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A B S T R A C T

Most Remaining Useful Life (RUL) prognostics are obtained using supervised learning models trained with
many labelled data samples (i.e., the true RUL is known). In aviation, however, aircraft systems are often
preventively replaced before failure. There are thus very few labelled data samples available. We therefore
propose a Long Short-Term Memory (LSTM) autoencoder with attention to develop health indicators for
an aircraft system instead. This autoencoder is trained with unlabelled data samples (i.e., the true RUL is
unknown). Since aircraft fly under various operating conditions (varying altitude, speed, etc.), these conditions
are also integrated in the autoencoder. We show that the consideration of the operating conditions leads to
robust health indicators and improves significantly the monotonicity, trendability and prognosability of these
indicators. These health indicators are further used to predict the RUL of the aircraft system using a similarity-
based matching approach. We illustrate our approach for turbofan engines. We show that the consideration
of the operating conditions improves the monotonicity of the health indicators by 97%. Also, our approach
leads to accurate RUL estimates with a Root Mean Square Error (RMSE) of 2.67 flights only. Moreover, a 19%
reduction in the RMSE is obtained using our approach in comparison to existing supervised learning models.
. Introduction

Complex technical systems are crucial for the safe and reliable
peration of machines, vehicles, manufacturing processes, etc. The
nexpected failures of such systems lead to costly unplanned downtime
nd potential safety risks. To limit the number of failures, systems
re often replaced preventively (Ochella et al., 2022; Koutroulis et al.,
022). However, due to such preventive, early replacements, the ac-
ual failure time of the system is unobserved. This complicates the
stimation of the Remaining Useful Life (RUL) for such systems.

Especially in aviation, preventive replacement of complex, safety–
ritical systems is common. Replacing these systems early is preferred
ver keeping them running for a long time and risking a failure.
onsequently, the data-monitoring samples from such systems are often
nlabelled, i.e., the corresponding true RUL is unknown. In the rare
ase when such a system does fail during operation, the failure time is
bserved and the data-monitoring samples coming from this system are
abelled (i.e., the true RUL is known) (Berghout et al., 2020). This mix
f very few labelled data samples, but many unlabelled data samples is
ften seen for complex aircraft systems.

Common RUL prognostics models are Convolutional Neural net-
orks (de Pater et al., 2022; Shen et al., 2021; de Pater and Mitici,

∗ Corresponding author.
E-mail address: i.i.depater@tudelft.nl (I. de Pater).

2022) and Long Short-Term Memory (LSTM) Neural networks (Xi-
ang et al., 2020), which directly predict the RUL. However, such
supervised learning methods require the availability of many labelled
data samples to train accurate prognostic models. This makes these
supervised learning approaches unsuitable for complex, safety–critical
aircraft systems.

Instead, accurate RUL prognostics can be obtained by first devel-
oping a health indicator using the unlabelled data samples and signal
reconstruction, i.e., an autoencoder learns the normal system behaviour
with the unlabelled data samples (Fink et al., 2020; Malhotra et al.,
2016). This autoencoder is then used to detect deviations from the nor-
mal system behaviour that emerge due to increasing degradation (Fink
et al., 2020). This approach has been considered in, for instance, Mal-
hotra et al. (2016) and Ye and Yu (2021). In Malhotra et al. (2016),
a health indicator is developed using the reconstruction error of a
LSTM autoencoder and a linear regression model. Similarly, in Ye and
Yu (2021), a health indicator is obtained based on the reconstruction
errors of a LSTM autoencoder and a Gaussian distribution. In contrast,
in Gugulothu et al. (2017), Yu et al. (2019), Fu et al. (2021) and
in Zhai et al. (2021), the embeddings of a recurrent autoencoder and a
conditional variational autoencoder, respectively, are used to develop
a health indicator. In Liu et al. (2020), a health indicator for low-
frequency time-series is developed using both the reconstruction error
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Fig. 1. Schematic overview of the consider approach.

and the embeddings of a LSTM autoencoder. With such health indica-
tors, accurate RUL prognostics are obtained with just a few labelled
data samples.

However, the autoencoders mentioned above cannot be directly
applied to develop health indicators for complex aircraft systems. First,
health-monitoring sensor measurements are usually recorded at a high
frequency during flight. Moreover, the flight itself is several hours long.
As such, the time-series of measurements of each flight is long. For the
case study presented in this paper, the aircraft system performs many
flights, each containing 60-303 time-steps. In contrast, existing studies
consider autoencoders that use fixed-length data samples of 5 (Yu et al.,
2019) to 40 (Liu et al., 2020) time-steps only.

Also, the conditions under which a system operates are expected
to influence the degradation of the system (Wei et al., 2021). This is
especially the case for aircraft, where the operating conditions vary due
to weather conditions, flying routes, flying altitudes etc. (Wang et al.,
2022). One of the major open challenges for Prognostics and Health
Management (PHM), in aviation and in other application domains, is
therefore to develop health indicators and RUL prognostics that are
robust to varying operating conditions (Fink et al., 2020; Ochella et al.,
2022; Koutroulis et al., 2022).

When proposing health indicators using an autoencoder, only one
study accounts for the operating regime: a high-level cluster of similar
operating conditions (Zhai et al., 2021). The operating conditions of
aircraft, however, are highly-varying during each flight. For example,
the altitude of an aircraft continuously changes during a flight. Consid-
ering only a few aggregated clusters as in Zhai et al. (2021) would thus
lead to a loss of information (Fink et al., 2020).

To develop a health indicator for systems with high-frequency mea-
surements and highly-varying operating conditions, we propose to use
the reconstruction error of a LSTM autoencoder (LSTM-AE) with (i) at-
tention and (ii) integrated operating conditions. LSTM neural networks
are well suited to process varying-length time-series, while avoiding
the vanishing gradient problem (Vasilev, 2019). However, a standard
recurrent autoencoder cannot reconstruct long time-series of sensor
data well: The final embedding of the autoencoder cannot contain all
relevant features of a long input sample. Moreover, the final embedding
contains more information about the last sensor measurements than
about the first sensor measurements of the flight (Vasilev, 2019). In
language-related application with long sentences, these problems have
been successfully elevated by implementing attention, giving state-
of-the-art results (Fink et al., 2020). Inspired by this, we also apply
attention in the LSTM-AE.

To develop health indicators robust to the highly-varying operating
conditions, we input the operating conditions in the autoencoder.
These operating conditions are not encoded and then reconstructed,
but merely used ‘‘informatively’’, i.e., the LSTM-AE is informed on the
2

aircraft operating conditions solely to assist in encoding and recon-
structing the sensor data samples. In contrast with Zhai et al. (2021),
no information on the operating conditions is thus lost by clustering
the operating conditions.

We apply our methodology to develop health indicators and RUL
prognostics for the aircraft turbofan engines of the new N-CMAPSS
dataset (Arias Chao et al., 2021). An overview of the considered ap-
proach is in Fig. 1. The obtained health indicators have a high mono-
tonicity (0.38), trendability (0.95) and prognosability (0.94). We show
that the monotonicity of the health indicators decreases with 97% when
the operating conditions are not considered in the LSTM-AE. Also, the
monotonicity decreases by 11% when no attention is applied in the
LSTM-AE.

Having the health indicators, we divide the lifetime of each engine
in a healthy and an unhealthy stage. Last, we estimate the RUL of
the engines in the unhealthy stage with a similarity-based matching
method, using the health indicators and the few available labelled data
samples (Yu et al., 2020; Lyu et al., 2020; Malhotra et al., 2016). Due
to the high monotonicity, trendability and prognosability of the health
indicators, the overall RMSE of these RUL prognostics in the unhealthy
stage is only 2.67 flights.

The main contributions of this study are:

1. We propose an unsupervised learning approach for health indi-
cator construction and RUL prognostics for systems with very
few labelled data samples, i.e., very few failures. Such systems
are rarely operated until failure, but rather replaced preven-
tively. We show that our approach outperforms existing super-
vised learning methods for the considered system. Specifically,
the RMSE of the RUL estimates is 19% lower compared to
existing supervised learning methods.

2. We develop health indicators by integrating the highly-varying
operating conditions of the system in a LSTM autoencoder. This
makes the health indicators robust to these highly-varying oper-
ating conditions and improves their monotonicity, trendability
and prognosability significantly. Moreover, the obtained health
indicators have a high trendability even when the operating con-
ditions from the test set differ significantly from the operating
conditions in the training set.

3. We use attention in the LSTM autoencoder to handle the high-
frequency measurements gathered during the long flights of
the considered system. We show that using attention improves
the monotonicity of the health indicators by 11%. This is par-
ticularly relevant for novel technical systems whose health is
monitored continuously and at a high-frequency.

The remainder of this paper is organized as follows. We first in-
troduce the proposed methodology to construct the health indicators
in Section 2. Then, we introduce the considered N-CMAPSS dataset in
Section 3, and present the resulting health indicators in Section 4. Last,
we introduce the similarity-based matching approach to develop RUL
prognostics in Section 5, and analyse the RUL prognostics in Section 6.
The conclusions are provided in Section 7.

2. Methodology — constructing health indicators with a LSTM
autoencoder

In Section 2.1, we introduce the LSTM-AE with attention and inte-
grated operating conditions. In Section 2.2, we use the reconstruction
errors from this autoencoder to construct a health indicator.

2.1. LSTM-AE with local Luong attention and informative operating condi-
tions

In this section, we introduce the Long Short-Term Memory au-
toencoder (LSTM-AE). Let 𝐗𝑒,𝑓 = {𝐗𝑒,𝑓

𝑡 , 𝑡 ∈ {1, 2,… , 𝑛𝑒,𝑓 }} be the
multi-sensor measurements of an aircraft system 𝑒 during a flight 𝑓 ,



I. de Pater and M. Mitici Engineering Applications of Artificial Intelligence 117 (2023) 105582

w

t
f
𝐗
t
d
r



Fig. 2. A schematic overview of the considered LSTM-AE with informative operating conditions.
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ith 𝑛𝑒,𝑓 the number of multi-sensor measurements of flight 𝑓 . Here,
𝐗𝑒,𝑓
𝑡 = [𝑋𝑒,𝑓 ,1

𝑡 , 𝑋𝑒,𝑓 ,2
𝑡 ,… , 𝑋𝑒,𝑓 ,𝑚s

𝑡 ] is the 𝑡th multi-sensor measurement of
his flight 𝑓 , with 𝑚s the number of sensors considered. The LSTM-AE
irst consists of an encoder, that maps the multi-sensor measurements
𝑒,𝑓 to an embedding with a smaller dimension (i.e., encodes), and

hen a decoder, that reconstructs these measurements from this embed-
ing. The objective of the LSTM-AE is to minimize the total absolute
econstruction error  of each flight:

=
𝑛𝑒,𝑓
∑

𝑡=2

|

|

|

�̂�𝑒,𝑓
𝑡 − 𝐗𝑒,𝑓

𝑡
|

|

|

, (1)

with �̂�𝑒,𝑓
𝑡 the reconstructed sensor measurements 𝐗𝑒,𝑓

𝑡 at time-step 𝑡
of system 𝑒 during flight 𝑓 , i.e., the output of the LSTM-AE. We train
this LSTM-AE solely with the unlabelled sensor data samples from a
just-installed aircraft system, i.e., when the system is still considered
healthy.

Beside the multi-sensor measurements, also the operating conditions
during each flight are available. Let 𝐎𝑒,𝑓 = {𝐎𝑒,𝑓

𝑡 , 𝑡 ∈ {1, 2,… , 𝑛𝑒,𝑓 }} be
the operating conditions during flight 𝑓 with system 𝑒. Here, 𝐎𝑒,𝑓

𝑡 =
[𝑂𝑒,𝑓 ,1

𝑡 , 𝑂𝑒,𝑓 ,2
𝑡 ,… , 𝑂𝑒,𝑓 ,𝑚o

𝑡 ] denotes the operating conditions at time-step
𝑡 during this flight, and 𝑚o is the number of operating conditions.
The operating conditions are used as input for both the encoder and
the decoder. But in contrast with the sensor measurements, the oper-
ating conditions are not encoded and then reconstructed, but merely
used ‘‘informatively’’: they assist in encoding and decoding the sensor
measurements. A schematic overview of the considered LSTM-AE is in
Fig. 2.

2.1.1. Encoder
At each time step 𝑡 during a flight 𝑓 , the goal of the encoder is to

encode the multi-sensor measurement 𝐗𝑒,𝑓
𝑡 to the short-term state ℎ𝑡,

which has a smaller dimension. The encoder consists of 𝑛𝑒,𝑓 LSTM-cells
for this flight 𝑓 (Hochreiter and Schmidhuber, 1997; Gers et al., 2000).
At time step 𝑡, we consider as input to the LSTM-cell (i) the long-term
state 𝑐𝑡−1 and the short-term state ℎ𝑡−1 of previous time-step 𝑡 − 1, (ii)
the multi-sensor measurement 𝐗𝑒,𝑓

𝑡 , and (iii) the operating conditions
𝐎𝑒,𝑓

𝑡 . Each LSTM-cell consists of 3 gates (see Fig. 3):
The forget gate determines which part of the long-term state is

(partly) erased (Vasilev, 2019; Géron, 2018):

𝑔𝑡 = 𝜎
(

𝑊𝑔𝐗
𝑒,𝑓
𝑡 + 𝑉𝑔𝐎

𝑒,𝑓
𝑡 + 𝑈𝑔ℎ𝑡−1 + 𝑏𝑔

)

. (2)

Here, 𝑊𝑔 , 𝑉𝑔 and 𝑈𝑔 are the weight matrices connecting 𝐗𝑒,𝑓
𝑡 ,𝐎𝑒,𝑓

𝑡 and
ℎ𝑡−1 to the output 𝑔𝑡 respectively, and 𝑏𝑔 is the bias of this layer. Also,
𝜎() denotes the logistic activation function.
 ℎ

3

Fig. 3. A schematic overview of a LSTM-cell with informative operating conditions.

The input gate first proposes a new candidate long-term state
𝑐can
𝑡 (Vasilev, 2019; Géron, 2018):

𝑐can
𝑡 = tanh

(

𝑊𝑐𝐗
𝑒,𝑓
𝑡 + 𝑉𝑐𝐎

𝑒,𝑓
𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐

)

, (3)

where 𝑊𝑐 , 𝑉𝑐 and 𝑈𝑐 are the weight matrices connecting 𝐗𝑒,𝑓
𝑡 ,𝐎𝑒,𝑓

𝑡 and
ℎ𝑡−1 to the output 𝑐can

𝑡 respectively, and 𝑏𝑐 is the bias of this layer. A
tanh (hyperbolic tangent) activation function is considered. Next, the
input gate determines which parts of the candidate long-term state are
added to the new long-term state (Vasilev, 2019; Géron, 2018):

𝑖𝑡 = 𝜎
(

𝑊𝑖𝐗
𝑒,𝑓
𝑡 + 𝑉𝑖𝐎

𝑒,𝑓
𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖

)

. (4)

gain, 𝑊𝑖, 𝑉𝑖 and 𝑈𝑖 are the weight matrices connecting 𝐗𝑒,𝑓
𝑡 ,𝐎𝑒,𝑓

𝑡 and
𝑡−1 to the output 𝑖𝑡 respectively, and 𝑏𝑖 is the bias of this layer.

Last, we update the long-term state with the output of the forget
nd input gate as follows (Vasilev, 2019; Géron, 2018):

𝑡 =
(

𝑐𝑡−1 ⊗ 𝑔𝑡
)

⊕
(

𝑖𝑡 ⊗ 𝑐can
𝑡

)

, (5)

here ⊕ and ⊗ denote element-wise addition and element-wise multi-
lication, respectively.

The output gate constructs the short-term state ℎ𝑡. The output gate
irst determines which parts of the long-term state 𝑐𝑡 are transferred to
he short-term state (Vasilev, 2019; Géron, 2018):

𝑡 = 𝜎
(

𝑊𝑝𝐗
𝑒,𝑓
𝑡 + 𝑉𝑝𝐎

𝑒,𝑓
𝑡 + 𝑈𝑝ℎ𝑡−1 + 𝑏𝑝

)

. (6)

ere, 𝑊𝑝, 𝑉𝑝 and 𝑈𝑝 are the weight matrices connecting 𝐗𝑒,𝑓
𝑡 ,𝐎𝑒,𝑓

𝑡 and

𝑡−1 to the output 𝑝𝑡 respectively, and 𝑏𝑝 is the bias of this layer. The
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Fig. 4. Schematic overview of the local Luong attention mechanism.

new short-term state ℎ𝑡 is now constructed as (Vasilev, 2019; Géron,
2018):

ℎ𝑡 = 𝑝𝑡 ⊗ tanh(𝑐𝑡). (7)

2.1.2. Decoder
The decoder reconstructs the sensor measurements 𝐗𝑒,𝑓

𝑡 ,
∈ {2,… , 𝑛𝑒,𝑓 } using the short-term states from the encoder. We

irst obtain at each time-step 𝑡 of flight 𝑓 the short-term state ℎ′𝑡 of
he decoder with a LSTM-cell. Next, local Luong attention is used
o update the short-term state ℎ′𝑡 to the augmented short-term state
̃ ′
𝑡. Last, we input the augmented short-term state together with the
perating conditions at time-step 𝑡 to a fully connected neural network.
his network outputs the reconstructed sensor measurements �̂�𝑒,𝑓

𝑡 (see
ig. 2).

ecurrent layer. The first layer of the decoder consists of 𝑛𝑒,𝑓 −1 LSTM-
ells. At time-step 𝑡 of flight 𝑓 , we consider the decoder short-term state
′
𝑡−1 and the decoder long-term state 𝑐′𝑡−1 of time-step 𝑡 − 1 as input
o the LSTM-cell. If 𝑡 = 2, we consider the last short-term state ℎ𝑛𝑒,𝑓
nd long-term state 𝑐𝑛𝑒,𝑓 of the encoder as input instead. Moreover,
e input the previous reconstructed sensor measurements �̂�𝑒,𝑓

𝑡−1 during
he testing phase. During the training phase, we use teacher forcing
nstead (Vasilev, 2019), i.e., we input the true sensor measurements
𝑒,𝑓
𝑡−1. If 𝑡 = 2, we always input the true sensor measurements from time-

tep 𝑡 = 1. Last, we use the operating conditions 𝐎𝑒,𝑓
𝑡 of time-step 𝑡 as

nput, to assist in decoding the sensor measurements. The output of the
STM-cell is the decoder short-term state ℎ′𝑡 and the decoder long-term
tate 𝑐′𝑡 .

ocal luong attention. The dimension of the last encoder short-term
tate ℎ𝑛𝑒,𝑓 is too small to contain all relevant features of a long flight.
oreover, the last encoder hidden state contains more information

bout the last sensor measurements than about the first sensor mea-
urements of the flight (Vasilev, 2019). We therefore use local Luong
ttention (Luong et al., 2015) to update the decoder short-term states
ith all the encoder short-term states ℎ𝑡, 𝑡 ∈ {1, 2,… , 𝑛𝑒,𝑓 }. A schematic

verview of the local Luong attention mechanism is in Fig. 4.

4

First, we compute how well the initial short-term state ℎ′𝑡 of the
ecoder aligns with the encoder short-term states ℎ𝑗 , 𝑗 ∈ {𝑡 − 𝐷, 𝑡 −
+ 1,… , 𝑡 + 𝐷}. Here, 𝐷 is the window size of the local attention

echanism. The alignment score 𝑎𝑗,𝑡 between the decoder short-term
tate ℎ′𝑡 and the encoder short-term state ℎ𝑗 is determined as (Luong
t al., 2015):

𝑗,𝑡 = ℎ′𝑇𝑡 𝑊𝑎ℎ𝑗 , 𝑗 ∈ {𝑡 −𝐷,… , 𝑡 +𝐷}. (8)

ere, 𝑊𝑎 is the weight matrix belonging to the attention mechanism,
nd 𝑇 denotes the transpose. With these alignment scores, the weights
̄𝑗,𝑡 are derived with the softmax function (Luong et al., 2015):

̄𝑗,𝑡 =
𝑒𝑎𝑗,𝑡

∑𝑡+𝐷
𝑘=𝑡−𝐷 𝑒𝑎𝑘,𝑡

, 𝑗 ∈ {𝑡 −𝐷,… , 𝑡 +𝐷}. (9)

Next, the weights are used to derive the context vector 𝑣𝑡 (Luong et al.,
2015):

𝑣𝑡 =
𝑡+𝐷
∑

𝑗=𝑡−𝐷
�̄�𝑗,𝑡ℎ𝑗 (10)

ith this context vector, the decoder short-term state is updated with
ne fully connected layer (Luong et al., 2015):

̃ ′
𝑡 = tanh

(

𝑊ℎ[𝑣𝑡, ℎ′𝑡]
)

, (11)

ith 𝑊ℎ a weight matrix belonging to this fully connected layer.

ully connected layers. Last, we reconstruct the sensor measurements
t time-step 𝑡 with 𝑙 fully connected layers. As input, we use both the
ugmented short-term state ℎ̃′𝑡 and the operating conditions 𝐎𝑒,𝑓

𝑡 . By
dding the operating conditions as input, we ensure that it is not useful
or the augmented short-term states ℎ̃′𝑡 to contain any information on
he current operating conditions. We thus truly aim to encode and
ecode the sensor measurements only. Here, the first 𝑙 − 1 layers have

the tanh activation function. The last layer has a linear activation
function, and contains 𝑚𝑠 nodes.

2.2. Constructing a health indicator with the reconstruction errors of the
LSTM-AE

We train the LSTM-AE only with the unlabelled sensor data samples
of just-installed aircraft systems, i.e., from systems that are considered
healthy. We therefore expect that the reconstruction errors increase
when a system degrades over time (Malhotra et al., 2016). The recon-
struction errors of the trained LSTM-AE are thus used to derive a health
indicator.

Let 𝑒,𝑠
𝑓 be the mean reconstruction loss of a sensor 𝑠 during flight

𝑓 performed by system 𝑒:

𝑒,𝑠
𝑓 = 1

𝑛𝑒,𝑓 − 1

𝑛𝑒,𝑓
∑

𝑡=2

|

|

|

�̂�𝑒,𝑓 ,𝑠
𝑡 −𝑋𝑒,𝑓 ,𝑠

𝑡
|

|

|

, (12)

with �̂�𝑒,𝑓 ,𝑠
𝑡 the 𝑡th reconstructed measurement of sensor 𝑠 during flight

𝑓 performed by system 𝑒. Let 𝑒,𝑠 = {𝑒,𝑠
𝑓 , 𝑓 ∈ {1, 2,… , 𝐹 𝑒}} be the

time-series of the reconstruction loss for a sensor 𝑠 that monitors system
𝑒. Then, we define 𝜆𝑒 = {𝜆𝑒𝑓 , 𝑓 ∈ {1, 2,… , 𝐹 𝑒}} as the health indicator
of an engine 𝑒, with

𝜆𝑒𝑓 =
𝑚𝑠
∑

𝑠=1
𝑒,𝑠
𝑓 . (13)

3. Case study — aircraft engines

In this section, we first describe the considered data set in Sec-
tion 3.1. Then, we describe the preprocessing of the data in Section 3.2,
and illustrate the dataset in Section 3.3. Last, we introduce the metrics

to evaluate the health indicators in Section 3.4.



I. de Pater and M. Mitici Engineering Applications of Artificial Intelligence 117 (2023) 105582

(
e
S
T
t

e
e
a
e
t
b
t
𝑚
(
a
t
s

g
A
s
d
u
f
w
m
g

3

4

Fig. 5. Heatmap of the correlation between the sensor measurements and operating conditions — training engines of DS02, N-CMAPSS.
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Table 1
Sensors selected based on the correlation. LPC — Low Pressure Combustor. HPC — High
Pressure Combustor. HPT — High Pressure Turbine. LPT — Low Pressure Turbine.

Symbol Description Unit

Wf Fuel flow pps
Nf Physical fan speed rpm
T24 Total temperature at LPC outlet ◦R
T30 Total temperature at HPC outlet ◦R
T48 Total temperature at HPT outlet ◦R
T50 Total temperature at LPT outlet ◦R
P2 Total pressure at fan inlet psia
P50 Total pressure at LPT outlet psia
W21 Fan flow pps
W50 Flow out of LPT lbm/s
SmFan Fan stall margin –
SmLPC LPC stall margin –
SmHPC HPC stall margin –

3.1. Aircraft engines in the N-CMAPSS data set

We consider dataset DS02 of the new N-CMAPSS data set
Arias Chao et al., 2021). Here, the degradation of aircraft turbofan
ngines is simulated with the Commercial Modular Aero-Propulsion
ystem Simulation (C-MAPSS) model of NASA (Arias Chao et al., 2021).
here are some key differences between this new data set compared to
he previous C-MAPSS data set (see Saxena and Goebel (2008)).

First, dataset DS02 of N-CMAPSS contains a limited number of
ngines: the training set contains only 6 engines. The test set contains 3
ngines, namely engine 11, 14 and 15. For each engine 𝑒 in the training
nd the test set of DS02, sensor measurements are available during
ach flight 𝑓 from engine installation until engine failure (i.e., run-
o-failure instances). Let 𝐹 𝑒 denote the number of flights performed
y engine 𝑒. Besides the sensor measurements, N-CMAPSS also con-
ains the operating conditions of the flights of the aircraft. A total of
o = 4 operating conditions are available: the altitude of the aircraft

alt), the flight Mach number (Mach), the throttle-resolver angle (TRA)
nd the total temperature at the fan inlet (T2). Last, N-CMAPSS con-
ains high-frequency sensor measurements, with one measurement per
ensor/operating condition per second.

In the beginning of the engine’s lifetime, the N-CMAPSS simulator
enerates sensor measurements using a linear, slow degradation model.
fterwards, an exponential, accelerated degradation model is used to
imulate the sensor measurements instead (Arias Chao et al., 2021). The
egradation of the engines when the linear, slow degradation model is
sed is still small, so we consider these sensor measurements as coming
rom ‘‘healthy’’, just-installed engines. We thus train our LSTM-AE only
ith the sensor measurements obtained with this slow degradation
odel. Let 𝑓 𝑒

a be the last flight for which the sensor measurements are
enerated with the slow degradation model.

.2. Data preprocessing

The training dataset consists of 6 engines, which together perform
46 flights. With 28 sensors and 4311 ≤ 𝑛𝑒,𝑓 ≤ 18 169 measurements
5

er sensor per flight, we have a total of 147 million data points in
he training data set. However, most of the measurements of the 28
ensors are highly correlated. For example, the flow out of the low
ressure turbine and the flow out of the high pressure turbine have a
orrelation of 1.00. To reduce the computational load when training the
STM-AE, without comprising the information contained in the sensor
easurements, we select only one of two or more sensors that have a

orrelation of 0.99 or higher. This results in the selection of 𝑚s = 13
ensors from the available 28 sensors (see Table 1). With this, the
umber of sensor measurements considered in the training dataset is
educed to 68 million.

To further reduce the computational load for training the LSTM-
E, we aggregate the sensor measurements and operating conditions
er minute. In other words, we consider the mean measurement and
perating condition per minute. This reduces the number of sensor
easurements in the training set to 1.143 million.

Moreover, the sensor measurements and the operating conditions
re normalized using min–max normalization:

2 ⋅ (𝑋𝑒,𝑓 ,𝑠
𝑡 −𝑋𝑠

min)
𝑋𝑠

max −𝑋𝑠
min

− 1, (14)

2 ⋅ (𝑂𝑒,𝑓 ,𝑜
𝑡 − 𝑂𝑜

min)
𝑂𝑜

max − 𝑂𝑜
min

− 1, (15)

where 𝑋𝑠
min/𝑂𝑜

min and 𝑋𝑠
max/𝑂𝑜

max are the minimum and maximum
measurement of sensor 𝑠/operating condition 𝑜 in the training set
respectively.

Last, there are only 101 flights in the training set where the sensor
measurements are generated with the linear, slow degradation model.
We therefore use data augmentation to increase the number of data
samples for training the LSTM-AE (Chao et al., 2022). For each flight
𝑓 ≤ 𝑓 𝑒

a performed by engine 𝑒, we consider time-windows with
a size of 60, 70, 80,… , 𝑛𝑒,𝑓 − 10, 𝑛𝑒,𝑓 time-steps. These time-windows
are rolled over flight 𝑓 of engine 𝑒 with a step size (i.e., stride) of
5 min. In this way, we subtract for each time-window with a size of
60, 70, 80,… , 𝑛𝑒,𝑓 −10, 𝑛𝑒,𝑓 time-steps, several time-series of multi-sensor
measurements (i.e., data samples) from flight 𝑓 of engine 𝑒. With this
approach, 25433 data samples are obtained to train the LSTM-AE.

3.3. Illustration of N-CMAPSS data set

Fig. 6(a) shows the normalized operating conditions during the
first flight of engine 2 from the training dataset. Fig. 6(b) shows the
normalized sensor measurements of sensors SmHPC, Nf, T48 and P50.
These figures and the correlation heatmap in Fig. 5 show that the sensor
measurements are highly correlated with the operating conditions. For
example, the correlation between the total pressure at the LPT outlet
(P50) and the altitude of the aircraft (alt) is −0.98 (see Fig. 5).

Fig. 7 shows the mean normalized sensor measurement per flight,
for all flights performed by engine 2 and for sensors SmHPC, Nf, T48
and P50. These mean sensor measurements do not exhibit a clear trend
towards failure. A more extensive analysis is thus necessary to obtain
a health indicator.
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Fig. 6. Normalized operating conditions and normalized sensor measurements — flight 1, training engine 2 of DS02, N-CMAPSS.
Fig. 7. Mean normalized sensor measurement per flight — training engine 2 of DS02,
N-CMAPSS.

3.4. Metrics to evaluate the health indicators

We evaluate the health indicators with the monotonicity (),
trendability ( ) and prognosability () metrics as follows:

Monotonicity. We measure the monotonicity  of the health indicator
𝜆𝑒 of an engine 𝑒 as follows (Liu et al., 2020):

 = 1
𝐹 𝑒 − 1

|

|

|

|

|

|

𝐹 𝑒−1
∑

𝑓=1
𝐼(𝜆𝑒𝑓+1 − 𝜆𝑒𝑓 ) − 𝐼(𝜆𝑒𝑓 − 𝜆𝑒𝑓+1)

|

|

|

|

|

|

,

(𝑥) =

{

1 𝑥 > 0
0 𝑥 ≤ 0.

rendability. We consider the Spearman correlation coefficient be-
ween the health indicator 𝜆𝑒 and the flights {1, 2,… , 𝐹 𝑒} to measure

the trendability  for an engine 𝑒 (Lei et al., 2018; Koutroulis et al.,
022):

=
𝐹 𝑒 ∑𝐹 𝑒

𝑓=1 𝑟
𝜆𝑒
𝑓 𝑓 −

(

∑𝐹 𝑒

𝑓=1 𝑟
𝜆𝑒
𝑓

)(

∑𝐹 𝑒

𝑓=1 𝑓
)

√

(

𝐹 𝑒 ∑𝐹 𝑒

𝑓=1(𝑟
𝜆𝑒
𝑓 )2

)

−
(

∑𝐹 𝑒

𝑓=1 𝑟
𝜆𝑒
𝑓

)2
⋅

√

(

𝐹 𝑒 ∑𝐹 𝑒

𝑓=1 𝑓 2
)

−
(

∑𝐹 𝑒

𝑓=1 𝑓
)2

,

(16)

where 𝑟𝜆𝑒𝑓 , 𝑓 ∈ {1, 2,… , 𝐹 𝑒} is the rank sequence of the health indicator
𝜆𝑒.

Prognosability. We consider the following prognosability metric  (also
called consistency) (Lei et al., 2018; Liu et al., 2020):

 = 𝑒𝑥𝑝
⎡

⎢

⎢

⎣

−STD(𝜆𝑒𝐹 𝑒 , 𝑒 ∈ 𝐸test)
1

|𝐸test
|

∑

𝑒∈𝐸test
|

|

|

𝜆𝑒1 − 𝜆𝑒𝐹 𝑒
|

|

|

⎤

⎥

⎥

⎦

, (17)

here STD(𝜆𝑒𝐹 𝑒 , 𝑒 ∈ 𝐸test) is the standard deviation of the last health
ndicator values 𝜆𝑒𝐹 𝑒 , 𝑒 ∈ 𝐸test (with 𝐹 𝑒 the last flight of engine 𝑒), and

test is the set with the test engines of DS02.
6

Table 2
Considered hyperparameters of the LSTM-AE.

Hyperparameter Value

Hyperparameters - architecture

Hidden size ℎ𝑡, 𝑐𝑡, ℎ′
𝑡 and 𝑐′𝑡 4

Window-size 𝐷 5
Number of fully connected layers 𝑙 3
Number of nodes first 𝑙 − 1 fully connected layers 128

Hyperparameters - optimization

Optimizer Adam (Kingma
and Ba, 2014)

Number of epochs 100
Training–Validation split 90%–10%
Initial learning rate 0.01
Decrease learning rate when no improvement in validation
loss for ... epochs in a row

10

Decrease learning rate by 1
10

4. Results — health indicator for aircraft engines

In this section, we present the health indicators developed for the
engines in DS02, N-CMAPSS. We first describe the hyperparameters
of the LSTM-AE in Section 4.1, and then the sensor selection in Sec-
tion 4.2. Next, we present the health indicators from the LSTM-AE in
Section 4.3. Last, we compare our approach with other methods in
Section 4.4.

4.1. Hyperparameters of LSTM-AE

Table 2 shows the considered hyperparameters for the LSTM-AE.
The architecture is derived using a grid search. After training, we select
the weights belonging to the lowest validation loss. Using a computer
with an Intel Core i7 processor (4 CPU cores) and 8Gb RAM, it took on
average 4.04 min to train the LSTM-AE for one epoch.

4.2. Sensor selection for constructing a health indicator

Fig. 8 shows the reconstructed measurements of sensors T48 and
P50 for the first and the last flight of training engine 2. During the
first flight, the reconstructed measurements are very close to the ac-
tual measurements for both sensors. In contrast, the reconstructed
measurements of sensor T48 deviate considerably from the actual mea-
surements during the last flight of engine 2 (Fig. 8(c)). This is expected,
since the engine is severely degraded just before failure, while we train
the LSTM-AE with sensor measurements from slightly-degraded engines
only. This does not hold, however, for all sensors: the reconstructed
measurements of sensor P50 are still very close to the actual sensor
measurements (Fig. 8(d)).

The different trends towards the time of failure of sensors T48

and P50 are also shown in Fig. 9. The reconstruction loss of sensor
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Fig. 8. Actual and reconstructed sensor measurements with the LSTM-AE — first and last flight, training engine 2 of DS02, N-CMAPSS.
Fig. 9. Mean loss 𝑒,𝑠
𝑓 per flight with the LSTM-AE — training engine 2 of DS02, N-CMAPSS.
Fig. 10. Health indicator with the LSTM-AE — test engines 11, 14 and 15 of DS02, N-CMAPSS.
o
r
i
i

a
c
s
i
h
t
d

4

w
o
o

48 monotonically increases towards failure, while the reconstruction
oss of sensor P50 resembles random noise. Let 𝑒,𝑠 be the Spearman
orrelation coefficient (see Eq. (16)) between the reconstruction loss
𝑒,𝑠 of sensor 𝑠 monitoring engine 𝑒 and the flights 𝑓 , i.e., the operating

ime. Let 𝑠 be the mean over the Spearman correlation coefficients 𝑒,𝑠

or sensor 𝑠, where the mean is taken over all training engines 𝑒. This
ean correlation is close to 1 for sensors for which the loss clearly

ncreases towards failure. In contrast, it is close to 0 for sensors for
hich the loss shows no trend towards failure. To construct a health

ndicator, we include in Eq. (13) only those sensors for which the mean
pearman correlation 𝑠 between the reconstruction loss and the flights
s 0.5 or larger. In this way, we do not construct the health indicator
ith sensors that are very weakly correlated with the time to failure,

uch as sensor P50: These sensors add little to no information on the
egradation to the health indicator.

.3. Health indicators of the test engines

Fig. 10 shows the obtained health indicators, and Table 3 shows
he sensors selected to construct the health indicators and the health
ndicator metrics. The three test engines fail when the health indicator
quals roughly 0.8/0.9, which is reflected by the high prognosability
 T

7

f 0.94. The increasing trend of the health indicators towards failure is
eflected by the mean trendability of 0.95. Some small noise is visible
n the health indicators, which is reflected by the mean monotonicity
s 0.38.

The operating conditions for test engine 11 are similar to the oper-
ting conditions of the engines in the training set, while the operating
onditions of test engines 14 and 15 are different than in the training
et (Arias Chao et al., 2021). The monotonicity for engine 14 and 15
s indeed lower than for engine 11. However, the trendability is still
igh for all three test engines. Our approach thus achieves a high
rendability and prognosability even when the operating conditions are
ifferent than in the training set.

.4. Comparison with other autoencoders

We compare the health indicators from the proposed approach
ith the health indicators from several other methodologies: With
ther recurrent autoencoders, with the LSTM-AE without attention or
perating conditions, and with standard, non-recurrent autoencoders.
he results for these other methodologies are in Table 3 as well.
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Table 3
Evaluation of the health indicators for various autoencoders — test engines 11, 14 and 15 of DS02, N-CMAPSS.  — Monotonicity.  — trendability.  — prognosability. The
best results are denoted in bold.

Engine 11 Engine 14 Engine 15 Mean

Selected sensors         

Proposed method

LSTM-AE W50, SmFan, SmLPC, SmHPC, Wf, T24, T30, T48, T50 0.48 0.97 0.31 0.91 0.36 0.97 0.38 0.95 0.94

Proposed method with other recurrent autoencoders

GRU-AE W50, SmFan, SmLPC, SmHPC, Wf, T24, T30, T48, T50 0.21 0.94 0.23 0.79 0.12 0.93 0.18 0.89 0.94
BiGRU-AE W50, SmLPC, SmHPC, T48, T50 0.24 0.88 0.23 0.84 0.03 0.79 0.17 0.84 0.95
BiLSTM-AE W50, SmFan, SmLPC, SmHPC, Wf, T24, T30, T48, T50 0.52 0.97 0.33 0.90 0.30 0.97 0.38 0.94 0.94

Proposed method without operating conditions (no o.c.) or without attention (no att.)

LSTM-AE-no o.c. SmLPC 0.00 0.65 0.01 0.53 0.03 0.39 0.01 0.52 0.67
LSTM-AE-no att. W50, SmFan, SmLPC, SmHPC, Wf, T24, T30, T48, T50 0.48 0.97 0.23 0.88 0.30 0.97 0.34 0.94 0.94

Other non-recurrent autoencoders

1D-CAE SmHPC 0.10 0.55 0.01 0.54 0.09 0.28 0.07 0.45 0.77
FAE W21, W50, SmFan, SmLPC, SmHPC, Nf, T24, T30, T48, T50, P50 0.38 0.77 0.12 0.52 0.18 0.82 0.23 0.70 0.89
s
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Other recurrent autoencoders. We compare the obtained health indica-
ors with the health indicators from four other recurrent autoencoders:
he Gated Recurrent Unit autoencoder (GRU-AE), the bidirectional
RU-AE (BiGRU-AE) and the bidirectional LSTM-AE (BiLSTM-AE). For
ach recurrent autoencoder, we also implement local Luong attention
nd integrate the operating conditions.

For the BiLSTM-AE, we consider a bidirectional LSTM encoder
Vasilev, 2019, Chapter 8). However, in the decoder, the reconstructed
ensor measurements of time-step 𝑡 are used as input in the LSTM-cell
t time-step 𝑡+1. We therefore cannot consider a bidirectional decoder
s well. For the GRU-AE, we replace each LSTM-cell in the autoencoder
y a GRU-cell (Vasilev, 2019, Chapter 7). For the BiGRU-AE, we replace
ach LSTM-cell in the BiLSTM-AE with a GRU-cell.

Table 3 shows the monotonicity, trendability and prognosability for
he health indicators of the different recurrent autoencoders. With the
Bi)GRU-AE, the monotonicity and the trendability are considerably
ower than with the LSTM-AE. The prognosability with the BiGRU-AE is
.95, slightly higher than the prognosability of 0.94 with the LSTM-AE.

The monotonicity and the prognosability are the same with the
STM-AE and the BiLSTM-AE. With the LSTM-AE, however, the mean
rendability of 0.95 is slightly higher than the mean trendability of 0.94
or the BiLSTM-AE.

The same subset of sensors is selected to create the health indicators
or the GRU-AE, the LSTM-AE and the BiLSTM-AE. For the BiGRU-AE,
owever, less sensors are selected to create the health indicators: Here,
ensor SmFan, Wf, T24, and T30 are not selected.

o operating conditions or no attention. We also analyse the health
ndicators when the operating conditions are not incorporated in the
STM-AE, i.e., when the operating conditions 𝐎𝑒,𝑓 are completely
emoved from the autoencoder. When not considering the operating
onditions, no sensor had a Spearman trendability for the training
ngines of 0.5 or higher. Instead, we only include sensor SmLPC,
ith the highest trendability of all sensors. Without incorporating the
perating conditions, the monotonicity, trendability and prognosability
f the health indicators decrease considerably (see Table 3).

Table 3 also shows the metrics when we do incorporate the operat-
ng conditions, but when no attention is used. The prognosability is the
ame with and without attention. The monotonicity, however, is lower
hen not using attention (0.34 instead of 0.38). Also the trendability

s slightly lower (0.94 instead of 0.95).

ther non-recurrent autoencoders. Last, we compare our method with
wo standard, non-recurrent autoencoders, namely a one-dimensional
onvolutional autoencoder (1D-CAE) and a fully connected autoen-
oder (FAE). Both the sensor measurements and the operating condi-
ions are selected as input, though only the sensor measurements are

econstructed. To construct fixed-length input samples, we consider a 𝜎

8

liding time-window with a fixed size of 16 time-steps and a stride of
. To create the health indicator value for a flight 𝑓 of an engine 𝑒, we
se the mean reconstruction loss 𝑒,𝑠

𝑓 over all time-windows of size 16
nd stride 1 of this flight 𝑓 .

The one-dimensional convolutional encoder consists of two blocks,
ach with two convolutional layers and one max pooling layer with
pooling size of 2. The filters of the convolutional layer have size 4

nd a stride of 1. The first three convolutional layers have 8 channels,
hile the last convolutional layer has only 1 channel. The convolutional
ecoder consists of the same structure, but instead of pooling layers we
se interpolating layers. We consider zero-padding for all convolutional
ayers. Moreover, all layers use the ReLU activation function, except the
ast layer of the decoder, which uses the linear activation function.

The encoder of the FAE consists of two fully connected layers. The
umber of neurons is halved for each subsequent fully connected layer.
he decoder consists of the same structure, only here the number of
eurons is doubled in each fully connected layer. Each layer applies the
eLU activation function, except the last layer of the decoder, which
ses the linear activation function.

Table 3 shows the results for the 1D-CAE and the FAE. For the 1D-
AE, no sensor had a Spearman trendability for the training engines of
.5 or higher. Instead, we only include sensor SmHPC, which has the
ighest trendability of all sensors. The trendability and prognosability
re considerably higher when considering a recurrent autoencoder
nstead of the 1D-CAE or the FAE. This shows the added value of
rocessing the time-series of sensor measurements with a recurrent
utoencoder.

. Methodology - Online RUL prognostics using similarity-based
atching

In this section, we show how the health indicators developed in
ection 4 are used for health state division (Section 5.1) and to obtain
UL prognostics (Section 5.2).

.1. Health state division using Chebyshev’s inequality

Before we predict the RUL, we first diagnose an engine as healthy or
nhealthy. This is called health state division or diagnostics (Lei et al.,
018). An engine is diagnosed as unhealthy once its health indicator
rosses a threshold 𝜂 times in a row. This threshold is determined using
hebyshev’s inequality (Singh et al., 2020; Kong and Yang, 2019). For
ur application, this inequality states that:

(|𝜆𝑒𝑓 − 𝜇| ≥ 𝑘𝜎) ≤ 1
𝑘2

, (18)

where 𝑘 > 0, 𝑃 (⋅) denotes the probability, and 𝜇 is the mean and
is the standard deviation of the health indicator values 𝜆𝑒 of the
𝑓
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Fig. 11. Illustration of the similarity-based matching method to predict the RUL of engine 𝑖, with 𝐻 health-indicators from the training set in the library.
Fig. 12. The iterative process of matching the partial health indicator �̃�𝑖 with the offline health indicator 𝜆𝑒, with different values for the time-lag 𝜏.
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training engines 𝑒 and flights 𝑓 for which the sensor measurements are
simulated using the slow, linear degradation model (i.e., 𝑓 ≤ 𝑓 𝑒

a ). Thus,
an engine is diagnosed as unhealthy as soon as the threshold 𝜇 + 𝑘𝜎 is
exceeded by the health indicator 𝜆𝑒𝑓 𝜂 times in a row. The probability
that this occurs while the sensor measurements are generated using the
slow, linear degradation model is less than ( 1

𝑘2
)𝜂 . Let 𝑓 𝑒

u be the flight
during which an engine 𝑒 is diagnosed as unhealthy. We start with
predicting the RUL from flight 𝑓 𝑒

u onwards.

5.2. Similarity-based matching method for RUL prognostics

Once an engine is diagnosed as unhealthy, we estimate its RUL
after each flight using a similarity-based health indicator matching
approach (Yu et al., 2020; Malhotra et al., 2016). These are online RUL
prognostics, since the RUL prognostics are updated every time more
sensor measurements become available.

Let �̃�𝑖 = {𝜆𝑖𝑓 , 𝑓 ∈ {𝑓 −𝑀,… , 𝑓}} denote a partial health indicator
available for engine 𝑖, using the sensor measurements available up to
a flight 𝑓 ≥ 𝑓 𝑒

u . Here, 𝑀 is the fixed length of the partial health
indicators. Our aim is to predict the RUL of engine 𝑖 at flight 𝑓 . For
his, we consider a library with for each training engine 𝑒 the offline
ealth indicator 𝜆𝑒. To predict the RUL, we match the partial health
ndicator �̃�𝑖 with all the offline health indicators 𝜆𝑒 in the library. A
chematic overview of the matching procedure is in Fig. 11.

When matching, we determine the similarity between the partial
ealth indicator �̃�𝑖 and the offline indicators 𝜆𝑒 in the library as the
verage Euclidean distance between these indices. To maximize the
imilarity between �̃�𝑖 and 𝜆𝑒, i.e., to identify the best matches between
̃𝑖 and 𝜆𝑒, �̃�𝑖 is shifted along 𝜆𝑒 in the positive time-direction for 𝜏
lights.
 a

9

Fig. 12 shows an example of a matching between the partial health
ndicator �̃�𝑖 and a health indicator 𝜆𝑒 from the library. In this example,
he partial health indicator is 𝑀 = 40 flights long, while the offline
ealth indicator 𝜆𝑒 is 120 flights long. When 𝜏 = 0, the Euclidean
istance is based on the first 40 values of both health indicators, so
etween �̃�𝑖 and {𝜆𝑒𝑓 , 𝑓 ∈ {1, 2,… , 40}}. However, the similarity between
hese two health indicators is very small (see Fig. 12(a)). In Fig. 12(b),
e therefore shift �̃�𝑖 forward with 𝜏 = 50 flights. Now, the Euclidean
istance between �̃�𝑖 and {𝜆𝑒𝑓 , 𝑓 ∈ {51,… , 90}} decreases. Let 𝜏 𝑖,𝑒max,

𝜏 𝑖,𝑒max = |𝜆𝑒| −𝑀 flights, denote the maximum number of flights �̃�𝑖 can
e shifted forward when matching with 𝜆𝑒, with |𝜆𝑒| the length of the
ffline health indicator.

Given a time-lag 𝜏, the average Euclidean distance 𝑑(�̃�𝑖, 𝜆𝑒, 𝜏) be-
ween 𝜆𝑒 and �̃�𝑖 is:

(�̃�𝑖, 𝜆𝑒, 𝜏) = 1
𝑀

√

√

√

√

√

𝑀
∑

𝑓=1

(

𝜆𝑒𝑓+𝜏 − �̃�𝑖𝑓
)2

, (19)

with a corresponding preliminary RUL prognostic of (see also
Fig. 12):

R̂UL(𝑖, 𝑒, 𝜏) = |𝜆𝑒| −𝑀 − 𝜏, (20)

and a similarity score of (Yu et al., 2020; Malhotra et al., 2016):

𝜌(𝑖, 𝑒, 𝜏) = 𝑒𝑥𝑝(−𝑑(�̃�𝑖, 𝜆𝑒, 𝜏)∕𝛾), (21)

here 𝛾 > 0 is a parameter that influences the scaling of the score with
espect to the Euclidean distance. The score 𝜌(𝑖, 𝑒, 𝜏) is higher when �̃�𝑖

nd 𝜆𝑒 are more similar, given time-lag 𝜏.
Let �̃� denote the highest similarity score of engine 𝑖, obtained across

ll training engines 𝑒 in the library and all time-lags 𝜏 (see also Fig. 11),



I. de Pater and M. Mitici Engineering Applications of Artificial Intelligence 117 (2023) 105582

u
d
r

w
R

2

𝜌

w
e

F

R

6

o
R
r
o
l
a
i

6

a
b
1

Table 4
Health state division: Flight 𝑓 𝑒

a , after which the sensor measurements are generated
sing the exponential degradation model, and flight 𝑓 𝑒

u , during which the engine is
iagnosed as unhealthy — test engines 11, 14 and 15 of DS02, N-CMAPSS. The best
esults are denoted in bold.

Engine

Method 11 14 15
Flight 𝑓 𝑒

a 18 35 23

Proposed method

LSTM-AE 𝑓 𝑒
u 30 36 32

Proposed method with other recurrent autoencoders

GRU-AE 𝑓 𝑒
u 44 53 48

BiGRU-AE 𝑓 𝑒
u 46 66 54

BiLSTM-AE 𝑓 𝑒
u 30 36 32

Proposed method without attention (no att.)

LSTM-AE- no att. 𝑓 𝑒
u 30 36 37

i.e.,:

�̃� = max
𝑒 ∈ 𝐸train,

𝜏 ∈ {0, 1,… , 𝜏𝑖,𝑒max}

{𝜌(𝑖, 𝑒, 𝜏)}, (22)

here 𝐸train denotes the set with all training engines. To estimate the
UL of engine 𝑖, we include all preliminary RUL prognostics R̂UL(𝑖, 𝑒, 𝜏)

for which the score 𝜌(𝑖, 𝑒, 𝜏) is high enough, i.e., when (Malhotra et al.,
016):

(𝑖, 𝑒, 𝜏) ≥ 𝛼 ⋅ �̃�, (23)

ith 𝛼 ∈ [0, 1]. Let 𝛱 𝑖 be the set of all combinations (𝑒, 𝜏) of training
ngines 𝑒 and time lags 𝜏, such that 𝜌(𝑖, 𝑒, 𝜏) ≥ 𝛼 ⋅ �̃�. Then the weight of

RUL prediction R̂UL(𝑖, 𝑒, 𝜏), (𝑒, 𝜏) ∈ 𝛱 𝑖, is:

𝑝(𝑖, 𝑒, 𝜏) =
𝜌(𝑖, 𝑒, 𝜏)

∑

(𝜖,𝑇 )∈𝛱 𝑖 𝜌(𝑖, 𝜖, 𝑇 )
. (24)

inally, the predicted RUL RUL𝑖 of engine 𝑖 is (Yu et al., 2020):

UL𝑖 =
∑

(𝑒,𝜏)∈𝛱 𝑖
𝑝(𝑖, 𝑒, 𝜏) ⋅ R̂UL(𝑖, 𝑒, 𝜏). (25)

. Results - Online RUL prognostics for aircraft engines

In this section, we present the RUL prognostics for the test engines
f dataset DS02. First, we analyse the health state division and the
UL prognostics in Section 6.1. Then, we compare our results with the
esults of the other autoencoders in Section 6.2. Moreover, we compare
ur RUL prognostics with the RUL prognostics of common supervised
earning models that directly predict the RUL in Section 6.3. Last, we
nalyse the RUL prognostics for a decreasing number of offline health
ndicators in the library in Section 6.4.

.1. Health state division and RUL prognostics

Table 4 shows the flight 𝑓 𝑒
u during which the test engines of DS02

re diagnosed as unhealthy. Each test engine is labelled as unhealthy
etween 29 to 40 flights before failure (see also Fig. 10). This is 1 to
2 flights after the last flight 𝑓 𝑒

a during which the sensor measurements
are generated using the linear degradation model.

Fig. 13 shows the RUL predictions for the test engines of DS02.
These RUL predictions are generated as soon as the engine is diagnosed
as unhealthy, and then updated after each flight. The RUL of engine 11
is slightly overestimated when this engine is diagnosed as unhealthy,
with a prediction error of −6 flights. In contrast, the RUL for engine
14 is slightly underestimated (a prediction error of 6 flights) after it
is diagnosed as unhealthy. However, the RUL predictions of all test
engines quickly converge to the true RUL as the engines approach their
failure time. Table 5 shows the Root Mean Square Error (RMSE) and the
10
Fig. 13. RUL predictions with the LSTM-AE — test engines 11, 14 and 15 of DS02,
N-CMAPPS. The first RUL prediction is made when the engine is declared unhealthy,
and is updated after every flight.

Table 5
Evaluation of the RUL predictions for our proposed approach (LSTM-AE) versus other
approaches — test engines 11, 14 and 15 of DS02, N-CMAPSS.

Engine 11 Engine 14 Engine 15 All

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Proposed method

LSTM-AE 2.89 3.50 1.89 2.41 1.95 2.12 2.18 2.67

Proposed method with other recurrent autoencoders

GRU-AE 1.06 1.22 3.76 4.27 0.98 1.24 2.12 3.87
BiGRU-AE 1.24 1.72 3.02 3.45 1.73 2.80 1.91 2.36
BiLSTM-AE 2.72 3.41 2.42 3.02 2.77 2.96 2.62 3.12

Proposed method without attention (no att.)

LSTM-AE-no att. 2.76 3.50 2.49 3.31 2.09 2.28 2.45 3.10

Mean Absolute Error (MAE) with these RUL predictions. The results
show that RUL is well estimated for all three engines, with a RMSE
between 2.12 and 3.50 flights only.

The hyperparameters of the health state division and the similarity-
based matching, used to obtain these RUL results, are derived us-
ing a grid search with leave-one-out cross validation in the training
set (Bishop, 2006). Here, the goal is to minimize the RMSE for the
training engines. For the health state division, we obtain 𝜂 = 3 and
𝑘 = 5 (see Section 5.1). For the similarity-based matching method, we
obtain 𝑀 = 10, 𝜆 = 0.01 and 𝛼 = 0.7 (see Section 5.2).

6.2. Comparison with the RUL prognostics of other autoencoders

We also analyse the health state division and the RUL predictions
with the health indicators of the best autoencoders of Section 4.4:
Specifically, we consider the other recurrent autoencoders, and the
LSTM-AE without attention.

The test engines are diagnosed as unhealthy during the same flights
for the BiLSTM-AE and the LSTM-AE (see Table 4). Moreover, test
engine 11 and 14 are diagnosed as unhealthy during the same flights
for the LSTM-AE with and without attention. However, test engine 15
is diagnosed as unhealthy 5 flights later when no attention is used.
For the BiGRU-AE and the GRU-AE, the engines are diagnosed as
unhealthy after a later flight: For the GRU-AE, the engines are labelled
as unhealthy 15 to 23 flights before failure, while for the BiGRU-AE,
the engines are labelled as unhealthy only 10 to 13 flights before
failure. This late diagnosis as unhealthy is expected, given the relatively
low monotonicity and trendability of the (Bi)GRU-AE. It is, however,
preferable if an engine is diagnosed as unhealthy far before failure,
provided that the degradation in the engines is large enough to make
accurate RUL predictions.

Table 5 also shows the MAE and the RMSE of the RUL prognostics
for the other considered autoencoders. For all four considered autoen-

coders, we find that 𝜂 = 3, 𝑘 = 5 and 𝜆 = 0.01. The fixed length equals
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Table 6
RMSE for the test engines 11,14 and 15 of DS02, N-CMAPSS, with various
methodologies. The best results are denoted in bold.

Engine

11 14 15 All

Proposed methodology

LSTM-AE 3.50 2.41 2.12 2.67

Supervised learning neural networks

1D-CNN 4.09 5.07 2.84 4.16
LSTM-NN 4.24 3.32 2.22 3.31

𝑀 = 10 for the GRU-AE, and 𝑀 = 5 for the other autoencoders. The
parameter 𝛼 is 0.1 for the BiGRU-AE, 0.2 for the LSTM-AE without
attention, 0.4 for the BiLSTM-AE and 0.5 for the GRU-AE.

The RUL predictions with the LSTM-AE have a lower overall RMSE
and MAE then the RUL predictions with the BiLSTM-AE. This is as
expected, since the health indicators of the LSTM-AE have a slightly
higher trendability.

We cannot directly compare the RUL predictions of the (Bi)GRU-AE
and the LSTM-AE: the engines are diagnosed as unhealthy much closer
to failure when considering the (Bi)GRU-AE. In general, we expect that
the RUL predictions improve when an engine degrades over time. We
thus expect that the RMSE is lower when an engine is diagnosed as
unhealthy later. Nevertheless, the overall RMSE of the LSTM-AE (2.67
flights) is better than the overall RMSE of the GRU-AE (3.87 flights)
and only slightly worse than the overall RMSE of the BiGRU-AE (2.36
flights).

For each test engine, the RMSE with the LSTM-AE without attention
is larger than or equal to the RMSE with the LSTM-AE with attention.
This also holds for test engine 15, even though engine 15 is diagnosed
as unhealthy 5 flights later when not using attention. Moreover, the
overall RMSE equals 3.10 flights without attention, while it only equals
2.67 flights with attention. This shows the benefits of incorporating
attention in the autoencoder.

6.3. Comparison with other, supervised learning methods

Last, we compare our results with the results of neural networks
that directly output a RUL prediction, i.e., supervised learning methods.
Here, we train two benchmark neural networks to directly predict the
RUL: the one-dimensional convolutional neural network (1D-CNN) and
the LSTM neural network (LSTM-NN). These two neural networks are
also used as benchmark in Chao et al. (2022), and we thus use the same
architecture and hyperparameters as in Chao et al. (2022). However, to
allow for a fair comparison, we use the same sensors that are used as
input to our approach (see Table 1) as input to the benchmark neural
networks.

There is no straightforward method for health state division when
using a supervised learning method. However, RUL predictions usually
improve when the true RUL becomes smaller. The comparison of the
RUL prognostics would thus not be fair if we do not use any health
state division for the supervised learning methods. Instead, we apply
the health state division of the proposed methodology also to the
benchmark neural networks. For example, engine 11 is diagnosed as
unhealthy at flight 30 with the proposed approach. We thus also predict
the RUL of engine 11 with the benchmark neural networks from flight
30 onward.

Table 6 shows the RMSE of the RUL predictions with the various
methodologies. The RMSE of the RUL prognostics is lowest for all test
engines when considering our proposed approach. This shows that our
approach works well for the considered data set with limited failure

instances, compared to a supervised learning method.

11
Fig. 14. Learning curve of the RMSE and MAE for the LSTM-AE — test engines of
DS02, N-CMAPSS.

Table 7
Overview of the considered libraries. Here, 𝐸train is the set with all training engines.

Size of # of Set of offline libraries (⋅)
library libraries

1 6 {(𝑒1) ∶ 𝑒1 ∈ 𝐸train}
2 15 {(𝑒1 , 𝑒2) ∶ 𝑒1 ∈ 𝐸train , 𝑒2 ∈ 𝐸train ⧵ {𝑒1}}
3 20 {(𝑒1 , 𝑒2 , 𝑒3) ∶ 𝑒1 ∈ 𝐸train , 𝑒2 ∈ 𝐸train ⧵ {𝑒1}, 𝑒3 ∈ 𝐸train ⧵ {𝑒1 , 𝑒2}}
4 15 {(𝑒1 , 𝑒2 , 𝑒3 , 𝑒4) ∶ 𝑒1 ∈ 𝐸train , 𝑒𝑖 ∈ 𝐸train ⧵ {𝑒𝑗 , 𝑗 = 1, 2,… , 𝑖 − 1}, 𝑖 =

2, 3, 4}
5 6 {(𝑒1 , 𝑒2 , 𝑒3 , 𝑒4 , 𝑒5) ∶ 𝑒1 ∈ 𝐸train , 𝑒𝑖 ∈ 𝐸train ⧵ {𝑒𝑗 , 𝑗 =

1, 2,… , 𝑖 − 1}, 𝑖 = 2, 3, 4, 5}
6 1 𝐸train

6.4. Impact of the number of available labelled data samples on the RUL
prognostics

Due to prevent maintenance, most aircraft systems are replaced
before their failure. There are therefore only limited labelled data
samples available. In this section, we thus study the impact of the size of
the library in the matching approach, i.e., the number of offline health
indicators in the library, on the accuracy of the RUL prognostics. The
health indicators are constructed using unlabelled data samples from
the beginning of an engine’s lifetime only. In real life, there are enough
unlabelled data samples to train an autoencoder. We thus use the same
online and offline health indicators as in Section 4.

Fig. 14 shows the RMSE and the MAE of the RUL prognostics for an
increasing number of available offline health indicators in the library.
This is also called the learning curve. We consider for each number of
available offline health indicators, all possible combinations of histori-
cal health indicators that give a library of this size. For example, if two
health indicators are available, we consider the following 15 libraries:

{(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5),

(2, 6), (3, 4), (3, 5), (3, 6), (4, 5), (4, 6), (5, 6)}.

Here, 1, 2,… , 6 denotes the offline health indicator from the first,
second, . . . , sixth training engine respectively. An overview of all
considered libraries is in Table 7. With each library, we predict the
RUL of the test engines.

As expected, the RUL predictions improve when the size of the
library increases. The decrease in the RMSE and MAE is highest when
we consider two offline health indicators in the library, instead of just
one. However, even when a library consists of just one offline health
indicator, the RUL is well estimated with a RMSE of only 3.95 flights,
and a MAE of only 3.38 flights. This shows that our approach works
well when only very few labelled data samples are available.

7. Conclusion

In aviation, safety–critical aircraft systems usually undergo preven-
tive maintenance. Consequently, only very few labelled sensor data
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samples, with as label the true RUL, are available. Many labelled data
samples, however, are required to train supervised learning models that
directly predict the RUL. In this paper, we therefore instead propose to
construct a health indicator by training a LSTM autoencoder (LSTM-
AE) with unlabelled data samples (i.e., the corresponding true RUL
is unknown). The reconstruction error with the LSTM-AE increases as
the degradation in a system increases, and is therefore used as health
indicator. The sensor measurements of aircraft systems are generated at
a high frequency during flights of several hours. Each data sample thus
consists of a long time-series of multi-sensor measurements. We apply
attention in the LSTM-AE to handle these long time-series. Moreover,
aircraft are operated under highly-varying operating conditions. To cre-
ate robust health indicators, we thus integrate the operating conditions
in the LSTM-AE.

Next, we divide the lifetime of each engine in a healthy and an
unhealthy stage using Chebyshev’s inequality on the health indicators.
Then, we use the health indicators and the few available labelled data
samples in a similarity-based matching approach to predict the RUL of
the engines in the unhealthy stage.

We apply this approach to the aircraft engines in the new N-CMAPSS
dataset (Arias Chao et al., 2021). The obtained health indicators have a
high monotonicity (0.38), prognosability (0.94) and trendability (0.95).
Moreover, the health indicators are indeed robust to the varying oper-
ating conditions: the trendability is also high for engines with operating
conditions deviating from the operating conditions in the training set.
Also the obtained RUL prognostics are accurate, with a RMSE of only
2.67 flights. Moreover, our approach outperforms supervised learning
methods, that directly predict the RUL, with a decrease in the RMSE of
19%.

Our proposed methodology is illustrated for aircraft engines. How-
ever, the described methodology is also suitable for applications in
other fields, such as wind turbine gearboxes, bearings in industrial
applications or batteries. For future research, we therefore plan to apply
this methodology for other components and systems in other industries.
Moreover, for future research, we plan to analyse if the failure mode
of an engine can be determined based on the reconstruction loss of
different sensors.
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