of LoDs is significant for understanding how building geometry is represented
in 3D city models. LoDs vary from simple 2D footprints (LoD0.x) to highly detailed mod-
els (LoD4.x) and were originally developed to standardize 3D representations. Biljecki et al.
[2015] discussed various applications of 3D city models, emphasizing how the different
LoDs are suitable for different tasks, like energy modeling, urban planning and CFD anal-
ysis. While LoD1 models (extruded footprints with flat roofs) are commonly used in CFD
due to their simplicity and availability, critical features like roof geometry might be missed,
potentially affecting the wind flow patterns. To address several limitations, Biljecki et al.
[2016] proposed an improved LoD specification, consisting of 16 levels and, except for fo-
cusing only on the geometric aspect of the models, the classification is also compatible with
different levels of semantic details. As we can see in Figure 2.4, we chose four of these levels
that correspond better to the needs of the current thesis. The geometry that is used is simple;
therefore LoD0.0 and LoD0.1 can be used to extrude the buildings, but depending on the LoD,
it is possible to have an entirely different outcome. The uncertainty in building footprints is
a baseline and remains a key variable in simulation accuracy.

2.3. Benchmark studies and databases

Numerous benchmark studies and experimental datasets have been developed to support
the assessment and comparison of CFD simulations in urban environments. In this section,
an overview of two benchmark studies and datasets that are widely recognized in the lit-
erature is provided, highlighting their characteristics, applications, and relevance to model
validation and uncertainty quantification.

2.3.1. CEDVAL database

The Compilation of Experimental Data for Validation of Micro-Scale Dispersion Models
(CEDVAL) database is an essential resource for validating CFD models in urban wind flow
and dispersion studies (Uni-hamburg.de). Developed by the Environmental Wind Tun-
nel Laboratory at the University of Hamburg, CEDVAL contains a collection of high-quality
wind tunnel measurements designed to benchmark numerical simulations. These datasets
include velocity profiles, boundary conditions, turbulence parameters, and pollutant disper-
sion patterns. Researchers have used CEDVAL cases to test the accuracy of their simulations.
For instance, one common benchmark is flow and dispersion around a single cubic build-
ing (Figure 2.5), where many studies have compared CFD results (using Reynolds-averaged
Navier–Stokes (RANS) k–ϵ models) against the measured velocity profiles. Longo et al. [2017]
is an example that employed CEDVAL datasets to evaluate the accuracy of advanced turbu-
lence models and boundary conditions in simulating wind flow around different building
compositions. Their study demonstrated that while traditional k–ϵ models captured mean
velocity fields reasonably well, they struggled with accurately representing TKE distribu-
tions, particularly in wake regions. CEDVAL database’s role is underscored as a fundamental
reference for CFD validation, helping to ensure that numerical models can reliably replicate
real-world scenarios.
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2.3.2. Joint Urban 2003 field study

The Joint Urban 2003 (JU2003) field study was a large-scale urban atmospheric dispersion ex-
periment conducted in Oklahoma City to investigate wind flow and pollutant transport in a
realistic urban environment. The study included tracer gas releases and extensive meteoro-
logical measurements, providing valuable data for validating CFD models [Lee et al., 2004].
Scientists simulated these experiments, and one finding from those efforts was that accu-
rately modeling the buildings was crucial. Flaherty et al. [2007] used JU2003 data to evaluate
CFD predictions of tracer dispersion. Their findings highlighted that while CFD captured
general dispersion patterns, uncertainties were rising from variations in wind direction and
source positioning, leading to discrepancies of up to 50% in modeled versus observed con-
centrations. The study also demonstrated the strong influence of tall buildings (Figure 2.6)
on flow separation and mixing, emphasizing the need for accurate urban geometry represen-
tation in CFD. Similarly, García-Sánchez et al. [2014] quantified the uncertainty associated
with inflow boundary conditions in CFD simulations of Oklahoma City, using JU2003 field
measurements as a benchmark. Their research demonstrated that variations in wind speed,
wind direction, and surface roughness significantly affected velocity predictions at multi-
ple measurement stations, reinforcing the importance of accurate inflow parameterization in
CFD. These findings reinforce the importance of uncertainty quantification in urban CFD.

Figure 2.5.: CEDVAL case A1-1
Source: Longo et al. [2017]

Figure 2.6.: Computational domain
(JU2003)
Source: Flaherty et al. [2007]

2.3.3. Guidebook for CFD Predictions of Urban Wind
Environment—Architectural Institute of Japan

In Japan, working groups of the AIJ conducted extensive cross-comparisons between CFD
simulation results and high-quality wind-tunnel measurements to support the development
of guidelines for practical CFD applications. Part of these efforts were reported by Yoshie
et al. [2007] and this group intended to propose the guidelines based on the results of their
own benchmark tests. In 2008, Tominaga et al. published the “AIJ guidelines for practical
applications of CFD to pedestrian wind environment around buildings”. The feature of
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these guidelines is that they are based on cross-comparison between CFD predictions, wind
tunnel test results and field measurements for seven test cases (Figure 2.7) used to investigate
the influence of different computational conditions for various flow fields [Tominaga et al.,
2008].

Figure 2.7.: AIJ cases
Source: Tominaga et al. [2008]

According to Tominaga et al. [2005], a comparison between CFD results and wind-tunnel
measurements had already been conducted some years earlier, for two different building
cases. The first was located at Niigata (Japan), which consisted of low-rise houses, and the
second was the Shinjuku sub-central area (Japan), which consisted of high-rise buildings.
For the first case overall, CFD matched the wind tunnel results well when assessing the wind
environment. For the second case, the high-rise buildings presented a good match, while
for some low-rise houses, the accuracy of CFD results depended a lot on grid resolution.
Differences appeared when the grid was not fine enough to capture details properly. These
kinds of differences we will try to capture in the current thesis.

Another similar comparative study was conducted by Tominaga and Blocken [2015], where
velocity was measured in a cross-ventilated flow. The geometry that was used imposes sig-
nificant similarities with the one that will be used in the current thesis. However, Tominaga
et al. [2008] presents a set of guidelines that summarize important points in using the CFD
technique for appropriate prediction of pedestrian wind environment. The reason was that
the influence of the computational conditions (grid discretization, domain sizes, boundary
conditions, etc.) on the prediction accuracy had not been systematically investigated.
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2.4. Useful outcomes from the literature review and
introduction to our case study

In summary, the related work in this domain establishes that:

• Uncertainty in CFD simulations of urban flow is inevitable and multifaceted.

• Geometric uncertainty is a particularly influential factor for urban wind and dispersion
predictions.

• Numerous validation efforts (wind-tunnel and field studies) have helped quantify
these uncertainties, showing where and by how much CFD results might deviate.

The case that was chosen to work with is the Case C-Simple building blocks, provided by
the AIJ and is presented below (Figure 2.8). It is an example of a canonical case for simula-
tions and is a hypothetical case study that has been created to represent a typical realistic
urban case scenario. There are several validation studies regarding the Case C from AIJ
(SimScale; Sim-flow; Wang and Ng). In Zheng et al. [2021], the appropriate surrounding
building regions are examined in order to achieve accurate prediction of wind flow charac-
teristics around a target building and different building heights, densities, and layouts are
considered. A similar building composition exists in our case study, too. The report related
to this case can be found in Nonomura et al. [2003].

Although multiple benchmark cases are available, this thesis focuses exclusively on the Case
C, due to its well-documented geometry, high-quality wind tunnel measurements, and its
widespread acceptance. The insights from previous studies form the foundation for this
thesis. The purpose is to contribute to the ongoing effort of uncertainty quantification in
CFD, ultimately guiding better modeling practices and more reliable predictions.

Figure 2.8.: Case C
Source: AIJ-CFD guide website
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3. Methodology

3.1. Research workflow

To set up the case, run the CFD simulations in OpenFOAM and perform our analysis, we
facilitated a workflow that consists of the steps below. A general overview of the whole
procedure is:

Understanding
of the dataset

Case setup

Execution of
the simulations

Uncertainty analysis

Preparation of
the geometry

Initial and bound-
ary conditions Mesh creation

Mesh conver-
gence analysis

Comparison with
experimental data

Different wind angles Translation and
rotation uncertainty

Visualization
of the results

3.2. Dataset

Our dataset consists of nine building blocks in a cubic shape. Each cube has side lengths
of 0.2 meters, and the distance between every cube is 0.2 meters. There are three different
cases, whose geometries represent simple blocks of buildings, and they are presented below
(Figure 3.1). For the three cases, the only building whose height is changing is the middle
one. Specifically, for the case 0h, there is no building at its centre, for the case 1h, there is a
low-rise building at this location and for the case 2h, there is a high-rise building constructed
there.

(a) Case 0h (b) Case 1h (c) Case 2h

Figure 3.1.: Geometry
Source: AIJ-CFD guide website
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3. Methodology

Besides the given dimensions of our geometry, the inflow angle is also provided and takes
three different values: 0◦, 22.5◦ and 45◦ degrees (Figure 3.3). Below we see a top view of
our domain with its dimensions (Figure 3.2). The red points are 120 probes, where the wind
velocity was measured experimentally for each of the 9 cases in total (0◦, 22.5◦ and 45◦ wind
angle for 3 different geometries—0h, 1h, 2h). Their height is 0.02m from the ground. The
data were acquired from www.aij.or.jp, where the Case C is stored.

Figure 3.2.: Top view and probes
Source: AIJ-CFD guide website

Furthermore, the initial data provided to us, stem from a wind-tunnel experiment and are
the values of inflow velocity U(m/s) that correspond to different heights Z(m), alongside
with the standard deviation of the velocity (σ) (Figure 3.4). In the following graph, we plot
the points for every U and Z value, and then we drew a curved line that approximates
the points. From this graph, it becomes clear that we are dealing with a logarithmic wind
velocity profile (Figure 3.5).

3.3. Preparation of geometry

To begin with, we had to obtain the geometry of our buildings. In our case, the geometry
was not given in any presentable format and was just described, so we created an OBJ file
named cubes.obj. For its creation, we used a simple text editor. According to the given
dimension and location of the cubes, we calculated the coordinates of every vertex. Then,
we formed the faces. Our geometry is triangulated, and the total number of vertices is 72
(8 for every cube) and triangulated faces: 108 (12 for every cube) (Figure 3.6). It is a simple
geometry, so we could structure our initial files manually. The enumeration follows the
order in which the entries of each object have been made in the OBJ file.

For the cases with different wind angles, we decided to rotate our geometry. After the cre-
ation of our 3 initial OBJ files, the command that was used was the ’surfaceTransformPoints
-yawPitchRoll "(-45 0 0)" cubes2h0.obj cubes2h45.obj’, for the 45◦ degrees rotation
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3.3. Preparation of geometry

(a) Wind angle 0◦ (b) Wind angle 22.5◦

(c) Wind angle 45◦

Figure 3.3.: Different wind angles (top view)

Figure 3.4.: Inflow values
Source: AIJ-CFD guide website Figure 3.5.: Wind velocity profile

and 22.5◦ degrees respectively. The command contains −45◦, because we needed to per-
form a clockwise rotation. Finally, we created 9 OBJ files for our different geometries and
wind angles, respectively. Alongside the building blocks, with the same command, we also
rotated the 120 probes. The clockwise rotated cases are presented below (Figure 3.7).
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3. Methodology

(a) Case2H.obj (b) Case C-enumeration

Figure 3.6.: Case C (MeshLab view)

(a) Rotation 0◦ (b) Rotation 22.5◦

(c) Rotation 45◦

Figure 3.7.: Rotated geometry (top view)

16



3.4. Naming convention

3.4. Naming convention

Since multiple simulations will be performed in later stages of the thesis, it was deemed
necessary to refer to them to avoid any confusion. To facilitate the procedures and the
implementation of all simulations, it was necessary to codify the multiple cases that we will
be called upon to manage in the future. For this reason, a codification was created, which
presents in a concise but effective manner and illustrates all the future cases on which we
will work. The encoding that we used refers both to OBJ files and CFD cases, and is presented
below (Figure 3.8) 1-5 with some progressively increasing uncertainty

Figure 3.8.: File and case encoding

• Geometry: ’0h’, ’1h’, or ’2h’, depending on the height of the central building block.

• Wind angle: ’0’, ’22’, or ’45’ depending on the wind angle 0◦, 22.5◦ and 45◦ (units:
degrees).

• Uncertainty: ’t’ for translation and ’r’ for rotation. Five progressive translations (t1, t2,
t3, t4, t5) and rotations (r1, r2, r3, r4, r5) will be performed in Chapter 5.

3.5. Initial and boundary conditions

3.5.1. Initial conditions

The next step was to specify our boundary and initial conditions for our simulation. In the
RANS family of turbulence models, it is very common to use the k-ϵ turbulence model with
a logarithmic velocity profile. In the case/0 directory, all the physical properties of the wind
are located. Specifically, the directory 0/ABLConditions of our case is the folder responsible
for the logarithmic law of the wall (inlet/ABL). The values of the initial conditions are stored
here. For their calculation and initialization of the wind flow, the maximum height (zmax) of
the velocity profile and the corresponding inflow velocity (Umax) were chosen as reference.
In our case, this was zref = 1, 2 m and the velocity at this height (Figure 3.4), U(zref) =
6, 201 m/s, with positive direction, along the x-axis. The reason behind this selection is that
we want to capture free-stream conditions. Our tallest object is Hmax = 0.4 m and above
it, the wind flow is less affected by roughness elements and at the same time, we avoid the
generation of turbulence and flow separation, which may take place at lower heights.
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3. Methodology

So, based on the following steady-state, incompressible, RANS equations that were presented
by Richards and Hoxey in their pioneering paper [Richards and Hoxey, 1993], we calculated
the initial values for the turbulence parameters:

U(z) =
u∗
κ

ln
(

z + z0

z0

)
(3.1)

k(z) =
u2
∗√
Cµ

(3.2)

ϵ(z) =
u3
∗

κ(z + z0)
(3.3)

where, the von Kármán constant κ = 0.41 and constant Cµ = 0.09. Also, the height of our
geometry zground = 0 m, since we don’t have any terrain. Finally, the direction of the flow
(flowDir) was set only along the x-axis (1 0 0), so the wind angle is 0◦. It is important to
mention here that in later stage of the thesis, for the cases of 22.5◦ and 45◦ degrees, these
initial values will remain the same, since we chose to rotate our geometry and not to change
the direction of the wind.

Another important parameter that we had to consider is the aerodynamic roughness length
(z0), which expresses the roughness of the terrain. Depending on its value, we can obtain
information regarding the characteristics of the ground. Similar validation studies of the AIJ
case C like the one provided by SimScale, considers as z0 = 0.00045 m, which according to
the Wieringa [1992] roughness classification, this z0 value indicates a smooth terrain, like
the wind tunnel floor of our case. So for the calculation of u∗, the Equation 3.1 could be
rewritten as:

f rom (3.1) → u∗ =
U(z)κ

ln
(

z+z0
z0

) → u∗ = 0.322 m/s (3.4)

Then, the calculations that followed were the TKE k = 0.346 m2/s2 according to Equation 3.2
and the dissipation rate, turbulent epsilon ϵ = 0.068 m2/s3 according to Equation 3.3.

3.5.2. Boundary conditions

The boundary conditions were set in order to describe how the flow behaves at the bound-
aries of our mesh. Our computational domain consists of boundaries and has a specific
volume. From some of these boundaries, the wind flows by entering or leaving them.
In general, only the bottom of the domain corresponds to a physical boundary in real-
ity, and the top and side boundaries are artificial [Blocken, 2015]. For that reason, the
atmBoundaryLayerInlet conditions that were used had as purpose of ensuring a realis-
tic wind profile for our urban case at the inlet. For the buildings, the kqRWallFunction,
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epsilonWallFunction, nutkWallFunction and for the ground, the kqRWallFunction, epsilonz0WallFunction,
nutkAtmRoughWallFunction were used, as they are considered rough, solid surfaces. For the
sides and top surfaces, the symmetry condition was used. Finally, the inletOutlet condi-
tion was used at the outflow, where the wind exits our domain freely. Below (Table 3.1) are
presented the boundary conditions that were used.

Patch name U(m/s) p(m2/s2) k(m2/s2) ϵ((m2/s3) nut(m2/s)
Inlet atmBoundaryLayerInletVelocity zeroGradient atmBoundaryLayerInletK atmBoundaryLayerInletEpsilon calculated

Outlet inletOutlet uniformFixedValue inletOutlet inletOutlet calculated
Ground uniformFixedValue zeroGradient kqRWallFunction epsilonz0WallFunction nutkAtmRoughWallFunction

Buildings uniformFixedValue zeroGradient kqRWallFunction epsilonWallFunction nutkWallFunction
Sides and Top symmetry symmetry symmetry symmetry symmetry

Table 3.1.: Boundary conditions

3.5.3. Scheme selection

The scheme selection impacts the accuracy and stability of our CFD simulation and it refers
to the numerical method that is used to approximate the differential equations governing
the fluid flow (in our case, RANS equations).

The gradient scheme that was used is CellLimited Gauss Linear. For the divergence
schemes, the bounded Gauss linearUpwind limited option and bounded Gauss limitedLinear
are used, which are also second-order schemes.

The reason behind these selections is that with first-order discretization schemes, numerical
diffusion is caused. According to the best practice guidelines Blocken [2015], it is important
to use high-quality grids and higher-order discretization schemes, since they allow us to have
more accurate results, without having to compromise significantly with the convergence
behavior.

3.6. Mesh creation

3.6.1. Creation of the computational domain

The computational domain was created based on the guidelines that were introduced by
Franke et al. [2007] and plays an important role in the simulations since it discretizes the
geometry into smaller computational cells and also encloses the open flow inside a ’box’. In
order to define the dimensions of this background mesh, we took into account the building
domain. At first, we found the height of the tallest building, which in our case is Hmax=0.4m
for the 2h case, and 0.2m for the 1h and 0h cases. As mentioned in Blocken [2015], according
to Type-1 guidelines by Franke et al. [2004], the ideal domain size depends on Hmax. For
the x-axis, it should be 5Hmax to the -x direction and 15Hmax to the +x direction. For the y-
axis, it should be on both sides 5Hmax and for the z-axis, it should be 6Hmax. These distances
towards every direction are very specific (Figure 3.9), since the boundaries should be located
far enough from the building domain to allow the wind flow to develop freely. The outflow
boundary is set at 15Hmax in order to allow the wake flow behind the buildings to fully
develop [Blocken, 2015].
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3. Methodology

Figure 3.9.: Size of Computational Domain

Another factor that had to be taken into consideration, before we finalize our mesh dimen-
sions, is the Blockage Ratio (BR). According to the type-2 guidelines by Blocken [2015],
taking into account the side view of our domain, where the wind enters (inflow), the ratio
of the area covered by the building domain, to the total area of the computational domain,

should be less than 3%: BR =
Abuilding
Adomain

< 3%. Also at Blocken [2015], the type-3 guidelines
are introduced, that is a combination of type-1 and 2. Specifically, what should be consid-
ered is the Directional BR, where separately the length and height of the buildings should

be less than 17% of the length and height of our entire domain: BRL =
Lbuilding
Ldomain

= 1m
6m < 17%

and BRH =
Hbuilding
Hdomain

= 0.4m
2.4m < 17%. This led us to the conclusion that for the cases with wind

direction 22.5◦ and 45◦, the computational domain should be larger, since the min and max
coordinates of the building domain are changing as we rotate it. So, the final dimensions of
our blockMesh for the 3 wind angles are:

• 0◦ wind angle: [9 × 6 × 2.4] meters

• 22.5◦ wind angle: [9.3 × 7.6 × 2.4] meters

• 45◦ wind angle: [9.4 × 8.4 × 2.4] meters

Below the min and max coordinates of the building domain and blockmeshes are presented
(Table 3.2). Also, a clear view of the blockMesh dimensions and the distances of our building
domain from the mesh boundaries is given (Figures 3.10, 3.11, 3.12).
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Variables Building Domain 0◦(m) BlockMesh 0◦(m) BlockMesh 22.5◦(m) BlockMesh 45◦(m)
xmin -0.5 -2.5 -2.65 -2.7
xmax 0.5 6.5 6.65 6.7
ymin -0.5 -3 -3.8 -4.2
ymax 0.5 3 3.8 4.2
zmin 0 0 0 0
zmax 0.4 2.4 2.4 2.4

Table 3.2.: BlockMesh dimensions

Figure 3.10.: Blockmesh (0◦ wind angle)

Figure 3.11.: Blockmesh (22.5◦ wind angle)

3.6.2. Grid resolution

One more functionality of blockMesh is to define the resolution of the mesh by dividing
the space inside the domain into hexahedral cells. The criteria that were followed for the
selection of the appropriate cell size are analyzed below:

• According to Blocken [2015], the grid should consist of at least 10 cells per cube root
of the building volume and also between every two buildings. In our dataset, we have
9 cubes, as buildings, with a dimension of 0.2 meters, and an equal distance from each
other of 0.2 meters. So, 0.2/10 = 0.02m cell size can be a first estimation.

• Another guideline that should be followed is that the height of 1st cell from the ground
should not be less than our z0 [Blocken, 2015], which is equal to 0.00045m. In our case,
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Figure 3.12.: Blockmesh (45◦ wind angle)

0.02m is higher than 0.00045m.

• This AIJ case simulates an urban environment since these cubes represent simple build-
ing blocks. So, according to Blocken [2015], for pedestrian level wind studies, the 3rd
or 4th cell should reach the height of the probes (0.02m). It is important not to extract
data from the first cell closer to the ground because our wall function can heavily in-
fluence our results. So by refining the area close to the ground, the desired height is
achieved.

• Another important aspect to be considered is the quality of the computational cells
in terms of shape. It is preferable to divide our domain into cubic cells. According
to Blocken [2015] guidelines, it is advised that the stretching ratio should be kept
below 1.3 in regions of sharp gradients e.g. near buildings, to limit the truncation error.
Another reason is to achieve grid independence and convergence. By using cubic
cells, we can uniformly refine the grid in all three dimensions without introducing
additional complexity. According to Blocken [2015], the systematic refinement of grids
is the key to achieving grid-independent results, and cubic grids are ideal for uniform
refinement.

To make sure that we will run the simulation having designed the most appropriate mesh,
we had to design 3 meshes with progressive refinement: a coarse, a medium and a fine
mesh. Then, running the simulation for each of them will finally lead us to decide which
one is the most suitable to use. As it is mentioned by Blocken [2015], the resolution of the
medium and coarse mesh can be calculated by multiplying our cell size by a factor (grid
refinement ratio) of 1.5 consecutively. As a result, we had 0.02*1.5 = 0.03m resolution for the
medium mesh and 0.03 ∗ 1.5 = 0.045m resolution for the coarse mesh.

However, it is important to mention that due to the simplicity of the geometry and excessive
computational time, we were led to the conclusion that we couldn’t proceed with the 0.02m
resolution mesh as our fine mesh, so we considered the 0.03m cell size for our fine mesh
and we simplified our coarse mesh, 0.045*1.5≃0.07. So, the final cell sizes for each mesh,
alongside the number of cells for every dimension, are 0.03m, 0.045m, 0.07m and are pre-
sented below (Table 3.3). Also, by using ParaView software, we present an example of our
geometry with the three different resolutions (Figure 3.13).

22



3.6. Mesh creation

Mesh type Cell size (m) nCells x nCells y nCells z Total cells
Coarse Mesh [0, 07 × 0, 07 × 0, 07] 128 86 34 374.272

Medium Mesh [0, 045 × 0, 045 × 0, 045] 200 133 53 1.409.800
Fine Mesh [0, 03 × 0, 03 × 0, 03] 300 200 80 4.800.000

Table 3.3.: Cells per mesh

(a) Coarse Mesh: 0,07m Resolution (b) Medium Mesh: 0,045m Resolution

(c) Fine Mesh: 0,03m Resolution

Figure 3.13.: The three meshes

In the blockMeshDict file, we defined the meshing parameters that are mentioned so far,
including the dimensions of our domain and the number of cells. Applying the blockMesh
command, the background mesh was generated. Then, we used the surfaceFeatures com-
mand to improve the generation of the mesh as it allows us to extract the outlines of the
buildings, which are going to be used in the final mesh generation. Also, this command
helps to detect the location of the buildings and their shape.
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3.6.3. Mesh refinement

Another important parameter that we should consider for our mesh is to achieve higher
resolution in our region of interest. SnappyHexMesh was used to perform this refinement
and adapt the mesh as close as possible to the real geometry and our building domain. For
the mesh refinement, we used the building model boundaries, and we defined 2 levels of
refinement. Specifically, we created 2 refinement boxes and 2 refinement levels. They were
applied to all three meshes to refine the area of interest, which in our case is the terrain and
the building domain, where the probes are located. The refinement regions, their dimensions
and the levels of refinement for the coarse, medium and fine meshes of the cases 0h, 1h and
2h are:

• Building surfaces: Level 2

• Refinement box 1: [−2.5,−3, 0]× [6.5, 3, 0.04] m (Level 2)

• Refinement box 2: [−0.9,−0.9, 0]× [0.9, 0.9, 0.8] m (Level 1)

Box 1 spreads across our whole computational domain at a relatively small height, enclosing
all our probes. It is applied throughout the entire domain and matches the refinement
level of the buildings to ensure that the wind profile is not heavily interpolated. Box 2
includes our building site. The height of it was chosen accordingly so as not to exceed the
height of 2Hmax. The rest of the computational domain is considered level 0. The criteria
for choosing these refinement boxes were to be equally distributed in space, to include
the whole building domain, our probes, and to have a smooth transition from the sparser
grid of the free wind flow to the denser grid that is around the cubes and reaches their
walls. Since our geometry consists of plain surfaces and simple shapes like cubes without
any complicated composition or abrupt angles, it was deemed appropriate not to carry out
further refinement. In Figure 3.14, we can see the refinement boxes and in Figure 3.15, we
can see our domain in Paraview.

For the cases with 22.5◦ and 45◦ wind direction, we adjusted the refinement regions accord-
ingly. The refinement box 1 was rotated through the command: surfaceTransformPoints
-yawPitchRoll "(-45 0 0)" ref_box.obj rotated_ref_box.obj and the rotated OBJ file
was used as a refinement region. The refinement box 2 was adapted to the other blockmeshes,
covering their entire terrain respectively.

3.7. Solver type

The simulation is performed by an iterative method, through which the variables U, P, k,
ϵ and nut will be calculated by OpenFOAM, for every individual cell of our mesh. The
solver is responsible for resolving numerically our set of equations by representing particular
physical phenomena. Our cases are set up for a steady-state, incompressible, turbulent flow
simulation, so the solver that is used is the simpleFoam. The GAMG solver is used for
pressure, and a smoothSolver for velocity and turbulence, with a Gauss-Seidel smoother in
order to smooth out errors. The convergence limit has been set to 10−9 for the residuals,
ensuring high accuracy for our model.
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3.8. Uncertainty through translation

Figure 3.14.: Refinement Boxes (Case 2H)

Figure 3.15.: Refined Mesh (Case 2H)

3.8. Uncertainty through translation

The geometric uncertainty is a critical factor, especially when working on CFD simulations
around city blocks. Our goal is to quantify the error observed through rotations and transla-
tions of our model. An important aspect that should be considered is that our case simulates
simple building blocks and represents a real-world scenario. So, we could assume that the
height of the 120 probes (0.02 m) represents pedestrian height (≃ 2 m). Therefore, by scaling
up our geometry to 1:100, it represents a realistic urban-case scenario. Using as a reference
the height of the probes (pedestrian level), our scaling factor is calculated and set: α = 100.
As a result, we now have the prototype scale, which represents the wind-tunnel model and
the reality scale (i.e. city scale), which is 100 times bigger. In the next steps of our analysis,
we will use the prototype scale in order to avoid any confusion or inconsistency.

The direction of the translation could affect our results in different ways. Towards the x-axis
(parallel to the wind), it impacts the incoming flow conditions (wake formation is altered)
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and probes placed behind the buildings will show more changes in velocity. Towards the y-
axis (perpendicular to the wind), the geometry comes closer to the boundaries. To quantify
this impact, the type of uncertainty that we will study in more detail is the uncertainty that
comes from point cloud reconstruction. After related research, specific uncertainty levels are
mentioned. In Huang et al. [2022], Root Mean Squared Error (RMSE) was used to quantify the
quality of each reconstructed model. The statistics of the quantitative results on the buildings
were reported and the obtained reconstruction accuracy for all buildings is between 4cm and
26cm. Also, according to Jarząbek-Rychard and Maas [2023], the positional uncertainty of
the reconstructed model vertices, that is specified at the 95% confidence level, was grouped
in: <1mm, 1-5mm and 5-10mm classes.

According to the literature review and from a realistic scope, we assumed five, progressively
increasing, levels of uncertainty: 1cm, 10cm, 20cm, 50cm, and 100cm. However, these levels
of accuracy apply in real-world scenarios. For our case, we need to apply these uncertainties
as translations (offsets) in our simulations. To achieve that, we need to scale down these
values, in prototype scale, according to α, so we get the following results:

• t1: 1 cm = 0.01 m → 0.01/α = ±0.0001 m

• t2: 10 cm = 0.1 m → 0.1/α = ±0.001 m

• t3: 20 cm = 0.2 m → 0.2/α = ±0.002 m

• t4: 50 cm = 0.5 m → 0.5/α = ±0.005 m

• t5: 100 cm = 1 m → 1/α = ±0.01 m

So we took into account three base cases, with 0◦, 22.5◦ and 45◦ wind angle and compared
them with the uncertain ones. The minimum distance between the probes and the buildings
is 0.05 m, so none of these translations affect them (e.g. by obstructing any of the probes with
a building wall). The command that was initially used to import these uncertainties in our
geometry is ’SurfaceTransformPoints -translate "(dx dy 0)" cubes.obj translated_cubes.obj’.
This command would transpose our model towards a certain direction and magnitude as
a whole. But instead, the goal is to assign different uncertainty values to each building,
according to the average uncertainty of our domain and achieve more realistic results. So,
five samples (one for each translation value ti) had to be created, and the following condi-
tions were considered appropriate to be met for the applied part in Section 5.1. They are
presented below:

1. The uncertainty will be represented as an offset

2. The offset is radial (could take place towards any direction)

3. There is one translational uncertainty value per building

4. Each sample contains the translation values of the buildings, following the normal
distribution N[µ, σ]. Regarding the normal distribution of each sample:

• the mean (µ) is centered around the translation value ti

• the coefficient of variation is CV = 10% = 0.1

• the standard deviation is σ = ti ∗ CV
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3.9. Uncertainty through rotation

Following a similar method regarding rotational uncertainty, we took into account three base
cases, with 0◦, 22.5◦ and 45◦ wind angle and compared them with the uncertain ones. In this
type of uncertainty, there is no reason for scaling since we are dealing with angles. Similarly,
we noticed that 1◦ ≈ 0.0025m offset on the x/y coordinates of our geometry. So, we assumed
five, progressively increasing, levels of rotational uncertainty: 0.5◦, 1◦, 2◦, 3◦, 5◦ and we ap-
plied these uncertainties as rotations in our simulations. Again, the command that was
initially used to import these uncertainties in our geometry is ’’surfaceTransformPoints
-yawPitchRoll "(ϕ 0 0)" cubes.obj rotated_cubes.obj’. But, this command would ro-
tate our model towards a certain direction and equally as a whole. Instead, the goal was
to assign different rotation values to each building, according to the average rotational un-
certainty of our domain and achieve more realistic results. So, five samples (one for each
rotation value ri) had to be created, for the applied part presented in Section 5.2 and we
made the following assumptions:

1. The uncertainty will be represented as a rotation

2. The rotation takes place either in the clockwise or counterclockwise direction

3. There is one rotational uncertainty value per building

4. Each sample containing the buildings’ rotation values follows the normal distribution
N[µ, σ]. Regarding the normal distribution of each sample:

• the mean (µ) is centered around the rotation value ri

• the coefficient of variation is CV = 10% = 0.1

• the standard deviation is σ = ri ∗ CV
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4.1. Performing the simulations

We run our case with the 3 different meshes (coarse, medium and fine) and for three different
building heights (0h, 1h, 2h). We choose the case with 0◦ wind angle, since the dimensions
of the blockmesh are smaller and the running time would be lower. Then we compared the
results with the experimental values provided by the dataset. It is important to mention
here that the number of processors used both for creating the meshes and the simulations
was 24. This number did not change throughout the whole process, in order to compare the
running times properly.

The finer the mesh, the more time it needs to converge. For our case, the number of iterations
was set to 5000. This is the number of iterations needed so that our fine mesh fully converges.
For the comparison, we used the same number of iterations for the coarse and medium
meshes. Below, at tables 4.1, 4.2 and 4.3, is presented in detail the number of cells that
were created, the time required to create the refined meshes, and the running time of each
simulation. Each table represents a different geometry case. As expected, every category
increases from coarse to fine mesh. The following numbers were taken from the .log files
that were used to monitor the simulation.

Mesh type Cells after refinement Meshing time (sec) Running time (sec)
Coarse mesh 891.124 18,15 876

Medium mesh 3.470.800 88,12 4441
Fine mesh 11.733.731 375,81 17360

Table 4.1.: Meshes: Case 0h

Mesh type Cells after refinement Meshing time (sec) Running time (sec)
Coarse mesh 892.871 16,95 861

Medium mesh 3.472.794 83,08 4440
Fine mesh 11.737.254 377,61 17187

Table 4.2.: Meshes: Case 1h

Mesh type Cells after refinement Meshing time (sec) Running time (sec)
Coarse mesh 894.696 16,5 804

Medium mesh 3.475.658 105,93 4120
Fine mesh 11.743.649 396,89 15376

Table 4.3.: Meshes: Case 2h
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4.2. Analysis and post-processing

4.2.1. Residuals

The first step related to the post-processing of the results is the convergence of the residuals.
In practice, through the folder Post-processing/Residuals that was created, we plotted
the residuals of the field values and observed if they converged according to our standards.
A representative resulting graph of the case 0h is presented below (Figure 4.1). The rest of
the resulting graphs are presented in the appendix (Figures B.1, B.2, B.3). Also, we plotted
the velocity magnitude of five random probes to verify that the velocity at these points has
been stabilized (Figure 4.2).

Figure 4.1.: Residuals: Case 0h (Medium Mesh)

Figure 4.2.: Velocity magnitude over time for five monitoring points

As we can see, the behavior of our mesh is pretty similar in the three cases, since the geom-
etry does not change drastically. As it is expected, the Ux variable is the one that converges
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faster, since the wind flows parallel to the x-axis and our case simulates an urban environ-
ment. In different urban environments, though, where the geometry is characterized by high
complexity, it would be harder to achieve small values for the residuals, which explains the
results that we obtain in our cases. All of the cases converged, reaching the desired 10−6

or lower. We see that the coarse and medium meshes reached the converged solution faster
than the fine mesh. For the coarse mesh, approximately 1000 iterations were needed to reach
convergence, and for the medium, approximately 2000. For the fine mesh, convergence is
achieved within 4000 iterations, much longer than the other two. As expected, the finer the
mesh, the more iterations it takes to get closer to zero, since the number of cells is signifi-
cantly higher. Nevertheless, in terms of time and number of iterations, the coarse mesh and
the medium mesh have a clear advantage in all three cases.

4.2.2. Field plots

To compare effectively the three meshes, we created plots of the field values in Paraview,
which are displayed below. A representative field plot of Ux for the three meshes of the case
0h is presented here (Figure 4.3). The rest of the plots are presented in the appendix (Fig-
ures C.1, C.2, C.3). Specifically, the tool that was used was the ’plot over line’ from the
data analysis tools in Paraview. The line that was chosen was the [−2.5, 0.15, 0.1], [6.5, 0.15, 0.1].
The criteria of choosing this line was 1) to be parallel to the wind direction (x-axis), 2) to be
as long as the mesh, 3) to be located at a proper height where our field values present some
variance and 4) not to be obstructed by the geometry at any point.

Figure 4.3.: Ux field plot for the three meshes: Case 0h

Through this tool, we plotted the values of our fields of interest Ux, Uy, Uz, p, k and ϵ over
this line. As we can see from these plots, the lines are closer in the cases of the fine and
medium meshes, while the gap between the coarse and medium meshes seems larger.
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4.2.3. Grid Convergence Index

Another criterion for the selection of the most optimal mesh is the comparison of the wind
velocity at the points of interest (probes). A meaningful metric to quantify the differences
between them was used for this purpose. Grid convergence is often analyzed using the Grid
Convergence Index (GCI), a formal method proposed by Roache [1994] for quantifying grid
convergence and the level of uncertainty related to grid discretization. It is considered a
more accurate and understandable way to present our results, and it involves computing an
error estimate based on our solutions at different grid levels. The lower GCI value, the more
grid-independent our solution is. Also, a lower GCI value indicates that the solution is less
sensitive to further mesh refinement, suggesting grid convergence. The implementation and
validation algorithm was based on the procedure outlined by Celik et al. [2008], and was
implemented through Python. The key steps involved in the GCI calculation and the results
are presented below.

The necessary inputs for the calculation of GCI are the representative cell sizes (h) from
Table 3.3, and the quantity of interest (phi) of the three meshes. The key requirement for
the selection of phi is that it should be a representative scalar quantity that is sensitive to
grid refinement [Celik et al., 2008]. The velocity magnitude at the probes’ location, from the
folder postProcessing/Probes, fits this criterion. The measurement of the discretization
error does not necessarily behave linearly across our probes, and we want to avoid mixing
regions of different convergence behavior. For that reason, we computed the GCI for each
probe separately based on its respective velocity values across the different grids. Then we
computed an average to obtain a representative GCI across the entire domains. In order to
strengthen the results of this particular method, we included 80 new points in our calcu-
lations, and we increased the total number of probes from 120 to 200. The reason behind
this decision was the fact that our 120 initial points were gathered close to each other at the
center of our building domain, close to the ground. Thus, through Python, we randomly
generated 80 sampling points with the assumption: 1) that they are within the boundaries of
our study area, 2) that they are not located inside buildings and 3) that they are uniformly
dispersed in space. Afterwards, some key steps were the calculation of:

• Grid refinement ratio: r21 = h2/h1 = 0.045/0.03 = 1.5 and r32 = h3/h2 = 0.07/0.045 =
1.556. These ratios represent how much finer one grid is compared to the next coarser
one.

• Error estimation: e21 = phi2 − phi1 and e32 = phi3 − phi2. These are the differences in
the computed quantities of every probe, between successive grids, for our three cases.

• Apparent order of convergence (p): A measure of how fast the solution of the nu-
merical simulation improves as the grid is refined. It is calculated using Richardson
extrapolation.

So, for our three meshes, we calculated two GCIs for every probe: 1) GCI21: between the fine
and medium grid and 2) GCI32: between the medium and coarse grid. For the computation,
we used Roache’s formula, where:

GCI21 =
1.25

∣∣∣ phi2−phi1
phi1

∣∣∣
rp

21 − 1
× 100% (4.1)
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Then, the median method was followed to calculate our final values. The results are pre-
sented below (Table 4.4):

Case 0h Case 1h Case 2h
GCI21: 2.612%, 1.314%, 2.553%
GCI32: 3.069%, 4.518%, 5.640%

Table 4.4.: GCI results

Based on our results, we come to the observation that both GCI values are close to each
other in all three cases. This measure expresses how much the refinement improved our
results by reaching closer to the true values. For all three cases, the GCI21 < GCI32, which
means that from the coarse to medium mesh our results were improved by 3− 5% and from
the medium to fine mesh we observe an improvement of around 1 − 2%. The fine mesh
is the most accurate, but further refinement might improve our results by an even smaller
percentage, with a high computational cost.

These low GCI values indicate that grid independence is approached and the refinement is
carried out properly. Finally, based on the results, we have small differences both between
coarse-medium and medium-fine grids in all of our cases and we conclude that the medium
mesh is the best choice, according to GCI. The medium mesh is more accurate than the
coarse mesh and it is considered a balanced choice, since it combines reasonable accuracy,
without the high computational cost of the fine mesh.

4.3. Mesh convergence

Achieving grid convergence in CFD indicates that the solution of the discretized equations
and our simulation becomes grid independent as the mesh is refined, and tends to the exact
solution of the differential equations. It is ensured that the results are not significantly
influenced by the size or distribution of the computational cells in the mesh. Also, grid
convergence is important for 1) the validation of our results, since it ensures our numerical
results are accurate and not dependent on grid resolution and 2) the reproducibility, since it
confirms that others can reproduce our results with different grids.

Finally, according to these four criteria: 1) convergence time of the residuals, 2) number
of iterations needed, 3) field plots and 4) GCI, the mesh chosen to perform the analysis of
the results is the medium mesh. It offers a good balance between accuracy and computa-
tional cost. In case we need higher accuracy, we could verify our results by running a few
key simulations on the fine mesh, but for continuing the full analysis, the medium one is
preferred.

4.4. Comparison with experimental data and validation

In the dataset provided by AIJ is available the velocity of the 120 probes for three different
geometries and three wind angles. We observe that the velocity values that are experimen-
tally measured (UAIJ) are normalized by the inflow velocity at the same height (0.02m). This
means that the velocity values that we have for the probes are expressed as a ratio with
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respect to the inflow velocity at the same height. We can assume that the formula used for
this transformation is (4.2):

UAIJ(normalized) =
UAIJ

Uinflow(z)
(4.2)

After running the simulations, the resulting velocity values that we have for the probes are
at 0.02m height. For that reason, we need to denormalize the velocity ratio based on the
Equation 4.2, get the UAIJ, and compare the results. On the other hand, the probes file U.dat
that was created after running our simulations contains a set of 3 numbers for every probe.
These numbers are the components of velocity (UCFD) in the Cartesian coordinate system
(Ux, Uy, Uz). So, in order to compute the magnitude of velocity, we used the following
formula (4.3):

UCFD =
√

U2
x + U2

y + U2
z (4.3)

For comparison, the statistical methods that were used are the RMSE, Mean Absolute Percent-
age Error (MAPE), Pearson’s correlation coefficient (r) and the Best-fit line. RMSE quantifies
how far the simulation values are from the actual values on average, while MAPE expresses
in percentage the difference between the CFD simulation and the wind-tunnel experiment. r
measures the linear correlation between the simulation and experimental values. Creating
the best-fit line helps us quantify and visualize bias or trends in our CFD results through
the slope (a) and the intercept (b). Using these metrics, we can compare the results and
determine which geometry has better results and how our estimations are affected. The
equations that describe RMSE and MAPE are presented below (4.4, 4.5):

RMSE =

√
1
n

n

∑
i=1

(UAIJi − UCFDi)
2 (4.4)

MAPE =
1
n

n

∑
i=1

∣∣∣∣UAIJi − UCFDi

UAIJi

∣∣∣∣ 100% (4.5)

We created a Python script that was tailored to our needs in order to meet the requirements
for an accurate visualization of our results and the drawing of conclusions. So, for the
evaluation of our simulations against the experimental values, we performed a point by
point comparison (scatter plots) by placing the CFD values (UCFD) at the x-axis and the
values from the wind-tunnel experiment (UAIJ) at the y-axis (Figures 4.4a, 4.5a, 4.6a). The
red line symbolizes the equal line y = x and for the points located on this line UCFD = UAIJ.
The algorithm displays the denormalized values UAIJ alongside the simulation values Ucfd
of our medium meshes. The plots are presented below, for every case (Figures 4.4, 4.5, 4.6).
Also, a table is presented with the r values of every case (Table 4.5).

In addition, velocity slices at probe height (0.02m) and graphs were created that depict the
velocity magnitude for each case for the 120 probes (Figures 4.4c, 4.5c, 4.6c). At the x-axis is
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4.4. Comparison with experimental data and validation

Case 0h Case 1h Case 2h
r: 0.762 0.715 0.831

Table 4.5.: Pearson’s r-value

the probe’s ID and at the y-axis is the U magnitude. For every ID, there are two U values and
the line was used to create a more uniform image of the points that belong either to the CFD
simulation or to the experiment. According to the r value, case 2h is more correlated to the
experimental data, compared to cases 1h and 0h. Observing the plots, we can also see that
the best results appear in the 2h case with MAPE = 24%, while in the other two cases, we
see that the middle cube’s height increases the error to 32% and 33% respectively. Alongside
this difference, it is observed that the experimental values are slightly higher than the values
of the simulation. A relative offset is observed in certain locations, while the points of
interest with lower velocity magnitude present higher variance compared to points with
higher velocity value. A probable reason for this mismatch could be the z0 value, since it
determines the roughness of the terrain and possibly underestimates the wind speed. Given
that the best results are from case 2h, it is the case that we will choose to continue with our
uncertainty analysis, since different approaches will be considered to further understand the
influence of building footprints in the CFD results.
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4. Implementation and verification

(a) RMSE and MAPE (b) Best-fit line

(c) Velocity graph

(d) Velocity slice at probes’ height (0.02m)

Figure 4.4.: Comparison Wind-tunnel–CFD values (Case 0h)
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4.4. Comparison with experimental data and validation

(a) RMSE and MAPE (b) Best-fit line

(c) Velocity graph

(d) Velocity slice at probes’ height (0.02m)

Figure 4.5.: Comparison Wind-tunnel–CFD values (Case 1h)
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4. Implementation and verification

(a) RMSE and MAPE (b) Best-fit line

(c) Velocity graph

(d) Velocity slice at probes’ height (0.02m)

Figure 4.6.: Comparison Wind-tunnel–CFD values (Case 2h)
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5. Results and Analysis

5.1. Uncertainty analysis—Translation

In this section lies the essence of our research, and we will take a more in-depth look at how
the results of our simulations change by perturbing their geometry with specific levels of
uncertainty. The goal of our research is ultimately to find and quantify the degree to which
the results are affected by each level of uncertainty, but also which areas of our domain
have undergone the greatest influence. Since we decided to continue our analysis with case
2h (Section 4.4), we also had to run the simulations with the 22.5◦ and 45◦ wind angles.
The geometry cubes2h0.obj, cubes2h22.obj and cubes2h45.obj (Figure 3.8) will be used.
Thus, we will use these three cases as the base cases and compare them with our final
results.

To automate this process that is analyzed in Section 3.8 and fulfill all the abovementioned
requirements, we created a Python script that performs the following and an example of an
output is presented below (Figure 5.1):

1. The first part of the code:

• Creates a random sample, considering the level of uncertainty ti (prototype scale),
(nsample = nbuildings = 9 values of uncertainty)

• The sample values follow the normal distribution with N[µ, σ]

• Creates a sample with direction angles θ ∈ [0, 2π), which determine the direction
of every offset vector and computes the dx and dy offsets (which can also receive
negative values) using cos θ and sin θ respectively

• Stores dx and dy offsets in numpy arrays

2. The second part of the code:

• Reads the initial OBJ file

• Applies the transpose values of the numpy arrays in the x and y coordinates
of the vertices following the enumeration of the buildings given in Figure 3.6b.
Our geometry is simple, thus, a different offset is applied every 8 vertices (lines
starting with “v”), because of the cubic shapes.

• Creates a new translated OBJ file

Ultimately, we created five samples for every translation ti. It is important to mention here
that the same direction angles (θ) will be used for all five translations, but for the cases with
22.5◦ and 45◦ wind angle, we subtracted 22.5◦(≃ 0.4 rad) and 45◦(≃ 0.8 rad) respectively,
so as the relative offsets between the buildings, while we rotate our geometry, to remain the
same. Each sample consists of 9 values, as many as the buildings, and they are presented
in the following Table 5.1. All five levels of translation were applied in our three base
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5. Results and Analysis

(a) (b)

Figure 5.1.: Output example of the translated geometry before (a) and after (b)

cases: case2h0, case2h22, case2h45 (Figure 3.8) and finally, we have 15 cases with translated
geometry.

Buildings
ID θ (rad) θ−

0.4 (rad)
θ−

0.8 (rad)
t1 =

0.0001 m
t2 =

0.001 m
t3 =

0.002 m
t4 =

0.005 m
t5 =

0.01 m

1 2.7 2.3 1.9 0.00010 0.00114 0.0019 0.0052 0.0082

2 3.4 3.0 2.6 0.00010 0.00101 0.0022 0.0047 0.0100

3 2.8 2.4 2.0 0.00011 0.00108 0.0018 0.0048 0.0103

4 2.5 2.1 1.7 0.00010 0.00102 0.0022 0.0040 0.0105

5 1.9 1.5 1.1 0.00010 0.00093 0.0018 0.0048 0.0118

6 1.1 0.7 0.3 0.00009 0.00092 0.0020 0.0053 0.0091

7 0.5 0.1 6.0 0.00011 0.00111 0.0018 0.0051 0.0111

8 4.3 3.9 3.5 0.00012 0.00101 0.0022 0.0058 0.0097

9 1.7 1.3 0.9 0.00010 0.00100 0.0020 0.0054 0.0114

Table 5.1.: Uncertainties-Translations

5.2. Uncertainty analysis—Rotation

As in translation, also in rotation, to automate this process that is analyzed in Section 3.9
and fulfill all the abovementioned requirements, we created a Python script that performs
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5.2. Uncertainty analysis—Rotation

the following. The rotation algorithm works similarly to the translation algorithm. An
example of an output is presented below (Figure 5.2):

1. The first part of the code:

• Creates a random sample, considering the level of uncertainty ri (nsample = nbuildings =
9 values of uncertainty)

• The sample values follow the normal distribution with N[µ, σ]

• Creates a random sample, consisting of 9 values that are either -1 or 1, indicating
the direction of the rotation (the same directional vector is kept throughout all the
simulations)

• Each direction is multiplied by an angle

• Stores ϕ angles in numpy arrays

2. The second part of the code:

• Reads the initial OBJ file

• Calculates the centroid of every object (cubic building)

• Applies the rotation values of the numpy arrays in the x and y coordinates of the
vertices around the centroid, following the enumeration of the buildings given in
Figure 3.6b. Our geometry is simple, thus, a different rotation is performed every
8 vertices (lines starting with “v”), because of the cubic shapes.

• Creates a new rotated OBJ file

(a) (b)

Figure 5.2.: Output example of the rotated geometry before (a) and after (b)

Ultimately, we created five samples for every rotation ri. Each sample consists of 9 values,
as many as the buildings, and they are presented in the following Table 5.2. All five levels of
rotation were applied in our three base cases: case2h0, case2h22, case2h45 (Figure 3.8) and
finally, we have 15 cases with rotated geometry.
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5. Results and Analysis

Buildings
ID

Directions:
-1: cw, 1:
counter-

cw

ϕ1 = 0.5◦ ϕ2 = 1◦ ϕ3 = 2◦ ϕ4 = 3◦ ϕ5 = 5◦

1 1 0.51 0.80 1.92 2.30 5.66

2 -1 -0.43 -0.93 -2.13 -3.34 -4.64

3 1 0.42 1.09 2.08 3.42 4.55

4 -1 -0.52 -0.99 -1.84 -3.22 -5.64

5 -1 -0.49 -1.22 -1.88 -2.63 -6.15

6 -1 -0.47 -0.98 -1.76 -2.87 -4.69

7 1 0.53 1.08 2.21 3.16 4.55

8 1 0.47 1.00 2.32 2.80 3.82

9 1 0.55 1.03 2.0 2.86 4.47

Table 5.2.: Uncertainties-Rotations

5.3. Visualization of the results and comparison

Since we implemented our methodology, validation and applied the uncertainties in the
buildings, the appropriate visualization techniques are the best way to draw the right con-
clusions as well as to observe the phenomenon we studied. Through observation of the
results, we will better understand the effects of a possible footprint uncertainty, after a point
cloud reconstruction process, on the results of our simulations. Several techniques have
been chosen for the visualization of the results. We used Python’s matplotlib and we cre-
ated scatter plots, box plots and contour plots. More detailed results can be found in the
Appendices D, E, F. Here we will represent some indicative results, which we will comment
on and explain the methodology with which we produced them.

5.3.1. Point-by-point velocity comparison

Similarly to Section 4.4, we created scatter plots for the comparison of the velocity of 120
probes, between the base cases (2h0, 2h22, 2h45) and the case with uncertainty. Through
these plots, a point-by-point comparison is performed by placing the values of our base case
on the x-axis and the values from our uncertainty case on the y-axis. For presenting here,
two representative uncertainty cases were chosen, both with 0◦ wind angle and translation
T2=0.001m and T4=0.005m (Figure 5.3). The red line symbolizes the equal line y = x, and
the uncertainty had no impact on the velocity of the points located on it. The total number
of plots is 30 (15 for translation and 15 for rotation) and can be found in Appendix D.
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5.3. Visualization of the results and comparison

(a) T2 = 0.001m (b) T4 = 0.005m

Figure 5.3.: Point-by-point comparison (0◦ wind angle)

For these two cases, we can clearly see a progressive perturbation as the uncertainty level
increases. In Figure 5.3a, almost all the points are on the equal line, presenting a small
deviation. On the contrary, for Figure 5.3b, many points are moved either toward the x-
axis (meaning that their velocity decreases) or toward the y-axis (meaning that their velocity
increases). This result is normal, as with higher uncertainty, the velocity of the points should
change more. This outcome is validated even more in the corresponding Appendix D, where
we can see an increase in the disturbance of the points’ velocity, through the progressive
perturbation of our geometry, i.e.higher uncertainty level, for all the cases.

In addition, certain statistical data were calculated and specifically RMSE and MAPE, to quan-
tify this qualitative difference that can be visually observed through the plots. At the tables
5.3, 5.4 are presented all the statistics for a more direct comparison between different wind
angles and between uncertainty levels of the same wind angle. The colour intensity of each
cell was decided according to certain classes, starting from lower and reaching higher values.
These classes for Table 5.3 are [0, 0.1), [0.1, 0.2), [0.2, 0.3), [0.3, 0.4), [0.4, 0.5), [0.5, +∞)m/s
and for Table 5.4 are [0, 2.5), [2.5, 10), [10, 20), [20, 30), [30, 100)%.

These tables are accompanied by four representative graphs (two for RMSE and two for
MAPE) which illustrate the trend of the statistical quantities we mentioned, showing us how
they are affected by the factors of wind angle and uncertainty magnitude (Figures 5.4, 5.5).
As we can see in all four graphs, a progressively increasing relationship between the levels
of uncertainty and errors is discernible. The greater the uncertainty, the greater the error
becomes. At the same time, we observe that in both cases of rotation, the errors are higher,
and the physical explanation that could be given consists of two reasons:

1. The first reason is the fact that, while the faces of the building are rotated, the area that
blocks the wind becomes bigger, instead of moving parallel to it as in the case of the
simple offsets.

2. The second reason is the proportionality between the rotation and translation, regard-
ing the footprint coordinates’ offset. As mentioned in Section 3.9, 1◦ ≈ 0.0025m. For
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5. Results and Analysis

Uncertainty
Translation-RMSE (m/s)

Uncertainty
Rotation-RMSE (m/s)

0◦ 22.5◦ 45◦ 0◦ 22.5◦ 45◦

T1 0.02 0.02 0.00 R1 0.11 0.15 0.09

T2 0.06 0.12 0.05 R2 0.14 0.22 0.32

T3 0.15 0.13 0.11 R3 0.24 0.25 0.37

T4 0.23 0.16 0.24 R4 0.27 0.29 0.30

T5 0.21 0.29 0.33 R5 0.46 0.48 0.65

Table 5.3.: Uncertainties-RMSE

Uncertainty
Translation-MAPE (%)

Uncertainty
Rotation-MAPE (%)

0◦ 22.5◦ 45◦ 0◦ 22.5◦ 45◦

T1 1.23 0.73 0.17 R1 8.44 8.33 3.61

T2 4.23 5.94 1.68 R2 11.25 13.98 12.20

T3 12.20 6.68 4.61 R3 21.45 14.96 15.37

T4 15.59 7.58 8.78 R4 24.48 17.42 12.16

T5 19.91 14.94 12.97 R5 41.81 33.57 27.06

Table 5.4.: Uncertainties-MAPE

the cases of 5◦, the impact on the coordinates is 0.0125m, which is higher in comparison
with the t5 = 0.01 m.

5.3.2. Box plots

The next visualization technique that is applied is the box plot. Again, using Python, we
created graphs consisting of our point IDs on the vertical axis, and the velocity differences
from the base case, on the horizontal axis. The x-axis was customized to show every 10th
point ID, for clarity, with the first point’s ID to be 1 and the last one’s to be 120. The total
number of box plots is 6, for all three wind angle cases, both with rotational and translational
uncertainty, and can be found in Appendix E. All plots were created vertically to fit on the
pages. In comparison to the scatter plots that provide us with a more general trend and a
statistical comparison, the box plots give us the possibility to identify which specific testing
points have been mostly affected by the uncertainty, showing us the magnitude of each
point’s uncertainty as well as the deviation from the base case.

At first, the five deviations from the base case were calculated for the five cases with un-
certainty by subtracting the five velocity values from the base case velocity. These were
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5.3. Visualization of the results and comparison

(a) Translation (b) Rotation

Figure 5.4.: RMSE graphs

(a) Translation (b) Rotation

Figure 5.5.: MAPE graphs

calculated for all 120 probes. This resulted in a set of 5 differences for each testing point.
The advantage of boxplots is that they allow us to observe the variation of these 5 values
from our initial one, giving us a clear picture of which points were most affected by the un-
certainty. Our five value differences perfectly summarize the box plot’s essence based on the
five-number summary. There is one box per point ID and each box consists of five numbers
in increasing order: minimum, first quartile (Q1), median, third quartile (Q3), and maximum
value. The red line in the middle represents our base case (u0) and each box consists of these
five values. A highlighted line within each box represents the median (middle value of the
data). The boxes represent the data’s Interquartile Range (IQR), the range between Q1 and
Q3, and are the bottom and top limits, respectively. The vertical lines that extend from both
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5. Results and Analysis

ends of each box, with black color, connect the minimum and maximum values with the
boxes and are called whiskers. Finally, the small, horizontal, black lines at the ends of the
whiskers, representing the minimum and maximum values, are the caps [Chia, 2024]. Every
box was filled using a color map of red intensity showing how much each set of values
deviates from the base case (larger spread means more intense red). So the red intensity
visually encoded the variability at each probe. The IQR was the measure of intensity chosen
because it is resistant to outliers and ignores extreme values. It reflects how variable these
deviations are for each probe, robustly, since it measures the spread of the middle 50% of
our data. Also, the IQR is a solid statistical measure of spread, which is easy to interpret
(box height).

Additionally, the IDs with the top ten spreads from the base case were found and marked
in the box plots. For that reason, probe maps were created, allowing us to easily see the
location of each of these ten points, on the xy plane, that present the greatest uncertainty.
These plots are similar to the Figure 3.2 and these points are represented with yellow color
and are labeled, thus indicating to us the areas that are most affected by each movement of
our geometry. As a result, for each box plot, there is also a probe map. Below is presented
the box plot with the translational uncertainties of the case with 0◦ wind angle accompanied
by the corresponding probe map (Figure 5.6).

The box plot above shows us that there is a variety of points affected by uncertainty, with
the majority of these points being between the last points. A clearer view is given from the
probe’s map where these are grouped in a certain area, which is the region behind the central
building. This area is called the wake region and is characterized by high flow sensitivity,
low velocity and high turbulence. In these zones, even small changes in the geometry and
minor geometric uncertainty (like small translation or rotation) can lead to large differences
in the flow behaviour and cause large variability in velocity at those points. As a result, there
are large deviations from the base case, due to a possible change in the wake width. As we
can see from the rest of the plots in the Appendix E, the points that are mostly affected are
located in similar areas both for translation and rotation. These areas of influence, however,
change as the wind direction angle changes and remains behind the buildings, opposite
to the wind direction. This comes to reassure our initial observation that the uncertainty
impacts mostly the areas behind the buildings, and especially the central one.

A clear disadvantage of this approach is the fact that our study area is limited between the
buildings and, specifically, around the central building. Also, there is a limited number
of points (120), which we focus on, instead of having a bigger sample and observing the
general trend of a certain area. On the other hand, this gives us the possibility to become
more precise regarding the measurements and the impact of uncertainty at these points,
and computationally more efficient since the number of points is finite. These limitations
come to be complemented by the last visualization method, which is presented in the next
section.

5.3.3. Contour plots

The two previous ways of visualization were focused on the area around the central building.
Our final visualization method is the contour plots, which are used to visualize the spatial
distribution of the differences of certain variables between the two simulations (base case
and case with uncertainty). This method will give us a more insightful observation of the
uncertainty behaviour in our study area, since more points are considered. The variables
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5.3. Visualization of the results and comparison

Figure 5.6.: Box plot and probe map of translated cases (0◦ wind angle)

that we will focus on are the velocity magnitude and TKE. The purpose is the creation of
contour plots in the form of heatmaps and to visualize certain areas of our case study region
that present the highest variance regarding the two variables of interest. For the creation of
the heatmaps, we used Python and the total number of contour plots is 60 (30 for velocity
U, 30 for TKE, consisting of one for each uncertainty case of translation and rotation). The
rest of the plots can be found in the Appendix F.

What we see in these plots is a top view of our study area, and with light grey are repre-
sented our cubes alongside their enumeration (Figure 3.6b). At first, through Paraview, we
used the tools, first Clip and then Slice, to isolate the area of interest that contains our
geometry, with a buffer zone of 0.2m around our geometry. We exported the contained data
of the final slices in Comma-separated value (CSV) format. Ultimately, we had 33 CSV files
(3 for the base cases, 15 for the case with rotational uncertainty and 15 for the cases with
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5. Results and Analysis

translational uncertainty). Then we stored our CSV data in dataframes and we used linear in-
terpolation to estimate what the velocity magnitude and TKE from the uncertain case would
be at the corresponding points of the base case. Eventually, we computed the velocity and
TKE differences. For the contour plots, we used the xmin, xmax, ymin, ymax of the base case and
through linspace and meshgrid, we created a new grid with dimensions 300× 300. On this
grid, we interpolated linearly the velocity and TKE difference values and a contour plot with
a form of heatmap was produced.

For the representation of the variable differences, diverging color maps were used, and
the legend of the colormap scale is presented on the right side of the plot. It is centered
around zero, with the value range to adapt to each difference map, but the color intensity
remains the same in order to make obvious the difference between various uncertainty cases.
We subtracted the Umag and TKE values of the base case from the cases with uncertainty.
This means that for positive differences, the Umag and TKE increased in comparison to the
base case. For negative differences, the Umag and TKE decreased in comparison to the base
case. The color map for Umag has red-blue colors and for TKE has green-purple colors. For
the cases with Umag differences, the red areas represent regions of acceleration (velocity
increased) and the blue areas represent regions of deceleration (velocity dropped). For the
cases with TKE differences, the emphasis is given in the green areas, which represent regions
where TKE increased and the purple areas, which represent regions where TKE decreased.
Below are given four representative cases with 0◦ wind angle and translations T3 and T4. The
first two represent Umag difference (Figure 5.7) and the second two represent TKE difference
(Figure 5.8).

(a) T3 = 0.002m (b) T4 = 0.005m

Figure 5.7.: Umag difference contour plots

After interpreting these plots, they reveal several information about the CFD simulations.
They visualize the differences in Umag and TKE between two simulations—the one as a base
case and the other as a comparison (perturbed geometry), emphasizing the regions of the
domain where the two variables decreased or increased. Through this method, we could
easily highlight the areas where changes in flow occur due to the uncertainty that we im-
ported into our model. These plots provide intuitive insight into the flow field sensitivity
to simulation setup changes and help identify local effects caused by the geometry shifts.
Also, it becomes obvious how sensitive the Umag and TKE are to small geometric changes.
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5.3. Visualization of the results and comparison

(a) T3 = 0.002m (b) T4 = 0.005m

Figure 5.8.: TKE difference contour plots

Essentially, the plots act as a map of sensitivity, helping us identify zones affected by the
geometric perturbations. Some key aspects to focus on are the following:

1. Near the building surfaces and their corners are typically areas with flow separation
and are the most sensitive ones to geometric changes.

2. In the wake region, especially downstream of our central cube, we see that even small
geometric shifts can cause large changes in velocity magnitude due to flow instability.

3. The small positional differences can amplify sharp gradients for transitions from high
to low velocity zones.

4. Zones with high absolute differences (shown as red, blue, green, or purple) indicate
where geometry shifts mattered the most.

Based on these observations, it is worth noting that the Umag and TKE follow a similar trend.
So, for the cases of rotation, the regions that present the greatest decrease in our variables
are the ones towards the direction of rotation (blue and purple areas), while it is clear that
the regions that show the greatest increase are those that are opposite to the direction of
rotation (red and green areas). Correspondingly, for the cases of translation, the areas that
present the greatest decrease in both Umag and TKE are the areas to which our geometry was
moved (blue and purple areas), while conversely, the regions from which the buildings were
moved away show the greatest increase (red and green areas). These observations can be
easily elaborated through the extreme uncertainty cases t5 and r5, which present the highest
difference values. Moreover, by looking at each set of 5 uncertainties per wind angle, there
is a gradually increasing perturbation, which indicates a clear dependency between the level
of uncertainty and the magnitude of the differences. Finally, some of the details on the plots
that it is not necessary to focus on are the undisturbed upstream flow, the regions with low
Umag and TKE where the differences are zero and the grid edges, where the interpolation
might have introduced some artifacts.

Besides the qualitative observations that could be made by looking at the plots, some sta-
tistical indicators for quantitative evaluation of our results were calculated through Python.
Specifically, the median absolute difference and the RMSE for Umag and TKE differences were
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5. Results and Analysis

computed. These values are included in the following tables. Each table contains the statis-
tics of translation and rotation for the 3 different wind angles (0◦, 22.5◦, 45◦). Finally, we
have four tables: RMSE-Umag, RMSE-TKE, median-Umag, median-TKE (Tables 5.5, 5.6, 5.7, 5.8).
The colour intensity of each cell in these tables was decided according to certain classes,
starting from lower and reaching higher values. These classes are for:

• Table 5.5: [0, 0.01), [0.01, 0.1), [0.1, 0.2), [0.2, 0.3), [0.3, 0.4), [0.4, +∞)m/s,

• Table 5.6: [0, 0.01), [0.01, 0.02), [0.02, 0.03), [0.03, 0.04), [0.04, 0.05), [0.05, +∞)m2/s2,

• Table 5.7: [0, 0.01), [0.01, 0.03), [0.03, 0.05), [0.05, 0.07), [0.07, 0.1), [0.1, +∞)m/s,

• Table 5.8: [0, 0.005), [0.005, 0.01), [0.01, 0.015), [0.015, 0.02), [0.02, 0.03), [0.03, +∞)m2/s2

Uncertainty
Translation-RMSE (m/s)

Uncertainty
Rotation-RMSE (m/s)

0◦ 22.5◦ 45◦ 0◦ 22.5◦ 45◦

T1 0.0089 0.0273 0.0054 R1 0.0620 0.0951 0.1291

T2 0.0255 0.0935 0.0626 R2 0.0856 0.1405 0.2402

T3 0.0719 0.1200 0.1121 R3 0.1873 0.1887 0.2897

T4 0.1600 0.1960 0.2323 R4 0.2175 0.2593 0.2411

T5 0.2376 0.3421 0.3860 R5 0.3864 0.3734 0.4933

Table 5.5.: RMSE of Umag difference from the contour plots

Uncertainty
Translation-RMSE (m2/s2)

Uncertainty
Rotation-RMSE (m2/s2)

0◦ 22.5◦ 45◦ 0◦ 22.5◦ 45◦

T1 0.0019 0.0065 0.0012 R1 0.0128 0.0255 0.0209

T2 0.0061 0.0243 0.0156 R2 0.0229 0.0366 0.0485

T3 0.0154 0.0291 0.0272 R3 0.0468 0.0398 0.0575

T4 0.0375 0.0435 0.0426 R4 0.0623 0.0592 0.0447

T5 0.0522 0.0618 0.0517 R5 0.1156 0.0750 0.0970

Table 5.6.: RMSE of TKE difference from the contour plots

The tables present a quantitative summary of flow sensitivity, with RMSE capturing the over-
all error magnitude, but being more influenced by outliers compared to the median, which is
more robust to extreme values. Across nearly all the combinations, both our metrics (RMSE,
median) increase as the uncertainty grows, indicating that this trend is consistent, since the
higher the uncertainty, the larger the flow differences. Some general observations that could
be made are:
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5.3. Visualization of the results and comparison

Uncertainty
Translation-median (m/s)

Uncertainty
Rotation-median (m/s)

0◦ 22.5◦ 45◦ 0◦ 22.5◦ 45◦

T1 0.0018 0.0025 0.0009 R1 0.0230 0.0294 0.0265

T2 0.0088 0.0296 0.0179 R2 0.0382 0.0443 0.0754

T3 0.0178 0.0372 0.0348 R3 0.0765 0.0550 0.0844

T4 0.0639 0.0592 0.0632 R4 0.0934 0.0809 0.0650

T5 0.0930 0.0884 0.0882 R5 0.1707 0.1329 0.1551

Table 5.7.: Median Umag difference from the contour plots

Uncertainty
Translation-median (m2/s2)

Uncertainty
Rotation-median (m2/s2)

0◦ 22.5◦ 45◦ 0◦ 22.5◦ 45◦

T1 0.0003 0.0006 0.0002 R1 0.0054 0.0072 0.0053

T2 0.0022 0.0059 0.0032 R2 0.0100 0.0108 0.0111

T3 0.0053 0.0083 0.0063 R3 0.0204 0.0147 0.0168

T4 0.0145 0.0146 0.0101 R4 0.0232 0.0185 0.0161

T5 0.0229 0.0196 0.0141 R5 0.0405 0.0338 0.0347

Table 5.8.: Median TKE difference from the contour plots

• The translation cases generally present more localized but intense differences, particu-
larly near building edges (near the walls) and behind the buildings (wake zones).

• The rotation cases tend to affect broader regions, especially at higher wind angles, due
to realignment of the flow separation paths, affecting entirely the distribution of our
variables around the buildings.

• Based on these, we also observed that for Umag, the translation presents a sharper
increase in RMSE at early uncertainty levels.

• On the other hand, for TKE, rotation dominates, due to the model’s sensitivity to flow
deflection.

Another aspect that we could approach our metrics is the dependency on the wind angle,
which plays a major role in amplifying or suppressing the impact of uncertainty. In many
categories, the 45◦ wind angle shows the largest RMSE and median values, especially for ro-
tation. This makes sense, since at 45◦, wind interacts with the buildings diagonally, making
the flow more sensitive to small geometry misalignments. Finally, these metrics validate that
the impact of uncertainty is also direction-dependent.
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6. Conclusions

Through this thesis, we investigated the impact of geometric uncertainty on the accuracy of
the CFD simulations in an urban case scenario. The main focus was on perturbation of the
geometry through translation, rotation and different wind angles, and the study addressed
a significant aspect of CFD model fidelity. The research was conducted through a series
of simulations applied in OpenFOAM software, using as reference cases the validated cases,
through the wind tunnel data (AIJ Case C). Following this validation, the study introduced
a structured methodology for simulating geometric uncertainty in the CFD model. This was
achieved by systematically perturbing each building separately through controlled transla-
tion and rotation, generating 30 uncertainty scenarios across three wind directions. Each
of these scenarios was simulated independently, providing, as a result, a rich dataset from
which localized flow behavior was assessed. At first, the 120 probes, distributed around
the central building, were used. Both scatter plots and box plots were employed, allowing
for a detailed examination of how velocity magnitude Umag deviates from the base case at
each probe location. These visualizations revealed the spatial variability in a qualitative way.
Also, the RMSE and MAPE were used to reveal the statistical spread, which was introduced
by geometric uncertainty. Certain regions were highlighted due to high sensitivity. After-
wards, through the contour plots, a general trend was observed regarding the entire region
around the buildings. Metrics such as Umag, TKE, RMSE, and median were used to evaluate
the influence of perturbations on flow predictions. A more detailed approach to these three
ways to present the results is given below:

1. Scatter Plots (Probe-Based): They show individual comparisons between the base case
and each uncertainty case, at the probes’ locations. With 120 probes distributed around
the central building, scatter plots allowed us to see the variability introduced at each
probe due to translation or rotation. Some of the advantages are:

• High resolution at specific locations

• Clear visibility of the outliers

Some of the disadvantages are:

• Lack of spatial context. We could not see where the probes are located

• It is hard to identify flow patterns or spatial trends because of their sparsity

2. Box Plots (Probe-Based): They present to us a statistical distribution (min, Q1, median,
Q3, max) of Umag across all 30 simulations for each probe. We used them to summarize
how each probe behaves across the uncertainty scenarios. By using the probes’ map
it was easier to spot which probes consistently show high deviation, which ones are
stable and where they are located. Some of the advantages of the box plots are:

• Compact and highly informative

• Highlights central tendency (median) and spread (IQR)
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• Excellent for comparing sensitivity across locations

Some of the disadvantages are:

• They still lack spatial context, without the probes’ map

• They do not show continuous flow behavior

3. Contour Plots (Grid-Based): They reveal the spatial distribution of Umag and TKE across
the entire domain. The differences are computed for every cell through interpolation.
We used them to visualize Umag and TKE differences between the base case and uncer-
tainty cases. Finally, the RMSE and median were computed. Some of the advantages
are:

• The detailed spatial context, since it is obvious where the flow is sensitive

• It is easier to detect wake shifts, recirculation changes

• They are proper for understanding global flow impacts

Some of the disadvantages are:

• They can be affected by interpolation artifacts near geometry

• We cannot be based only on qualitative observations of local color changes. The
statistical analysis is necessary

The novelty of this thesis is the integrated approach to quantifying geometric uncertainty
by combining spatial qualitative methods (scatter plots, box plots, contour plots) with sta-
tistical performance metrics (RMSE, MAPE, median) over multiple perturbed cases. Unlike
other studies that focus primarily on mesh or turbulence model sensitivity, this work iso-
lates the effects of building footprint inaccuracy (translation, rotation) and investigates how
it influences CFD results under specific wind conditions and several repetitive simulations.
By applying these uncertainties across three wind angles and evaluating their effects, this
thesis provides an approach for assessing geometric robustness in urban CFD modeling. The
findings not only confirm the significance of even minor geometric deviations but also em-
phasize the importance of accounting for directional flow sensitivity in uncertainty-related
simulation practices.

6.1. Answer to research questions

• Validation of our CFD cases compared to the wind tunnel data

The r-values indicate a good match with the experimental data. The 2H case presents
the best results and because of that, it was chosen to perform our further analysis. The
experimental values are slightly higher than the simulation values. This relative offset
that is observed in all three cases is probably because of the z0 value, which possibly
underestimates the wind speed. So, we could tell that the comparison with the wind
tunnel data is reasonably accurate, allowing us to proceed with our analysis.
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6.2. Limitations

• What is the impact of geometrical uncertainties derived from building translation?

Translational perturbations primarily impact the local flow field near building surfaces,
corners, and downstream wake regions. Small shifts in position lead to changes in
blockage ratio, local acceleration, and wake alteration. The effect is highly localized,
resulting in sharp spikes in velocity differences, particularly around sharp edges or
where flow separation occurs. However, the influence decays downstream unless the
translation significantly alters the aerodynamic alignment with the flow.

• What is the impact of geometrical uncertainties derived from building rotation?

Rotational perturbations produce more spatially distributed changes in the flow field.
By altering the orientation of buildings relative to the incoming wind, rotation affects
the pressure distribution across the buildings’ faces, modifies the separation areas,
and changes the shape and size of the wake regions. Unlike translation, rotation has a
clearer effect on the flow patterns. This makes rotational uncertainty highly influential.

• How do these uncertainties affect the model as we modify the incoming wind direc-
tion?

The impact of both translation and rotation uncertainties becomes more obvious as the
wind direction shifts away from the orthogonal 0◦ case. At different wind angles e.g.
22.5◦, 45◦, buildings go through asymmetric loading and more complex flows, making
the model more sensitive to small geometric discrepancies. In particular, rotational
perturbations combined with oblique wind can bring significant divergence in velocity
and TKE, as seen in the elevated RMSE and median values.

Finally, the abovementioned findings underscore that geometric uncertainties should not be
neglected, especially in complex urban building environments where the geometry is char-
acterized by higher complexity. Their effects on CFD accuracy are 1) direction-dependent, 2)
localized for translation, and 3) spatially broader for rotation, and they are combined under
various wind directions.

6.2. Limitations

A key limitation of this study is that the conclusions of this research are based on a single
reference case (AIJ Case C) and a specific validation setup. While this case is well-established
and widely accepted, its relatively simple layout, with a very fixed building composition,
uniform building heights and spacing, may not reflect the real-life complexity of the urban
configurations. As such, the sensitivity trends observed here may vary when applied to
more divergent cityscapes or cases with complex terrain, different LoDs and varying building
heights.

Another limitation that was noticed during the elaboration of the project is the limited scope
of the uncertainty magnitude. The range of perturbation magnitudes applied in this study
does not completely cover the entire variety of possible geometric uncertainties. Translation
distances and rotation angles were discrete, based on assumed uncertainty thresholds. This
stepwise approach may miss critical thresholds where flow behavior presents non-linear
sensitivity, or where multiple small perturbations accumulate and produce disproportionate
effects.
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6.3. Recommendations for future work and improvements

In summary, accurate building footprints are fundamental for reliable urban CFD modeling
and based on the current study, certain recommendations for further improvement could
be applied. Firstly, the application of this methodology to a more realistic urban geometry
is one of them. Future studies could apply the proposed uncertainty framework to more
complex urban structures. The geometry could contain irregular building shapes, a variety
of different building heights, and non-uniform spacing between the buildings. Through this
recommendation is stated the importance of checking the generalizability of the observed
sensitivity patterns.

Another recommendation could be the introduction and combination with other uncertainty
sources. This thesis focuses on geometric uncertainty, but a factor that could be considered
is uncertainty regarding the inflow conditions. In addition, another uncertainty scheme that
could be introduced involves different uncertainty values and directions per vertex and not
just per building. A combined sensitivity analysis would help prioritize which uncertainties
dominate under different urban conditions.

Finally, also, two new interesting research questions arise from the current thesis. The first
one is if there is a critical threshold beyond which geometric uncertainty leads to nonlinear
flow divergence. The current results imply that the higher the perturbation, with larger the
error, but a deeper investigation could identify nonlinear thresholds where minor geometry
perturbations suddenly cause major changes in the results. The second question is how the
combination of translation and rotation interacts. This thesis isolated the two effects, which
was necessary for clarity. However, combined perturbations may interact in non-additive
ways. The more in-depth study of these interactions could offer a more complete image
regarding this combination of uncertainties.
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A. Reproducibility self-assessment

Figure A.1.: Reproducibility criteria to be assessed.

Evaluation for the 5 criteria (giving 0/1/2/3 for each):

Criteria Grade Justification
Input data 3 Can be found in www.aij.or.jp

Preprocessing 3 Available on GitHub
Methods 3 Available on GitHub

Computational
environment 2 Open source software was used, with connectivity to Gilfoyle

server for higher computational power

Results 2

The cases consist of large files occupying approximately 0.5 TB
of total space. Thus, they are not available on GitHub, but the

CFD cases and setup file can be found there. The plots are
available in this report

Table A.1.: Reproducibility criteria grading for this study. (Project’s Github page: https:
//github.com/tudelft3d-theses/2023-Chontos)
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B. Residuals
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B. Residuals

(a) Coarse Mesh

(b) Medium Mesh

(c) Fine Mesh

Figure B.1.: Residuals: Case 0H
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(a) Coarse Mesh

(b) Medium Mesh

(c) Fine Mesh

Figure B.2.: Residuals: Case 1H
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B. Residuals

(a) Coarse Mesh

(b) Medium Mesh

(c) Fine Mesh

Figure B.3.: Residuals: Case 2H
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C. Field plots
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C. Field plots

(a) Ux plot for the three meshes (b) Uy plot for the three meshes

(c) Uz plot for the three meshes (d) P plot for the three meshes

(e) K plot for the three meshes (f) ϵ plot for the three meshes

Figure C.1.: Field Plots: Case 0H64



(a) Ux plot for the three meshes (b) Uy plot for the three meshes

(c) Uz plot for the three meshes (d) P plot for the three meshes

(e) K plot for the three meshes (f) ϵ plot for the three meshes

Figure C.2.: Field Plots: Case 1H 65



C. Field plots

(a) Ux plot for the three meshes (b) Uy plot for the three meshes

(c) Uz plot for the three meshes (d) P plot for the three meshes

(e) K plot for the three meshes (f) ϵ plot for the three meshes

Figure C.3.: Field Plots: Case 2H66



D. Scatter plots
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D. Scatter plots

(a) T1 = 0.0001m (b) T2 = 0.001m

(c) T3 = 0.002m (d) T4 = 0.005m

(e) T5 = 0.01m

Figure D.1.: Translation scatter plots: Case 0◦
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(a) T1 = 0.0001m (b) T2 = 0.001m

(c) T3 = 0.002m (d) T4 = 0.005m

(e) T5 = 0.01m

Figure D.2.: Translation scatter plots: Case 22.5◦
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D. Scatter plots

(a) T1 = 0.0001m (b) T2 = 0.001m

(c) T3 = 0.002m (d) T4 = 0.05m

(e) T5 = 0.01m

Figure D.3.: Translation scatter plots: Case 45◦
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(a) R1 = 0.5◦ (b) R2 = 1◦

(c) R3 = 2◦ (d) R4 = 3◦

(e) R5 = 5◦

Figure D.4.: Rotation scatter plots: Case 0◦
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D. Scatter plots

(a) R1 = 0.5◦ (b) R2 = 1◦

(c) R3 = 2◦ (d) R4 = 3◦

(e) R5 = 5◦

Figure D.5.: Rotation scatter plots: Case 22.5◦
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(a) R1 = 0.5◦ (b) R2 = 1◦

(c) R3 = 2◦ (d) R4 = 3◦

(e) R5 = 5◦

Figure D.6.: Rotation scatter plots: Case 45◦
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E. Box plots
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E. Box plots

Figure E.1.: Box plots for translation (0◦ wind angle)
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Figure E.2.: Box plots for translation (22.5◦ wind angle)
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E. Box plots

Figure E.3.: Box plots for translation (45◦ wind angle)
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Figure E.4.: Box plots for rotation (0◦ wind angle)
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E. Box plots

Figure E.5.: Box plots for rotation (22.5◦ wind angle)
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Figure E.6.: Box plots for rotation (45◦ wind angle)

81





F. Contour plots
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F. Contour plots

(a) T1 = 0.0001m (b) T2 = 0.001m

(c) T3 = 0.002m (d) T4 = 0.005m

(e) T5 = 0.01m

Figure F.1.: Translation contour plots for velocity: Case 0◦
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(a) T1 = 0.0001m (b) T2 = 0.001m

(c) T3 = 0.002m (d) T4 = 0.005m

(e) T5 = 0.01m

Figure F.2.: Translation contour plots for velocity: Case 22.5◦
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F. Contour plots

(a) T1 = 0.0001m (b) T2 = 0.001m

(c) T3 = 0.002m (d) T4 = 0.005m

(e) T5 = 0.01m

Figure F.3.: Translation contour plots for velocity: Case 45◦
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(a) T1 = 0.0001m (b) T2 = 0.001m

(c) T3 = 0.002m (d) T4 = 0.005m

(e) T5 = 0.01m

Figure F.4.: Translation contour plots for TKE: Case 0◦
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F. Contour plots

(a) T1 = 0.0001m (b) T2 = 0.001m

(c) T3 = 0.002m (d) T4 = 0.005m

(e) T5 = 0.01m

Figure F.5.: Translation contour plots for TKE: Case 22.5◦
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(a) T1 = 0.0001m (b) T2 = 0.001m

(c) T3 = 0.002m (d) T4 = 0.005m

(e) T5 = 0.01m

Figure F.6.: Translation contour plots for TKE: Case 45◦
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F. Contour plots

(a) R1 = 0.5◦ (b) R2 = 1◦

(c) R3 = 2◦ (d) R4 = 3◦

(e) R5 = 5◦

Figure F.7.: Rotation contour plots for velocity: Case 0◦
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(a) R1 = 0.5◦ (b) R2 = 1◦

(c) R3 = 2◦ (d) R4 = 3◦

(e) R5 = 5◦

Figure F.8.: Rotation contour plots for velocity: Case 22.5◦
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F. Contour plots

(a) R1 = 0.5◦ (b) R2 = 1◦

(c) R3 = 2◦ (d) R4 = 3◦

(e) R5 = 5◦

Figure F.9.: Rotation contour plots for velocity: Case 45◦
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(a) R1 = 0.5◦ (b) R2 = 1◦

(c) R3 = 2◦ (d) R4 = 3◦

(e) R5 = 5◦

Figure F.10.: Rotation contour plots for TKE: Case 0◦
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F. Contour plots

(a) R1 = 0.5◦ (b) R2 = 1◦

(c) R3 = 2◦ (d) R4 = 3◦

(e) R5 = 5◦

Figure F.11.: Rotation contour plots for TKE: Case 22.5◦
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(a) R1 = 0.5◦ (b) R2 = 1◦

(c) R3 = 2◦ (d) R4 = 3◦

(e) R5 = 5◦

Figure F.12.: Rotation contour plots for TKE: Case 45◦
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