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Abstract 

Neuromuscular blocking agents (NMBAs) are commonly employed in anesthesia to facilitate intubation 

and improve surgical working conditions. Understanding their pharmacokinetics (PK) and 

pharmacodynamics (PD) is crucial for optimizing their administration. PK describes drug absorption, 

distribution, metabolism, and elimination, while PD links drug concentration to its pharmacological 

effects. Integrating PK and PD information through PKPD modeling offers insights into the relationship 

between drug concentration and effect. Recent advancements in machine learning (ML) have shown 

promise in modeling the PD of anesthetics, offering potential benefits over traditional PKPD models. 

This study aimed to develop an automated data logger for recording neuromuscular transmission (NMT) 

measurements and rocuronium infusion data during surgery. A secondary goal was to predict TOF ratios 

using both traditional PKPD models and newer ML techniques. 

The experimental setup involved development of data logger software. Data preprocessing consolidated 

data, removed outliers, and applied interpolation for missing values. Machine learning models, 

including linear regression, decision trees, and extreme gradient boosting, were trained and evaluated 

using double Leave-One-Group-Out cross-validation. Additionally, a traditional PKPD model 

estimated pharmacokinetic parameters based on patient characteristics and rocuronium administration 

data. Model performance was assessed using metrics such as Root Mean Squared Error (RMSE), 

Normalized RMSE (NRMSE), R-squared (R²), and the Pearson correlation coefficient. 

From March 23 to June 20, 2023, a prospective observational study at Leiden University Medical Center 

(LUMC) included 42 patients in the operating room. Data were collected from three distinct monitors 

using data logger software. The collected data was divided into TOF-Cuff and GE NMT monitor 

subsets, excluding continuous rocuronium infusion records. 

In terms of model performance, machine learning models displayed suboptimal results when applied to 

GE NMT monitor data, indicated by high RMSE and low R² values. In contrast, basic and optimized 

PKPD models exhibited better predictive capabilities. Similar trends were observed in the performance 

evaluation of TOF-Cuff data, with machine learning models less effective compared to PKPD models. 

An in-depth analysis of NRMSE revealed outliers, mainly in the optimized PKPD model. Cumulative 

distribution plots highlighted performance variations across subjects, particularly in the TOF-Cuff 

results. 

The dataset comprised 42 subjects undergoing surgical procedures, but the effective sample size for 

analysis was limited due to deep neuromuscular blockade, sensor placement issues, and data loss. 

Traditional pharmacokinetic-pharmacodynamic (PKPD) models, based on data from 423 patients, 

outperformed machine learning models in predicting Train of Four (TOF) ratios, as the latter faced 

overfitting challenges with a smaller dataset. Future directions suggest collecting more extensive data 

(ideally closer to 100 subjects) to improve machine learning model performance and possibly include 

features like time until full neuromuscular blockade recovery. Additionally, identifying the most critical 

features behind machine learning predictions can help streamline computational methods. Overall, 

refining the software, increasing data, and feature analysis can enhance machine learning-based 

neuromuscular blockade prediction. 

In conclusion, this study introduced a novel data logger software for recording neuromuscular blockade 

data during surgery at LUMC. While machine learning approaches fell short in approximating TOF 

ratios, future research with expanded datasets and more comprehensive feature analysis holds promise 

for the development of more robust machine learning models.  
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Nomenclature 

Abbreviation Definition 

ACh Acetylcholine 

AMG Acceleromyography 

AUC Area Under the Curve 

BIS Bispectral Index 

BMI Body Mass Index 

CRC Cyclic Redundancy Check 

DBS Double Burst Stimulation 

eGFR Estimated Glomerular Filtration Rate 

EHR Electronic Health Record 

EMG Electromyography 

LOGO Leave One Group Out 

LUMC Leiden University Medical Center 

ML Machine Learning 

nAChRs Nicotinic Acetylcholine Receptors 

NaN Not a Number 

NMB Neuromuscular Block 

NMBA Neuromuscular Blocking Agent 

NMJ Neuromuscular Junction 

NMT Neuromuscular Transmission 

NRMSE Normalized Root Mean Squared Error 

OR Operating Room 

PACU Post Anaesthetic Care Unit 

PDMS Patient Data Management System 

PD Pharmacodynamic 

PK Pharmacokinetic 

PKPD Pharmacokinetic-Pharmacodynamic 

PTC Post Tetanic Count 

R2 Coefficient of Determination  

rNMB Residual Neuromuscular Block 

RMSE Root Mean Squared Error 

ROC Receiver Operating Characteristic 

RS-232 Recommended Standard 232 

SD Standard Deviation 

SOL Serial over LAN 

SOP Standard Operating Procedure 

TOF Train of Four 

TOFR Train of Four Ratio 

UI User Interface 

  



 
 

3 

1. Introduction 

Pharmacokinetics and pharmacodynamics in neuromuscular blockade 

Neuromuscular blocking agents (NMBAs) are routinely applied during general anesthesia to facilitate 

endotracheal intubation and improve surgical working conditions. One common used NMBA is 

rocuronium due to its rapid onset of action [2]. However, because of their long half-lives, residual 

neuromuscular block (rNMB) persists in the post-anesthetic care unit (PACU), which is associated with 

postoperative adverse events [3]. Understanding the mechanism of action of rocuronium and other 

drugs, as well as assessing their clinical effects, plays a crucial role in the safe administration of 

rocuronium. Pharmacokinetics (PK) describe how a drug is absorbed, distributed, metabolized, and 

eliminated by the body, while pharmacodynamics (PD) focuses on the relationship between drug 

concentration and its pharmacological effects. In the case of rocuronium, its PK properties determine 

the speed of onset, duration, and offset of action. After administration, rocuronium spreads throughout 

the body and eventually reaches its site of action, the neuromuscular junction (NMJ), where it binds to 

nicotinic acetylcholine receptors (nAChRs). This binding prevents the endplate potential from reaching 

the threshold required to initiate a propagating action potential, resulting in muscle paralysis [4]. 

The concentration of rocuronium in plasma 

over time is influenced by factors such as 

absorption, distribution to various tissues, 

metabolism, and elimination. These PK 

parameters and PD interactions can be used to 

create pharmacokinetic-pharmacodynamic 

(PKPD) models, enabling us to understand and 

predict the drug's effects. These models often 

incorporate PK data (concentration-time 

profiles) and PD data (concentration-effect 

profiles) to quantify the relationship between 

drug concentration and time (see Figure 1-1). 

For rocuronium, the current PKPD model is 

developed by Kleijn, et al. This model was 

developed using neuromuscular transmission 

(NMT) monitoring evaluated with 

acceleromyography at the thumb [5]. 

 

Monitoring depth of neuromuscular block 

NMT monitoring can be performed in multiple ways. The assessment of neuromuscular transmission is 

crucial to ensure adequate blockade, monitor the depth of the NMB, and facilitate safe recovery. Various 

monitoring techniques and devices have been developed to assess neuromuscular function. The most 

common method of NMB monitoring is the train of four (TOF) method [6]. In the Leiden University 

Medical Center (LUMC) three commonly TOF measuring techniques are available. TOF-Cuff, GE 

Healthcare NMT EMG (Neuromuscular Transmission; electromyography) module and the Philips 

IntelliVue NMT AMG (acceleromyography) module are widely used in clinical practice. 

The TOF-Cuff is a novel monitor specifically designed for NMB monitoring. In contrast to 

acceleromyography and electromyography, it utilizes a pressure cuff placed around a patient's upper 

arm or upper leg and applies a series of electrical stimuli, called twitches, to the nerves running in the 

upper arm biceps groove. These nerve stimuli cause a response in the upper arm muscles, which the 

cuff detects. Based on the change in the cuff’s internal pressure, the TOF ratio (TOFR) is calculated by 

comparing the amplitude of the fourth twitch (T4) to the first twitch (T1) [7]. This ratio indicates the 

Figure 1-1 Basic concept of PKPD modelling. Time versus 

concentration measurements (PK) and effects versus concentration 

relationship (PD) results in an effect versus time model (PKPD) [1]. 
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level of neuromuscular blockade, with a higher ratio indicating a reduced degree of NMB and a lower 

ratio signifying a deeper level of blockade. 

The second monitor used in NMB depth monitoring is the NMT module from GE Healthcare. This 

quantitative device uses electromyography (EMG) measurements. This is done by placing five 

electrodes on the distal arm; two of the electrodes stimulate the ulnar nerve, one electrode functions as 

ground and two electrodes record the compound muscle-contraction action potentials. Depending on 

the level of NMB, different parameters can be used to quantify the NMB depth. As rocuronium is a 

non-depolarizing blocking agent, fade can be measured using the TOF ratio. When the number of 

twitches is below 1, TOF measurements are not helpful anymore. In that case, post-tetanic count (PTC) 

can be used to measure deep NMB. After five seconds of stimulation at 50Hz, the ulnar nerve is 

stimulated and post tetanic twitches are counted. 

Another way of NMB monitoring is via acceleromyography (AMG), which is done with the Philips 

IntelliVue NMT module. This technique involves the measurement of mechanical responses of muscles 

to electrical stimulation. Again, two sensors are placed at the wrist above the ulnar nerve and an 

acceleration sensor placed at the end of the thumb detects the movement (acceleration) of the thumb 

after nerve stimulation. 

With the use of data recorded by these different devices, differences in sensitivity between muscle 

groups can be measured. Central muscles have a different sensitivity for NMBAs than peripheral 

muscles. This means that the onset and offset times of NMB differ between these muscle groups. 

 

Machine Learning approaches 

In recent years, machine learning (ML) techniques have been used in PD modelling of other 

anaesthetics. The results produced by the ML model were more accurate than the results generated by 

the older mathematic PD model [8, 9]. Lee’s study utilized propofol and remifentanil infusion data 

along with BIS values to model and predict the bispectral index (BIS). In contrast to classical 

pharmacokinetic models that independently model the pharmacokinetics of the drugs and combine them 

in a response surface model, the neural network consisted of a Long-Term Short Term (LSTM) network 

dealing with infusion history, followed by a feed-forward neural network. The deep learning model 

demonstrated superiority over traditional PK/PD models when it came to predicting BIS, indicating the 

potential superiority of AI-based approaches over traditional pharmacokinetic models. Ingrande’s study 

used an artificial neural network (ANN) to describe propofol pharmacokinetics and compared its 

performance with a 4-compartment model and a recirculatory model. An LSTM and gated recurrent 

unit (GRU) were used in the ANN. The ANN model outperformed the 4-compartment and showed 

similar results with the recirculatory model in predicting the pharmacokinetics of propofol. 

While these studies focussed on propofol administration, Wang’s study used multiple deep-learning 

methods to predict NMB duration and the recovery profile of cisatracurium [10]. A recurrent neural 

network (RNN) gated recurrent unit (GRU) and long short-term memory (LSTM) model were built. All 

of these models are suitable for temporal sequence predictions because they all possess a recurrent 

structure to memorize a previous part of the sequence. The first half of a TOFR sequence was used to 

train the deep learning models and the predicted output, which was the second half of the sequence, was 

evaluated using the RSME to assess every model's performance. The GRU model outperformed both 

LSTM and RNN. With the use of transfer learning to identify similar patients, the RMSE was even 

lower. 

All of these studies made use of large datasets with high-frequency numeric data to train their machine- 

and dee- learning models. This thesis hypothesizes that with the use of the numeric TOFR values 

measured with NMT monitoring devices during general anesthesia, new ML based PD models can be 

trained that might outperform existing traditional PKPD models in predicting TOFR for rocuronium. 

Therefore, the primary aim of this thesis is to develop an automated data logger that captures TOFR 

measurements from the TOF-Cuff and GE NMT monitor and the rocuronium infusion data during 

surgical procedures. The secondary aim is to predict the TOF ratio based on the recorded data using 

both the traditional PKPD model and newer machine learning techniques.  
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2. Materials and Methods 

This chapter is divided into three parts. The first part discusses the experimental setup for the study, 

providing a detailed description of the physical connections between devices and an overview of the 

data logger software. The second part of this chapter outlines the study design and the target population. 

In the third part, we delve into the model development and data pre-processing steps. 

2.1 Experimental Setup 

The experimental setup in the operating room consisted of four different devices. For NMT monitoring, 

two NMT monitors were employed; the TOF-Cuff NMT Monitor, RGB Medical Devices, SA, Madrid, 

Spain (hereafter referred to as TOF-Cuff) and the CARESCAPE B450 Patient Monitor, GE Healthcare, 

Chicago, IL, USA (hereafter referred to as GE NMT monitor). To capture data from the syringe pump, 

an UniQueDOC multi-channel infusion station, Arcomed AG Medical Systems, Zurich, Kloten, 

Switzerland (hereafter referred to as Arcomed docking station) was utilized. These three monitors were 

connected to a Lantronix EDS-MD 8-Port Server, Lantronix, Irvin, CA, USA (hereafter referred to as 

Lantronix). Figure 2-1 shows the experimental setup in the operating room. 

 

2.1.1 Physical Connections between Devices 

To establish communication between the monitoring devices and the Lantronix, a physical connection 

was required. In the medical domain, serial communication is a commonly used communication 

interface. This method involves using two transmission lines to send and receive data one bit at a time 

and typically utilizes a serial port (RS-232). The communication protocols provided by the 

manufacturers were consulted to determine the type of RS-232 serial port used by each monitor. It's 

important to note that not all monitors use the same type of RS-232 port. Specifically, the TOF-Cuff 

has a DB9 male port, while the GE NMT monitor and the Arcomed docking station both use a USB 

Figure 2-1 Experimental setup in the operating room, the Arcomed docking station with an inserted syringe pump is positioned 

on the lower left. On top of it, a TOF-Cuff is mounted to the pole. In the top middle, two Lantronix devices are placed, and on 

the right, a GE NMT monitor is positioned on top of a ventilator machine. 



 
 

6 

port. An overview of these different ports is presented in Figure 2-2Figure 2-2: RS-232 ports on the GE 

NMT monitor (left), the Arcomed docking station (middle) and the TOF-Cuff (right). To connect each 

monitoring device to the Lantronix serial RJ45 ports, converters were employed. Subsequently, the 

configuration of the RS232 output pins for data transfer was identified within the communication 

protocols. This involved determining which pins were used for specific types of data transfer. A 

schematic representation of the pinouts is included as a Supplementary Figure in Supplement A. 

 

To facilitate the transformation of the serial connection through the RS232 protocol into a network 

signal, serial-to-ethernet converters were utilized. Within the Leiden University Medical Center 

(LUMC), a Lantronix was employed to connect these types of devices to the LUMC intranet network. 

The Lantronix employed the Serial over LAN (SOL) technique, allowing for the remote redirection of 

input and output from the serial port over IP. This capability enabled remote access to the RS232 

communication devices. The Ethernet serial server played a crucial role in assigning TCP ports and IP 

addresses, thereby enabling seamless communication between users and the interconnected devices. 

 

 

2.1.2 Development of the Data logger Software 

Once the physical connections between all devices were established, data exchange became possible. 

While some devices can passively transmit data over the transmit pin (Tx), most devices require an 

initial handshake with another device to initiate data transmission through their RS232 port. Typically, 

a data receive request arrives on the receive pin (Rx) of the device. To manage this communication 

traffic effectively, an algorithm was developed using Python [11]. Three scripts were created for each 

device: a socket script (for communication with the serial devices), a connection protocol (acting as the 

data handling and control center of the algorithm), and a save protocol (for saving data into a data file). 

With the use of the Python module Threading, threads were incorporated so that each device had its 

separate execution path in case one device encountered an error. 

Socket connection 

This script comprises three classes, one for each device. Within these classes, connections with the 

corresponding monitoring devices can be established and terminated. Once the specified port is opened, 

and a handshake is successfully performed, data can be sent and received via the socket. As serial 

communication requires a Cyclic Redundancy Check (CRC) to detect errors or corruption in transmitted 

data, a CRC checksum is computed on both incoming and outgoing messages. Each message consists 

of a start and a stop byte, allowing for message detection. A failback mechanism for termination to stop 

communication and close the communication port is included in case the script crashes or is interrupted. 

 

Figure 2-2: RS-232 ports on the GE NMT monitor (left), the Arcomed docking station (middle) and the TOF-Cuff (right). 
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Connection protocol 

In this second script, data handling is managed. With the assistance of the socket script, a Send-Receive 

request is sent to the monitor, and after receiving a confirmation byte string, the connection with the 

monitoring devices is established. Subsequently, a continuous data stream is processed in this script. 

Each byte string message is decrypted, and the connection protocol determines the appropriate action 

for the incoming data based on its message type. For each data type, a separate procedure can be defined. 

Once the data is decrypted and interpreted as numeric data, it is forwarded and stored in the save 

protocol. 

Save protocol 

In this final script, an HDF5 data file is constructed, complete with a file name containing a sequence 

number and a timestamp. The data file also contains a large data frame filled with NaN values. The 

timestamp is set as soon as the program is started and data collection commences. This timestamp serves 

as the reference throughout the entire data collection period for all monitors. Within the save protocol, 

a data frame is generated that includes all desired output variables from different monitors. When a new 

measurement is received from a monitor, a new receival timestamp is set and compared to the reference 

timestamp. The time difference in seconds between the reference timestamp and the receival timestamp 

is calculated and used as an index to store the variable values for that specific monitor. 

User interface 

To manage and activate these algorithms, a user interface (UI) was implemented. Django was chosen 

as the Python web framework, as it allows for managing both a front-end and a back-end to run software 

and perform data analysis. A detailed description of the user interface has been previously documented 

[BRON]. Additionally, a user manual has been created to guide users on how to activate the data logger 

and initiate data collection (see Supplement B). 

2.2 Study Population 

All patients aged between 18 and 80 years old who were undergoing elective general non-cardiac 

surgery requiring general anesthesia with the use of rocuronium as a muscle relaxant were eligible for 

the study. Eligible patients had an estimated glomerular filtration rate (eGFR) >60 ml/min/1.73m² and 

were classified under the ASA physical status classification system as grade I to III. Patients did not 

qualify for participation if they met any of the following specific criteria: patients with neuromuscular 

diseases, patients taking medications known to significantly affect rocuronium's behavior (such as 

magnesium or lithium, aminoglycosides, tetracyclines, polymyxins, or clindamycin), or patients with 

documented muscle relaxant allergies. These measures were put in place to ensure both the integrity of 

the study and the safety of potential participants. 

2.3 Study Design 

In this prospective observational study, patients were screened for eligibility between March 21, 2023, 

and June 1, 2023, at the LUMC. The study received approval from the non-WMO committee. Since 

few studies have been published on PKPD modelling using artificial intelligence, a sample size has 

been deduced from comparative studies. Lee’s study had about 2 million data points extracted from 

approximately 230 cases [8]. Wang’s study, which modelled cis-atracurium to TOFR, included 83 

patients [10]. With a maximum of 228 data points per patient, the total amount of data points would be 

18.924. Ingrande’s study extracted 1128 data points from 24 different subjects [9]. Although in this 

study the model overestimated the outcome considerably during induction. It may be hypothesized that 

this overestimation is explained due to the lack of data points. Because this study will be similar to 



 
 

8 

Wang’s study in terms of the study subject, but considerably less complex than Lee’s study, the 

assumption is made that a total of approximately 10.000 data points would be sufficient to train the 

models. It is estimated that each patient will generate approximately 360 data points. Based on the ratio 

between training set, validation set and test set (70%-15%-15%), the amount totals out to 44 patients. 

After the screening, patients provided verbal consent for their medical data to be recorded and stored in 

the LUMC database. Once consent was obtained, both monitors were connected to the patient. 

Depending on the placement of the blood pressure cuff, the TOF-Cuff was positioned on the opposite 

arm, while the GE NMT monitor electrodes were attached to the distal forearm of the arm used for 

blood pressure measurement. After ensuring that all devices were correctly connected to the research 

Lantronix, data collection commenced. Standard anesthetic procedures were followed during induction. 

After administering propofol and sufentanil, and ensuring that the patient was securely sedated with a 

target bispectral index (BIS) between 40 and 60, both NMB monitors were calibrated. Following 

calibration, 0.6 mg/kg of rocuronium was administered via the syringe pump. As a backup measure, the 

time of rocuronium bolus administration was recorded in a study file and as per standard procedure in 

the patient's file system. The syringe pump was positioned in the lower slot of the docking station, 

following the standard operating procedure (SOP) of the Data logger (see Supplement B). After the 

administration of rocuronium and achieving a deep NMB, an endotracheal tube was safely inserted into 

the patient, and the surgical procedure commenced. Throughout the surgery, it was the responsibility of 

the anesthesiologist to administer additional rocuronium, as long as it was administered via the syringe 

pump to collect and store the data. Depending on the TOF ratio at the end of the surgery, a decision was 

made to either wait for spontaneous recovery or to administer sugammadex to reverse the NMB. If 

sugammadex was administered, the time of administration and the amount were recorded in the study 

file. After both NMT monitoring devices displayed a TOF Ratio value of 100, they were turned off and 

removed from the patient. Finally, the data logger software was stopped. 

2.4 Data Extraction 

Patient data was retrospectively extracted from the electronic health record (EHR) system. Patient 

characteristics, including age, weight, height, and sex at the time of the surgical procedure, were 

collected. Preoperative ASA scores and the most recent preoperative eGFR measurements were also 

obtained. In cases where multiple measurements were available, the last measurement taken before the 

surgery was selected. Body Mass Index (BMI) was calculated using the following formula: 

 

𝐵𝑀𝐼 =  
𝑤𝑒𝑖𝑔ℎ𝑡 (𝑘𝑔)

ℎ𝑒𝑖𝑔ℎ𝑡 (𝑚)2
 

Eq. 1 

2.5 Data Pre-processing 

The data pre-processing was carried out using Python version 3.9 [BRON]. Initially, all individual 

subject files were consolidated into one comprehensive data frame. Patient characteristics were 

appended to the data frame for each respective subject. Bolus infusion times were extracted, and the 

dataset was trimmed to begin 20 seconds before the first rocuronium bolus was administered. This 

ensured that the calibration steps were included in the data. 

Since both TOF-Cuff measurements and GE NMT monitor measurements were stored in the same data 

frame, two separate data frames were created for each of the monitors. This separation prevented any 

cross-contamination of information related to the TOF ratio trend in the model. Outliers in the TOF 

ratio were identified and removed. If applicable, information about sugammadex administration was 

added for each subject. To smoothen the TOF ratio curves, a smoothing filter was applied, but the 

window size was limited to 20 to avoid eliminating critical information during the induction phase of 

the TOF ratio curve. 
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Given the dataset's structure, numerous Not-a-Number (NaN) values existed between received 

measurements. To address this, linear interpolation was performed for both the TOF ratios and syringe 

pump measurements. Interpolation was confined to occur between consecutive measurements. In cases 

where TOF measurements were inadequately captured by one of the two monitoring devices throughout 

the surgery, the subject was excluded from the analysis. 

2.6 Model Development 

To approximate the TOF Ratio curve during surgery based on patient characteristics and rocuronium 

administration data, both traditional and multiple machine learning regression models were employed. 

These models were all trained using the same train-test split that was created during the pre-processing 

phase. Three distinct machine learning techniques were utilized to construct the models: 

• Traditional Linear Regression 

• Decision Tree Regressor 

• Gradient Boosting Regressor 

Two Python packages were employed for this purpose: scikit-learn for the first two machine learning 

techniques and XGBoost for the gradient boosting regressor. All models were trained and fitted using 

the same training dataset. For hyperparameter tuning of the machine learning models, a grid search 

technique was employed to identify the optimal hyperparameters, employing an eight-fold cross-

validation approach. The combination of hyperparameters that exhibited the best performance was 

selected for fitting the model to the training dataset. An overview of the hyperparameters tested is 

presented in Table 2-1. 

Table 2-1 Hyperparameters for machine learning models, including Python package/module 

Technique Python package Python module Hyperparameter Range 

Decision 

Tree 

Regressor 

sklearn.tree DecisionTreeRegressor "min_samples_split" 

"min_samples_leaf" 

"max_leaf_nodes" 

"max_depth" 

"max_features" 

"splitter" 

[2, 5, 10] 

[1, 2, 4, 7] 

[10, 20, 40, 80] 

[5, 10, 15] 

‘log2’, None 

‘best’, ‘random’ 

XGBoost 

Regressor 

xgboost XGBRegressor "n_estimators" 

"learning_rate" 

"max_depth" 

"subsample" 

"colsample_bytree" 

"min_child_weight" 

[50, 100, 200] 

[0.01, 0.1, 0.2] 

[3, 5, 7] 

[0.8, 0.9, 1.0] 

[0.8, 0.9, 1.0] 

[1, 5, 10] 

2.6.1 Machine Learning Techniques 

When developing machine learning models, it is important to develop an accurate model. But only an 

accurate model is not enough. To ensure its robustness and generalizability across diverse subjects, a 

comprehensive methodology known as Double Leave-One-Group-Out (LOGO) cross-validation was 

employed. This double LOGO approach is unique in that it combines two levels of cross-validation to 

thoroughly assess the performance of machine learning models. It is particularly valuable when the 

objective is to create models capable of consistent predictions across multiple subjects or groups. 

The method used two levels of validation. In the first level of cross-validation, the LOGO method was 

applied, leaving out one entire subject at a time for testing purposes. The remaining subjects formed the 

training dataset. Each subject was allowed to serve as the test dataset at least once, ensuring that 

evaluations were unbiased. For each iteration of the outer loop, a machine learning model was trained 

on the training dataset within an inner loop. In this inner loop, all of the remaining subjects are held out 
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once for internal cross-validation using the LOGO technique. The RMSE is calculated for each internal 

cross-validation fold to assess the model's performance on the validation subject's data. After 

completing the inner loop, the RMSE values from the internal cross-validation are combined and the 

best model is selected. This internal cross-validation provides insights into the model's stability and 

generalizability. Once all subjects had been omitted once, the final model configuration was employed 

to predict TOF Ratios on unseen test data from the outer loop. 

Traditional linear regression 

To address this regression problem, a linear regression function was applied to the training data to 

estimate the TOFR. The scikit-learn package's Linear Regression module was utilized for this purpose. 

Coefficients were determined by minimizing the residual sum of squares between the observed targets 

in the dataset and the targets predicted by the linear approximation. 

Decision tree regressor 

The decision tree regressor is a machine learning algorithm used for regression tasks. It constructs a 

tree-like structure where each internal node represents a decision based on a feature, and each leaf node 

provides a prediction for the target variable. If a decision tree has multiple deep layers, it is more 

susceptible to overfitting. These models work by recursively dividing the data into subsets based on 

feature values, with each split optimized to minimize prediction errors. 

Gradient boosting 

The XGBoost regressor is a potent machine learning algorithm that employs gradient boosting with 

decision trees as base models for regression tasks. It iteratively corrects errors from previous models by 

adding new trees and incorporates regularization techniques to prevent overfitting. 

2.6.2 Traditional PKPD Modelling 

To compare newer machine learning techniques with a traditional PKPD (Pharmacokinetic-

Pharmacodynamic) model, the collected data was used to implement a classic PKPD model developed 

by Kleijn et al. [BRON]. Kleijn and colleagues employed a nonlinear mixed-effects modelling approach 

to construct a compartment model for rocuronium and sugammadex. For the estimation of the TOF 

(Train-of-Four) ratio, a simplified version of this model, focusing solely on the rocuronium 

compartment, was utilized and is depicted in Figure 2-3. Using patient weight, age, and eGFR as input 

characteristics, compartment parameters related to rocuronium PK (Pharmacokinetics) could be 

determined. These calculated rocuronium PK parameters (𝑘𝑒0, 𝐸0, 𝐸𝐶50 and 𝛾) were then incorporated 

into the model, which is elaborated upon in the following section. 

 

PKPD model development 

The following equations were incorporated to calculate the diffusion rate constants 𝑘12 and 𝑘21 between 

the two compartments, and the elimination rate constant 𝑘10, as illustrated in Figure 2-3. 
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𝑘10 =  
𝐶𝐿1

𝑉1
 Eq. 2 

  

𝑘12 =  
𝐶𝐿2

𝑉1
 Eq. 3 

  

𝑘21 =  
𝐶𝐿2

𝑉2
 Eq. 4 

 

where 𝐶𝐿1 and 𝑉1 are the clearance and volume of the central compartment, respectively; and 𝐶𝐿2 and 

𝑉2 are the clearance and volume of the peripheral compartment, respectively. 𝐶𝐿1, 𝐶𝐿2, 𝑉1 and 𝑉2 were 

estimated based on the PK parameter calculations provided in the article of Kleijn, et al. 

The change in rocuronium amount in each compartment (
𝑑𝐴1

𝑑𝑡
, 

𝑑𝐴2

𝑑𝑡
) can be calculated using the diffusion 

rate constants (𝑘10, 𝑘12, 𝑘21) of Eq. 2, Eq. 3, Eq. 4: 

 

𝑑𝐴1

𝑑𝑡
=  𝑘21 ∗ 𝐴2 − (𝑘10 + 𝑘12) ∗ 𝐴1 

Eq. 5 

  

𝑑𝐴2

𝑑𝑡
=  𝑘12 ∗ 𝐴1 − (𝑘21) ∗ 𝐴2 

Eq. 6 

 

Figure 2-3 Simplified rocuronium compartment model of Kleijn. Abbreviations: A1, amount of rocuronium in central 

compartment; A2, amount of rocuronium in the peripheral compartment; CL1, rocuronium clearance; i.v., intravenous; k10, 

rate constant of rocuronium elimination; k12, diffusion rate constant of rocuronium from the central to the peripheral 

compartment; k21, diffusion rate constant of rocuronium from the peripheral to the central compartment; ke0, distribution 

rate constant between central and effect compartments; V1, volume of distribution of rocuronium in the central compartment; 

V2, volume of distribution of rocuronium in the peripheral compartment 
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where 𝐴1 and 𝐴2 are the existing amount of rocuronium in the central and peripheral compartments, 

respectively. Applying Euler’s rule to Eq. 5 and Eq. 6, the total amount of rocuronium in a compartment 

at a certain point in time can be calculated as follows: 

 

𝐴1 =  𝐴1 + (𝑘21 ∗  𝐴2 − (𝑘10 + 𝑘12) ∗ 𝐴1) ∗ 𝛿𝑡 Eq. 7 

𝐴2 =  𝐴2 + (𝑘12 ∗  𝐴1 − (𝑘21) ∗ 𝐴2) ∗ 𝛿𝑡 Eq. 8 

 

Extracting the amount of rocuronium in the peripheral compartment from the central compartment and 

multiplying that number with the rocuronium diffusion rate constant 𝑘𝑒0, given in Eq. 9: 

 

𝑑𝐴3

𝑑𝑡
=  (𝐴1 − 𝐴2) ∗ 𝑘𝑒0 

Eq. 9 

 

Where 
𝑑𝐴3

𝑑𝑡
 is the change in rocuronium amount in the effect compartment. Applying Euler’s rule again 

on Eq. 9, the total amount of rocuronium in the effect compartment becomes:  

 

𝐴3 =  𝐴3 + ((𝐴1 − 𝐴2) ∗ 𝑘𝑒0) ∗ 𝛿𝑡 Eq. 10 

 

To calculate the effect site concentration (𝐶𝑒𝑓𝑓), 𝐴3, calculated in Eq. 10, can be divided by 𝑉1: 

 

𝐶𝑒𝑓𝑓 =  
𝐴3

𝑉1
 Eq. 11 

 

Eventually, by applying the effect site concentration of rocuronium (𝐶𝑒𝑓𝑓) from Eq. 11 into Eq. 12, the 

TOF ratio (TOFR) can be calculated: 

 

𝑇𝑂𝐹𝑅 =
𝐸0

1 + (
𝐶𝑒𝑓𝑓

𝐸𝐶50
)

𝛾 Eq. 12 

 

Where 𝐸0, 𝐸𝐶50 and 𝛾 are the rocuronium PK parameters derived based on weight, age and eGFR. 

Model optimization and model performance 

The model was constructed using RStudio, version 4.3.1 [BRON]. Subsequently, the predicted TOFR 

(Train-of-Four Ratio) of the base model was compared with the actual TOFR values from the test 

dataset. To generate a predicted TOFR, rocuronium administration records were included in the model, 

along with weight, age, and eGFR as input variables. The model's predictive performance was evaluated 

using the root mean squared error (RMSE), normalized root mean square error (NRMSE) and the 

Pearson correlation coefficient (r). 

An attempt was also made to optimize the model. In this optimization process, a unique adjusted set of 

coefficients was computed for each patient from the training set based on their TOFR data. This was 

accomplished using Levenberg-Marquardt optimization, which is an iterative method aiming to 

estimate the parameters that best fit a nonlinear model by minimizing the least squares of the residuals. 

After optimization, the median coefficient values were extracted and utilized to fit the optimized model 

to the test dataset. 
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2.7 Model Evaluation 

After the regression models were created and fitted based on the training data, the resulting models 

were run on the test dataset to determine the model performances. 

The performance measures for the regression models were the coefficient of determination (R2), the 

root mean squared error (RMSE) and the normalized root mean squared error (NRMSE). The R2 

represents the proportion of the variation in the outcome that is explained or predicted by the model. It 

quantifies how well the model fits the data, with values closer to 1 indicating a better fit. The RMSE is 

a measure of the accuracy of a predictive model in regression problems. It quantifies how closely the 

predicted values from the model align with the actual values in the dataset. Lower RMSE values indicate 

better predictive accuracy. The NRMSE expresses a percentage of the range of the data, making it a 

normalized metric that's independent of the scale of the data. Table 2-2 shows the metrics and their 

calculation, where 𝑁 is the number of samples, 𝑦 is the tested variable, �̂� is the estimated value, �̅� is the 

mean of the measured variable, 𝑚𝑦 is the mean of tested vector 𝑦 and 𝑚�̂� is the mean of the estimated 

vector �̂�. At last, the Pearson correlation coefficient is calculated to evaluate the models. This metric 

measures the strength and direction of a linear relationship between two continuous variables, the 

estimated variable �̂� and the tested variable 𝑦. It quantifies how well the two variables are correlated. 

 
Table 2-2 Evaluation metrics 

Performance measure Formula 

Coefficient of determination (R2) 𝑅2 = 1 −
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

 

Root mean squared error (RMSE) 𝑅𝑀𝑆𝐸 =  √
∑(�̂�𝑖 − 𝑦)2

𝑁
 

Normalized root mean squared error (NRMSE) 𝑁𝑅𝑀𝑆𝐸 =  
𝑅𝑀𝑆𝐸

(𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛)
 

Pearson correlation coefficient (r) 
𝑟 =  

∑(𝑦 − 𝑚𝑦)(�̂� − 𝑚�̂�)

√∑(𝑦 − 𝑚𝑦)
2

∑(�̂� − 𝑚�̂�)
2
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3. Results 

In this chapter, we will present the results of the implementation. The chapter will commence with an 

overview of the dataset utilized for model development. Following that, we will delve into data 

exploration and pre-processing steps, and subsequently, we will discuss the evaluation of all the models. 

3.1 Study population 

From March 23 to June 20, patients were eligible for inclusion in this prospective observational study 

conducted in the operating room (OR) of the LUMC. A total of 42 patients were enrolled in this study. 

The average age of the patients was 59 years (with a standard deviation (SD) of ±15.1), with an even 

distribution of male and female patients (50% each). The mean estimated glomerular filtration rate 

(eGFR) was 84 (with an SD of ±9.8). An overview of the characteristics of the study population is 

provided in Table 3-1. 

 
Table 3-1 Study population characteristics of the total data set 

Variables N (%) 

Total number of subjects 42 

Sex   

 Male (%) 21 (50%) 

 Female (%) 21 (50%) 

Body mass index  

 18,5-25 18 (42,9%) 

 25-30 19 (45,2%) 

 30-35 3 (7,1%) 

 >35 2 (4,8%) 

ASA Score  

 1 9 (21,4%) 

 2 26 (61,9%) 

 3 7 (16,7%) 

  Mean [SD] 

Age (years) 59 [15,1] 

Weight (kg) 80 [12,4] 

Height (cm) 175 [9] 

eGRF (mmol/L) 84 [9,8] 
ASA, American Society of Anaesthesiologists; 

eGFR, estimated Glomerular Filtration Rate; N, 

number of patients; SD, standard deviation 

3.2 Dataset 

During each surgical procedure, data from 3 different monitors was recorded using the data logger 

software. Infusion pump data was captured every 10 seconds and parameters included cumulative and 

infused bolus volume and cumulative and infused total volume measurements. GE NMT monitor 

measurements included stimulus mode, stimulus current, pulse width, TOF count, TOF ratio, T1-T4 

measurement, T1 reference-% and PTC count. TOF-Cuff included stimulus current, impedance, TOF 

count, TOF ratio, PTC count, blood pressure measurements and the arm position. TOF-Cuff data was 
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captured every 12 seconds at induction, followed by 30-second interval measurements and even 2-

minute intervals when the TOF ratio became zero during deep NMB. GE NMT monitor data was 

captured at 20-second interval at induction, followed by a 30-second interval after induction during 

(deep) NMB. Patient characteristics were taken from the HER and added to the dataset as well as 

sugammadex administration records, as this data could not be captured by the data logger software. 

3.3 Data Exploration 

TOF ratio curves of both the TOF-Cuff and the GE NMT monitor were visualized including the 

moments rocuronium was administered. An overview of all the TOF ratio curves is added as 

Supplement C. An example of two TOF ratio curves is shown in Figure 3-2. After calibration of the 

NMT monitors, a bolus of rocuronium is administered and the TOF ratio drops within minutes to 0. 

Depending on the type of procedure, either spontaneous recovery was allowed or extra boluses of 

rocuronium were administered to maintain (deep) NMB. Although these data records look rather clean, 

some records show deviations in the measurements recorded. For some procedures a deep NMB had to 

be maintained during the entire length of the procedure and rocuronium infusion was continuously 

administered. NMB was at the end of the procedure lifted using sugammadex. Therefore, almost no 

meaningful data was recorded regarding the TOF ratio curve for recovery. An example of this problem 

is shown in the left record of Figure 3-2. As can be seen in right record of Figure 3-2 not all TOF ratio 

curves are captured adequately. Therefore, the datasets were divided into a TOF-Cuff dataset and a GE 

NMT monitor dataset. Consequently, continuous rocuronium administration records were excluded for 

further analysis. After the elimination of faulty TOF-Cuff or GE NMT monitor data and after the 

exclusion of continuous infusion data, a total of 26 TOF-Cuff records and a total of 27 GE NMT monitor 

records remained. 

Figure 3-2 TOF ratio curve measurements with spontaneous recovery. On the left: a TOF ratio measurement with spontaneous 

recovery of both TOF-Cuff and GE NMT monitor after a 4 mL rocuronium administration. On the right: a TOF ratio curve 

with spontaneous recovery of both monitors with multiple rocuronium bolus administrations to maintain a deep NMB. 

Figure 3-2 Data records with continuous rocuronium administration and sugammadex reversal (left) or partial TOF ratio 

curve measurement only captured by the TOF-Cuff (right). 
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3.4 Data Pre-processing 

After removal of TOF ratio outliers, TOF ratio values were smoothed and linear interpolation was 

performed between consecutive measurements. Still, part of the dataset contained NaN-values. 

Consequently, the start of the dataset was cut back to start right before the first rocuronium bolus 

administration. The remaining values from the TOF ratio were filled with the value 100, assuming that 

right before and after the surgical procedure full NMB reversal had occurred. The remaining infusion 

parameters were filled with the value zero, assuming no infusion data was administered outside the 

measurement period. 

3.5 Model Evaluation 

After data pre-processing, the models were trained, validated and tested using the double LOGO cross-

validation method. Each subject was held out once as a test subject and each ML model was trained on 

the other subjects and validated using an inner loop LOGO cross-validation. The best model was 

selected based on the lowest RMSE cross-validation result in the inner loop. As a final performance 

evaluation, the NRMSE, Pearson r correlation coefficient and the R2 score were calculated. The average 

performance of the regression models on the test subjects is shown in Table 3-2 and Table 3-3. The 

best-performing models are highlighted. 

 
Table 3-2 Performance evaluation of machine learning models and classic PKPD model on GE NMT monitor data. 

 
Table 3-3 Performance evaluation of machine learning models and classic PKPD model on TOF-Cuff data. 

 
TOF-Cuff TOFR performance 

RMSE [SD] NRMSE [SD] Pearson r [SD] R2 [SD] 

Linear Regression 45,01 [13,97] 0,45 [0,14] 0,57 (±0,24] -1,16 (±2,79] 

DecisionTreeRegressor 33,95 [10,05] 0,34 [0,10] 0,61 (±0,30] -0,01 (±0,67] 

XGBRegressor 33,09 [10,48] 0,33 [0,10] 0,67 (±0,27] -0,07 (±1,04] 

Basic PKPD model 24,22 [11,99] 0,25 [0,07] 0,81 (±0,18] 0,69 (±0,25] 

Optimized PKPD model 18,53 [8,11] 0,10 [0,06] 0,82 (±0,16] 0,70 (±0,23] 

PKPD; Pharmacokinetic-Pharmacodynamic, NRMSE; Normalized Root Mean Squared Error, Pearson r; Pearson correlation 

coefficient, RMSE; Root Mean Squared Error, R2; coefficient of determination, SD; Standard Deviation 

 

To better understand the results shown in the tables above and to see how the models performed on 

different subjects, an in-depth analysis has been performed on the NRMSE as these results show the 

normalized performance for all models.  

 
GE NMT monitor TOFR performance 

RMSE [SD]  NRMSE [SD] Pearson r [SD] R2 [SD] 

Linear Regression 38,99 [9,92] 0,37 [0,09] 0,55 [0,32] -1,03 [2,85] 

DecisionTreeRegressor 36,29 [13,15] 0,34 [0,13] 0,45 [0,42] -0,66 [1,96] 

XGBRegressor 31,92 [9,23] 0,30 [0,08] 0,63 [0,29] -0,23 [1,02] 

Basic PKPD model 22,97 [10,79] 0,27 [0,09] 0,82 [0,17] 0,69 [0,25] 

Optimized PKPD model 23,96 [15,96] 0,09 [0,07] 0,76 [0,23] 0,63 [0,27] 

PKPD; Pharmacokinetic-Pharmacodynamic, NRMSE; Normalized Root Mean Squared Error, Pearson r; Pearson correlation 

coefficient, RMSE; Root Mean Squared Error, R2; coefficient of determination, SD; Standard Deviation 
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The results in Figure 3-4 show an almost uniform distribution for the NRMSE in all models, but there 

are some outliers as can be seen on the right side for the optimized PKPD model. To understand these 

observations even better, a cumulative distribution was plotted for all models. This can be seen in Figure 

3-4. 

 

Based on the results from the cumulative distribution in Figure 3-4, some subjects have rather high 

NRMSE scores for both models, especially in the case of the TOF-Cuff results. Figure 3-5 and Figure 

3-6 show the individual NRMSE scores for each subject per model ordered from small to large. For the 

three ML models, the best and the worst predictions are shown in Figure 3-7 and Figure 3-8.   

Figure 3-4 Kernel Density Estimation of the NRSME for the GE NMT dataset (left) and the TOF-Cuff dataset (right). 

Figure 3-4 Cumulative Distribution of the NRMSE for all models. GE NMT data on the left and TOF-Cuff data on the right. 
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Figure 3-5 Visualization of the NRMSE per subject for each model trained on GE NMT data ordered from small to large. 
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Figure 3-6 Visualization of the NRMSE per subject for each model trained on TOF-Cuff data ordered from small to large. 
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Figure 3-7 Highest (left) and lowest (right) scoring machine learning models based on NRMSE score for the GE NMT dataset. 

Decision Tree Regressor (top), XGBRegressor (middle) and Linear Regression (bottom). 
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Figure 3-8 Highest (left) and lowest (right) scoring machine learning models based on NRMSE score for the TOF-Cuff data 

set. Decision Tree Regressor (top), XGBRegressor (middle) and Linear Regression (bottom). 
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4. Discussion 

In this prospective, observational study the main goal was to apply machine learning techniques to 

approximate the TOF ratio curve in comparison with classical PKPD modelling. NMT data was 

recorded using an in-house developed automated data logger. 

 

Data logger development 
A frequently used tool to collect and store real-time data is the VitalDB recorder [12]. Vital DB offers 

an open-source program that can be used mainly for research purposes. Through this program, you can 

connect several patient monitors and through a user-friendly user interface you can select the monitors 

and read out selected data streams. Unfortunately, this program is unsuitable for this study because not 

all monitoring devices were compatible with the VitalDB software. In addition, vitalDB uses physical 

connections between the monitors and the PC on which the program runs. This causes extra space 

occupation in the OR and it is only possible to monitor successful data collection in the OR. To 

overcome these problems, much of this study has focused on developing proprietary software that is 

suitable for LUMC's NMT devices and can be controlled remotely. By adding a communication 

protocol that transfers serial communication to the IP, data collection can be viewed anywhere in LUMC 

network. This is a major advantage over VitalDB’s software because there is a limit to the length (<15m) 

of the serial cables at a high baud rate (19,200 kbps). Since the distances at the OR do not exceed 15m, 

and no cables have to be routed outside the OR, the limits of serial communication can be overcome. 

In addition, no additional devices are needed in the OR except for some ethernet cables connected to a 

medical-graded device, the Lantronix. This device is licensed to be placed in sterile areas. 

Unfortunately, some problems arose while developing the algorithm and conducting the study. First of 

all, at certain periods during a surgical procedure, data dropped from the Arcomed syringe pump. 

Reconnecting the docking station, changing USB ports or restarting the data logger software made no 

difference. This issue needs to be addressed to the manufacturer to debug this problem even further. 

Data capturing of the GE NMT monitor also encountered some problems. When the twitch current was 

set to 200, no data was detected by the data logger software. By simply changing the current to a 

different value, the data capturing could be continued. When debugging this problem, the incoming 

byte string did not meet the specified requirements as described by the communication manual. 

Therefore, the data was disregarded as faulty data and not stored. A possible explanation for this 

problem at hand is the way the CRC checksum is calculated. The communication manual did not specify 

what CRC checksum calculation was needed and a simple CRC calculator was implemented. This CRC 

calculator always returned a CRC value between 0 and 255. 

These imperfections need to be addressed before the algorithm is stable enough to record more data in 

the OR, especially when clinicians need to use the software. The majority of clinicians lack the technical 

knowledge to debug the software. They can only work with the user interface. 

 

Dataset 
With the data logger software, 42 subjects were recorded during different surgical procedures. Although 

the initial sample size calculation was estimated at 44 patients, only 27 and 26 for the GE NMT monitor 

and the TOF-Cuff, respectively, were useful for full data analysis. One of the reasons for this low 

amount of useful datasets would be that some surgical procedures require deep NMB. Therefore, 

anesthesiologist chose to administer rocuronium continuously. As a result, the TOF ratio had a value of 

0 for a long period of time. Despite the fact that you could measure the PTC during deep NMB, there 

is limited information available in this phase of NMB. Although spontaneous recovery could still 

provide useful information, these types of surgery often require deep NMB throughout the entire 

duration of the procedure. Due to limited time for spontaneous recovery sugammadex is often 

administered to reverse the NMB, resulting in very rapid restoration of the TOF ratio. 

In other cases, data from one (or both) of the monitoring devices were missing. Due to inaccurate 

placement of the sensors or after repositioning a patient, data could not be captured. There was a limited 

time window between checking sensor placement, calibrating the monitors, and administering the first 
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bolus of rocuronium. As the patient is already under anesthesia by the administration of propofol, the 

anesthesiologist’s primary objective is to administer rocuronium for safe intubation. After successful 

intubation, the patient is often repositioned and covered with sterile cloths, which makes it hard to reach 

and adjust the position of the sensors. 

 

Model development 
The development of the traditional model of Kleijn, et al. is based on PK and PD parameters carefully 

constructed by performing multiple blood sample measurements on 423 patients. This ensures that 

reasonably reliable relationships can be drawn from patient characteristics incorporated into the PKPD 

model. When presented with new patient characteristics, a close representation of the TOFR can 

predicted. In contrast, only 27 patients could be included in the development of the machine learning 

models, resulting in a poor fit to predict TOF ratios. The small sample dataset increased the possibility 

of overfitting. This means that the predictions on the validation set may be accurate, but the performance 

of the model on a new unseen sample from the test set may be poor. For this reason, 8-fold cross-

validation was chosen during hyperparameter tuning. By applying multiple folds, the model becomes 

more generic and thus reduces the chance of overfitting. After hyperparameter tuning, the models were 

presented with a double LOGO cross-validation to include as many subjects as possible. This ensured 

that the majority of the subjects were included for training while preserving subjects for independent 

test results. Another benefit of the LOGO method is that all subjects are tested. This way, the 

performance of the model is tested on each subject once, which allows for more accurate performance 

evaluation. 

For this analysis, no extra features were added to the dataset or derived from the dataset. At this point, 

only the time since rocuronium bolus administration gave information regarding the TOFR curve. 

Because there is no feedback from the system, the models can be seen as an in t system. A more realistic 

approach would be to include previous TOFR measurements in the prediction of the next TOFR value. 

This means that at the start of a measurement, you don’t have information about the previous values, 

but as time progresses, you get more TOFR measurements and therefore more information. Using this 

previous information can highly boost the performance of the model as the model becomes a closed 

loop system. 

 

Model Evaluation 
When evaluating the different models, the performance of the machine learning models was poor in 

comparison with the PKPD models. The linear regression, decision tree regressor and the 

XGBRegressor scored lower on the NRMSE scores and the R2 score fell below zero. Normally, an R2 

score between 0 and 0.2 can be seen as a poor model. When looking at the correlation coefficient, which 

gives the correlation between the actual TOFR and the predicted TOFR, we see that again the correlation 

for the ML models score lower than the PKPD models. A correlation coefficient of 1 would be an exact 

match between the predicted and the real TOFR values. Despite the ML models scoring lower, there is 

still a moderate positive correlation between the predicted TOFR curves and the real TOFR values, with 

the XGBRegressor showing the highest correlation. Although the metrics show poor results for the 

XGBRegressor, the TOFR curve predicted by the XGBRegressor is most flexible when visually 

inspecting the predictions of the ML models. Therefore, the XGBRegressor shows the most potential. 

This is most likely due to the ensemble learning and gradient boosting. Ensemble learning combines 

decision trees to make predictions. A decision tree regressor is limited to only one decision tree. 

Gradient boosting iteratively corrects the errors made by the previous trees. 

The performance results also show a difference in performance between the models on the GE NMT 

dataset and the TOF-Cuff dataset. All models score higher on the GE NMT dataset. One possible 

explanation is that the data captured by the GE NMT monitor could be more accurate than the data 

captured by the TOF-Cuff. The data via the EMG is captured using EMG rather than determining a 

difference in cuff pressure. In addition, there is a difference in sensitivity between central muscles (such 



 
 

24 

as the diaphragm and upper arm) and peripheral muscles (such as the adductor pollicis muscle near the 

thumb). Specifically, the muscle receptors need not be completely dissolved from rocuronium to regain 

their function [13]. The TOFR can only be measured when there is a receptor occupancy of 70%. 

 

Future directions 
Regardless of the unfavorable results of the machine learning models, collecting more data might 

resolve the performance issues encountered in this study. At least 44 patients should be included in that 

analysis, preferably closer to 100 subjects for a definitive comparison with the traditional PKPD models. 

With the use of the data logger software and with more time, collecting more data should be feasible. 

No feature analysis has been performed in this study, nor extra features have been added. Maybe a more 

informative machine learning approach would include an estimation of the time until full NMB 

recovery. This way, a clinician can wait for spontaneous recovery or decide to administer sugammadex 

for a quick and full NMB reversal. 

In future development of the machine learning models, the first recommended step would be to 

determine the most important features on which XGB based its predictions. This would render relevant 

information concerning the additional value of the development of this type of machine learning to a 

computationally less expensive logistic regression method. 

 

Conclusion 
In this thesis, as a proof of concept, data logger software has been developed and implemented at the 

OR complex of the LUMC. Neuromuscular blockade data during general anesthesia was successfully 

captured and analyzed. Despite the underwhelming performance of ML models in this study, collecting 

a larger dataset and conducting feature analysis may improve their predictive capabilities. Future 

research should focus on obtaining more data, determining essential features for ML predictions, and 

considering additional factors, such as the time until full neuromuscular blockade recovery, to enhance 

model accuracy and usability. These steps could pave the way for a more efficient and informative ML-

based approach to neuromuscular blockade prediction, potentially complementing traditional PKPD 

models.  
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Supplement A. Pinout configurations of converters 
  

Figure A-1: Schematic representation of the pinout of a RJ-45 to DB9 converter for GE NMT Monitor (left), Arcomed pump (middle) and TOF-
Cuff (right). Notice how GE NMT monitor crossed the Rx, Tx, CTS and CTR connector pins. For the RJ45 socket the pinout with corresponding 
pins is shown.*Copied and adjusted from Lantronix manual. 
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Supplement B. Data logger OR – user manual 

PURPOSE 
This user manual describes the standard operation procedure (SOP) for correctly connecting all 

monitors to the Lantronix in order to retrieve real-time and high-frequency data using the Data Logger 

running on an internal LUMC server (ldl-app01.lumcnet.prod.intern). 

REQUIRED MATERIALS 
Table B-1 Connection materials per monitor 

TOF-Cuff Arcomed docking station GE NMT 

monitor 

IntelliVue 

Serial-to-

RJ45 adapter 

UTP cable 

Docking station 

USB A-to-mini-USB cable 

Mini-USB-to-serial adapter 

Serial-to-RJ45 adapter 

UTP cable 

USB-to-serial 

adapter 

Serial-to-RJ45 

adapter 

UTP cable 

RJ45-converter 

UTP cable 

 
Table B-2 Port registrations on Lantronix devices 

LANTRONIX TOF-CUFF ARCOMED 

DOCKING STATION 

GE NMT 

MONITOR 

INTELLIVUE 

EXTRA 4 1 7 2 

OK8 4 1 7 2 

OK9 4 1 7 2 

CONNECTING MONITORS 
Connecting TOF-Cuff 

1. Connect the adapter to the RS-232c port on the side of the TOF-Cuff (Figure 1a). 

2. Connect the TOF-Cuff to the appropriate Lantronix port using a UTP cable (see Table B-2). 

Connecting Arcomed docking station 

1. Connect the USB to mini-USB cable to one of the two USB ports on the back of the Arcomed 

docking station (Figure 1b). 

2. Connect the two adapters and connect the adapters using a UTP cable to the Lantronix port 

(Table B-2). 

3. Place the syringe pump in the BOTTOM position of the docking station. 

NOTE: At this time, only the bottom syringe pump slot can be read without any other pumps being 

placed in the docking station. Therefore, position the pump at the bottom of the rack. 

Connecting GE NMT monitor 

1. Connect the USB to Serial cable to one of the two USB ports on the back of the GE NMT 

monitor (refer to Figure 1c). 

2. Connect the adapter and link it to the correct Lantronix port using a UTP cable (see Table B-2). 

Figure B-1 Connection ports on TOF-Cuff (1a), Arcomed docking station (1b) and GE NMT monitor (1c) 
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Connecting Lantronix (if necessary) 

1. Connect a UTP cable from the MAIN port of the ‘research’ Lantronix to ethernet port 2 or 3 

on the left side of the existing ‘PDMS’ Lantronix. 

NOTE: the PDMS Lantronix should be connected at all times to the internet as the IntelliVue 

patient monitor and ventilator are connect to the electronic health record (EHR, i.e. HiX) 

 

ACTIVATING DATA LOGGER 
1. Turn on all monitors just before use. 

2. Navigate to http://ldl-app01.lumcnet.prod.intern:8000/ on any LUMC PC. 

3. Log in using the known login credentials. 

 

 

 

 

 

 

 

 

 

4. Select the appropriate OR from the dropout menu and choose the desired devices to collect 

data. 

 

5. Press Start and verify that the connections are confirmed and data is being received. 

 

CLOSING DATA LOGGER 
1. Press Stop and wait at least 10 seconds to stop all processes. 

  

http://ldl-app01.lumcnet.prod.intern:8000/
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Supplement C. TOF Ratios per subject  
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