
Neural Network Based Generation of
Reactionary Dance Improvisations

M’AI have this dance?
or
How to train your DRAGAN

H. N. Basien

MSc. thesis of H. N. Basien

Set within the ’AIman’ project, in collaboration with
Stichting Another Kind of Blue and CompactCopters UG

July 27, 2021

Neural Network Based Generation of
Reactionary Dance Improvisations

M’AI have this dance?
or

How to train your DRAGAN
by

H. N. Basien
to obtain the degree of Master of Science
at the Delft University of Technology,

Faculty of Aerospace Engineering - Department of Control & Operations,
to be defended publicly on Tuesday August 24, 2021 at 14:00.

Student number: 4207653
Project duration: February 10, 2020 – May 16, 2021
Thesis committee: Prof. Dr. Ir. J. M. Hoekstra Chairman [TU Delft]

Dr. Ir. J. Ellerbroek Supervisor [TU Delft]
Dr. Ir. A. Bombelli External [TU Delft]
Dr. Ir. A. Jamshidnejad Additional [TU Delft]

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract
ThisMSc. thesis presents the extensive research conducted on designing neural networks capable of generating
reactionary dance motions. The research was conducted in collaboration with Stichting Another kind of Blue
(AKOB) and CompactCopters UG (CC).

It is set within the industry context of the ’AI-man’ project, developed byAKOB andCC; a novel dance show
intended to create a truly interactive duet between man and machine. It is the follow-up to the successful
’Airman’ project; a dance show utilizing a swarm of 12 drones to perform with a human dancer on stage.
Airman enabled the drone swarm to represent a human figure and copy the improvised dance motions of the
human dancer, recorded via a motion capture (MoCap) system in real-time. The AI-man project aims to take
this to the next level, by placing an AI motion controller in between the live MoCap recording and the desired
humanoid pose passed to the drone swarm. By doing so, the system should be responsive to the human
dancer’s motion and generate reactionary dance motions to created a shared improvised duet.

Long-term motion generation is a very challenging problem and currently actively researched by various
AI researchers. For reference, many researchers consider the prediction or generation of motion longer than
one second, or even just 500ms, ’long-term’ [Ghosh et al., 2018; Gui et al., 2018a; Tang et al., 2017]. In contrast
to this, the interactive segment in the Airman show was about one minute long. During the initial literature
study, no comparable research was found attempting to generate motion in reaction to full-body human input.

To facilitate the research, a custom MoCap dataset was acquired containing over 9 hours of improvised
dancemotions between two dancers. In comparison to current publicly available datasets, the acquired dataset
appears to be second longest MoCap dataset to date.

To achieve the desired objective, two models were created:
1) An initial regression model, successfully mimicking the human motion in the training dataset, but very un-
stable in a real-time environment.
2) A generative model, intended to generate a variety of reactionary motions in real-time, in reaction to an
arbitrary motion input.

For the generative model, a novel neural network architecture, for the generation of long-term reactionary
motions, is proposed: The ’Differential Recurrent Attention GAN’ (DRA-GAN). Utilizing the training method-
ology of ’Generative Adversarial Networks’ (GANs) [Goodfellow et al., 2014], in combination with design ele-
ments from ’Recurrent Neural Networks’ (RNNs) [Recurrent units: LSTM [Hochreiter and Schmidhuber, 1997]
& GRU [Cho et al., 2014]], attention mechanisms [Bahdanau et al., 2015], differential equations and ’Principal
Component Analysis’ (PCA) [Jolliffe, 2002].

The proposed model showcases promising training progression, but has so far failed to generate true long-
term output. This is because the training halts in a common failure mode for GANs; ’mode collapse’ [Liu and
Tuzel, 2016].

While the model has so far not succeeded in generating the desired results, it cannot be concluded that
the model is unable to generate the desired results. This is because, the full potential of the model has not yet
been explored, e.g. by means of ’Bayesian Hyperparameter Optimization’ (BHPO).

The framework to achieve BHPO was developed, but the extremely long training times (≈ 2 weeks), on
the limited hardware available, have prevented the evaluation of a sufficient number of model variations. To
facilitate further research, an extensive list of methodologies was compiled that could potentially resolve the
current problems of the model.

III

Preface
We, as TU Delft students, are incentivised to reinvent the wheel and take bold leaps every now and then. As Sir Isaac
Newton once proclaimed:

“ No great discovery was ever made without a bold guess.

Isaac Newton”
This notion describes the origin of this research very well:

“Let’s teach a computer how to dance with humans!” Well, it is easier said than done.
Throughout this research I have learnedmuch about neural networks and artificial intelligence, but also about learning

in general. Seeing my little nephew and niece slowly grow and learn has taught me a few valuable lessons: Learning takes
time and teaching is no easy feat either. Humans are widely considered the pinnacle of evolution, but it still takes us
roughly a whole year to even learn how to balance and many more to produce something we would classify as dance.

On the one hand, I think that we can cut our neural networks some slack, for not being perfect within a few hours or
even weeks of learning. But on the other hand, waiting that long, to know if a model has succeeded or not, is extremely
impracticable and significantly slows down the research process.

“ If I have seen further than others, it is by standing upon the shoulders of giants.

Isaac Newton”
A cliché, I know, but I had wished this to be true for myself after completion of this thesis. However, even after my in

depth study of neural networks and their inner workings, I still feel very much dwarfed by these giants and the wealth of
knowledge that there is to discover, as well as the infinite possibilities and pitfalls that this fascinating technology provides.

I think that, given my initial naivity when embarking on this research, I have slowly but steadily passed through many
stages of the ’Dunning-Kruger Effect’ [Kruger and Dunning, 1999]. However, I believe that with respect to deep learning, I
have finally passed the ’valley of despair’ and am now slowly workingmyway up the long-winded ’slope of enlightenment’.

Ultimately I believe that, the true strength of a good engineer or scientist comes from the humility to question your
own assumptions and to never stop asking questions.

“ Ipse se nihil scire id unum sciat. (I know that I know nothing.) ”I am grateful for the many that have guided and aided me in this research and the road towards it:

• Thanks to my loving parents
, for giving me the gift of life and supporting me throughout it.

• Thanks to my peers Alessandro, Antonin, Karlo and Raoul
, for their support and listening to my problems.

• Thanks to my reviewers Andres, Joachim, Johanna, Marcus and Max
, for enduring all my many (<,> & <’>) mistakes.

• Thanks to my supervisor, Dr. Ir. Joost Ellerbroek, and all committee members
, for guiding me and allowing me to finally graduate.

• Thanks to Another Kind of Blue
, for facilitating the data acquisition and the long years of collaboration culminating in this research.
And last, but most certainly not least:

• Thanks to my love Johanna
, for your love, care and always being there for me, through the good and the hard times.
I love you and I look forward to spending more time with you!

Ultimately, thanks to all the people and experiences that have gotten me to where and who I am today!

I have always joked about the 16 semesters that my father took to finish his aerospace diploma and I never thought
that I would surpass that one day. However, by now it has been almost 18 semesters since my first day at the TU Delft and
while taking ever so slightly longer to complete my study, than I had originally anticipated; ’life happened’: Starting my
own company, working in other start-ups, being a board member of Yoroshi, traveling and meeting new people, having a
myriad of other interesting projects on the side and having found a loving and caring woman for life … if I had the choice,
I would do it all again. My only hope is that my children do not attempt to bump the record to 20 semesters…

I am honored, after all these years, to finally graduate under the same professor that gave the very first lecture I
attended at the TU Delft, on the 3ʳd of September 2012 at 08:45; Prof. Dr. Ir. Jacco Hoekstra.

H. N. Basien
Delft, May 2021

V

Contents

Abstract III

Preface V

Table of Contents VI

List of Abbreviations VIII

List of Symbols X

List of Figures XII

List of Tables XIV

List of Equations XV

List of Algorithms XVI

I Thesis Context & Summary 2

1 Introduction 4
1.1 Industry Context . 4
1.2 Problem Statement . 6
1.3 The ’Creative Problem’ . 6
1.4 Thesis Structure . 6

2 Research Planning 8
2.1 Research Goals . 8
2.2 Research Objective . 8
2.3 Research Questions . 9
2.4 Research Hypothesis . 9
2.5 Research Framework . 9

3 Research Summary 10
3.1 Data Handling . 10
3.2 Training . 13
3.3 Neural Network Design . 13
3.4 Results . 18
3.5 Live Interaction . 18
3.6 Discussion . 18

II Research & Development 20

4 Data Handling 22
4.1 Data Acquisition . 22
4.2 Data Structure . 25
4.3 Data Cleaning . 30
4.4 Data Preparation . 35
4.5 Dataset Overview . 42

5 DanceNet-BHPO Framework 44

VI

Contents VII 0

5.1 Training Framework . 44
5.2 Optimization Framework . 47
5.3 Cluster Framework . 51
5.4 Data Output . 53

6 Regression Model 56
6.1 Design Choices . 56
6.2 Implementation . 57
6.3 Results . 60
6.4 Feedback Dilemma . 64

7 Generative Model 68
7.1 Generative Adversarial Network . 68
7.2 Initial Design Problems . 74
7.3 Model Design Improvements . 75
7.4 DRA-GAN . 87
7.5 Results . 95

III Application & Relevance 100

8 Live Interaction 102
8.1 Live Simulation . 102
8.2 Live Visualization . 106

9 Future Work 110
9.1 Data . 110
9.2 Architecture . 112
9.3 Training . 114
9.4 Optimization . 115
9.5 Validation . 117

10 Conclusions 120
10.1 Scientific Contribution . 121
10.2 Discussion . 123

IV Appendices 126

Bibliography 128

A Coordinate System Definitions 132
A.1 OptiTrack . 132
A.2 BVH . 132
A.3 Blender . 132
A.4 Unreal Engine 4 . 132

B Statistical Human Motion Model 134
B.1 Histograms . 134
B.2 PDFs . 135
B.3 Edge-case ’Hips-ψ’ . 136
B.4 Regression Parameters . 136

C BHPO GUI 142

D Algorithms 146

E DRA-GAN Results 150
E.1 V1.0-23 | 6D-ATT-DI-DO-LSTM-GAN | e406d70f24 . 150
E.2 V1.1 | 6D-ATT-DI-DO-LSTM-Pain-GAN | d9be67f6a7 . 154
E.3 V1.1 | 6D-ATT-DI-DO-LSTM-Pain-GAN | 42241955b0 . 158
E.4 V1.2 | 6D-PCA-ATT-DI-DO-LSTM-Pain-GAN | 96142329a6 . 162
E.5 V1.3-7 | 6D-PCA-ATT-DI-DO-LSTM-Pain-LJ-GAN | 7d2d6588e0 166
E.6 V1.3-15 | 6D-PCA-ATT-DI-DO-GRU-Pain-LJ-GAN | 89ba1481a7 170

F Preliminary Report 174

List of Abbreviations
General Abbreviations:

BMI Body Mass Index

COG Center of Gravity

COVID Coronavirus Disease

DOF Degrees of Freedom

GT Grounded Theory

ID Identifier

IR InfraRed

MoCap Motion Capture

MSc Master of Science

R&D Research & Development

TTMS Turning Test for Motion Synthesis

Databases:

AMASS Archive of Motion Capture as Surface Shapes

CMU CMU Graphics Lab Motion Capture Database

H3.6M Human3.6M(illion poses) Dataset

DB Database

Entities:

AKOB Stichting Another Kind of Blue

CC CompactCopters UG

CMU Carnegie Mellon University

HREC Human Research Ethics Committee

ICLR International Conference on Learning Representations

NIPS Neural Information Processing Systems

SIGGRAPH Special Interest Group on Computer Graphics and In-
teractive Techniques

TU Delft Delft University of Technology

EU European Union

NL The Netherlands

File Types:

BVH BioVision Hierarchy

C3D Medical motion experiment format

CSV Comma Separated Values

FBX Filmbox

JSON JavaScript Object Notation

TAK OptiTrack ’take’

TRC ’Motion Analysis’ filetype

Computing Hardware:

CPU Central Processing Unit

GPU Graphics Processing Unit

PC Personal Computer

RAM Random-Access Memory

VM Virtual Machine

VR Virtual Reality

Mathematics:

BDF Backward Differentiation Formula

EMG Exponentially modified Gaussian distribution

PCA Principle Component Analysis

PDF Probability Density Function

SLERP Spherical Linear intERPolation

Machine-/Deep learning:

6D 6 dimensional rotation representation

Adam Adaptive Moment Estimation

AI Artificial Intelligence

ATT soft-self-ATTention

BCE Binary Cross Entropy

BHPO Bayesian Hyperparameter Optimization

BP BackPropagation

BPTT BackPropagation Through Time

CNN Convolutional Neural Network

cuDNN NVIDIA CUDA® Deep Neural Network library

DCGAN Deep Convolutional GAN

DI Derivative Input

DL Deep Learning

DNC Differentiable Neural Computer

DO Derivative Output

DRA-GAN Differential Recurrent Attention GAN

EB EarlyBreak

GAN Generative Adversarial Network

GRU Gated Recurrent Unit

HP Hyperparameter

LJ Limited Judgement

LSTM Long Short-Term Memory

MHU Modified High-way Unit

VIII

List of Abbreviations IX 0

ML Machine Learning

MLP Multilayer Perceptron

MSE Mean Squared Error

NN Neural Network

NTM Neural Turing Machine

PFNN Phase-Functioned Neural Networks

RL Reinforcement Learning

RNN Recurrent Neural Network

SGD Stochastic Gradient Descent

UCB Upper Confidence Bound

Software and Networking:

ASCII American Standard Code for Information Interchange

ESXi VMware ESXi Hypervisor

GUI Graphical User Interface

LAN Local Area Network

NaN Not a Number

OS Operating System

SDK Software Development Kit

TCP Transmission Control Protocol

UDP User Datagram Protocol

UE4 Unreal Engine 4

WAN Wide Area Network

WLAN Wireless LAN

Units:

BPM Beats per Minute

FPS Frames Per Second

SI Système international (d’unités)

For PDF readers:
All abbreviations in the text are equipped with a
hidden hyper-link to this page. - Example link: EXMPL

Return to the original page:
Adobe Reader - Right-click→’Previous View’

List of Symbols

General:
𝜙 Roll angle
𝜃 Pitch angle
𝜓 Yaw angle
𝜇 Mean
𝜎 Standard deviation
𝑝𝑡−1 Previous Pose
𝑝𝑡 Current Pose
𝑝𝑡+1 Next Pose

Chapter 4 [Data Handling]:
Filtering:
𝜎𝑝 Mean Pose
̂𝑝𝑡 Filtered Pose at time t
𝑅 Discrete time exponential filter ratio
𝑟 Continous time exponential decay ratio
𝑡1/2 Half-life

𝑡1/𝑟 Time for exponential decay to reach 𝑟 (’
1
𝑟 -life’)

𝑀 Parameter defining the relation between 𝑅 and 𝑟 for a given 𝑡1/𝑟
�̂� Equivalent discrete time exponential filter ratio at 1 FPS
6D Rotations:
𝑅6𝐷 6D rotation vector
𝑅2𝐷 2D rotation vector
𝑥𝑟 ,𝑦𝑟 Original rotation vectors
𝑥𝑛,𝑦𝑛,𝑧𝑛 Normalized rotation vectors
𝑅𝑀 Rotation matrix

Chapter 5 [DanceNet-BHPO Framework]:
Reality Gap:
RG Reality Gap
LossTraining Loss on the training dataset
LossTest Loss on the test dataset
Utility:
𝜇est (𝑃) Estimated mean of Gaussian process at point 𝑃
𝜎est (𝑃) Estimated standard deviation of Gaussian process at point 𝑃
𝜇max Currently evaluated optimum
𝜅 UCB tuning parameter
Chebyshev’s inequality:
𝑥 Random variable 𝑥
𝑋 Realization of random variable 𝑥
𝜇𝑥 Mean of random variable 𝑥
𝜎𝑥 Standard deviation of random variable 𝑥
𝑘 Number of standard deviations from the mean

X

List of Abbreviations XI 0

Chapter 6 [Regression Model]:
Loss:
Loss𝜇 Mean loss
𝑝𝑎𝑐𝑡𝑖 Actual pose
𝑝𝑝𝑟𝑒𝑑𝑖 Predicted pose
̂𝛼𝜇 Estimated mean angular error

Weights & Biases:
𝑁 Number of values in pose
𝐻 Number of values in hidden vector
𝑊𝑋 Weights of layer X
𝐵𝑋 Biases of layer X
𝑊𝐵𝑋 Weights and Biases of layer X
𝑊𝐵
𝑌×𝑍

Weights and Biases of size 𝑌 ⋅ 𝑍

Chapter 7 [Generative Model]:
𝐺 Generator
𝐷 Discriminator
BCE Loss:
𝑔pred Predicted label - Discriminator guess
𝑔act Ground truth label - Discriminator answer
LossBCE Binary cross entropy loss
Discriminator Metrics:
𝜇Real Real-Mean : Average discriminator guess for all real data
𝜇Fake Fake-Mean : Average discriminator guess for all fake data
𝜇Bias Mean-Bias : Average discriminator guess for all data
Δ𝜇 Mean-Distance : Absolute average diff. between guesses on real and fake data
Δ𝜇max Max-Distance : Maximum Δ𝜇 for current training run
𝑑Real Real-CenterOffset : Absolute average diff. between guesses on real data and random guessing
𝑑Fake Fake-CenterOffset : Absolute average diff. between guesses on fake data and random guessing
𝑑 Mean-CenterOffset : Combined absolute diff. from random guessing for real and fake data
LossGenerator Augmented generator loss
LossPain Pain criterion loss
LossTotal Combined generator loss

Chapter 9 [Future Work]:
SRmax Maximum (desired) success ratio

Appendix B [Statistical Human Motion Model]:
#Frames Total number of frames in dataset
#Bins Number of histogram bins
𝛼Range Total range of possible angles
𝛼Res Angular resolution
𝑐[𝑖] Histogram count at index 𝑖
{𝑝𝑖} Optional extra parameters of PDF number 𝑖
𝑙𝑖 Translation parameter of PDF #𝑖
𝑠𝑖 Scaling parameter of PDF #𝑖
𝑤𝑖 Skewing parameter of PDF #𝑖

List of Figures

1.1 Newton’s Duet (2015) . 5
1.2 Airman (2018) . 5

2.1 Research Framework . 9

3.1 Skeletal rig used by AKOB . 12
3.2 DanceNet Architecture: Regression Model . 14
3.3 DanceNet Architecture: Regression Model with Feedback . 14
3.4 Neural network Architecture: Original GAN . 15
3.5 DanceNet Architecture: Generative Model . 15

4.1 Behind the scenes at AKOBs studio, during data acquisition . 23
4.2 AKOB Dataset: Distribution of take durations . 24
4.3 AKOB dataset: Distribution of labels . 25
4.4 Rigged example character mesh in T-Pose . 26
4.5 Kinematic Chain Example - 3 Bones in 2D . 27
4.6 ArangoDB: Data acquisition � Recording day � Takes . 29
4.7 ArangoDB: Take � Recordings � Skeleton + Motion . 29
4.8 Parameter Distributions: Relative joint channel histograms . 30
4.9 Parameter Distributions: LeftArm histograms . 31
4.10 Example of a discontinuous representation of rotations in 2D 35
4.11 N-D Rotations: Visualization of 2D representation of 1D rotations 37
4.12 PCA: Example of PCA on Gaussian scatter data in 2D . 38
4.13 PCA: PC #14 - Spine bending right→ left . 40
4.14 PCA: Zero/Mean Pose . 41
4.15 PCA: Influence Ranking . 41
4.16 PCA: Data Dimensionality Reduction . 42

5.1 BHPO: Neural Network Training Framework . 45
5.2 BHPO: Hyperparameter Optimization Outline . 48
5.3 Bayesian Optimization: Utility function example . 49
5.4 BHPO: Cluster Computing Framework . 52
5.5 BHPO: Resultant Data Structure . 54

6.1 Neural network Architecture: LSTM Unit . 57
6.2 Neural network Architecture: GRU Unit . 58
6.3 DanceNet Architecture: Regression Model . 59
6.4 DanceNet Results: Regression Model . 61
6.5 BHPO Losses (Sorted): GRU . 62
6.6 BHPO Losses (Sorted): LSTM . 62
6.7 Regression Model: Reality Gap . 63
6.8 BHPO: Success-Rate vs Chebyshev’s Inequality . 64
6.9 DanceNet Architecture: Regression Model with Feedback . 65
6.10 DanceNet Results: Regression Model with Feedback . 65

7.1 DanceNet Architecture: Generative Model . 69
7.2 GAN: Mode Collapse Example . 73
7.3 Neural network Architecture: Stacked RNN Units . 75

XII

List of Figures XIII 0

7.4 Neural network Architecture: Fully-Connected Final Layer . 77
7.5 Neural network Architecture: Derivative Output . 78
7.6 Derivative Output: Vanishing State Problem . 79
7.7 Neural network Architecture: Derivative Input . 80
7.8 Neural network Architecture: Soft-Self-Attention . 81
7.9 Attention: Attention Weights Example . 82
7.10 Pain: Loss Example . 83
7.11 Pain: Losses over Time Example . 84
7.12 Neural network Architecture: Limited Judgement . 86
7.13 Neural network Architecture: DRA-GAN DanceNet . 89
7.14 DRA-GAN: Network Parameters Visualization Example . 92
7.15 DRA-GAN: Discriminator Guesses Example . 93
7.16 DRA-GAN: Discriminator Metrics Example . 94
7.17 DRA-GAN Results: Final Pose [Epoch #20] . 96
7.18 DRA-GAN Results: Twisted Poses [Epoch #{5,10&15}] . 96
7.19 DRA-GAN Results: Output Motion Example . 97

8.1 DanceNet Architecture: Inference Model . 103
8.2 OptiTrack: Motive Streaming Settings . 105
8.3 Live Simulation: OptiTrack Reconstruction Bug . 106
8.4 DanceNet Architecture: Live Model . 107
8.5 Live Visualization: Unreal Engine T-Pose Example . 108
8.6 Live Visualization: Unreal Engine Rotations Bug . 109

9.1 BDF: Approximation Errors over Time . 111
9.2 BDF: Mean Approximation Errors . 111
9.3 Gradient Clipping . 116
9.4 DRA-GAN: Minimized Network Parameters Visualization Example 118

A.1 Coordinate system definitions . 133

B.1 Example PDFs . 135
B.2 Parameter Distributions: Histogram . 140
B.3 Parameter Distributions: Best Fit PDFs . 141

C.1 BHPO GUI Examples: MainScreen . 143
C.2 BHPO GUI Examples: Graphs - Training/Testing Loss & Reality Gap 144
C.3 BHPO GUI Examples: Graphs - Training/Testing ΔLoss & dt . 145

E.1 V1.0-23 | 6D-ATT-DI-DO-LSTM-GAN | e406d70f24: Network Weights 151
E.2 V1.0-23 | 6D-ATT-DI-DO-LSTM-GAN | e406d70f24: Discriminator History 152
E.3 V1.1 | 6D-ATT-DI-DO-LSTM-Pain-GAN | d9be67f6a7: Network Weights 155
E.4 V1.1 | 6D-ATT-DI-DO-LSTM-Pain-GAN | d9be67f6a7: Discriminator History 156
E.5 V1.1 | 6D-ATT-DI-DO-LSTM-Pain-GAN | d9be67f6a7: Pain History 157
E.6 V1.1 | 6D-ATT-DI-DO-LSTM-Pain-GAN | 42241955b0: Network Weights 159
E.7 V1.1 | 6D-ATT-DI-DO-LSTM-Pain-GAN | 42241955b0: Discriminator History 160
E.8 V1.1 | 6D-ATT-DI-DO-LSTM-Pain-GAN | 42241955b0: Pain History 161
E.9 V1.2 | 6D-PCA-ATT-DI-DO-LSTM-Pain-GAN | 96142329a6: Network Weights 163
E.10 V1.2 | 6D-PCA-ATT-DI-DO-LSTM-Pain-GAN | 96142329a6: Discriminator History 164
E.11 V1.2 | 6D-PCA-ATT-DI-DO-LSTM-Pain-GAN | 96142329a6: Pain History 165
E.12 V1.3-7 | 6D-PCA-ATT-DI-DO-LSTM-Pain-LJ-GAN | 7d2d6588e0: Network Weights 167
E.13 V1.3-7 | 6D-PCA-ATT-DI-DO-LSTM-Pain-LJ-GAN | 7d2d6588e0: Discriminator History 168
E.14 V1.3-7 | 6D-PCA-ATT-DI-DO-LSTM-Pain-LJ-GAN | 7d2d6588e0: Pain History 169
E.15 V1.3-15 | 6D-PCA-ATT-DI-DO-GRU-Pain-LJ-GAN | 89ba1481a7: Network Weights 171
E.16 V1.3-15 | 6D-PCA-ATT-DI-DO-GRU-Pain-LJ-GAN | 89ba1481a7: Discriminator History 172
E.17 V1.3-15 | 6D-PCA-ATT-DI-DO-GRU-Pain-LJ-GAN | 89ba1481a7: Pain History 173

Any Figure that does not have an explicit ’Source’ mentioned, under the caption, was custom made for this report.

List of Tables

4.1 Parameter Distributions: Dataset limits and statistics per channel 32
4.2 PCA: Human Interpretation of Principal Components . 39
4.3 AKOB MoCap Dataset Summary . 42
4.4 MoCap Dataset Comparison . 43

5.1 Hyperparameters: Training Framework . 47
5.2 Exploration vs Exploitation . 49
5.3 Hyperparameter Re-parametrization Trade-off . 51

6.1 Hyperparameters: Regression Model . 59
6.2 Regression Model: BHPO Run Statistics & Results . 60
6.3 Regression Model: (Partially) Optimized Hyperparameters for GRU & LSTM 60

7.1 BCE Loss: Simplification and Limits . 69
7.2 Hyperparameters: Output Ratios . 77
7.3 Hyperparameters: Limited Judgment . 86
7.4 Hyperparameters: DRA-GAN . 90
7.5 DRA-GAN: Parameter Distribution Example . 90

8.1 Live Simulation: Modes and Speed Test . 103
8.2 Live Simulation: UDP Message components . 104

9.1 DRA-GAN: Minimized Parameter Distribution Example . 118

10.1 Methodology comparison between this research and Huang et al. [2020] 123

B.1 PDF regression arguments - Single . 138
B.2 PDF regression arguments - Double . 139

E.1 V1.0-23 | 6D-ATT-DI-DO-LSTM-GAN | e406d70f24: General Settings 150
E.2 V1.0-23 | 6D-ATT-DI-DO-LSTM-GAN | e406d70f24: Hyperparameters 150
E.3 V1.1 | 6D-ATT-DI-DO-LSTM-Pain-GAN | d9be67f6a7: General Settings 154
E.4 V1.1 | 6D-ATT-DI-DO-LSTM-Pain-GAN | d9be67f6a7: Hyperparameters 154
E.5 V1.1 | 6D-ATT-DI-DO-LSTM-Pain-GAN | 42241955b0: General Settings 158
E.6 V1.1 | 6D-ATT-DI-DO-LSTM-Pain-GAN | 42241955b0: Hyperparameters 158
E.7 V1.2 | 6D-PCA-ATT-DI-DO-LSTM-Pain-GAN | 96142329a6: General Settings 162
E.8 V1.2 | 6D-PCA-ATT-DI-DO-LSTM-Pain-GAN | 96142329a6: Hyperparameters 162
E.9 V1.3-7 | 6D-PCA-ATT-DI-DO-LSTM-Pain-LJ-GAN | 7d2d6588e0: General Settings 166
E.10 V1.3-7 | 6D-PCA-ATT-DI-DO-LSTM-Pain-LJ-GAN | 7d2d6588e0: Hyperparameters 166
E.11 V1.3-15 | 6D-PCA-ATT-DI-DO-GRU-Pain-LJ-GAN | 89ba1481a7: General Settings 170
E.12 V1.3-15 | 6D-PCA-ATT-DI-DO-GRU-Pain-LJ-GAN | 89ba1481a7: Hyperparameters 170

XIV

List of Equations

4.1 Filtering: Exponential filtering . 33
4.2 Filtering: Exponential decay time-ratio . 34
4.3 Filtering: Parameterized dynamic exponential filtering parameter . 34
4.4 Filtering: Pose estimation, by first-order approximation, if 𝑝𝑡 is invalid 35
4.5 Filtering: Pose estimation, by return to mean, if 𝑝𝑡& (𝑝𝑡−1‖𝑝𝑡−2) are invalid 35
4.6 N-D Rotations: Definition of 6D representation of 3D rotations . 36
4.7 N-D Rotations: Definition of 2D representation of 1D rotations . 36

5.1 Reality Gap . 46
5.2 Utility Function: Upper Confidence Bound . 49
5.3 Chebyshev’s inequality & ’Upper Confidence Bound’ Utility Criterion 50

6.1 Regression Model: Loss Function - Mean Squared Error . 59
6.2 Number of weights and biases per Gate . 60
6.3 LSTM: Number of weights and biases . 60
6.4 GRU: Number of weights and biases . 60
6.5 Regression Model: Model Loss→ Angular Error . 61

7.1 Generative Model: Loss Function - Binary Cross Entropy . 69
7.2 Neural network Architecture: Hidden layer size . 77
7.3 Generative Model: Discriminator Metrics . 93
7.4 Generative Model: Advanced Loss Function . 94

9.1 Noisy Labels . 112
9.2 𝜅 tuning . 117

B.1 Joint Histogram Resolution . 134
B.2 PDF transformation . 135
B.3 Double PDF definition . 136

XV

List of Algorithms

5.1 Early Breaking - Simplified . 46
5.2 Bayesian Hyperparameter Optimization . 48

7.1 GAN Training Algorithm - Simplified . 70
7.2 PainLoss . 83
7.3 DRA-GAN Processing Framework . 87

8.1 Live Simulation: OptiTrack Message Decoding . 104
8.2 Live Simulation: OptiTrack Packet Injection . 108

D.1Early Breaking . 146
D.2Neural network Architecture: Soft-Self-Attention Layer . 146

Disclaimer:

All parameters and functions are actually handled inside the larger scope of the BHPO framework classes. The following algorithms are
stand-alone representations of various algorithms and are purely for illustrative purposes and conveying the primary logic. To this extend
not every algorithm is 100% executable and holds some pseudo-code elements. These simplifications are required, as the full code would
be to extensive to print in this report.

XVI

I
Thesis Context & Summary

2

1
Introduction

The following research project is set within the context of the AI-man project; a collaboration between Another
Kind of Blue (AKOB), a Dutch dance company, and CompactCopters (CC), a German drone R&D company. The
AI-man project desires to create a duet between man and machine by means of utilizing a drone-swarm in
combination with artificial intelligence (AI). Ultimately, it is intended to result in a theater performance to be
enjoyed by audiences all over the world.

For this thesis a neural network was designed which generates human motion, in reaction to a human
dancer’s input. This neural network is intended to be utilized as the drive algorithm for the prior developed
drone swarm, representing an artificial ’dancer’.

1.1. Industry Context
The research to be performed will contribute to the modern dance performance AI-man, by AKOB, intended to
be shown in theaters to general audiences in 2022. Apart from the scientific contribution, the following thesis
research intends to directly serve a clear purpose for an industry application. Understanding the industry
context of this thesis allows for a better understanding of some of the design choices made.

1.1.1. Industry Partners
Stichting Another Kind of Blue (AKOB) is a The Hague based dance company, specializing in the combi-
nation of art and technology. They create visually stunning performances by augmenting modern dance with
digital technologies, such as projectors, drones, motion tracking and VR.

CompactCopters UG (CC) is a German drone R&D company, co-founded by the author of this thesis. CC
has been involved in projects such as developing a solar-powered drone for industrial inspection, drone swarms
for theater performances, load-analysis and flight-testing tools for small aircraft and data-processing tools for
drone-based inspection of plants in greenhouses.

1.1.2. Past Projects
AKOB had been experimenting with the usage of aircraft and drones for stage performances for many years,
however the earliest attempts were all manually controlled, before the transition to full automation was made.

The AI-man project is the logical conclusion of two previous drone-dance projects created by AKOB & CC
(among other partners), over the course of the past 6 years:

1. Newton’s Duet (2015): [Figure 1.1] http://y2u.be/fI20Mxd8vLc

• 2 drones and 2 dancers
• Pre-planned choreography
• Tour around NL¹

2. Airman (2018): [Figure 1.2] http://y2u.be/NuP4YhMzt3k

¹Also performed during the 174th Dies Natalis of the TU Delft

4

https://www.youtube.com/watch?v=fI20Mxd8vLc
https://www.youtube.com/watch?v=NuP4YhMzt3k

1.1. Industry Context 5

1

• A swarm of 12 Drones, representing the human form, able to copy the improvisation of 1 Dancer
• Pre-planned choreography + interactive improvisation
• Tour around NL + global shows

For Newton’s Duet, an automated control system was developed, which allowed two drones to follow a
pre-choreographed set of 3D reference positions over time (see Figure 1.1).

In Airman, a solo-dancer was being recorded live by an OptiTrack motion capture (MoCap) system. From
the MoCap data, key points were extracted and transformed, to be used as reference positions for a larger-
than-life skeletal replica, formed by the drone swarm in front of the dancer (see Figure 1.2).

Figure 1.1: Newton’s Duet (2015)
Source: Stichting Another Kind of Blue

Figure 1.2: Airman (2018)
Source: Stichting Another Kind of Blue

1.1.3. AIman
AKOB’s choreographer’s motivation behind the AI-man project can be summarized by the following set of
philosophical questions²:

“ What is free will? Do humans have it? Can machines have it?

David Middendorp Choreographer, Another Kind of Blue ”
To explore these questions, without trying to find a final answer, it was decided to create a duet between a

human and a drone swarm, in which both performers have as much ‘free will’ as possible. This means, unlike
most conventional show pieces, no fixed choreography is defined.

All previous projects have explored various levels of man-machine interaction in an artistic environment.
However, none have yet achieved a true ‘duet’ in the classical sense of the word:

“ An intricate dance between man and machine where both partners can be ‘free’ in their
decisions of motion and yet bound to each other by a common dance language to comple
ment each other’s expression.

AIman Project Vision ”
To achieve this, an ’artificially intelligent’ larger-than-life virtual dancer (’output dancer’) is to be created

that can react to a human dancer (’leading/input dancer’), by means of a neural network that transforms the
live recorded motion-capture data into a reactionary dance.

²These questions represent the artistic background behind the showpiece and this research, but this research will not further delve into
the philosophical discourse resulting thereout.

1

6 1. Introduction

1.2. Problem Statement
Given the wider context of the AI-man project, the primary missing link between the Airman and the AI-man
project is the development of an AI-powered algorithm, capable of generating novel dance motion in real-time.

The AI-man project strives to reuse the drone-swarm hardware and control algorithms used in Airman.
For Airman, the reference skeleton, from which the reference positions for each drone are being extracted, is
the direct output of the MoCap system. For AI-man, this direct throughput is intended to be replaced by an
algorithm, that receives the live MoCap skeleton of the dancer as input and generates an entirely new skeleton
in reaction to the input dancer, rather than replicating the input dancer’s motion.

By choice of AKOB, the desired solution utilizes AI technology, in order to allow the drone-swarm to show-
case the illusion of ’free will’. This illusion would be very difficult to achieve with conventional control theory
and hard-coded pre-defined sets of motions, as it either reuses pre-set motion segments, quickly becoming
repetitive, or requires a clear set of control laws defining ’artistic intent’.

To enable a live performance, the design objective can be defined as:

“ IntegratinganAIalgorithm, capable of dynamically transformingMoCap skeleton frames
into reactionary skeleton frames, at > 100Hz³ in realtime, into the Airman framework.

AIman Project Objective ”
1.3. The ’Creative Problem’
Due to the artistic nature of the problem at hand, the engineering challenges and methodology for this project
differ considerably from the more ’conventional’ thesis topics researched at the TU Delft Faculty of Aerospace
Engineering.

The primary difference lies in the nature of the desired solution. Commonly, an engineering design or
research tries to solve a clearly defined problem, or investigate the influence of a certain parameter on a
system. For this objective however, the desired final output of the required algorithm has, by definition, no
ground-truth, as the resulting motions are intended to be novel and unique for every input motion.

Therefore, the success of the project is divided into two categories: First the successful implementation of
the AI algorithm, and second the largely subjective visual quality of the resulting duet. The subjective nature
of the desired result makes it very hard, but not impossible, to quantify the quality of the motion data. The
quantifiable parameters are primarily restricted to measuring adherence to physical limits and not e.g. how
’beautiful’ a resulting motion is.

This creative nature of the desired result is also reflected by the chosen methodology and key design
decisions made throughout the project. Examples of these are the choice of a generative model for the final
algorithm and the use of ’Grounded Theory’ inspired techniques and inductive reasoning⁴.

1.4. Thesis Structure
This report is structured into four main parts:

1. Part I - Thesis Context & Summary
Background and condensed summary of the thesis, to allow for a better understanding of the context
before examining the research in detail

2. Part II - Research & Development
Detailed account of all work performed, structured in logical order, rather than chronological

3. Part III - Application & Relevance
Steps taken to apply the research in a real-world environment and retrospect of the thesis in the light
of its academic and practical contribution

4. Part IV - Appendices
Bibliography and supplementary material

³100Hzwas chosen as the desired update rate for the drone swarm control system and is a direct multiplier of other frame rates commonly
used by AKOB; 25 and 50 FPS and the desired update rate of the Airman system.
⁴Grounded theory is research methodology for qualitative research, as certain aspects of this research are within in the realm of the arts
and hard to quantify, contrasting common engineering design problems.

1.4. Thesis Structure 7

1

This initial Chapter 1 [Introduction] provides an introduction to the industry context of this research and
the general result it intends to achieve. The following Chapter 2 [Research Planning] provides an overview
of the general guidelines that governed this research; the research goals and objective to be achieved, the
questions to be answered, the hypothesis to be proven and the framework guiding the research. To avoid
the reader getting lost in the details, before seeing the big picture; Chapter 3 [Research Summary] presents a
condensed summary to provide the reader a broad overview of the entire research.

Before any neural network can be trained it requires data to be trained with; Chapter 4 [Data Handling]
details the process of acquiring, cleaning and preparing the dataset for training the deep learning (DL) models.
Neural network by themselves do not learn, they require a framework for training and optimization; Chapter 5
[DanceNet-BHPO Framework] details the training, optimization and cluster frameworks designed to facilitate
training the models in this research. Chapter 6 [Regression Model] introduces the initial DL model; while suc-
ceeding at achieving its task, in hindsight it has proven to not be the appropriate model to achieve the desired
research objective. Chapter 7 [Generative Model] details the design of a novel architecture for generating
long-term reactionary motions: The ’Differential Recurrent Attention GAN’ (DRA-GAN).

To facilitate the utilization of the model on stage, Chapter 8 [Live Interaction] describes the design of a
live simulation framework, as well as the corresponding live visualizations to test it. Chapter 9 [Future Work]
introduces various potential improvements to the currentmodel, as a guideline for future researchers intending
to build upon this research. Finally, the research is concluded in Chapter 10 [Conclusions], by retrospecting
the results of the research and providing a final discussion.

2
Research Planning

The most important elements, which define the premise and guidelines for the research, are stated in this
chapter to provide a clearer picture of the overall scope and intent of the research presented.

Before setting out to perform the actual research an extensive literature study was performed, which re-
sulted in a detailed planning guiding the research to follow. These elements are presented in the preliminary
thesis/literature study report “AI-man: Preliminary Report”, provided as annex to this thesis in Appendix F,
and will not be explicitly reiterated in this thesis.

2.1. Research Goals

The external goal of the research is focused on the development of a neural network based algorithmic
framework for generating human poses resembling the natural motions of an interactive dancer, to be used as
reference positions for a drone swarm.

The primary challenge of achieving this goal is finding an answer to the questionwhen the neural network’s
output is optimal and how to quantify ’natural motions’. Even though a reduction in the model’s loss-function
on the test and validation datasets may indicate an improvement in performance, this is not necessarily the
case, as the research context is set within the arts. A mathematically ’better’ outcome is not necessarily
represented by a ’nicer’, ’more natural’ or ’more beautiful’ result. Finding a solution to this ambiguity is
essential for AKOB to deliver a stunning visual performance to their international audiences.

The internal goal of the research is therefore, to solve the ambiguity between objective and subjective
evaluation, and how to design a neural network architecture that can in fact achieve the desired output of
’transforming a dancer’s improvised motions into appropriate reactionary motions’.

2.2. Research Objective
The resulting research objective of this practice-oriented master’s thesis is:

“ To design an algorithm that generates a virtual skeleton in reaction to motioncaptured
dance improvisations, by comparing existing and creating new algorithms, within the
domain of deep learning architectures.

Research Objective ”
8

2.3. Research Questions 9

2

2.3. Research Questions
The following set of research questions have guided the research trajectory:

1. Data: What data is required to teach a neural network to generate human motion?
(a) Quantity: How much motion capture (MoCap) data is required?
(b) Transformation: Which data representations are beneficial for training neural networks?

2. Methodology: Which deep learning methodologies can process and generate motion capture data?
(a) Architecture: Which neural network architectures are capable of handling multi-dimensional time

series data?
(b) Task: Which function is to be optimized, quantifying the quality of generated human motion?

3. Optimization: How can the systems performance be optimized?
(a) Training: How is the neural network to be trained to generate long-term motions?
(b) Hyperparameters: How can the initial network architecture design be optimized?

The presented research aims to fulfill the internal goal, by findingwell-reasoned answers to these questions.
The related research and development is presented in Part II and concluded in Chapter 10.

2.4. Research Hypothesis
To bridge the gap between objective and subjective evaluation a final test was to be issued, where the experts
of AKOB would be shown various motion outputs, either ground-truth (real) data or generated (fake) data, and
have to decide if the data shown is real or fake.

The following research hypothesis is to be proven:

“ Neural networks are capable of generating motion in reaction to live fullbody human
input, which cannot be distinguished from human motion by human experts.

Research Hypothesis ”
If this test would result in a distribution of feedback that is similar (with statistical significance) to the

distribution that would result from random guessing, it could be asserted that the hypothesis is confirmed.

2.5. Research Framework
A top level overview of the proposed research framework is given in Figure 2.1. It visualizes the interrelations
between the tasks and results of the research.

Figure 2.1: Research Framework

3
Research Summary

In this research, insight into the mathematical representations of the human shape, as well as state-of-the-art
knowledge of neural networks, is gathered. Combining these yields a novel online virtual motion synthesis
algorithm, which at a later stage is intended to be interfaced with the drone hardware of the Airman project.

The summary presented in this chapter is intended to function as a guide for the reader to become familiar
with the overall research and grant a high-level overview, before going into detail for each research aspect
individually. It is possible that, at this point, not all concepts and methods described in this chapter are fully
comprehended by the reader; the following Part II is intended to describe everything in-depth and elaborate
on the details of this research.

Unlike the detailed account in the subsequent part, this chapter focuses on a chronological order of events,
as the research is highly based on inductive reasoning in an attempt to iteratively improve the final model,
based on prior insight gained.

3.1. Data Handling

“ Data is the new science. Big Data holds the answers.

Pat Gelsinger CEO, Intel ”
“Machine learning algorithms without data to feed them, are as useless as fish without water to swim in.”

Therefore, the first step in any machine learning (ML)/deep learning (DL) research project is to acquire data
to train the models with. Given the fact that some DL architectures are better suited for some types of data
than others, the question which comes first, the data or the model, is a bit of a ’chicken and the egg’ problem;
however, one needs to start somewhere.

3.1.1. Data Acquisition
Based on the Project Objective, as stated in Section 1.2, it is clear that data that needs to be acquired should
be motion capture (MoCap) data, fully encompassing the human stature, as well as its motion. More specif-
ically, ’dance motion’ needs to be digitized and analyzed. The following sub-categorization shows the layers
of specialization required for the required data:

All datasets →MoCap →Dancing →Modern dance →Two interacting dancers

There are several publicly available datasets containing some amount of dance data [Alemi, 2017; Chan
et al., 2019; CMU Graphics Lab, 2016; Harvey et al., 2020; Huang et al., 2020; University Of Cyprus, 2012].
However, not all of these utilize MoCap data, instead several models use video recordings instead, which are
not applicable for this research. Furthermore, very little research has been done on the interaction of two or
more humans in an interactive environment [Aristidou et al., 2018b; Liu et al., 2019; Manzi et al., 2018]. The
only dataset that contains two interacting dancers, contain salsa dancers at close distance and account for
only a fraction of the total dataset [CMU Graphics Lab, 2016]. Ultimately, there was no publicly available
dataset found that matches all categories.

10

3.1. Data Handling 11

3

As a result, a custom dataset was created, consisting of 9.2 hours recorded in 147 takes, using theOptiTrack
MoCap system of AKOB located at their studio in The Hague. The data was recorded at 100 Hz for a total of
6.647.486 data frames.

In terms of recording time this makes it the second largest MoCap dataset, compared to the 18 datasets
making up theworld’s largestMoCap data collection to date; the ’Archive ofMotion Capture as Surface Shapes
’ (AMASS) database [Mahmood et al., 2019].

3.1.2. Data Structure
Multiple takes of two dancers performing were recorded. Each take consist of two dancers improvising si-
multaneously. One of the dancers is defined prior to have the ’leading’ role and is free to choose any motion
desired. The other dancer is defined to be the ’following’ dancer and is tasked with creating a reactionary
improvisation to the leading dancer in real-time. Both dancers are tasked to move within the ’dance language’
and limits previously agreed upon with the choreographer¹.

The data was saved in anonymized <.BVH> files, according to the regulations of the Human Research
Ethics Committee of the TU Delft.

The format in which the human body was digitized consists of 156 floats per frame:

• 6-DOF global transform of the body’s root (hips):

– 3 floats representing the 3D position [𝑚]
– 3 floats representing the global Euler rotations [°]

• 3 floats, for each joint/bone, representing the relative Euler rotations from it to the next [°]
– This model defines 50 joints/bones for the entire human body:

⋄ 4 + (4 + 4) ⋅ 2 = 20 joints/bones define the spine (4) and the four limbs (4 ⋅ 4)
⋄ (5 ⋅ 3) ⋅ 2 = 30 joints/bones define the details of all 5 fingers, on both hands

This format of interdependent rotations is largely scale independent, and therefore allows the data to be
generalized and combined for various humans statures. A visual representation of this rig is presented in
Figure 3.1.

The data was combined in a local ArangoDB database, for easy access by the DL models and other analysis
tools.

3.1.3. Data Preparation
Given the OptiTrack tracking system’s sub-millimeter accuracy, the data contains almost no noise due to
positional in-accuracy. However, raw MoCap data is known for rarely being perfect, as the system can lose
tracking of (parts of) the body and create spikes in the data. Hence, the data needs to be cleaned and pre-
processed before applying it in an neural network.

Filtering
The outliers in the data were identified by plotting each channel’s data distribution in a histogram, to extract
the angular limits for each joint (see Figure B.2). The data was subsequently cleaned, by applying exponential
filtering and ’spherical linear interpolation’ (SLERP).

Finger Removal
During the analysis of each joint’s limits it was discovered that for the finger joints only

1
3 of the channels

contained data (1D rotation), as each finger segment can only rotate along a singular axis and that these
channels lost tracking very frequently (20 − 70%). Due to the noise in the data and the additional data
complexity that the finger joints entailed, it was decided to remove the fingers from the dataset and only keep
the general direction of the hand. This reduced each frame’s data size from 50 to 20 joints per frame or 156
to 66 floats per frame respectively; Considerably reducing the required model complexity and computation
time. For the final result the loss of the finger data is not problematic, as the drone swarm is incapable of
representing the fine details of the fingers.

¹The ’dance language’ has not been formalized and was left to the expertise of the choreographer.

3

12 3. Research Summary

(a) Full body Rig

(b) Hand Rig

Figure 3.1: Skeletal rig used by AKOB
The red spheres represent the joints of the rig
The white double pyramids, connecting every joint, represent the bones of the rig
Each of the 51 joints are labeled individually
The root of the rig is located at the ’Hips’ joint

3.2. Training 13

3

Dataset Splitting
The complete final dataset was split into three parts for the training, testing and validation of the neural
networks:

1. Training (80%):
Dataset used to train the neural network

2. Test (10%):
Dataset used to test the neural network’s performance, and optimize the hyperparameters

3. Validation (10%):
Dataset used to validate the neural network’s performance, after hyperparameter optimization

Normalization
Prior to feeding the data into any model, a final normalization step was added, which normalized the range
of possible values to the range between [−1,+1].

3.2. Training
A crucial initial step in designing a DL model is the decision on the framework in which the model is to be
created. Based on prior experience, a large pre-existing codebase and community, the popular Python-based
DL library PyTorch was used.

On top of the PyTorch library a custom framework, featuring a graphical user interface (GUI), was devel-
oped:
The ’BHPO’ (Bayesian Hyperparameter Optimization - Framework).

This framework primarily aids in the following aspects:

• Live Visualization of training progress and performance
• Hyperparameter optimization
• Distributed/Cluster training

3.3. Neural Network Design
Once sufficient data was gathered and a framework for training was established, the next consideration in
designing a DL algorithm was the architecture and type of learning to utilize.

Based on the literature research, it became apparent that ’Recurrent Neural Networks’ (RNNs) are the
best fit for the desired task. This is due to their temporal nature and their ability to ’remember’, which allows
the network to be fed each new data frame in real-time, without the need to store and process a large chunk
containing multiple data frames.

Vanilla RNNs have a significant number of problems when it comes to long-term dependencies, therefore
two alternative RNN architectures were investigated:

• Long Short-Term Memory (LSTM) [Hochreiter and Schmidhuber, 1997]
Network with internal cell state, controlled by information flow control gates

• Gated Recurrent Unit (GRU) [Cho et al., 2014]
Simplification of the LSTM, by removing the cell state and one of the gates

Various models, have been designed to solve the project’s objective, each of which have been named
’DanceNet’ ; all 13 iterations and their model variations are denoted by their respective version numbers and
mode IDs.

3.3.1. Regression Model
As an initial test, a supervised regression model was developed with only a single layer RNN of the chosen
type (LSTM or GRU). It was fed the current frame of the ’leading’ dancer and the ’following’ dancer and
was then tasked to predict the ’following’ dancer’s pose at the subsequent time step. The regression model’s
architecture is visualized in Figure 3.2.

While the initial configurations performed rather poorly, the system managed to learn to perform the
desired task, after a considerable amount of hyperparameter (HP) optimization steps. The best performing
model was a configuration utilizing the GRU.

3

14 3. Research Summary

Figure 3.2: DanceNet Architecture: Regression Model

Trivial Solution
The main issue with this approach is that, while at first it seems a logical setup, the system does not actually
need to learn any underlying complex behavioral patterns. This is because there exists a trivial solution to the
problem:

Even though the underlying system is recurrent, the system is fed with ground truth data at every time
step and only ever requires to predict the motion 10ms into the future. To achieve the simplest solution to this
problem, all the system needs to learn is the ’Backward Euler Method’, where it applies the derivative of the
previous time step to predict the next state. This reduces the task to a regression of the systems inertia and
completely disincentivizes the system to learn any long-term dependencies or interrelations between the two
dancers. This aspect is what, in hindsight, gave the regression model its name.

Feedback Test
When placing the system into the live testing environment, there is no pre-recorded ’following’ dancer, whose
pre-existing pose could be exploited. Instead, the ’following’ dancer’s pose is replaced by the system’s own
output (see Figure 3.3). The combination of the overreliance on the ’following’ dancer’s prior pose and the
sudden removal of this ’crutch’ in the live test, resulted in the system displaying highly unstable dynamics.

Figure 3.3: DanceNet Architecture: Regression Model with Feedback

In ML research the formulation of the exact task given to a system is just as important, if not more im-
portant, than the algorithm and data used to solve it. The system will always provide a solution, but it may
not always be the desired one. This has proven completely true when considering the results generated by the
regression model. As the regression model is inappropriate for generating long-term motions, a new task had
to be defined.

3.3. Neural Network Design 15

3

3.3.2. Generative Model
As the regression model was clearly asking the wrong question, a new model was required that would be
capable of generating new results, rather than ’memorizing’ the training dataset, reflecting the creative nature
of the desired result.

Generative Adversarial Network
A promising meta-architecture, which performed extremely well on e.g. image generation tasks, is the ’Gen-
erative Adversarial Network’ (GAN) [Goodfellow et al., 2014; Shrivastava et al., 2016; Xu et al., 2018]. The
primary idea behind this model is that there is no complex loss function and no singular correct answer, all
that is defined and learned is whether the data is ’real/recorded’ or ’fake/generated’. This is solved by training
two networks simultaneously; The ’Generator’ and the ’Discriminator’. A simplified visual representation of
the original GAN model is presented in Figure 3.4.

Figure 3.4: Neural network Architecture: Original GAN

This original model had to be adapted to fit the data in this research. The generator can be pictured as the
’following’ dancer generating new dance motions, based on the ’leading’ dancer’s input. The discriminator
can be pictured as the choreographer or art critic, which reviews both the original pre-recorded responses and
the newly generated responses. Its job is to classify the reviewed take as fake or real (0 or 1). The generator
is trained based on the feedback it receives from the discriminator until the discriminator cannot tell the
difference between the pre-recorded and generated motions. The generative model’s architecture is visualized
in Figure 3.5.

Figure 3.5: DanceNet Architecture: Generative Model

A GAN can be an extremely powerful and versatile tool to generate new datasets, which are indistinguish-
able to the original in their overall characteristics, without replicating the original dataset. The system does
not learn to memorize or replicate the original dataset, but rather learns the overall style and relations of the
dataset, resulting in the ability to generate truly novel output data. In this it is one of the only algorithms
designed for generating truly novel data, as is required by this research’s artistic context.

However, in practice, GANs are notoriously hard to train and stabilize. This is due to the ’two player’ nature
of this meta-architecture. The training method is essentially a game between two opposing entities, where the
desired outcome is that ’the student fools the teacher’.

3

16 3. Research Summary

Intuitively, there are two scenarios in which this setup breaks down:

• The student is just too limited to ever satisfy the desires of its teacher, thus never being able to reach its
full potential.

• The teacher is just too limited that it is satisfied with basically anything, thus being unable to teach the
student anything new.

“ A lot of people want to use GANs, they just don’t know that they’re unstable,
until they get into using them...and then they’re kind of stuck there.

Soumith Chintala Facebook AI [’How to train a GAN’, NIPS 2016] ”
This quote by Soumith Chintala has unfortunately turned out to be true, as the system output initially

was rather static and did not want to train at all, with the resulting motions being about as bad as the live
feedback results from the regression model.

The largest part of this research was therefore dedicated to iteratively improving the initial GAN architec-
ture, to prove the theoretical applicability of this model on the practical task at hand.

Model Improvements
A number of improvements to the initial GAN have been made, by uncovering and mitigating logical fallacies,
such as the one uncovered in the regression model. This was done by means of inductive reasoning, based on
the training results achieved after each training run.

The numerous improvements and their exact reasoning are further detailed in Part II. Here, only the
changes are stated, including a brief reasoning as to why they were made, providing a chronological overview
of the progress throughout the research:

1. DanceNet-V0.1:
• Description: Basic RNN based model && Combination of both dancer motions to form singular

input
• Model ID: GRU
• Reasoning: Recurrent networks were deemed most appropriate for handling temporal data. &&

The network should be able to compute the relation between the two motions.
2. DanceNet-V0.2:

• Description: Initial GAN implementation && Adding attention layer
• Model ID: ATT-GRU-GAN
• Reasoning: The GAN should allow for learning the underlying ’concept’ of dance. && The soft-

self-attention (ATT) layer allows to focus the input data, by pre-filtering less-relevant parameters.
3. DanceNet-V0.3:

• Description: Expansion of hidden state vector && Adding final linear layer
• Model ID: ATT-GRU-GAN
• Reasoning: The discriminator’s output size of 1 resulted in a hidden state size of 1 as well,

severely limiting the network’s complexity. && The hidden state of the discriminator needed to be
expanded in order for the system to learn complex relations over time.

4. DanceNet-V0.4:
• Description: Cluster support
• Model ID: ATT-GRU-GAN
• Reasoning: Support to run the BHPO on multiple PCs and GPUs at once, allowing for faster

hyperparameter optimization.
5. DanceNet-V0.5:

• Description: Allowing positive gradients in final loss && Switch back to LSTM
• Model ID: ATT-LSTM-GAN
• Reasoning: Conventional early-stopping algorithms prevented the GAN from training when the

loss increases, however this behavior is to be expected from GANs and had to be allowed. &&
As the GRU has no additional cell-state, with only a singular layer it is impossible to ’remember’
temporal relations longer than one time step ago.

6. DanceNet-V0.6:

3.3. Neural Network Design 17

3

• Description: Increase in RNN layer depth
• Model ID: ATT-LSTM-GAN
• Reasoning: A singular recurrent layer was sufficient for the regression model, due to the triv-

ial solution, however for learning more complex interdependencies a deeper network structure is
required.

7. DanceNet-V0.7:
• Description: Pre-conversion of Euler angles, to 6D-rotation representation
• Model ID: 6D-ATT-LSTM-GAN
• Reasoning: Zhou et al. have proven that neural networks perform suboptimal when providing

(possibly) non-continuous input parameters; such as Euler angles, but provided a 6D representation
of angles in 3D space perform significantly better.

8. DanceNet-V0.8:
• Description: Prediction of state derivative, instead of complete pose
• Model ID: 6D-ATT-DO-LSTM-GAN
• Reasoning: ’Derivative Output’ (DO): Due to the continuous nature of the desired output, pre-

dicting only the state change at each time step instead of the entire pose, should allow the system
to focus more on the desired dynamics, while simultaneously avoiding large jumps in the output
data.

9. DanceNet-V0.9:
• Description: Pre-computation of derivative
• Model ID: 6D-ATT-DI-DO-LSTM-GAN
• Reasoning: ’Derivative Input’ (DI): The state derivative is an important metric, as it is by defini-

tion the ’motion’ which is desired. So instead of feeding the neural network only pose information
and forcing it to learn the concept of velocity by itself, the state change from frame to frame is
pre-computed and concatenated to the original input vector.

10. DanceNet-V1.0:
• Description: Added original input to discriminator input
• Model ID: 6D-ATT-DI-DO-LSTM-GAN
• Reasoning: So far the discriminator was only judging the output motion of the generator, how-

ever this prevents it from judging the motion in context. Therefore the original ’leading’ dancer’s
motion was concatenated to the discriminator’s input data.

11. DanceNet-V1.1:
• Description: ’Pain’ criterion
• Model ID: 6D-ATT-DI-DO-LSTM-Pain-GAN
• Reasoning: Humans need to learn to crawl, walk and dance, however they do not need to be

explicitly taught their physical limitations. Angular limits of the joints are unavoidable, except by
enduring a large amount of pain. By pre-computing the distribution limits for each joint, these
limits were mimicked in the model by adding an extremely high loss (pain) when these limits are
exceeded.

12. DanceNet-V1.2:
• Description: Utilization of ’Principal Component Analysis’ PCA
• Model ID: 6D-PCA-ATT-DI-DO-LSTM-Pain-GAN
• Reasoning: The PCA transform was applied, to enable the inspection of the general motions

present in the dataset. Additionally, it is an excellent and fast tool to normalize and ’whiten²’ the
data prior to processing.

13. DanceNet-V1.3:
• Description: Added ’Limited-Judgement’
• Model ID: 6D-PCA-ATT-DI-DO-LSTM-Pain-LJ-GAN
• Reasoning: So far the discriminator was fed the entire output of the generator from 𝑡 = 0. Due

to the initialization of the network the first frame of the generator is always the same, this means
that the discriminator was able to immediately pick up this irregularity and judge based on the
initial state. To avoid this the discriminator was given ’Limited-Judgement’ (LJ) by only feeding
him the motion past a certain number of frames of output data, to allow the generator to obtain a
realistic pose before being judged.

²Covariance matrix is the identity matrix

3

18 3. Research Summary

Given the ever expanding model ID and the fact that the final proposed model turned out to be more
complex than initially expected, a new name for the entire model architecture was required. The final name
for the proposed model is the ’Differential Recurrent Attention GAN’, or ’DRA-GAN’ for short.

3.4. Results
The initial regression model was simple and effective, it performed the desired task accurately and proved that
the BHPO training framework is functioning as expected. The GAN has proven to be significantly harder to
train than initially expected, however the gradual steps towards the final model have not only improved the
output, but also provided insight into the system’s behavior.

However, the final output motions, generated by the DRA-GAN model, are not of sufficient quality to
be considered long-term and interactive. The output motion is improving throughout the training run, but
visually does not appear to be a fully correct human pose. The output motion largely ignores the leading
dancers input and outputs mostly the same pose after a few seconds. This failure mode of GANs is commonly
known as ’mode collapse’ [Liu and Tuzel, 2016].

3.5. Live Interaction
To allow the system to be applied in the AI-man showpiece, a simulation was created that processes the pre-
trained model in real-time and transmits the computed output motion via a custom UDP broadcast, for other
sub-systems to utilize the resulting data.

To achieve this, a module was created that transforms the serialized motion-data stream, as broadcasted
by OptiTrack’s NatNet system, to the desired input, as required by the neural network.

To test and visualize the real-time process, two visualization systems have been developed:

1. VPython:
A simple debugging GUI for visualizing the skeletal motions

2. Unreal Engine 4:
A visually appealing high-performance visualization, that could also be applied in a VR environment

Note: Please refer to Appendix A for definitions of all coordinate system definitions used by the various
programs throughout the research.

3.6. Discussion
The research field of long-term motion generation by utilizing neural networks is relatively new and at the
current cutting edge of technology. Most papers found on the subject are from the last five years, with only
few exceptions, and significant advances in the field have even been made throughout the duration of this
research. Many researchers consider time frames of more than a second to to be ’long-term’ [Ghosh et al.,
2018; Gui et al., 2018a; Tang et al., 2017], while this research attempts to generate motions of more than a
minute.

Applying the principles of the grounded theory approach, the architecture of the final network was devised
iteratively given continuous inductive reasoning, based on insights gathered throughout the research project.
Unfortunately, the final output of the model is not as desired, but the research leading up the final model
has proven incremental improvements and the full potential of the final DRA-GAN model remains yet unex-
plored. While originally, a detailed comparison and benchmarking of various neural network architectures
was intended, this has proven to be impractical given the time constraints, due to the long training durations
of recurrent neural networks of this scale. With training times of multiple weeks, the same holds true for fully
evaluating a sufficient amount of hyperparameter sets, to assess the DRA-GAN’s full potential.

The contribution to the scientific community lies in the design of a novel neural network architecture, for
the application of motion synthesis, as well as various algorithms and criteria to support the training of RNN
based GANs. For future researchers an extensive list of potential improvements to the current model has been
compiled, to allow for continuation of this research; hopefully enabling the AI-man project to be showcased to
the world.

II
Research & Development

20

4
Data Handling

“Data is key. Humans cannot learn without input, neither can machines.”
This chapter describes the data used to train the subsequently developed neural networks; the acquisition

procedure, as well as the performed data cleaning and pre-processing steps.
The given project objective falls generally under the fields of research ’Motion Synthesis’ and ’Motion

Prediction’. The application of neural networks in these fields, for the generation or prediction of human
motion, is by itself not novel and various papers can be found on this topic [Gaisbauer et al., 2019; Holden
et al., 2017a; Martinez et al., 2017; Pavllo et al., 2019; Wang et al., 2020a,b; Zhou et al., 2019a]. Due to the
specific nature of the assignment, requiring close interaction of two dancers over an extended period of time,
the number of applicable prior research is narrowed down significantly to only a handful¹. However, these
papers only cover one or a few of the required aspects, and never all at once. The same is true for the datasets
used in these papers, which is why a custom dataset was acquired.

4.1. Data Acquisition
A total of 9.2 hours of motion capture (MoCap) footage were recorded on 6 days, over the course of 2.5weeks,
in 147 individual takes.

The acquisition of the required dataset was primarily executed by AKOB. The researcher was not present
at the times of the recording due to COVID-19 restrictions.

4.1.1. Public Datasets
Given the application of the final research in a real-time motion capture (MoCap) environment and the study
of the human form, the only logical conclusion was the usage of MoCap data for this research and hence the
requirement to source a suitable database.

A lot of research in the field is utilizing pre-existing datasets such as the ’CMUGraphics LabMotion Capture
Database’ (CMU) [CMU Graphics Lab, 2016] or the ’Human3.6M Dataset’ (H3.6M) [Ionescu et al., 2014]. These
datasets mainly consist of short (< 20𝑠) takes of individual people performing various clearly defined tasks.
Subsequently, they are being used for research, such as classification of the performed action or prediction of
the remainder of a cut-off take [Bütepage et al., 2017; Gui et al., 2018a,b; Hernandez et al., 2019; Li et al., 2019;
Mao et al., 2019; Martinez et al., 2017; Tang et al., 2017].

Due the typically small size of availableMoCap datasets and the lack of standardization between them, the
’Archive of Motion Capture as Surface Shapes’ (AMASS) project took 18 commonly used datasets and combined
them into a singular database, for easier usage by the research community [Mahmood et al., 2019].

However, out of all these publicly available datasets, there was none which fulfilled all required criteria:

• MoCap
• (Modern) Dancing
• Two interacting people/dancers

Due to this extremely specific nature of the required data, the generation of a custom dataset was required.

¹The full literature study and the most relevant papers are presented in the preliminary report (see Appendix F).

22

4.1. Data Acquisition 23

4

4.1.2. Procedure
The setup for a recording session is as follows: Two dancers and the choreographer of AKOB are located within
their motion capture studio. One dancer is considered the ’leading/input dancer’, while the other is considered
the ’following dancer’. The ’leading dancer’ takes the lead in the improvisation, while the ’following dancer’
reacts to their partner accordingly. In the actual showpiece the ’leading dancer’ will remain human, while the
’following dancer’ will be replaced by the ’drone swarm dancer’.

AKOB utilizes a motion capture system by OptiTrack, with 16 Prime 13 infrared (IR) cameras², running at
100𝐻𝑧. For human motion tracking, Velcro suits with 54 passive IR markers (reflective spheres) are used. The
company and dancers are well experienced with the system, and have used it for various other projects in the
past.

For each take the dancers would start in the standard ’T-Pose’³. The choreographer would pick a music
track of his choice and give a few guidelines to the dancers that they have to take into consideration during
their 2-6 minute long improvisations. The distribution of take durations is visualized in Figure 4.2.

A visual impression of the data acquisition process is presented in Figure 4.1.

Figure 4.1: Behind the scenes at AKOBs studio, during data acquisition
Source: Stichting Another Kind of Blue

Dancers: Leading Dancer ’pushing’ following dancer, wearing marker costume⁴
Left Side: OptiTrack Prime 13 camera lighting up
Bottom: OptiTrack Motive, for recording the digital MoCap take
Lighting: As the system used IR, the influx of sunlight was limited to reduce IR interference

4.1.3. Anonymization
In accordance with the requirements of the TUDelft’sHuman Research Ethics Committee (HREC), the following
measures have been taken to ensure anonymity of all data within the dataset:

1. Replacement of dancer names with alphabetical symbols: Dancer 𝐴 & Dancer 𝐵
2. No audio or video footage was recorded, only skeletal reconstructions

²A system very similar to the one being used at the CyberZoo of the TU Delft Faculty of Aerospace Engineering
³Standing straight, facing forward, with arms spread to the side, see Figures 3.1 and 4.4

4

24 4. Data Handling

Figure 4.2: AKOB Dataset: Distribution of take durations
Dotted line indicates best-fit for a Gaussian distribution on this data

4.1.4. Filename Convention
A consistent naming schema for all takes was defined and communicated with AKOB, to ensure that all re-
quired information was contained in the filename of each take. The following naming schema was devised:
'Take YYYY-MM-DD HH.MM.SS_Role{L,F}DancerSymbol{A,B}_Label#1,Label#2[,Label#N]_Description(_Take#).EXT'

e.g.
'Take 2020-05-13 11.30.00_FA_ball, slow, mirror_feeling good muse_001.bvh'

The filename contains the following information, in the stated order:

1. Date: 'YYYY-MM-DD'
2. Time: 'HH.MM.SS'
3. Dancer Role: '{L,F (,A)}' L=’Leading’, F=’Following’ and A=’Alternating⁵’
4. Dancer Symbol: '{A,B (,C,D)}' ⁶
5. Labels: Variable number of labels, to store information on the intention behind the take
6. Description: General information from the choreographer, mostly the choice of music for each take
↓ Optional ↓

7. Take Number: '{001,002,…}' Enumeration, if the same labels and description were used

Labels
The choreographer was asked to develop a set of labels for his intentions, which should be reused to enhance
the dataset’s uniformity. The addition of these labels would also allow the application of classification algo-
rithms on the data, to augment the motion prediction/generation tasks.

Unfortunately, it was not possible to convince the choreographer to plan ahead and create a limited set
of consistent labels, which should be reused approximately in equal fashion. Instead he decided to approach
the data acquisition procedure in a creative manner; adding labels ’on-the-go’. This resulted in a highly biased
label distribution, as can be seen in Figure 4.3. 14 out of 23 labels are preset in less than 10% of all takes,
while e.g. the ’slow’ label is present in over 40% of all takes. This inconsistency makes it hard to use the labels
as an objective and unbiased training aid.

⁵The label ’Alternating’ was required, because the choreographer initially did not properly communicate the role division to the dancers.
For training of ’Alternating’ takes the leading and following roles were assigned at random.
⁶Dancers ’C’ & ’D’ were only present in 4 out of 147 takes, which have been removed to keep the dataset consistent’)

4.2. Data Structure 25

4

Figure 4.3: AKOB dataset: Distribution of labels

4.2. Data Structure
Understanding the format of data used in this research is key to ensure comprehension of the rationale behind
subsequent analysis and pre-processing steps. This section provides an overview of the format and standards
of the MoCap data used in this research.

4.2.1. The (Digital) Human Body
Character animators and MoCap researchers are at the crossroads of technical and intuitive understanding of
the human body and have come up with various means of digitizing human bodies and their motions⁷.

For digitizing and animating any dynamic entity two types of data are used:

• Mesh:
3D tessellation as approximation of the general shape of the entire body, analogous to the outer skin.

• Skeleton/Rig:
Simplified digital representation of the actual skeleton, reduced to the basic components required for
movement.

An example representation of a humanoid character is given in Figure 4.4; the green hull represents the
mesh, while the grey polyhedrons and spheres represent the skeleton.

Themeshwithout a skeleton tomove it is called a ’static mesh’ and is incapable of changing its own form. A
skeleton defined for a specific mesh allows for dynamic manipulation of the static mesh, but is not constrained
to that mesh and can be utilized to animate multiple meshes, as long as the general structure and layout is
sufficiently similar. A rig defined for a quadruped, such as a dog, will prove hard to transfer to a humanoid
mesh.

Unlike related motion generation research, that focuses on the 3D visual aspect for animations [Holden
et al., 2015, 2017b; Mahmood et al., 2019; Shen and Yang, 2016; Yamane et al., 2010], this work focuses only on
the generation of humanoid motion. This is due to the fact that, the resulting skeleton is independent of the
mesh used for visualizing it, as the final product will be represented by drones (points) in space and not by a
character on a screen. Therefore, the remainder of this research will focus solely on the skeletal rig.

General Formats
There are various means to define the format for the skeletal rig and its motion, but almost always it is defined
in a kinematic chain in a hierarchical fashion. Figure 4.5 illustrates a kinematic chain in 2D and the various

⁷For extended background information, please refer to Section 3.2 (’Character Animation’) of the preliminary report (see Appendix F).

4

26 4. Data Handling

Figure 4.4: Rigged example character mesh in T-Pose
Mesh: Outer shape, in bright green
Skeleton/Rig: Inner structure, in grey (overlay)

formats that describe the configuration. For the actual skeletal rig this example has to be extended from 2D
to 3D, resulting in three rotational axes per joint, compared to the singular one illustrated here. The second
simplification made in this example compared to a humanoid skeletal rig is the absence of chain splitting,
e.g. the kinematic chain at the Root (’Hips’) splits in three individual segments, one for each of the legs
and the spine (see Figure 3.1). The same is the case for the split at ’Spine1’, splitting the chain into three
individual segments again, one for each of the arms and the head. Up until a split the kinematic chain is
shared, independent of the end effector.

Primarily there are two clear distinctions between prominent formats of how the joints or bones are defined:

• Position: 3D positions in space for each joint define the length and orientation of each bone
vs

• Angle: Bone lengths are pre-defined and each joint is fully defined in terms of its orientation

&

• Absolute: The positions/angles are all defined with respect to the global coordinate system
vs

• Relative: The positions/angles are defined relative to their predecessor in a hierarchical layout

Position vs Angle In terms of visualization, a position-based format is desired, as it allows for direct trans-
lation of the data to the correct position in space or on screen, while an angular approach requires prior
re-computation of the positions before visualization.

A downside of the position-based approach is that the constant length of individual limbs/bones is not
guaranteed and has to be enforced separately. Especially for neural networks, which can produce rather unex-
pected outputs, especially early on in the training process. Here, it is beneficial to utilize formats that prevent
breaking physical constraints of the human body as much as possible.

Given the desired versatility of the final product, enabling it to be utilized with various dancers and hence
bodies, it was chosen to use a format solely utilizing angles to allow for its application onto various body
statures. In dance a certain motion is mostly defined by the relative angles of the limbs and not their absolute
position in space. A dwarf and a giant can both showcase a pirouette (ballet turn) and it will still remain a
pirouette, regardless of their size. There are limitations to this approach, when it comes to certain distributions
of bone lengths that deviate a lot from the average distribution. It can however be reasonably expected that

4.2. Data Structure 27

4

Figure 4.5: Kinematic Chain Example - 3 Bones in 2D
Red: Absolute Angles | Green: Relative Angles | Blue: Absolute Positions | Grey: Relative Positions + Bone Lengths

the research will not be utilized with physically impaired individuals in the present state of the development.
Adding information on the exact size of the dancer could be added in future research. The validity of this
assumption is further manifested by the fact that in the dataset, as well as the final product, there have been
and will be no physical touch-based interactions between the two dancers, hence reducing the requirement
for exact synchronous positioning, e.g. touching hands.

Absolute vs Relative Analogous to the ’position vs angle’ comparison, absolute values allow for a more
direct visualization and require less or no additional pre-computations.

When inspecting the human body, relative angles are easier to comprehend for humans andmachines alike.
Defining the relative angles between two joints allows for easy verification whether any limits are exceeded.
For machine learning, relative angles offer a distribution with a clear mean and limited discontinuities.

4.2.2. Biovision Hierarchy (BVH)
The ’Biovision Hierarchy’ (<.BVH>) format was chosen as the initial data format for the data acquisition; out
of the 6 formats compared in the preliminary report. Additionally, each take was also stored in OptiTrack’s
native <.TAK> format, to allow for later conversion to other MoCap formats, if desired.

The <.BVH> format combines numerous advantages that are beneficial to the application of this research:

1. Angle-based formatting: (see Section 4.2.1)
2. Relative angles: (see Section 4.2.1)
3. Easily interchangeable skeleton: Same data can be visualized on multiple meshes
4. Easily adaptable limb sizing: Easy to adapt spacing of drones in swarm
5. Simple 2D array of floats: Pre-formatted for training neural networks - faster parsing

4

28 4. Data Handling

The <.BVH> is an easily readable ASCII based file. Positions are defined in meters, angles are defined as
Euler angles in degrees. The file consists of two segments: The ’HIERARCHY ’ segment defines the skeletal
structure, with each joint defined relative to its predecessor⁸, starting at the ROOT (Hips). The ’MOTION ’
segment defines the actual animation data as an array of floats, defining the relative rotations for each joint
in the order defined by the hierarchy.

The structure of the file is as follows⁹:

• HIERARCHY : Skeletal Data

– Hierarchical skeletal definition¹⁰ of the ’ROOT ’ and each subsequent ’JOINT ’, containing info on:
⋄ Name of the joint
⋄ OFFSET :

Vector defining positional offset from the current joint to the previous joint
⋄ CHANNELS:

Number and order of (positional and [ROOT only]) rotational channels for this joint
⋄ End Site:

If the joint is the last element in its hierarchical chain it defines the ’OFFSET ’ of the final
bone

• MOTION : Animation Data

– Frames: Total number of frames in the file
– Frame Time: Time step between frames
– Frame-by-frame poses:

⋄ Separate line for each frame (pose)
⋄ Array of float separated by spaces
⋄ Follows the hierarchical definition of channels, as defined in the ’HIERARCHY ’

· 3 floats for the global position
· 3 floats for the global orientation
· 3 floats for the relative angles of each joint defined, ordered down the hierarchical chain

While theoretically the <.BVH> format is capable of storing multiple skeletons in the same file, in practice
almost no program is compatible with this functionality. For this reason, two <.BVH> files were created per
take, containing the recordings for the leading dancer and the following dancer respectively.

4.2.3. ArangoDB
The raw <.BVH> files provided by AKOB had to be parsed and processed to enable easier usage in the devel-
opment stage. For this purpose a local ArangoDB database was created. ArangoDB is a graph database that
allows for storing two types of collections:

• Document Collection: Documents in JSON format.
• Edge Collection: Relations between documents (e.g. hierarchy), for graph visualization and querying

Considering that the size of the final dataset in <.BVH>was over 12GB, it was deemed practical to separate
the large motion data arrays from the smaller meta-data. This allows for querying of meta-properties, like the
total number of frames/takes or duration, without loading all the motion data into RAM.

The collections that have been created and the data they contain are as follows; the first level is just for
logical separation and for clarifying the use case of each collection:

• Organization:

– Phases: General information on each recording phase
– Days: Date and IDs of takes recorded on each day (ID example: 2020.05.01)

• Data:

– Takes: General meta-data of each take (ID example: 2020.05.01-15:53)

⋄ Date: Date of recording

⁸Example hierarchy: RightShoulder→RightArm→RightForeArm→RightHand
⁹A full description of the <.BVH> format can be found at https://research.cs.wisc.edu/graphics/Courses/cs-838-1999/Jeff/BVH.html
¹⁰The hierarchical definition reminds strongly of the <.JSON> format, but is not directly compatible.

https://research.cs.wisc.edu/graphics/Courses/cs-838-1999/Jeff/BVH.html

4.2. Data Structure 29

4

⋄ Time: Time of recording
⋄ RecordingIDs: Downwards reference to the two recordings that make up this take

– Recordings: Meta-data of an individual motion recording (ID example: 2020.05.01-15:53_{L&F})

⋄ TakeID: Upwards reference to the take this recording belongs to
⋄ SkeletonID: Downwards reference to the skeleton that belongs to this recording
⋄ MotionID: Downwards reference to the motion that belongs to this recording
⋄ MetaData: Info on this recording

· Role: {’Following’, ’Leading’(, ’Alternating’)}
· Dancer: {’A’, ’B’(, ’C’, ’D’)}
· NrFrames: Total number of motion frames

– Motions: Raw/original motion data [Largest Collection]

⋄ NrFrames: Total number of motion frames
⋄ NrValues: Number of floats per motion frame
⋄ FPS: Frame rate in Hz
⋄ Motion: 2D array of motion data; Size=[NrFrames x NrValues]

– Motions_Cleaned: Pre-cleaned copy of ’Motions’; same parameters as ’Motions’ [Actual Dataset]
– Skeletons: Hierarchical body structures for each recording

⋄ ID: Symbol for the dancer this skeleton belongs to
⋄ Skeleton: Nested skeletal structure, analogous to the <.BVH> 'HIERARCHY'

• Analysis

– AnalysisResults: Results obtained by analysis of the dataset, containing the following documents

⋄ JointHistogram: Histogram counts for every joint’s channels, combining all ’Motions’
⋄ JointInfo_Original: Automatically extract joint limits, based on the ’JointHistogram’ data
⋄ JointInfo: Manually reviewed and adjusted copy of ’JointInfo_Original’ [Used by model]
⋄ PCA: PCA transformation data, based on 6D ’Motions_Cleaned’ [Used by model]

– Relations: Edge collection, for storing the hierarchy between all documents

• BHPO:

– BHPO_Results: Hardware info and optimization results for every BHPO run
– BHPO_Suggestions: HyperParamater suggestions for the BHPO Cluster

A visual representation of the relational graph structure inside the database is presented in Figures 4.6
& 4.7. These figures showcase the hierarchical nature of the data, as the data acquisition has taken place
on multiple ’Days’, each with multiple ’Takes’. Every ’Take’ has exactly two associated ’Recordings’, both
containing references to the ’Skeleton’ and ’Motion’ data that define them.

Figure 4.6: ArangoDB: Data acquisition � Recording day � Takes Figure 4.7: ArangoDB: Take � Recordings � Skeleton + Motion

4

30 4. Data Handling

4.3. Data Cleaning
Although the current state of MoCap technology is impressive, it is far from perfect and a lot of advanced
research is being done to automate cleaning procedures of MoCap data. This includes the application of
neural networks for the cleaning and re-rigging of MoCap data [Holden et al., 2015, 2017b; Shen and Yang,
2016; Yamane et al., 2010], however this laborious process is often still done manually. Advanced MoCap
cleaning algorithms are however not the core of this research and a simplified algorithm was devised, in an
attempt to remove the most problematic outliers in the data, as described in the following section.

Given that most deep learning (DL) algorithms are effectively black-box systems, it is extremely hard to
identify and resolve even minor issues after the fact. It is thus paramount that the data, on which the network
is being trained on, is analyzed upfront, cleaned and clearly understood.

4.3.1. Limit detection
Determining the distribution and limits of the state of each joint in the body is an important first step for
detecting outliers in the data, as well as gaining a better understanding of the statistical properties of our
dataset.

The fact that the data is defined as relative angles to each previous joint, allows for an easy channel-by-
channel¹¹ analysis, without the need for prior transformation of the data.

A fully automated algorithm was devised to analyze the data and detect the limits and outliers for each
joint. If the data were 100% accurate, detecting the limits would simplify to a min/max operation, however
due to the presence of outliers this is not possible. Therefore, a histogram was created for each channel and
the limits were chosen based on a probability threshold. The resulting histograms are shown in Figure 4.8,
with a full-scale version available in Appendix B (see Figure B.2). A singular example of the ’LeftArm’ joint is
presented in Figure 4.9.

Figure 4.8: Parameter Distributions: Relative joint channel histograms
Full-scale version is available in Appendix B (see Figure B.2)

The first thing to note is that the parameters are not normally distributed. This means that common mea-
sures like ’𝜇 ± 𝑋 ⋅ 𝜎’ cannot reliably be used for outlier detection. Having a clear analytical representation
of each parameter’s distribution allows for proper quantitative parameterized analysis. An extensive regres-
sion analysis was performed, attempting to find the best analytical fit based on Probability Density Functions’
(PDFs). Although the distribution of angles per joint is not an independently sampled stochastic variable, this

¹¹Each joint consists of three data channels: Roll (ϕ), Pitch (θ) & Yaw (ψ)

4.3. Data Cleaning 31

4

Figure 4.9: Parameter Distributions: LeftArm histograms
Red: Roll (ϕ) | Green: Pitch (θ) | Blue: Yaw (ψ)
Continuous lines: Distributions | Dotted lines: Limits

analysis does confirm that for most joints a standard Gaussian distribution is indeed a sub-optimal fit. In
general, symmetrical joints (e.g. head and spine) are best characterized by the symmetrical Laplace distribu-
tion; while asymmetrical joints (e.g. RightShoulder) are best described by the (potentially) asymmetrical skew
normal or Exponentially modified Gaussian (EMG|ExpoNorm) distributions. The histograms and details of the
PDF regression analysis can be found in Appendix B.

The results from this analysis are in line with the intuitive expectations of the human body and are an
analytical verification of the integrity of the dataset.

Due to the non-normality of the data, the means of detecting the joint limits was to threshold the resulting
histograms at±0.25% of the total count. For a generic continuous PDF this would be equivalent to the region
where the ’Cumulative Distribution Functions’ (CDF) is between [0.25%, 99.75%]¹².

The computed statistics per channel, as well as the percentage of detected outliers can be seen in Table 4.1.
Given the large number of samples, these limits provide a good estimation for the overall limits of the human
body. Furthermore, the key parameters presented in the table allow for assessing a few characteristics of each
joint:

• |𝑀𝑒𝑎𝑛 − 𝑃𝑒𝑎𝑘| ≈ 0 : Distribution is symmetrical, with probably a singular mode
• 𝑀𝑖𝑛&𝑀𝑎𝑥 ≈ ±180∘ : Channel allows for all possible values
• Invalid ≫ 0.5% : System had problems tracking this channel, the data should not be trusted

The main observations from this data are that most finger channels are highly unreliable and that the left
and right joint channels are not perfectly symmetrical.

Manual Review
Based on inspecting the histograms and detected limits a few logical manual modifications to the detected
limits were made:

• Knowing the symmetry of the human body, the limits of the joints were forced to be symmetrical as
well, by selecting the extrema of the two options.
This extended the limits by 4.6∘ on average.

• Any restrictions to the root joint (hips) were removed, to allow full 6-DOF freedom in space, to allow for
extending the dataset with dancers in any position.

¹²…or for a normally distributed parameter a cut-off at ≈ 3 − 3.5𝜎

4

32 4. Data Handling

JointName Min [°] Peak [°] Mean [°] Max [°] Range [°] Invalid [%]
Hips-ϕ -61.4 -0.2 1.4 69.6 131.0 0.5
Hips-θ -55.0 0.4 1.3 57.4 112.4 0.5
Hips-ψ -178.2 86.4 2.1 178.0 356.2 0.6
Spine-ϕ -41.4 0.4 -0.5 29.0 70.4 0.5
Spine-θ -23.0 1.8 11.0 75.6 98.6 0.5
Spine-ψ -38.2 0.8 2.1 53.0 91.2 0.5

Spine1-ϕ -53.2 -0.2 -1.1 49.4 102.6 0.5
Spine1-θ -39.0 2.4 3.4 52.0 91.0 0.5
Spine1-ψ -15.4 -0.2 0.5 17.8 33.2 0.5
Neck-ϕ -47.4 1.0 1.9 52.6 100.0 0.5
Neck-θ -45.6 1.2 2.1 61.6 107.2 0.5
Neck-ψ -49.6 -1.0 -2.0 46.4 96.0 0.5
Head-ϕ -45.8 1.6 1.2 49.8 95.6 0.5
Head-θ -63.8 -1.8 -5.9 57.2 121.0 0.5
Head-ψ -48.6 -1.6 -2.1 44.0 92.6 0.5

LeftShoulder-ϕ -16.0 9.2 13.6 57.2 73.2 0.5
LeftShoulder-θ -28.8 14.6 8.0 41.2 70.0 0.5
LeftShoulder-ψ -40.2 3.6 -0.5 32.0 72.2 0.6

LeftArm-ϕ -86.4 -24.6 -29.0 79.0 165.4 0.5
LeftArm-θ -56.4 34.0 16.2 69.8 126.2 0.5
LeftArm-ψ -105.0 -11.4 -28.9 37.2 142.2 0.5

LeftForeArm-ϕ -171.6 6.6 19.7 170.2 341.8 0.5
LeftForeArm-θ -79.0 -0.6 -12.5 69.0 148.0 0.5
LeftForeArm-ψ -163.8 -21.8 -40.5 47.4 211.2 0.6

LeftHand-ϕ -152.0 2.6 -0.5 149.6 301.6 0.6
LeftHand-θ -83.4 -20.2 -27.6 41.6 125.0 0.5
LeftHand-ψ -154.4 8.0 4.2 125.6 280.0 0.6

LeftHandThumb1-ϕ -75.0 -1.6 -1.3 70.8 145.8 0.7
LeftHandThumb1-θ -36.0 0.2 0.6 31.8 67.8 0.6
LeftHandThumb1-ψ -49.0 1.6 0.6 43.4 92.4 0.8
LeftHandThumb2-ψ 0.2 1.0 3.5 13.4 13.2 40.8
LeftHandThumb3-ψ 0.2 2.0 7.0 27.4 27.2 39.6
LeftHandIndex1-ϕ -83.4 3.8 -5.5 43.0 126.4 4.1
LeftHandIndex1-θ -25.0 0.2 -0.4 39.2 64.2 9.4
LeftHandIndex1-ψ -38.0 -0.4 -5.7 -0.4 37.6 66.6
LeftHandIndex2-ϕ -108.0 -1.0 -31.6 -0.4 107.6 49.7
LeftHandIndex3-ϕ -76.6 -1.0 -17.5 -0.4 76.2 48.4

LeftHandMiddle1-ϕ -82.8 0.4 -7.4 44.0 126.8 1.1
LeftHandMiddle1-θ -17.6 -0.4 0.6 27.0 44.6 20.0
LeftHandMiddle1-ψ -25.0 0.2 -1.3 9.0 34.0 0.9
LeftHandMiddle2-ϕ -108.2 -1.6 -28.0 -0.4 107.8 30.9
LeftHandMiddle3-ϕ -75.2 -0.8 -15.4 -0.4 74.8 30.8

LeftHandRing1-ϕ -81.2 -1.0 -8.1 44.4 125.6 0.8
LeftHandRing1-θ -25.6 -0.4 -0.0 14.8 40.4 16.0
LeftHandRing1-ψ -13.2 -0.2 1.1 18.8 32.0 1.0
LeftHandRing2-ϕ -108.2 -1.4 -29.8 -0.4 107.8 30.6
LeftHandRing3-ϕ -76.0 -0.8 -16.2 -0.4 75.6 30.4

LeftHandPinky1-ϕ -82.4 -1.6 -8.8 43.2 125.6 2.3
LeftHandPinky1-θ -30.4 -0.2 -0.6 17.2 47.6 1.0
LeftHandPinky1-ψ 0.2 0.4 4.8 27.6 27.4 50.7
LeftHandPinky2-ϕ -107.8 -3.2 -32.9 -0.4 107.4 37.5
LeftHandPinky3-ϕ -76.4 -1.6 -18.0 -0.4 76.0 36.0
RightShoulder-ϕ -55.4 -9.8 -13.0 18.8 74.2 0.6
RightShoulder-θ -31.2 12.6 6.1 42.2 73.4 0.5
RightShoulder-ψ -28.4 2.4 6.9 47.4 75.8 0.6

RightArm-ϕ -78.8 21.2 28.2 103.0 181.8 0.5
RightArm-θ -59.8 -0.8 13.2 72.0 131.8 0.5
RightArm-ψ -43.6 13.4 25.6 113.0 156.6 0.5

RightForeArm-ϕ -158.6 -13.8 -20.7 166.2 324.8 0.6
RightForeArm-θ -83.0 -1.2 -16.0 69.8 152.8 0.5
RightForeArm-ψ -132.8 16.4 35.4 164.0 296.8 0.6

RightHand-ϕ -170.8 -2.8 5.2 169.6 340.4 0.5
RightHand-θ -86.6 -41.4 -44.4 45.4 132.0 0.5
RightHand-ψ -166.6 -5.4 -4.3 167.0 333.6 0.6

RightHandThumb1-ϕ -82.6 -1.4 -0.6 89.4 172.0 0.8
RightHandThumb1-θ -44.2 0.2 0.1 34.6 78.8 0.7
RightHandThumb1-ψ -42.2 -1.4 -0.1 69.2 111.4 0.7
RightHandThumb2-ψ -14.2 -1.6 -4.0 -0.4 13.8 42.1
RightHandThumb3-ψ -28.0 -2.4 -7.8 -0.4 27.6 40.1
RightHandIndex1-ϕ -43.4 10.6 8.8 81.6 125.0 3.3
RightHandIndex1-θ -23.6 0.2 1.6 38.8 62.4 4.1
RightHandIndex1-ψ 0.2 0.2 5.2 35.0 34.8 77.6
RightHandIndex2-ϕ 0.2 15.8 32.1 107.0 106.8 35.1
RightHandIndex3-ϕ 0.2 10.6 17.4 75.4 75.2 33.5

RightHandMiddle1-ϕ -44.2 14.0 11.2 79.2 123.4 1.4
RightHandMiddle1-θ -15.4 -0.4 0.2 26.8 42.2 19.2
RightHandMiddle1-ψ -12.6 -0.4 -0.7 22.6 35.2 1.3
RightHandMiddle2-ϕ 0.2 0.8 32.0 107.2 107.0 19.8
RightHandMiddle3-ϕ 0.2 0.4 17.2 74.2 74.0 18.6

RightHandRing1-ϕ -44.2 17.4 13.4 80.2 124.4 1.0
RightHandRing1-θ -26.6 -0.2 -0.7 14.8 41.4 1.3
RightHandRing1-ψ -23.6 -0.4 -3.1 12.2 35.8 1.2
RightHandRing2-ϕ 0.2 28.0 36.4 107.2 107.0 19.8
RightHandRing3-ϕ 0.2 0.2 19.3 74.0 73.8 18.5

RightHandPinky1-ϕ -41.8 13.8 15.5 82.6 124.4 3.2
RightHandPinky1-θ -28.8 -0.2 -1.7 16.2 45.0 1.6
RightHandPinky1-ψ -34.4 -0.4 -6.3 -0.4 34.0 42.7
RightHandPinky2-ϕ 0.4 29.2 41.0 108.2 107.8 26.1
RightHandPinky3-ϕ 0.2 11.4 22.1 75.8 75.6 23.2

LeftUpLeg-ϕ -26.4 5.0 13.9 105.0 131.4 0.5
LeftUpLeg-θ -80.6 0.6 -11.5 41.6 122.2 0.5
LeftUpLeg-ψ -53.6 0.8 7.3 99.6 153.2 0.5

LeftLeg-ϕ -173.8 -3.8 -12.6 167.2 341.0 0.5
LeftLeg-θ -18.6 1.4 25.8 84.6 103.2 0.5
LeftLeg-ψ -145.8 7.0 14.3 163.4 309.2 0.5
LeftFoot-ϕ -55.0 -4.0 -6.6 34.8 89.8 0.5
LeftFoot-θ -40.8 -7.0 -4.6 54.4 95.2 0.5
LeftFoot-ψ -20.0 15.0 16.7 59.2 79.2 0.5

LeftToeBase-ϕ -7.2 -0.2 -0.0 10.8 18.0 0.6
LeftToeBase-θ -56.2 -0.2 -3.4 33.6 89.8 0.6
LeftToeBase-ψ -28.8 0.2 0.2 20.2 49.0 0.7
RightUpLeg-ϕ -144.8 -2.0 -14.8 97.0 241.8 0.5
RightUpLeg-θ -85.0 0.6 -18.7 33.6 118.6 0.5
RightUpLeg-ψ -140.0 -4.8 -8.1 102.8 242.8 0.5

RightLeg-ϕ -175.8 3.0 2.0 175.0 350.8 0.5
RightLeg-θ -11.4 8.8 33.7 86.2 97.6 0.6
RightLeg-ψ -172.0 -0.6 0.3 170.0 342.0 0.5
RightFoot-ϕ -37.2 -2.6 3.8 48.2 85.4 0.6
RightFoot-θ -43.8 -11.4 -7.7 53.8 97.6 0.6
RightFoot-ψ -64.2 -23.8 -17.4 42.2 106.4 0.6

RightToeBase-ϕ -109.0 0.2 -0.9 26.0 135.0 1.1
RightToeBase-θ -71.0 -0.6 -2.5 39.2 110.2 0.8
RightToeBase-ψ -121.4 0.2 -2.3 27.8 149.2 1.3

Table 4.1: Parameter Distributions: Dataset limits and statistics per channel

4.3. Data Cleaning 33

4

• The following channels should allow for full 360∘ rotation, even though the true extrema are rarely
occurring;
e.g. the ’LeftForeArm-ϕ’ channel has a detected range of 341.8∘, but this restriction is artificial, due to
the method chosen for detecting the limits.

– { Left, Right }Arm-{ ϕ, ψ }
– { Left, Right }ForeArm-{ ϕ, ψ }
– { Left, Right }UpLeg-{ ϕ, ψ }
– { Left, Right }Leg-{ ϕ, ψ }

4.3.2. Skeletal Simplification
Based on the channel limits and spike detection algorithm, as described in Appendix B, outliers in the data
were detected. Throughout this process, a few key observations were made with respect to the finger joint
channels:

• For the finger segments #2&3 only the ’ϕ’ channel (thumb: only ’ψ’ channel) are present, all other
channels are ’0’ for all time steps.
This is anatomically correct, as the final finger segments can only rotate around one axis.

• All finger joints were tracked unreliably.
The mean and maximum limit-independent outliers¹³ were as high as 19.25% and 77.08%, compared
to only 0.06% and 0.83% for all other joint channels.

Given the fact that the finger data is not only highly unreliable, but also makes up for more than half of
the total dataset, the decision was made to remove the finger joint channels from the dataset. The reduced
dataset size means faster processing times, as well as reduced requirements for data storage, which are both
beneficial towards reducing the overall hardware requirements for this research. This reduced the number of
input parameters per pose from 156 to 66.

4.3.3. Data Filtering
The filtering and cleaning of MoCap data is an entire field of research by itself that increasingly utilizes neural
networks to improve accuracy and mostly performance. One of the reasons for the need for automation in
this field is that even today a lot MoCap data cleaning is still done manually [Aristidou et al., 2018a; Holden,
2018].

Overall the recorded dataset looks fairly good, based on visual inspection, with the exceptions of the
data related to the fingers which has already been removed. However, the remaining outliers still need to
be smoothed out, to avoid sudden jumps in the output data, which could have a detrimental effect on the final
drone flight path.

To achieve this, an exponential ’spherical linear interpolation’ (SLERP) filtering algorithm was created.

Dynamic Exponential Filtering
The decision was made to use an exponential smoothing function with a fixed time-based decay rate. Con-
sidering that this algorithm only requires information of the previous time step, it allows for fast real-time
filtering, when required.

At each time step each channel was updated according to Equation 4.1.

̂𝑝𝑡 = 𝑝𝑡 ⋅ 𝑅 + ̂𝑝𝑡−1 ⋅ (1 − 𝑅) (4.1)

Equation 4.1: Filtering: Exponential filtering

Given that filtering is to occur in discrete time, an effort was made to define an analytical relation between
the desired time-based decay rate of the data and the discrete filter-ratio parameter 𝑅. This relation is defined
in Equation 4.3, where 𝑟 and 𝑡1/𝑟 define the desired decay ratio and the time to reach it respectively, as defined
in Equation 4.2.

¹³Percentage of outliers −0.5%, attributed to the forced cut-off, due to the limit detection.

4

34 4. Data Handling

𝑝0 = 1
𝑝>0 = 0

̂𝑝𝑡1/𝑟 =
1
𝑟

𝑡1/2 ∶ The system’s half-life

(4.2)

Equation 4.2: Filtering: Exponential decay time-ratio

The parameter 𝑀 defines the relation between the discrete 𝑅 and continuous 𝑟. It was computed nu-
merically through simulation for 𝑟 = {2, 4, 5, 10, 20, 40, 50, 100}¹⁴ and approximated by regression of the
simulation results, for all other values of 𝑟, as defined in Equation 4.3.

𝑅 (𝑟, 𝑡1/𝑟, FPS) =
�̂�

FPS

�̂� (𝑟, 𝑡1/𝑟) =
1

𝑡1/𝑟 ⋅ 𝑀

𝑀 (𝑟) = 0.190851 + 1
𝑟 ⋅ 0.416355

−−
𝑀 (𝑟 = 2) = 1.438106
𝑀 (𝑟 = 10) = 0.436192
𝑀 (𝑟 = 100) = 0.218457

(4.3)

Equation 4.3: Filtering: Parameterized dynamic exponential filtering parameter

This ensures comparable time-based behavior, even at re-sampling to different FPS rates or the desire to
adapt the decay rate, for more or less aggressive filtering.

The application of a more advanced method, such as a Kalman filter would perhaps have yielded better
results, but considering that the data cleaning aspect does not define the core of this research, the deliberate
choice was made for an algorithm that was faster to implement.

SLERP
For interpolation of 3D angles, direct interpolation of each Euler-angle channel individually can lead to some
undesired visual artifacts; even when accounting for discontinuities manually. The spherical linear interpola-
tion (SLERP) algorithm interpolates smoothly between two sets of 3D rotations. It computes first computes
the points on the unit sphere that both sets of angles point to and then interpolates linearly along the great
circle arc between these points.

This results in the desired visual effect of angular interpolation. SLERP was utilized in conjunction with
the exponential filtering algorithm, by moving a factor of 𝑅 between the two computed points along the great
circle arc, for each time step.

Outlier repair
To filter the motion and its derivative, exponential smoothing was applied. For the filtering of the pose and
angular velocity, exponential smoothing with ’𝑡1/10 = 0.25s’ was applied. This means that after 250ms only
10% of the current pose is retained in the filtered output. This filtering constant avoids the introduction of
extensive lag, for when the MoCap system is performing as expected and does not record any outliers.

If only the current frame is detected as an outlier, but the previous frames are valid, the next pose will be
estimated based on a first-order approximation, as defined in Equation 4.4.

¹⁴In Equation 4.3 on the three most common values of𝑀 are presented for 𝑟 = {2, 10, 100}, but all other values were used to determine
the regression coefficients.

4.4. Data Preparation 35

4

̂𝑣𝑡 = (𝑝𝑡−1 − 𝑝𝑡−2)
𝑣𝑡 = ̂𝑣𝑡 ⋅ 𝑅 + 𝑣𝑡−1 ⋅ (1 − 𝑅)
𝑝𝑡 = 𝑝𝑡−1 + 𝑣𝑡

(4.4)

Equation 4.4: Filtering: Pose estimation, by first-order approximation, if 𝑝𝑡 is invalid

If the current frame, as well as either of the two previous frames have been detected as an outlier, then a
slow return to the mean would occur, using a filter with slower convergence 𝑡1/10 = 10𝑠. This could happen
e.g. when a body part is blocked from tracking for a while. The process is detailed in Equation 4.5.

𝑝𝑡 = 𝜎𝑝 ⋅ 𝑅 + 𝑝𝑡−1 ⋅ (1 − 𝑅) (4.5)

Equation 4.5: Filtering: Pose estimation, by return to mean, if 𝑝𝑡& (𝑝𝑡−1‖𝑝𝑡−2) are invalid

4.4. Data Preparation
Given the newly acquired and filtered dataset, the final steps, before passing the data into the neural network
framework, is to transform it into a feature space that neural networks can better process and to split the full
dataset for training and testing.

4.4.1. Data Normalization
Considering that the data is to be processed by a type of recurrent network, with ’tanh’ and ’sigmoid’ activation
functions, the data is required to be the range of [−1,+1].

The simplest form of data normalization is to scale the data to fit into the required range. This was achieved
by dividing all data by the maximum value possible for each data type:

• Positions: 5 [𝑚]
• Angles: 180 [∘]

However, there are more advanced data normalization techniques available, transforming the original fea-
ture space to aid the training process.

6DRotations
Euler angles have twomajor issues: gimbal lock and discontinuities. The usage of quaternions for representing
3D rotations in computers solves these issues, at the cost of requiring constant re-normalization.

Neural networks are suboptimal at learning discontinuous relations in the data, as their underlying func-
tions are fully continuous and differentiable. The fact that a neural network is end-to-end differentiable is a
vital requirement for the application of back propagation. Based on this alone it is easy to see that the dis-
continuity present in Euler angles are hard for neural networks to learn. Because not all combinations of four
number define a valid quaternion, using quaternions as the basis to define 3D rotations in neural networks
can pose significant issues, as the networks output might result in an invalid configuration.

Given that our dataset is defined as relative angles, rather than absolute, not all channels contain discon-
tinuities, but unfortunately a few still do. Every channel with limits of [−180,+180], is discontinuous at the
limits. Figure 4.10 illustrates the issue of rotational discontinuity in 2D.

Figure 4.10: Example of a discontinuous representation of rotations in 2D
Source: [Zhou et al., 2019b]

4

36 4. Data Handling

Zhou et al. have researched the performance of neural networks given various means of formatting 3D
rotations and found the mean reconstruction error, on a pose estimation task, for Euler angles and quaternions
to be 6.98∘ and 3.32∘ respectively [Zhou et al., 2019b]. The researchers devised a continuous representation
of 3D rotations utilizing 6 independent variables, which had a mean reconstruction error of only 0.49∘ and
outperformed all other rotational representations on two other tasks that it was tested on.

At first, the idea of a 6-dimensional continuous representation for 3D rotations seems unintuitive, but the
simplest explanation shows that it is a pre-normalized truncated rotation matrix. Rotations in 3D can also be
expressed by a 3 x 3 rotation matrix, which is a set of 3 orthonormal vectors defining a coordinate system in
space, with a fixed rotation to the reference frame.

Firstly, consider the fact that orthonormality means that any of the 3 vectors can be reconstructed by the
other two based on the cross product. Then, it becomes apparent that any 2 of the 3 vectors contain all the
information of the full rotation matrix. Thus (2 ⋅ 3 =) 6 values contain all required information.

Secondly, consider the fact that the matrix only needs to contain information on rotation and that scaling
and sheering of space is irrelevant. This means that the requirement of vector normality is also not strictly
required to hold information on the rotation alone.

Lastly, having two vectors of variable length, it is not required that both vectors are orthogonal to each
other, as one can reconstruct the missing 3ʳd vector, based on the cross product, as long as the vector remains
in the same plane.

In the end it is essentially the process of reconstructing an orthonormal coordinate system from any two
vectors in space, enabling any 2 vectors to fully define a singular set of 3D rotations in space. The only exception
is when both vectors are perfectly parallel. This edge case can be checked for and the limited precision of
computers causes floating point vectors to almost never be truly parallel.

The set of equations that allow any 6 parameters to be converted in a valid set of 3D rotations is defined
by Equation 4.6. Analogous to this, the set of equations that allow any 2 parameters to be converted in a valid
set of 1D rotations is defined by Equation 4.7 and visualized in Figure 4.11.

𝑅6𝐷 = [𝑎 𝑏 𝑐 𝑑 𝑒 𝑓] → [
𝑎 𝑑
𝑏 𝑒
𝑐 𝑓

] = [𝑥𝑟𝑦𝑟]

𝑥𝑛 =
𝑥𝑟
|𝑥𝑟|

𝑧𝑛 =
𝑥𝑛 × 𝑦𝑟
|𝑥𝑛 × 𝑦𝑟|

𝑦𝑛 = 𝑧𝑛 × 𝑥𝑛

𝑅𝑀 = [𝑥𝑛𝑦𝑛𝑧𝑛] = [
cos𝜙 cos𝜃 cos𝜙 sin𝜃 sin𝜓 − sin𝜙 cos𝜓 cos𝜙 sin𝜃 cos𝜓 − sin𝜙 sin𝜓
sin𝜙 cos𝜃 sin𝜙 sin𝜃 sin𝜓 + cos𝜙 cos𝜓 sin𝜙 sin𝜃 cos𝜓 + cos𝜙 sin𝜓
− sin𝜃 cos𝜃 sin𝜓 cos𝜃 cos𝜓

]

(4.6)

Equation 4.6: N-D Rotations: Definition of 6D representation of 3D rotations

𝑅2𝐷 = [𝑎 𝑏] → [𝑎𝑏] = 𝑥𝑟

𝑥𝑛 =
𝑥𝑟
|𝑥𝑟|

= [𝑎𝑛𝑏𝑛]

𝑦𝑛 = [
−𝑏𝑛
𝑎𝑛]

𝑅𝑀 = [𝑥𝑛𝑦𝑛] = [
cos𝛼 − sin𝛼
sin𝛼 cos𝛼]

(4.7)

Equation 4.7: N-D Rotations: Definition of 2D representation of 1D rotations

4.4. Data Preparation 37

4

Figure 4.11: N-D Rotations: Visualization of 2D representation of 1D rotations

The benefit of this methodology is the improved final performance of the neural network, at the cost of
increasing the number of input parameters to the system by a factor of 2 for every rotation.

This increased the number of input parameters per pose from 66 to 129.

Principal Component Analysis
’Principal Component Analysis’ (PCA) was deployed as a secondary data normalization step. PCA is the pro-
cess of extracting a new set of orthogonal basis vectors, from a n-dimensional dataset, which are ranked ac-
cording to the explained variance of each component [Jolliffe, 2002]. Each extracted vector is called a principal
component (PC).

An example of this is the task of sampling the height and weight of a human. A sample of any two values
is most likely not going to be a realistic or valid combination. When plotting every sample of height vs weight
for humans, a clear positive correlation between height and weight can be found. Identifying the PCs for
this dataset in 2D is analogous to finding the major and minor axis when attempting to fit an ellipse onto
the dataset. The resulting pair of principal components could then be labeled as e.g. ’size’ (vector following
average weight for a given height) and ’fitness’ (analogous to BMI). This pair of feature vectors would describe
the dataset much better than the original feature space. Figure 4.12 shows an example of PCA on 2D Gaussian
scatter data, illustrating the example state above.

Application of the PCA transform matrix requires processing of all data in parallel and cannot be sequen-
tially generated. Due to this restriction the process is limited by the RAM in the processing hardware. There-
fore the transform was applied using only 50% of the original dataset.

The resulting transformwas whitened by dividing the output vectors by their standard deviations resulting
in a set of zero-centered feature vectors normalized to map the [−𝜎,+𝜎] to [−1,+1].

As the final input has to be within the range of [−1,+1], but should include all original data, as an addi-
tional step the feature vectors were divided by a factor of 6 to ensure that [−6𝜎,+6𝜎] were mapped, theoret-
ically resulting in 99.9999998% of all data being included within this range.

4

38 4. Data Handling

Figure 4.12: PCA: Example of PCA on Gaussian scatter data in 2D
Source: Adapted from Wikimedia Commons

The resulting transform has a multitude of benefits:

• Random-Sampling will likely be within distribution
– Limits are harder to exceed
– Output looks more ’natural’

• Whitening of input data
– Uncorrelated feature parameters
– Equal standard deviation
– Zero centered data

• Vectors sorted by influence on final pose

Using the 6D rotations and the PCA pre-processing steps, the original data was successfully transformed
into a new feature space that is much easier for the neural network to learn.

Human interpretability of the principal components is another positive side effect of the PCA transform.
Humans are extremely adept at detecting and labeling the most discerning factors in all kinds of data; analo-
gous to the PCA transform.

This means that in most cases the resulting feature vectors of the PCA transform can be attempted to be
interpreted and labeled by humans. Table 4.2 presents the results of this interpretation.

As an example, Figure 4.13 visualizes PC #14, clearly showing the bending of the spine.
In the default BVH feature space the zero vector is defined to be the T-Pose, but in the transformed PCA

feature space the zero vector denotes the mean pose of the dataset. The resulting mean pose can be seen in
Figure 4.14.

A few observations can be made based on this mean pose:

• The pose is (almost) symmetrical
• Limbs are slightly bent
• Arms are located forward, not to the side
• Foot contact with the floor is maintained
• (Estimated) COG is above base of support created by feet
• No limits are exceeded

https://commons.wikimedia.org/wiki/File:GaussianScatterPCA.svg

4.4. Data Preparation 39

4

PC# Human Label
1 Global position - right→ left
2 Global position - left→ right
3 Reaching down→ up
4 Arms downwards→ upwards
5 Opposing extremity correlation (’walking’)
6 Arms open→ close
7 Arms open→ close (as well)
8 Same-side extremity correlation
9 Spine arching backwards
10 Leaning to the right
11 !No directly interpretable relation!
12 !No directly interpretable relation!
13 Reaching out with left arm
14 Spine bending right→ left
15 Crossing legs (for turn)
… PCs are getting less and less tangible

Table 4.2: PCA: Human Interpretation of Principal Components

Overall all observations stated here are intuitively to be expected from the human body and can be seen
as verification that the resultant pose is indeed representative of the average (dancing) human pose.

Data Dimensionality Reduction is another potential benefit achievable through the PCA transform.
Figure 4.15 shows the explained standard deviation for each of the 129 principal components, as well as

the cumulative total.
Based on the cumulative total, 50% of the data can be explained by just the first 27 components, 80%

by the first 62 and 90% by the first 82 respectively. This means that for the last example (129 − 82 =) 47
components can be removed, while retaining 90% of the original information. In other words, 37% of the
input can be removed with only 10% of the output being lost.

Figure 4.16 shows the favorable progression of this trade-off in PCA feature space.
This was ultimately not applied as it was not desired to remove information, before the desired end result

has been achieved. However it can be a powerful tool when further optimizing the final model.

4.4.2. Dataset Splitting
Last but not least, the data had to be split for the application in the neural networks training framework.

Chunk Splitting
Initially the entire 2-6 minute takes were fed into the neural network, but the decision was made to split each
take into smaller chunks. This is due to the ’backpropagation through time’ (BPTT) increasing the training
time substantially for each additional recurrent pass. Therefore, a trade-off had to be made between:

• Longer chunks → longer training times
• Shorter chunks → less long-term dependencies

After visual inspection of the dance data and consultation with a professional dancer, it was deduced that
10 seconds should be theminimum to include a snapshot ofmeaningful dance interaction, which holds enough
information about multiple motions and thus long-term dependencies. Dance segments are usually expressed
in 8-counts, with 7.5−26 counts per chunk (10 seconds per chunk at 45−156 BPM¹⁵) this results in ≈ 1−3
dance segments per chunk.

Given that not all take durations are evenly divided in chunks of a given size the remainder was discarded.
With a chunk duration of 10 seconds, this means that on average 5 seconds of data were discarded towards
the end, but as the beginning and end of each take are indicated by a few seconds of holding the T-Pose, this
was not deemed considered a substantial loss.

¹⁵Lento – slow (45–60 BPM) & Allegro – fast (120–156 BPM)

4

40 4. Data Handling

Fi
gu

re
4.
13

:P
C
A
:P

C
#1

4
-
Sp

in
e
be

nd
in
g
ri
gh

t
→

le
ft

4.4. Data Preparation 41

4

Figure 4.14: PCA: Zero/Mean Pose
Transformation: Rotated 25∘ along the global upward axis, to align with the principle planes for better visualization.

Figure 4.15: PCA: Influence Ranking

Training, Test & Validation Set
To ensure independent testing of the neural network’s results, the full dataset was split three-way. A deliberate
decision was made to make the split chronological, to ensure that the test and validation data is indeed truly
unseen data, as at the time of recording not even the original dancers had envisioned the output.

The data was split according to the following rule set:

1. Training 80% : Used for training the neural network & computing the PCA¹⁶
2. Test 10% : Used for testing the neural network & determining the EarlyBreak point
3. Validation 10% : Used for testing the BHPO & validating the neural network

4

42 4. Data Handling

Figure 4.16: PCA: Data Dimensionality Reduction

4.5. Dataset Overview
A summary of the key parameters of our dataset are presented in Table 4.3.

Dataset Summary
Parameter Value Unit

Motions
Nr. of Dancers 2 [#]
Nr. of Takes 147 [#]
Nr. of Frames 6, 647, 486 [#]
Total Duration 554 [min]

Data
Raw Data Size 12.3 [GB]
Actual Data Rate 22.7 [MB

min
]

Theoretical Min. Data Rate 7.1 [MB

min
]

Labels
Total Nr. of Labels 361 [#]
Avg. Nr. of Labels 2.5 [Labels

Take
]

Recording
Frame rate 100 [FPS]
Nr. of Markers 54 [#]
Nr. of Camera 16 [#]
Avg. footage per recording day 79.1 [min

day
]

Table 4.3: AKOB MoCap Dataset Summary

After splitting the data, the following number of 10 second chunks are to be fed into the final network:

1. Training: 2596
2. Test: 324
3. Validation: 324

4.5.1. AMASS MoCap Dataset Comparison
As previously mentioned, there appears to be no publicly available MoCap dataset which satisfies the require-
ments for this research, however this does not mean that there are no valuable insights to be gained from
comparing our newly acquired dataset to these publicly available datasets.

¹⁶Only 62.5% of the training dataset was used for the PCA, corresponding to 50% of the total dataset

4.5. Dataset Overview 43

4

Table 4.4 compares our dataset to those MoCap datasets that were used to create the AMASS dataset, the
largest publicly available MoCap dataset, at the time of writing¹⁷.

Dataset #Markers #Subjects #Motions #Minutes Avg. Take Length [𝑠]
AKOB 54 2 147 554 226.1
AMASS N/A 460 13944 2710 11.7
KIT 100 55 4232 662 9.3
CMU 42 106 2083 552 15.8
BMLrub 41 111 3061 523 10.2
Eyes Japan 37 12 750 364 29.0
BMLmovi 67 86 1801 169 5.6
MPI HDM05 41 4 215 145 40.3
BMLhandball 41 10 649 102 9.4
Total Capture 53 5 37 41 66.6
EKUT 51 4 349 31 5.2
ACCAD 82 20 252 27 6.3
PosePrior 53 3 35 21 35.6
MPI MoSh 89 19 77 17 12.8
SFU 53 7 44 15 20.7
Transitions 49 1 110 15 8.2
DFaust Synthetic 67 10 129 10 4.8
Human Eva 39 3 28 8 18.1
TCD Hands 85 1 62 8 7.7
SSM 86 3 30 2 3.7

Other noteworthy MoCap datasets
Human3.6M ? 11 ? 298¹⁸ ?
LAFAN1 ? 5 77 ≈276 ≈215

Table 4.4: MoCap Dataset Comparison
Source: https://amass.is.tue.mpg.de/dataset, [Ionescu et al., 2014] and [Harvey et al., 2020]

The main take-aways from these comparisons are twofold:
Firstly, in terms of duration (data size) our dataset is the second largest to date, which should give confi-

dence that enough data was acquired to be used in further research.
Secondly, almost all other datasets are focused on short (< 1 min) takes, consisting of a large variety

of different motions, which are primarily used for motion classification or short-term motion prediction. In
contrast, our dataset consists of long (> 2 min) takes and only a singular motion type; dancing. This leads
to the assumption that we have created the largest dance MoCap dataset to date, as well as the only dataset
that recorded simultaneous motion of more than one subject on a large scale.

¹⁷Please note that the values stated here differ from those stated in their official paper, this is because the dataset is still being expanded.
The data presented here is taken from https://amass.is.tue.mpg.de/dataset on 11.03.2021 (Login required).
For references to the original data and papers please consult the AMASS website at amass.is.tue.mpg.de, or their original paper [Mah-
mood et al., 2019].

¹⁸Not explicitly stated in original paper. Estimation based on 3, 578, 080 Frames, taken by 4 Cameras at 50 Hz [Ionescu et al., 2014].

https://amass.is.tue.mpg.de/dataset
https://amass.is.tue.mpg.de/dataset
amass.is.tue.mpg.de

5
DanceNetBHPO Framework

Training neural networks requires a framework to perform and monitor the training process and results. For
this research the custom ’DanceNet - BHPO’ framework was developed, built on top of the PyTorch machine
learning ecosystem, written in Python 3.7.

The framework consists of four major elements, each with their unique requirements and use within the
training and testing procedure:

1. DanceNet : The (various) neural network architecture(s) to be trained
2. Training Framework: Used for training and monitoring the network
3. Optimization Framework: Used for ’Bayesian Hyperparameter Optimization’ (BHPO)
4. Cluster Framework: Used for BHPO on multiple machines in parallel

This chapter describes the inner workings of and custom development performed on the latter three frame-
works, while Chapters 6 and 7 detail the respective architectures used for the DanceNet neural network frame-
work core. This means that in what follows, only the general developed framework is described. No network-
specific parameters or methods are discussed.

5.1. Training Framework
A neural network by itself is essentially a collection of mathematical relations, combined with a set of variable
parameters used in these expressions. But the network itself does not learn, it requires a framework to optimize
all its parameters.

The framework is split into three stages:

1. Initialization: Setup the network and all required elements
2. Training: Train the network iteratively, until one of the exit criteria are met
3. Post-processing: Evaluate the final network and generate the resulting output motions

The flowchart in Figure 5.1 showcases these stages and the steps taken to train the neural network over
the duration of many iterations and epochs.

In addition to the backend code that performs the actual training procedure, a matching front-end was
developed to visualize the training procedure to the researcher in real-time. Screenshots of this graphical user
interface (GUI) can be found in Appendix C.

The following section describes some parameters and algorithms used in the framework in detail, as they
are important to understand some of the major elements of the process.

5.1.1. Reality gap
The reality gap is a performance indicator of the network, intended to represent the divergence of the network’s
performance on the test dataset. Numerically it is defined by the ratio of the test loss over the training loss,
as shown in Equation 5.1.

44

5.1. Training Framework 45

5

Figure 5.1: BHPO: Neural Network Training Framework

5

46 5. DanceNetBHPO Framework

RG = LossTest
LossTraining

(5.1)

Equation 5.1: Reality Gap

The reality gap metric allows for detecting overfitting. When the training loss keeps decreasing, but the
test loss starts diverging and gets worse, the reality gap will start to rise above the desired state of ≈ 1.

The reality gap was close to the desired state of ≈ 1 for all performed experiments, showing a clear signif-
icance of the trained model’s application on the test dataset.

5.1.2. Early Breaking
To avoid overfitting, and take the guesswork out of selecting an appropriate number of epochs for training, a
custom criterion was developed to decide when to stop the training procedure prematurely.

A simplified representation of the ’Early Break’ algorithm is defined in Algorithm 5.1, while a more detailed
example can be found in Appendix D (see Algorithm D.1).

Algorithm 5.1 Early Break Criterion - Simplified

! DISCLAIMER: This is partial pseudo-code !

%++
% Filter Data
%++

def GetExpAvg(data,p=0.9):
ExpAvg = []
for i,val in enumerate(data):

ExpAvg.append(val if (i==0) else (ExpAvg[-1]*p + val*(1.0-p)))
return ExpAvg

def Get_d(data):
return [data[i+1]-data[i] for i in range(len(data)-1)]

def GetdExpAvg_special(data)
return GetExpAvg(Get_d(GetExpAvg(data)))

%++
% Early Break
%++

Losses = {...} # Results from Training
breakcounter = 0

def CheckEarlyBreak(EarlyBreakFactor=10**(-4),NrIterations_Min=NrEpochsPerIteration,
AllowPositiveGradient=False):

if NrIterations>NrIterations_Min:
#--- Compute and Filter Derivatives ---
dLosses = Get_d(Losses)
dLoss_ExpAvg = GetdExpAvg_special(Losses)
#--- Get Threshold ---
threshold = max(abs(dLosses)) * EarlyBreakFactor
#--- Check Conditions---
if abs(dLoss_ExpAvg)<threshold or (not AllowPositiveGradient and dLoss_ExpAvg>0):

breakcounter+=1
if breakcounter>=5:
return True

return False
else:

breakcounter = 0
return False

In a nutshell, the algorithm determines when the change in test loss has become too small to make a sig-
nificant difference to the final result, thus a local (preferably global) minimum has been reached. For common
loss functions with a strict minimum it also avoids divergence by preventing positive loss gradients.

5.2. Optimization Framework 47

5

The criterion is applied to a twofold filtered derivative of the test loss. First the loss itself is exponentially
filtered and the derivative of this signal is then filtered again; both exponential filters use a smoothing factor
of 0.9. This ensures a suitably slow signal that only reacts to true changes in the overall course of the loss
function and ignores most of the noise present in the process.

5.1.3. Hyperparameters
Each neural network’s design contains certain design decisions, which are mostly expressed in the type of
network to use, their arrangement and certain hyperparameters that govern the design of the network or
optimization procedure. These hyperparameters are commonly selected by the researcher and are, unlike the
weights and biases of the network, not optimized in the training process.

The hyperparameters that are not related to any specific architecture are defined in Table 5.1.

Hyperparameters
Parameter [Default] Value Limits Description

Optimizers
Learning Rate Variable [10−6, 10−3] Backpropagation step size, relative to loss gradient

Stochastic Gradient Descent (SGD)
Momentum 0.906 [0.1, 1.0] The exponential decay rate for the gradient

Adaptive Moment Estimation (Adam)
𝛽1 0.9 [0.5, 1 − 10−3] The exponential decay rate for the first-moment estimates
𝛽2 0.999 [0.9, 1 − 10−5] The exponential decay rate for the second-moment estimates

Regularization
Learning Rate Decay 0.9 [10−2, 1.0] Learning rate reduction factor, once per epoch:
Weight Decay 10−2 [10−10, 10−1] L2 penalty: pulls parameters towards 0, to aid attention
Batch Size 8 [1, 16] Number of motions to be processed in parallel

Early Break
Nr. of Epochs 25 [2, 50] Maximum number of epochs to train
EB Threshold 10−4 [10−5, 10−1] EarlyBreakFactor to determine threshold (see Algorithm 5.1)

Table 5.1: Hyperparameters: Training Framework

In theory many more hyperparameters are present, as any hard-coded variable set by the researcher could
affect the training results. The exponential decay rate and the minimum breakcounter of the EarlyBreak
criterion, as defined in Algorithm 5.1, are such examples. The hyperparameters presented here are the most
relevant for optimization. The process of optimizing these hyperparameters is described in detail in the next
section.

5.2. Optimization Framework
The process of training neural networks, through means of backpropagation and gradient descent, is an ad-
vanced optimization technique, which simultaneously improves a large set of weights and biases to achieve a
pre-defined goal. Once completed, this process has usually found a local (preferably global) minimum in the
loss function in which the optimization process has come to a halt and does not progress any further.

The set of hyperparameters used to run this specific training process, is usually an educated guess by the
researcher. Hyperparameters are by definition not optimized by the training process and are hence victim to
the researcher’s own biases. To take the guesswork out of designing the neural network and its training frame-
work, a secondary optimization loop was designed to automate the process of hyperparameter optimization:
The ’Bayesian Hyperparameter Optimization’ (BHPO) framework. The general process of hyperparameter
optimization is visualized in Figure 5.2.

To perform the hyperparameter optimization various methods can be utilized:
The simplest of which would be to perform a singular parameter sweep to determine the local optimum along
the 1-dimensional slice of the feature space, for each hyperparameter. The primary downsides of this method
are twofold: Firstly, optimizing along a certain axis requires sampling at (regular) intervals along this axis and
hence requires a large number of training runs to find the local optimum. Secondly, given a large number of
hyperparameters the optimization space is multi-dimensional and optimizing a singular parameter at a time
might not necessarily lead to the global optimum.

Additional complexity is given by the fact that not all hyperparameters are continuous, as some are only
able to be represented by integers (e.g. the number of layers), or an even more limited representation such as

5

48 5. DanceNetBHPO Framework

Figure 5.2: BHPO: Hyperparameter Optimization Outline

powers of two (2X - e.g. batch size, on some machines). This means that the resulting loss landscape is not a
continuous manifold, but can contain sharp discontinuities.

Given these issues, a more advanced optimization technique is desired to achieve the goal of hyperparam-
eter optimization.

5.2.1. Bayesian Optimization
As the name already suggests, the BHPO utilizes a Bayesian optimization algorithm. The approach is Bayesian
as it utilizes the previous results as a-priori knowledge and keeps on improving its estimation for the mean (𝜇)
and variance (𝜎2) of the loss landscape after every new result.

This algorithm is particularly useful for optimizing hyperparameters for neural networks, as it allows for
simultaneous optimization of all parameters, can be applied iteratively and performs even for sparse results.
The algorithm performs the following steps to iteratively optimize the underlying process:

Algorithm 5.2 Bayesian Hyperparameter Optimization

0. Initialization: Initial definition of hyperparameters by researcher OR random guess
1. Training: Evaluate process and compute loss
2. Save Results: Store hyperparameter set and associated loss as a-priori data-point
3. If not enough data-points are known yet to estimate loss landscape: Jump to Step 0.
4. Update Estimation: Generate (1ˢt iter.) or update Gaussian process to estimate 𝜇 and 𝜎2 of the loss landscape
5. Find max. Utility: Evaluate utility function of estimated loss landscape, to find feature vector at max. utility
6. Suggest new HPs: Define new set of hyperparameters equal to the feature vector at maximum utility
7. Jump to Step 1.

Utility Function
Based on the estimated loss landscape the predefined utility function determines the utility for each point
in the N-dimensional feature space. Various utility functions can be defined, the simplest ’Upper Confidence
Bound’ (UCB) utility function is defined by Equation 5.2.

5.2. Optimization Framework 49

5

Utility (𝑃) = 𝜇est (𝑃) + 𝜅 ⋅ 𝜎est (𝑃) (5.2)

Equation 5.2: Utility Function: Upper Confidence Bound

The process is hard to visualize in the higher N-dimensional feature space that the algorithm is capable of
solving, so a simplified 1-dimensional example is provided in Figure 5.3. The upper plot shows the underlying
function, as well as the best estimate and the associated confidence interval, while the lower plot shows the
utility for each data-point.

Figure 5.3: Bayesian Optimization: Utility function example
Source: https://github.com/fmfn/BayesianOptimization

Exploration vs Exploitation
The utility function defines a trade-off between the following two search methods:

• Exploration : Checking previously unknown areas of the feature space
• Exploitation : Attempting to further improve the current optimum

Each approach has benefits and downsides, presented in Table 5.2, hence both are important and a proper
trade-off is required.

Exploration Exploitation
Pro ’Curiosity’ :

Ability to find ’hidden’ global optimum
’Determination’ :
Higher chance of finding the exact local optimum
within a region

Con ’Shooting blanks’ :
Wasting computational resources on fruitless
guesses

’Marginal improvement’ :
Improving local optimum, but missing global opti-
mum

Table 5.2: Exploration vs Exploitation

Essentially, each time a new point of maximum utility is evaluated, the system makes a bet that the new
point will be better than the previous optimum. The value of 𝜅 determines how certain the system wants to
be of that bet.

Assuming that the underlying distribution cannot always be modeled by means of Gaussian distributions
with 100% accuracy, one can make use of the more general Chebyshev’s inequality to determine a probability

https://github.com/fmfn/BayesianOptimization

5

50 5. DanceNetBHPO Framework

of finding a new optimum at the point of maximum utility for each value of 𝜅. Considering that in order to
reach a new optimum the confidence bound has to be exceeded on one side only, this means that one needs
to consider the one-sided Chebyshev’s inequality instead. Note the similarity of the one-sided Chebyshev’s
inequality to the Bayesian UCB utility criterion, as defined in Equation 5.3 [Marshal and Olkin, 1991].

Chebyshev’s inequality:

𝜎 ≠ 0|𝑘 > 0 & 𝑘 ∈ ℝ
Pr (𝑘𝜎𝑥 ≤ |𝑋 − 𝜇𝑥|) ≤ 1

𝑘2 [Two Sided]

Pr (𝑘𝜎𝑥 ≤ 𝑋 − 𝜇𝑥) ≤ 1
1+𝑘2 [One Sided]

Utility Criterion:

𝜇est (𝑃) + 𝜅 ⋅ 𝜎est (𝑃) > 𝜇max
𝜅 ⋅ 𝜎est (𝑃) > 𝜇max − 𝜇est (𝑃)

(5.3)

Equation 5.3: Chebyshev’s inequality & ’Upper Confidence Bound’ Utility Criterion

Low values for 𝜅 favor exploitation (low risk, low reward) and high values favor exploration (high risk, high
reward). In the following research 𝜅 = 2.5 was used. Per evaluation, this results in accepting any guess that
provides a minimum of 13.8% (maximum¹) success-rate, for finding a new optimum.

Initialization
The problem with initializing the Bayesian approach is twofold:
Firstly, with no or too few data-points available a Gaussian regression is impossible. Secondly, early in the
optimization procedure very little of the full search space has been explored. This causes the system to first
guess randomly and then the exploratory aspect of the optimizer visits the various extreme points of the search
space. This is because, these points have the highest uncertainty, but are also usually suboptimal.

To resolve this dilemma a hybrid approach between the Bayesian optimization and a conventional grid
search was used. For each hyperparameter a very sparse grid search is performed, evaluating 5 points along
the axis of each hyperparameter, starting from the initial guess. These 5 points being: Both extreme points,
the mid point and two points in between. This allowing for an initial regression of the loss landscape along
this hyperparameter.

The downside of this approach is that it takes 𝑁 ⋅ 5 full evaluations before the Bayesian algorithm starts
coming into effect. If these initial evaluations take too long, it can be opted to instead initialize the Bayesian
algorithm with a handful of hyperparameter sets based on an educated guess.

5.2.2. Scope Creep & Reparameterization
When utilizing a secondary outer hyperparameter optimization routine, such as Bayesian optimization, choos-
ing the right number of hyperparameters is key. Choosing too few and one might miss out on significant im-
provements, but choosing too many and the curse of dimensionality might cause the algorithm to run forever.

This is where scope creep comes into play. By further improving and expanding one’s network design it
is natural to introduce new network elements (layers, modules, connections, optimizers). However, adding
new elements usually comes at the cost of more hyperparameters. The researcher needs to make a trade-off to
include the new hyperparameter into the optimization routine, or leave it fixed at a value based on an educated
guess.

One solution that can be applied to resolve this issue, is to re-parameterize a subset of hyperparameters,
by means of a smaller set of parameters. To illustrate this point, consider a simple feed-forward network
with 𝑁 layers: Given a brute-force approach one could define the number of neurons in each layer as its own
hyperparameter, ending up with 𝑁 discrete parameters. Alternatively, one could define a polynomial function
𝑃 of power 𝑀 and define the number of neurons at each layer as ’𝑃 (𝐿𝑎𝑦𝑒𝑟#)’. The trade-off table between
the two approaches is presented in Table 5.3.

To illustrate the benefit of the correlations between HPs, one can imagine the feed-forward network from
before and assume the sub-optimal case of ’#Inputs ≫ #NeuronsLayer#1 ≪ #NeuronsLayer#2’. In this case the
first layer is significantly smaller than the number of inputs. This means that the immediate compression will
destroy most information contained in the inputs, which will then be over-expanded in the following layer. A

¹Note the ’≤’ in Equation 5.3

5.3. Cluster Framework 51

5

Brute-force Re-parameterization
Pro ’Completeness’ :

• All parameters are present and global optimum
can be found

’Simplification’ & ’Correlation’ & ’Continuity’ :
• Less HPs are faster to optimize
• Potential correlation between HP can be ex-
pressed
• New HPs can be turned into continuous factors

Con ’Verbosity’ & ’Discretization’ :
• Curse of dimensionality causes extremely large
runtime
• Hyperparameters may be discrete integers

’Restriction’ :
• Possible range of solutions may be too restricted
to find global optimum

Table 5.3: Hyperparameter Re-parametrization Trade-off

better approach would be to re-parameterize the number of neurons per layers, by defining it relative to the
number of input parameters and limit the scaling factor: #Inputs ⋅ HPLayerSizeFactor#N = #NeuronsLayer#N.

Furthermore, parameters with a large power range, e.g. the learning rate, can best be re-parameterized by
optimizing for log(HP) instead, as it linearizes the search space.

5.2.3. HyperHyperparameters
Just as hyperparameters are the parameters that define the training process of the model parameters, the
parameters that define the hyperparameters’ optimization routine are called hyper-hyperparameters.

In the case of Bayesian optimization the governing hyper-hyperparameters are: 𝜅, which defines the trade-
off between exploration and exploitation, and the extend of the prior grid search, which was set to 5 elements
per hyperparameter. For other hyperparameter optimization routines more parameters might govern the ap-
proach.

Hyper-hyperparameters cause a meta optimization problem that arises from the use of hyperparameter
optimization. Optimizing these hyper-hyperparameters does not change the underlying distribution of the
original problem, it only changes how the search space will be explored. So in the end it is but the path to the
answer that is optimized, while the answer itself remains unaffected.

While it was decided that automated optimization of these hyper-hyperparameters is outside of the scope
of this research, it is important to note that there is not necessarily an end to this process and one might very
well end up with an endless chain of attempting to optimize the optimizers one level below. Therefore it is still
at the researcher’s discretion to evaluate the level and scope of automated optimization procedures.

5.3. Cluster Framework
One of the main problems of training neural networks, and ’Recurrent Neural Networks’ (RNNs) in particular,
is that they take a long time to train. Most models developed for this research took between a few days, up to
a few weeks to train till one of the break criteria was met.

Because of this long time horizon, running the BHPO in sequence was deemed impractical and a solution
had to be found to speed up the process. While for the training procedure each subsequent step is dependent
on the previous iterations, for the hyperparameter optimization each evaluation of a hyperparameter set is
independent. This allows for running multiple training runs with different sets of HPs in parallel.

To utilize the ability to parallelize the BHPO process, a third meta framework was developed: The ’Cluster
Framework’. The cluster framework allows for running multiple DanceNet training runs simultaneously, on
multiple hosts, virtual machines (VMs) and GPUs. While, each node still communicates their results to a
central server.

A flowchart detailing the procedure is presented in Figure 5.4.
In a nutshell, the framework is split in three major elements, with the following primary functions:

• Database: Store evaluation results and facilitate the communication between server and clients
• ClusterServer: Runs the BHPO instance and generates suggestions for new sets of HPs
• ClusterClient: Runs the DanceNet instance and evaluates HP sets, by means of training the neural

network

The system was tested using the following configuration, showcasing successful deployment on various
operating systems (OSs) and hardware components:

5

52 5. DanceNetBHPO Framework

Figure 5.4: BHPO: Cluster Computing Framework

• Host #1:
– OS : Windows 10 [Bare metal]
– LAN: AKOB Studio
– GPUs:

1. NVIDIA TITAN X
2. NVIDIA GTX 980

– Services:
1. ArangoDB
2. ClusterServer
3. ClusterClient #1: on TITAN X
4. ClusterClient #2: on TITAN X
5. ClusterClient #3: on GTX 980
6. ClusterClient #4: on GTX 980

• Host #2:
– OS : Windows 10 [Bare metal]
– LAN: AKOB Studio
– GPUs:

1. NVIDIA GTX 1080 Ti
– Services:

1. ArangoDB
2. ClusterClient #5: on GTX 1080 Ti
3. ClusterClient #6: on GTX 1080 Ti

• Host #3:
– OS : Ubuntu Mate 18.04 [ESXi VM]
– LAN: Researcher’s Home
– GPUs:

1. NVIDIA GTX 1060 [6GB]
2. NVIDIA GTX 660 Ti (too old to run with PyTorch> 0.3.0)
3. NVIDIA GTX 660 Ti (too old to run with PyTorch> 0.3.0)

– Services:
1. ArangoDB [Master]
2. ClusterClient #7: on GTX 1060
3. ClusterClient #8: on GTX 1060

5.4. Data Output 53

5

In theory the framework is capable of utilizing loosely networked machines in different sub-nets via the
WAN (wide area network); in practice however the maximum upload-rate of the researcher’s Internet connec-
tion has severely limited the framework’s ability to serve the data contained in the central ArangoDB to all
clients. To solve this issue the database was cloned onto each client’s host, prior to training.

Another problem which occurred in practice was the occasional output of NaNs into the PyTorch tensors.
The occurrence of this problem appears to be proportional to the number of ClusterClient instances utilizing
the same GPU. It is assumed to be related to incorrectly configured access routines in PyTorch, when multiple
processes read and write on the same hardware. To mitigate this issue, safeguards have been put in place to
stop and re-evaluate the run when it has failed due to this cause. The problem has not occurred when running
only a singular instance per GPU and was infrequent enough when running two instances to justify the risk.

The cluster framework has proven functional in practice. Unfortunately, the additional hardware, pro-
vided by AKOB [Host #1&2] to run the BHPO framework on, became unusable mid-research, after which the
remainder of the runs were executed on a single machine [Host #3].

5.4. Data Output
Independently of the underlying architecture used, the framework saves the configuration and results of the
training run to disk for further evaluation and post-processing.

The data generated and stored by the framework can be divided into 5 main categories (some files fall
under multiple categories):

• Results: Actual results of the network - Final motions & Model Weights
• Analysis: Data required to analyze the training and optimization performance - ’CSV’ Logs
• Visualization: Visual feedback to the researcher - Graphs & Plots
• Failsafe: Data required to pickup the run after a failure - Logs & Model Weights
• Reproducibility: Enable to run the exact same experiment - Hyperparameters, Settings & State

All data is saved in the data structure as presented in Figure 5.5.
Overall the saved data is intended to facilitate the research process and to allow the final results to be used

within other frameworks.

5

54 5. DanceNetBHPO Framework

Resultant Data

DanceNet-<RunMode> (e.g. ’DanceNet-6D-PCA-ATT-DI-DO-LSTM-Pain-LJ-GAN’)

YYYY-MM-DD hh.mm - <RunHP_Hash> (e.g. ’2021.01.20 11.47 - 7d2d6588e0’)

Model Weights

Epoch#X_Iter#Y - DanceNet-<RunMode>.pt [New every N Iterations]
The trained weights and biases

[LATEST] DanceNet-<RunMode>.pt [Updates every Iterations]
Latest network state, in case the runs fails before N iterations have passed

NetworkGraphs

NetworkGraph_<RunHP_Hash>.dot [Generate at Initialization]
Auto-generated network architecture graph (Raw)

NetworkGraph_<RunHP_Hash>.dot.pdf [Generate at Initialization]
Auto-generated network architecture graph (Rendered)

NetworkWeights

DanceNet-<RunMode> Weights ; Epoch#X_Iter#Y.png [New every N Iterations]
Visualization of current network state

Plots

Discriminator Results

Discriminator History.png [Update every Iteration]
Plot of the data in ’Discriminator History.csv’

Discriminator Distribution - %03d-%03d.png [New every N Iterations]
Plot of the data in ’Discriminator History.csv’

PainLosses.png [Update every Iteration]
Plot of the data in ’Pain History.csv’

Pain History.mp4 [Generate in Post-Processing]
Video of ’PainLosses.png’ over time

Discriminator History.mp4 [Generate in Post-Processing]
Video of ’Discriminator History.png’ over time

Predicted Motions

<TakeID> (YYYY-MM-DD hh.mm - <RunHP_Hash> [
Training

Test
Validation

]).bvh [Generated after completion, for each take]

Motion take to review the final state of the system visually

Preliminary Motions

Training
Test

Validation
- <RunHP_Hash> [Epoch#X_Iter#Y] - ’<ChunkID>’.bvh [New every N Iterations]

Motion chunk to review the state of the system visually

[FINAL] Epoch#X_Iter#Y - <RunMode>.pt [Generate after completion]
Final network state after training convergence

ConsoleOutput.log [Update every Print]
Log of all console prints

Discriminator History.csv [Update every Iteration]
Statistics of Discriminator output over time

HyperParameters.json [Generate at Initialization]
The set of hyperparameters defining the run

Pain History.csv [Update every Iteration]
Factors of extreme values for each joint over time

PythonState (YYYY.MM.DD hh.mm).info [Generate at Initialization]
Complete information of hardware, software(-versions) and python modules

Settings.json [Generate at Initialization]
All settings defined in ’Settings.py’ that govern the run

TrainingLog.csv [Update every Iteration]
Training-/Test Loss, RG & dt over time

BHPO_Saves

BHPO-logs.json [Update every BHPO step]
Logs hyperparameter sets and associated loss for BHPO processing

BHPO_Progress.csv [Update every BHPO step]
Logs hyperparameter sets and all associated losses for further analysis

BHPO-Results.p [Update every BHPO step]
Pickle file containing information required to continueBHPO run, in case of failure

ClusterServer - PythonLog - YYYY.MM.DD hh.mm.ss.log [New for every cluster run ‖ Update every Print]
Logs activity of the ClusterServer process

Figure 5.5: BHPO: Resultant Data Structure

6
Regression Model

The core of the entire framework is the neural network that generates novel motion data. This network was
named DanceNet and describes all the architectural options utilized in this research. The least complex of
these options is described in this chapter, detailing its benefits and shortcomings. In hindsight, the system can
be categorized as a regression model.

The proposed system predicts the following dancer’s next pose, based on the current pose of the input
and following dancer. The hypothesis was that learning how to predict the following dancer’s motion in the
context of the leading dancer will allow for the generation of novel output motions, when feeding the network
with novel motion input.

6.1. Design Choices
In order to test the neural network inside the developed framework, using the newly acquired data, it was
important to make an informed design decision on the primary architecture of the model.

Given the context of the final result, the network is required to be executable at inference time with a
high frame-rate (> 100 Hz) and minimal latency. These requirements governed the trade-offs made, while
choosing the appropriate network architecture.

In the preliminary report (see Appendix F) an extensive comparison of the rationale, architecture and rele-
vance of various neural network architectures was performed. The three fundamental architectures compared
were the ’Multilayer Perceptron’ (MLP), the ’Recurrent Neural Network’ (RNN) and the ’Convolutional Neural
Network’ (CNN).

For utilizing time-series data, such as motion capture (MoCap) data, RNNs appear as the obvious choice, as
they are specifically designed for handling temporally sequential data. To validate this intuitive choice, other
architectures are considered and compared.

6.1.1. MLP & CNN: Sliding TimeWindow Tradeoff
Both the MLP and the CNN are one-way systems, where each evaluation is standalone and no prior informa-
tion on the input is retained. This means that, for these architectures to handle time-series data, it is required
to pass a chunk of data over multiple past time steps (sliding window) into the network at once. By doing so,
it is required to make a trade-off between passing a larger time window into the network or losing any infor-
mation prior to the chosen window size. Given the high frame-rate and the desired result to exhibit long-term
’intuitive’ interactions, allowing the system to react to input that happened only a couple of seconds in the
past would mean having to store and pass hundreds of frames through the network at every time step. Even
though CNNs have been proven to be better than RNNs for handling time-series data on certain tasks [Bai
et al., 2018], at inference time they still suffer from the problem stated above. While the implementation of
these architectures are possible, the additional memory overhead and increased complexity was deemed to be
in conflict with the low latency requirement set by the final product.

6.1.2. RNN: LSTM vs GRU
The RNN has the benefit of allowing time-series data to be passed into the model frame-by-frame, without the
need to explicitly memorize past inputs within the framework. This is beneficial to the latency of the system as

56

6.2. Implementation 57

6

it can directly pass new motion frames from the MoCap system into the network. However, very deep neural
networks and vanilla RNNs suffer from the ’vanishing/exploding gradient problem’ [Hochreiter, 1991]. This
makes the original RNN models infeasible for memorizing true long-term dependencies in practice.

This problem was tackled by Hochreiter et al., by developing a gated memory unit called the ’Long Short-
Term Memory’ (LSTM) cell [Hochreiter and Schmidhuber, 1997]. A singular LSTM unit is visualized in Figure
6.1.

Figure 6.1: Neural network Architecture: LSTM Unit

The primary downside of training RNNs and LSTMs in particular is that the recursive nature of the un-
derlying equations results in very large processing times for backpropagation. To alleviate this problem, Cho
et al. proposed a simplified approach, retroactively called, the ’Gated Recurrent Unit’ GRU in 2014, reducing
the number of parameters and operations by removing the internal cell state and the output gate accordingly
[Cho et al., 2014]. A singular GRU unit is visualized in Figure 6.2.

As both architectures can outperform the other, depending on the task [Bai et al., 2018], it was decided
that for this research both architectures were to be used and compared.

6.2. Implementation
The regression model was the first model tested and it was intentionally kept as simple as possible. This was
done to test the functionality of the entire DanceNet-BHPO framework and to adhere to the design philosophy

6

58 6. Regression Model

Figure 6.2: Neural network Architecture: GRU Unit

of simplicity as a virtue. Given the end goal in mind, an overcomplicated design would not be beneficial to the
speed and latency of the system.

The system receives the recorded frames of the leading and following dancer as input, then it is tasked
to predict the next frame of the following dancer. This is done recurrently frame-by-frame for an entire take,
from start to finish The resulting architecture is visualized in Figure 6.3.

The task can be classified as a ’motion prediction’ problem. The rationale behind it being that when trained
this way the system would learn the following dancer’s behavior in relation to the leading dancer.

6.2.1. Hyperparameters
Unlike fully connected networks and convolutional networks that can exhibit a number of hyperparameters
to govern the design, whereas the design of a recurrent unit is mostly fixed and requires very little parameters
to define it.

As the recurrent network is operated in a feedback loop, the same network is passed through multiple
times. This results in a very deep network, when unfolded over time. Therefore, unlike their unidirectional
counterparts, recurrent networks do not require a large number of layers to be classified as a ’deep learning’
technique.

For a single unit architecture not even the number of neurons can be set, as the dimensionality of the in-
and output of the system predefine the required underlying architecture.

It is however possible, but not required, to stack multiple units after another to create a multi-layer archi-
tecture per time step. This allows for a higher level of abstraction of the data being processed in the network.

Hence, only a single hyperparameter governs the architecture for this model, as defined in Table 6.1.

6.2. Implementation 59

6

Figure 6.3: DanceNet Architecture: Regression Model

Hyperparameters
Parameter [Default] Value Limits Description
Layers 1 [1, 3] Number of stacked recurrent units

Table 6.1: Hyperparameters: Regression Model

Training Framework Hyperparameters used are defined as follows:

• Constant:

– Batch size = 1 - Full takes of variable length
– EB Threshold = 0.0001
– # Epochs = 10 - Maximum, if not halted by EB

• Variable/Optimized by ’Bayesian Hyperparameter Optimization’ (BHPO):

– Learning Rate
– Learning Rate Decay
– Momentum (SGD optimizer used)
– Weight Decay

Tomake effective use of the Bayesian optimization routine, the number of hyperparameters to be optimized
was kept to a minimum, by setting some HPs to a constant value. This resulted in only 5 parameters to be
optimized.

6.2.2. Data & Loss Function
For this first model, the only pre-processing performed on the data was basic scaling to normalize the data, as
described in Section 4.4.1.

The loss function for this model was the ’Mean Squared Error’ (MSE) Loss, comparing the actual following
dancer’s pose with the predicted one according to Equation 6.1.

Loss𝜇 =

𝑁
∑
𝑖=0
(𝑝act𝑖 − 𝑝pred𝑖)

2

𝑁 |𝑁 = 66 (6.1)

Equation 6.1: Regression Model: Loss Function - Mean Squared Error

6.2.3. Weights & Biases
The RNN units, as shown in Figures 6.1 & 6.2), are actually meta-architectures connection a set of fully con-
nected networks embedded in each cell. Each gate contains (at least) two fully connected (FC) networks, one
processing the external input (𝑁 = 66) and the other processing the internal hidden state (𝐻 = 66).

6

60 6. Regression Model

The weights and biases¹ required for each gate are presented in Equation 6.2.

𝑊𝑋
(𝑁+𝐻)×𝐻

= [𝑊𝑋𝑁𝑁×𝐻
𝑊𝑋𝐻
𝐻×𝐻]

𝐵𝑋
2×𝐻

= [𝐵𝑋𝑁1×𝐻
𝐵𝑋𝐻
1×𝐻]

𝑊𝐵𝑋
(𝑁+𝐻+2)×𝐻

= [𝑊𝑋
(𝑁+𝐻)×𝐻

𝐵𝑋
2×𝐻]

(6.2)

Equation 6.2: Number of weights and biases per Gate

For each RNN unit , the computation for the number of the total trainable parameters of the LSTM and
GRU based architectures are given in Equation 6.3 and 6.4 respectively.

Total:

𝑊𝐵
4⋅(𝑁+𝐻+2)×𝐻

= [𝑊𝐵𝑓
(𝑁+𝐻+2)×𝐻

𝑊𝐵𝑖
(𝑁+𝐻+2)×𝐻

𝑊𝐵𝑐
(𝑁+𝐻+2)×𝐻

𝑊𝐵𝑜
(𝑁+𝐻+2)×𝐻]

Parameters:

(4 ⋅ (𝑁 + 𝐻 + 2)) ⋅ 𝐻 = 4 ⋅ (𝐻2 + 𝐻 ⋅ (𝑁 + 2))
= 4 ⋅ 8844 = 35.376

(6.3)

Equation 6.3: LSTM: Number of weights and biases

Total:

𝑊𝐵
3⋅(𝑁+𝐻+2)×𝐻

= [𝑊𝐵𝑟
(𝑁+𝐻+2)×𝐻

𝑊𝐵𝑧
(𝑁+𝐻+2)×𝐻

𝑊𝐵ℎ
(𝑁+𝐻+2)×𝐻]

Parameters:

(3 ⋅ (𝑁 + 𝐻 + 2)) ⋅ 𝐻 = 3 ⋅ (𝐻2 + 𝐻 ⋅ (𝑁 + 2))
= 3 ⋅ 8844 = 26.532

(6.4)

Equation 6.4: GRU: Number of weights and biases

6.3. Results
Both the LSTM and the GRU based model were trained using the BHPO framework for numerous hyperpa-
rameter sets. The optimal losses achieved and statistics on both BHPO runs are presented in Table 6.2.

RNN Unit # Runs Average Run Time [h] Total Time [days] Avg. Reality Gap Optimal Loss
GRU 27 6.9 7.8 0.941 0.00098
LSTM 40 8.1 13.6 0.907 0.0027

Table 6.2: Regression Model: BHPO Run Statistics & Results

The results were achieved using the (partially) optimized sets of hyperparameters, as given in Table 6.3.

RNN Unit Learning Rate Learning Rate Decay Momentum Weight Decay # Layers
GRU 6.281144591 0.43310875 0.905515929 1.0 1
LSTM 8.237621096 0.59898849 0.885980442 0.900098016 1

Table 6.3: Regression Model: (Partially) Optimized Hyperparameters for GRU & LSTM

¹For each gate two sets of biases are defined: 1 for the external input (𝐵𝑁) and 1 for the internal hidden state (𝐵𝐻). 2 sets of biases for the
same function are actually redundant and could be expressed by a singular bias set: 𝐵𝑁 + 𝐵𝐻 = 𝐵. This is due to the specific PyTorch
implementation making use of NVIDIAs cuDNN, which speeds up computational time.

6.3. Results 61

6

As illustrated in Figure 6.4, the model has successfully learned to mimic the following dancer’s motion.

Figure 6.4: DanceNet Results: Regression Model
Legend: Red: Leading Dancer | Green: Following Dancer |Blue: Output Dancer

Even though the GRU based model was optimized for fewer hyperparameter sets it still produces better
results than the LSTM counterpart. The observation that the GRU appears to be better at this task is also
supported by reviewing the average results for all attempted sets of hyperparameters, as seen in the next
section.

6.3.1. Loss Progression
Figure 6.5 and 6.6 showcase the final mean losses achieved, sorted by the test loss. The yellow lines display
the average loss of all three datasets in temporal order, showcasing the stochastic nature of the Bayesian
optimization procedure.

The average loss appears to follow an exponential progression, resulting in diminishing returns for ex-
tended BHPO optimization runs. This exponential optimization progression appears to be analogous to the
exponential progression displayed by the actual training of the neural network.

6.3.2. Observations
Given the results presented above, a few observations stand out. These are addressed individually in the
following sections.

Average Angular Error
While the model’s loss cannot completely reconstruct the physical parameters underlying it, one can estimate
the average error of each joint by applying Equation 6.5, reversing the process of computing the loss and
normalizing the data.

̂𝛼𝜇 = √Loss𝜇 ⋅ 180∘ (6.5)

Equation 6.5: Regression Model: Model Loss→ Angular Error

When evaluating the minimum loss of 0.00098 this can be approximated to a mean angular error of ≈
5.57∘. This error appears large at first. However, comparing it to the sanity check for reconstructing Euler
angle encoded rotations with a neural network [Zhou et al., 2019b], it actually appears better than the expected

6

62 6. Regression Model

Figure 6.5: BHPO Losses (Sorted): GRU

Figure 6.6: BHPO Losses (Sorted): LSTM

accuracy. Their average reconstruction error was evaluated to be ’6.98∘’, compared to this result of ≈ 5.57∘.
Even though this reference experiment was conducted using an MLP auto-encoder, instead of an RNN based
system, it can be seen as an acceptable benchmark for the reconstruction error of Euler angles using neural
networks. One possible explanation for this slightly lower error might be the fact that the Euler angles for this
research were relative angles with a defined mean, while for the general study any random Euler angle was
possible.

6.3. Results 63

6

Run Time
Even for this minimal configuration the average run time is still 7.5 hours, confirming the expectation that
RNN based models take a long time to train. This extensive runtime is also the reason for the limited number
of BHPO runs performed.

Expectedly, the GRU based system’s training time was lower than the LSTM based system, however only
by about 15% on average.

Reality Gap
The reality gap is below 1 for most of the runs, meaning that the model’s results on the test dataset are actually
better than the results on the training dataset.This is unexpected as usually the model is expected to perform
worse on unseen data.

One hypothesis for this is that because the BHPO framework actually optimizes for the test loss that this
would mean that a lower test loss would be considered better, independent of the underlying training loss. To
test this hypothesis the reality gap (RG) (see Section 5.1.1) was plotted over time for both BHPO runs, as seen
in Figure 6.7.

Figure 6.7: Regression Model: Reality Gap

The hypothesized behavior of decreasing RG over time can be observed for the GRU based run, however
the LSTM based run displays no such behavior and shows a fairly consistent RG of ≈ 0.9 from the start.

Further research into the origins of this phenomenon will have to be conducted.

Learning Rate
The optimal learning rates for both architectures are unexpectedly high. The upper limit for the learning rate
hyperparameter had to be increased from its initially set limit to accommodate for these higher optimal values.

Commonly the learning rate for training neural networks lies several orders of magnitude lower, in order
to slowly approach the optimum without overshooting the target. The extremely high learning rate, as well
as large momentum, may indicate a trivial underlying solution. One that can be approached with large steps,
while still finding the optimum.

Outliers
The two outliers in the GRU run, with losses> 1, can be traced back to the fact that they are the only two runs
where the momentum HP was set to the upper limit of 1.0. This effectively means that there is no exponential
decay washing out previous gradient velocities, but that all previous gradients are retained indefinitely, which
is counterproductive to the training procedure.

6

64 6. Regression Model

6.3.3. Chebyshev’s Inequality
An effort was made to verify the practical relevance of Chebyshev’s inequality (see Section 5.2.1) for the BHPO
framework. A new run is considered to be a ’success’ when a new optimum has been reached by evaluating
the new hyperparameter set. Plotting the average success rate of the BHPO framework over time, as seen in
Figure 6.8, it is indeed approaching the region under the maximum value predicted by Chebyshev’s inequality.

Figure 6.8: BHPO: Success-Rate vs Chebyshev’s Inequality

The current sample size of these BHPO runs is not sufficient to make a conclusive statement of statistical
significance. However, Chebyshev’s inequality does appear to hold true as an acceptable rule of thumb for
tuning the hyper-hyperparameter 𝜅.

6.4. Feedback Dilemma
The developedmodel appears to successfullymimic the following dancer when feeding it data from the dataset.
However, the model’s setup does not hold true for using the system at inference time. This is due to the
resulting feedback loop, caused by the absence of the following dancer.

6.4.1. Model with Feedback
The main thing to consider, when adapting the model for utilization in a live environment, is the absence of a
prerecorded following dancer. In the live environment the leading dancer will interact purely with the output
dancer generated by the network.

Therefore, the original framework, as visualized in Figure 6.3, had to be adapted for the live utilization. The
modification removes the input from the following dancer and replaces it with a feedback loop of the system’s
output (see Figure 6.9).

It is important to note that, this new system is not intended to replace the training framework, but is purely
utilized at inference time. This means that the network is trained using the original model and the pre-trained
network is placed in the updated framework for live interaction.

Initialization
As the system no longer receives its input from the prerecorded following dancer, it becomes important to
properly initialize the output. It was chosen to initialize the second input as a zero-vector for a few frames,
representing the dancer in a T-Pose, as this is also the pose both dancers start each take in.

6.4. Feedback Dilemma 65

6

Figure 6.9: DanceNet Architecture: Regression Model with Feedback

6.4.2. Results
Running the adapted live system made it very clear that the current state of the system was not capable of
performing as desired. The output dancer moved away from the desired position at extreme velocity only to
settle a few frames later in the corner of the simulated space in an unnatural contorted pose for the remainder
of the take (see Figure 6.10)².

Figure 6.10: DanceNet Results: Regression Model with Feedback
Legend: Red: Leading Dancer | Green: Following Dancer |Blue: Output Dancer

While reviewing the data it became apparent that the resulting pose had reached the extreme values
([−1,+1]) for many of the feature vector’s parameters. This is why the output dancer was hanging in space

6

66 6. Regression Model

at [+5m, −5m, +5m] and with some twisted limbs at ≈ ±180∘. ³
This indicates that the system has become highly unstable through the introduction of the feedback loop,

only capped by the tanh activation function.
This also means that the output dancer just copies the following dancer’s motions, without learning and

internalizing the intention behind these motions.

6.4.3. Trivial Solution
Investigating the cause of the system’s instability has brought to light that the question asked of the model
was incorrect from the start.

The model generates acceptable results when attempting to predict the following dancer one time step into
the future, but completely breaks down when faced with the feedback task. This is because the model has no
incentive at all to take the leading dancer’s pose into consideration nor to learn any complex relations, as the
task that is asked can be simplified to a regression problem of the following dancer’s inertia 10ms into the
future.

When fed the ground truth values for both dancers at each time step the largest error the system can
produce is an error 10ms into the future, so even a relatively large error of a few degrees would still visually
look acceptable. However, when placed into the feedback loop the system’s error quickly accumulates and
becomes unstable.

All the neural network has to do is learn how to approximate the differentiation of the following dancer’s
motion, which is to say that it needs to learn the ’Backward Differentiation Formula’ (BDF). Even for the 0tʰ
order case, where the system would assume 𝑃𝑡+1 = 𝑃𝑡 , the system’s mean angular error would be capped
at the mean angular offset between two recording frames. This mean Δ𝑃𝑡 of the dataset was computed to
be 0.42∘, which is several times lower than the current system’s error. This shows that the current system’s
performance is much more a measure of how well it is able to reconstruct the Euler angle representation of
the data, rather than the actual performance of the regression task asked, exhibiting no complex interaction
with the leading dancer.

6.4.4. Training with Feedback
Training themodel in a feed-forwardmanner, to then transfer its application into a feedback system has proven
problematic. Therefore, it became apparent that the feedback-loop had to be integrated into the training
procedure. However, when considering the current design, two issues became apparent:

Dual Feedback Problem
Examining the feedback model closer in the context of an underlying RNN based architecture, the model
actually contains a dual feedback loop. The new feedback model forces an outer feedback loop, by replacing
the following dancer’s input with the system output, but for the case ’NrLayers = 1’ the internal RNN unit
already feeds its own output back into the RNN unit. So in this adapted setup, the exact same system’s
output is fed back twice at every time step, resulting in the actual data processed by the RNN unit to be a
concatenation of the following 3 poses:

• Regression Model: [Leading Dancer Pose𝑡 , Following Dancer Pose𝑡 , Output Pose𝑡−1]
• Regression Model + Feedback: [Leading Dancer Pose𝑡 , Output Pose𝑡−1 , Output Pose𝑡−1]

While it makes sense to feed the system both dancers’ poses at each time step, such that relations between
the two can be computed, it is apparent that feeding the system the same data twice is redundant. This is
however no longer true when more than one layer is used, as now the 3rd pose is replaced by an unknown
feature vector produced by the model’s first layer.

So for training the model with feedback either one of the following solutions can be used:

• Remove the outer feedback loop
by reducing the system’s primary input to only the leading dancer’s pose.

• Increase the number of layers
to still benefit from the output pose data, but avoid data redundancy on the first layer.

³Some earlier results even had the output dancer completely contorted to an unrecognizable ’ball of limbs’.

6.4. Feedback Dilemma 67

6

Single Solution Problem
However, training the model in this manner causes another problem, which is the implication that for every
input there exists only a singular correct output. Given the creative nature of the underlying data this is
however not correct. The following dancer could have decided to react in a multitude of ways to the leading
dancer’s input, and still be considered appropriate and visually pleasing.

6.4.5. Deep Thought

“ That quite definitely is the answer. I think the problem, to be quite honest with you, is that
you’ve never actually known what the question is.

Deep Thought Douglas Adams ’The Hitchhiker’s Guide to the Galaxy’ ”
The problem is that neural networks are great at optimization andwill provide youwith an answer, however

it might not necessarily be the one you’re looking for.
Therefore, a new model had to be designed that could cope with the feedback loop built into the training

procedure, as well as the notion that there can be multiple correct answers to the same input.

7
Generative Model

Following the insights gained from the initial regression model a new model had to be designed that is capable
and incentivised to learn complex relations between the two dancers over an extended period of time.

To achieve this, a generative model was developed, by means of extending the basic regression model with
a multitude of improvements.

7.1. Generative Adversarial Network
The ’Generative Adversarial Network’ (GAN) has only recently been developed for the generation of novel
images from noise [Goodfellow et al., 2014], but this meta-architecture is not limited to the application with
’Convolutional Neural Networks’ (CNNs) and has been used prior for motion prediction and generation [Gui
et al., 2018a; Hernandez et al., 2019; Kender and Way, 2018; Wang et al., 2020a].

The primary goal of the GAN is the generation of novel data, in contrast to more common regression,
interpolation and classification tasks. This is achieved by combining two networks being trained in parallel
with opposing/adversarial optimization goals. The training procedure is essentially a two-player game with
both networks competing against each other, where both get better over time in an attempt to ’beat’ the
opponent. The basic GAN framework was adapted to fit the data and goal of this research. This section
details the design of the adapted framework.

For an intuitive understanding each network can be envisioned as its own entity with a specific purpose
and goal. The generator can be seen as a ’dancer’ learning how to dance from scratch. The discriminator can
be seen as a ’choreographer’ or ’dance critic’ learning how to tell amateur (fake/generated) and professional
(real/recorded) dancers apart, while providing feedback to the dancer in the process.

• Generator: ’Dancer’

– Output: Motion frame
– Purpose: Generate new motions based on the input of the leading dancer
– Goal: ’Fool’ the discriminator
– Learns through: Feedback given by discriminator
– Active during: Training & Inference

• Discriminator: ’Choreographer’/’Dance Critic’

– Output: 1 logit value (0 = Fake, 1 = Real)
– Purpose: Determine whether a motion sequence is real/recorded or fake/generated
– Goal: ’Call out’ the generator as a ’fraud’
– Learns through: Being presented ground truth samples
– Active during: Training only

The discriminator attempts to learn how to tell the recorded and generated motions apart. This is equiv-
alent to a binary classification task, with the only difference being that one of the two classes is a dynamic
output from another network, as opposed to static ground truth data.

68

7.1. Generative Adversarial Network 69

7

The generator attempts to generate new motions frame-by-frame. This is equivalent to the mode of oper-
ation of the previous model, with the only difference being that it is trained by means of receiving feedback
from the discriminator through back propagation, as opposed to regressing ground truth data directly.

This results in an indirect training approach of the generator by means of backpropagation through the
discriminator network, rather than defining an error based on direct numerical comparison of the output data
with the recorded reference. Intuitively, it can be seen as a teacher learning a subject and then explaining it
to the student in a logical manner; As oppose to forcing a student to learn a subject by handing him a large
amount of questions with associated answers, but no explanation in between.

Building on the regression models (presented in Figure 6.3 and 6.9), Figure 7.1 shows the schematic flow
diagram of the generative model and its incorporation of the following dancer’s data outside of the primary
motion generation loop.

Figure 7.1: DanceNet Architecture: Generative Model

7.1.1. Loss Metric
Unlike the regression model where the final output was a motion frame, the final output of the GANs discrim-
inator is a single logit value (0, 1). It defines the system’s guess, as well as its confidence in this guess:
Fake ∶ (0, 0.5) and Real ∶ (0.5, 1.0)

Therefore, the ’Binary Cross Entropy’ (BCE) loss function (see Equation 7.1), commonly used for GANs,
was used for this model.

𝑔act ∈ [0, 1] , 𝑔pred ∈ (0, 1)
LossBCE = −(𝑔act ⋅ log(𝑔pred) + (1 − 𝑔act) ⋅ log(1 − 𝑔pred))

(7.1)

Equation 7.1: Generative Model: Loss Function - Binary Cross Entropy

At first glance the BCE loss looks complex, however the equation is simplified considerably when binary
labels are applied and considering the loss for the limits of the prediction, as shown in Table 7.1. Approaching
the formula in this manner clearly shows its use case for defining the loss in a binary classification task.

𝑔act = 0 𝑔act = 1
Loss = − log (1 − 𝑔pred) − log (𝑔pred)
𝑔pred → 0 → 0 (True Negative) → ∞ (False Negative)
𝑔pred → 1 → ∞ (False Positive) → 0 (True Positive)

Table 7.1: BCE Loss: Simplification and Limits

7.1.2. Training Algorithm
Algorithm 7.1 illustrates the procedure of training the GAN, alternating between fake and real data. Due
to the recurrent nature of the underlying networks, the entire motion is generated frame-by-frame and only
afterwards passed into the discriminator frame-by-frame.

7

70 7. Generative Model

Unlike conventional systems where all of the networks parameters are updated based on the same opti-
mizer and working towards a common goal, the GAN is build up of two separate networks, each with their
own set of parameters, optimizer and goal:

Discriminator: The BCE loss is appropriate for scoring a classification task and is hence attempted to be
minimized by the discriminator, which is trying to tell the data apart as good as possible. For each optimization
step the discriminator’s optimizer brings only the discriminator’s parameters a step closer to minimizing the
final loss.

Generator: The generator’s goal is to fool the discriminator into wrongly classifying the fake labels and is
hence trying to increase the final loss function of the discriminator. For each optimization step the generator’s
optimizer brings only the generator’s parameters a step closer to maximizing the final loss.

This is why the operational mode of a GAN is also referred to as a ’mini-max game’.
Note that, for the training on real data the generator is not used, as the data to be passed into the dis-

criminator is already given. Similarly, the discriminator is discarded once the training procedure has been
completed, as it is only a tool to train the generator and not required to generate new motions at inference
time.

7.1.3. Problems with GANs
While GANs allow for the possibility of generating stunning results, in their current form they also have a
significant number of drawbacks that make their utilization harder than more conventional models and the
training procedure unstable. The general excitement about GANs in the deep learning (DL) community is
generally not considering the pitfalls and problems to be encountered when actually implementing a GAN
based model. This is perhaps best summed up by the following quote:

“ A lot of people want to use GANs, they just don’t know that they’re unstable,
until they get into using them...and then they’re kind of stuck there.

Soumith Chintala Facebook AI [’How to train a GAN’, NIPS 2016] ”
This quote has unfortunately proven very true for this research. The first versions of the generative model

were not showing any signs of progress at all. Therefore, a number of improvements and innovations were
developed to alleviate the common problems encountered when (training) GANs.

This section will elaborate on the various problems encountered when training GANs, that are unlikely to
occur when using more conventional DL techniques.

Progress Insight
For the regression model from Chapter 6 and other regression or classification models, a lower loss, by defini-
tion, equals an improvement in the desired output. In contrast, the loss value from a GAN actually has very
little explanatory power with regard to the model’s learning progression. As strange as this may seem at first,
it is a logical conclusion from the setup as a two player game.

The first problem of this system is that both players are trying to affect the same score, meaning if both
parties improve by an equal amount it might be impossible to tell quantitatively based on the final output
alone.

The final loss is actually a measure of how well the discriminator is performing, but the actual desired goal
is to train the generator, while the discriminator is but a means to an end. So why not define a quantitative
measure for the output of the generator directly? If a direct quantitative measure to define the validity of
the generator’s output would exist, the whole setup of a GAN would not be required and the system could be
directly optimized for this new criterion.

For an intuitive understanding , one can think of it as a game of tug of war:
The loss function is the rope, the loss value is the position of the rope, the generator and discriminator are

the teams (A & B) pulling on either end of the rope and every new training iteration is a new round of the
game. The DL researcher in this scenario can be seen as the coach that is trying to gage the strength of team
A, but all he’s given is a pinhole camera that can only see the middle of the rope. If both teams are equally
strong, the rope does not move. After each round the teams might have become stronger or grown more tired
than before, but if both parties improve or worsen by equal amounts, the rope still will not move no matter
how strong the teams are pulling.

7.1. Generative Adversarial Network 71

7

Algorithm 7.1 GAN Training Algorithm - Simplified

! DISCLAIMER: This is PyTorch inspired pseudo-code !

#...Load dataset
#...Setup Networks (Generator, Discriminator)
and Optimizers (Generator, Discriminator, Pain)

for (leading_motion,following_motion) in dataset:

#--
Train on fake/generated data
#--

#--- Generate new motion ---
output_motion = []
output_frame = None # Initialized to zero vector
for leading_frame in leading_motion:

output_frame = Generator([leading_frame,output_frame])
output_motion.append(output_frame)

#--- Run through Discriminator ---
g_pred = []
for (leading_frame,output_frame) in zip(leading_motion,output_motion):

g_pred.append(Discriminator([leading_frame,output_frame]))

#--- Compute loss ---
g_act_fake = 0 # Generate Label(s)
loss = BCE_Loss(g_pred,g_act_fake) # Compute Loss
loss.backward() # Backpropagation

#--- Perform optimization step ---
Optimizers["Generator"].step()
Optimizers["Discriminator"].step()

#--- Apply Pain Criterion ---
pain = Pain_Loss(output_motion)
pain.backward()
Optimizers["Pain"].step()

#--
Train on real/recorded data
#--

#--- Run through Discriminator ---
g_pred = []
for leading_frame,following_frame in zip(leading_motion,following_motion):

g_pred.append(Discriminator([leading_frame,following_frame]))

#--- Compute loss ---
g_act_real = 1 # Generate Label(s)
loss = BCE_Loss(g_pred,g_act_real) # Compute Loss
loss.backward() # Backpropagation

#--- Perform optimization step ---
Optimizers["Discriminator"].step()

7

72 7. Generative Model

A true measure for the improvement of both teams would e.g. be the total force exerted on the rope,
however this would require advanced analytical equipment, which is currently not available. ¹

So as long as both networks remain in equilibrium the loss function does not change, but progress might
still be occurring.

Training Instability
Now assume the case were the system does not remain in equilibrium: The researcher cannot only tell that
one of the two systems is getting better than the other, but also which one. This means that insight into the
system is temporarily gained, but at the cost of creating an inequality between the two players that might
prove detrimental to the training procedure.

For an intuitive understanding , lets build on the analogy with a game of tug of war:
Once the equilibrium is broken it means that two teams of different skill levels are playing against each

other. In most competitive sports the teams are put into different leagues based on their level. This is to ensure
that teams with comparable levels are playing against each other. Consider the following two scenarios:

• Team A is considerably stronger than team B:
Beating team B is too easy and requires no skill - No challenge is posed
→ No additional experience is gained

• Team A is considerably weaker than team B:
Beating team B becomes impossible - Learning curve is too steep
→ No practical experience is gained

While this analogy cannot be applied to the GAN training procedure 1-to-1, the general idea behind it still
holds true. The example above considers two players playing a symmetrical game, while in the case of a GAN
the relation between the two players can be described much better as one between a student (generator) and
a teacher (discriminator). In this relation it is usually common and desired to have an imbalance between the
parties, with the teacher outclassing the student, while the student’s ultimate goal still remains to surpass its
teacher.

One might argue that in theory a perfectly pre-trained discriminator would be beneficial in this scenario.
This intuition may however be flawed, as it might focus on specific details, while the generator might be
producing results that are not even remotely close to the desired result yet. An important aspect to this
progression is that the networks are initialized randomly, therefore resulting in initially random output. It
would prove futile to teach a toddler a double pirouette, if it still struggles with the basic concept of balance.
While this may initially sound silly, this is very much how the generator network should be regarded at the
early stage of the training procedure, a toddler learning how to control the basic motor functions of its body.
The main difference being that physical forces, such as gravity, are omitted, as this would reach into the realm
of reinforcement learning (RL) instead. So just as the generator needs to adapt to grow from its random initial
state to the desired final state, so does the discriminator need to adjust the level of detail it provides in the
feedback.

In an optimal scenario the level of details would increase as time goes on and both networks improve,
however there is also the chance that they get stuck in an infinite loop. A possible scenario that would cause
this would be the following:

1. The discriminator finds criterion A to be out of line with the recorded data
2. Eventually the generator removes the incorrect behavior based on the discriminator’s feedback about

criterion A
3. Now criterion A is no longer a good discriminatory metric and the discriminator will move on to find

another criterion B
4. Eventually the generator removes the incorrect behavior based on the discriminator’s feedback about

criterion B
5. The incorrect behavior detected by means of criterion A might return to the generator’s output, now

that the discriminator no longer focuses on criterion A in its feedback
6. The cycle repeats at 1.

¹A potential solution to obtaining information on the internal state of a GAN and its progression is presented in section 9.5

7.1. Generative Adversarial Network 73

7

This problem of selective and sequential optimization of an individual criterion, in contrast to simultaneous
improvements of multiple criteria, is one representation of ’mode collapse’ [Liu and Tuzel, 2016]. This problem
is illustrated in Figure 7.2. The upper row represents the desired progression of learning all 8 classes present
in the dataset simultaneously, while the lower row illustrates the problem of mode collapse, as the network
jumps from class to class individually.

Figure 7.2: GAN: Mode Collapse Example
Source: Adapted from [Liu and Tuzel, 2016]

Balancing the training of the generator and the discriminator, such that they enhance each other com-
plementary rather than outclassing the respective other, is a delicate process that is both hard to predict and
hard to maintain.

7.1.4. Best Practices

“ [...] I will tell you all, or some, of the missing details that all research papers omit
, because [...] it does not fit into their story
, but if you start to train GANs you would need to know some of these things.

Soumith Chintala Facebook AI [’How to train a GAN’, NIPS 2016] ”
Paraphrasing a great talk by SoumithChintala, at the ’Conference on Neural Information Processing Systems’

(NIPS) 2016, this section is intended to provide a set of practical best practices and the extend to which they
have been applied to this research. Chintala’s talk is an invaluable resource with respect to the practical
implementation of GAN based models, as it includes a lot of ’missing details’.

1. “Normalize the inputs”:
→ Implemented
→ see Section 4.4.1 [Data Normalization]

2. “Modify the loss function for the generator”: 𝑀𝑖𝑛 (log(1 − 𝐷)) → 𝑀𝑎𝑥 (log(𝐷)))
→ Implemented
→ Used PyTorch standard BCE loss implementation, but reversed learning rate on the generator opti-
mizer to maximize the loss

3. “Use spherical Z”: About sampling of latent vector Z
→ Not Applicable
→ No noise sampling is being done, as random noise input is replaced by input motion

4. “Use batch norm properly”: Batch of only real or fake samples, no mixing within a batch
→ Implemented
→ see Section 5.1.3 [Hyperparameters] and Algorithm 7.1

5. “Avoid sparse gradients”: e.g. no ReLU, Max-Pool
→ Implemented
→ Primarily for CNNs - All RNN activations are continuous (Sigmoid,TanH)

6. “Use soft and noisy labels”:
→ Add stochastic value to labels, so (0+(0,0.3)|1-(0,0.3))
→ Not Implemented
→ see Section 9.1.2

7

74 7. Generative Model

7. DCGAN | hybrid model”:
→ Not Applicable | Implemented
→ DCGAN only applicable for CNN based models | Adding the Pain loss and RNN base results in a
hybrid model

8. “Apply stability tricks from RL”: e.g. keep past models during training and inject them to check against
them
→ Not Implemented
→ see Section 9.2.1

9. “Optimizer=Adam”: Use Adam (and for discriminator sometimes SGD)
→ (Partially) Implemented
→ Adam is used for Generator and Discriminator

10. “Track failures early”: Avoid losing time in training models that do not work
→ Implemented
→ Implemented Early Breaking (see Section 5.1.2 [Early Breaking]), as well live visualizations for con-
tinuous insight (see Section 8.2 [Live Visualization])

11. “Do not balance via loss statistics”: Do not try to find a (dynamic) schedule for when to train which
sub-network
→ Implemented
→ 𝐾 = 1, see Algorithm 7.1

12. “If you have labels, use them”: Hybrid model - train the discriminator to also classify the labels
→ Not Implemented
→ The current set of labels are highly biased and should not be used (see Section 4.1.4 [Labels])

13. “Add noise to input, decay over time”: Add noise to every layer
→ Partially Implemented
→ Injection of Gaussian noise (𝜇 = 0, 𝜎 = 1) with a fixed scaling factor of 10(− 3) (in real life no two
samples are the same)

14. “Train discriminator more (…sometimes)”:
→ Partially Implemented
→ Generator is only trained in the fake data step, while Discriminator is trained in both. But, 𝐾 = 1
(see Algorithm 7.1) Done, Training Discriminator/Generator 2/1

This research attempted to adhere to all of these best practices, if applicable. Those that have not been
implemented are addressed later in Section 9 [Future Work].

7.2. Initial Design Problems
Building on the BHPO optimized regression model design, the discriminator was added to the model, analo-
gous to the design of the generator, to allow for the GAN based training. As the generated output motions are
of the same variable length as the input motions, it was decided to utilize the same basic ’Recurrent Neural
Network’ (RNN) unit for the discriminator as for the generator. This allows for frame-by-frame processing of
the output motion by the discriminator.

This initial GAN showed no sign of training progression at all. In addition to the problems described in
Section 7.1.3, this can be attributed to a combination of the following three factors:

1. Incorrect hyperparameters:

• The previous model’s task was incorrect and thus the optimization results cannot be transfered
1-to-1 and expected to perform as desired (see Section 6.4 [Feedback Dilemma])

• Most notably: The learning rate was way too high (> 6)
2. Too few parameters:

• The total number of trainable parameters, with a singular RNN layer, are as follows:
– Generator: 𝑁 = 66 & 𝐻 = 66

⋄ LSTM : 4 ⋅ (662 + 66 ⋅ (66 + 2)) = 35.376
⋄ GRU : 3 ⋅ (662 + 66 ⋅ (66 + 2)) = 26.532

– Discriminator: 𝑁 = 66 & 𝐻 = 1
⋄ LSTM : 4 ⋅ (12 + 1 ⋅ (66 + 2)) = 276

7.3. Model Design Improvements 75

7

⋄ GRU : 3 ⋅ (12 + 1 ⋅ (66 + 2)) = 207
• Especially for the discriminator ≈ 200 − 300 parameters are far too few to learn any complex

behavior, for the task given.

3. Missing memory:

• The size of the LSTMs memory cell and the hidden state feedback signal are equal to the size of
the output.
→ As the final output of the discriminator is of size 1, so are the states that store the network’s
memory over time

• No complex information can be stored over time in a singular value.

Given that this initial design fails to generate any results, incremental improvements to the system were
applied to enable training progression, in an attempt to generate novel motions.

7.3. Model Design Improvements
The details of all design improvements, developed to alleviate the previously mentioned issues, are described
in this section:

1. Stacked RNN Units
2. Fully-Connected Final Layer
3. Derivative Output
4. Derivative Input
5. Soft-Self-Attention
6. Pain
7. Limited Judgement

The description of each design improvement is structured based on (at least) the following five segments:

1. Architecture: Schematic of the design
2. Problem: The current model’s problem that is to be resolved
3. Rationale: The reasoning behind implementing this change, in relation to the problem
4. Hyperparameters: Definition of (new) hyperparameters introduced or used
5. Trade-off: Reviewing the benefits and downsides of the change

7.3.1. Stacked RNN Units
Architecture
Increasing the number of layers for a RNN results in stacking multiple RNN units on top of each other. Each
unit has its own feedback signal into the future, resulting in a feedback loop for each additional unit in the
stack. The schematics of a stacked RNN model is given in Figure 7.3.

Figure 7.3: Neural network Architecture: Stacked RNN Units

Problem
As presented in Section 6.4.4 [Dual Feedback Problem] , a singular unit with the original design results in a
dual feedback loop of the same output data. As presented in Section 7.2 [Initial Design Problems], the current
model has no latent memory and too few parameters to learn complex interrelations.

7

76 7. Generative Model

Rationale
The ’deep’ in deep learning actually refers to the utilization of multiple layers within the network. A model
with a singular layer can therefore not truly be called a deep learning model. However, this is not true for
RNNs, even with just a singular unit, due to the feedback loop built into the system. Each unit is passed
through multiple times, when unfolded over time. This results in a very deep network, despite the utilization
of only a singular RNN unit [Rumelhart et al., 1986].

However, analogous to stacking FC or CNN layers, adding multiple layers for RNNs still allows for multiple
layers of abstraction in each processing step, resulting in the ability to learn more complex relations.

The introduction of multiple stacked layers was actually already present in the regression model, but the
BHPO optimized resulting models, for both the LSTM and the GRU, required only a singular layer (see Section
6.3 [Results]).

Hyperparameters
For the chosen design, only a singular hyperparameter was added to the system: ”# Layers”. This parameter
has already been introduced in Section 6.2.1 [Hyperparameters].

Stacking multiple RNN units means that the size of the latent vector in between layers can be chosen ar-
bitrarily, analogous to choosing the number of neurons in a fully-connected layer. Making use of the default
PyTorch implementation for training speed optimization, this means that on the first unit the output size is
equal to the final desired output size and remain constant for all subsequent layers. This also avoids exten-
sive HP scope creep, as defined in Section 5.2.2 [Scope Creep & Re-parameterization] If required, additional
hyperparameters could be introduced that define the size of each individual unit.

Tradeoff
• Pro:

+ Dual feedback problem is resolved, as the first layer now feeds back a latent vector
+ More non-linearities and training parameters: Allows the system to represent a more complex

output function

• Con:

- More training parameters and feedback loops: Even longer and increasingly nested output, increas-
ing backpropagation runtime significantly

- More complex systems usually take more data and time to train

Most of the benefits are already achieved with a layer size of 2, but introducing more layers is a trade-
off between increased training time and additional parameters for the system to learn. Excessive amounts of
layers should also be avoided to avoid over-fitting.

As it is hard to predict the correct number of stacked units upfront, the associated hyperparameter can
best be optimized through BHPO.

7.3.2. FullyConnected Final Layer
Architecture
Instead of using the output of the (stacked) RNN unit(s) as the final output of the model, an additional fully
connected layer is placed at the end.

Problem
As presented in Section 7.2, given a final output vector size of 1 the discriminator’s RNN units are defined to
be of size 1 as well. This problem can be extrapolated to the general fact that the size of the in- and output
vectors to the RNN units are fixed by the size of the original in- and output, this means that the number of
parameters for the RNN layer are completely pre-determined and cannot be adjusted.

Rationale
Introducing an additional fully connected layer towards the end changes the nature of the RNN output from
an output layer to a latent layer. This allows for choosing the size of the RNNs output arbitrarily and hence
controlling the size of the latent memory, as well as the total number of parameters of the model.

When applying this to the initial model the drastic inequality between the two networks is alleviated.
Using the LSTM based model as an example and setting both the generator’s and discriminator’s RNN output
size equal to the input size of 66 floats, the total number of parameters are as follows:

7.3. Model Design Improvements 77

7

Figure 7.4: Neural network Architecture: Fully-Connected Final Layer

• Original design: (see Section 7.2)

– Total: 35.652
– Generator: 35.376 (99.2%)
– Discriminator: 276 (0.8%)

• Original design + FC layer:

– Total: 75.241
– Generator:

⋄ FC: 66 ⋅ 66 + 66 = 4.422 (5.9%)
⋄ Total: 35.376 + 4.422 = 39.798 (52.9%)

– Discriminator:
⋄ FC: 66 ⋅ 1 + 1 = 67 (< 0.1%)
⋄ Total: 35.376 + 67 = 35.443 (47.1%)

The balance in the parameter count between the generator and the discriminator is restored to ≈ 50−50
instead of the discriminator being dwarfed by the generator’s size. This is beneficial as both networks are
required to process the same type, dimension and amount of data.

Hyperparameters
For each network the size of the latent vectors can be freely chosen, introducing two new hyperparameters to
the system. In practice these hyperparameters were re-parameterized and expressed in ratio to the input size,
according to Equation 7.2, and are defined in Table 7.2.

𝐻{𝐺,𝐷} = int (𝑁 ⋅ OutputRatio{𝐺,𝐷}) (7.2)

Equation 7.2: Neural network Architecture: Hidden layer size

Hyperparameters
Parameter [Default] Value Limits Description
G-OutputRatio 1.1 [1.0, 2.0] Ratio of generator’s latent space to the input
D-OutputRatio 0.75 [0.5, 1.0] Ratio of discriminator’s latent space to the input

Table 7.2: Hyperparameters: Output Ratios

By default the generator’s latent size was chosen to be larger than the discriminator’s, as the generator’s
final output is of higher dimensionality.

The ratio between the number of parameters of the generator and discriminator was by default kept at
≈ 33%𝑣𝑠66% of the total.

Intuitively, one might also think that it is a lot harder and more complex to learn a new skill from scratch
than to expose a flaw in a professionals performance. Generally, one is not required to be a dancer to judge
if a performance was good or bad. This inequality in the tasks asked of the two networks is thus reflected in
the total parameter count.

7

78 7. Generative Model

Given this defined ratio, the hyperparameters could alternatively be re-parameterized: One HP defines the
ratio of the number of parameters between the generator and discriminator (≈ 2/1), and the other defines the
common multiplier with the input dimensionality.

Tradeoff
• Pro:

+ RNN size is independent of output dimension
+ Customizable control over the number of parameters in the network

• Con:

- Introduction of additional hyperparameters required to be optimized

Implementing the final connected layers is essentially a necessity to resolve the extreme inequality between
the two networks.

7.3.3. Derivative Output
Architecture
Instead of using the neural network’s output as the final output, the neural network generates data related to
the change in the final state. The output of the network is not exactly the state change, as this would cause the
final state to be unbound. To prevent this, TanH is applied before the final output to keep the output within
bounds. The flow diagram is given in Figure 7.5.

Figure 7.5: Neural network Architecture: Derivative Output

Problem
The neural network is intended to generate motions, but actually generates poses.

Rationale
The generator is intended to generate novel motions and the final output is required to be a full pose at any
given time step. At first this may not seem like a contradiction, but looking closer there is a discrepancy
between these two requirements. The fact that the final output is a pose is logical, given the final projection
onto the drone swarm. Therefore, the final pose is the system’s state. But generating novel motions requires
the system to generate the change in its state rather than the actual state. Therefore, the network’s output
should be the state’s derivative.

Given the relatively high frame-rate and the fact that a human is a physical system required to obey the
laws of physics, such as inertia, it is undesirable to have large jumps between frames. Forcing the system to
generate the state’s delta instead, allows for finer-grained control and insight into the system: e.g. artificially
limiting the system’s derivative.

Intuitively, this means that the neural network learns how to ’move’ its body, instead of how to ’pose’ it.
After the fact, it was discovered that a similar method has been applied by Kratzer et al. [2020].

Hyperparameters
No new hyperparameters are defined by implementing this change. However, application of this modification
or not is a decision made by the researcher that affects the overall system architecture. In theory, the usage of
this option can be regulated by a boolean hyperparameter that activates it, but this was left a general setting
not to be optimized by the BHPO.

7.3. Model Design Improvements 79

7

Tradeoff
• Pro:

+ Next pose will only be a slight change from the previous
→ Ensures continuity

+ Combined with internal delta of the LSTM, it mimics human control
analogous to force/acceleration based on input

• Con:

- Bounding the final output by means of a TanH function, means a recursive application of the TanH
function
This results in a vanishing state problem², which the neural network needs to correct for (see Figure
7.6)

Figure 7.6: Derivative Output: Vanishing State Problem

7.3.4. Derivative Input
Architecture
In addition to the input and output poses used as input to the network, the changes in the in- and output state
are included as well. The flow diagram is given in Figure 7.7.

Problem
The system has to learn everything from scratch, while there are certain known derived data representations
that are expected to be useful to the network. This wastes computational resources, as the network is required
to learns these representations instead of providing them upfront as an input to the system.

Rationale
Building on the trivial solution to the regression problem, as presented in Section 6.4.3, it becomes clear that
the system first needs to learn about inertia, before learning more complex interrelations. The ’Backward
Differentiation Formulas’ (BDFs) provide a clear solution for the best estimate of the system’s state derivative

²The vanishing state problem is a result of iteratively applying the tanh function to the same data. This results in the maximum possible
output value (asymptote) to shrink with every recurrent iteration (see Figure 7.6).

7

80 7. Generative Model

Figure 7.7: Neural network Architecture: Derivative Input

at the next time-step in discrete-time. The BDFs first order solution simplifies to the backward Euler method,
where the current derivative is estimate to be equal to the one of the previous time step. Computing the first
order discrete derivative prior is trivial and passing it into the network saves the network the trouble of having
to learn that this information is relevant.

Intuitively, it can be compared to providing a student with a formula sheet during an exam: The student
should be able to learn the formulas by heart and solve the problem without them, but providing them makes
solving the actual problem easier. This is because it is not desired for the student to spend resources remem-
bering the formulas by heart, when the actual task merely requires them as a means to an end.

After the fact, it was discovered that a similar method, without the final normalization layer, has been
applied by Kratzer et al. [2020].

Hyperparameters
No new hyperparameters are defined by implementing this change. However, application of this modification
or not is a decision made by the researcher that affects the overall system architecture. In theory, the usage of
this option can be regulated by a boolean hyperparameter that activates it, but this was left a general setting
not to be optimized by the BHPO.

Tradeoff
• Pro:

+ Feeding network relevant data directly
Avoids network having to learn it explicitly

• Con:

- Increases number of input- and training parameters by a factor of 2

7.3. Model Design Improvements 81

7

7.3.5. SoftSelfAttention
Architecture
The soft-self-attention layer is a neural network based data pre-processing step that passed through the rele-
vant and masks out less relevant parts of the data [Bahdanau et al., 2015]. The flow diagram is given in Figure
7.8 and the exact PyTorch code is given in Algorithm D.2.

Figure 7.8: Neural network Architecture: Soft-Self-Attention

In addition to the usual configuration of this layer an input bias layer was added, which should allow for
learning corrections for non-zero mean input variables (see Table 4.1).

Problem
Neural networks are black-box systems which make it hard for researchers to gain insight into the internal
mode of operation of the system and make informed decisions in response.

Based on the derivative-input (see Section 7.3.4) and the 6D rotations (see Section 4.4.1) modificationsmade
to the system, the total number of input parameters has increased considerably: A singular Euler based motion
frame consists of 66 floats, but a 6D based motion frame consists of 129 floats. Given both modifications the
total input parameters increases from (2 ⋅ 66 =) 132 to (4 ⋅ 129 =) 516.

Furthermore, applying the ’Principal Component Analysis’ (PCA) transform (see Section 4.4.1) changes
the motion frame data to a ranked structure, where later PCA components have less influence on the overall
motion and might be less relevant for processing.

Rationale
Applying an attention layer prior to processing has the following two advantages:

• Focus: The network focuses on the relevant data, while ignoring the remainder
• Insight: Allows insight into which segments of the input data are actually used by the networks

Attention mechanisms have the unique benefit that they do not directly generate an output, but a mask
[sum=1] that is applied to the original input data. As both the input and output of the network are of the same
dimension and order, this allows for a human interpretation of the network weights. The weights of the FC
layer can be interpreted similar to an autocorrelation matrix. Examining the weights displayed in Figure 7.9 it
becomes apparent that …:

• … the generator focuses primarily on the Δs, mostly ignores the output pose, but overall uses all data
• … the discriminator focuses primarily on the output pose, while ignoring most other input data

This behavior is expected as…:

• … the generator is tasked with generating motions
→ Focus on Δs

• … the generator has to take in new information of the leading dancer, while the output dancer’s pose is
previous information
→ Focus on leading pose over output pose

• … the generator should judge all data in context
→ Overall wide focus

7

82 7. Generative Model

Figure 7.9: Attention: Attention Weights Example
Blue: Negative parameters & White: Zero Parameters & Red: Positive Parameters
Left: Generator Weights & Biases
Right: Discriminator Weights & Biases
Top↓Bottom & Left→Right: Leading pose, Output pose, Δ Leading pose, Δ Output pose
1px line on the left and bottom: Input- and Output Biases

The application of an attention mechanism changes the nature of the system from a pure black-box system
to a grey-box system.

Overall, application of attention mechanisms have proven highly beneficial to processing data with neural
networks [Bahdanau et al., 2015; Dong and Xu, 2019; Vaswani et al., 2017; Xu et al., 2018].

Hyperparameters
No new hyperparameters are defined by implementing this change. However, application of this modification
or not is a decision made by the researcher that affects the overall system architecture. In theory, the usage of
this option can be regulated by a boolean hyperparameter that activates it, but this was left a general setting
not to be optimized by the BHPO.

Tradeoff
• Pro:

+ Attention mask filters less relevant data
+ Dynamic masking, based on input data
+ Enables insight into which parts of the data are being used

• Con:

- Increases complexity and number of parameters
- Softmax layer can cause numerical instability issues

Weight Initialization
Unlike all other weights that are initialized with uniform random distribution, the weights of the attention
layer have to be initialized in a non-biased manner.

To prevent undesired discrimination of some parameters, the weights have to be initialized as follows:

• Weights: All weights = 1
𝑁 , to ensure every attention score is equal

• Biases : All zeros, to avoid a direct bias

7.3. Model Design Improvements 83

7

7.3.6. Pain
Architecture
The pain optimizer introduces an additional optimizer with a custom loss criterion, as defined in Algorithm
7.2. The pain loss makes use of the min/peak/max values for each channel, as defined in Table 4.1.

Algorithm 7.2 Pain Loss

def PainLoss(v,min,max,peak,r=8):
_l = (v-peak)/(min-peak)*(v<peak) + (v-peak)/(max-peak)*(v>=peak)
return torch.pow(_l,r)

The loss function is designed with the following five properties in mind:

• Continuously differentiable in ℝ
• = 0 at the peak
• ≈ 0 within the limits
•→ ∞when the limits have been exceeded
• = 1 at the upper- and lower limits

An example of a channel’s histogram, min/peak/max and the associated pain loss function is shown in
Figure 7.10.

Figure 7.10: Pain: Loss Example

The pain loss is not applied when𝑚𝑖𝑛 = −180∘&𝑚𝑎𝑥 = +180∘ for a specific channel, as this means that
any value is allowed and no penalty should be added.

7

84 7. Generative Model

Problem
The model is initialized randomly with no constraints for the output defined, causing almost all channels in
the initial output to exceed the limits. This problem is greatly alleviated when applying the PCA transform
(see Section 4.4.1), as it normalizes the data into the regions actually present in the data, but it does not fully
avoid the issue of exceeding the physical limits.

Rationale
A human learning how to dance is not required to learn his physical limits, they are known intuitively and
met with a sharp pain when exceeded. The pain criterion makes use of biomimicry to transfer the intuitive
mechanism of pain into the generator network. Hard limits are difficult to implement in neural network based
systems, as they learn by means of backpropagation through a fully differentiable set of equations and hard
limits introduce sharp discontinuities. The design of the pain criterion is therefore designed as a soft limit with
an exceedingly large gradient and loss the further from the limit the output gets.

Humans instinctively know their limits, why shouldn’t the computer? Some say: “Pain is the best teacher”.

Furthermore, as presented in Section 7.1.3 the BCE loss is affected by both networks and does not accurately
reflect the networks improvement.

Considering the pain loss in conjunction with the BCE loss allows for more insight into the training pro-
gression. To illustrate this, some of the training runs had wildly changing pain losses, while the discriminator’s
output was consistently stagnant and indecisive at 0.5/0.5 for the entire run. In this case, just looking at the
BCE loss would lead to the believe that the training is making no progress, while the pain loss clearly shows
otherwise.

An example of the progression of joint limits is shown in Figure 7.11. This example does not utilize PCA
processing and shows an inconvenient initial condition. On average the limits are exceeded by a factor of
≈ 6−7𝑥 at the first iteration and a factor of ≈ 2−4𝑥 during the first 500 iterations. After the chaotic initial
phase a clear progression towards the limit can be seen.

Figure 7.11: Pain: Losses over Time Example

The loss is transformed by 𝑋(
1
𝑟) to allow for easier interpretation by humans.

Only the thick blue line is of direct relevance, as it indicates the transformed mean of all individual losses.

The pain criterion alone works well for correcting limits that are exceeded very far, but the decreasing
gradients towards the limit causes progression to stagnate. This shortcoming is alleviated by applying the

7.3. Model Design Improvements 85

7

PCA transform to the data. The PCA transform causes the data to initially stay within limits and the pain
criterion corrects for channels shooting out of bounds, as the generator explores the solution space. This
synergy can be observed in Figure E.14.

Hyperparameters
The pain criterion introduces two new hyperparameters:

• Pain-Optimizer learning rate: Equal to global learning rate
• Pain-Criterion Exponent: 8

These parameters were not integrated into the BHPO to avoid parameter scope creep.
The pain optimizer’s learning rate was set equal to the other two optimizers learning rates to avoid in-

equalities between them.
The pain-criterion exponent was iteratively improved to the acceptable value of 8. The following cases

serve as a guideline for some of the regions for 𝑟:

• 𝑟 < 1 Desired gradient progression is inverted
• 𝑟 = 1 Gradients on each side are constant and discontinuous at the peak
• 5 < 𝑟 < 10 Acceptable region
• 𝑟 ≫ 10 Gradients are too steep, such that corrections overshoot

Tradeoff
• Pro:

+ Adds additional penalty to avoid exceeding of physical limits
+ Allows for additional insight into the training progression

• Con:

- Adds additional complexity
- Artificially skews output towards peak
- Only affects generator and not discriminator

7.3.7. Limited Judgement
Architecture
The generator generates a new motion frame-by-frame, which is subsequently passed to the discriminator
frame-by-frame. Instead of feeding the entire newly generated motion into the discriminator, the first few
frames are removed and this truncated version is passed into the discriminator. A visualization of this proce-
dure is presented in Figure 7.12.

Problem
The final output and hidden states of the network are initialized in the same fashion every time. The initial
condition at 𝑡 = 0 is therefore always the same.

This opens up the possibility for a trivial solution for the discriminator, which should be avoided. All
the discriminator needs to do to distinguish the generated and the real motions is to the detect the initial
configuration of the generated motion. As the system utilizes recurrent units that can be used as memory to
store information over time, all the discriminator needs to do is hold this believe for the entire motion. Once
correctly detected at 𝑡 = 0, there is no incentive for the discriminator to change the preset believe, as it will
remain correct.

Rationale
“It would be unfair to have a dance critic judge a dancer’s stage performance from the moment on (s)he’s still
getting ready in the dressing room.” So why is the network doing this?

Any system that has an imperfect initial condition suffers from a transition period until the system con-
verges, e.g. a Kalman filter usually requires a few iterations before the filtered estimate should be trusted.

If the discriminator is allowed to judge this initial period, which is by definition sub-optimal, it opens up
a shortcut to the correct answer, which does not reflect the desired solution. If the discriminator learns to

7

86 7. Generative Model

Figure 7.12: Neural network Architecture: Limited Judgement

discriminate on the wrong cues, this means that the generator learns by receiving incorrect feedback. Sub-
sequently the generator would try to correct for the initial offset as fast as possible, but will never be able to
outpace the discriminator. This results in an excessive Δ early on, as the generator tries to correct for the initial
state by approximating a large step input. This behavior is however in stark contrast to the desired smooth
and continuous transitions in the output that the recorded data exhibits, which it is supposed to mimic.

Truncating the transient that corrects for the initial state gives the generator a few frames the time to ’get
ready’, before being judged by the discriminator.

An intuitive example for thinking about the persistent cue: If one watches a video and is tasked to judge if
it is real or fake and there is even a single moment that somebody is floating upside-down, it would be known
for the rest of the video that it is fake. Hence, a single cue can be enough to ‘make up somebody’s mind’ for a
long time.

Hyperparameters
The number of frames to truncate is the only newly introduce variable (see Table 7.3).

Hyperparameters
Parameter [Default] Value Limits Description
Truncated Frames 25 [1, 100] Number of frames to remove for discriminator

Table 7.3: Hyperparameters: Limited Judgment

This hyperparameter could be re-parameterized to be expressed in seconds instead, making it independent
of the frame rate. Tuning this parameter is not trivial for the following reasons:

7.4. DRAGAN 87

7

• Truncate too few frames: The problem described prior manifests.
• Truncate too many frames: The generator ’receives’ no feedback, over an extended period of time, mak-

ing it harder to learn and build up the desired motion.

Tradeoff
• Pro:

+ Avoids presenting a trivial solution for the discriminator

• Con:

- Introduces another hyperparameter to be optimized
- If too many frames are truncated the initial phase receives limited feedback.

Hidden State Initialization
To understand the need for the limited judgment method, one must consider the way the network state is
initialized. Due to the derivative input, the change to the system’s output is incremental. Thus, the first few
iterations the output is close to the initial state. The system is initialized with two separate poses depending
on the data pre-processing that is used:

• <.BVH> Euler angle representation

– Initial pose: T-Pose (see Figure 3.1)
– Initial output vector: Zero-vector

• 6D Rotations:

– Initial pose: T-Pose (see Figure 3.1)
– Initial output vector: Zero-vector transformed through 6D rotation transform

• 6D Rotations with PCA transform:

– Initial pose: PCA mean pose (see Figure 4.14)
– Initial output vector: Zero-vector

Both dancers were instructed to start and end each take in the T-Pose. This makes initialization of the
output in the T-Pose is a logical choice.

Once the PCA transform was added, the PCA mean pose was chosen as the initial pose. This is because, it
represents the mean pose of the dataset, which is on average the one closest to any desired state of the system.

All other hidden states were initialized as zero-vectors, as not to introduce a bias at 𝑇0.

7.4. DRAGAN
The finalmodel is comprised of the initial GAN, augmentedwith all the improvements described in the previous
sections. The ID of this proposed model was originally ’6D-PCA-ATT-DI-DO-LSTM-Pain-LJ-GAN ’,
but replaced in favor of a more descriptive name: The ’Differential Recurrent Attention GAN’ (DRA-GAN).

The full diagram of the DRA-GAN framework is presented in Figure 7.13, combining all the elements pre-
viously introduced individually.

The algorithm visualized in the diagram is summarized sequentially in Algorithm 7.3, including references
to the relevant sections for each element.

In summary, this proposed model…:

• … combines the strength of various neural network architectures
(see 6.1.2 [RNN: LSTM vs GRU] & 7.1 [Generative Adversarial Network])

• … solves the feedback dilemma
(see 6.4 [Feedback Dilemma])

• … solves the initial design problems
(see 7.2 [Initial Design Problems])

• … adheres to the best practices for training GANs
(see 7.1.4 [Best Practices])

7

88 7. Generative Model

Algorithm 7.3 DRA-GAN Processing Framework

0. Initialization:
(a) Load Training Framework: (see 5.1 [Training Framework])
(b) Initialize Hidden States: (see 7.3.7 [Hidden State Initialization])

1. Load Data:
(a) Load Raw Motions: (see 4.2.3 [ArangoDB])
(b) Remove Fingers: (see 4.3.2 [Skeletal Simplification])
(c) Filter Motions: (see 4.3.3 [Data Filtering])
(d) Transform to 6D Rotations: (see 4.4.1 [6D-Rotations])
(e) Apply PCA Transform: (see 4.4.1 [Principal Component Analysis])

2. Run Generator:
(a) Generate Motion Frame-by-Frame:

i. Prepare Input: (see 7.3.4 [Derivative Input])
ii. Focus Attention: (see 7.3.5 [Soft-Self-Attention])
iii. Run RNN Core: (see 6.1.2 [RNN: LSTM vs GRU] & 7.3.1 [Stacked RNN

Units])
iv. Reduce Output Dimensionality: (see 7.3.2 [Fully-Connected Final Layer])
v. Integrate and Limit State: (see 7.3.3 [Derivative Output])
vi. Store Generated Frame:
vii. If Motion not Completed: Jump to ’i.’

(b) Run Pain Optimizer: (see 7.3.6 [Pain])

i. Compute Pain Loss: (see Algorithm 7.2)
ii. Backpropagation:
iii. Pain Optimization Step: (see 5.1.3 [Hyperparameters] for governing HPs)

3. Run Discriminator:
(a) Select Following or Output Motion:
(b) Discriminate Motion Frame-by-Frame:

i. Prepare Input: (see 7.3.4 [Derivative Input])
ii. Focus Attention: (see 7.3.5 [Soft-Self-Attention])
iii. Run RNN Core: (see 6.1.2 [RNN: LSTM vs GRU] & 7.3.1 [Stacked RNN

Units])
iv. Reduce Output Dimensionality: (see 7.3.2 [Fully-Connected Final Layer])
v. Store Generated Guess:
vi. If Motion not Completed: Jump to ’i.’

(c) Run GAN Optimizer:
i. Compute BCE Loss: (see Equation 7.1) & Table 7.1
ii. Backpropagation:
iii. GAN Optimization Step: (see 5.1.3 [Hyperparameters] for governing HPs)

7.4. DRAGAN 89

7

Figure 7.13: Neural network Architecture: DRA-GAN DanceNet

7

90 7. Generative Model

Hyperparameters
Parameter [Default] Value Limits Description

Network Size
Layers 3 [2, 5] Number of stacked recurrent units
G-OutputRatio 1.1 [1.0, 2.0] Ratio of generator’s latent space to the input
D-OutputRatio 0.75 [0.5, 1.0] Ratio of discriminator latent space to the input

Pain
Pain learning rate Equal to global learning rate (see Section 5.1.3) Learning rate of the pain optimizer
Pain Exponent 8 [5.0, 10.0] Pain loss: limit-exceedance-ratio exponent

Limited Judgement
Truncated Frames 25 [1, 100] Number of frames to remove for discriminator

Table 7.4: Hyperparameters: DRA-GAN

7.4.1. Hyperparameters
Table 7.4 summarized all hyperparameters newly introduced in the DRA-GAN model.

7.4.2. Weights and Biases
Compared to the very small network size of the regression model (see Section 7.2), the full DRA-GAN model
contains millions of trainable parameters. This overall size is in line with comparable recurrent networks for
motion generation or prediction, such as [Huang et al., 2020; Kratzer et al., 2020; Mao et al., 2020] utilizing
models with parameter counts in the millions.

The bulk of the trainable parameters is concentrated in the RNN core, with the attention and final linear
layers only accounting for 5% of the total. The number of parameters in the attention and linear layers are
completely determined by the dimensionality of the motion frame. They are therefore only influenced by the
choices whether or not to use the 6D-Rotations transform and to remove the finger joints. The number of
parameters in the RNN core is determined by the number of stacked layers, as well as the set output ratios for
the generator and discriminator, respectively. By default the output ratios are chosen such that the generator
contains approximately double the number of parameters than the discriminator, as the generator is expected
to have the more complex task (see Section 7.3.2). A complete parameter distribution example is provided in
Table 7.5.

DRA-GAN # Parameters
Network # Parameters % Total

Attention Layers:
Generator 267, 288 2.24%
Discriminator 267, 288 2.24%

Recurrent Units:
Generator 7, 539, 552 63.18%
Discriminator 3, 785, 888 31.73%

Linear Layers:
Generator 72, 885 0.61%
Discriminator 387 < 0.01%

Combined:
Generator 7, 879, 725 66.03%
Discriminator 4, 053, 563 33.97%
Total 11, 933, 288 100%

Table 7.5: DRA-GAN: Parameter Distribution Example
3 layer LSTM with G-OutputRatio = 1.1 & D-OutputRatio = 0.75

Figure 7.9 displays how visualization of the attention weights can enable the researcher to gain insight
into the network’s mode of operation. This visualization was extended to incorporate the complete network’s
weights and biases. Figure 7.14 visualizes these combined network parameters.

The example given is for a 3 layer LSTM and is intended to introduce the various elements and how to
interpret the DRA-GAN weight visualizations. The left half of the figure displays the parameters belonging

7.4. DRAGAN 91

7

to the generator and the right half those belonging to the discriminator. The square 4𝑥4 grids on top are
the attention weights, such as previously displayed in Figure 7.9. The segments enclosed by the blue dotted
lines represent the RNN core parameters. Each set of two columns within these represent the parameters of
a singular unit in the stack. In the first column are the parameters applied to the input and in the second
those affecting the hidden state feedback signal. Each row represents the weights of a specific gate within the
RNN unit (4 for LSTMs & 3 for GRUs). The small rectangle, next to the RNN core parameters, indicates the
parameters belonging to the final FC layer. As the output dimensionality of the discriminator is 1, so is the
width of the discriminator’s final layer but a single pixel in width and can therefore not be distinguished in
this example. The general flow of data is indicated by the orange dotted line, going through each of the major
segments sequentially. The color scheme is the same as for the attention weights with red and blue indicating
positive and negative parameters respectively and parameters (close to) zero displayed in white. The green
and black lines are merely for visual separation of the various subsegments within a parameter block.

The interpretation of these weights will later be addressed separately in 7.5 [Results].

7.4.3. Advanced Loss
As presented in Section 7.1.3, theGANbasedmodelmakes it hard tomake an objective quantitative assessment
of the model’s performance.

In addition to the limited insight, a secondary problem became apparent when training the GAN based
model within the training framework (see Section 5.1). The early break criterion (see Section 5.1.2) was orig-
inally designed for models with a steadily decreasing loss function. The criterion was adapted to allow for a
positive gradient in the final loss, but the same reason that causes limited insight also causes stagnation of the
BCE loss at times. When the system is in equilibrium the loss stagnates and the early break criterion triggers,
while this might not actually indicate a stagnation in the training progression.

The final issue with the current loss is the numerical equivalence of the loss function at the start of training
compared with the desired final state. To understand this, a closer examination of the three stages of training
is required: At the start of the training the weights are initialized randomly. With the positive and negative
weights in the final layer having equal probability they cancel each other out on average. This results in the
final FC output to be ≈ 0, which passed through the sigmoid activation function outputs a default value
of ≈ 0.5. So, the discriminator is uncertain about the classification of the data and is essentially guessing
randomly ’50/50’. During the training, it is desired for the discriminator to be able to correctly classify the
motions, as this means that the feedback provided to the generator is correct and results in steps taking in the
right direction. At the end of the training, the generator is desired to generated motions so well that they are
indistinguishable from the real motions. This desired final state forces the generator back to a state of guessing
randomly, as there is no way of telling the real and fake data apart. However, this means that the network is
initialized in the same configuration as the final desired state, making them numerically equivalent.

The following three issues have to be resolved:

• Insight into the system’s performance and training progression is severely limited
• Stagnation of discriminator loss should not trigger early breaking, if training is still progressing
• 50/50 guessing at initialization and at the end of training should not be treated the same way

To alleviate these issues, a few modifications were made to the default loss function. While this modified
loss does not provide an absolute metric for assessing the network’s training progress, it serves as a better
starting point to access the process’ progress.

Discriminator Metrics
At each iteration the discriminator is being trained on one real and one fake sample and produces a series of
guesses over time. Analyzing these time series predictions by the discriminator allows for computing a set of
metrics from them that go beyond the singular value that the BCE loss provides.

An example of the discriminator’s guess for a full motion chunk is presented in Figure 7.15. The lower
plot shows the time trace of the discriminator’s guess for the real (green) and fake (red) input. The upper plot
shows a histogram of the same time traces, as well as the mean and standard deviation for each of the four
quadrants. The upper histogram indicates the output for the real data and the lower histogram that of the
fake data. In this particular example the discriminator is …:

7

92 7. Generative Model

Fi
gu

re
7.
14

:D
R
A
-G

A
N
:N

et
w
or

k
Pa

ra
m
et
er
s
V
is
ua

liz
at

io
n
Ex

am
pl
e

B
lu
e:

N
eg

at
iv
e
pa

ra
m
et
er
s
&

W
hi
te
:Z

er
o
Pa

ra
m
et
er
s
&

R
ed

:P
os

it
iv
e
Pa

ra
m
et
er
s

G
re
en

&
G
re
y:

Lo
gi
ca

ls
ep

ar
at

or
s

7.4. DRAGAN 93

7

• …fairly confident in identifying the real motion, with all guess consistently being true positives.
• …uncertain in identifying the fake motion, with about half the guesses over time being false negatives.

However, considering the time trace it does appear that the discriminator becomes better at identifying
the fake data correctly as time progresses.

Figure 7.15: DRA-GAN: Discriminator Guesses Example

Based on these time series, the minimum, maximum, median, mean and standard deviation of the guesses
can be extracted, for each type of input data (real & fake). Given these metrics an additional set of derived
metrics can be computed that reflect the discriminator’s performance. Equation 7.3 shows the computation
of these metrics. ³

𝜇Real =
𝑁
∑
𝑖=0

𝑔predReal

𝑁 | Real-Mean

𝜇Fake =
𝑁
∑
𝑖=0

𝑔predFake

𝑁 | Fake-Mean

𝜇Bias = 𝜇Real+𝜇Fake

2 | Mean-Bias
Δ𝜇 = |𝜇Real − 𝜇Fake| | Mean-Distance
Δ𝜇max =max ({Δ𝜇0, ..., Δ𝜇𝑡}) | Max-Distance
𝑑Real = |𝜇Real − 0.5| | Real-CenterOffset
𝑑Fake = |𝜇Fake − 0.5| | Fake-CenterOffset
𝑑 = 𝑑Real + 𝑑Fake | Mean-CenterOffset

LossGenerator = 𝑑𝑡+Δ𝜇𝑡+(1−Δ𝜇max)
2 | Loss

(7.3)

Equation 7.3: Generative Model: Discriminator Metrics

All metrics are within the range of (0, 1) and have the following interpretive power:

• Real-Mean: Average performance of the discriminator on classifying real data
• Fake-Mean: Average performance of the discriminator on classifying fake data
• Mean-Bias: Average bias of the discriminator on classifying any data

³The computations of theminimum, maximum, median and standard deviations are trivial and have been omitted. Themeanwas explicitly
stated, as it forms the basis for computing the derived metrics.

7

94 7. Generative Model

• Mean-Distance:
→ 0: Real and Fake data appears identical to discriminator
→ 1: Perfect classification

• Max-Distance: Best discriminator performance so far
• Mean-CenterOffset: Overall confidence of the discriminator in its guesses
• Loss: A measure of the performance of the generator

The ’Mean-Distance’ and ’Mean-CenterOffset’ are equivalent if the discriminator is on average correctly
classifying both types of data correctly (𝜇Real > 0.5 & 𝜇Fake < 0.5). A divergence of these two metrics indicate
a heavy overall bias towards one of the two classifications.

An example of the discriminator’s performance over multiple training iterations, showcasing all metrics
presented above, is presented in Figure 7.16. The green and red regions indicate the regions between the
minimum and maximum of the respective data; as the discriminator output is always initialized at 0.5 these
regions will usually border or incorporate the 0.5 line.

Figure 7.16: DRA-GAN: Discriminator Metrics Example

It becomes apparent that by incorporating the 1−Δ𝜇max term into the loss function, the loss function starts
at ≈ 0.5 and can only drops lower once the discriminator has showcased an adequate level of performance.
The loss first has to rise before it is able to drop lower than the starting value. This solves the problem of the
numerical equality of the start and desired end of the training.

Combined Loss
The final ’loss’ is a combination of the generator loss described above and the normalized average pain losses.
The normalized pain loss indicates the ratio of exceeding the joint limits, so any value below 1 is acceptable.

It is defined by Equation 7.4.

LossTotal = LossGenerator + Loss
1
𝑟
Pain (7.4)

Equation 7.4: Generative Model: Advanced Loss Function

Given that the generator loss is in range (0, 1) and the pain loss should never exceed 1, it becomes clear
that the total loss should never exceed a value of 2. Any value < 1 is likely to indicate acceptable limits and
adequate performance of the generator.

7.5. Results 95

7

Unfortunately, neither the generator nor the pain loss have any true expressive power over how good the
current output is. It provides merely an indication on the system’s performance and the knowledge that any
values > 2 indicates unacceptable generator performance.

It is important to note that this loss metric is not directly used for training the network, but indirectly to
increase insight and as the metric used by the early break criterion and the BHPO optimization.

7.5. Results
The DRA-GAN framework is capable of successful execution. Multiple model configurations have been trained
over the course of this research.

7.5.1. Model Development
As indicated in Section 7.2, the initial design did not show any training progression at all and hence produced
no results.

The initial design problems were solved one problem at a time through iterative design, as outlined in
Section 3.3.2. Therefore, the initial result was the successful design of GAN for motion generation.

The following results were achieved:

1. Increased insight into the training process:
(see 7.4.3 [Discriminator Metrics], 7.4.3 [Combined Loss], 7.3.5 [Soft-Self-Attention] & 7.4.2 [Weights
and Biases])

2. Resolved training stagnation:
(see 7.3.2 [Fully-Connected Final Layer] & 7.3.1 [Stacked RNN Units])

3. Avoided exceeding of physical limits:
(see 7.3.6 [Pain] & 4.4.1 [Principal Component Analysis])

4. Removed Euler angle reconstruction error:
(see 4.4.1 [6D-Rotations])

5. Prevented trivial solution:
(see 7.3.7 [Limited Judgement])

Only after resolving these primary issues could the quality of the generated motion be assessed.

7.5.2. Visual Output
Given the lack of an objective numerical metric to assess the final output motion, the final measure of judge-
ment is left to visual inspection of the generated motions by the observer. Figure 7.19 attempts to visualize
one such motion, by displaying key frames over time sequentially along a spacial axis. This is at the cost of
losing information on the spacial translation, as the temporal displacement is replaced by a spacial one. While
far from perfect, this initial motion does appear to have a certain resemblance to an ’arabesque’ in ballet, after
which it progresses to a strange contorted pose.

In the end the motion settles into a final pose, presented in Figure 7.17, after which it still displays motion
of ≈ 30 − 50 cm and movement of the limbs of a few degrees, but overall holding the same pose. At first
glance the pose looks unnatural and strange, but unlike earlier in the training this pose actually resembles a
human figure. For comparison, Figure 7.18 shows the exact same output frame in reaction to the input pose,
but at three earlier stages in the training. The stark contrast between these poses show that the network has
indeed learned to output more realistic poses and motions over time.

Analyzing the final pose of the network the following aspects can be observed:

• Pro:

+ Character is upright
+ Almost all joints are within natural limits
+ Foot contact is made with the floor (±2 − 3 cm)
+ COG expected to be above foot base, in the sagittal (sideways) plane
+ Pose looks ’active’ (hands up)
+ The pose is located near the origin, where the original dancers have been recorded

• Con:

- Right leg is twisted unnaturally

7

96 7. Generative Model

- Spine is slightly bend, in the coronal (frontal) plane
- Left leg makes contact on the wrong side of the body

Figure 7.17: DRA-GAN Results: Final Pose [Epoch #20]
Transformation: Rotated 40∘ along the global upward axis, to align with the principle planes for better visualization.

Figure 7.18: DRA-GAN Results: Twisted Poses [Epoch #{5,10&15}]
Red: Epoch #5 | Green: Epoch #10 | Blue: Epoch #15

Overall, given the limited number of hyperparameter sets the model was able to be tested with, it is im-
possible to say conclusively that the design model is strictly unable to generate the desired results and further
BHPO should be performed.

7.5. Results 97

7

Fi
gu

re
7.
19

:D
R
A
-G

A
N

R
es

ul
ts
:O

ut
pu

t
M

ot
io
n
Ex

am
pl
e

7

98 7. Generative Model

7.5.3. Training Progression
The primary reason why only a singular pose is presented as the final pose is the fact that, the output motions
are almost completely identical, independent on the input motion selected. The issue of a GAN generating
largely the same output, independent of the input data provided, is commonly known as ’mode collapse’ and
one of the ways in which the GAN’s training instability can manifest. The general output pose is almost the
same, with only different translational motions and slightly different motions in the joints. This is because the
current state of the network largely ignores the leading motion.

This can be seen by the fact that the attention of the discriminator is almost entirely focused on the output
motion and does not take the input motion into consideration (see Section 7.3.5).

At first this may seem as an undesirable situation, but is actually a logical conclusion of the GAN based
framework. To understand this, one needs to consider the training progression that is to take place:

1. Both networks are initialized randomly
2. The discriminator realizes that the input motion has no discriminatory features, as it is identical inde-

pendent on whether the output motion is real or fake
3. The discriminator starts to ignore the input motion and focuses on the output motion
4. The generator starts learning based on the generator’s feedback on the output pose
↑ Current state of the network ↑
↓ Desired state of the network ↓

5. The generator will learn to generate output poses that are realistic and within the training distribution
6. The discriminator looses the output pose as a discriminatory feature, as the output poses are indistin-

guishable of the real poses
7. The discriminator will have to look for a new discriminatory feature:

• The outputs motion → Δ Output Pose
• Judge the output pose in context → Input Pose
• Judge the output motion in context → Δ Input Pose

8. The generator will continue to learn based on the new feedback and improve the overall output piecewise
until perfection

9. Jump to 7. and repeat

Therefore the current training progression is not incorrect, it just appears to halt after step 4. One reason
for this might be the weight decay applied to the attention weights. Usually the attention weights are supposed
to be a feature that filter out undesirable data that is not required for learning, but these weights do not change.
In the case of a GAN the data that should be focused on changes over time and in the end all data should be
taken into consideration. In the current state the attention weights become so small however, that little to no
information is passed through anymore. This makes it exceedingly hard to recover the attention on this part
of the data.

Intuitively, one might think of it like the self reinforcing suggestion algorithms on modern Internet plat-
forms: The user is only shown new suggestions based on his or her preferences, therefore the user consumes
more of this suggested content. Other content is still available, but it becomes exceedingly hard to access and
to change the attention to it.

Therefore, a means of recovering attention over time could be a potential solution to this problem.

7.5.4. Extended Results
Multiple runs have been executed, but so far none have generated true long-term interactive motions. For a
few selected runs the results have been compiled in Appendix E. For each run the following parameters and
results are shown:

• Elements used (for reproducibility):

– Network Version (see Section 3.3.2)
– Hyperparameters (see Section 5.1.3 & Section 7.4.1)

• Output generated:

– Final Network Weights (see Figure 7.14)
– Discriminator History (see Section 7.4.3)
– Pain History (see Section 7.3.6)

7.5. Results 99

7

The following runs are showcased:

1. V1.0-23 | 6D-ATT-DI-DO-LSTM-GAN | e406d70f24
2. V1.1 | 6D-ATT-DI-DO-LSTM-Pain-GAN | d9be67f6a7
3. V1.1 | 6D-ATT-DI-DO-LSTM-Pain-GAN | 42241955b0
4. V1.2 | 6D-PCA-ATT-DI-DO-LSTM-Pain-GAN | 96142329a6
5. V1.3-7 | 6D-PCA-ATT-DI-DO-LSTM-Pain-LJ-GAN | 7d2d6588e0
6. V1.3-15 | 6D-PCA-ATT-DI-DO-GRU-Pain-LJ-GAN | 89ba1481a7

DanceNet models prior to V0.9 did not contain the complete derivative handling and are hence not classified
as a DRA-GAN. Runs prior toDanceNet V1.0 did not save the plots to disk, but only had live visualization inside
the BHPOGUI (see Appendix C). The selected runs show the progression of the model over the various version,
as well as the diversity in the resulting output, based on the various hyperparameter sets used. Each result
contains a section with a brief analysis that highlights some of the important elements to note.

III
Application & Relevance

100

8
Live Interaction

The focus of Part II lies in fulfilling the internal goal of this research, through data handling and the develop-
ment of the frameworks for training neural networks. This chapter will focus on fulfilling the external goal of
this research, through the development of a framework for interacting with the pre-trained neural networks.

8.1. Live Simulation
The final network is intended to be used in a live performance on a theater stage. The scope of this research
was restricted to a simulated environment only, as the budget did not suffice for testing with the real drone
swarm. As a result, a live simulation environment was created, as close to the final product as possible.

The final system has to fulfill a few key requirements:

• Update rate: ≥ 100 Hz (same as OptiTrack FPS)
• Latency: ≤ 10 ms (As low as possible)
• Communication: Publish results for further processing by other algorithms
• Safety: No harm to the audience or dancer

All of these requirements were adhered to in the designed simulation, except the final requirement on
safety. It was not taken into account as inside the simulation the drone swarm poses no threat to the user
and because the network is restricted to generating novel motion poses, with the drone swarm control system
required to handle collision avoidance.

The two main elements of the framework are the model inference module, enabling runtime interaction
with the pre-trained neural network, and the OptiTrack streaming module, receiving live data from the Opti-
Track motion capture (MoCap) system.

8.1.1. Model Inference
Once the model is trained, using the frameworks presented in Chapter 5, a lot of framework elements are
not required anymore at inference time. For the generative model only the generator is required, with the
discriminator only being a means to an end during training.

To utilize the final model, only the trained network parameters (<.pt> files) and the hyperparameters
(’Hyperparameters.json’) related to the generator’s design, are required.

A simulation environment was developed to execute the trained model at runtime. The resulting model
is shown in Figure 8.1. Adapting the training model (see Figure 7.1), the generator was placed in a separate
environment. After selecting a data source for the input motion, the motion is processed sequentially and the
results are published as UDP (User Datagram Protocol) messages onto the LAN (local area network).

Data Input Sources
Three basic input sources were defined for testing the runtime speed of the inference model. The modes and
their measured update rates are presented in Table 8.1.

¹Run on the following hardware:: CPU - Intel i7-8750H & GPU - NVIDIA Quadro P1000

102

8.1. Live Simulation 103

8

Figure 8.1: DanceNet Architecture: Inference Model

Live Simulation Speed Test¹
Input Source Update Rate Description
T-Pose ≈ 500 [𝐻𝑧] (≈ 2 [𝑚𝑠]) Continuous T-Pose
Random Pose ≈ 500 [𝐻𝑧] (≈ 2 [𝑚𝑠]) Completely randomized input pose
BVH Playback ≈ 333 [𝐻𝑧] (≈ 3 [𝑚𝑠]) Frame-by-frame playback of <.BVH> file

Table 8.1: Live Simulation: Modes and Speed Test

The test clearly shows that the model is capable of fulfilling the update rate and latency requirements,
even on mobile hardware.

The ’T-Pose’ and ’Random Pose’ input modes are not only intended as a quick speed test tool, but also to
see the network’s reaction to these two modes of operation. For the safety requirement the network has to
behave at least somewhat predictable. Therefore, at least the following two tests should be executed before
utilization on stage; The output shall…:

• T-Pose: Start and end of each performance
→ … remain still when the input motion is still for long enough.

• Random Pose: Simulating loss of tracking or system malfunction
→ … continue to move in a physically realistic manner and not move out of control.

Given the current state of the system, resulting in an almost static pose, these two requirements are met
but not representative.

Communication
The choice was made to transmit the resulting data via UDP to the LAN, as this allows for executing DanceNet
as a standalone service in a microservices architecture.

UDPvs TCP: The choice wasmade to utilize UDP (User Datagram Protocol) over TCP (Transmission Control
Protocol), as it has the following benefits and resulting capabilities:

• Multicast: → Send data to multiple or all machines and/or services at once
• No handshake: → No timeout and low latency

The problem with TCP is that it requires a three-way handshake, in which the recipient acknowledges
the connection. This results in additional network overhead and the necessity to know the IP of the recipient
ahead of time.

UDP allows to send-and-forget messages, allowing the recipient to process the incoming packets at their
own pace, only using the latest incoming message. The downside of UDP is that some data packets might
get lost or be dropped by the recipient, but this is actually intended behavior for real-time inference, as older
messages are by definition obsolete once a newer message has arrived.

8

104 8. Live Interaction

UDP Message components
Component Data Type Description SI Unit
UnixT float Unix Time of sending [𝑠]
InputMotion float [3 + 63] Live/playback/generated motion [𝑚] & [∘]
OutputMotion float [3 + 63] DanceNet generated motion [𝑚] & [∘]
(ReferenceMotion) float [3 + 63] Recorded reference motion [𝑚] & [∘]

Table 8.2: Live Simulation: UDP Message components

Message content: Each data message contains the information shown in Table 8.2. It contains at least the
time, to check the latency of each message, and the original and generated skeletal poses. When running the
system in ’BVH Playback’ mode, the ’ReferenceMotion’ can be send as well for visualization as a reference.

Each pose is encoded in SI units, using the Euler angle representation. The message is encoded in a JSON
inspired key-value format, with a new line for each component: <key>=<value_string>

For production this could be fully changed to a JSON based transmission, as this should make parsing on
the receiving end easier.

8.1.2. OptiTrack Streaming
To enable utilization of the system on stage, the DanceNet module is required to receive live data from the
OptiTrack MoCap system. OptiTrack streams the live MoCap data via their NatNet SDK. The serialized UDP
packets need to be decoded prior to passing the data into the DanceNet.

Each NatNet message contains information on all markers, bodies and skeletons present in the tracking
volume, but for this module only the skeletal information is of relevance. Unfortunately the skeletal encoding
and joint order are not equal to the convention used by the <.BVH> files and has to be converted. Each skeleton
is encoded as relative or absolute rotations in quaternion format.

A pre-processing tool² was created that decodes theNatNet packets and converts them into the appropriate
format for further processing. The steps taken to receive and process the data are presented in Algorithm 8.1.

Algorithm 8.1 Live Simulation: OptiTrack Message Decoding

1. Initialization:
(I) Setup client and connection to server
(II) Request asset description information
(III) Save asset description information

2. Receive and decode packets:
(I) Receive packets via NatNet SDK (see Optitrack.com/software/NatNet-SDK)
(II) Decode serialized data
(III) Extract skeletal data from full information
(IV) Reorder bones into BVH hierarchy (see 4.2.2 [Biovision Hierarchy (BVH)])
(V) Remove finger bones (see 4.3.2 [Skeletal Simplification])
(VI) Convert from quaternions to Euler angles
(VII) Forward data to DanceNet

The system is configured using a multithreaded asynchronous callback structure, for increased perfor-
mance and to ensure handling of all incoming messages. The system was tested using the streaming settings
for Motive as defined in Figure 8.2 and the following version for software provided by OptiTrack:

• Motive 2.2.0
• NatNet 3.1.0.0

²Build upon the ’PythonClient’ example provided by the NatNet SDK.

https://optitrack.com/software/natnet-sdk/

8.1. Live Simulation 105

8

Figure 8.2: OptiTrack: Motive Streaming Settings

Right Leg Bug
The pre-processing tool works as intended, except for a singular unexplained bug. For unknown reasons the
right leg is reconstructed incorrectly, even though all joints are processed by exactly the same code and the
remaining joints are reconstructed without error. This phenomenon is presented in Figure 8.3.

It is uncertain if the bug is introduced in the code written by the researcher, or in the Python example
provided by OptiTrack. Even after multiple calls with the OptiTrack customer support the issue remains unre-
solved. This bug needs to be resolved before utilization on stage.

Speed
The system was initially used over the local WLAN, but conflicts with other devices in the network caused a
significant number of packets to be dropped, a highly irregular frame rate and sometimes latencies of > 2000
ms.

After the switch to a separate LAN configuration was made, the system ran at a steady frame rate of ≈ 50
FPS. The tool has the option to save the raw in- and outputmotions to disk in <.BVH>motion, for verification of
the received frames. This however costs additional time and slows down the system. Turning the ’SaveToDisk’
option off results in a frame rate of ≈ 80 FPS.

Finally, removing the finger joints right after receiving the NatNet message, instead of after conversion,
resulted in a the desired update rate of 100 FPS. Receiving and processing almost all messages, with a negligible
amount of frames dropped (< 0.1%).

8.1.3. AIman Framework
The DanceNet module, including the OptiTrack pre-processing module, are only part of a larger framework
that will facilitate the final AI-man show. The simplified version of the entire live data processing framework
for AI-man, including the feedback signal from the drone swarm back to the Dancer, is presented in Figure 8.4.

True Feedback
As indicated in Figure 8.4, the final version of this system will include a feedback signal from the drone swarm
back to the dancer. Independently on whether the system is executed inside a simulated environment or

8

106 8. Live Interaction

Figure 8.3: Live Simulation: OptiTrack Reconstruction Bug
Grey outline: Original pose & Orange outline: Reconstructed pose

utilizing the real drone swarm, as soon as the dancer receives visual feedback from the system, the dancer will
react to the output generated by the system.

This is important as this results in a dynamic that the network is not trained for, as this would reach over
into the realm of reinforcement learning (RL).

The full dataset is split into the training, as well as the two test and validation datasets, to perform ver-
ification of the DanceNet module on previously unseen data. These datasets however are static and do not
properly represent the real life scenario where both partners react to each other. As they are pre-recorded, the
leading motion will never change based on the output motion.

Therefore, a final live test with a dancer is required to validate the system’s performance in the desired
environment.

This test was originally planned to be performed atAKOB’s studio, but was canceled due to the unfortunate
lack of interactivity of the current system’s output (see Section 7.5.2 [Visual Output]).

8.2. Live Visualization
As this research did not include the means of testing the system with the real drone swarm, two visualization
environments were designed for this research.

8.2.1. VPython
For aiding in debugging the DanceNet framework and the live simulation module, a live visualization environ-
ment was created in VPython. The environment can be executed independently of the DanceNet module, as it
receives and processes the UDP messages from the live simulation asynchronously.

The code runs at ≈ 60 Hz, but the VPython framework’s actual frame rate displayed on screen is unfor-
tunately much lower (< 10 FPS). The VPython module is a very practical tool for fast visualization and visual
debugging of 3D data, but its runtime performance is suboptimal and highly unpredictable at times.

The following figures in this report were made utilizing the VPython visualization environment:

8.2. Live Visualization 107

8

Figure 8.4: DanceNet Architecture: Live Model

• 3.1 [Skeletal rig used by AKOB]
• 6.4 [DanceNet Results: Regression Model]
• 6.10 [DanceNet Results: Regression Model with Feedback]
• 7.19 [DRA-GAN Results: Output Motion Example]

8.2.2. Unreal Engine
Given the apparent performance limitations of the VPython visualization environment, a new visualization en-
vironment had to be developed to facilitate live testing. As no real drones were to be used for the initial system
tests, it was considered to use a VR environment to increase the immersion of the dancer, when interacting
with his artificial counterpart.

To this end, the ’Unreal Engine 4’ (UE4) game engine was chosen for the following reasons:

• High performance > 100 FPS
• VR compatibility
• C++ based Ability to interface with custom modules for data handling
• Customizable meshes and textures
• Readily available OptiTrack plugin ³

8

108 8. Live Interaction

An example of the resulting visualization can be seen in Figure 8.5.

Figure 8.5: Live Visualization: Unreal Engine T-Pose Example

Rotation Conversion Bug
The default OptiTrack plugin allows for streaming the recorded skeletons live into the game engine. This is
not applicable for the pose generated by the DanceNet module, as it does not match the message format used
by NatNet. Unfortunately, the default character model configuration, as defined in UE4, is different to both
the BVH and OptiTrack configurations. Therefore, the default character rig could not be directly interfaced
and a custom module was created for posing the output. Due to the multitude of various coordinate systems
used in the various environments (see Appendix A), combined with the fact that an all zero pose for the UE4
mannequin does not equal a T-Pose, transforming the DanceNet output to the UE4 rig correctly has proven
non-trivial.

A representation of the output shown inside the UE4 is given in Figure 8.6. As an initial test, the motion
was extracted from a JSON file and saved to disk by the live simulation module. At the current stage in
development the live visualization is successfully parsing the motion and transferring it onto the rig, but the
reconstructed pose does not match the original, due to each bone having a separate default rotation that needs
to be corrected for.

The final visual results generated by DanceNet, at the current stage of the research, did not justify the
additional resources spend on developing the advanced visualization. Therefore, the development was put on
hold until the visual results generated are advanced enough to justify live testing with dancers.

A potential solution to this conundrum would be to perform a man-in-the-middle attack on the NatNet
streaming data, injecting custom packets that include the generatedmotions. This approach is described in Al-
gorithm 8.2. The downside of this approach is that the NatNet packets are encoded in a binary representation,
making it harder to re-encode a valid packet. The benefit of this approach would be that both the original
Airman drone control system and the UE4 OptiTrack plugin could directly parse the new packets, without
requiring any additional code.

³wiki.optitrack.com/index.php?title=OptiTrack_Unreal_Engine_4_Plugin

https://v22.wiki.optitrack.com/index.php?title=OptiTrack_Unreal_Engine_4_Plugin

8.2. Live Visualization 109

8

Figure 8.6: Live Visualization: Unreal Engine Rotations Bug

Algorithm 8.2 Live Simulation: OptiTrack Packet Injection

1. Receive the original NatNet packets
2. Decode the packets
3. Run the live simulation module
4. Convert the output motion to OptiTrack’s skeletal representation
5. Inject the new skeleton into the original data
6. Re-encode the NatNet packets
7. Forward the modified packets to the original recipients

9
Future Work

The current state of the DanceNet ’Differential Recurrent Attention GAN’ (DRA-GAN) does not generate the
desired results, but there are plenty of unexplored options to potentially improve the system. This section will
list and briefly describe all potential improvements that were envisioned throughout this development, but
were not executed due to a lack of time.

The potential improvements are categorized by the components of the model they would affect:

• 9.1 [Data]
• 9.2 [Architecture]
• 9.3 [Training]
• 9.4 [Optimization]
• 9.5 [Validation]

Some suggestions are very concrete and can be directly applied, while others indicate a more general
approach that might benefit the system. May these serve as an aid to future researchers, to improve the
current model and achieve true long-term interactive reactionary motion generation.

9.1. Data
9.1.1. Data Preprocessing
Data Augmentation
Even though the collected dataset is the second largest original publicly available motion capture (MoCap)
dataset to date (see 4.5 [Dataset Overview]), complexmodels require vast amounts of data. Data augmentation
allows to generate new data from the original dataset, by applying transformations to the data that do not
change the nature of the data with respect to the desired task to be learned.

For this dataset the following two parameter sets can be augmented to expand the available dataset:

• Position in the horizontal plane:
→ Applying an equal translation to both dancers’ root positions, bound by the tracking volume

• Yaw Angle:
→ Rotate both dancers by an equal arbitrary angle, around the origins upward axis

As long as the relative distance and angle between both dancers remain the same, many variations of the
same motion can be generated.

Extended Chunk Splitting
Currently, each take is split into chunks of equal length, throwing away the end of the take, which does not
fit into an entire chunk. This can be avoided and the number of chunks greatly extended, by not cutting each

take into ’floor (#Frames

ChunkLength
)’, but into ’#Frames− ChunkLength’ instead. This extracts every possible chunk,

by shifting the chunk backwards one frame at a time.

110

9.1. Data 111

9

Data Shuffling
Currently, the network is trained by passing every chunk of the training dataset in chronological order. This
is intended to mimic the exploratory process exhibited by the dancers originally recording the dataset.

However, when utilizing the data augmentation and chunk splitting technique described above, this results
in the network processing a large amount of data with only slight variations, before moving on to the next take.
This might lead to overfitting on these takes. To avoid this the chunks should be shuffled randomly during the
training procedure.

9.1.2. Data Input
Smart Hidden Vector Initialization
Currently, the output vector is initialized as a zero vector at the start of each training iteration (see 7.3.7
[Hidden State Initialization]). This results in the output pose being initialized as either the T-Pose or the
’Principal Component Analysis’ (PCA) mean pose, depending on whether or not the PCA transform is applied.

To potentially avoid the trivial solution, which the limited judgment modification attempts to fix (see 7.3.7
[Limited Judgement]), the hidden vectors for each batch should be initialized equal to the first frame of the
following dancer’s recorded motion.

The downside of this approach is that at inference time there exists no leading pose to initialize in and a
default pose, such as the original zero vector, will have to be selected. This however causes a discrepancy again
between the training task and the final task to be performed.

BDF Input
The ’Derivative Input’ (DI) modification pre-computes the first order derivative approximation, equivalent to
the backward Euler method (see 7.3.4 [Derivative Input]). The ’Backward Differentiation Formulas’ (BDFs)
can be extended to higher orders, to increase the accuracy of the derivative estimate, while only utilizing past
data [Iserles, 2008].

The DI modification could be extended to pre-compute the BDF of the 𝑋th order, whereby ’𝑋’ indicates
a new hyperparameter of the system. This would remove the necessity for the system to learn this metric,
allowing for the system to concentrate more on the desired creative reactionary response. This however comes
at the cost of extended memory and computational requirements, as the system output needs to be retained
over 𝑋 frames. Given the current inference time of ≈ 2ms of the DanceNet network, it can be safely assumed
that this change should not cause the system to break the > 100 FPS requirement.

However, caution needs to be applied as the stability of this method needs to be checked against the size
of the time step between frames. A quick experiment was performed approximating the derivative of a simple
sinusoid with a frequency of 10Hz, with the BDFs up to the 6th order. This was done using the same time step,
of 10ms, as used by current dataset. The results are shown in Figures 9.1¹ and 9.2, showing a clear exponential
improvement for each additional BDF order².

Figure 9.1: BDF: Approximation Errors over Time Figure 9.2: BDF: Mean Approximation Errors

²Interesting phenomenon in this example is that the peak of a lower order approximation is always equal to the approximation of the
order above it (Mean error 4.3 ⋅ 10−13)
²The 0th order approximation was defined as �̇� = 0.

9

112 9. Future Work

Noisy Labels
As described in 7.1.4 [Best Practices], applying an element of stochastic noise to the real and fake labels might
improve the training procedure. This entails adding a one sided stochastic variable to each originally binary
label at runtime, to generate a value between the original and 0.5. One potential realization of this procedure
is given in Equation 9.1. This introduces a new hyperparameter (𝜎), defining the standard deviation of the
applied Gaussian noise.

𝑔actFake = 0 +min (0.5, |𝒩 (0, 𝜎2)|)
𝑔actReal = 1 −min (0.5, |𝒩 (0, 𝜎2)|) (9.1)

Equation 9.1: Noisy Labels

Alternatively, instead of using a stochastic modifier for the real labels, the original take could be analyzed
and a metric defined to summarize how ’real’ the motion is; e.g. applying a penalty for each detected outlier
in the original data.

Noise Input
Conventional ’Generative Adversarial Networks’ (GANs) utilize random noise as the primary input to the
generator, based on which the generator is intended to generate an entirely novel image. Currently, given
the task at hand the system uses the leading dancer’s motion as input instead of random noise. Potentially
concatenating the current generator’s input vector with an entirely random input vector may aid in generating
variational output motions, given the same leading motion. This is intended to encourage the system to
generate various output motions in reaction to each input motion, as in dancing there is no singular correct
motion.

9.2. Architecture
9.2.1. Current Model Improvements
Multiple Discriminators
Currently, the network is structure based on the basic GAN structure, using a singular generator and discrim-
inator respectively. One of the problems of the current system is that the system gets stuck, focusing on a
singular issue: the output motion.

Intuitively, a student would benefit from having multiple teachers that focus on different, but equally
relevant, aspects of the students development.

The architecture replaces the necessity for the discriminator’s attention mechanism, by utilizing an en-
semble of multiple additional discriminators, each intended to focus on a different aspect of the data. In the
current system this would add two smaller discriminator networks, each focusing solely on either the output
pose or the output derivative, in addition to the general discriminator that can discriminate the full output
in the context of the input motion. If the additional discriminator networks are given a higher learning rate
than the general discriminator, this should lead to faster learning of generally realistic poses and motions.
The lower relative learning rate of the general discriminator should aid in avoiding overfitting on a singular
discriminative component, while the other two discriminators initially keep the general output in check.

The theoretical feasibility, as well as general implementation and benefit of this architecture have been
explored by Tolstikhin et al. [2017].

Inject Past Models
As described in 7.1.4 [Best Practices], to avoid mode collapse it might be beneficial to keep the state of previous
iterations during training and inject these back into the system. This can be seen similar to the approach of
using multiple discriminators, as it temporarily introduces a different network (state) into the system.

Considering the desired process described in 7.5.3 [Training Progression], it is desired for the discriminator
to focus on new discriminatory features to improve the level of detail of the final output. This process might
also introduce an instability, however, in the form of an infinite loop: The discriminator focuses on feature A
until the generator has learned it and then focuses on feature B. If the generator unlearns what it had already
learned about feature A in favor of feature B the two players may be stuck in this cycle forever.

This cycle could be broken by injecting the discriminator’s state of the previous stage in parallel to the
current stage, forcing the generator to focus on both features simultaneously. Intuitively, this could be seen
as a ’surprise test’ that a teacher issues to its students, asking questions on topics learned some time ago, to
refresh their memory.

9.2. Architecture 113

9

This can be compared to the rationale behind the ’Unrolled Generative Adversarial Networks’ architecture,
which avoids mode collapse by means of backpropagation through multiple sequential GAN passes [Liu and
Tuzel, 2016].

Residual Connections
Veit [2016] have proven that, by adding residual/skip connections into deep neural networks, it causes the
network to behave as an ensemble network, improving the overall performance.This can be interpreted as lots
of different smaller networks that are being trained simultaneously, sharing some weights with their ’peers’.

Two potential applications of this technique have been envisioned:

• Stacked RNNs with skip connections:
Greatly increase the number of layers in the stacked RNN core, while introducing residual highway
connections to keep the shortest path to 2-5 layers

• Temporal skip connections:
Reintroducing the predicted outputs of N iterations ago back into the network, to facilitate learning true
long-term dependencies

9.2.2. Alternative Network Models
Alternative Recurrent Units
Currently, two recurrent unit types can be applied in the DRA-GAN model: The LSTM and the GRU. There is
however another modern and complex recurrent unit with promising results available: The ’Modified Highway
Unit’ (MHU), proposed by Tang et al. [2017], specifically for human motion prediction.

Phase Functioned Neural Network
The ’Phase Functioned Neural Network’ (PFNN), as proposed by Holden et al. [2017a], is a network design that
utilizes a separate set of network weights for multiple segments of the primary motion phase. This technique
was primarily applied to locomotion, as a walk cycle has a singular clearly defined phase, but this concept
breaks down when applying it to a general set of complex motions.

Two possibilities to utilize this methodology for the task at hand:

• Fourier Phase: Transform the motion into the Fourier domain and apply a separate phase for each
discrete frequency

• Music Syncing: Use the current music’s beats as the phase of the network

The first option would increase the number of input parameters, as well as the number of network param-
eters extensively, but might enable the system to achieve a feeling for timing and layer fast and slow motions.

The secondary option is not possible with the current state of the dataset, as the original music was not
recorded in sync with the motion, but could be considered for future data acquisition. Music and timing is a
key factor for dancers, introducing this element back into the network might greatly improve the reactionary
behavior.

SequentialHierarchical Network
Currently, the system predicts the output motion holistically, by generating the complete new motion vector
in one pass. Similar to the approach taken by Aksan et al. [2019], it could be considered to split the network’s
core into multiple smaller networks, each responsible for predicting the change to the next joint down the
hierarchical chain. So instead of predicting the change to the entire arm at once, first the shoulder is predicted,
after which the upper arm, utilizing the information of the shoulder joint.

The downside of this system is that each joint generates its prediction based on limited information, the
benefit is that major changes are predicted first, which can be taken into consideration when generating the
predictions of the next smaller joint.

Neural Turing Machine
The ’Neural Turing Machine’ (NTM) is a novel ’Recurrent Neural Network (RNN) based model, proposed by
Graves [2014], intended to mimic the read and write operations to memory that a more conventional logic
based computer program utilizes to solve problems.

The architecture is novel and experimental and has not been applied tomotion generation/prediction tasks.
The ability to read and write to an explicit memory may aid in storing long-term information, such as intent
and style of a motion sequence.

A promising variation of the NTM is the ’Differentiable Neural Computer’ (DNC) [Graves et al., 2016].

9

114 9. Future Work

9.2.3. Advanced Layers
Dropout
The dropout layer randomly sets certain values in the vector to zero, preventing information flow of that part
of the input vector.

One of the problems encountered by the current system is the overreliance of the discriminator on a sin-
gular part of the input; the output pose. Introducing a dropout layer right after the attention layer may help
to avoid this behavior.

Instead of applying the dropout to each value of the input vector directly, a higher level dropout layer could
be applied that completely filters out one of the four major input vectors. Currently, this would mean that the
discriminator is forced to sometimes make a prediction without access to the output pose, purely relying on
the relation of the output derivative to the input motion.

Noisy Layers
Introducing noise into the system can be used as data augmentation, as well as to prevent overfitting. Cur-
rently, stochastic noise is added to the input of both the generator and the discriminator. However, this only
partially satisfies the suggestion as given in 7.1.4 [Best Practices]. This approach could be extended to add a
small amount of noise to every layer in the network, instead of just the input.

9.3. Training
9.3.1. Loss Functions
Normalized Power Spectrum Similarity
As previously mentioned it is hard to quantify how good or natural a human motion is. Gopalakrishnan
et al. [2018] proposed the ’Normalized Power Spectrum Similarity’ (NPSS) as a promising metric to solve this
problem.

By transforming the motion into the Fourier domain and comparing the power spectra of real and gener-
ated motions a better assessment of the motions quality can be made. The current system could be improved
by adding a loss component based on the NPSS to the system, similar to the pain loss introduced in 7.3.6
[Pain].

Label Classification
In 7.1.4 [Best Practices] it is suggested that simultaneous classification of data labels during the GAN training
procedure might improve the training, as it requires the system to learn nuances in the data, instead of just
the general distribution. The current labels of the dataset are not suited for classification due to the high bias
towards a few frequently occurring labels (see 4.1.4 [Labels]).

This is something to take into consideration for future data acquisition, or retroactive relabeling of the data
by AKOB.

Foot Contact Loss
A relatively common approach used in motion generation and prediction is to use foot contact information,
either to determine the phase of the motion, or to directly define a loss [Harvey et al., 2020; Holden et al.,
2017a; Starke et al., 2020; Thomas Geijtenbeek et al., 2013]. It is intended to provide a penalty to the system
whenever the resulting pose does not have contact with the floor, e.g. if the character is floating or clipping
through the floor. When using a position-based encoding, this can be directly implemented by a mean square
error term applied to the distance of the toes to the floor. Currently, the system utilizes a relative angle-based
encoding resulting in the necessity to first compute the actual position of the toes in space (see 4.2.1 [General
Formats]), before being able to apply this loss.

This could be further augmented by taking into account the physics constraints related to the losing foot
contact: Even though jumps are rare in the dataset, the body of a person losing foot contact has to abide by
gravity and the conservation of energy.

Predict Leading Motion
Currently, the system is primarily focused on the output motion, while largely ignoring the leading motion for
context (see 7.5.3 [Training Progression]).

To resolve this problem the system could be forced to take the leading motion into account. Analogous to
the regression model in Chapter 6, the system could be forced to predict the leading dancer’s motion N poses

9.4. Optimization 115

9

into the future. With N being a new hyperparameter to the system. By choosing N sufficiently large, the
system is forced to learn and anticipate the leading dancer’s intent on a larger timescale. Caution is advised
when selecting a value for N that is too large, as at some point the free will of the leading dancer makes
predicting the motion impossible, having an adverse affect on the training procedure.

9.3.2. Limits
Higher Derivative Limits
As presented in 4.3.1 [Limit detection] and 7.3.6 [Pain], the system has pre-computed the angular limits of
the dataset and enforces them by means of the pain criterion. At some point during the DRA-GAN training
procedure the output motion was flying through space at an alarming rate, exhibiting very high frequency
oscillation. To prevent this and other unrealistic motions it might be beneficial to extend the pain optimizer to
higher derivatives. Firstly, compute the estimate of the velocities and accelerations from the original dataset,
by utilizing the central differencing scheme. Secondly, find the limits of the higher derivatives, by means of the
same methodology used in 4.3.1 [Limit detection] and B [Statistical Human Motion Model]. Lastly, approx-
imate the output motion’s higher derivatives, by means of applying higher order BDFs, and apply separate
optimizers for penalizing exceeding the computed limits of the angular velocities and accelerations for each
joint.

PCA Histograms
One of the downsides of the current limit detection approach is that it utilizes the Euler angle representation
as the basis for detecting angular limits per channel. When reviewing the resulting histograms, as presented in
Figure B.2, it becomes apparent that there are a few channels that are highly concentrated around the mean,
but still have limits of ±180∘ (e.g. ’Left-/RightLeg’ and ’Left-/RightHand’), due the Euler based encoding.

The fact that the limits are encoded in Euler angle representation also results in the necessity to convert the
generated output pose from the network internal 6D-PCA encoding back to the original Euler angle encoding
before applying the pain loss.

To avoid this, it might be beneficial to compute the dataset histograms per channel on the PCA transformed
data. This would have the following benefits:

• PCA transformation outputs non-cyclical zero mean data
→ clear limits will be present

• Less complex transformations during training
→ faster backpropagation and training times

9.4. Optimization
9.4.1. Optimizers
Layered Optimizers
Currently, there are three optimizers present in the system: Two for the generator and discriminator, handling
the ’Binary Cross Entropy’ (BCE) loss (see 7.1.1 [Loss Metric]), and another for the generator, handling the
pain loss (see 7.3.6 [Pain]). All optimizers are governed by the same global learning rate parameter.

Given the current problem of overfocusing on a specific part of the data, a separate optimizer for the atten-
tion layers, with a lower learning rate, might alleviate this issue to some extent. Generalizing this approach,
separate optimizers can be defined for each of the networks segments (attention, RNN core, FC final layer),
while defining individual learning rates for each of them. This allows for a more fine tuned training procedure,
at the expense of introducing more hyperparameters.

Gradient Norms
A common problem in vanilla RNNs and other neural network models is the problem of vanishing gradients.
The network is trained by taking a step according to the gradients computed during backpropagation, but for
certain architectures the gradients at the input layer are so small that training stagnates.

Currently, this does not appear to be an imminent problem encountered by the system, as upon visual
inspection the parameters of the first segment (generator attention layer) show immediate progression, even
after just a few iterations. Eventually however, after about 15-30 epochs the training stagnates for unknown
reasons.

Monitoring the norms of the gradients might provide more insight into the gradient progression through-
out the network.

9

116 9. Future Work

The same visualization as presented in Figure 7.14 can be utilized, by exchanging the parameter matrices
for the derivative matrices and adjusting the color scale.

Gradient Clipping
A general best practice when training RNN based models is gradient clipping, as proposed by Pascanu et al.
[2013]. This refers to limiting the maximum absolute value of the gradients, to avoid overshooting when
encountering steep regions or discontinuities in the loss landscape. This is illustrated in Figure 9.3.

Figure 9.3: Gradient Clipping
Source: Figure adapted from Pascanu et al. [2013], copied from Neptune.AI

Truncated Backpropagation Through Time
Standard ’Backpropagation Through Time’ (BPTT) unfolds the recurrent feedback loops over time from 𝑇0 to
𝑇𝑁 . This can leads to very large and complex backpropagation equations, that take a long time to process.

Truncated BPTT allows for training RNNs faster by avoiding backpropagation all the back to 𝑇0, but instead
only backtracking a few iterations in time [Jaeger, 2005].

9.4.2. BHPO
Practical Application
Currently, the training of a singular generative model takes between 1-2 weeks³, which makes it impractical
to use the BHPO and obtain useful results within a reasonable time frame.

The following options would allow for a practical application of the ’Bayesian Hyperparameter Optimiza-
tion’ (BHPO) on the generative model:

• Faster hardware: e.g. NVIDIA TITAN X from AKOB
• Cluster run: see 5.3 [Cluster Framework]
• Absolute loss: e.g. 7.4.3 [Advanced Loss] combined with the NPSS loss
• Faster training: e.g. Truncated BPTT

Unfortunately, the additional hardware provided by AKOB became unavailable throughout the research,
but without a true absolute loss, providing a numerical metric for how good the resulting output is, running the
BHPO on the generative model is meaningless. The intention of the BHPO is to provide an automated means
of finding the optimal network configuration, but without a metric to define what is optimal the algorithm is
prone to optimize the wrong function.

Currently the hyperparameter selection for the DRA-GAN is almost certainly suboptimal and the true po-
tential of the model still remains unknown. Only when these four conditions are met can the true performance
of the DRA-GAN model be evaluated.

³Run on the following hardware:: CPU - AMD Opteron 6380 & GPU - NVIDIA GTX 1060 6GB

https://neptune.ai/blog/understanding-gradient-clipping-and-how-it-can-fix-exploding-gradients-problem

9.5. Validation 117

9

κTuning
As proposed in 5.2.1 [Exploration vs Exploitation], the hyper-hyperparameter 𝜅 can be tuned to achieve a
certain probability of finding a new optimum. The extreme long training time of the current model (1-2 weeks)
combined with the low probability of finding a new optimum (max. 13.8%←𝜅 = 2.5) makes using the BHPO
impractical. Adjusting 𝜅 through reversing Chebyshev’s inequality (see Equation 9.2) adjusted for the average
training time, can lead to a metric that defines the expected average number of new optima over a given period
of time.

𝜅 = √ 1
SRmax

− 1 (9.2)

Equation 9.2: 𝜅 tuning

An example:

• Desired rate of new optima: 1 [1
month

]
• Average training time: 1 [week]
• Minimum success rate required: 25 [%]
• Maximum 𝜅: 1.73 [−]

Logarithmic Hyperparameters
As mentioned in 5.2.2 [Scope Creep & Re-parameterization]: Parameters with a large power range, such as
the learning rate, can best be re-parameterized by optimizing for log(𝐻𝑃) instead, as it linearizes the search
space.

Expand Hyperparameters
In contrast to the statement made in 5.2.2 [Scope Creep & Re-parameterization] to avoid hyperparameter
scope creep, expanding the number of hyperparameters is the only true means of finding the true optimum.

Once the BHPO can be applied to the generative model and the final optimized set of hyperparameters still
does not result in the desired visual output, it can be considered to expand the number of hyperparameters to
be optimized.

Some adaptations that are likely expected to generate better results:

• Decoupling of generator and discriminator learning rate
• Variable number of limited judgment frames
• Variable batch size
• Variable noise injection
• Variable chunk length

9.5. Validation
Simplified Network
The current system has an option to simplify the input to only the root’s position and rotation (3 + 6 = 9
floats, with 6D rotations encoding). This was intended to speed up the training runtime to validate the model
performance on a simplified problem. The model runs and can be computed, but due to the parallelization
of tensor operations on the GPU, reducing the size of the tensors does not notably reduce the training time,
it does however reduce the memory load significantly. For this reason the training run was halted, as it was
deemed impractical to occupy the hardware for a few weeks to run a simplified network, if a complete run
could be run instead.

Provided that the training time is reduced to a reasonable time frame, running this simplified model does
still pose as a valuable tool for validation.

The total number of parameters of this minimizedDRA-GANnetwork can be as low as 28.284, as presented
in Table 9.1. This is only 0.23% of the number of parameters presented in the example presented in Table 7.5.
28.284 parameters still sounds like a lot to take in at a glance, but considering that all parameters can fit inside
a 169𝑥169 px image shows that this simplification allows for examining the inner workings of the network in
more detail at a much smaller scale. Figure 9.4 shows an actual visualization of all parameters in the minimized
network example.

9

118 9. Future Work

Minimized DRA-GAN # Parameters
Network # Parameters % Total

Attention Layers:
Generator 1, 368 4.84%
Discriminator 1, 368 4.84%

Recurrent Units:
Generator 15, 984 56.51%
Discriminator 9, 204 32.54%

Linear Layers:
Generator 333 1.18%
Discriminator 27 0.10%

Combined:
Generator 17, 685 62.53%
Discriminator 10, 599 37.47%
Total 28.284 100%

Table 9.1: DRA-GAN: Minimized Parameter Distribution Example
Root-only 2 layer GRU with G-OutputRatio = 1.0 & D-OutputRatio = 0.75

Figure 9.4: DRA-GAN: Minimized Network Parameters Visualization Example
Blue: Negative parameters & White: Zero Parameters & Red: Positive Parameters
Green & Grey: Logical separators

Past Model Progression
As presented in 7.1.3 [Progress Insight], gaining insight into the networks training progression is difficult for
any GAN. A potential solution to this issue, that could be applied to any GAN, utilizes an adaptation to the
past model injection methodology, as present in Section 9.2.1.

It might be possible to gain insight into the networks’ performance improvement over time, by comparing
the current performance against their previous counterparts. Borrowing the tug-of-war analogy from 7.1.3
[Progress Insight]: It is impossible to assess the absolute strength of two teams of equal strength that train
and progress at equal rates, as every match will be a tie. If it were possible to match up these teams against
past versions of their opponents they would manage to win and show that they have indeed progressed since
the previous point in time.

Therefore, the proposed technique will iterate over N past models at regular intervals and evaluate the
network once for the current generator vs the past discriminator and once for the current discriminator vs the
past generators, plotting the final loss of the network for each match up. The gradient of the resulting plot
should provide a better indication of the progression of each network over time.

9.5. Validation 119

9

Turning Test for Motion Synthesis
First proposed in the preliminary report, the ’Turning Test for Motion Synthesis’ (TTMS) was intended to be
one of two final tests to be performed to validate the model’s performance.

Analogous to both the original Turing test and the discriminator in a GAN, the TTMS is intended to utilize
human judgment to validate the DRA-GAN’s outputmotions. The human participants are to be presentedwith
a random motion chunk, showcasing the leading and output motion together, and are tasked with classifying
the chunk as real or fake, substituting the discriminator network. Once the generator would be successful in
fooling human experts (e.g. choreographers, dancers, dance critics), the model can be considered a success,
ready for stage performances and a paper submission to SIGGRAPH.

10
Conclusions

The objective of this research was to design an algorithmic framework capable of generating reactionary dance
improvisations for the show ’AI-man’. Throughout this research a novel neural network architecture, the ’Dif-
ferential Recurrent Attention GAN’ (DRA-GAN), as well as the complete framework to train it were designed
to achieve this task. However, due to limited processing power, the question whether the designed framework
is capable of succeeding at this task still remains unanswered.

The external goal of this research is partially met: The framework for streaming the generator’s output in
reaction to live data received from the OptiTrack motion capture (MoCap) system is in place (see Section 8.1.2
[OptiTrack Streaming]). However, the final visual result and the interactivity of the output are not sufficient
for the desired stage performance (see Section 7.5.2 [Visual Output]).

The internal goal of this research is mostly met: The extensive research and iterative design through induc-
tive reasoning have gradually improved the system to a state that should be capable of achieving the desired
output (see Section 3.3.2 [Model Improvements]), but is yet to be confirmed after an extensive ’Bayesian Hy-
perparameter Optimization’ (BHPO) run. Solving the ambiguity of subjective and objective evaluation was
partially addressed, by means of the advanced loss function presented in 7.4.3 [Advanced Loss], but is yet to
be extended by additional means, such as the ’Normalized Power Spectrum Similarity’ (NPSS) loss (see Section
9.3.1 [Normalized Power Spectrum Similarity]).

All research questions have been explored and at least partially answered. A sufficiently large dataset has
been acquired and (see Section 4.5 [Dataset Overview]) and processed accordingly, to allow training neural
networks (see Section 4.4 [Data Preparation]). Various neural network architectures have been researched and
the appropriate architecture selected (see Section 6.1 [Design Choices] and Appendix F [Preliminary Report]),
as well as the appropriate loss functions for motion generation (see Section 7.1.1 [Loss Metric] and Section
7.4.3 [Advanced Loss]). Appropriate frameworks have been found to optimize the initial design and facilitate
the training procedure (see Chapter 5 [DanceNet-BHPO Framework]).

The proposed research hypothesis could not be confirmed, as the current state of the final model was
unable to generate acceptable motions to showcase to human experts. However, neither could the hypothesis
be denied, as the full potential of the model is yet to be explored.

Reflecting on the original research framework, as presented in Figure 2.1, it can be seen that all elements,
except for the validation have been executed accordingly:

1. Literature Study:
90+ papers have been reviewed
(see Appendix F [Preliminary Report])

2. Data Handling:
A sufficiently large dataset was acquired and pre-processed
(see Chapter 4 [Data Handling])

3. Model Design:
Two types of models have been designed

120

10.1. Scientific Contribution 121

10

• Regression Model: Successful training, but solving the wrong problem
(see Chapter 6 [Regression Model])

• Generative Model: DRA-GAN solves the right problem, but training stagnates in mode collapse
(see Chapter 7 [Generative Model])

4. Optimization & Application:
Frameworks have been designed for optimization and live visualization of the models

• BHPO: Framework is working as desired , but DRA-GAN training times are too long
(see Chapter 5 [DanceNet-BHPO Framework])

• Live Interaction: Framework is setup and operational, but minor bugs remain
(see Chapter 8 [Live Interaction])

5. Validation:
Live testing and Turing test for motion synthesis have been prepared for, but canceled due to the limited quality of
the final output motions

Overall, all desired elements are in place, but the full potential of the DRA-GAN model remains yet unex-
plored, due to limited computing hardware. Finally, given the limited interactivity and variety of the current
output motions, both the live interaction and the validation aspects of this research were unable to be executed
to the desired extent.

10.1. Scientific Contribution
Many techniques utilized in this research are the result of an extensive literature study, utilizingmethodologies
presented by other researcher or adaptations thereof. The reader is highly encouraged to consult the original
papers, as presented in the bibliography¹, for deeper insight into the key methodologies used throughout
this research. However this research is not purely applied research, a few select novel methodologies were
developed specifically for this research, as reiterated below.

In addition to these methodologies, the dataset acquired for this research is the second largest MoCap
dataset in term of total duration, compared to currently publicly available datasets (see Section 4.5 [Dataset
Overview]).

Neither the BHPO framework, nor the DanceNet model, nor the AKOB dataset are open-source or under
public development, they are however freely available for research purposes under specific conditions. In case
of legitimate interest in the underlying code or dataset, please contact the author via ’ Henricus@Basien.de ’
with your request.

Each of the novel methodologies presented in this report are briefly restated, in the context of their con-
tribution to the scientific community:

10.1.1. Deep Learning
GAN Training
As frequently mentioned throughout this report, training ’Generative Adversarial Networks’ (GANs) is a non-
trivial endeavor (see Section 7.1.3 [Problems with GANs]), with a significant number of best practices to adhere
to (see Section 7.1.4 [Best Practices]).

Three methodologies presented in this report attempt to increase the insight into the GAN training proce-
dure, avoid losing time when training unsuccessful models and prevent a trivial solution when training GANs
on time-series data:

Improved GAN Insight 7.4.3 [Advanced Loss] presents a novel metric to improve gauging the progress of
the GANs training progression. Themetrics defined in 7.4.3 [DiscriminatorMetrics] can be applied to any GAN
independent of the data utilized. The addition of the pain loss, defined in 7.4.3 [Combined Loss], indicates the
benefit of adding data type specific metrics to the overall loss, improving insight into the progress even further.

¹The initial literature study is presented in the preliminary report.

10

122 10. Conclusions

Early Break While the concept of early stopping is not novel and frequently utilized in deep learning (DL),
the conventional algorithms are only capable of minimizing or maximizing a loss function and are unable to
handle loss functions with positive and negative derivatives. The ’Binary Cross Entropy’ (BCE) loss utilized by
the GAN can have both positive and negative derivatives, depending onwhether the generator or discriminator
is improving faster relative to the other.

The early break criterion, as presented in 5.1.2 [Early Breaking] and Algorithm D.1, solves this issue by
utilizing the absolute value of the double exponentially filtered loss derivative as the primary metric to check
for progress stagnation.

Limited Judgement When utilizing a GAN for generating time series data, the problem of initial state
detection by the discriminator is present. The methodology described in 7.3.7 [Limited Judgement], alleviates
this shortcut to a trivial solution by depriving the discriminator of output data largely contaminated by the
initial state of the network. This is a problem that common feed forward based GANs do not suffer from, as
they do not retain memory of past iterations over time, but becomes prevalent for GANs utilizing memory
elements and feedback loops during training.

DRAGAN
The ’Differential-Recurrent-Attention GAN’ (DRA-GAN), presented in 7.4 [DRA-GAN], is a novel architecture
design that is theoretically capable of generating new reactionary data to any differentiable time sequence
data. Using themodel with other data types requires removing those network elements that are strictly related
to (human) motion data, or adapting them to suit the new data type accordingly.

The motion specific network elements are:

• 6D Rotations (see Section 4.4.1 [6D-Rotations])
• Pain Criterion (see Section 7.3.6 [Pain])

Besides the current use case for motion generation, the DRA-GAN could also be utilized for generating:

• Musical accompaniment
Leading dancer→Main melody & Following dancer→ Instrumental accompaniment

• Synthetic bivariate time series datasets
Leading dancer→ Variable #1 & Following dancer→ Variable #2

• Body language comprehension and mimicking for humanoid androids, in the future
Leading dancer→ Subject A & Following dancer→ Subject B

Derivative Input The DRA-GAN is mostly a combination of various pre-existing network architectures.
Even the ’Derivative Output’ segment could be seen as an adaptation of the ’Add & Norm’ segments in the
’Transformer’ network [Vaswani et al., 2017] or a residual connection through time. However, the ’Derivative
Input’ (DI) segment combines traditional control theory and differential equations with deep learning tech-
niques, by supplying the first derivative of the state, in addition to the state, as an input to the network. This
allows the neural network to focus on solving the desired task, without the need to learn how to differentiate
the state. If the researcher can reasonably assume that the state’s derivative(s) are relevant for solving the
problem, DI can assist the system’s learning process. With possible improvements to this segment remain-
ing, such as the ’Backward Differentiation Formulas’ (BDF) based input (see Section 9.1.2 [BDF Input]) and
extending the input to the states second derivative, it offers flexibility in its application.

10.1.2. Miscellaneous
κTuning
Equation 9.2 offers the means of tuning the BHPO’s hyper-hyperparameter 𝜅, utilizing Chebyshev’s inequality
(see Equation 5.3).

Manual hyper-hyperparameter tuning is mostly a tedious and complicated process, but 𝜅 tuning provides
a simple and quick means of arriving at a range of acceptable values for 𝜅. Enabling an objective and analytical
trade-off between exploration and exploitation (see Section 5.2.1 [Exploration vs Exploitation]).

Analytical Model of the Human Body
Table B.4 provides an analytical representation of the distribution of joint angles of the human body. While not
directly applied within this research, it may yet serve other researchers in developing better analytical models
of the human body and its motions.

10.2. Discussion 123

10

10.2. Discussion
The following two papers are examples of the current state of the art in motion generation and their primary
achievements, both published during the time frame of this research:

• Dance Revolution: Long-Term Dance Generation with Music via Curriculum Learning [Huang et al., 2020]

– Conference: ICLR 2021
– Journal: N/A (Preprint)
– Primary Achievement: 1-minute long generation of dance motions to music in 2D (@15 FPS)

• Robust Motion In-betweening [Harvey et al., 2020]

– Conference: SIGGRAPH 2020
– Journal: ACM Transactions on Graphics
– Primary Achievement: Interpolates motion cycles between key frames 3-44 frames apart (@30 FPS)

The first paper is the closest to the objective attempted to be achieved by this research, as it includes
true long-term motion generation in reaction to another time series; music. It was written by six researchers
from Microsoft STCA and Fudan University. This paper is so bleeding edge that it is still in preprint and has,
unfortunately, only been discovered by the researcher mere days before completion of this thesis and is hence
only addressed in this section.

The second paper is another example of the current state of the art in motion generation. It was written
by four researchers from Polytechnique Montreal, Ubisoft Montreal and McGill University. The generation of
new motion frames is restricted to 0.1-1.5 seconds, with a clearly defined boundary at the start and end of
each pose. This problem is clearly defined and limited in its scope and yet it is considered state of the art.

Throughout this research the true scope of the desired research objective has become clear; in hindsight
given this context, the objective set out to be achieved in this research appears to be on the bleeding edge of
the current state of the art and exceed the expected scope of a regular MSc. thesis.

While looking extremely promising, the task presented in the ’Dance Revolution’ paper has three primary
distinctions from this research: The motion data is presented as 2D points on a screen², the context data is
music not another dancer and the context data is pre-processed in its entirety, instead of sequence to sequence.

Nevertheless, it presents the closest research to this one to date and much can be learned by comparing
the techniques used. Both models show a surprising amount of similarity, as very similar issues had to be
addressed. Table 10.1 compares some methodologies used in their paper, to those used by the final DRA-GAN
model.

Methodology Huang et al. [2020] This Research
Motion network 3 Layer LSTM with H= 1024 3 Layer LSTM with H= 567
Attention Mechanism Multi-head self-attention Soft self-attention
Optimizer Adam Adam
Learning rate 1 ⋅ 10−4 5 ⋅ 10−5
Objective Metric Fréchet Inception Distance (FID) Modified discriminator metrics + Pain
Human Evaluation 3 preference metrics Binary real/fake classification (Suggested)
Learning Technique Curriculum learning & Teacher forcing Full BPTT & GAN

Table 10.1: Methodology comparison between this research and Huang et al. [2020]

This comparison is only meaningful as the content of their paper was only discovered after the DRA-GAN
model was completed. It showcases that the DRA-GAN model shares many similarities with their successful
model, increasing the confidence that the general approach chosen is indeed correct.

Their research still utilizes some methodologies that were not applied in the DRA-GAN model and are
novel to their approach. Most important is the different approach to training the model, which utilizes cur-
riculum learning and a gradually diminishing teacher forcing approach “to alleviate error accumulation of
autoregressive models in long motion sequence generation”.

Perhaps a combination of the DRA-GAN and their approachmay prove successful in achieving the objective
of this research.

²Essentially a flattened 2D representation of position-based pose information. This is because the data was extracted from videos instead
of a real MoCap system.

10

124 10. Conclusions

Despite the fact that the final output of the model does not produce the desired results, in its current state,
this thesis provides a broad overview of the methodologies used, common pitfalls and possible solutions to
generate human motions with GANs. The current DRA-GAN model is showing a clear training progression
and, given appropriate hyperparameter tuning, may yet prove successful in the desired task. Due to the limited
hardware available to train the network it can be safely said that the current model has not yet fully realized
its full potential.

IV
Appendices

126

Bibliography
Emre Aksan, Manuel Kaufmann, and Otmar Hilliges. Structured prediction helps 3D humanmotionmodelling.

Proceedings of the IEEE International Conference on Computer Vision, 2019-Octob(Iccv):7143–7152, 2019. ISSN
15505499. doi: 10.1109/ICCV.2019.00724. arXiv-ID: 1910.09070.

Omid Alemi. GrooveNet : Real-Time Music-Driven Dance Movement Generation using Artificial Neural Net-
works. Sigkdd-W, (July):6, 2017.

A. Aristidou, D. Cohen-Or, J. K. Hodgins, and A. Shamir. Self-similarity analysis for motion capture cleaning.
Computer Graphics Forum, 37(2):297–309, 2018a. ISSN 14678659. doi: 10.1111/cgf.13362.

Andreas Aristidou, Daniel Cohen-Or, Jessica K. Hodgins, Yiorgos Chrysanthou, and Ariel Shamir. Deep motifs
and motion signatures. SIGGRAPH Asia 2018 Technical Papers, SIGGRAPH Asia 2018, 37(06), 2018b. ISSN
15577368. doi: 10.1145/3272127.3275038.

Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to
align and translate. 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track
Proceedings, pages 1–15, 2015. arXiv-ID: 1409.0473.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An Empirical Evaluation of Generic Convolutional and Recurrent
Networks for Sequence Modeling. 2018. arXiv-ID: arXiv:1803.01271v2.

Judith Bütepage, Michael J. Black, Danica Kragic, and Hedvig Kjellström. Deep representation learning for hu-
manmotion prediction and classification. Proceedings - 30th IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, 2017-Janua:1591–1599, 2017. doi: 10.1109/CVPR.2017.173. arXiv-ID: 1702.07486.

Caroline Chan, Shiry Ginosar, Tinghui Zhou, and Alexei Efros. Everybody dance now. In Proceedings of the
IEEE International Conference on Computer Vision, volume 2019-Octob, 2019. ISBN 9781728148038. doi:
10.1109/ICCV.2019.00603.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder-decoder for statistical
machine translation. EMNLP 2014 - 2014 Conference on Empirical Methods in Natural Language Processing,
Proceedings of the Conference, pages 1724–1734, 2014. doi: 10.3115/v1/d14-1179. arXiv-ID: 1406.1078.

CMU Graphics Lab. CMU Graphics Lab Motion Capture Database, 2016.

Minjing Dong and Chang Xu. On retrospecting human dynamics with attention. IJCAI International Joint
Conference on Artificial Intelligence, 2019-Augus:708–714, 2019. ISSN 10450823. doi: 10.24963/ijcai.2019/100.

Felix Gaisbauer, Jannes Lehwald, Janis Sprenger, and Enrico Rukzio. Natural posture blending using deep
neural networks. Proceedings - MIG 2019: ACM Conference on Motion, Interaction, and Games, 2019. doi:
10.1145/3359566.3360052.

Partha Ghosh, Jie Song, Emre Aksan, and Otmar Hilliges. Learning human motion models for long-Term
predictions. Proceedings - 2017 International Conference on 3D Vision, 3DV 2017, pages 458–466, 2018. doi:
10.1109/3DV.2017.00059.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative Adversarial Nets. In Proceedings of the International Conference
on Neural Information Processing Systems (NIPS 2014), pages 2672–2680, 2014.

Anand Gopalakrishnan, Ankur Mali, Dan Kifer, C. Lee Giles, and Alexander G. Ororbia. A neural temporal
model for human motion prediction. arXiv, 2018. ISSN 23318422.

Alex Graves. Neural Turing Machines. pages 1–26, 2014. arXiv-ID: arXiv:1410.5401v2.

128

Bibliography 129

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-Barwińska, Ser-
gio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou, Adrià Puigdomènech Badia,
Karl Moritz Hermann, Yori Zwols, Georg Ostrovski, Adam Cain, Helen King, Christopher Summerfield, Phil
Blunsom, Koray Kavukcuoglu, andDemis Hassabis. Hybrid computing using a neural networkwith dynamic
external memory. Nature, 538(7626):471–476, 2016. ISSN 14764687. doi: 10.1038/nature20101.

Liang Yan Gui, Yu Xiong Wang, Xiaodan Liang, and José M.F. Moura. Adversarial Geometry-Aware Human
Motion Prediction. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial In-
telligence and Lecture Notes in Bioinformatics), volume 11208 LNCS, pages 823–842. Springer Verlag, 2018a.
ISBN 9783030012243. doi: 10.1007/978-3-030-01225-0_48.

Liang Yan Gui, Yu Xiong Wang, Deva Ramanan, and José M.F. Moura. Few-shot human motion predic-
tion via meta-learning. Lecture Notes in Computer Science (including subseries Lecture Notes in Artifi-
cial Intelligence and Lecture Notes in Bioinformatics), 11212 LNCS:441–459, 2018b. ISSN 16113349. doi:
10.1007/978-3-030-01237-3_27.

Félix G. Harvey, Mike Yurick, Derek Nowrouzezahrai, and Christopher Pal. Robust motion in-betweening.
ACM Transactions on Graphics, 39(4), 2020. ISSN 15577368. doi: 10.1145/3386569.3392480.

Alejandro Hernandez, Jurgen Gall, and Francesc Moreno. Human motion prediction via spatio-temporal in-
painting. Proceedings of the IEEE International Conference on Computer Vision, 2019-Octob(Iccv):7133–7142,
2019. ISSN 15505499. doi: 10.1109/ICCV.2019.00723. arXiv-ID: 1812.05478.

Josef Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen. Iclr, (April):14, 1991.

Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Computation, 9(8):1735–1780,
1997. ISSN 08997667. doi: 10.1162/neco.1997.9.8.1735.

Daniel Holden. Robust solving of optical motion capture data by denoising. ACM Transactions on Graphics, 37
(4):1–12, 2018. ISSN 15577368. doi: 10.1145/3197517.3201302.

Daniel Holden, Jun Saito, and Taku Komura. Learning an inverse rig mapping for character animation. In
Proceedings - SCA 2015: 14th ACM SIGGRAPH / Eurographics Symposium on Computer Animation, pages
165–173, 2015. ISBN 9781450334969. doi: 10.1145/2786784.2786788.

Daniel Holden, Taku Komura, and Jun Saito. Phase-Functioned Neural Networks for Character Control. ACM
Transactions on Graphics, 36(4), 2017a.

Daniel Holden, Jun Saito, and Taku Komura. Learning Inverse Rig Mappings by Nonlinear Regression. 23(3):
1167–1178, 2017b.

Ruozi Huang, Huang Hu, Wei Wu, Kei Sawada, and Mi Zhang. Dance Revolution: Long Sequence Dance Gen-
eration with Music via Curriculum Learning. arXiv, pages 1–14, 2020. ISSN 23318422. arXiv-ID: 2006.06119.

Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian Sminchisescu. Human3. 6M. Ieee Transactions on
Pattern Analysis and Machine in�Ligence, page 1, 2014. ISSN 01628828.

Arieh Iserles. A First Course in the Numerical Analysis of Differential Equations. Cambridge University Press,
USA, 2nd edition, 2008. ISBN 0521734908.

Herbert Jaeger. A tutorial on training recurrent neural networks , covering BPPT , RTRL , EKF and the ” echo
state network ” approach. ReVision, 2002:1–46, 2005.

I.T. Jolliffe. Principal Component Analysis, 2002. ISSN 10780998.

John Kender and One Microsoft Way. HP-GAN : Probabilistic 3D human motion prediction via GAN Emad
Barsoum. 2018. doi: 10.1109/CVPRW.2018.00191.

Philipp Kratzer, Marc Toussaint, and Jim Mainprice. Prediction of Human Full-Body Movements with Mo-
tion Optimization and Recurrent Neural Networks. Proceedings - IEEE International Conference on Robotics
and Automation, pages 1792–1798, 2020. ISSN 10504729. doi: 10.1109/ICRA40945.2020.9197290. arXiv-ID:
1910.01843.

130 Bibliography

Justin Kruger and David Dunning. Unskilled and unaware of it: How difficulties in recognizing one’s own
incompetence lead to inflated self-assessments. Journal of Personality and Social Psychology, 77(6):1121–
1134, 1999. ISSN 00223514. doi: 10.1037/0022-3514.77.6.1121.

Maosen Li, Siheng Chen, Xu Chen, Ya Zhang, Yanfeng Wang, and Qi Tian. Symbiotic Graph Neural Networks
for 3D Skeleton-based Human Action Recognition and Motion Prediction. pages 1–19, 2019. arXiv-ID:
1910.02212.

Lucas Liu, Duri Long, Swar Gujrania, and Brian Magerko. Learning movement through human-computer co-
creative improvisation. ACM International Conference Proceeding Series, 2019. doi: 10.1145/3347122.3347127.

Ming Yu Liu and Oncel Tuzel. Unrolled Generative Adversarial Networks. Advances in Neural Information
Processing Systems, pages 469–477, 2016. ISSN 10495258. arXiv-ID: 1606.07536.

NaureenMahmood, Nima Ghorbani, Nikolaus F. Troje, Gerard Pons-Moll, andMichael Black. AMASS: Archive
of motion capture as surface shapes. In Proceedings of the IEEE International Conference on Computer Vision,
volume 2019-Octob, 2019. ISBN 9781728148038. doi: 10.1109/ICCV.2019.00554. arXiv-ID: 1904.03278.

Alessandro Manzi, Laura Fiorini, Raffaele Limosani, Paolo Dario, and Filippo Cavallo. Two-person activity
recognition using skeleton data. IET Computer Vision, 12(1), 2018. ISSN 17519640. doi: 10.1049/iet-cvi.2017.
0118.

Wei Mao, Miaomiao Liu, Mathieu Salzmann, and Hongdong Li. Learning trajectory dependencies for human
motion prediction. Proceedings of the IEEE International Conference on Computer Vision, 2019-Octob(Iccv):
9488–9496, 2019. ISSN 15505499. doi: 10.1109/ICCV.2019.00958. arXiv-ID: 1908.05436.

Wei Mao, Miaomiao Liu, andMathieu Salzmann. History Repeats Itself: HumanMotion Prediction via Motion
Attention. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 12359 LNCS:474–489, 2020. ISSN 16113349. doi: 10.1007/978-3-030-58568-6_
28. arXiv-ID: 2007.11755.

Albert W. Marshal and Ingram Olkin. A One-Sided Inequality of the Chebyshev Type. Annals of Statistics, 19
(3):1403–1433, 1991.

Julieta Martinez, Michael J. Black, and Javier Romero. On human motion prediction using recurrent neural
networks. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-
Janua:4674–4683, 2017. doi: 10.1109/CVPR.2017.497. arXiv-ID: 1705.02445.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training Recurrent Neural Networks.
2013. arXiv-ID: arXiv:1211.5063v2.

Dario Pavllo, Christoph Feichtenhofer, Michael Auli, and David Grangier. Modeling Human Motion with
Quaternion-Based Neural Networks. International Journal of Computer Vision, 128(4):855–872, 2019. ISSN
15731405. doi: 10.1007/s11263-019-01245-6. arXiv-ID: 1901.07677.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal representations by error
propagation. MIT Press, Cambridge, MA, 1(V):318–362, 1986.

Ju Shen and Jianjun Yang. Automatic Human Animation for Non-Humanoid 3D Characters. In Proceedings
- 2015 14th International Conference on Computer-Aided Design and Computer Graphics, CAD/Graphics 2015,
pages 220–221, 2016. ISBN 9781467380201. doi: 10.1109/CADGRAPHICS.2015.31.

Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Josh Susskind, Wenda Wang, and Russ Webb. Learning from
Simulated and Unsupervised Images through Adversarial Training. 2016. arXiv-ID: arXiv:1612.07828v2.

Sebastian Starke, Yiwei Zhao, Taku Komura, and Kazi Zaman. Local motion phases for learning multi-contact
character movements. ACM Transactions on Graphics, 39(4), 2020. ISSN 15577368. doi: 10.1145/3386569.
3392450.

Yongyi Tang, Lin Ma, Wei Liu, and Wei-shi Zheng. Long-Term Human Motion Prediction by Modeling Motion
Context and Enhancing Motion Dynamic. pages 935–941, 2017.

Bibliography 131

Thomas Geijtenbeek, Michiel van de Panne, and A. Frank van der Stappen. Flexible Muscle-Based Locomotion
for Bipedal Creatures. ACM Transactions on Graphics, 32(6), 2013.

Ilya Tolstikhin, Sylvain Gelly, Olivier Bousquet, Carl Johann Simon-Gabriel, and Bernhard Schölkopf. AdaGAN:
Boosting generative models. Advances in Neural Information Processing Systems, 2017-Decem:5425–5434,
2017. ISSN 10495258. arXiv-ID: 1701.02386.

University Of Cyprus. DanceDB, 2012.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and
Illia Polosukhin. Attention is all you need. Advances in Neural Information Processing Systems, 2017-Decem
(Nips):5999–6009, 2017. ISSN 10495258. arXiv-ID: arXiv:1706.03762v5.

Andreas Veit. Residual Networks Behave Like Ensembles of Relatively Shallow Networks. pages 1–9, 2016.
arXiv-ID: arXiv:1605.06431v2.

Qi Wang, Thierry Artières, Mickael Chen, and Ludovic Denoyer. Adversarial learning for modeling human
motion. Visual Computer, 36(1):141–160, 2020a. ISSN 01782789. doi: 10.1007/s00371-018-1594-7.

Xin Wang, Xiaotao Jiang, Gloria Rumbidzai Regedzai, Haohao Meng, and Lingyun Sun. Gated neural network
framework for interactive character control. Multimedia Tools and Applications, 2020b. ISSN 15737721. doi:
10.1007/s11042-020-08792-y.

Tao Xu, Pengchuan Zhang, Qiuyuan Huang, Han Zhang, Zhe Gan, Xiaolei Huang, and Xiaodong He. AttnGAN:
Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks. Proceedings of
the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 1316–1324, 2018.
ISSN 10636919. doi: 10.1109/CVPR.2018.00143. arXiv-ID: 1711.10485.

Katsu Yamane, Yuka Ariki, and Jessica Hodgins. Animating non-humanoid characters with human motion
data. Computer Animation 2010 - ACM SIGGRAPH / Eurographics Symposium Proceedings, SCA 2010, pages
169–178, 2010.

Dongsheng Zhou, Xinzhu Feng, Pengfei Yi, Xin Yang, Qiang Zhang, Xiaopeng Wei, and Deyun Yang. 3D
Human Motion Synthesis Based on Convolutional Neural Network. IEEE Access, 7:66325–66335, 2019a.
ISSN 21693536. doi: 10.1109/ACCESS.2019.2917609.

Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao Li. On the continuity of rotation representations
in neural networks. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2019b. ISBN 9781728132938. doi: 10.1109/CVPR.2019.00589. arXiv-ID: 1812.07035.

A
Coordinate System Definitions

Various data formats and programs have been used throughout this research, all of which are using a different
coordinate system. This disparity of conventions is most unfortunate, however it cannot be changed and has
to be dealt with. Therefore all coordinate system conventions that are used throughout the researched are
listed here, in an effort to clear up some of the confusion around them.

A visualization of the various coordinate systems is presented in Figure A.1.

A.1. OptiTrack
• CS-Type: 3D-Cartesian

– Axis-Up: Y
– Axis-Forward: Z
– Orientation: Right Handed

• Rotation type: Quaternions

A.2. BVH
• CS-Type: 3D-Cartesian

– Axis-Up: Y
– Axis-Forward: Z
– Orientation: Right Handed

• Rotation type: Euler-Intrinsic

– Rotation Order: Y�X�Z

A.3. Blender
• CS-Type: 3D-Cartesian

– Axis-Up: Z
– Axis-Forward: Y
– Orientation: Right Handed

• Rotation type: Variable {Euler,Quaternions,Axis-Angle}

A.4. Unreal Engine 4
• CS-Type: 3D-Cartesian

– Axis-Up: Z
– Axis-Forward: X
– Orientation: Left Handed

• Rotation type: Euler-Extrinsic

– Rotation Order: X�Y�Z

132

A.4. Unreal Engine 4 133

A

Fi
gu

re
A
.1
:C

oo
rd

in
at

e
sy

st
em

de
fin

it
io
ns

Pr
in
te
d
in

cr
os

s-
ey

ed
st
er
eo

sc
op

y,
fo

r
be

tt
er

3D
in
si
gh

t.

B
Statistical Human Motion Model

A extensive regression analysis, on the joint histogram data, was performed using a set of applicable ’Proba-
bility Density Functions’ (PDFs), to find an analytical representation for each recorded variable. The process
and results are described in the following appendix.

B.1. Histograms
Full-scale visualization of the joint histograms and their best-fit PDF regression can be seen in Figure B.2 &
B.3.

B.1.1. Histogram Resolution
The resolution for the histogram was based on the square root of the number of samples, which satisfies
divisions by 2, 5, & 9. This allowed for a optimal visual result and this procedure is detailed in Equation B.1.

#Frames = 6.482.101

#Bins ≤ int (√#Frames) where (#Bins mod {2, 5, 9} =1)
𝛼Range = 2 ⋅ 180∘ = 360∘

𝛼Res = 0.2∘

#Bins = 1 +
𝛼Range

𝛼Res
= 1801

(B.1)

Equation B.1: Joint Histogram Resolution

B.1.2. Histogram Cleaning
Prior to plotting and regression obvious problems with the histogram have been fixed. Most issues were ap-
parent with the finger joints, which very frequently lost tracking and recorded incorrect default values instead
of the actual angles. The pre-cleaning include the following operations:

1. Removal of all zero values, due to OptiTrack sometimes setting the value to 0 when tracking is lost.
2. Removal of all ’spikes’, due to OptiTrack sometimes returning to a previous ’default’ when tracking is

lost.

Spikes where defined as follows:

• ’Common’ spike: 𝑐[𝑖 − 1] ⋅ 2 ≤ 𝑐[𝑖] ≥ 𝑐[𝑖 + 1] ⋅ 2
• ’Lonely’ spike: 𝑐[𝑖 − 1] = 𝑐[𝑖 + 1] = 0 & 𝑐[𝑖] ≠ 0

For a continuous distribution with a resolution of 0.2∘, a sudden doubling of occurrence or random spike
within 10𝑚𝑠 with no means of getting there, were deemed unrealistic and attributed to tracking loss.

134

B.2. PDFs 135

B

B.2. PDFs
All non-finger channels, except for ’Hips-ψ’, can be analytically described by a singular PDF, with high confi-
dence ’𝑅2 >= 96.97%’.

The details results of all PDF regressions, of the joint channel histogram data, are presented at the end of
this appendix.

B.2.1. Distributions Used
The PDFs of the following distributions were used in the regression analysis:

1. Gamma [0,∞]: PDF (𝑥, 𝑎) = 𝑥𝑎−1⋅𝑒−𝑥
Γ(𝑎)

2. Beta [0, 1]: PDF (𝑥, 𝑎, 𝑏) = Γ(𝑎+𝑏)⋅𝑥𝑎−1⋅(1−𝑥)𝑏−1

Γ(𝑎)⋅Γ(𝑏)

3. Gaussian: PDF (𝑥) = 𝑒
−𝑥2
2

√2𝜋
4. Skew Norm: PDF (𝑥, 𝑎) = 2 ⋅ PDFGaussian (𝑥) ⋅ CDFGaussian (𝑎 ⋅ 𝑥)

5. ExpoNorm: PDF (𝑥, 𝐾) = 𝑒
1

2⋅𝐾2 −
𝑥
𝐾

2⋅𝐾 ⋅ erfc(−𝑥−
1
𝐾

√2)

6. Cauchy: PDF (𝑥) = 1
𝜋⋅(1+𝑥2)

7. Laplace: PDF (𝑥) = 𝑒−|𝑥|
2

The general shape of each PDF used in the regression analysis can be seen in Figure B.1.

Figure B.1: Example PDFs

Each PDF was given three additional parameters to translate (l), scale (s) and skew (w) the function. The
definition of this transform is given in Equation B.2.

PDFFinal = PDF (𝑥𝑤 − 𝑙) ⋅ 𝑠 (B.2)

Equation B.2: PDF transformation

B

136 B. Statistical Human Motion Model

B.2.2. BiModal Regression
Allowing the option for multi-modal parameters a comparison was made between singular PDF and double
PDF regression.

The double PDF function is defined in Equation B.3.

PDFDouble (𝑥, {𝑝1}, {𝑝2}, 𝑙1, 𝑠1, 𝑤1, 𝑙2, 𝑠2, 𝑤2) = PDFSingle (𝑥, {𝑝1}, 𝑙1, 𝑠1, 𝑤1,)+PDFSingle (𝑥, {𝑝2}, 𝑙2, 𝑠2, 𝑤2,)
(B.3)

Equation B.3: Double PDF definition

Given more parameters, it makes sense that the overall fit becomes better, on average however the double
regression only showed a 1.4% improvement over the singular PDF regression. Therefore the presence of a
secondarymode could not be asserted, except for a few edge cases, like ’Hips-ψ’ and a few finger joint channels.

B.3. Edgecase ’Hipsψ’
The ’Hips-ψ’ channel is a special case, as compared to all other channels, and has 3 distinctmodes at [0∘, ±90∘].
’Hips-ψ’ is the global yaw angle of the combined dancers and is the only parameter not local to each dancer
individually. Both dancers start off by facing the audience at [Mode #1: 0∘] and then turn towards each other
keeping this primary direction for most of the take [Mode #2&3: ±90∘]. Being free to turn and face any
desired direction, not bound by limits, it is also the only channel showcasing near uniform distribution over
the entire 360∘motion range. For a full analytical PDF to accurately describe this distribution a combination of
a uniform distribution plus three Laplace distributions for each mode would probably be required. For general
analytical motion modeling of the human body this dataset specific variable is however not of importance and
can just be substituted by a uniform distribution to all the skeleton to face any desired direction.

B.4. Regression Parameters
Tables B.4 and B.1 presents all function arguments required to reconstruct the best-fit regression functions for
each channel. The following table is intended for usage by future researchers, for the analytical modeling of
the human body. The parameters presented here follow the convention as defined in Equations B.2 and B.3. ¹

¹Caution: The following parameters are based on the regression of experimental data and are not ensured to comply with the requirement
for PDFs that 𝐶𝐷𝐹 (∞) = 1. An additional scaling factor should be applied to ensure this criteria, before using it in an analytical model.

R² Results
Best-Fit Count Overall→ 2 0 0 1 4 1 0 11 57 19 10 8 Info: = Non-converging regression
Best-Fit Count (Single||Double):→ 10 1 0 30 41 13 18 13 59 23 10 8

JointName

 G
am

m
a

P
D

F

 B
e

ta
 P

D
F

 G
au

ss
ia

n
 P

D
F

 S
ke

w
N

o
rm

 P
D

F

 E
xp

o
N

o
rm

 P
D

F

 C
au

ch
y

P
D

F

 L
ap

la
ce

 P
D

F

 D
o

u
b

le
 G

au
ss

ia
n

 P
D

F

 D
o

u
b

le
 S

ke
w

N
o

rm
 P

D
F

 D
o

u
b

le
 E

xp
o

N
o

rm
 P

D
F

 D
o

u
b

le
 C

au
ch

y
P

D
F

 D
o

u
b

le
 L

ap
la

ce
 P

D
F

B
e

st
 S

in
gl

e

B
e

st
 D

o
u

b
le

Si
n

gl
e-

D
o

u
b

le
 D

if
f

B
e

st
 R

²

B
e

st
 S

in
gl

e

B
e

st
 D

o
u

b
le

Average→ 57.31% -8.95% 91.57% 95.55% 92.21% 91.78% 89.48% 96.05% 98.16% 92.23% 84.38% 92.91% 96.71% 98.12% -1.40% 98.37% SkewNorm PDF Double SkewNorm PDF
Hips-x 97.99% -0.68% 97.93% 98.12% 98.41% 99.47% 99.26% 99.69% 99.78% 96.85% 99.86% 99.82% 99.47% 99.86% -0.40% 99.86% Cauchy PDF Double Cauchy PDF
Hips-y 38.76% -0.36% 96.83% 97.00% 97.40% 99.57% 99.85% 99.69% 99.72% 97.33% 99.57% 99.93% 99.85% 99.93% -0.08% 99.93% Laplace PDF Double Laplace PDF
Hips-z 21.33% -722.34% 13.88% 27.03% -84.17% 11.95% 9.65% 64.39% -584.98% 10.30% 27.03% 64.39% -37.36% 64.39% SkewNorm PDF Double ExpoNorm-L PDF
Spine-x 23.90% 6.00% 98.28% 98.37% 98.57% 99.46% 99.60% 99.88% 99.92% 96.68% 99.69% 99.84% 99.60% 99.92% -0.32% 99.92% Laplace PDF Double SkewNorm PDF
Spine-y 99.44% -10.62% 95.81% 99.48% 99.90% 95.30% 94.69% 99.57% 99.93% 99.48% 97.90% 97.94% 99.90% 99.93% -0.03% 99.93% ExpoNorm-R PDF Double SkewNorm PDF
Spine-z 56.27% -4.84% 97.83% 98.08% 98.39% 98.95% 99.63% 99.79% 99.87% 87.16% 99.13% 99.79% 99.63% 99.87% -0.24% 99.87% Laplace PDF Double SkewNorm PDF
Spine1-x 8.92% -9.12% 94.36% 94.42% 94.80% 98.16% 99.39% 99.79% 99.85% 87.57% 98.80% 99.59% 99.39% 99.85% -0.46% 99.85% Laplace PDF Double SkewNorm PDF
Spine1-y 99.59% -10.35% 99.53% 99.63% 99.72% 98.12% 98.28% 99.53% 99.94% 99.72% 99.31% 99.72% 99.94% -0.22% 99.94% ExpoNorm-R PDF Double SkewNorm PDF
Spine1-z 97.34% 97.26% 97.48% 97.83% 99.08% 99.81% 98.80% 99.06% 99.83% 99.12% 99.84% 99.81% 99.84% -0.03% 99.84% Laplace PDF Double Laplace PDF
Neck-x 38.53% -3.95% 96.91% 97.09% 97.44% 99.10% 99.81% 99.77% 99.86% 90.20% 99.22% 99.88% 99.81% 99.88% -0.07% 99.88% Laplace PDF Double Laplace PDF
Neck-y 99.56% 99.58% 99.51% 99.54% 99.54% 95.83% 96.07% 99.57% 99.87% 99.54% 98.19% 98.53% 99.58% 99.87% -0.29% 99.87% Beta PDF Double SkewNorm PDF
Neck-z 2.72% 3.34% 95.96% 96.05% 96.11% 96.37% 98.30% 97.07% 99.67% 86.11% 97.54% 98.45% 98.30% 99.67% -1.37% 99.67% Laplace PDF Double SkewNorm PDF
Head-x 98.61% -7.77% 98.61% 98.62% 98.72% 98.93% 99.50% 99.88% 99.89% 97.72% 99.00% 99.50% 99.89% -0.39% 99.89% Laplace PDF Double SkewNorm PDF
Head-y 2.28% 98.06% 98.75% 98.94% 98.23% 98.66% 99.92% 99.70% 99.92% 99.24% 98.66% 98.94% 99.92% -0.98% 99.92% ExpoNorm-L PDF Double Gaussian PDF
Head-z -14.19% 96.58% 96.72% 96.77% 96.56% 98.34% 99.65% 99.67% 96.77% 97.05% 98.37% 98.34% 99.67% -1.33% 99.67% Laplace PDF Double SkewNorm PDF

LeftShoulder-x 99.38% -6.78% 98.18% 99.48% 99.79% 97.39% 97.20% 99.11% 99.90% 99.88% 99.21% 99.79% 99.90% -0.11% 99.90% ExpoNorm-R PDF Double SkewNorm PDF
LeftShoulder-y 96.83% -8.76% 96.86% 99.48% 98.99% 94.48% 93.80% 99.73% 99.75% 98.96% 93.80% 99.48% 99.75% -0.28% 99.75% SkewNorm PDF Double ExpoNorm-L PDF
LeftShoulder-z 99.08% -8.13% 99.10% 99.73% 99.65% 96.83% 96.94% 99.10% 99.93% 87.99% 98.67% 98.58% 99.73% 99.93% -0.20% 99.93% SkewNorm PDF Double SkewNorm PDF
LeftArm-x -27.50% -34.59% 97.68% 97.69% 97.68% 91.76% 91.54% 97.68% 99.85% 96.35% 34.22% 91.54% 97.69% 99.85% -2.16% 99.85% SkewNorm PDF Double SkewNorm PDF
LeftArm-y 96.97% -30.56% 95.96% 96.64% 95.95% 89.00% 87.61% 99.62% 99.86% 95.96% 97.28% 96.97% 99.86% -2.89% 99.86% Gamma PDF Double SkewNorm PDF
LeftArm-z 92.40% 92.44% 98.39% 97.59% 89.99% 89.68% 99.67% 99.77% 99.35% 89.68% 98.39% 99.77% -1.39% 99.77% SkewNorm PDF Double SkewNorm PDF
LeftForeArm-x 75.49% -8.88% 87.08% 94.88% 98.08% 92.27% 91.22% 99.41% 99.80% 98.62% 98.73% 98.08% 99.80% -1.72% 99.80% ExpoNorm-R PDF Double SkewNorm PDF
LeftForeArm-y -35.37% 97.79% 98.70% 98.37% 94.99% 95.38% 99.56% 99.85% 98.37% 98.70% 99.85% -1.15% 99.85% SkewNorm PDF Double SkewNorm PDF
LeftForeArm-z -32.03% -41.12% 88.17% 96.55% 97.23% 89.35% 89.10% 97.10% 97.57% 99.43% 92.06% 97.23% 99.43% -2.19% 99.43% ExpoNorm-L PDF Double ExpoNorm-L PDF
LeftHand-x 97.92% -22.80% 97.92% 97.93% 98.10% 98.20% 98.54% 99.09% 99.52% 71.96% 98.41% 98.54% 98.54% 99.52% -0.98% 99.52% Laplace PDF Double SkewNorm PDF
LeftHand-y -12.85% -18.99% 96.10% 98.77% 99.49% 96.85% 96.80% 97.86% 99.86% -18.17% 98.81% 96.80% 99.49% 99.86% -0.37% 99.86% ExpoNorm-L PDF Double SkewNorm PDF
LeftHand-z 98.56% 98.57% 99.21% 99.52% 98.60% 98.07% 99.78% 99.70% 99.15% 99.63% 99.58% 99.52% 99.78% -0.27% 99.78% ExpoNorm-L PDF Double Gaussian PDF
LeftHandThumb1-x 97.79% 97.70% 97.91% 97.88% 97.48% 97.34% 98.64% 99.67% 99.32% 99.38% 99.13% 97.91% 99.67% -1.76% 99.67% SkewNorm PDF Double SkewNorm PDF
LeftHandThumb1-y 30.36% 51.97% 96.61% 96.65% 96.92% 99.34% 99.59% 99.49% 99.65% 99.05% 99.74% 99.59% 99.74% -0.15% 99.74% Laplace PDF Double Laplace PDF
LeftHandThumb1-z 38.63% 10.62% 97.04% 97.28% 97.72% 99.22% 99.50% 98.68% 98.62% 99.45% 99.73% 99.50% 99.73% -0.23% 99.73% Laplace PDF Double Laplace PDF
LeftHandThumb2-z 99.86% 56.41% 87.55% 99.28% 98.88% 87.64% 86.53% 99.88% 98.88% 92.92% 92.66% 99.86% 99.88% -0.02% 99.88% Gamma PDF Double SkewNorm PDF
LeftHandThumb3-z 99.79% 15.59% 86.99% 99.27% 98.45% 87.05% 85.92% 99.97% 98.45% 92.32% 91.68% 99.79% 99.97% -0.18% 99.97% Gamma PDF Double SkewNorm PDF
LeftHandIndex1-x 92.87% 92.91% 95.71% 96.80% 95.72% 96.06% 99.25% 99.29% 96.80% 98.07% 96.80% 99.29% -2.50% 99.29% ExpoNorm-L PDF Double SkewNorm PDF
LeftHandIndex1-y 50.35% 35.29% 77.14% 77.58% 78.43% 80.22% 80.07% 80.98% 82.16% 78.43% 68.53% 80.22% 82.16% -1.94% 82.16% Cauchy PDF Double SkewNorm PDF
LeftHandIndex1-z 7.27% -0.52% 82.46% 96.10% 98.89% 83.79% 81.60% 88.80% 95.10% 68.68% 91.19% 90.44% 98.89% 95.10% 3.80% 98.89% ExpoNorm-L PDF Double SkewNorm PDF
LeftHandIndex2-x -20.65% -22.80% 72.32% 94.07% 97.14% 69.63% 67.90% 80.46% 94.07% 94.03% 97.15% 97.14% 97.15% 0.00% 97.15% ExpoNorm-L PDF Double Laplace PDF
LeftHandIndex3-x -8.72% -10.95% 75.07% 94.59% 97.78% 72.97% 71.25% 82.47% 94.59% 97.78% 72.86% 97.78% 97.78% 0.00% 97.78% ExpoNorm-L PDF Double ExpoNorm-L PDF
LeftHandMiddle1-x 62.45% 91.24% 94.43% 95.97% 95.28% 95.86% 98.95% 99.13% 95.97% 97.40% 95.97% 99.13% -3.16% 99.13% ExpoNorm-L PDF Double SkewNorm PDF
LeftHandMiddle1-y 31.50% 9.59% 74.31% 74.63% 49.16% 73.61% 69.86% 75.37% 76.45% 75.43% 63.29% 74.63% 76.45% -1.82% 76.45% SkewNorm PDF Double SkewNorm PDF
LeftHandMiddle1-z 42.50% 93.99% 94.22% 94.95% 97.98% 97.94% 97.70% 98.35% 98.80% 98.76% 99.29% 97.98% 99.29% -1.31% 99.29% Cauchy PDF Double Laplace PDF
LeftHandMiddle2-x -13.70% -5.46% 67.51% 83.72% 93.31% 71.91% 68.51% 74.02% 83.72% 97.88% 93.31% 97.88% -4.57% 97.88% ExpoNorm-L PDF Double ExpoNorm-L PDF
LeftHandMiddle3-x -3.16% -6.87% 70.67% 85.30% 67.11% 74.77% 71.61% 76.71% 98.83% 88.07% 94.08% 85.30% 98.83% -13.54% 98.83% SkewNorm PDF Double ExpoNorm-L PDF
LeftHandRing1-x 1.97% -13.14% 92.41% 95.47% 96.47% 95.38% 96.10% 98.99% 96.99% 83.78% 99.20% 97.28% 96.47% 99.20% -2.73% 99.20% ExpoNorm-L PDF Double Cauchy PDF
LeftHandRing1-y 23.66% 76.24% 76.24% 51.26% 76.43% 46.81% 77.20% 78.20% 68.97% 60.95% 76.43% 78.20% -1.77% 78.20% Cauchy PDF Double SkewNorm PDF
LeftHandRing1-z 35.57% 94.02% 96.09% 96.77% 96.85% 96.12% 98.08% 99.73% 96.69% 99.37% 99.40% 96.85% 99.73% -2.88% 99.73% Cauchy PDF Double SkewNorm PDF
LeftHandRing2-x -17.83% -19.96% 66.07% 88.67% 96.62% 70.86% 68.21% 73.57% 88.67% 95.73% 83.53% 96.62% 96.62% 96.62% 0.00% 96.62% ExpoNorm-L PDF Double Laplace PDF
LeftHandRing3-x -5.73% -9.19% 70.02% 89.70% 69.91% 74.24% 71.66% 76.77% 92.62% 98.51% 86.20% 71.69% 89.70% 98.51% -8.81% 98.51% SkewNorm PDF Double ExpoNorm-L PDF
LeftHandPinky1-x 96.44% 95.06% 96.88% 97.59% 97.19% 97.61% 99.29% 98.12% 98.58% 99.16% 97.61% 97.61% 99.29% -1.68% 99.29% Laplace PDF Double Gaussian PDF
LeftHandPinky1-y 28.24% 3.66% 90.08% 90.72% 44.07% 34.85% 99.05% 97.74% 57.51% 99.88% 50.76% 90.72% 99.88% -9.16% 99.88% SkewNorm PDF Double Cauchy PDF
LeftHandPinky1-z 99.85% 23.45% 85.91% 99.26% 99.31% 85.58% 84.27% 94.20% 83.45% 91.65% 99.85% 94.20% 5.66% 99.85% Gamma PDF Double Gaussian PDF
LeftHandPinky2-x -23.25% -25.00% 75.22% 96.11% 97.53% 78.37% 77.10% 84.26% 96.12% 98.16% 88.71% 77.10% 97.53% 98.16% -0.63% 98.16% ExpoNorm-L PDF Double ExpoNorm-L PDF
LeftHandPinky3-x -10.30% -11.89% 77.84% 96.43% 98.22% 80.86% 79.60% 85.95% 98.88% 98.69% 91.70% 98.22% 98.88% -0.67% 98.88% ExpoNorm-L PDF Double SkewNorm PDF

RightShoulder-x 98.60% -11.54% 98.61% 99.35% 99.64% 98.07% 97.97% 99.12% 99.35% 99.64% 99.36% 99.64% 99.64% 0.00% 99.64% ExpoNorm-L PDF Double ExpoNorm-L PDF
RightShoulder-y 98.40% 50.96% 98.42% 99.13% 98.87% 94.46% 93.56% 98.48% 99.88% 99.01% 98.98% 99.25% 99.13% 99.88% -0.76% 99.88% SkewNorm PDF Double SkewNorm PDF
RightShoulder-z 99.29% -9.01% 98.31% 99.48% 99.21% 95.89% 95.97% 99.93% 99.94% 99.75% 98.34% 99.48% 99.94% -0.47% 99.94% SkewNorm PDF Double SkewNorm PDF
RightArm-x -48.02% 97.78% 98.10% 97.89% 93.61% 93.64% 98.93% 99.70% 98.40% 98.10% 99.70% -1.60% 99.70% SkewNorm PDF Double SkewNorm PDF
RightArm-y 97.16% -24.83% 96.53% 97.16% 96.66% 90.66% 89.76% 99.03% 99.71% 87.36% 98.27% 98.81% 97.16% 99.71% -2.55% 99.71% Gamma PDF Double SkewNorm PDF
RightArm-z 98.58% -30.11% 94.33% 99.14% 98.99% 93.36% 93.26% 99.90% 99.14% 96.75% 97.60% 99.14% 99.90% -0.76% 99.90% SkewNorm PDF Double Gaussian PDF
RightForeArm-x 92.62% -20.03% 92.66% 96.59% 98.61% 96.13% 95.45% 95.24% 96.59% 99.48% 98.13% 98.61% 99.48% -0.87% 99.48% ExpoNorm-L PDF Double ExpoNorm-L PDF
RightForeArm-y -23.91% 97.46% 99.06% 98.54% 94.59% 94.43% 97.46% 99.82% 99.79% 94.43% 99.06% 99.82% -0.76% 99.82% SkewNorm PDF Double SkewNorm PDF
RightForeArm-z 63.90% 32.97% 85.68% 96.94% 98.53% 88.09% 86.86% 97.11% 99.32% 99.28% 93.56% 86.86% 98.53% 99.32% -0.79% 99.32% ExpoNorm-R PDF Double SkewNorm PDF
RightHand-x 58.41% -26.89% 94.37% 94.41% 94.88% 98.08% 98.26% 96.21% 97.45% 94.60% 99.03% 98.35% 98.26% 99.03% -0.77% 99.03% Laplace PDF Double Cauchy PDF
RightHand-y -18.21% -19.36% 97.46% 99.14% 99.29% 97.28% 97.46% 99.81% 99.14% 99.69% -16.00% 97.46% 99.29% 99.81% -0.52% 99.81% ExpoNorm-L PDF Double Gaussian PDF
RightHand-z 97.90% 98.75% 97.89% 97.02% 95.54% 99.15% 99.44% 97.87% 99.52% 95.54% 98.75% 99.52% -0.77% 99.52% SkewNorm PDF Double Cauchy PDF
RightHandThumb1-x 37.21% 98.86% 99.07% 99.37% 98.70% 98.19% 99.81% 99.27% 99.76% 99.58% 99.48% 99.37% 99.81% -0.44% 99.81% ExpoNorm-R PDF Double Gaussian PDF
RightHandThumb1-y 78.80% 96.29% 96.39% 96.70% 98.25% 99.07% 97.27% 99.82% 99.59% 99.09% 99.07% 99.82% -0.75% 99.82% Laplace PDF Double SkewNorm PDF
RightHandThumb1-z 25.60% 43.14% 95.86% 96.61% 97.49% 98.93% 99.09% 98.61% 99.89% 99.35% 99.44% 99.09% 99.89% -0.80% 99.89% Laplace PDF Double SkewNorm PDF
RightHandThumb2-z 2.19% -1.50% 87.20% 99.49% 98.33% 86.66% 85.77% 93.37% 96.61% 91.98% 99.49% 96.61% 2.88% 99.49% SkewNorm PDF Double ExpoNorm-L PDF
RightHandThumb3-z -2.60% -4.58% 86.24% 99.45% 98.02% 85.71% 84.80% 92.61% 99.45% 0.00% 92.05% 97.81% 99.45% 99.45% 0.00% 99.45% SkewNorm PDF Double SkewNorm PDF
RightHandIndex1-x 99.11% -16.62% 99.11% 99.23% 99.26% 97.75% 97.65% 99.41% 99.60% 98.66% 99.41% 97.61% 99.26% 99.60% -0.33% 99.60% ExpoNorm-L PDF Double SkewNorm PDF
RightHandIndex1-y 43.61% 38.86% 80.63% 81.45% 82.80% 86.12% 86.96% 91.31% 92.81% 82.92% 92.87% 84.22% 86.96% 92.87% -5.91% 92.87% Laplace PDF Double Cauchy PDF
RightHandIndex1-z 97.77% 35.43% 80.90% 96.93% 76.28% 81.94% 80.12% 92.53% 79.54% 90.10% 97.77% 92.53% 5.24% 97.77% Gamma PDF Double Gaussian PDF
RightHandIndex2-x 98.18% -20.95% 92.45% 97.45% 96.38% 89.84% 89.07% 96.52% 99.63% 99.79% 98.18% 99.79% -1.61% 99.79% Gamma PDF Double ExpoNorm-L PDF
RightHandIndex3-x 98.50% -8.47% 93.16% 97.74% 96.94% 91.05% 90.20% 96.82% 99.65% 99.88% 91.06% 90.20% 98.50% 99.88% -1.39% 99.88% Gamma PDF Double ExpoNorm-R PDF
RightHandMiddle1-x 98.17% 98.19% 98.58% 98.57% 97.20% 97.21% 99.10% 98.58% 98.87% 97.43% 98.22% 98.58% 99.10% -0.52% 99.10% SkewNorm PDF Double Gaussian PDF
RightHandMiddle1-y 20.67% 19.18% 71.94% 72.24% 49.23% 75.30% 45.67% 64.16% 57.42% 75.30% 64.16% 11.14% 75.30% Cauchy PDF Double ExpoNorm-L PDF
RightHandMiddle1-z 8.26% 8.81% 89.88% 93.23% 85.63% 94.59% 93.93% 97.11% 99.75% 91.61% 98.16% 97.89% 94.59% 99.75% -5.15% 99.75% Cauchy PDF Double SkewNorm PDF
RightHandMiddle2-x 95.82% 87.99% 98.24% 93.53% 84.51% 83.53% 92.72% 98.24% 99.39% 90.85% 98.24% 99.39% -1.15% 99.39% SkewNorm PDF Double ExpoNorm-R PDF
RightHandMiddle3-x 96.66% -4.23% 89.72% 98.44% 94.54% 86.68% 85.64% 93.87% 98.44% 99.74% 92.61% 92.22% 98.44% 99.74% -1.30% 99.74% SkewNorm PDF Double ExpoNorm-R PDF
RightHandRing1-x 98.76% -18.56% 98.77% 98.84% 98.89% 97.80% 97.95% 99.13% 98.84% 99.67% 97.95% 98.89% 99.67% -0.78% 99.67% ExpoNorm-L PDF Double ExpoNorm-R PDF
RightHandRing1-y 3.44% 25.91% 89.99% 91.23% 48.32% 34.14% 98.32% 98.70% 57.30% 55.36% 91.23% 98.70% -7.47% 98.70% SkewNorm PDF Double SkewNorm PDF
RightHandRing1-z 27.08% 10.40% 93.45% 97.49% 98.73% 95.40% 94.92% 95.97% 99.77% 97.83% 99.05% 98.63% 98.73% 99.77% -1.04% 99.77% ExpoNorm-L PDF Double SkewNorm PDF
RightHandRing2-x 95.13% -23.69% 90.19% 96.90% 89.77% 86.91% 86.51% 94.25% 96.92% 93.00% 86.51% 96.90% 96.92% -0.02% 96.92% SkewNorm PDF Double SkewNorm PDF
RightHandRing3-x 96.08% -5.82% 91.70% 97.29% 94.30% 89.13% 88.62% 95.14% 97.29% 99.58% 89.13% 88.62% 97.29% 99.58% -2.29% 99.58% SkewNorm PDF Double ExpoNorm-R PDF
RightHandPinky1-x 99.43% 99.38% 99.47% 99.55% 98.16% 98.28% 99.60% 99.47% 99.83% 99.31% 99.55% 99.83% -0.27% 99.83% ExpoNorm-R PDF Double ExpoNorm-R PDF
RightHandPinky1-y 16.58% 1.75% 86.15% 90.54% 54.67% 92.54% 55.88% 96.48% 73.13% 98.62% 74.19% 92.54% 98.62% -6.08% 98.62% Cauchy PDF Double Cauchy PDF
RightHandPinky1-z 0.76% -2.80% 82.76% 98.23% 99.73% 83.30% 81.80% 89.63% 99.08% 99.73% 91.64% 90.79% 99.73% 99.73% 0.00% 99.73% ExpoNorm-L PDF Double ExpoNorm-L PDF
RightHandPinky2-x 98.07% -34.95% 93.00% 97.66% 96.28% 89.30% 88.75% 97.24% 97.66% 99.03% 94.95% 98.07% 99.03% -0.96% 99.03% Gamma PDF Double ExpoNorm-R PDF
RightHandPinky3-x 98.87% 43.52% 93.65% 98.31% 97.43% 91.12% 90.52% 97.50% 99.77% 99.66% 91.13% 90.52% 98.87% 99.77% -0.90% 99.77% Gamma PDF Double SkewNorm PDF

LeftUpLeg-x 37.09% -14.79% 97.18% 99.09% 99.64% 97.19% 97.03% 99.72% 99.44% 95.93% 97.03% 99.64% 99.72% -0.08% 99.72% ExpoNorm-R PDF Double Gaussian PDF
LeftUpLeg-y 95.06% -20.28% 95.10% 98.59% 99.04% 95.16% 95.01% 99.66% 98.59% 82.52% 99.02% 99.04% 99.66% -0.62% 99.66% ExpoNorm-L PDF Double Gaussian PDF
LeftUpLeg-z 99.12% -3.57% 98.91% 99.21% 99.43% 98.53% 97.93% 99.72% 99.59% 99.44% 99.58% 99.58% 99.43% 99.72% -0.29% 99.72% ExpoNorm-R PDF Double Gaussian PDF
LeftLeg-x 94.90% -2.21% 94.91% 96.23% 97.21% 95.79% 94.91% 98.14% 96.93% 97.20% 97.92% 97.32% 97.21% 98.14% -0.93% 98.14% ExpoNorm-L PDF Double Gaussian PDF
LeftLeg-y 96.07% -29.33% 91.49% 97.14% 93.68% 84.59% 83.14% 99.37% 90.15% 95.39% 83.30% 97.14% 99.37% -2.23% 99.37% SkewNorm PDF Double SkewNorm PDF
LeftLeg-z 99.50% 98.98% 99.57% 99.73% 97.67% 96.96% 99.72% 99.66% 99.92% 99.73% 99.92% -0.19% 99.92% ExpoNorm-R PDF Double ExpoNorm-R PDF
LeftFoot-x 99.36% -9.05% 99.37% 99.85% 99.74% 96.30% 96.37% 99.37% 99.93% 99.92% 98.45% 99.85% 99.93% -0.08% 99.93% SkewNorm PDF Double SkewNorm PDF
LeftFoot-y 95.33% 95.52% 96.33% 96.10% 95.66% 98.55% 99.45% 95.89% 96.54% 96.33% 99.45% -3.12% 99.45% ExpoNorm-R PDF Double SkewNorm PDF
LeftFoot-z 99.74% 99.07% 99.82% 99.86% 97.37% 97.47% 99.64% 99.97% 94.29% 98.56% 97.47% 99.86% 99.97% -0.10% 99.97% ExpoNorm-R PDF Double SkewNorm PDF
LeftToeBase-x 14.10% 98.65% 98.71% 68.28% 99.34% 99.15% 99.89% 99.91% 85.14% 99.83% 99.34% 99.91% -0.58% 99.91% Cauchy PDF Double SkewNorm PDF
LeftToeBase-y 44.57% 93.69% 94.78% 96.50% 98.37% 97.53% 95.01% 96.76% 99.45% 99.76% 99.07% 98.37% 99.76% -1.39% 99.76% Cauchy PDF Double Cauchy PDF
LeftToeBase-z 99.26% 13.48% 99.22% 99.31% 99.41% 98.91% 98.97% 99.97% 99.98% 99.18% 99.41% 99.75% 99.41% 99.98% -0.56% 99.98% ExpoNorm-R PDF Double SkewNorm PDF

RightUpLeg-x -1.06% -18.31% 94.97% 98.68% 99.04% 95.30% 94.84% 99.63% 99.86% 98.77% 98.88% 98.58% 99.04% 99.86% -0.82% 99.86% ExpoNorm-L PDF Double SkewNorm PDF
RightUpLeg-y 98.49% 95.30% 99.02% 98.84% 93.66% 92.87% 99.09% 99.77% 98.66% 98.30% 98.17% 99.02% 99.77% -0.76% 99.77% SkewNorm PDF Double SkewNorm PDF
RightUpLeg-z 99.04% -12.39% 99.03% 99.06% 99.19% 99.02% 98.82% 99.80% 99.89% 99.85% 99.88% 99.14% 99.19% 99.89% -0.71% 99.89% ExpoNorm-L PDF Double SkewNorm PDF
RightLeg-x 96.38% 96.40% 97.37% 98.16% 99.21% 98.41% 98.25% 98.78% 98.73% 99.89% 99.55% 99.21% 99.89% -0.68% 99.89% Cauchy PDF Double Cauchy PDF
RightLeg-y -32.27% 94.70% 96.75% 95.07% 87.71% 86.82% 97.83% 99.60% 97.16% 86.82% 96.75% 99.60% -2.85% 99.60% SkewNorm PDF Double SkewNorm PDF
RightLeg-z -9.61% 99.01% 99.06% 99.16% 99.08% 98.72% 99.84% 99.84% 99.20% 98.86% 99.16% 99.84% -0.68% 99.84% ExpoNorm-R PDF Double SkewNorm PDF
RightFoot-x 99.61% 98.79% 99.72% 99.56% 96.34% 96.52% 99.88% 99.90% 89.74% 99.72% 99.90% -0.18% 99.90% SkewNorm PDF Double SkewNorm PDF
RightFoot-y 0.93% -17.40% 96.65% 96.86% 97.52% 96.87% 96.16% 99.46% 97.52% 96.98% 97.80% 97.52% 99.46% -1.93% 99.46% ExpoNorm-R PDF Double SkewNorm PDF
RightFoot-z 99.84% -16.83% 99.62% 99.85% 99.86% 96.89% 96.72% 99.62% 99.86% 99.62% 98.81% 98.94% 99.86% 99.86% 0.00% 99.86% ExpoNorm-R PDF Double SkewNorm PDF
RightToeBase-x 21.58% 58.16% 94.70% 94.99% 95.84% 99.43% 98.39% 99.53% 99.59% 99.67% 99.70% 99.33% 99.43% 99.70% -0.27% 99.70% Cauchy PDF Double Cauchy PDF
RightToeBase-y 22.00% 84.39% 92.04% 92.07% 93.68% 98.46% 97.84% 96.37% 97.62% 99.83% 99.48% 99.24% 98.46% 99.83% -1.37% 99.83% Cauchy PDF Double ExpoNorm-L PDF
RightToeBase-z 97.78% 10.33% 97.80% 98.17% 98.62% 99.34% 99.45% 97.80% 99.82% 98.81% 99.66% 99.82% 99.45% 99.82% -0.37% 99.82% Laplace PDF Double SkewNorm PDF

Single Double Best

B

138 B. Statistical Human Motion Model

JointName Best-Single Best-Single [Arguments]
Hips-ϕ Cauchy PDF (+1.26𝐸−1 +2.99𝐸+0 +7.63𝐸+0)
Hips-θ Laplace PDF (+1.14𝐸−1 +2.24𝐸+0 +8.88𝐸+0)
Hips-ψ SkewNorm PDF (−1.13𝐸+1 +4.61𝐸−1 +8.75𝐸−2 +3.42𝐸+2)
Spine-ϕ Laplace PDF (−1.43𝐸−2 +3.34𝐸+0 +6.18𝐸+0)
Spine-θ ExpoNorm-R PDF (+2.63𝐸+0 −8.28𝐸−1 +3.08𝐸+0 +6.57𝐸+0)
Spine-ψ Laplace PDF (+5.71𝐸−2 +1.84𝐸+0 +1.13𝐸+1)

Spine1-ϕ Laplace PDF (−4.10𝐸−2 +1.41𝐸+0 +1.45𝐸+1)
Spine1-θ ExpoNorm-R PDF (+7.48𝐸−1 −4.27𝐸−1 +1.71𝐸+0 +1.15𝐸+1)
Spine1-ψ Laplace PDF (+2.31𝐸−2 +5.01𝐸+0 +4.17𝐸+0)
Neck-ϕ Laplace PDF (+1.08𝐸−1 +1.90𝐸+0 +1.08𝐸+1)
Neck-θ Beta PDF (+9.45𝐸+0 +1.28𝐸+1 −4.14𝐸−1 +8.70𝐸+0 +5.77𝐸−3)
Neck-ψ Laplace PDF (−6.95𝐸−2 +1.25𝐸+0 +1.70𝐸+1)
Head-ϕ Laplace PDF (+1.03𝐸−1 +1.71𝐸+0 +1.23𝐸+1)
Head-θ ExpoNorm-L PDF (+1.21𝐸+0 −5.38𝐸−1 +1.57𝐸+0 +1.25𝐸+1)
Head-ψ Laplace PDF (−6.97𝐸−2 +1.26𝐸+0 +1.69𝐸+1)

LeftShoulder-ϕ ExpoNorm-R PDF (+1.53𝐸+0 +4.95𝐸−1 +2.90𝐸+0 +6.92𝐸+0)
LeftShoulder-θ SkewNorm PDF (−3.98𝐸+0 +1.21𝐸+0 +1.16𝐸+0 +1.71𝐸+1)
LeftShoulder-ψ SkewNorm PDF (−1.97𝐸+0 +6.63𝐸−1 +1.20𝐸+0 +1.66𝐸+1)

LeftArm-ϕ SkewNorm PDF (+6.10𝐸−1 −1.39𝐸+0 +6.52𝐸−1 +3.13𝐸+1)
LeftArm-θ Gamma PDF (+7.03𝐸+0 −8.32𝐸+0 +5.19𝐸−1 −9.29𝐸−2)
LeftArm-ψ SkewNorm PDF (−5.21𝐸+0 +1.16𝐸−1 +4.24𝐸−1 +4.71𝐸+1)

LeftForeArm-ϕ ExpoNorm-R PDF (+5.19𝐸+0 −2.63𝐸−1 +3.98𝐸+0 +4.68𝐸+0)
LeftForeArm-θ SkewNorm PDF (−2.18𝐸+0 +3.62𝐸−1 +4.81𝐸−1 +4.16𝐸+1)
LeftForeArm-ψ ExpoNorm-L PDF (+3.67𝐸+0 +1.36𝐸−1 +1.77𝐸+0 +1.17𝐸+1)

LeftHand-ϕ Laplace PDF (+1.30𝐸−1 +1.02𝐸+0 +1.98𝐸+1)
LeftHand-θ ExpoNorm-L PDF (+2.20𝐸+0 +1.47𝐸+0 +2.44𝐸+0 +8.07𝐸+0)
LeftHand-ψ ExpoNorm-L PDF (−1.31𝐸+0 −1.92𝐸+0 +2.46𝐸+0 +7.56𝐸+0)

LeftHandThumb1-ϕ SkewNorm PDF (+1.66𝐸+0 −7.13𝐸−1 +2.78𝐸+0 +6.58𝐸+0)
LeftHandThumb1-θ Laplace PDF (+1.63𝐸−1 +7.05𝐸+0 +2.84𝐸+0)
LeftHandThumb1-ψ Laplace PDF (+3.14𝐸−1 +4.33𝐸+0 +4.64𝐸+0)
LeftHandThumb2-ψ Gamma PDF (+1.29𝐸+0 −7.57𝐸−3 +1.39𝐸−1 +3.51𝐸−1)
LeftHandThumb3-ψ Gamma PDF (+1.29𝐸+0 −6.98𝐸−3 +2.84𝐸−1 +1.72𝐸−1)
LeftHandIndex1-ϕ ExpoNorm-L PDF (+2.46𝐸+0 −1.43𝐸+0 +2.69𝐸+0 +7.13𝐸+0)
LeftHandIndex1-θ Cauchy PDF (+1.12𝐸−2 +1.96𝐸+1 +9.78𝐸−1)
LeftHandIndex1-ψ ExpoNorm-L PDF (+2.80𝐸+1 +1.86𝐸−1 +1.47𝐸+2 +1.23𝐸−1)
LeftHandIndex2-ϕ ExpoNorm-L PDF (+2.70𝐸+2 +2.42𝐸−1 +1.52𝐸+2 +1.38𝐸−1)
LeftHandIndex3-ϕ ExpoNorm-L PDF (+1.94𝐸+2 +6.58𝐸−2 +2.09𝐸+2 +9.83𝐸−2)

LeftHandMiddle1-ϕ ExpoNorm-L PDF (+2.67𝐸+0 −1.31𝐸+0 +2.81𝐸+0 +6.72𝐸+0)
LeftHandMiddle1-θ SkewNorm PDF (−3.48𝐸+0 +5.61𝐸−1 +1.32𝐸+1 +1.19𝐸+0)
LeftHandMiddle1-ψ Cauchy PDF (+3.48𝐸−1 +1.61𝐸+1 +1.26𝐸+0)
LeftHandMiddle2-ϕ ExpoNorm-L PDF (+2.67𝐸+2 +2.00𝐸−2 +2.31𝐸+2 +7.67𝐸−2)
LeftHandMiddle3-ϕ SkewNorm PDF (−9.08𝐸+1 +3.03𝐸−3 +1.86𝐸+0 +6.93𝐸+0)

LeftHandRing1-ϕ ExpoNorm-L PDF (+2.42𝐸+0 −1.02𝐸+0 +2.53𝐸+0 +7.64𝐸+0)
LeftHandRing1-θ Cauchy PDF (−3.66𝐸−1 +2.60𝐸+1 +8.51𝐸−1)
LeftHandRing1-ψ Cauchy PDF (+3.65𝐸−1 +1.09𝐸+1 +2.08𝐸+0)
LeftHandRing2-ϕ ExpoNorm-L PDF (+7.16𝐸+2 −9.77𝐸−2 +4.78𝐸+2 +4.12𝐸−2)
LeftHandRing3-ϕ SkewNorm PDF (−1.77𝐸+2 +4.14𝐸−3 +1.20𝐸+0 +1.44𝐸+1)

LeftHandPinky1-ϕ Laplace PDF (−2.78𝐸−1 +1.28𝐸+0 +1.61𝐸+1)
LeftHandPinky1-θ SkewNorm PDF (−2.16𝐸+0 +2.20𝐸−1 +2.70𝐸+1 +5.41𝐸−1)
LeftHandPinky1-ψ Gamma PDF (+1.16𝐸+0 −7.67𝐸−4 +2.06𝐸−1 +2.38𝐸−1)
LeftHandPinky2-ϕ ExpoNorm-L PDF (+1.52𝐸+2 +4.43𝐸−1 +7.98𝐸+1 +2.65𝐸−1)
LeftHandPinky3-ϕ ExpoNorm-L PDF (+9.46𝐸+1 +3.75𝐸−1 +9.60𝐸+1 +2.17𝐸−1)
RightShoulder-ϕ ExpoNorm-L PDF (+1.30𝐸+0 +5.80𝐸−1 +2.75𝐸+0 +7.18𝐸+0)
RightShoulder-θ SkewNorm PDF (−2.36𝐸+0 +1.05𝐸+0 +1.15𝐸+0 +1.76𝐸+1)
RightShoulder-ψ SkewNorm PDF (+2.53𝐸+0 −3.38𝐸−1 +1.05𝐸+0 +1.90𝐸+1)

RightArm-ϕ SkewNorm PDF (+1.64𝐸+0 +1.91𝐸−2 +4.52𝐸−1 +4.46𝐸+1)
RightArm-θ Gamma PDF (+1.32𝐸+1 −1.09𝐸+1 +3.39𝐸−1 +1.44𝐸−1)
RightArm-ψ SkewNorm PDF (+4.32𝐸+0 −1.43𝐸−1 +4.66𝐸−1 +4.24𝐸+1)

RightForeArm-ϕ ExpoNorm-L PDF (+3.03𝐸+0 +3.20𝐸−1 +2.75𝐸+0 +6.75𝐸+0)
RightForeArm-θ SkewNorm PDF (−2.89𝐸+0 +2.60𝐸−1 +5.13𝐸−1 +3.86𝐸+1)
RightForeArm-ψ ExpoNorm-R PDF (+6.49𝐸+0 −2.49𝐸−1 +3.21𝐸+0 +6.27𝐸+0)

RightHand-ϕ Laplace PDF (−6.62𝐸−2 +9.20𝐸−1 +2.04𝐸+1)
RightHand-θ ExpoNorm-L PDF (+1.61𝐸+0 +3.45𝐸+0 +2.09𝐸+0 +9.42𝐸+0)
RightHand-ψ SkewNorm PDF (+2.30𝐸+0 −1.09𝐸+0 +7.85𝐸−1 +2.24𝐸+1)

RightHandThumb1-ϕ ExpoNorm-R PDF (−1.07𝐸+0 −1.30𝐸+0 +5.30𝐸+0 +3.52𝐸+0)
RightHandThumb1-θ Laplace PDF (+2.42𝐸−1 +9.12𝐸+0 +2.23𝐸+0)
RightHandThumb1-ψ Laplace PDF (−4.47𝐸−1 +6.52𝐸+0 +3.01𝐸+0)
RightHandThumb2-ψ SkewNorm PDF (−4.23𝐸+1 −2.41𝐸−3 +4.21𝐸+0 +4.80𝐸+0)
RightHandThumb3-ψ SkewNorm PDF (−8.02𝐸+1 −1.54𝐸−3 +2.10𝐸+0 +9.55𝐸+0)
RightHandIndex1-ϕ ExpoNorm-L PDF (−7.15𝐸−1 −1.22𝐸+0 +1.49𝐸+0 +1.29𝐸+1)
RightHandIndex1-θ Laplace PDF (+2.52𝐸−1 +1.42𝐸+1 +1.15𝐸+0)
RightHandIndex1-ψ Gamma PDF (+9.63𝐸−1 +2.83𝐸−9 +2.42𝐸−1 +2.05𝐸−1)
RightHandIndex2-ϕ Gamma PDF (+1.99𝐸+0 −1.44𝐸−1 +8.97𝐸−1 +5.45𝐸−2)
RightHandIndex3-ϕ Gamma PDF (+1.91𝐸+0 −1.17𝐸−1 +4.79𝐸−1 +1.04𝐸−1)

RightHandMiddle1-ϕ SkewNorm PDF (−1.83𝐸+0 +1.11𝐸+0 +8.91𝐸−1 +2.13𝐸+1)
RightHandMiddle1-θ Cauchy PDF (−7.58𝐸−1 +3.10𝐸+1 +6.16𝐸−1)
RightHandMiddle1-ψ Cauchy PDF (−7.06𝐸−1 +1.70𝐸+1 +1.22𝐸+0)
RightHandMiddle2-ϕ SkewNorm PDF (+1.51𝐸+5 −3.82𝐸−7 +4.97𝐸−1 +4.06𝐸+1)
RightHandMiddle3-ϕ SkewNorm PDF (+8.47𝐸+4 −1.88𝐸−7 +9.82𝐸−1 +2.01𝐸+1)

RightHandRing1-ϕ ExpoNorm-L PDF (+6.79𝐸−1 −1.52𝐸+0 +1.40𝐸+0 +1.37𝐸+1)
RightHandRing1-θ SkewNorm PDF (−2.66𝐸+0 +2.26𝐸−1 +2.26𝐸+1 +6.25𝐸−1)
RightHandRing1-ψ ExpoNorm-L PDF (+3.50𝐸+0 −4.48𝐸−1 +1.75𝐸+1 +1.10𝐸+0)
RightHandRing2-ϕ SkewNorm PDF (+4.99𝐸+2 +1.74𝐸−4 +4.26𝐸−1 +4.84𝐸+1)
RightHandRing3-ϕ SkewNorm PDF (+3.19𝐸+2 +1.09𝐸−4 +8.38𝐸−1 +2.41𝐸+1)

RightHandPinky1-ϕ ExpoNorm-R PDF (+7.25𝐸−1 +3.53𝐸−1 +1.31𝐸+0 +1.49𝐸+1)
RightHandPinky1-θ Cauchy PDF (−6.26𝐸−1 +3.32𝐸+1 +5.18𝐸−1)
RightHandPinky1-ψ ExpoNorm-L PDF (+3.99𝐸+1 +3.33𝐸−1 +1.26𝐸+2 +1.65𝐸−1)
RightHandPinky2-ϕ Gamma PDF (+2.51𝐸+0 −3.11𝐸−1 +9.77𝐸−1 +4.93𝐸−2)
RightHandPinky3-ϕ Gamma PDF (+2.21𝐸+0 −1.95𝐸−1 +5.64𝐸−1 +8.67𝐸−2)

LeftUpLeg-ϕ ExpoNorm-R PDF (+1.87𝐸+0 −3.16𝐸−1 +2.26𝐸+0 +8.71𝐸+0)
LeftUpLeg-θ ExpoNorm-L PDF (+2.45𝐸+0 −1.00𝐸+0 +1.98𝐸+0 +1.02𝐸+1)
LeftUpLeg-ψ ExpoNorm-R PDF (+1.09𝐸+0 −2.68𝐸−1 +2.85𝐸+0 +6.51𝐸+0)

LeftLeg-ϕ ExpoNorm-L PDF (+1.99𝐸+0 −5.73𝐸−1 +5.00𝐸+0 +3.42𝐸+0)
LeftLeg-θ SkewNorm PDF (+7.81𝐸+0 −1.98𝐸−1 +4.24𝐸−1 +4.91𝐸+1)
LeftLeg-ψ ExpoNorm-R PDF (+1.17𝐸+0 −1.84𝐸−1 +1.52𝐸+0 +1.24𝐸+1)
LeftFoot-ϕ SkewNorm PDF (−1.81𝐸+0 +3.83𝐸−1 +9.00𝐸−1 +2.24𝐸+1)
LeftFoot-θ ExpoNorm-R PDF (+1.36𝐸+0 −2.06𝐸+0 +1.89𝐸+0 +1.01𝐸+1)
LeftFoot-ψ ExpoNorm-R PDF (+1.17𝐸+0 +9.29𝐸−1 +2.43𝐸+0 +8.25𝐸+0)

LeftToeBase-ϕ Cauchy PDF (−1.53𝐸−1 +2.89𝐸+1 +8.70𝐸−1)
LeftToeBase-θ Cauchy PDF (−3.01𝐸−1 +7.45𝐸+0 +2.66𝐸+0)
LeftToeBase-ψ ExpoNorm-R PDF (+7.77𝐸−1 −5.74𝐸−1 +5.48𝐸+0 +3.55𝐸+0)
RightUpLeg-ϕ ExpoNorm-L PDF (+2.81𝐸+0 −5.40𝐸−1 +2.55𝐸+0 +7.65𝐸+0)
RightUpLeg-θ SkewNorm PDF (−4.24𝐸+0 +2.43𝐸−1 +5.40𝐸−1 +3.64𝐸+1)
RightUpLeg-ψ ExpoNorm-L PDF (+7.55𝐸−1 −1.33𝐸−1 +1.81𝐸+0 +1.02𝐸+1)

RightLeg-ϕ Cauchy PDF (+6.58𝐸−1 +5.87𝐸+0 +3.43𝐸+0)
RightLeg-θ SkewNorm PDF (+5.71𝐸+0 −9.18𝐸−3 +4.39𝐸−1 +4.77𝐸+1)
RightLeg-ψ ExpoNorm-R PDF (+7.32𝐸−1 −4.45𝐸−1 +1.80𝐸+0 +9.99𝐸+0)
RightFoot-ϕ SkewNorm PDF (+2.23𝐸+0 −5.28𝐸−1 +8.98𝐸−1 +2.24𝐸+1)
RightFoot-θ ExpoNorm-R PDF (+1.32𝐸+0 −2.39𝐸+0 +1.98𝐸+0 +9.57𝐸+0)
RightFoot-ψ ExpoNorm-R PDF (−7.92𝐸−1 −2.14𝐸+0 +1.56𝐸+0 +1.28𝐸+1)

RightToeBase-ϕ Cauchy PDF (+9.45𝐸−2 +2.17𝐸+1 +9.23𝐸−1)
RightToeBase-θ Cauchy PDF (−1.18𝐸−1 +6.53𝐸+0 +2.93𝐸+0)
RightToeBase-ψ Laplace PDF (−7.91𝐸−3 +3.86𝐸+0 +5.19𝐸+0)

Table B.1: PDF regression arguments - Single

B.4. Regression Parameters 139

B

JointName Best-Double Best-Double [Arguments]
Hips-ϕ Double Cauchy PDF (+1.28𝐸+0 +7.26𝐸−1 +6.07𝐸+0 −3.91𝐸−2 +2.71𝐸+0 +6.47𝐸+0)
Hips-θ Double Laplace PDF (+1.66𝐸−1 +1.50𝐸+0 +1.03𝐸+1 −1.28𝐸−2 +8.19𝐸−1 +5.70𝐸+0)
Hips-ψ Double ExpoNorm-L PDF (+2.87𝐸−2 −3.54𝐸+0 +7.83𝐸−1 +1.75𝐸−1 −8.94𝐸+1 +3.68𝐸+0 +4.22𝐸−1 +1.83𝐸+1)
Spine-ϕ Double SkewNorm PDF (−8.92𝐸−1 −1.70𝐸+0 +5.09𝐸−1 +1.24𝐸+0 +1.04𝐸+1 +5.77𝐸−1 +1.50𝐸+0 +4.75𝐸+0)
Spine-θ Double SkewNorm PDF (+7.39𝐸+0 +1.28𝐸+0 −2.41𝐸−1 +3.95𝐸−1 +3.01𝐸+1 −3.87𝐸−1 +6.25𝐸−1 +1.31𝐸+1)
Spine-ψ Double SkewNorm PDF (+5.99𝐸+0 −2.64𝐸+0 −1.58𝐸−1 +6.29𝐸−1 +1.62𝐸+1 +2.03𝐸−1 +7.53𝐸−1 +1.29𝐸+1)

Spine1-ϕ Double SkewNorm PDF (−1.38𝐸+0 −1.23𝐸+0 +4.45𝐸−1 +6.89𝐸−1 +5.87𝐸+0 +5.67𝐸−1 +6.21𝐸−1 +2.60𝐸+1)
Spine1-θ Double SkewNorm PDF (+4.29𝐸+0 −8.90𝐸−1 −1.70𝐸−1 +2.95𝐸−1 +2.31𝐸+1 +4.16𝐸−1 +8.77𝐸−1 +1.52𝐸+1)
Spine1-ψ Double Laplace PDF (+1.20𝐸−1 +2.07𝐸+0 +4.70𝐸+0 −4.87𝐸−2 +3.01𝐸+0 +3.73𝐸+0)
Neck-ϕ Double Laplace PDF (+1.23𝐸−1 +1.85𝐸+0 +1.10𝐸+1 −1.01𝐸+0 +2.14𝐸−1 +1.07𝐸+0)
Neck-θ Double SkewNorm PDF (+5.59𝐸+0 −2.76𝐸+0 −1.35𝐸−1 +5.85𝐸−1 +2.05𝐸+1 −2.84𝐸−1 +5.53𝐸−1 +1.45𝐸+1)
Neck-ψ Double SkewNorm PDF (−7.82𝐸+0 +7.02𝐸+0 +8.22𝐸−2 +4.96𝐸−1 +2.18𝐸+1 −1.59𝐸−1 +4.78𝐸−1 +2.01𝐸+1)
Head-ϕ Double SkewNorm PDF (+2.86𝐸+0 −3.99𝐸+0 −1.30𝐸−2 +6.34𝐸−1 +1.46𝐸+1 +3.00𝐸−1 +6.96𝐸−1 +1.53𝐸+1)
Head-θ Double Gaussian PDF (−1.81𝐸+0 +2.16𝐸−1 −7.83𝐸+0 −7.53𝐸+0 +2.89𝐸−1 +2.18𝐸+1)
Head-ψ Double SkewNorm PDF (+7.78𝐸−1 −8.02𝐸−1 −6.83𝐸−1 +5.20𝐸−1 +4.03𝐸+0 +3.97𝐸−1 +8.09𝐸−1 +2.27𝐸+1)

LeftShoulder-ϕ Double SkewNorm PDF (+3.86𝐸+0 −5.97𝐸−1 +4.89𝐸−1 +5.16𝐸−1 +1.76𝐸+1 +1.23𝐸+0 +1.35𝐸+0 +8.13𝐸+0)
LeftShoulder-θ Double ExpoNorm-L PDF (−2.44𝐸+0 −2.98𝐸−2 −1.65𝐸+0 +2.22𝐸+0 +3.77𝐸+0 −2.57𝐸+0 +2.04𝐸+0 +5.67𝐸+0)
LeftShoulder-ψ Double SkewNorm PDF (+2.87𝐸+0 −3.05𝐸+0 +4.21𝐸−2 +9.36𝐸−1 +1.05𝐸+1 +7.96𝐸−2 +7.74𝐸−1 +1.32𝐸+1)

LeftArm-ϕ Double SkewNorm PDF (+1.42𝐸+0 +2.43𝐸+0 −3.79𝐸+0 +4.07𝐸−1 +1.76𝐸+1 −1.25𝐸+0 +4.37𝐸−1 +2.92𝐸+1)
LeftArm-θ Double SkewNorm PDF (−5.38𝐸+0 +8.59𝐸−1 +1.23𝐸+0 +3.99𝐸−1 +4.22𝐸+1 −6.02𝐸−1 +2.57𝐸−1 +1.28𝐸+1)
LeftArm-ψ Double SkewNorm PDF (−1.90𝐸+0 +2.43𝐸+0 +3.92𝐸−2 +4.38𝐸−1 +1.95𝐸+1 −1.61𝐸+0 +2.55𝐸−1 +4.56𝐸+1)

LeftForeArm-ϕ Double SkewNorm PDF (−6.62𝐸−1 +2.58𝐸+0 +1.37𝐸+0 +3.62𝐸−1 +3.12𝐸+1 +6.83𝐸−3 +7.07𝐸−1 +1.18𝐸+1)
LeftForeArm-θ Double SkewNorm PDF (+2.96𝐸+0 +8.57𝐸−1 −5.37𝐸−1 +3.65𝐸−1 +2.74𝐸+1 −1.78𝐸+0 +3.92𝐸−1 +2.56𝐸+1)
LeftForeArm-ψ Double ExpoNorm-L PDF (−6.77𝐸−2 +7.56𝐸+0 +1.68𝐸+0 −5.11𝐸−1 +4.90𝐸+0 −2.43𝐸−1 +4.10𝐸+0 +5.56𝐸+0)

LeftHand-ϕ Double SkewNorm PDF (+1.56𝐸+0 −2.29𝐸+1 −2.71𝐸−1 +6.39𝐸−1 +2.26𝐸+1 +1.58𝐸−1 +1.28𝐸−1 +4.12𝐸+1)
LeftHand-θ Double SkewNorm PDF (−3.37𝐸+0 +1.80𝐸+0 −2.22𝐸−1 +5.27𝐸−1 +3.05𝐸+1 +1.62𝐸+0 +3.98𝐸−1 −9.47𝐸+0)
LeftHand-ψ Double Gaussian PDF (+1.87𝐸+0 +1.96𝐸−1 +1.78𝐸+1 +8.16𝐸+0 +5.32𝐸−1 +7.91𝐸+0)

LeftHandThumb1-ϕ Double SkewNorm PDF (+3.44𝐸+0 −1.06𝐸+1 −5.72𝐸−1 +2.19𝐸+0 +6.75𝐸+0 −1.72𝐸−1 +5.78𝐸−1 +8.70𝐸+0)
LeftHandThumb1-θ Double Laplace PDF (+2.38𝐸−1 +4.18𝐸+0 +3.54𝐸+0 +6.12𝐸−2 +3.31𝐸+0 +1.68𝐸+0)
LeftHandThumb1-ψ Double Laplace PDF (+6.63𝐸−1 +2.32𝐸+0 +3.19𝐸+0 +9.94𝐸−2 +2.27𝐸+0 +5.65𝐸+0)
LeftHandThumb2-ψ Double SkewNorm PDF (+3.44𝐸+0 +6.40𝐸+4 +1.82𝐸−1 +2.03𝐸+0 +1.72𝐸+0 −2.84𝐸−7 +3.57𝐸+0 +4.71𝐸+0)
LeftHandThumb3-ψ Double SkewNorm PDF (+6.00𝐸+0 +4.20𝐸+1 +2.49𝐸−1 +1.37𝐸+0 +9.13𝐸+0 +2.17𝐸−3 +2.20𝐸+0 +3.50𝐸+0)
LeftHandIndex1-ϕ Double SkewNorm PDF (+4.61𝐸+0 −7.95𝐸+0 −1.96𝐸−1 +4.43𝐸−1 +1.69𝐸+1 +2.75𝐸−1 +4.66𝐸−1 +2.68𝐸+1)
LeftHandIndex1-θ Double SkewNorm PDF (−4.67𝐸+0 −3.41𝐸+0 +6.06𝐸−1 +7.55𝐸+0 +1.06𝐸+0 +5.60𝐸−1 +2.05𝐸+0 +5.16𝐸+0)
LeftHandIndex1-ψ Double SkewNorm PDF (+2.12𝐸+3 −7.26𝐸+0 +8.12𝐸−1 −1.78𝐸+0 +2.46𝐸−1 +5.15𝐸−2 +5.24𝐸+0 +2.99𝐸+0)
LeftHandIndex2-ϕ Double Laplace PDF (+5.38𝐸−3 −4.46𝐸+1 +3.72𝐸+1 −7.14𝐸−3 +4.51𝐸+1 +3.72𝐸+1)
LeftHandIndex3-ϕ Double ExpoNorm-L PDF (+1.94𝐸+2 −8.28𝐸+2 +6.58𝐸−2 +2.09𝐸+2 +9.83𝐸−2 +1.35𝐸+2 −1.60𝐸+0 −8.79𝐸+2)

LeftHandMiddle1-ϕ Double SkewNorm PDF (+5.91𝐸+0 −7.26𝐸+0 −3.12𝐸−1 +4.81𝐸−1 +1.63𝐸+1 +1.97𝐸−1 +4.29𝐸−1 +2.81𝐸+1)
LeftHandMiddle1-θ Double SkewNorm PDF (−6.52𝐸+0 −4.07𝐸+0 +5.42𝐸−1 +9.93𝐸+0 +9.39𝐸−1 +6.29𝐸−1 +3.42𝐸+0 +2.43𝐸+0)
LeftHandMiddle1-ψ Double Laplace PDF (−1.36𝐸+0 +8.30𝐸−1 +5.16𝐸+0 +3.04𝐸−1 +1.16𝐸+1 +1.43𝐸+0)
LeftHandMiddle2-ϕ Double ExpoNorm-L PDF (+6.65𝐸+0 +3.10𝐸+7 +5.40𝐸−1 +5.60𝐸+0 +8.51𝐸−1 −3.64𝐸−2 +1.19𝐸+7 +1.37𝐸−6)
LeftHandMiddle3-ϕ Double ExpoNorm-L PDF (+4.58𝐸+1 +1.77𝐸+1 +2.73𝐸+0 +3.07𝐸+1 +4.85𝐸−1 +3.00𝐸−1 +3.87𝐸+1 +1.52𝐸−1)

LeftHandRing1-ϕ Double Cauchy PDF (+1.53𝐸−1 +1.93𝐸+0 −9.20𝐸+0 −3.15𝐸+0 +5.46𝐸−1 +8.26𝐸+0)
LeftHandRing1-θ Double SkewNorm PDF (+5.64𝐸+0 −1.27𝐸+0 −8.93𝐸−1 +7.23𝐸+0 +9.23𝐸−1 +3.32𝐸−1 +6.64𝐸+0 +1.73𝐸+0)
LeftHandRing1-ψ Double SkewNorm PDF (+5.90𝐸+0 −1.55𝐸+0 −3.44𝐸−1 +3.63𝐸+0 +2.40𝐸+0 +7.89𝐸−1 +1.81𝐸+0 +6.56𝐸+0)
LeftHandRing2-ϕ Double Laplace PDF (+6.73𝐸−3 −5.22𝐸+1 +2.95𝐸+1 −5.98𝐸−3 +5.28𝐸+1 +2.95𝐸+1)
LeftHandRing3-ϕ Double ExpoNorm-L PDF (+2.39𝐸+1 −2.93𝐸−2 +1.00𝐸−1 +3.66𝐸+1 +3.77𝐸−1 −2.80𝐸+0 +5.36𝐸−1 −9.95𝐸+0)

LeftHandPinky1-ϕ Double Gaussian PDF (−2.60𝐸+0 +3.25𝐸−1 +6.90𝐸+0 −9.83𝐸+0 +2.62𝐸−1 +2.20𝐸+1)
LeftHandPinky1-θ Double Cauchy PDF (−3.56𝐸−1 +1.43𝐸+1 +9.56𝐸−1 −9.13𝐸−1 +5.16𝐸+1 +1.85𝐸−1)
LeftHandPinky1-ψ Double Gaussian PDF (+4.72𝐸+0 +1.74𝐸+0 +2.86𝐸+0 +1.33𝐸+0 +2.51𝐸+0 +1.06𝐸+0)
LeftHandPinky2-ϕ Double ExpoNorm-L PDF (−2.80𝐸−2 +6.24𝐸+1 +2.70𝐸+0 +1.97𝐸−1 +5.99𝐸+0 +2.77𝐸−1 +3.01𝐸+1 +6.59𝐸−1)
LeftHandPinky3-ϕ Double SkewNorm PDF (−1.50𝐸+5 −8.53𝐸−1 −5.87𝐸−7 +6.71𝐸−1 +2.49𝐸+1 −6.55𝐸−1 +7.57𝐸−1 +4.62𝐸+0)
RightShoulder-ϕ Double ExpoNorm-L PDF (+1.37𝐸−2 +1.30𝐸+0 +4.96𝐸+0 +3.43𝐸+0 +3.40𝐸+0 +5.80𝐸−1 +2.75𝐸+0 +7.18𝐸+0)
RightShoulder-θ Double SkewNorm PDF (−8.63𝐸−1 −5.22𝐸+0 +1.80𝐸+0 +1.50𝐸+0 +8.94𝐸+0 +3.10𝐸−1 +5.24𝐸−1 +1.23𝐸+1)
RightShoulder-ψ Double SkewNorm PDF (+4.80𝐸+0 −2.94𝐸+0 +6.90𝐸−1 +6.10𝐸−1 +1.30𝐸+1 +6.73𝐸−1 +1.08𝐸+0 +1.12𝐸+1)

RightArm-ϕ Double SkewNorm PDF (−6.27𝐸+0 −8.61𝐸−1 +1.40𝐸+0 +1.94𝐸−1 +5.93𝐸+1 +1.25𝐸+0 +3.70𝐸−1 +2.30𝐸+1)
RightArm-θ Double SkewNorm PDF (−2.42𝐸+0 −2.02𝐸+0 +1.27𝐸+0 +4.36𝐸−1 +3.46𝐸+1 +4.36𝐸−1 +3.45𝐸−1 +1.43𝐸+1)
RightArm-ψ Double Gaussian PDF (+3.57𝐸+1 +1.78𝐸−1 +2.84𝐸+1 +9.19𝐸+0 +2.34𝐸−1 +1.26𝐸+1)

RightForeArm-ϕ Double ExpoNorm-L PDF (−2.99𝐸−2 +7.09𝐸+0 +8.93𝐸−1 +1.06𝐸+0 +7.21𝐸+0 +3.18𝐸+0 +3.16𝐸+0 +3.57𝐸+0)
RightForeArm-θ Double SkewNorm PDF (+2.89𝐸+0 −1.62𝐸+0 −5.90𝐸−1 +3.57𝐸−1 +2.09𝐸+1 −3.78𝐸−1 +4.36𝐸−1 +2.84𝐸+1)
RightForeArm-ψ Double SkewNorm PDF (+5.52𝐸+0 +1.14𝐸+1 −2.87𝐸−3 +2.05𝐸−1 +6.25𝐸+1 −1.24𝐸−1 +3.10𝐸−1 +2.29𝐸+1)

RightHand-ϕ Double Cauchy PDF (+1.28𝐸−2 +1.06𝐸+0 +1.93𝐸+1 −1.09𝐸+0 +4.76𝐸−1 +2.96𝐸+0)
RightHand-θ Double Gaussian PDF (−4.90𝐸+1 +2.83𝐸−1 +1.88𝐸+1 −3.96𝐸+1 +3.17𝐸−1 +8.20𝐸+0)
RightHand-ψ Double Cauchy PDF (−3.21𝐸+0 +9.21𝐸−1 +6.12𝐸+0 −4.75𝐸−1 +1.30𝐸+0 +1.19𝐸+1)

RightHandThumb1-ϕ Double Gaussian PDF (+3.65𝐸+0 −2.24𝐸+0 +4.12𝐸+0 +1.63𝐸+0 +3.19𝐸+0 +5.29𝐸+0)
RightHandThumb1-θ Double SkewNorm PDF (+2.55𝐸+0 −1.83𝐸+0 −8.58𝐸−2 +3.29𝐸+0 +8.16𝐸−1 +7.86𝐸−1 +4.34𝐸+0 +3.92𝐸+0)
RightHandThumb1-ψ Double SkewNorm PDF (−1.75𝐸+0 +1.94𝐸+0 −2.47𝐸−1 +2.91𝐸+0 +1.69𝐸+0 −7.44𝐸−1 +2.30𝐸+0 +6.34𝐸+0)
RightHandThumb2-ψ Double ExpoNorm-L PDF (+2.26𝐸+0 +2.74𝐸−2 +5.17𝐸−1 +1.11𝐸+1 +9.18𝐸−1 +1.32𝐸+0 +2.83𝐸+0 +3.51𝐸+0)
RightHandThumb3-ψ Double SkewNorm PDF (−4.87𝐸+1 −8.02𝐸+1 −3.89𝐸+0 0 −2.05𝐸+0 −1.54𝐸−3 +2.10𝐸+0 +9.55𝐸+0)
RightHandIndex1-ϕ Double SkewNorm PDF (+2.77𝐸+0 −4.46𝐸+0 +8.22𝐸−2 +8.24𝐸−1 +1.71𝐸+1 −1.76𝐸−2 +3.70𝐸−1 +1.41𝐸+1)
RightHandIndex1-θ Double Cauchy PDF (+3.09𝐸−1 +1.20𝐸+1 +1.52𝐸+0 +3.17𝐸+0 +3.15𝐸+1 +8.56𝐸−2)
RightHandIndex1-ψ Double Gaussian PDF (+4.02𝐸+0 +1.84𝐸+0 +2.64𝐸+0 +9.47𝐸−1 +3.03𝐸+0 +7.66𝐸−1)
RightHandIndex2-ϕ Double ExpoNorm-L PDF (+2.98𝐸+2 +2.12𝐸+0 +2.60𝐸−1 +8.89𝐸+1 −9.95𝐸−2 +1.53𝐸+0 +1.16𝐸+0 −9.94𝐸+0)
RightHandIndex3-ϕ Double ExpoNorm-R PDF (+1.72𝐸+0 +2.10𝐸+2 +1.56𝐸+0 +1.88𝐸+0 +5.10𝐸+0 +2.03𝐸−1 +1.22𝐸+2 +8.79𝐸−2)

RightHandMiddle1-ϕ Double Gaussian PDF (+9.26𝐸+0 +5.89𝐸−1 +1.40𝐸+1 +3.87𝐸+0 −1.55𝐸−1 +4.95𝐸+0)
RightHandMiddle1-θ Double ExpoNorm-L PDF (−6.10𝐸−2 −2.89𝐸−2 +2.79𝐸−1 +5.45𝐸+0 +9.97𝐸−1 +1.89𝐸−1 +6.25𝐸+0 +1.63𝐸+0)
RightHandMiddle1-ψ Double SkewNorm PDF (−1.23𝐸+1 +2.54𝐸+0 −9.27𝐸−4 +5.86𝐸+0 +1.22𝐸+0 −9.03𝐸−1 +2.65𝐸+0 +4.79𝐸+0)
RightHandMiddle2-ϕ Double ExpoNorm-R PDF (+2.03𝐸+0 +2.75𝐸+2 +2.16𝐸+0 +8.68𝐸−1 +9.75𝐸+0 +9.45𝐸−2 +1.19𝐸+2 +9.87𝐸−2)
RightHandMiddle3-ϕ Double ExpoNorm-R PDF (+1.13𝐸+0 +1.68𝐸+2 +2.41𝐸+0 +1.14𝐸+0 +5.00𝐸+0 +9.64𝐸−2 +1.41𝐸+2 +1.02𝐸−1)

RightHandRing1-ϕ Double ExpoNorm-R PDF (+1.70𝐸+0 +2.60𝐸+0 −1.08𝐸+0 +1.26𝐸+0 −6.17𝐸+0 +2.07𝐸+0 +2.35𝐸+0 +5.20𝐸+0)
RightHandRing1-θ Double SkewNorm PDF (−2.47𝐸+0 −2.26𝐸+0 +3.89𝐸−1 +6.92𝐸+0 +1.85𝐸+0 −4.53𝐸−2 +2.20𝐸+1 +2.92𝐸−1)
RightHandRing1-ψ Double SkewNorm PDF (−5.56𝐸+0 −3.25𝐸+0 +5.28𝐸−2 +2.25𝐸+0 +1.72𝐸+0 +2.04𝐸−1 +2.63𝐸+0 +6.02𝐸+0)
RightHandRing2-ϕ Double SkewNorm PDF (+8.23𝐸+5 +1.23𝐸+1 +4.14𝐸−3 +4.25𝐸−1 +4.83𝐸+1 −1.74𝐸+0 +9.42𝐸−1 +4.38𝐸−3)
RightHandRing3-ϕ Double ExpoNorm-R PDF (+2.67𝐸+0 +3.33𝐸+2 +2.04𝐸+0 +2.39𝐸+0 +5.14𝐸+0 +5.61𝐸−2 +2.20𝐸+2 +3.55𝐸−2)

RightHandPinky1-ϕ Double ExpoNorm-R PDF (+5.67𝐸−1 +2.91𝐸−2 +3.03𝐸−1 +8.62𝐸−1 +1.85𝐸+1 +1.32𝐸+0 +3.89𝐸−1 +1.04𝐸+1)
RightHandPinky1-θ Double Cauchy PDF (−1.02𝐸+0 +3.23𝐸+1 +2.18𝐸−1 −8.08𝐸−1 +1.18𝐸+1 +1.12𝐸+0)
RightHandPinky1-ψ Double ExpoNorm-L PDF (+3.99𝐸+1 −2.52𝐸+1 +3.33𝐸−1 +1.26𝐸+2 +1.65𝐸−1 +1.20𝐸+1 0 −3.38𝐸+0)
RightHandPinky2-ϕ Double ExpoNorm-R PDF (−1.91𝐸+0 +2.69𝐸+2 +1.40𝐸+0 +9.61𝐸−1 +1.46𝐸+1 +5.69𝐸−1 +5.10𝐸+1 +1.34𝐸−1)
RightHandPinky3-ϕ Double SkewNorm PDF (+2.49𝐸+0 −1.40𝐸+5 +4.31𝐸−2 +9.23𝐸−1 +2.40𝐸+1 +6.41𝐸−7 −3.58𝐸−1 +6.27𝐸+0)

LeftUpLeg-ϕ Double Gaussian PDF (+1.90𝐸+1 +1.99𝐸−1 +1.99𝐸+1 +5.15𝐸+0 +4.11𝐸−1 −9.54𝐸+0)
LeftUpLeg-θ Double Gaussian PDF (+6.55𝐸−1 +2.58𝐸−1 −9.04𝐸+0 −1.52𝐸+1 +2.26𝐸−1 +2.51𝐸+1)
LeftUpLeg-ψ Double Gaussian PDF (+1.37𝐸+1 +9.14𝐸−2 +2.14𝐸+1 +3.46𝐸+0 +7.97𝐸−1 +7.46𝐸+0)

LeftLeg-ϕ Double Gaussian PDF (−1.99𝐸+0 +1.12𝐸+0 −4.47𝐸+0 −1.52𝐸+1 +1.83𝐸−1 +1.22𝐸+1)
LeftLeg-θ Double SkewNorm PDF (−6.90𝐸−1 +2.58𝐸+0 +2.15𝐸+0 +4.93𝐸−1 +2.40𝐸+1 −4.47𝐸−1 +4.51𝐸−1 +1.87𝐸+1)
LeftLeg-ψ Double ExpoNorm-R PDF (−4.96𝐸−1 +1.26𝐸+1 +9.81𝐸−2 +1.05𝐸+0 +1.47𝐸+1 −1.33𝐸+0 +1.05𝐸+0 +4.16𝐸+0)
LeftFoot-ϕ Double SkewNorm PDF (+1.16𝐸+0 −1.18𝐸+0 −5.61𝐸−1 +9.51𝐸−1 +1.44𝐸+1 −9.39𝐸−1 +4.48𝐸−1 +1.42𝐸+1)
LeftFoot-θ Double SkewNorm PDF (+9.51𝐸+0 −3.27𝐸+0 −7.45𝐸−1 +2.72𝐸−1 +4.44𝐸+1 −7.33𝐸−2 +5.91𝐸−1 +1.39𝐸+1)
LeftFoot-ψ Double SkewNorm PDF (−5.18𝐸+0 +2.01𝐸+0 +1.41𝐸+0 +1.83𝐸−1 +1.36𝐸+1 +3.35𝐸−1 +1.02𝐸+0 +1.71𝐸+1)

LeftToeBase-ϕ Double SkewNorm PDF (−1.29𝐸+0 +5.39𝐸−1 +3.90𝐸−1 +1.09𝐸+1 +8.25𝐸−1 −3.83𝐸−1 +7.35𝐸+0 +1.67𝐸+0)
LeftToeBase-θ Double Cauchy PDF (−2.97𝐸−1 +7.45𝐸+0 +2.24𝐸+0 −1.38𝐸+0 +7.96𝐸−1 +6.24𝐸+0)
LeftToeBase-ψ Double SkewNorm PDF (−1.29𝐸+0 −1.01𝐸+0 +7.04𝐸−1 +1.81𝐸+0 +7.47𝐸+0 +4.91𝐸−1 +2.07𝐸+0 +3.22𝐸+0)
RightUpLeg-ϕ Double SkewNorm PDF (−2.93𝐸+0 −1.04𝐸+0 +2.95𝐸−1 +4.68𝐸−1 +1.24𝐸+1 −5.88𝐸−2 +5.19𝐸−1 +2.66𝐸+1)
RightUpLeg-θ Double SkewNorm PDF (+2.23𝐸+0 −9.52𝐸+0 +1.12𝐸−1 +2.20𝐸−1 +1.36𝐸+1 +1.14𝐸−1 +4.83𝐸−1 +3.53𝐸+1)
RightUpLeg-ψ Double SkewNorm PDF (+1.68𝐸+0 −1.03𝐸+1 −8.06𝐸−1 +8.93𝐸−1 +1.63𝐸+1 +5.21𝐸−2 +1.71𝐸−1 +2.96𝐸+1)

RightLeg-ϕ Double Cauchy PDF (+1.50𝐸+0 +3.82𝐸+0 +2.13𝐸+0 +1.61𝐸−1 +2.91𝐸+0 +4.05𝐸+0)
RightLeg-θ Double SkewNorm PDF (−1.70𝐸+0 −6.89𝐸+0 +2.23𝐸+0 +2.92𝐸−1 +3.06𝐸+1 +8.30𝐸−2 +3.39𝐸−1 −3.35𝐸+1)
RightLeg-ψ Double SkewNorm PDF (+2.42𝐸+0 −4.62𝐸+0 −3.85𝐸−1 +7.23𝐸−1 +1.77𝐸+1 +3.79𝐸−1 +2.59𝐸−1 +2.40𝐸+1)
RightFoot-ϕ Double SkewNorm PDF (+2.42𝐸+0 −1.75𝐸+0 +6.49𝐸−1 +4.21𝐸−1 +1.48𝐸+1 +4.39𝐸−1 +9.76𝐸−1 +1.42𝐸+1)
RightFoot-θ Double SkewNorm PDF (−5.87𝐸+0 −1.42𝐸+0 +1.26𝐸+0 +1.15𝐸−1 +3.78𝐸+1 −3.44𝐸−1 +1.04𝐸+0 +1.52𝐸+1)
RightFoot-ψ Double SkewNorm PDF (+2.10𝐸+2 +1.48𝐸+0 −9.68𝐸−1 −1.66𝐸−2 +4.13𝐸−1 −1.50𝐸+0 +9.55𝐸−1 +2.07𝐸+1)

RightToeBase-ϕ Double Cauchy PDF (−2.01𝐸−1 +3.81𝐸+1 +9.69𝐸−1 −6.26𝐸−1 −1.99𝐸+1 +7.94𝐸−1)
RightToeBase-θ Double ExpoNorm-L PDF (+1.22𝐸+0 −1.88𝐸+0 −6.02𝐸−1 +5.74𝐸+0 +1.38𝐸+0 −1.48𝐸+0 +2.07𝐸+0 +5.72𝐸+0)
RightToeBase-ψ Double SkewNorm PDF (−2.48𝐸+0 −2.15𝐸+0 +6.15𝐸−1 +1.22𝐸+0 +1.10𝐸+1 +5.67𝐸−1 +1.53𝐸+0 +3.87𝐸+0)

Table B.2: PDF regression arguments - Double

B

140 B. Statistical Human Motion Model

Fi
gu

re
B
.2
:P

ar
am

et
er

D
is
tr
ib
ut

io
ns

:H
is
to

gr
am

R
ed

:R
ol
l(
ϕ)

|G
re
en

:P
it
ch

(θ
)|

B
lu
e:

Ya
w

(ψ
)

C
on

ti
nu

ou
s
lin

es
:D

is
tr
ib
ut

io
ns

|D
ott

ed
lin

es
:L

im
it
s

B.4. Regression Parameters 141

B

Fi
gu

re
B
.3
:P

ar
am

et
er

D
is
tr
ib
ut

io
ns

:B
es

t
Fi
t
PD

Fs
R
ed

:R
ol
l(
ϕ)

|G
re
en

:P
it
ch

(θ
)|

B
lu
e:

Ya
w

(ψ
)

C
on

ti
nu

ou
s
lin

es
:P

D
Fs

|D
ott

ed
lin

es
:L

im
it
s

C
BHPO GUI

The following appendix shows screenshots of the user interface created for the DanceNet-BHPO framework.
The legend for reading the graphs is as follows:

• Extrema (Top & Bottom):

– Red: Maximum value
– Blue: Minimum value

• Data:

– Red: Raw data - Every Iteration
– Light Green: Exponentially filtered data with factor 0.9
– Dark Green: Optimal regression, based on a variety of template functions
– Blue: Average Data - Per Epoch

142

143

C

Fi
gu

re
C
.1
:B

H
PO

G
U
IE

xa
m
pl
es

:M
ai
nS

cr
ee

n
C
ur

re
nt

ru
n
pr

og
re
ss

ba
r,
H
yp

er
pa

ra
m
et
er

op
ti
m
iz
at

io
n
re
su

lt
s
&

St
ar

t/
St

op

C

144 C. BHPO GUI

Fi
gu

re
C
.2
:B

H
PO

G
U
IE

xa
m
pl
es

:G
ra

ph
s
-
Tr

ai
ni
ng

/T
es

ti
ng

Lo
ss

&
R
ea

lit
y
G
ap

145

C

Fi
gu

re
C
.3
:B

H
PO

G
U
IE

xa
m
pl
es

:G
ra

ph
s
-
Tr

ai
ni
ng

/T
es

ti
ng
ΔL

os
s
&

dt

D
Algorithms

The following appendix lists algorithms in Python that were developed for this research.
Disclaimer:
All parameters and functions are actually handled inside the larger scope of the BHPO framework classes.

The following algorithms are stand-alone representations of various algorithms and are purely for illustrative
purposes and conveying the primary logic. To this extend not every algorithm is 100% executable and holds
some pseudo-code elements. These simplifications are required, as the full code would be to extensive to print
in this report.

Source Code for Scientific Purposes
Neither the BHPO framework, nor theDanceNet model, nor the AKOB dataset are open-source or under public
development, they are however freely available for research purposes under specific conditions. In case of
legitimate interest in the underlying code or dataset, please contact the author via ’ Henricus@Basien.de ’
with your request.

146

147

D

Algorithm D.1 Early Break Criterion

#++
Required Parameters
#++

NrEpochs = X # Max number of epochs to run
NrIterationsPerEpoch = Y # Iterations to run to complete 1 Epoch

n_iter = 0 # Total number of iterations pass
DataLists = {...} # Dictionary containing the raw and filtered network losses and their derivatives
HyperParameters = {...} # Dictionary containing the training hyperparameters

#++
Early Break Check
#++

breakcounter = 0

def CheckEarlyBreak(IterMin=NrIterationsPerEpoch,BreakcounterMin=5,IgnoreIterations=2,
AllowPositiveGradient=False,Debug=False):

"""
Evaluates exponentially filtered loss derivative, to see if network training is still making progress.
Ensures halting of training, prior to completing all epochs, if progress has stalled.

Args:
IterMin (int):

Min. number of iterations to complete before allowing engaging of break
BreakcounterMin (int):

Number of iterations for which the criterion should be met, before engaging halt
IgnoreIterations (int):

Number of iterations to completely ignore, as first results can be unpredictable at times
AllowPositiveGradient (bool):

For normal NNs gradients should be negative to improve loss,
but for e.g. GANs positive loss gradients to not indicate divergence and should be allowed

Debug (bool):
If 'True': Prints additional information

Returns:
bool: Returns 'True' when EarlyBreaking condition is met and training should halt else 'False'

"""
global breakcounter

#--- Get loss data to evaluate ---
EB_loss = DataLists["Test Loss"]#["Training Loss"]

if n_iter>=IgnoreIterations+1: # IF: Allows for removing of the first few iterations
#--- Retrieve loss derivatives ---
Min_dLoss = min(EB_loss.d_data[IgnoreIterations:])
Max_dLoss = max(EB_loss.d_data[IgnoreIterations:])
Ext_dLoss = abs(Min_dLoss) if not AllowPositiveGradient else max([abs(Min_dLoss),abs(Max_dLoss)])

if AllowPositiveGradient or Min_dLoss<0: # IF: Ensures loss gradient has been <0 at least once
#--- Compute and Check Threshold ---
dExpAvg = float(EB_loss.GetdExpAvg_special()[-1]) # Get filtered derivative
dExpAvg_threshold = float(Ext_dLoss*HyperParameters["EB_threshold"]) # Compute Threshold

if Debug: # Construct Info Text
dLoss_Info = "dLoss Avg: %f, dLoss Limit: %f [Min=%f,Max=%f]"%(dExpAvg,dExpAvg_threshold,

Min_dLoss,Max_dLoss)

IF: Checks if primary criterion is met - Gradient has become very small or positive
if abs(dExpAvg)<dExpAvg_threshold or (not AllowPositiveGradient and dExpAvg>0):

breakcounter+=1 # Increment counter

#--- Print Info ---
if Debug:

BreakText = "%d: Breaking point reached! (%s)"%(n_iter,dLoss_Info)
BreakText+= "...Counting %d/%d"%(breakcounter,BreakcounterMin)
print(BreakText)

IF: Check if secondary criterion is met - Ensures minimum number of iterations
if IterMin==False or n_iter>IterMin:

if breakcounter>=BreakcounterMin:
if Debug: print("...Engaging Break!")
return True # <--- Engages EarlyBreak!

else:
if Debug: print("...but min. NrIteration hasn't completed yet! (%d/%d)"%(n_iter,

IterMin))
return False # Return without resetting breakcounter

else:
if Debug: print("Breakpoint not reached (%s)"%dLoss_Info)

#--- Reset counter and return ---
breakcounter = 0
return False

#++
Training: Simplified Pseudo code
#++

BreakFlag = False
for n_e in range(NrEpochs):

for n_i in range(NrIterationsPerEpoch):
n_iter+=1

<<< [...] Training Code >>>
<<< [...] Store results in 'DataLists' >>>

if CheckEarlyBreak():
BreakFlag = True
break

if BreakFlag: break

D

148 D. Algorithms

Algorithm D.2 Neural network Architecture: Soft-Self-Attention Layer

#==
Imports
#==

#--- PyTorch ---
import torch
import torch.nn as nn

#==
Pure Bias Layer
#==

class BiasLayer(nn.Module):

def __init__(self,dim):
super(BiasLayer, self).__init__()
self.bias = nn.Parameter(torch.zeros(dim))

def forward(self,x):
return self.bias+x

#==
Attention Layer
#==

class AttentionLayer(nn.Module):

def __init__(self,dim,InitWeights=True):
super(AttentionLayer, self).__init__()

self.dim = int(dim)
self.input_bias = BiasLayer(dim)
self.linear = nn.Linear(self.dim, self.dim, bias=True)
self.softmax = nn.Softmax(dim=-1)

if InitWeights: self.InitWeights()

def InitWeights(self): # Ensure equal softmax output at T=0
self.linear.weight.data.fill_(1.0/self.dim)
self.linear.bias .data.fill_(0.0)

def forward(self,x):
x_b = self.input_bias(x)
attention_scores = self.linear(x_b)
attention_weights = self.softmax(attention_scores)
if 0: attention_weights = attention_weights*self.dim # Rescale for sum(

attention_weights)=dim
y = x*attention_weights
return y,attention_weights

E
DRAGAN Results

E.1. V1.023 | 6DATTDIDOLSTMGAN | e406d70f24
E.1.1. Data

General Settings
Parameter Value
ModelID 6D-ATT-DI-DO-LSTM-GAN
DanceNet Version V1.0-23-g62851ab
Hyperparameter Hash e406d70f24
Epochs|Iterations 3|1130

Table E.1: V1.0-23 | 6D-ATT-DI-DO-LSTM-GAN | e406d70f24: General Settings

General
Hyperparameter Value

Data
Chunk Length 10s

Optimizers
Learning Rate 0.00005
𝛽1 0.9
𝛽2 0.999

Regularization
Learning Rate Decay 0.5
Weight Decay 0.025
Batch Size 8

Early Break
Nr. of Epochs 25
EB Threshold 0.0001

Architecture
Hyperparameter Value

Network Size
Layers 2
G-OutputRatio 1.2
D-OutputRatio 0.8

Pain
Pain Exponent N/A

Limited Judgement
Truncated Frames N/A

Table E.2: V1.0-23 | 6D-ATT-DI-DO-LSTM-GAN | e406d70f24: Hyperparameters

E.1.2. Brief Analysis
• Pain losses are missing, as pain loss was not implemented yet.
• Generator and discriminator weights appear almost complementary.
• Generator focuses mostly on the derivatives.
• Discriminator focuses on the poses, with more focus on the output pose.
• Discriminator output over time shows interaction between the two networks and appears chaotic at

times.

E.1.3. Plots

150

E.1. V1.023 | 6DATTDIDOLSTMGAN | e406d70f24 151

E

Fi
gu

re
E.
1:

V
1.
0-
23

|6
D
-A

T
T-

D
I-
D
O
-L

ST
M

-G
A
N

|e
40

6d
70

f2
4:

N
et
w
or

k
W

ei
gh

ts

E

152 E. DRAGAN Results

Fi
gu

re
E.
2:

V
1.
0-
23

|6
D
-A

T
T-

D
I-
D
O
-L

ST
M

-G
A
N

|e
40

6d
70

f2
4:

D
is
cr
im

in
at

or
H
is
to

ry

E

154 E. DRAGAN Results

E.2. V1.1 | 6DATTDIDOLSTMPainGAN | d9be67f6a7
E.2.1. Data

General Settings
Parameter Value
ModelID 6D-ATT-DI-DO-LSTM-Pain-GAN
DanceNet Version V1.1
Hyperparameter Hash d9be67f6a7
Epochs|Iterations 8|2720

Table E.3: V1.1 | 6D-ATT-DI-DO-LSTM-Pain-GAN | d9be67f6a7: General Settings

General
Hyperparameter Value

Data
Chunk Length 10s

Optimizers
Learning Rate 0.00005
𝛽1 0.9
𝛽2 0.999

Regularization
Learning Rate Decay 0.5
Weight Decay 0.025
Batch Size 8

Early Break
Nr. of Epochs 25
EB Threshold 0.00005

Architecture
Hyperparameter Value

Network Size
Layers 2
G-OutputRatio 1.2
D-OutputRatio 0.8

Pain
Pain Exponent 8

Limited Judgement
Truncated Frames N/A

Table E.4: V1.1 | 6D-ATT-DI-DO-LSTM-Pain-GAN | d9be67f6a7: Hyperparameters

E.2.2. Brief Analysis
• Pain loss reduces the exceeding of limits over time, but does not fully prevent it.
• Discriminator progression andweights comparable to V1.0-23 | 6D-ATT-DI-DO-LSTM-GAN | e406d70f24,

as HPs are identical.

E.2.3. Plots

E.2. V1.1 | 6DATTDIDOLSTMPainGAN | d9be67f6a7 155

E

Fi
gu

re
E.
3:

V
1.
1
|6

D
-A

T
T-

D
I-
D
O
-L

ST
M

-P
ai
n-

G
A
N

|d
9b

e6
7f
6a

7:
N
et
w
or

k
W

ei
gh

ts

E

156 E. DRAGAN Results

Fi
gu

re
E.
4:

V
1.
1
|6

D
-A

T
T-

D
I-
D
O
-L

ST
M

-P
ai
n-

G
A
N

|d
9b

e6
7f
6a

7:
D
is
cr
im

in
at

or
H
is
to

ry

E.2. V1.1 | 6DATTDIDOLSTMPainGAN | d9be67f6a7 157

E

Fi
gu

re
E.
5:

V
1.
1
|6

D
-A

T
T-

D
I-
D
O
-L

ST
M

-P
ai
n-

G
A
N

|d
9b

e6
7f
6a

7:
Pa

in
H
is
to

ry

E

158 E. DRAGAN Results

E.3. V1.1 | 6DATTDIDOLSTMPainGAN | 42241955b0
E.3.1. Data

General Settings
Parameter Value
ModelID 6D-ATT-DI-DO-LSTM-Pain-GAN
DanceNet Version V1.1
Hyperparameter Hash 42241955b0
Epochs|Iterations 0|410

Table E.5: V1.1 | 6D-ATT-DI-DO-LSTM-Pain-GAN | 42241955b0: General Settings

General
Hyperparameter Value

Data
Chunk Length 10s

Optimizers
Learning Rate 0.000014223620901140592
𝛽1 0.6732695254481775
𝛽2 0.9148126046862071

Regularization
Learning Rate Decay

1
𝜑 ≈ 0.618

Weight Decay 0.09818293898364239
Batch Size 4

Early Break
Nr. of Epochs 25
EB Threshold 0.00005

Architecture
Hyperparameter Value

Network Size
Layers 2
G-OutputRatio 1.848943555312918
D-OutputRatio 1.4268150378762856

Pain
Pain Exponent 8

Limited Judgement
Truncated Frames N/A

Table E.6: V1.1 | 6D-ATT-DI-DO-LSTM-Pain-GAN | 42241955b0: Hyperparameters

E.3.2. Brief Analysis
• There is higher activity in the hidden layers, than in the input layers, suggesting a potential overreliance

on past data.
• Discriminator history shows considerable interplay between generator and discriminator and the partial

independence between processing real and fake data.

– The guesses for real data are continuously increasing.
– The generator manages to learn from the discriminator and fool it three times.
– While the discriminator can learn features of real and fake data separately, once the generator

fools the discriminator at ≈ 260 iterations, the discriminators confidence in the real guesses drops
as well.

• Angular limits are significantly exceeded.

E.3.3. Plots

E.3. V1.1 | 6DATTDIDOLSTMPainGAN | 42241955b0 159

E

Fi
gu

re
E.
6:

V
1.
1
|6

D
-A

T
T-

D
I-
D
O
-L

ST
M

-P
ai
n-

G
A
N

|4
22

41
95

5b
0:

N
et
w
or

k
W

ei
gh

ts

E

160 E. DRAGAN Results

Fi
gu

re
E.
7:

V
1.
1
|6

D
-A

T
T-

D
I-
D
O
-L

ST
M

-P
ai
n-

G
A
N

|4
22

41
95

5b
0:

D
is
cr
im

in
at

or
H
is
to

ry

E.3. V1.1 | 6DATTDIDOLSTMPainGAN | 42241955b0 161

E

Fi
gu

re
E.
8:

V
1.
1
|6

D
-A

T
T-

D
I-
D
O
-L

ST
M

-P
ai
n-

G
A
N

|4
22

41
95

5b
0:

Pa
in

H
is
to

ry

E

162 E. DRAGAN Results

E.4. V1.2 | 6DPCAATTDIDOLSTMPainGAN | 96142329a6
E.4.1. Data

General Settings
Parameter Value
ModelID 6D-PCA-ATT-DI-DO-LSTM-Pain-GAN
DanceNet Version V1.2
Hyperparameter Hash 96142329a6
Epochs|Iterations 5|1760

Table E.7: V1.2 | 6D-PCA-ATT-DI-DO-LSTM-Pain-GAN | 96142329a6: General Settings

General
Hyperparameter Value

Data
Chunk Length 10s

Optimizers
Learning Rate 0.000222
𝛽1 0.9
𝛽2 0.999

Regularization
Learning Rate Decay

1
𝜑 ≈ 0.618

Weight Decay 0.01
Batch Size 8

Early Break
Nr. of Epochs 25
EB Threshold 0.00005

Architecture
Hyperparameter Value

Network Size
Layers 3
G-OutputRatio 1.1
D-OutputRatio 0.75

Pain
Pain Exponent 8

Limited Judgement
Truncated Frames N/A

Table E.8: V1.2 | 6D-PCA-ATT-DI-DO-LSTM-Pain-GAN | 96142329a6: Hyperparameters

E.4.2. Brief Analysis
• Discriminator focuses almost solely on the output pose, while the generator focuses on anything but its

own output pose.
• Discriminator is uncertain for a long time, before suddenly finding appropriate discriminatory features,

around ≈ 900 iterations.
• Generator initiallymanages to overreact to the discriminators initial discriminatory features, to the point

that the fake data is classified as real with significantly more confidence that the real data.
• The bias towards the fake data, around ≈ 900 iterations, indicates a lag in the detection of real data.
• PCA transform successfully keeps limits within bounds at the start.
• Joint limits are increasing and exceeding the limits, up until the discriminator manages to successfully

classify the data, resulting in a steady return of the angles within the limits.

E.4.3. Plots

E.4. V1.2 | 6DPCAATTDIDOLSTMPainGAN | 96142329a6 163

E

Fi
gu

re
E.
9:

V
1.
2
|6

D
-P

C
A
-A

T
T-

D
I-
D
O
-L

ST
M

-P
ai
n-

G
A
N

|9
61

42
32

9a
6:

N
et
w
or

k
W

ei
gh

ts

E

164 E. DRAGAN Results

Fi
gu

re
E.
10

:V
1.
2
|6

D
-P

C
A
-A

T
T-

D
I-
D
O
-L

ST
M

-P
ai
n-

G
A
N

|9
61

42
32

9a
6:

D
is
cr
im

in
at

or
H
is
to

ry

E.4. V1.2 | 6DPCAATTDIDOLSTMPainGAN | 96142329a6 165

E

Fi
gu

re
E.
11

:V
1.
2
|6

D
-P

C
A
-A

T
T-

D
I-
D
O
-L

ST
M

-P
ai
n-

G
A
N

|9
61

42
32

9a
6:

Pa
in

H
is
to

ry

E

166 E. DRAGAN Results

E.5. V1.37 | 6DPCAATTDIDOLSTMPainLJGAN | 7d2d6588e0
E.5.1. Data

General Settings
Parameter Value
ModelID 6D-PCA-ATT-DI-DO-LSTM-Pain-LJ-GAN
DanceNet Version V1.3-7-g5d77084
Hyperparameter Hash 7d2d6588e0
Epochs|Iterations 23|5090

Table E.9: V1.3-7 | 6D-PCA-ATT-DI-DO-LSTM-Pain-LJ-GAN | 7d2d6588e0: General Settings

General
Hyperparameter Value

Data
Chunk Length 15s

Optimizers
Learning Rate 0.00645
𝛽1 0.9
𝛽2 0.999

Regularization
Learning Rate Decay

1
𝜑 ≈ 0.618

Weight Decay 0.01
Batch Size 8

Early Break
Nr. of Epochs 25
EB Threshold 0.0001

Architecture
Hyperparameter Value

Network Size
Layers 3
G-OutputRatio 1.1
D-OutputRatio 0.75

Pain
Pain Exponent 8

Limited Judgement
Truncated Frames 100

Table E.10: V1.3-7 | 6D-PCA-ATT-DI-DO-LSTM-Pain-LJ-GAN | 7d2d6588e0: Hyperparameters

E.5.2. Brief Analysis
• Discriminator focuses almost solely on the output pose, while the generator focuses primarily on the

input derivative.
• Discriminator is uncertain for a long time, before suddenly finding appropriate discriminatory features,

around ≈ 1500 iterations.
• Overall similar progression than V1.2 | 6D-PCA-ATT-DI-DO-LSTM-Pain-GAN | 96142329a6, except that

the limits are 100% within bounds towards the end.
• This has been the best result so far (see Figure 7.17).

E.5.3. Plots

E.5. V1.37 | 6DPCAATTDIDOLSTMPainLJGAN | 7d2d6588e0 167

E

Fi
gu

re
E.
12

:V
1.
3-
7
|6

D
-P

C
A
-A

T
T-

D
I-
D
O
-L

ST
M

-P
ai
n-

LJ
-G

A
N

|7
d2

d6
58

8e
0:

N
et
w
or

k
W

ei
gh

ts

E

168 E. DRAGAN Results

Fi
gu

re
E.
13

:V
1.
3-
7
|6

D
-P

C
A
-A

T
T-

D
I-
D
O
-L

ST
M

-P
ai
n-

LJ
-G

A
N

|7
d2

d6
58

8e
0:

D
is
cr
im

in
at

or
H
is
to

ry

E.5. V1.37 | 6DPCAATTDIDOLSTMPainLJGAN | 7d2d6588e0 169

E

Fi
gu

re
E.
14

:V
1.
3-
7
|6

D
-P

C
A
-A

T
T-

D
I-
D
O
-L

ST
M

-P
ai
n-

LJ
-G

A
N

|7
d2

d6
58

8e
0:

Pa
in

H
is
to

ry

E

170 E. DRAGAN Results

E.6. V1.315 | 6DPCAATTDIDOGRUPainLJGAN | 89ba1481a7
E.6.1. Data

General Settings
Parameter Value
ModelID 6D-PCA-ATT-DI-DO-GRU-Pain-LJ-GAN
DanceNet Version V1.3-15-g58336c0
Hyperparameter Hash 89ba1481a7
Epochs|Iterations 27|8900

Table E.11: V1.3-15 | 6D-PCA-ATT-DI-DO-GRU-Pain-LJ-GAN | 89ba1481a7: General Settings

General
Hyperparameter Value

Data
Chunk Length 10s

Optimizers
Learning Rate 0.000222
𝛽1 0.9
𝛽2 0.999

Regularization
Learning Rate Decay 0.9
Weight Decay 0.005
Batch Size 8

Early Break
Nr. of Epochs 50
EB Threshold 0.0001

Architecture
Hyperparameter Value

Network Size
Layers 4
G-OutputRatio 1.0
D-OutputRatio 0.75

Pain
Pain Exponent 8

Limited Judgement
Truncated Frames 25

Table E.12: V1.3-15 | 6D-PCA-ATT-DI-DO-GRU-Pain-LJ-GAN | 89ba1481a7: Hyperparameters

E.6.2. Brief Analysis
• An attemptwasmade to improve the results of V1.3-7 | 6D-PCA-ATT-DI-DO-LSTM-Pain-LJ-GAN | 7d2d6588e0,

by …:

– …increasing the number of layers and parameters, to allow the network to learn more complex
relations.

– …decreasing the weight decay, to avoid the decay of the discriminator weights to almost 0.
– …decreasing the learning rate and its decay, to more slowly and steadily approach the desired goal.
– …decreasing the chunk size again and switching to the GRU, to significantly decrease the training

time.

• The discriminator makes no progress at all.
• The joint limits are highly chaotic.
• → The attempt at improving the previous configuration has failed and it shows how varied the output

of the same model can be, based on the hyperparameters used.

E.6.3. Plots

E.6. V1.315 | 6DPCAATTDIDOGRUPainLJGAN | 89ba1481a7 171

E

Fi
gu

re
E.
15

:V
1.
3-
15

|6
D
-P

C
A
-A

T
T-

D
I-
D
O
-G

R
U
-P

ai
n-

LJ
-G

A
N

|8
9b

a1
48

1a
7:

N
et
w
or

k
W

ei
gh

ts

E

172 E. DRAGAN Results

Fi
gu

re
E.
16

:V
1.
3-
15

|6
D
-P

C
A
-A

T
T-

D
I-
D
O
-G

R
U
-P

ai
n-

LJ
-G

A
N

|8
9b

a1
48

1a
7:

D
is
cr
im

in
at

or
H
is
to

ry

E.6. V1.315 | 6DPCAATTDIDOGRUPainLJGAN | 89ba1481a7 173

E

Fi
gu

re
E.
17

:V
1.
3-
15

|6
D
-P

C
A
-A

T
T-

D
I-
D
O
-G

R
U
-P

ai
n-

LJ
-G

A
N

|8
9b

a1
48

1a
7:

Pa
in

H
is
to

ry

F
Preliminary Report

[This page intentionally left blank]

AIMan

Preliminary Report

H. N. Basien
Preliminary report for MSc. thesis:
’Neural Network based Emergence of reactionary Motion Improvisation’
set within the ’AIMan’ project, in collaboration with
Another kind of Blue & CompactCopters

AI-Man
Preliminary Report

by

H. N. Basien
to obtain the degree of Master of Science
at the Delft University of Technology,

Faculty of Aerospace Engineering - Department of Control & Operations,
to be defended publicly on TBA

Student number: 4207653
Project duration: February 10, 2020 – December 18, 2020
Thesis committee: Dr. ir. J. Ellerbroek Supervisor [TU Delft]

Prof. J. M. Hoekstra Chairman [TU Delft]
TBA ? [TU Delft]

An electronic version of the thesis will be available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract
The following is the preliminary report for the MSc. thesis ”Neural Network based Emergence of reactionary
Motion Improvisation” of H. N. Basien, under supervision of Dr. ir. J. Ellerbroek.

It comprises of a practice oriented design research, set within the entertainment industry context of the
theater drone-dance show AI-Man, in collaboration between the dance company Another kind of Blue (AkoB)
and drone consultants CompactCopters (CC).

The premise of the research is to create natural human-machine interaction by utilizing neural networks
and motion capture data, enabling a drone swarm resembling a human form, the ’Airman’, to have ’free-will’
and interact with a dancer on stage. Based on this the following research objective is formulated:

’to design an algorithm that generates a virtual skeleton in reaction to motioncaptured
dance improvisations […], by comparing existing and creating newalgorithms, within the
domain of deeplearning architectures, capable of ’fooling’ the creator of the original data,
beyond reasonable doubt. ’

The literature study has shown that a research gap exists with respect to using neural networks for the
motion synthesis of two interacting entities. To tackle the issue at hand a grounded theory approach will be
deployed to research, test and refine various neural network architectures found in literature and confront
their applicability and performance with one another.

The resulting final model will comprise of an improved versions of the best models tested, combining them
where appropriate. This model will generate reactionary motion based on real-time motion capture input.
Accompanied by a virtual 3D visualization environment, it will create a showcase for live interaction with a
dancer.

Within the arts mathematically ’better’ is not necessarily more ’natural’ or ’beautiful’. So to bridge the gap
between objective and subjective evaluation, at the cutting edge between art and science, a final experiment
with the choreographer and dancers of AkoB will be held where they are to judge if a given output motion is
’Real’ or ’Generated’. This experiment is to validate the underlying research hypothesis:

’Neural networks are capable of generating natural motion in reaction to live fullbody
human input, which is indistinguishable of real motion, for a human expert.’

Thereby proposing the ’turing-test’ for motion synthesis, with the underlying assumption:
”If it is good enough to fool the creators, it will be good enough to fool the general public.”

After successful completion the results of this research will form the basis for the virtual dancer, the ’AI-
Man’, comprised of 12 drones forming a human skeleton, for the new showpiece of AkoB to be seen in theaters
by the end of 2021.

III

https://www.youtube.com/watch?v=NuP4YhMzt3k

Contents

Abstract III

Table of Contents IV

Nomenclature VI

List of Figures VIII

List of Tables X

I Project Context 2

1 Introduction 4
1.1 Report Overview . 4
1.2 Industry Context . 4

1.2.1 Past Projects: . 5
1.2.2 Additional Challenges: . 5

1.3 Research Summary: . 5

2 Research Overview 6
2.1 Research Questions . 6
2.2 Research Objective . 7
2.3 Research Hypothesis. 7
2.4 Research Framework . 8

II Literature Study 10

3 Literature Review 12
3.1 Fields of Research . 12
3.2 Character Animation . 13

3.2.1 Animation Concepts . 13
3.2.2 Animation Techniques . 13
3.2.3 Human Motion Modeling . 16

3.3 Deep Learning . 16
3.3.1 AI Fundamentals . 16
3.3.2 The ”Black Art” of Machine Learning . 17
3.3.3 Selection of Methodology . 17
3.3.4 Motion Synthesis & Analysis . 17
3.3.5 The Future of Motion Synthesis . 18

3.4 Literature Analysis . 18
3.4.1 Statistics . 18
3.4.2 Most applicable Papers . 19
3.4.3 Reflection on Analysis . 19

4 Methodology 22
4.1 Grounded Theory Approach . 22
4.2 Neural Network Architectures . 23

4.2.1 Overview . 23
4.2.2 Multilayer Perceptron. 25
4.2.3 Recurrent Neural Networks . 27
4.2.4 Convolutional Neural Networks . 29
4.2.5 EncoderDecoder Networks . 31
4.2.6 Generative Adversarial Networks . 32

IV

Contents V

4.2.7 PhaseFunctioned Neural Networks . 34
4.3 Data Preprocessing . 35

4.3.1 Derivation . 35
4.3.2 Transformation . 36
4.3.3 Data Augmentation . 37

4.4 Hyperparameter Optimization . 37
4.4.1 Grid Search . 39
4.4.2 Bayesian Optimization . 39

4.5 Human Perception Experiment . 39

III Project Plan 42

5 Development Plan 44
5.1 Data Handling . 44

5.1.1 Data Acquisition . 44
5.1.2 Final Dataset . 46
5.1.3 Data Preprocessing . 47

5.2 Model Development . 49
5.2.1 Framework & Hardware . 49
5.2.2 Model Design . 49
5.2.3 Training & Optimization . 49
5.2.4 Model Comparison . 50

5.3 Live Interaction . 51
5.3.1 ’Online’ Modifications. 51
5.3.2 Simulation. 51
5.3.3 Safety Design. 51

5.4 Validation . 52
5.4.1 ’HumanDiscriminator’ Test . 52
5.4.2 Live Inference with Dancer. 52

6 Project Planning 54
6.1 Milestones & Deliverables . 54
6.2 WorkPackages. 55

7 Conclusions 56
7.1 Expected Results . 56
7.2 Research Gap . 57
7.3 Project reflection . 57
7.4 Future Development What is next? . 57

IV Addendum 58

Bibliography 60

A Machine Learning Algorithms Overiew 66

B Dataprocessing Framework 68

C Gantt Chart 70

Nomenclature

Abbreviations:

DOF Degree Of Freedom

GT Grounded Theory

TBD To Be Determined

Machine/Deep learning:

AI Artificial Intelligence

BHPO Bayesian HyperParameter Optimization

BP BackPropagation

BPTT BackPropagation Through Time

CNN Convolutional Neural Network

DL Deep Learning

GAN Generative Adversarial Network

GRU Gated Recurrent Unit

HP HyperParameter

HPO HyperParameter Optimization

LSTM Long Short-Term Memory

MHU Modified High-way Unit

ML Machine Learning

MLP Multilayer Perceptron

MSE Mean Squared Error

NN Neural Network

PCA Principle Component Analysis

PFNN Phase-Functioned Neural Networks

ReLU Rectified Linear Unit

RHN Recurrent Highway Unit

RL Reinforcement Learning

RNN Recurrent Neural Network

Entities:

AkoB Stichting Another kind of Blue

CC CompactCopters UG

EU European Union

NL Netherlands

File-types:

BVH BioVision Hierarchy

C3D Medical motion experiment format

CSV Comma Separated Values

FBX Filmbox

TAK OptiTrack ’take’

TRC ’Motion Analysis’ filetype

Hardware:

CPU Central Processing Unit

GPU Graphics Processing Unit

PC Personal Computer

VR Virtual Reality

Character Animation:

FK Forward Kinematics

IK Inverse Kinematics

MoCap Motion Capture

Software:

FPS Frames Per Second

NPC Non-Player-Character

UDP User Datagram Protocol

¹

¹For PDF readers: Any abbreviation in the text is equipped with a
hidden hyper-link to this page, like so: EXMPL

VI

List of Figures

2.1 Research Framework for ’AI-Man’ . 8

3.1 Skeletal rig used by AkoB . 15
3.2 Temporal distribution of examined literature . 19
3.3 Annual publications of literature related to ’Neural Network’s 20
3.4 Distribution of Tags used in examined literature . 21
3.5 Occurrence of authors in examined literature . 21

4.1 Multilayer Perceptron - Example Architecture . 26
4.2 Recurrent Neural Network - Architecture . 28
4.3 Long Short-Term Memory - Unit architecture . 28
4.4 Gated Recurrent Unit (fully gated) - Unit architecture . 29
4.5 Modified High-way Unit - Unit architecture . 30
4.6 Convolutional Neural Network - Example architecture . 31
4.7 Auto-Encoder - Example architecture . 32
4.8 Generative Adversarial Network - Example architecture . 33
4.9 Phase-Functioned Neural Network - Network architecture . 34
4.10 Hyperparameter optimization flowchart . 38

5.1 AkoB Dataset - Key Metrics . 46
5.2 AkoB Dataset - Distribution of durations . 47
5.3 AkoB Dataset - Distribution of labels . 48
5.4 Data-processing Framework Proposal . 50

VIII

List of Figures IX

²

²Any Figure that does not have an explicit ’Source’ mentioned, un-
der the caption, has been custom made for this report.

List of Tables

3.1 Overview of important animation concepts/terminology . 14
3.2 Most important papers and their applicability . 20

4.1 Overview of applicable neural network architectures . 24

5.1 Overview of available motion data file formats . 45
5.2 Comparison of common MoCap datasets . 49

X

I
Project Context

2

1
Introduction

The proposed practice-oriented design is to be executed as the MSc thesis research project of H. N. Basien,
under the supervision of Dr. ir. J. Ellerbroek, assistant professor at the faculty of Aerospace Engineering at
Delft University of Technology.

The following research project plan is set within the context of the AI-Man project, in collaboration be-
tween Another kind of Blue (AkoB) and CompactCopters (CC). The AI-Man project intends to create a duet
between man and machine by means of utilizing drone-swarm and AI technologies. Ultimately it will result
in a theater performance to be enjoyed by audiences all over the world. For this specific project a human
motion predictor will be generated, to be utilized as the drive algorithm for the prior mentioned drone swarm,
to represent an artificial ’dancer’.

1.1. Report Overview
This preliminary report represents the basis for the continuous process that is the planning of theMSc research
project and is structured into three main parts:

1. Project Context: General background and objectives of the research
2. Literature Study: Review of the current state-of-the-art in the field and the methodology to be used
3. Project Plan: Setup of the development phase and general plan of action

The initial chapter 1 gives the reader an introduction to the research and its industry context. The external
and internal goals of the research are formalized in chapter 2, outlining the overall scope. To enable deeper
insight into the theoretical background and fields of research, it is followed by a literature review summary
in chapter 3. The detailing of theories and methodologies to be applied, based on the findings in literature,
are highlighted in chapter 4, followed by their intended practical application in chapter 5. To ensure a timely
and feasible execution of the outlined planning, chapter 6 will clarify the work-packages, milestones and de-
liverables required to attain the research objective. The plan is concluded by a the expected outcome of the
research and a critical self-reflection in chapter 7.

1.2. Industry Context
The research to be performed will contribute to the modern dance performance ’AI-Man’, by Another kind of
Blue, to be shown in theaters to general audiences in 2021.

The choreographer’s greater motivation for the proposed research can be summarized by the following set
of philosophical questions:

“ What is free will? Do humans have it? Can machines have it?

David Middendorp Choreographer, Another kind of Blue ”
Without trying to find a final answer, yet exploring these questions, it was chosen to create a duet between

a drone swarm and a human, where both have as much ‘free will’ as possible.

4

1.3. Research Summary: 5

1.2.1. Past Projects:
The AI-Man project is the logical conclusion of two previous drone-dance projects created by AkoB & CC, over
the course of the past 5 years:

1. Newton’s Duet (2015): http://y2u.be/fI20Mxd8vLc

• 2 drones and 2 dancers
• pre-planned choreography
• tour around NL

2. Airman (2018): http://y2u.be/NuP4YhMzt3k

• A swarm of 12 Drones representing the human form copies the improvisation of 1 Dancer
• pre-planned choreography + interactive improvisation
• tour around NL + global shows

AkoB had been experimenting with the usage of aircraft and drones way before this, however the earlier
attempts where all manually controlled, before the transition to full automation was made.

All of these previous development steps have exploredman-machine-interaction in an artistic environment,
with various levels of ‘interactivity’; though none has yet achieved a true ‘duet’ in the classical sense of the
word: An intricate dance between man and machine where both partners can be ‘free’ in their decisions of
motion and yet bound to each other by a common dance language to complement each others expression.
To achieve this, an ’artificially intelligent’ larger-than-life virtual dancer (’output-dancer’) is to be created that
can react to a human dancer (’input-dancer’), by means of a neural network that transforms the live-recorded
motion-capture data into a reactionary dance.

1.2.2. Additional Challenges:
Aside from the fact that the drive algorithm needs to reflect artistic dance motions, due to real-life constraints,
there are also certain additional technical & safety factors to be concerned:

• Constraints

– Scaling of virtual dancers (approx. x2)
– Limited stage/movement space - ca. 8x8x8 [𝑚]
– Limited Vehicle Dynamics - Inertia & control-loop of drones restrict flight-path execution

• Safety

– Dynamic Restricted areas - e.g. space occupied by dancer
– Maximum speed (close to the boundary), to avoid uncontrolled flight into restricted areas and

limit kinetic energy
– Large Audience, which shall not be harmed under any circumstances!

Although most of these safety concerns need to be addressed only once the transition to the physical
hardware is made, they should be kept in mind when designing the drive algorithm.

1.3. Research Summary:
In this research insight into the mathematical representations of the human shape, as well as state-of-the-art
knowledge of neural networks is gathered. Combing these will yield a novel online virtual motion synthesis
algorithm, which at a later stage will be transfered and interfaced with the drone hardware.

The contribution to the scientific community will lie in the structured comparison and benchmarking of
various NN architectures, data-processing & optimization techniques, for the application of motion synthesis,
while the contribution to AkoB and the artistic/cultural community will be the ability of natural man-machine
interaction to generate intricate dance interactions, to delight audiences around the world with a stunning
visual performance.

https://www.youtube.com/watch?v=fI20Mxd8vLc
https://www.youtube.com/watch?v=NuP4YhMzt3k

2
Research Overview

The external goal of the research is focused on the development of an algorithm framework for generating
reference positions for a drone swarm, that resemble natural motions of an interactive dancer.

The primary issue is however that there is not a clear-cut answer to when a neural network is ’good enough’
or has ’natural output’. Even though a reduction in the model’s loss-function on the test & validation data-sets
may indicate an improvement in performance, this is not necessarily the case as the research context is set
within the arts: Mathematically ’better’ outcome is not necessarily represented by a ’nicer’, more ’natural’ or
more ’beautiful’ result. Finding a solution to this ambiguity is essential to AkoB to deliver a stunning visual
performance for their international audiences.

The internal goal of the research is therefore to solve this ambiguity between objective and subjective
evaluation and how to design a NN architecture that can in fact achieve the desired output ’transforming a
dancers improvised motions into appropriate reactionary motions’. More specifically various NN architectures
and processing methods will be compared quantitatively and qualitatively to establish a sound scientific basis
for future development in the field. Finally an attempt will be made to de-mystify some of the internal black-
box characteristics of various NN models, by gaining a deeper understanding of the in- & output data-streams
of each module and their relevance.

2.1. Research Questions
The following set of research questions guide the research trajectory; some questions have a direct external
applicability that will be highlighted in brackets:

1. Fundamental Research: Which deep learning techniques are applicable to handlingmotion capture data?

(a) Architectures: Which deep learning model architectures are fundamentally capable of handling
motion capture data?

(b) Loss function: How is the loss-function/error between frames to be defined?
(c) Loss function: How are the various parameters to be weighted?

2. Data Transformation: Which mathematical domain yields the best results in terms of human insight
into motion data? [Better insight into the underlying data may result in improved data dimensionality
reduction and runtime performance increase.]

(a) Does transformation into the frequency domain improve insight into motion data?
(b) Does transformation into the Laplace domain improve insight into motion data?
(c) Does principal component analysis improve insight into motion data?
(d) Does transformation of Euler rotations into alternative representations (e.g. quaternions) improve

the training results? ¹

3. Optimization: Which factors influence the loss function and to what extent?

(a) Input Data: How does the total amount of input data affect the loss function? [When is enough
data captured for the achieving the desired output?]

¹This should avoid issues such as ’gimbal-lock’ and cyclical ambiguity. See section 4.3.2

6

2.2. Research Objective 7

(b) Data Handling: To what extend does preprocessing of the input data improve the loss function?
i. Time-slices: How does the number of input time-slices affect the loss function? [Larger input

data results in a more complex network and reduces runtime performance.]
ii. Derivatives: Does pre-computation of time derivatives improve the loss function?²

A. What derivative order can be filtered from the available motion capture data, while re-
taining more signal than noise?

B. How does the addition of derivatives to the input affect the loss function?
(c) Does prior knowledge improve the final results through ’transfer learning’?

i. Does unsupervised pre-training improve the loss function?
ii. Does unsupervised pre-training reduce the total amount of data required?

(d) Hyper-parameters: Whats the best method for optimizing the chosen deep learning architecture,
when considering the ratio between loss function improvement and total training time?

i. Which are the hyper-parameters most influencing the loss function?
ii. What’s the best strategy for optimizing these hyper-parameter?

4. Output-applicability: How to ensure that the model results can be applied within the real-world con-
straints of the show ’AI-man’?

(a) Which technical requirements does the system need to adhere to, to ensure a successful show? [If
these are not met the external validity of the research is in question!]

(b) Does the model over-fit to an individual dancers body language? [Will training on dancer A as
’input dancer’ be transferable to inference with dancer B?]

(c) How to ensure temporal continuity within the output data? [Sudden jumps in position or momen-
tum can be a potential result, which the drones given their inertia will be unable to follow!]

(d) How is a human experiment to be designed, where the test subject needs to discern between ’Real’
and ’Generated’ motion data?

The presented research aims to fulfill the internal goal, by findingwell-reasoned answers to these questions.

2.2. Research Objective
The research objective of this practice-oriented the master’s thesis is:

“ to design an algorithm that generates a virtual skeleton in reaction to motioncaptured
dance improvisations, as part of the ’AIMan’ showpiece of ’Another kind of Blue’
, by comparing existing and creating new algorithms, within the domain of deeplearning
architectures, capable of ’fooling’ the creator of the original data, beyond reasonable doubt.

Research Objective ”
2.3. Research Hypothesis
To bridge the gap between objective and subjective evaluation a final test is to be issued, where the experts of
AkoB will be shown various motion outputs, either ground-truth data or generated data, and are to decide if
the data shown in real or fake.

The following research hypothesis is to be proven:

“ ’Neural networks are capable of generating natural motion in reaction to live fullbody
human input, which is indistinguishable of real motion, for a human expert.’

Research Hypothesis ”
If this test results in a distribution of choices close to 50/50 ’random’ guessing and can be asserted with

statistical significance the hypothesis can be regarded as confirmed.

²No derivatives and a singular time-slice are expected to yield bad results, as momentum and directionality is completely lost.

8 2. Research Overview

2.4. Research Framework
The proposed graphical research framework for this research is presented in Figure 2.1. It presents a top-level
overview of the tasks and results of the research, as well as their interrelations.

Figure 2.1: Research Framework for ’AI-Man’

II
Literature Study

10

3
Literature Review

This chapter is dedicated to the review process of state-of-the-art literature related to the project.
It will present work that has already been carried out by other academics in this area, while reflecting on the

industries best practices. The researcher first establishes which research areas are relevant, and subsequently
reflects on these, with regard to the current understanding, along with any opposing views.

For now this chapter will focus more on the general findings and qualitative assessment, while the next
chapter 4 will be focused on the specific methods and techniques, which were extracted from literature to be
applied in this research.

3.1. Fields of Research
Given the novel and unconventional approach that AkoB takes towards new developments in the modern
dance scene, combining dance & technology, the project at hand is a highly multi-disciplinary project. The
background for this project primarily comprising of the following 3 disciplines and related key concepts:

• Computer Science:

– Artificial intelligence (AI) / Neural networks (NN)
– Character Animation/Motion capture (MoCap)
– Signal processing

• Performing Arts:

– Dance / Choreography
– Anatomy / Human motion modeling

• Aerospace Engineering:

– Signal Analysis
– Drones / Vehicle dynamics
– Control Theory

Reflecting on these key concepts it is clear that there are vast fields of knowledge that could be researched,
beyond the scope of this research. It was decided to focus on a few specific fields, with regard to the require-
ments of this particular research project:

The primary focus of this research will be the design of a novel neural network for motion synthesis,
therefore the focus of this literature review lies primarily within the ’Computer Science’ discipline and reflects
on state-of-the-art applications of various NNs in the field of character animation.

With regard to the expertise in the field of dance from a qualitative perspective, it has been decided to leave
this primarily at the discretion of the professionals at AkoB, thus this research has been restricted to the field
of ’human motion modeling’ to analyzing how dance and motion can be effectively represented quantitatively.

Given the fact that the current research will be limited to the designing and virtual testing of the motion
control system, combined with the fact that the drone hardware and related knowledge is already established
from a prior project; it was decided to omit any further research into this field.

12

3.2. Character Animation 13

In the following first character animation as a whole and its various applications is presented, followed by
a reflection of the application of NNs in the field of motion synthesis.

The chapter will be concluded by a quantitative reflection on the completeness of the literature review
conducted.

3.2. Character Animation
The research of predicting and analyzing motion using skeletal data falls under the umbrella term of ’char-
acter animation’. Various sub disciplines fall under this concept. The general background and applications of
character animation has been explored to see which practices can be applied to this research.

Character animation in general is the process of animating artificial entities, generating an illusion of
motion and personality in an otherwise static character. Originally animation was done by means of pen and
paper, this 2D background, as well as early cinematography, manifested the concept of the discretization of
motion into ’frames’.

Evolving from this, 3D character animation is the field of computer aided animation of humanoid and
non-humanoid characters, via the manipulation of character meshes via a customized character rig.

For the remainder of this research only ’modern’ 3D character animations will be considered.

In practice there are various real-world disciplines in which virtual character animation is being utilized:

• Movies/Videos - Pre-rendered animation of humanoid & non-humanoid characters
[Chan et al., 2019; Holden et al., 2015, 2017b; Yamane et al., 2010]

• Gaming - Real-time adaptive character animation and NPC behavior
[Bleiweiss et al., 2010; Holden et al., 2017a; Komura et al., 2017; Pejsa and Pandzic, 2010; Starke et al.,
2019; Wang et al., 2020b]

• Industrial Simulations - Production plant or crowd simulations
[Gaisbauer et al., 2019a, 2020]

As the lines between the applications of movies, 3D games and simulations are starting to blur more and
more, it is easy to find various similarities in these fields of 3D character animation.

3.2.1. Animation Concepts
Before getting started on the specific techniques a few of the most important animation concepts are high-
lighted in table 3.1, to gain a better understanding of these elements when they’re used freely in the subsequent
text.

Figure 3.1 showcases the skeletal rig that was used in the recording of the dataset by AkoB.

3.2.2. Animation Techniques
There are a few general ’conventional’ techniques utilized in the generation of character animations, which
are highlighted below.

Rigging
Rigging is the process of preparing a mesh for animation. It involves either fitting an existing rig to a character,
or creating a new skeletal rig for a novel type of character. This process is not limited to humanoid characters,
but can be applied to various non-humanoid characters, such as dogs, monsters or even inanimate objects,
such as flowers and trees e.g. to animate them moving in the wind [Baran and Popovi´, 2007; Shen and Yang,
2016].

Keyframing
Keyframing involves a designer manually setting a pose for certain frames within an animation. In the most
extreme case this is done for every frame by hand. This is analogous to how in 2D animation every frame is
drawnwith only a slight change to the previous frame to create the illusion of motion. For modern animation it
is common that only a few key frames are set manually and the computer automatically interpolates between
the key frames smoothly.

To aid the designer in manual manipulation of the rig various techniques are applied. The most common
are FK and IK:

14 3. Literature Review

Concept Description

Frame A discrete timestep snapshot of a scene
FPS ’Frames per second’, the update rate of an animation

8-12 FPS is considered the min. for perceiving ’motion’, 24 FPS has been the standard
for movies, 50-60 FPS is the modern standard for animation and considered to be the
limit of human perception [Holcombe, 2009]

Mesh The 3D tessellated model defining the structure of a character
Rig The skeletal structure of a character defining its motions

A rig can be applied to a mesh to create animated character
Root The root of a rig defines the center point to which linear and rotational transforma-

tions are applied
Bone A bone represents a static transformation of the root or joint toward the next joint

while rotations can usually be freely manipulated bones represent a fixed euclidean
distance between joints.

Joint A point in the rig that can be freely transformed rotationally, it connects two bones
together

End-effector The last link in a kinematic chain (e.g. the hand or fingertip)
Term originated from robotics where it represent e.g. the tool at the end of a robotic
arm

T-Pose Default motion capture stance - standing upright with both arms stretched out side-
ways at 90°

Kinematic Chain A series of bones connected by joints that are linked together, e.g. an arm or a leg
FK The process of computing the position of the end-effector,

by forward propagation of relative angles on each skeletal joint
IK Effectively reverse FK;

the computation of joint positions and angles given a fixed end-effector position

Table 3.1: Overview of important animation concepts/terminology

Forward Kinematics (FK) is commonly used when the designer wants full control over the rig, as it allows
him to control every single joint in the model freely. Working from the root of the rig, the rotations of each
joint affect every other bone down the kinematic chain up to the end-effector.

Inverse Kinematics (IK) is commonly used in tasks where points of contact are particularly important. This
can be in a walking animation, where gravity demands feet to be connected to the ground, or in a scenario
where a character interacts with an object and its hand should e.g. touch the wall and not fade right through
it. It also allows the user to manipulate characters more ’naturally’, as all links in a kinematic chain move as
the end-effector is moved [Holden et al., 2017b; Yamane and Nakamura, 2003].

Motion Capture
As creating handcrafted animation is usually a time consuming and thus costly process, more and more use is
made of ’motion capture’ (MoCap) studios to recordmotion live from a human subject. Various techniques can
be used to record human motion, however the probably most common type of motion capture studio consists
of a set of cameras and a set of markers distributed over the body of the person to be recorded.

MoCap allows for a quick and easy recording of complex motion that would be difficult to re-create by
hand. The benefit is also that the recorded footage can still be augmented by hand-crafted edits. This is
frequently required also due to the fact that MoCap recordings tend to be noisy sometimes and incorrect
reconstructions of the underlying skeleton need to be corrected [Holden, 2018].

The motion capture studio that was used in the data acquisition for this research is owned by AkoB and
holds an ’OptiTrack’ tracking system, comprised of 16 ’Prime 13’ IR cameras, which records 54 reflective IR
markers located on a Velcro suit.

Procedural Generation
Especially for interactive environments, such as games or simulations, research is ongoing for developing gen-
erativemodels to automatically create newmotions to fit a scenario, without the need for carefully handcrafted

3.2. Character Animation 15

(a) Full body Rig

(b) Hand Rig

Figure 3.1: Skeletal rig used by AkoB

Each of the 51 joints is labeled individually
The root of the rig is located at the ’Hips’
Red lines go from the root to every joint as a visual guide
The white double pyramids connecting every joint represent the bones of the rig

16 3. Literature Review

animation cycles. This will be analyzed in detail in the upcoming section 3.3 on deep learning for motion syn-
thesis.

3.2.3. Human Motion Modeling
While it is common and convenient to present the state of a rig in terms of the relative transformations of each
joint, it is not the most efficient way of storing the data.

At least for us humans our joints have natural limits and usually our joints don’t move completely uncor-
related to each other, commonly specific tasks require a coordinated effort of the limbs to achieve the desired
effect. For example there is a high level of correlation between the movements of fingers on the same hand in
most motions e.g. gripping. It is also possible that parts of the body move uncorrelated to each other the legs
can follow a different goal than the torso and the arms, e.g. while walking several activities can be performed
with the arms (holding something, texting, etc…).

The bottom line is that there aremore efficient ways to represent humanmotion, with themeans of utilizing
various models. This field of human motion modeling can however result in vastly different models depending
on the underlying motions it tries to represent.

Wang et al. [2019] explore the DOFs of the various parts of the human body and exploring their effects on
pose-estimation tasks.

The development for a simplified human motion model for the dataset of AkoB is highly recommended
and potential techniques will be explored in chapter 4.

3.3. Deep Learning for Motion Synthesis
The research that has been done on deep learning (DL) techniques can roughly be classified into two segments,
firstly the fundamentals and background of AI techniques and secondly the specific application of DL for
motion synthesis.

3.3.1. AI Fundamentals
When examining the literature available it quickly becomes clear that, the interest in NNs and AI is accelerating
and increasingly available to the ’general public’; with annual publications of scientific literature on ’Neural
Network(s)’ having more than tripled since 2015¹. Even though the concept of an artificial neural network has
conceptually been around since the 1940s and seen first practical application in the 1980s; it is largely thanks
to the development of ever increasingly more powerful GPUs developed by e.g. NVIDIA [Huang, 2016] that
enable this renewed interest in AI and DL in particular.

It is to be noted that the field of AI is commonly separated into the more ’traditional’ ML and into the
more ’modern’ DL algorithms. An extensive summary of various ML and DL algorithms and their potential
applicability to this research can be found in appendix A.

An attempt at an intuitive distinction of these two domains is made below.

Machine Learning algorithms are commonly characterized by a stricter rule-set and theoretical bounds.
They generally allow a researcher to more easily modify and tweak the algorithm to achieve a desired result,
but can be limited in their ability to learn general relations.

Deep Learning NN algorithms are, in theory, universal function approximators and allows the researcher a
lot of freedom in the design and application on various types of data. However, this comes at the price of what’s
commonly referred to as the ’black-box’ approach, which entails that its increasingly hard to understand the
inner workings of a NN and even harder to change certain parameters by hand to achieve a desired result.

So despite the current enthusiasm on the subject, the design of neural networks still remains more art than
science for the time being (see next section); while there are efforts made to develop empirical optimization
models for e.g. hyper-parameter optimization, their application is not yet widely adopted and with limited
benchmarking [Eggensperger et al., 2013]. Primarily there is no such thing as ’one-architecture-fits-all’. Every
NN based project is highly data and architecture specific, with some architectures being only applicable to
some types of data and showing widely varying results for given data types [Liu et al., 2017].

¹Source: Scopus key-word search ’Neural Network’

3.3. Deep Learning 17

3.3.2. The ”Black Art” of Machine Learning
Furthermore it should be noted that the algorithms that people consider to be a part of the domains of ML or
DL, are sometimes very different depending on the authors opinions. Some researchers consider DL as a part
of ML, while others, usually in more popular articles, even freely interchange the terms AI, DL, ML,NN etc. to
their liking.

In their great paper ’Troubling Trends in Machine Learning Scholarship’, Lipton and Steinhardt [2018] call
out (some) modern ML researchers for their lack in scientific rigor and are displeased in the ’overloading of
technical terminology’, ’speculation over explanation’, as well as the trend of incorrect portrayal of AI in ’pop-
ular coverage’. In general it can be said that despite all the latest advancements, the field of AI research is still
very much in its infancy and the need for more wide-spread standardized procedures, testing & benchmarking
is omnipresent.

This fact is nicely summarized by this quote from a, slightly informal, paper by Domingos:

”[...] developing successful machine learning applications requires a substantial amount of
“black art” that is hard to find in textbooks.”

Therefore the research, as presented in this report, will make a conscient attempt to…

(a) …not fall victim to the four fallacies, as present by Lipton and Steinhardt [2018].
(b) …separate the functionality and use of various stage in the model to be designed, instead of regarding

it as a singular ’black-box’.

3.3.3. Selection of Methodology
Examining all ML and DL algorithms in existence in detail, is far outside the scope of this research. Given the
fact that prior to the start of the research the premise was set to utilize DL for the task at hand, this is what the
focus of the majority of the literature review is based on. However a brief analysis of the applicability of the
various other fields, as present in appendix A, has been performed. During this analysis it became apparent
that there are certain algorithms from other fields that could successfully augment the DL core; other fields
that had been considered non-applicable, by the very nature of their algorithmic approach, have however been
omitted from further research.

The algorithms that were deemed ’applicable’ are highlighted in detail in chapter 4.

3.3.4. Motion Synthesis & Analysis
This section presents a general overview of the various domains of applicability of DL, with respect to their
usage for the processing and synthesis of motion data.

While most relevant literature found is published within the last 5-10 years, it is interesting to see that even
as far back as 25 years ago there has already been research on AI and its applicability for motion synthesis
[Auslander et al., 1995]; however rudimentary it might have been, research in the field has come a long way
since then.

Fields that have previously been complex and labor intensive are increasingly utilizing ML/DL models for
automating tasks:

• Re-rigging of animations to new models [Holden et al., 2015, 2017b; Shen and Yang, 2016; Yamane et al.,
2010]

• De-noising/Reconstruction of corrupted motion capture data [Cui et al., 2019; Holden, 2018]
• Natural animation of character (loco)motion [Gaisbauer et al., 2019b; Holden et al., 2017a; Starke et al.,

2019; Thomas Geijtenbeek et al., 2013]
• Reinforcement learning for non-player agents, to simulate more natural non-scripted behavior [Peng

et al., 2015; Thomas Geijtenbeek et al., 2013] ²

As previously mentioned there is usually not a ’one-size-fits-all’ solution when it comes to deep learning,so
even within the field of character animation various different DL architectures and parameterizations are
utilized [Komura et al., 2017; Pejsa and Pandzic, 2010], specifically with respect to the specific in- & outputs
of the models.

²Reinforcement learning is not directly applicable to this research, yet a prominent and popular field of research for motion synthesis

18 3. Literature Review

A couple of discerning factors found are the following (highlighted in bold are the most applicable domains
for this research):

• Static vs temporal analysis
• Pure motion vs Usage of ’external’ inputs, e.g. environmental variables (terrain)
• Pre-processing tools vs live inference
• Reinforcement learning vs fixed data-sets
• Cyclical motion (e.g. locomotion) vs generalized complex motion (e.g. fighting)

3.3.5. The Future of Motion Synthesis
Initially only limited literature on the specific field of deep-learning for motion synthesis was to be found,
however there is in fact a strong trend of academia and industry alike to explore the possibilities that this
field provides. Some entertainment conglomerates such as ’The Walt Disney Company’ even have their own
research departments dedicated to advancements in animation and motion research [Yamane et al., 2010],
among other subjects.

Final personal Thoughts
Speculating on the future of these fields of research, I belief that, in the near future, they may well lead us into
a world where human interaction in VR may becomes immersive enough for e.g. life-like social scenario simu-
lation, compelling interactive storytelling/gaming. Collaborations with mechatronics and robotics engineers,
may well lead to more natural and adaptive physiological and facial motion patterns that could lead us into the
’uncanny valley’ or beyond. This research is to be utilized on a drone swarm for entertainment purposes, but
the more general notion of applying DL algorithms to learn general human interaction patterns may very well
be the key enabling promising robotic technology, such as ’Boston Dynamics - ATLAS’ or ’Hanson Robotics -
Sophia’ robots to make the leap towards a general purpose humanoid android.

3.4. Literature Analysis
To reflect on the literature that has been considered for this research, this section is dedicated to a high-level
quantitative literature analysis. This is to ensure that not one particular topic or concept has been excessively
studied, while others have been completely neglected.

A grand total of 90+ papers have been considered, of which little over half are directly related to the field
of animation utilizing DL ³, the remaining are DL fundamental background papers and various other related
literature.

For themanagement of the literature used for this research the referencemanagement software ’Mendeley’
has been utilized.

3.4.1. Statistics
For this literature review each paper has been analyzed and categorized by marking each paper with a set
of tags that reflect the key concepts that are presented in the paper. Based on the resultant BibTeX file a
custom analysis script was created to review the statistics of various quantitative properties, of which the
most interesting results are highlighted below.

Temporal Distribution
Figure 3.2 showcases the temporal distribution of examined papers, clustered by year of publication. It show-
cases that the majority of papers on motion synthesis and DL have been published within the last 5 years The
older papers are mostly historical papers that have been added, to investigate the origins and/or fundamentals
of neural networks. In general it can be said that DL motion synthesis is a niche, but contemporary topic.

A more general comparison with publication data from Scopus, as seen in figure 3.3, shows that this cor-
responds to the trend of increasing number of papers on ’Neural Network’s within the last lustrum.

Completeness of Research
In figure 3.4 the distribution of all tags, that were used more than once, is shown. Multiple tags per paper are
possible, but a single tag can only be used once per paper. The bar labeled ’unknown’ represents the amount
of papers that have not been tagged.

By examining these the following conclusions can be made:

³This was lovingly dubbed ’AI-nimation’

3.4. Literature Analysis 19

Figure 3.2: Temporal distribution of examined literature

• Sufficient resources have been considered, with regard to the primary NN architectures
• Plenty of papers have been found using standardized datasets for potential benchmarking
• A grand total of 16 papers with publicly available code repositories were found, to ease initial testing

Influential Authors
Figure 3.5 shows the occurrence of various reoccurring authors in the research.

Daniel Holden One author in particular has been standing out over the course of this literature review:
’Daniel Holden’. He might not necessarily be considered the most influential researcher on a larger scale,
however this young inspiringmachine learning researcher kick-started this literature research with his creative
paper on ’Phase-Functioned Neural Networks’ (PFNN), which has been recited by various other influential
researchers in the field. Furthermore, Holden has published a variety of papers on various character animation
and motion analysis related thematics, besides other interesting ML papers.

Some of these are highlighted on his own personal website theorangeduck.com/page/publications.
In case he is interested he seems like a great candidate when considering holding an (online) expert inter-

view for reviewing the final research.

3.4.2. Most applicable Papers
The most applicable papers found are a select few that actually have direct applicability to the special features
that define the current research. A summary of these papers is presented in table 3.2.

Ultimately it can be said though that only very few researchers and papers are directly applicable to this
new research approach and that the specific information required needs to be extracted piece by piece from
these various sources. This shows that there is clearly a research gap with respect to motion synthesis, with
regard to the interaction of multiple people.

The details of how the concepts of these papers are relevant to the final research will become clear in the
next chapter (4), which will present the usage of these methods in detail.

3.4.3. Reflection on Analysis
While it is to be noted that this reflection to a large extent can be a self fulfilling prophecy, in the sense that
due to the small sample size and the largely iterative approach to this literature search, it can’t really be seen
as objective proof of completeness. As such it can indeed result in a singular researcher standing out, while
being objectively less influential e.g. considering a smaller H-Index.

http://theorangeduck.com/page/publications

20 3. Literature Review

Figure 3.3: Annual publications of literature related to ’Neural Network’s

Source: Scopus - Document search

Title Applicability Reference

Two-person activity recognition using skeleton data [Manzi et al., 2018]
Classification of 2 people interacting
Adversarial learning for modeling human motion [Wang et al., 2020a]
Combination of GAN and AutoEncoder
Deep Motifs and Motion Signatures [Aristidou et al., 2018b]
Identification of ’Leader’ ’Follower’ in interaction activities
On the continuity of rotation representations in neural networks [Zhou et al., 2019b]
Usage of alternative rotational representation for DL
Modeling Human Motion withQuaternion-Based Neural Networks [Pavllo et al., 2019b]
Comparison of various NN models and parametrization for motion prediction
On retrospecting human dynamics with attention [Dong and Xu, 2019]
Visualization of important body components utilizing attention
Phase-Functioned Neural Networks for Character Control [Holden et al., 2017a]
Accounting for distinct phases/frequency within data
Self-similarity analysis for motion capture cleaning [Aristidou et al., 2018a]
Automated cleaning of MoCap data

Table 3.2: Most important papers and their applicability

However the goal of this reflection was less in objectively proving that ’all’ literature has been considered
and draw statistical conclusions from this, but much rather as a tool for self-reflection to assess if ’enough
is enough’. This internal verification allows the researcher to move ahead to the practical phase given the
knowledge that everything that appears to be needed has indeed been found.

The system of tags that was put into place to allow for this analysis will be beneficial when it comes to the
actual development phase, as it allows the researcher to quickly and accurately consult those papers that are
directly related to whatever methodology is currently being implemented.

3.4. Literature Analysis 21

Figure 3.4: Distribution of Tags used in examined literature

Figure 3.5: Occurrence of authors in examined literature

4
Methodology

Based on the background knowledge obtained and presented in chapter 3, this chapter highlights and explains
the primary tools and methods to be utilized over the course of the research.

The chapter starts out with the usage of a ’Grounded theory approach’ for guiding the research, followed
by an overview of the various DL methods considered, as well as supplementary pre-processing steps and
concluded by the rationale behind the final experiment that is to validate the to be developed model.

4.1. Grounded Theory Approach
Grounded Theory (GT) is a research framework that originates from the social sciences, but has recently seen
more and more traction in the software development community, though granted in slightly altered variants,
which are not always true to the original source methodology [Stol et al., 2016].

The basic rationale behind GT is the building of theory from data as a continuous process. It allows the
researcher to observe data and draw conclusions based on similarities found in it and its derived attributes.
GT also builds on the belief that the continuous process should not be tainted by prior belief and researcher
bias. In some extreme cases it is said that the literature study should be delayed and that defining a research
question should also not be done a priori. Regarding strict issues like this, it is important to note that for this
research the researcher will use GT as a guideline rather than exactly following the rather specific GT doctrine.

The researcher has chosen to utilize GT methodologies for the following reasons:

• Currently there is no universal theory for how to handle MoCap data using DL
• Initially there is no specific set final goal of this research, rather a larger framework in which the research

operates
• The research is highly data specific, so emerging phenomena will be a direct result of the dataset and

its underlying properties
• Availability of a large dataset: Grounded theory -> ’Theory that is grounded in the data’

For the problem at hand it was decided prior that a neural network based approach will be chosen. As
outlined in chapter 3, this does not entice a singular architecture or method, that is optimal for the task
at hand, is predetermined. The design of neural network architectures are very heavily influenced by the
underlying data used and are still very much more an art than an exact science. For example a study on the
generalization of neural networks using the ’CIFAR-10’ dataset has shown that even on a new dataset

”as close to the original data distribution as possible”

most architectures have shown a significant drop in performance, as over-fitting on data can be a problem-
atic phenomenon [Recht et al., 2018].

Therefore a grounded theory approach is utilized, iteratively applying various promising models from liter-
ature to the data at hand. The results obtained from these tests will be confronted with each other to result
in either a singular, or a hybrid method between the methods discovered.

The following research strategies will be employed that are primarily influenced by the notion of GT.

• Sequential testing of promising DL models on the data, based on prior knowledge

22

4.2. Neural Network Architectures 23

• Continuous objective comparison of various DL methods and their applicability to the data at hand
• Continuous analysis of the data will allow for unexpected structure to arise in the latent space of the

data, from which further conclusions could be drawn.

In contrast to the ’true’ GT methodology the researcher has already drafted an extensive set of research
questions (See chapter 2), as well as a preliminary data-flow diagram (See appendix B), however given that at
the current stage only limited information is known on the dataset to be used, these research frameworks are
to be a point of origin rather than a destination. Meaning that the researcher will not blindly stick to these
frameworks no matter new insights, but rather see them as a living document that can be adapted¹ given new
insight and meaning.

4.2. Neural Network Architectures
Based on the insights gain from literature, the following neural network architectures appear to be promising,
for utilizing MoCap data.

First a quick overview of these architecture is given, before examining each of them in more detail with
respect to their…

• Rationale: The primary thought behind the design of the network
• Architecture: The actual implementation and layout of the network²
• Relevance: The applicability of the design for the current research

Disclaimer: The following section is a rather detailed review of several NN architectures, therefore those
readers familiar with the general workings of a particular architecture can feel free to directly skip ahead to
the Relevance section of each architecture.

4.2.1. Overview
On the next page a quick overview of theNNarchitectures to be considered is presented in table 4.1, showcasing
their most important advantages and disadvantages, as well as related papers.

¹After consideration with the supervisor
²For most figures it was intentionally chosen to use images from ’Wikimedia Commons’ to ensure they’re in the common domain.

24 4. Methodology

Advantages Disadvantages

Multilayer Perceptron (MLP)
[Li et al., 2019; Mar et al., 2017; Villegas and Lee, 2018; Zhou et al., 2019b]

• Simplest network setup
• Theoretical a ’universal function approximator’
• Versatile in its usage

• Complexity increases greatly for additional nodes
and layers

• Easy to loose spacial awareness
• Fixed input & output size

Recurrent Neural Networks (RNN,LSTM,GRU,MHU)
[Bai et al., 2018; Chung, 2014; Dong and Xu, 2019; Ghosh et al., 2018; Goyal et al., 2016; Gui et al., 2018; Habibie et al.,
2017; Martinez et al., 2017; Pavllo and Auli, 2018; Tang et al., 2017; Villegas and Lee, 2018; Zhang et al., 2018]

• Temporally aware
• Able to learn features of variable length
• Allows for continuous ’sequence-to-sequence’

learning

• Very long training times!
• Usage of ’Truncated Backpropagation Through

Time’ (BPTT) could ignore large parts of the input
data

Convolutional Neural Networks (CNN)
[Aristidou et al., 2018b; Bai et al., 2018; Gatys et al., 2016; Hernandez et al., 2019; Holden et al., 2016; Li, 2018; Li et al.,
2019; Mar et al., 2017; Pavllo et al., 2019a,b; Pratt et al., 2017; Shrivastava et al., 2016; Zhou et al., 2019a]

• Allows for insight into the networks workings
through inspection of the kernels

• Sparse representation requires less learnable pa-
rameters than its MLP counterpart

• Spatially aware

• Doesn’t work for data of variable length
• Up-convolution may result in rather ’blurry’ data
• Mostly used for visual/image data

Auto-Encoder
[Ghosh et al., 2018; Habibie et al., 2017; Holden et al., 2016; Yan et al., 2018; Zhou et al., 2019a,b]

• Unsupervised learning
• Simple network setup
• Enables dimensionality-reduction/compression of

data, prior to feeding it into other models.
• Allows for cloning of networks weights [(strictly)

symmetrical networks]

• Delicate balance between ’blurring’/’generalizing’
the output and ’over-fitting’

• Additional processing step

Generative Adversarial Network (GAN)
[Chan et al., 2019; Goyal et al., 2016; Gui et al., 2018; Hernandez et al., 2019; Kender and Way, 2018; Shrivastava et al.,
2016; Wang et al., 2020a; Xu et al., 2018]

• Usually high quality ‘natural’ output
• Could be an option for a ’human in the loop’ ap-

proach, by replacing the ’discriminative network’
with the choreographer.

• Can be used if there is no objective ’correct’ data,
just ’Real’&’Fake’

• Introduces additional complexity

Phase-Functioned Neural Network (PFNN)
[Holden et al., 2017a; Wang et al., 2020b]

• Allows for temporal component in data, by assign-
ing a ’phase’ to the data

• Combats ’floating’³ artifacts

• Only applicable to (mostly) cyclical motion with a
single fixed phase: e.g. locomotion (walking, run-
ning)

• Complex network weighting, due to blending be-
tween phase weights.

Table 4.1: Overview of applicable neural network architectures

4.2. Neural Network Architectures 25

4.2.2. Multilayer Perceptron
MLP are the earliest and simplest form a NN can take and are sometimes mistakenly referred to as any type
of feed-forward NN. They are also commonly referred to as ’fully-connected’ networks.

Rationale
The basic rationale behind the idea an MLP is learning through recombination of features, the introduction
of non-linearities through activation functions and learning through back propagation [Lecun et al., 2015].
The non-linearities allow it to transform the feature space of the input into an alternate representation, which
allows it to e.g. apply a simple linear boundary to separate feature vectors belonging to complex input classes.
This form of learning features/representations from data is called ’representation learning’ and can be seen as
the basis for the success of NNs as a whole [Bengio et al., 2013].

MLPs are most commonly used for classification tasks, but have since found application as a part of various
other meta-architectures. For classification the input to the network is most commonly a normalized feature
vector, describing the state of the object to be classified, and combined with a softmax output results in a set
of probabilities for the classes to be classified into.

Architecture
The multilayer perceptron is unsurprisingly constructed by stacking multiple Perceptron units together in so
called layers. The first layer is called the ’input’ layer, analogously the last layer is called the ’output’ layer,
while any layers in between are referred to as ’hidden’ layers. The term ’deep learning’ originates from the
capability of modern hardware to extend the classical perceptron to allow for more hidden layers and thus
creating a ’deeper’ network.

A perceptron unit comprises of a singular neuron, which can take any amount of inputs from neurons in
the previous layer. It processes data in the following manner:

1. The ’inputs’ (𝑖) are multiplied by the respective ’weights’ (𝑊), which denote the strength of the connec-
tion between two neurons

2. The scaled inputs are summed together
3. Optionally - an offset term called a ’bias’ (𝑏) is added to this sum
4. The sum total is fed into a so called ’activation function’ (𝑓), a non-linear function distorting the feature

space
5. The result of the activation function is called the ’output’ (𝑜), this can either be used as the input for

another neuron or be the result of the output layer

Mathematically speaking the complete operation is represented by equation 4.1.

𝑜 = 𝑓(
𝑛

∑
𝑘=0
(𝑖𝑘 ⋅ 𝑊𝑘) + 𝑏) (4.1)

Matrix operations However equation 4.1 only represents the formula for the output of a singular neuron,
while commonly a layer consists of multiple neurons. To make the computations more efficient the entire layer
to layer operation can be denoted by matrix operations, which is why running NNs on GPUs is so efficient. For
a layer transition from𝑚 to 𝑛 neurons, the respective matrices and vectors will have the following dimensions:

• 𝑖: 𝑚𝑥1 - Column vector
• 𝑊: 𝑚𝑥𝑛 - Matrix
• 𝑏: 𝑛𝑥1 - Column vector
• 𝑜: 𝑛𝑥1 - Column vector

The compact matrix form of equation 4.1 is given by equation 4.2.

𝑜 = 𝑓(𝑊𝑇𝑖 + 𝑏) (4.2)

A visual representation of this architecture is given in figure 4.1.

26 4. Methodology

Figure 4.1: Multilayer Perceptron - Example Architecture

Learning For the network to actually learn and improve its predictions two stages are applied sequentially:

1. Feed-forward prediction
→The feed-forward computation as denoted by equation 4.2

2. Backpropagation training
→Minimizing the loss-function by propagating the error of the prediction vs the ’ground-truth’ through
the network backwards, adapting network weights and biases to result in a better prediction

Summarizing an example BP algorithm, in which the following steps are executed:

1. Compute the error given a specific ’loss-function’⁴

(a) Subtract the ground truth from the prediction to get the raw error
(b) Squaring the raw error to result in a function where 0 is the optimum

2. Attempt to minimize the error by applying an optimization technique, such as (stochastic) gradient
descent

(a) Compute the derivative from the activation function
(b) Take a step in the negative direction of the derivative to move closer to the minimum,

by changing the weights and biases in the opposite direction that contributed to the final error
(c) Repeat for each layer

The examples above are simplifying a lot of the complex mathematics that is behind the processes and
is primarily intended to introduce the concepts of ’activation-function’ ’loss-function’ and optimization algo-
rithms such as ’gradient descent’. There are many variations to these concepts and which activation-function,
loss-function or optimization method is to be applied can heavily influence the performance of the network.

Relevance
With respect tomotion synthesis theMLP is probably not themost applicable architecture, at least not directly.
Indirectly however the MLP serves as a crucial building block for many promising meta-architectures, thus its

⁴Mean Squared Error (MSE) loss function used in this example

4.2. Neural Network Architectures 27

inner workings should be well understood before diving deeper into these derived architectures. With respect
to its applicability for this research the most promising place to use MLPs would be in the following meta-
architectures:

• The encoder and decoder network in an auto-encoder
• The discriminator in an GAN

4.2.3. Recurrent Neural Networks
Recurrent neural networks (RNN) are primarily used for sequence analysis and receive their name from the
fact that the same nodes are being revisited recurrently at every new input, effectively resulting in a very deep
network consisting of the same node(s).

RNNs date back to the publishing of Rumelhart et al. [1986] paper published in nature. Even though
the original RNN still sees widespread usage for handling sequential data, various modern adaptations have
been made since then; most notably the ’LSTM’ [Hochreiter and Schmidhuber, 1997] and the ’GRU’ [Cho
et al., 2014]. Furthermore, a promising new recurrent unit, the ’Modified High-way Unit’ (MHU), specifically
designed for human motion data was proposed by Tang et al. [2017].

Rationale
The basic rationale behind the RNN is the ability to retain ’memory’ over time by storing the combined infor-
mation of all previous inputs in its ’hidden state’. At every step the previous hidden state, as well as the current
input are used to compute the next hidden state.

Long Short-TermMemory The LSTM network as proposed by Hochreiter and Schmidhuber [1997], solves
common problems of conventional RNNs, by replacing the simple neurons in an RNN by a more complex node.

Conventional RNNs heavily suffer from the vanishing or exploding gradient problem; as the same network
weight is used at every time-step any value below 1 results in exponential decay of information over time,
while any value larger than 1 results in exponential growth over time till ∞, eliminating the effect any new
information has. This quickly vanishing radiant means that any memory from earlier time-steps is quickly
’forgotten’, limiting its short-term memory.

To alleviate these issues the LSTMnode, preserves/remembers or forgets previous information in a dynamic
fashion. This allows the network to retain information over an extended period of time(-steps). Pre-’long’-ing
the time the artificial short-term memory is retained.

Gated Recurrent Unit The GRU as proposed by Cho et al. [2014] takes the complex LSTM and explored if
it was possible to reduce the complexity, without reducing its beneficial rational.

The result was a recurrent unit with fewer parameters than the LSTM, which retained similar performance.

Modified High-way Unit The MHU as proposed by Tang et al. [2017] is basically an adaption of the ’Re-
current Highway Unit’ (RHN) [Zilly et al., 2017], specifically for motion prediction. The idea is to separately
encode the past skeletal states and provide access to this encoded past to allow for better extraction of cyclical
motions over a longer time-frame.

Architecture
The simplest of RNNs is presented in figure 4.2, the left representation shows the recurent nature of the RNN,
while the right unfolded representation illustrates how data on previous states is propagated through ’time’
via the vector denoted ’𝑣’.

For any of the other adaptations the basic layout of the network rarely changes, it is primarily the internal
functionality of the hidden node/unit that is exchanged.

Long Short-Term Memory The basic unit structure of an LSTM node is illustrated in figure 4.3.
At first glance the LSTM seems complex and difficult to comprehend, yet when taking a closer look at its

individual elements a simple elegance emerges.
Three gates govern the data-flow through the LSTM (following figure 4.3 from left to right):

1. 𝐹𝑡 : Forget gate
Determined if the information in the cell state 𝑐 is to be ’reset’

28 4. Methodology

Figure 4.2: Recurrent Neural Network - Architecture

𝑥: Input state, ℎ: Hidden Node, 𝑣: Hidden/Cell state, 𝑜: Output state

Source: CC BY-SA 4.0 - https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg

Figure 4.3: Long Short-Term Memory - Unit architecture

𝜎: Logistic Sigmoid function [0-1], 𝑡𝑎𝑛ℎ: Hyperbolic tangent [−1-+1] | 𝑥: Input state, 𝑐: Hidden/Cell state, ℎ/𝑜: Hidden/Output state

Source: CC BY-SA 4.0 - https://commons.wikimedia.org/wiki/File:Long_Short-Term_Memory.svg

2. 𝐼𝑡 : Input gate
Determines what and how much of the new input and previous output 𝑥&ℎ will be fed into the cell state
𝑐

3. 𝑂𝑡 : Output gate
Determines how much of the current state 𝑥&ℎ will be passed through to the output state 𝑜&ℎ

Looking at this model intuitively it becomes clear how it is able to retain data over time, through dynamic
gates, effectively learning when to ’remember’ and when to ’forget’.

Gated Recurrent Unit The GRU is basically an umbrella term for various recurrent units utilizing a singular
hidden state, as well as internal gates to regulated data-flow. As such there is no singular architecture to
showcase. An example of the ’fully gated’ version is shown in figure 4.4.

Modified High-way Unit Excerpt from paper by Tang et al. [2017]:

”Each historical skeleton is first embedded into one semantic space. At each time step,
the motion context modeling summarizes the skeleton embeddings with respect to the last
predicted skeleton. Afterwards, MHU works on the motion context and the last estimated
skeleton to yield the human motion at each time step.”

The associated model is visualized in figure 4.5.

https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg
https://commons.wikimedia.org/wiki/File:Long_Short-Term_Memory.svg

4.2. Neural Network Architectures 29

Figure 4.4: Gated Recurrent Unit (fully gated) - Unit architecture

𝜎: Logistic Sigmoid function [0-1], 𝑡𝑎𝑛ℎ: Hyperbolic tangent [−1-+1] | 𝑥: Input state, 𝑧: Update gate state, 𝑟: Reset gate state , ℎ/𝑦:
Output state

Source: CC BY-SA 4.0 - https://commons.wikimedia.org/wiki/File:Gated_Recurrent_Unit,_base_type.svg

Relevance
RNNs seem like the obvious choice for handling motion capture data, as it allows for continuous sequence to
sequence prediction, updating the model with each new pose every time-step. It has also been successfully
used by various other researchers in the field (please refer to table 4.1).

While the original RNN does not appear to be sufficient to handle the long term relations required for
most motion predictions the modern Units as presented prior seem very promising. With respect to comparing
performance of LSTMs to GRUs on motion data it appears that …

• …GRUs allow for faster training times [Martinez et al., 2017].
• …there is no benefit in using LSTM over GRU [Pavllo and Auli, 2018].

Especially the approach chosen by theMHU, to introduce a temporal attention unit appears very promising
in its application for predicting two skeletons simultaneously, as it allows for cross-attention between the two
dancers.

Training As there will be the need for continuous predictions in the final live-inference, basically predicting
a new skeleton each time step from a live-stream; it raises the question how exactly the network is to be
trained. When training on a full take from beginning to end before back-propagation this would create a
network too deep to be handled by the current hardware. To handle this the ’BackPropagation Through Time’
(BPTT) might be a valid solution, but further research into this is required.

4.2.4. Convolutional Neural Networks
Convolutional Neural Networks (CNN) are primarily used for image analysis and excel in tasks such as image
classification or semantic segmentation.

CNNs have been around since the early 1980s, but recently have gained much attention due to their highly
successful usage in the ImageNet competition in 2012 [Lecun et al., 2015].

Rationale
The basic rationale behind the CNN is the ability to comprehend images through the usage of several stages of
feature detection. This is achieved through convolving the input with learned ’kernels’, resulting in subsequent
maps indicating where these features are prominent. This approach is based on common computer algorithms,
where some of the simplest convolutional kernels can achieve useful tasks such as edge detection or blur
operations.

https://commons.wikimedia.org/wiki/File:Gated_Recurrent_Unit,_base_type.svg

30 4. Methodology

Figure 4.5: Modified High-way Unit - Unit architecture

Source: Excerpt of paper by Tang et al. [2017]

The idea is that each subsequent layer learns more and more complex features of the input. Intuitively
this may manifest itself in a chain of features, where each subsequent layer is a combination of the previous
features. This is a simplified example of this for animal classification:

• Input Images
• →Basic features: edges, dark/light spots
• →Geometric features: rectangles, circles
• →Textural features: fur, skin
• →Animal specific features: nose, leg
• →Full animals: cat, dog

Architecture
The CNN can also be seen as a regularized version of a conventional MLP, this is because the convolution
operator given a specific kernel can also be represented by a sparse matrix operation with shared weights. So
in theory any tasks that uses CNNs could be replace by conventional MLPs. So why use a CNN in the first
place? The primary benefit lies indeed in this sparse representation, as it allows to get away with much less
parameters that need to be trained and more easily allows for deeper layers, while maintaining acceptable
training times.

There are 3 important operations that define a conventional CNN:

1. Kernel convolution: Convolves the image with the learned kernels
2. Activation Function: Usually a ’Rectified Linear Unit’ (ReLU)
3. Max Pooling: Down/Sub-samples the image by (usually) a factor 2, by taking retaining only the maxi-

mum value of a square of 4.

This architecture is visualized in figure 4.6.

Relevance
CNNs are commonly used for image data, so why are they relevant for motion synthesis? At first glance, they
aren’t. But, CNNs have proven to perform very well on certain data that can be represented in 2D or 3D arrays,
as it is able to extract spacial feature relations. This includes sequenced data that would more commonly be
associated with RNNs.

4.2. Neural Network Architectures 31

Figure 4.6: Convolutional Neural Network - Example architecture

Source: CC BY-SA 4.0 - https://commons.wikimedia.org/wiki/File:Typical_cnn.png

A great paper by Bai et al. [2018] compares the usage of generic CNNs and RNNs and shows that they are
even capable of outperforming RNNs on certain sequential tasks. A similar paper by Pavllo et al. [2019b] specif-
ically compares these two architectures for their application on human motion modeling and finds however
that their CNN variant has performed worse than its RNN counterpart.

A significant amount of other researches have however utilized CNNs, or derived architectures, successfully
on character motion related tasks [Habibie et al., 2017; Hernandez et al., 2019; Li, 2018; Pavllo et al., 2019a; Yang
et al., 2019; Zhou et al., 2019a].

So while it does not necessarily seem like the most applicable architecture at first glance, it certainly is a
valid option and could perhaps be as part of a bigger meta-architecture. One such option on how to use CNNs
for this research is by transforming the raw skeletal data into a spectrogram and training on this derived data.

4.2.5. EncoderDecoder Networks
Encoder-Decoder Networks and more specifically Auto-encoders have been around since the 1990s and are a
type of NN architecture capable of automatically encoding complex data into a more condescend form [Hinton
and Zemel, 1994].

Even though auto-encoders are a specific subset of general encoder-decoder networks, this reflection will
primarily focus on auto-encoders. The bigger picture of encoder-decoder networks should however still become
clear.

Rationale
An auto-encoder network is commonly used for unsupervised self-representation learning, which allows the
network to extract hidden feature vectors from unknown data. This is done by funneling the data through a
bottleneck, effectively forcing the network to find less complex form for representing the data.

Unlike most network architectures the result that the researcher is interested in, is not the final output
of the network, but rather the hidden feature vectors in the intermediate generated latent space representa-
tion. These hidden features vectors potentially show correlations and clustering in the latent space that are
otherwise not directly obvious from the raw data alone.

Architecture
The auto-encoder is a special case of the more general encoder-decoder networks, with the following (soft)
requirements:

• The input is equal to the output
• A symmetrical build between encoder & decoder
• A limited bottleneck layer in between.

The simplest form of an auto-encoder would be a fully connected encoder, which reduces the amount
on hidden layer neurons at each new layer until the bottleneck, with the decoder sharing the weights⁵of the
encoder and symmetrical increasing the number of neurons again until it is equal to the input. This form is
illustrated in figure 4.7.

⁵This is not a strict requirement and may actually hinder the learning process, but is does significantly reduce network complexity

https://commons.wikimedia.org/wiki/File:Typical_cnn.png

32 4. Methodology

Figure 4.7: Auto-Encoder - Example architecture

The data representation at the bottleneck is commonly referred to as the ’latent space’, and is intended to
hold all information required to reconstruct the original data, in a compressed form.

Variations Various derivative architectures to this rather strict and limited set of requirements do exist.
Some networks labeled as ’auto-encoders’, such as ’denoising’ auto-encoders, are strictly speaking not ’true’
auto-encoders as the input is not exactly equal to the output. However strict auto-encoder only have a limited
range of applications and these (slight) derivatives can excel at difficult tasks such as de-noising and in-painting
[Xie et al., 2012].

More generally speaking the encoder and decoder networks can be any kind of other NN architecture,
which makes the auto-encoder a type of ’meta-architecture’ that other architectures can be build into; e.g. for
images it is very common to use CNNs for the en-/decoder step, or for sequences RNNs may be deployed.

Relevance
Auto-encoder are classified as ’unsupervised learning’, meaning that there is no need for absolute labeling of
the data in question. It allows for feature extraction by data alone and may very well uncover hidden relations
in the data that can not be previously imagined. In combination with the mentality of GT this allows for a
true data-based analysis.

There have also been several studies in which auto-encoders have been utilized for motion synthesis [Habi-
bie et al., 2017; Holden et al., 2016; Yan et al., 2018; Zhou et al., 2019a].

Last but not least the researcher has practical experience with the usage of convolutional auto-encoders
from prior work.

4.2.6. Generative Adversarial Networks
GANs are a rather modern addition to the family of NN architectures, only recently developed by Goodfellow
et al. [2014].

They allow for the procedural generation of novel data, while maintaining a certain style. While primarily
used with image data it has since been utilized for numerous data types.

Rationale
The main idea behind the GAN is a game, more specifically a so called minimax-game. Intuitively one can
think of it as two opposing players that both try to turn the tables in their favor. Staying with the original
usage of GANs for image generation, we introduce the following two players:

• The ’forger’
• The ’detective’

The forger is in charge of creating new and original artwork given a set of references, think for example of
painting in the style of Picasso. His job is to fool the detective.

4.2. Neural Network Architectures 33

The detective on the other hand tries to identify whether a artwork that the forger presents him is indeed
real or forged/fake, by comparing it to a known set of artworks that are in fact ’real’. His job is to expose the
forger.

In the case of GANs the forger a.k.a. the ’generator’ and the detective a.k.a. the ’discriminator’ are drawing
their inspiration and references from the same pile of paintings a.k.a. data, it is also possible for the generator
to have no prior knowledge and base its output on random noise instead.

The benefit is that it allows for the generation of novel data without a specific quantitative measurement of
the output, there are no ’good’ or ’bad’ results, just ’real’ and ’fake’. This allows for the output of unprecedented
and creative realistic results when it comes to image/data generation [Shrivastava et al., 2016].

Architecture
Just like the encoder-decoder network the GAN is a meta-architecture and allows the designer to freely choose
the models that make up the generator and the discriminator.

The fundamental approach thatmakes a GAN function is that unlike conventional NN architectures, where
the ultimate goal is the minimization of the loss-function, the GAN has two opposing forces trying to affect
the same loss-function. As in our ’normal’ NN the output of the generator is what we’re actually interested in,
not so much the final labels, as they are merely a means to an end. Due to this the generator tries to minimize
the final loss function, while the discriminator acts as it antagonist and subsequently tries to maximize the
final loss function.

This process is visualized on a high-level in figure 4.8.

Figure 4.8: Generative Adversarial Network - Example architecture

Source: https://www.freecodecamp.org/news/
an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394/

Relevance
When taking the final external goal of this research into account, we can see that final goal is to deliver a
stunning visual performance, by fooling the general audience into believing that the drone-swarm has a mind
of its own. Thus the audience will be the final critic/discriminator of the final result of this research. Similarly
we’ve established that in improvised dance it is hard to mathematically determine if a reactionary motion is
good or bad, however we can see if it fits the motion of the partner or not. A good example to illustrate this
point is to imagine an expert salsa dancer and an expert ballet dancer and tell them to improvise together,
the style and output of each dancer individually can have good or bad form, but it is not the defining feature
that allows for a great interaction. If each dancer would just do what they know best, the result is probably a
disaster when it comes to teamwork.

In this spirit GANs offer a unique opportunity for creating novel and prior unseen motions that are natural
and focused on using the data in a holistic manner.

In practice there have also been very recent studies successfully applying GANs for motion synthesis [Gui
et al., 2018; Hernandez et al., 2019; Kender and Way, 2018; Wang et al., 2020a].

https://www.freecodecamp.org/news/an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394/
https://www.freecodecamp.org/news/an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394/

34 4. Methodology

4.2.7. PhaseFunctioned Neural Networks
The phase-functioned neural network (PFNN) a very novel NN architecture recently proposed by Holden et al.
[2017a]. At its core its a novel approach for training NNs on data that has a singular distinct cycle, primarily
for human locomotion. Although it could in theory be applied to any dataset that showcases a clear cyclical
nature, e.g. weather dataset to account for seasonality or oceanic data to account for the tides.

Rationale
This architecture was created to avoid what is commonly known as ’floating artifacts’ in character animation.
This happens when contact points with the surface are not preserved and it appears that the character is
floating like an ice-skater or a ghost. This is usually a result of a regression to the mean, when temporal
continuity and momentum is not preserved. One can think about is as trying to predict the position of a
pendulum, without knowing its phase, on average guessing the middle every time will be correct.

To avoid this, the raw data is labeled with the current phase of the primary cycle, prior to training. The
main idea is that multiple networks are being trained simultaneously, where each network has a specific phase
in the cycle attached to it. Effectively splitting the dataset into smaller chunks, based on the phase and training
the network piecewise.

By assigning a fixed phase to each data point and as such effectively training a separate network for each
phase, this temporal information is preserved. It can be seen as blending all data from the same phase, rather
than blending data from all phases. As a result, the resultant output is cyclically aware and knows which
motions are to follow next.

Architecture
Theoretically the rationale of the PFNN can be applied to any NN architecture, classifying it as a meta-
architecture or rather as an add-on to an existing network.

When training, the weights of the network are based on this primary phase parameter, by means of in-
terpolation between N discrete states. Holden et al. [2017a] used a generic MLP with 4 discrete phase states
𝛼0-𝛼3, representing phase values of 0,𝜋2 ,𝜋 &

3𝜋
2 respectively. For any intermediate phase they blend the dis-

crete phases together to arrive at a unique set of weights that governs the internal structure of the network
for the given input.

This structure is illustrated in figure 4.9.

Figure 4.9: Phase-Functioned Neural Network - Network architecture

Source: Excerpt of paper by Holden et al. [2017a]

4.3. Data Preprocessing 35

Relevance
Generalized dance, unlike locomotion, unfortunately does not have a singular determining cycle, from which a
phase could be determined. So while the PFNN in its current state cannot effectively be applied to the dataset
at hand, there might be an option for creatively applying the underlying concept in a more generalizable
manner.

Disclaimer: The following idea is heavily speculative and still needs to be proven!
The proposed hypothesis is as follows: By transforming the raw data into the frequency domain, by means

of a fourier transform, this allows for the exact definition of a phase vector over all frequencies. So instead of
selecting a singular frequency at which the phase is to be determined the approach will be expanded for all
frequencies alike. Effectively training the network on a phase augmented spectrogram of the data, hereby a
separate set of weights is given for a discrete set of phases for every frequency to be considered.

The benefit would be that the network can more easily train each network on only the data that’s relevant
to it, further reducing the potential forming of floating artifacts, and to preserve temporal continuity over all
frequencies. It also allows general control laws to be applied to the input and/or output data; e.g. it would
allow to apply a low-pass filter to reduce the overall speed and momentum in the data, in case the inertia of
the drone hardware can not keep up with certain fast-paced output.

The downside of this approach would be that it most definitely increases the network complexity, through
the necessity of computing and processing the entire frequency spectrum and its phases at each time-step.

Ultimately this appears to be a very interesting and promising topic to explore, though the added com-
plexity might put strain on the hardware runtime, as well as the time-line of the project.

4.3. Data Preprocessing
Now that a solid understanding of the various NN architectures and their relevance to the research has been
present, focus is shifted on how to ’conventionally’ process the data prior to feeding it into the NN.

Various data pre-processing steps can be considered to allow the neural network to more easily interpret
the data at hand and to avoid ambiguities and spending network complexity extracting ’trivial’ features that
can easily be computed prior.

These include, but are not limited to:

• Derivation - Filtering of ’velocity’ and ’acceleration’ out of the raw data frames
• Transformation - Changing the mathematical domain in which each frame is represented
• Data augmentation - Creating new/additional data from the existing dataset

Here only the methodologies for the generation of new data from, or new representations of, existing data
will be addressed. Data cleaning and sanity checks will be addressed in the more practice oriented part of the
report, in chapter 5.

4.3.1. Derivation
Derivation of the data is the first important step, as at every frame only the current position and rotational
states are preserved and no actual ’motion’ data in the form of any information holding any momentum is
preserved.

Feeding the neural network not only a static pose, but also its derivatives e.g. velocity & acceleration,
should allow the system to better understand the underlying ’motion’. Failing to do so could be, intuitively
thought of as, the equivalent of studying dance by means of analyzing a museum full of statues; It is not
impossible, but a a lot more tedious than e.g. watching a video in motion.

An argument can be made that e.g. an RNN could extract this information due to its recurrent nature and
this is probably true, but why spend valuable training time and network complexity on learning something
we can present the network with prior. The downside will be that the initial feature vector will have to be
copied for every derivative extracted, as now not only position and rotations, but also their 1st and perhaps
2nd derivative vectors, need to be added. This increases network complexity as well, but may most probably
be well worth it.

Several researchers have shown to add 1st order derivatives to their parameterization for motion data
handling [Auslander et al., 1995; Holden et al., 2017a; Martinez et al., 2017; Wang et al., 2020b].

An important final note is to not ignore the fact that the final product needs to run on a live-stream of data.
This means that only ’past’ data points may be considered when computing the derivatives, so the application

36 4. Methodology

of central/forward differencing are out of the question. So backward differencing, and potentially pre-filtering
by means of an exponential moving average or Kalman filter will be needed.

4.3.2. Transformation
Changing the data basis with which the data is represented, may allow the NN to better process the data, it
furthermore results in extracting alternative feature vectors that might allow for better human insight into the
data and perhaps practical dimensionality reduction. Various approaches are considered to aid in the data
processing:

• Using alternative representations for rotational data
• Extraction of alternative feature base, using PCA
• Transformation into alternative mathematical domains

Rotation Representation
For a computer the values ’0’ & ’360’ & ’720’ are different, although we know that when applied to angles in
degrees these are in fact the same underlying angle which is represented. Conventional Euler-angles, which
are prone to this ambiguity and issues such as ’gimbal-lock’, are often replaced by quaternions. Quaternions
are an alternative form for expressing rotation, which avoids cyclical ambiguity. Though conceptually harder
to grasp, computers excel at utilizing this 4D number system for representing and computing orientations
[Huynh, 2009].

Various researchers already deploy quaternions in their motion models [Aristidou et al., 2018b; Pavllo and
Auli, 2018; Pavllo et al., 2019b; Villegas and Lee, 2018].

Further extensive research has been done by Zhou et al. [2019b] on the effect that different rotational
representations have on the performance of NNs for motion synthesis. They found

”that 3D and 4D representations are not ideal for network regression”

and propose novel continuous 5D & 6D representations for rotations, which appear to be particularly suit-
able for neural networks to learn.

Applying the findings of this paper will hopefully prove useful to the overall performance of final model.

Principle Component Analysis
Principle Component Analysis (PCA) allows for fast identification of themost relevant feature space, by finding
primary componentswithin data e.g. for faces a ’smile’ vector, or for dancing a ’jump’ vectormight be a possible
result. Based on the data available this can have two beneficial effects:

• Removing feature vectors with the lowest relevance can drastically reduce data dimensionality while
minimizing reconstruction error

• Primary features may likely be easily ’human interpretable’, allowing for deeper understanding of the
data at hand

Initial tests involving PCA have already been conducted and appear promising. Some extracted ’human in-
terpretable’ features include ’jump’,’kick’ & ’arm swings’. They clearly show cross-correlation between various
body parts for certain motions.

Change of Domain
Initially inspired by the concept of the PFNN, a transformation of the time domain data to the frequency, or
even the Laplace domain might be beneficial for 3 possible reasons:

• Improved quantitative human insight into which motions are slow/fast or simple/complex
• Possible applications of conventional filtering/control laws on themodel output to custom tailer the final

output
• Possible application of the modified PFNN, as proposed in section 4.2.7

4.4. Hyperparameter Optimization 37

Fourier Transform allows for a frequency based visualization of the data and might uncover certain ’peak
frequencies’ that dominate the data. Furthermore a clear distinction between ’hasty’ and ’paced’ sections
of the dance, could be identified by comparing the average dominant regions of their primary power in the
frequency domain.

A slightly unrelated but yet very interesting paper by Pratt et al. [2017] explore the possibilities of Fourier
transformations on processing of image data in CNN, must like the ’JPEG’ format utilizes a type of Fourier
transform for image compression. The bottom line is that various creative and unexpected positive results have
come from this simple yet powerful approach.

Laplace/Z Transform , seen as a transient expansion of the Fourier transform, enables the researcher to
not only gain the benefits as described above, but additionally identify if a movement is fading-in or fading
out, by assessing the magnitude of the real-components of the Laplace transformed dataset.

This addition has not been found in existing literature for its use on motion data and is highly speculative.

4.3.3. Data Augmentation
Data augmentation is a process of creating new data by altering an existing dataset within given limits. There
are usually 2 reasons why data augmentation is used:

• The existing dataset is too small for training and needs to be extended,
when additional data acquisition is not an option.

• The resulting model is supposed to be invariant to certain features and not learn from false cues.

A famous example of the second point is the paper by Ribeiro et al. [2016], which illustrates that for a
classification task between ’husky’ and ’wolf’ the incorrect cue of the background, ’snow’ or ’grass’ was used
instead of the animal itself. This could have been avoided by augmenting the dataset by random or removed
backgrounds, which essentially forces the algorithm to learn on the animals features instead.

This also illustrates some of the dangers that come attached to utilizing NN as a black-box approach and
highlight the necessity for prevention and improved insight for validation.

Data augmentation can aid in the prevention of learning of false cues if considered before training.
In this specific case it is crucial to remove issues with data that is represented with different numerical

representations, yet describe the same physical phenomenon. The two most prominent issues that need to be
solved are:

• Positional ambiguity
• Rotational ambiguity

Disclaimer: It is important to note that changes to the reference frames are only to be applied once over
an entire take and not on a frame-by-frame basis, as this would destroy temporal continuity.

Positional Ambiguity
While the relative position of the two dancers to each other is crucial to learning the interaction between them,
where exactly this interaction is taking place is irrelevant. For example, if the origin of the reference frame
chosen is right under the dancers feet, or 1 km further should not change the interaction between the two
dancers. This does entail that changes in reference frame are irrelevant to the dancing motion. This is true at
least when moving the coordinate system in the XY (floor) plane and not so much when we start rotating the
reference frame, as the gravitational ’upwards’ vector will be lost.

Rotational Ambiguity
While maintaining the up/Z vector constant there are 3 DOF that can be freely augmented, just like the X and
Y axis are free to change, the heading around the Z axis is as well.

Therefore the combined yaw angle of both dancers can be altered freely as well.

4.4. Hyperparameter Optimization
A crucial element why NN design still involves a significant amount of trial-and-error is the choice that a
network designer has when it comes to the so called hyperparameters (HP).

In the context of ML/DL hyperparameters represent any parameter of a model that is fixed and is not
dynamically learned in the training phase. While not strictly quantifiable the choice of optimization algorithm,

38 4. Methodology

activation function(s) and/or the application of regularization could also be considered as hyperparameters, as
these design choices heavily influence the overall performance of a model.

Taking a simple MLP as an example we could identify the following hyperparameters:

• Network structure

– Number of hidden layers
– Number of neurons per layer

• Learning parameters

– Learning rate
– Batch size
– Weight decay (Regularization)

The example above is indeed just that, an example; the amount and impact of various hyperparameters
can greatly vary based on the network design chosen and influence the networks performance.

It is very important to identify all hyperparameters that affect the system and be aware of their influence.

An attempt to move away from the trial-and-error approach of choosing various hyperparameters is to
automate the procedure in a form of secondary optimization loop. This procedure is illustrated in figure 4.10.

Figure 4.10: Hyperparameter optimization flowchart

So to avoid the rather ’unscientific’ guessing work that is involved in picking the exact layout of a neural
network by hand, the following two common hyperparameter optimization (HPO) algorithms will be briefly
explained below:

• Grid search
• Bayesian optimization (BO)

More optimization techniques do exist, however grid search is the simplest and used to illustrate the tech-
nique, while Bayesian optimization appears to be the most promising. Also the researcher already has prior
experience with the application of Bayesian hyperparameter optimization (BHPO) for DL.

Verification/Validation dataset: One important thing to note, when applying this approach, is that the
inner training loop uses the network performance on the ’training dataset’ to optimize, while the outer hy-
perparameter optimization loop uses the network performance on the ’testing dataset’ to optimize the chosen

4.5. Human Perception Experiment 39

parameters. As this approach infringes the independent nature of the ’testing dataset’ it is required to intro-
duce another truly independent dataset, commonly known as the ’validation dataset’. Effectively splitting the
dataset into 3 separate parts. If this step is skipped, over-fitting on the ’testing dataset’ will be the result.

Disclaimer: For the remainder of the research the ’validation dataset’ will be referred to as the ’verification
dataset’, as it only allows for verification of the model in a closed lab environment. The true validation will
occur when the model is tested in the real world setting with a live dancer.

4.4.1. Grid Search
The ’grid search’ approach simply tries a predetermined set of values for each of the hyperparameters. In the
hypothetical case of a 2 hidden-layer MLP, 2 hyperparameters for the amount of neurons in each layer can be
introduced. If each layer is to be evaluated at 1, 2, 3 neurons, this effectively creates a 2D search space with
(3 ⋅ 3 =) 9 possible combinations, for the set of hyperparameters. After all potential sets of hyperparameters
have been evaluated, only the best performing set is kept.

This approach however heavily suffers from the ’curse of dimensionality’ and quickly becomes impractical
when applied on systems with higher dimensional hyperparameter sets.

4.4.2. Bayesian Optimization
A methodology known as Bayesian Hyper-parameter Optimization (BHPO) [Eggensperger et al., 2013] will be
utilized. This method is by no means new and has been around and applied on NNs for at least 25 years [Neal,
1995].

BHPO evaluates the network’s optimal performance for various sets of hyperparameters, based on a prob-
abilistic utility function it finds the next optimal set of hyperparameters that has the highest probability of
potentially being better than the prior one. This might seem a bit confusing at first but effectively is a very
powerful method that unlike ’gradient descent’ does not keep moving to a potentially local optimum, but
much rather views the entire optimization space as a holistic set where the ’unknown’ may hold value. In this
method a trade-off between ’exploration & exploitation’ [Bondu et al., 2010]:

Exploitation refers to a bias towards trying a new layout close to the current optimum, to make it even
better.

Exploration can also be seen as ’curiosity’ and has a bias towards trying a layout that is as far away from
anything known prior as possible, to potentially find a the real global max-/minimum, rather than a local
max-/minimum.

4.5. Human Perception Experiment
The final method to be discussed in this chapter is also the basis for the final experiment after completion of
the development phase.

In the spirit of the idea behind the discriminator in a GAN, it is proposed to setup a final experiment that
involved real human experts to assess the quality of the final model, in a binary classification task.

As previously mentioned what is mathematically ’better’ is not always considered to be of better quality
when it comes to creative generative tasks, this is why this approach can be seen as an independent validation
of the final result. This predicament has also been observed by another team of researchers that have been
working with GANs:

”a smaller loss does not always indicate a better quality.”

[Kender and Way, 2018]

The proposed setup for this experiment is as follows:

1. Preparation

(a) Finalize the NN model to be evaluated
(b) Create dataset of generated motions to original input
(c) Finalize the visualization on screen
(d) Develop virtual testing environment for experiment

40 4. Methodology

2. Run experiment

(a) Select participant
(b) Show a take of 10-15 seconds

either from the recorded dataset or the generate dataset
(c) Present the user with a binary choice-box on screen, to select if he/she thinks if the take was real

or fake⁶
(d) Repeat to the next take (return to 2.2)
(e) Repeat with the next participant (return to 2.1)

3. Evaluate the experiment

(a) Parse the resulting binary classification datasets for all participants
(b) Compare the distribution of choices for each participant
(c) Compare the distribution of choices per take
(d) Check distributions for statistical significance
(e) Draw conclusions

This method could also be called the ’turing test’ for motion synthesis.

⁶For humans perhaps a more granular scale from 0-10 might be more appropriate, in contrast to the pure binary choice in a GAN

III
Project Plan

42

5
Development Plan

The practical framework for this design research consist of 4 distinct phases:

1. Data Handling
2. Model Development
3. Live Interaction
4. Validation

Building on the background knowledge acquire in the previous chapter on methodology (4), this chapter
outlines each phase of the practical process and their respective tasks.

5.1. Data Handling
The very first step in practical deep learning research is acquiring data. Without data the best designed net-
work wouldn’t have much use. For this research the data acquisition is lead by and obtained in collaboration
with AkoB. The exact amount of data required is hard to determine prior to testing the models, although as a
rule of thumb

”In practice, results with large data sets are often quite good […]”

[Marcus, 2018]. Without having a solid benchmark for how much data was required the initial goal had
been set to acquire 100h ofmotion capture footage. After the project’s budget had to be reduced, it was decided
that 10h was the new goal to strive for. The data-acquisition process has since then been completed and the
goal of 10h was almost reached. After comparing the acquired dataset with other publicly available MoCap
dataset we can safely assume that indeed more than enough data has been acquired.

This section will outline how the data-acquisition has taken place, what the final dataset looks like and
what the desired pre-processing steps are to be taken.

5.1.1. Data Acquisition
The Setup
The setup for a recording session is as follows: Two dancers and the choreographer of AkoB are located within
their motion capture studio. One dancer is considered the ’Input dancer’, while the other is considered the
’Output dancer’. The ’Input dancer’ takes the lead in the improvisation to follow, while the ’Output dancer’
reacts to their partner accordingly. In the actual showpiece the ’Input dancer’ will remain human, while the
’Output dancer’ will be replaced by the ’drone swarm dancer’.

AkoB utilizes a motion capture system called ’OptiTrack’, with 16 ’Prime 13’ cameras in place ¹. For human
motion tracking Velcro suits with 54 passive IR markers (reflective balls) are used. The company and dancers
are well experienced with the system, and have used the same system and techniques for various other projects
in the past.

¹A system very similar to the one being used at our faculties ’CyberZoo’

44

5.1. Data Handling 45

File Formats
Before recording started, research was done in the applicability of the various motion capture file formats that
are available. The research has been limited to the formats that are available by OptiTracks export function-
ality. The results of this research are summarized in table 5.1.

Advantages Disadvantages

’.TAK’ (Binary) - OptiTrack proprietary data format for ’Motive’

• Raw unaltered data format that can be for-
matted in any other format required.

• Unable to be parsed or converted without a
valid license key, of which only 1 is available

’.BVH’ (ASCII) - Biovision Hierarchical Data

• Easy to parse, write & handle
• Motion data is a simple list of floats, which is

perfect for handling by Neural network
• Includes skeletal data

• Fixed time step recording only (However this
is actually preferred for RNNs)

• Only contains data on 1 skeleton and its mo-
tion

’.FBX’ (Binary/ASCII) - Autodesk Filmbox

• Stores 3D-Model data within the same file
• Allows for storage of complex additional in-

formation
• Commonly used format

• Complex data format - Hard to comprehend
or parse

• A lot of unwanted additional data

’.CSV’ (ASCII) - Comma Separated Values

• Simple to parse
• Universal file format

• Oversimplified format
• No skeletal data
• BVH is basically an improved CSV file

’.TRC’ (ASCII) - Format for ’Motion Analysis’

• Easy to parse & comprehend • Not skeleton-based
• Contains only positional information

’.C3D’ (Binary) - Format by Bethesda National Institutes of Health

• In the public domain
• Ability to store extensive additional experi-

ment information

• Binary data, not easily parseable andwritable
• Non skeleton based

Table 5.1: Overview of available motion data file formats

Ultimately the ’.BVH’ format was chosen for the following reasons:

• Ease of use - quick parsing & easy writing
• Clear separation between skeletal and motion data
• Straightforward rotation based numerical data-structure - Can directly be used for NNs

Guidelines
The following guidelines/best-practices were agreed upon and used in the data-acquisition procedure:

46 5. Development Plan

• No pre-processing: Deliver the data as raw as possible
same output that will be available live from the system during the show

• T-Pose before and after every take.
This allows for easy post processing, e.g. cutting out pre-/post-take data.

• Define reusable labels to classify takes
• Anonymity of participants has been ensured by using Symbols for each dancer A,B
• Consistent file naming schema:

“Take YYYY-MM-DD HH.MM.SS_Role{L,F}DancerSymbol{A,B}_Label#1,Label#2[,Label#N]_Description_Take#.EXT”

e.g.
”Take 2020-04-30 11.37.00_LB_ball,slow_pass energy in ball _01.BVH”

• Recording frequency: 100Hz
• Storage of raw ’.TAK’ format as backup, as well as export to ’.BVH’ format

5.1.2. Final Dataset
The final dataset that has been recorded by AkoB contains a grand total of 9.2h of data split over 147 takes,
recorded over the course of 7 recording days. As a supplement to the dataset AkoB has recorded all noteworthy
events, such as ’loss of tracking’, in a recording sheet.

The following section will present an overview and the preliminary analysis of the dataset, as well as
comparing it to other noteworthy MoCap datasets in the field.

Our Dataset
The most important key metrics on our ’dance-interaction’ dataset are given in figure 5.1..

Figure 5.1: AkoB Dataset - Key Metrics

Figure 5.2 shows the distribution of the duration for each take in the dataset, showing that the fast majority
of takes is between 3-5 minutes in length.

Figure 5.3 showcases the distribution of all labels that were used to classify the data in the dataset. The
labels were created in a dynamic fashion by the choreographer, meaning that he made them up on-the-fly and
continued to use those techniques and labels that achieved the desired visual results. The majority of labels
used have been used in at least 10 different takes, while not the largest sample size it should allow to see if
there are indeed similarities between the manual labels and the results of automated clustering procedures
such as the K-Means algorithm.

Other Datasets
During the literature review several MoCap databases have been found that are used for motion handling
benchmarks.

The by far most extensive dataset found is the AMASS dataset. This dataset was put together byMahmood
et al. [2019] it

5.1. Data Handling 47

Figure 5.2: AkoB Dataset - Distribution of durations

”unifies 15 different optical markerbased MoCap datasets by representing them within a
common framework”

All datasets that have been combine in the AMASS dataset have been compared to our dataset in table 5.2
and sorted by their total duration.

This clearly shows that our dataset is in the top 3 of the most common MoCap datasets, which instills
great confidence in the fact that indeed more than enough data has been acquired. Usually most takes in
these MoCap dataset are intended for classification and are thus much shorter, therefore with respect to the
amount of takes/motions in the dataset our dataset falls short, but is in comparison still in the solid middle.

5.1.3. Data Preprocessing
After collection of the raw footage a crucial pre-processing step, prior to applying any deep learning techniques,
is to clean and sort the data. Additionally the transformations and augmentations, as outlined in chapter 4.3
are to be applied at this stage.

To avoid issues down the line, and to reduce the manual workload on the researcher, the steps mentioned
below are intended to be automated by a pre-processing script written in python.

Data Cleaning
Ensuring that the dataset is clean and correct is important as to not result in a ’garbage in, garbage out’
scenario.

The following tasks are to be performed:

• Check and fix all file(name)s

– Check for typos in labels [DONE]
– Check for ambiguous labels and merge then² [DONE]
– Remove excess spaces

• Check the recording sheet and remove any takes in which things went significantly wrong, e.g. loss of
tracking, system freeze, etc.

²After checking in with the choreographer.

48 5. Development Plan

Figure 5.3: AkoB Dataset - Distribution of labels

• Removing any excess material, before or after a take (e.g. the dancer standing still and listening to the
instructions of the choreographer), hence the T-Poses.

Any steps that alter the raw original data have been and will be documented strictly, as to ensure full
transparency and avoid any charges of data-meddling, cherry-picking or fraud.

Data Correction
Mocap recordings aren’t perfect and it can happen regularly that tracking is lost, or that the skeleton is recon-
structed incorrectly. Cleaning these errors by hand is a very tedious process, but there are attempts made by
researchers (e.g. [Holden, 2018]) to create automated solutions.

It is true that these imperfections will persist when it comes to the live interaction, so actually removing
all these problems would result in a dataset that is not representative of the final application. However this
is only true with respect to the training data for the ’input-dancer’, for the ’output-dancer’ we certainly don’t
want the system to learn that it needs to ’spasm’ every once in a while, as we do not want drones flying
uncontrollably all over the place. This is also the reason why continuity in the output derivatives needs to be
enforced and incorporated into the model’s loss-function.

Therefore robust cleaning of the data prior to training is important in particular the following elements are
important:

• Removing any excess material, before or after a take (e.g. the dancer standing still and listening to the
instructions of the choreographer), hence the T-Poses.

• Check the data for ‘impossible’ motions:

– Incorrect reconstruction: skeletal positions outside of human limits (e.g. Twisted limbs, intersecting
limbs)

– (Temporary) loss of tracking: ’Jumps’ in data, resulting in accelerations outside of human limits

• Fix any ‘missing/corrupted frames’ by means of interpolation

Data Augmentation
As a final step the data is augmented by means of the techniques highlighted in the section 4.3.3 and split into
3 parts, the training, testing & verification datasets.

5.2. Model Development 49

Dataset #Markers #Subjects #Motions Minutes

AMASS - 450 13295 2608.29
KIT 100 55 4232 661.84
AkoB 54 4 (2) 147 553.96
CMU 42 106 2083 551.56
BMLrub 41 111 3061 522.69
Eyes Japan 37 12 750 363.64
BMLmovi 67 86 1801 168.99
MPI HDM05 41 4 215 144.54
Total Capture 53 5 37 41.1
EKUT 51 4 349 30.71
ACCAD 82 20 252 26.74
PosePrior 53 3 35 20.82
MPI MoSh 89 19 77 16.53
SFU 53 7 44 15.23
Transitions 49 1 110 15.1
DFaust Synthetic 67 10 129 10.37
Human Eva 39 3 28 8.48
TCD Hands 85 1 62 8.05
SSM 86 3 30 1.87

Table 5.2: Comparison of common MoCap datasets

5.2. Model Development
After the data has been acquired the actual development phase can start.

The following outlines the steps intended to be taken during development of the model.

5.2.1. Framework & Hardware
Development will most likely take place within a NVIDIA docker container, code written in python 3, utilizing
the deep learning framework ’pytorch’ ³.

With regard to the computational facilities, the server at the researcher’s home lab will serve as the primary
development hardware, while an additional high-end computer at AkoB can serve as a secondary setup running
over-night training and performing BHPO, while the researcher improves the overall algorithm, or tries out
alternative models.

5.2.2. Model Design
Given the GT mentality no final framework is set in stone at this point in the research, however the effort has
been made to draw up a data-flow diagram illustrating the entire processing pipeline given the current best
estimate on the models to be used.

The high-level summary version of this data-flow in presented in figure 5.4, while the full detailed version
can be found in appendix B.

The proposed meta-architecture consists primarily of 3 NNs, their architectures and intended use are:

1. Auto-Encoder*: Preliminary step for learning hidden representations in the data
2. Generator*: A recurrent generator will predict the next pose and velocity at the next time-step
3. Discriminator: A simple MLP classifier will, combined with the generator, form a GAN

* can be trained independently

5.2.3. Training & Optimization
Based on the methods as outline in chapter 4, the following steps are taken for each model:

1. Develop/adapt suitable architecture to handle multi-dimensional temporal data.

³’keras’ might also be a possibility

50 5. Development Plan

Figure 5.4: Data-processing Framework Proposal

2. Transform the raw data into suitable input for the selected architecture.
3. Implement an adaptive early-break condition to avoid over -fitting, yet allow optimal training results*
4. Train and Test the algorithm with the data provided
5. Perform ‘Bayesian Hyper-parameter Optimization’ and re-iterate step 4
6. Verify the results with the verification dataset

Early break condtion:* Conventionally NNs are trained for a certain number of ’epochs’, each epoch in-
dicating that the network has processed every bit of the dataset once. However this approach can lead to
over-fitting if the data is being reused over and over.

Generally speaking the performance on the training dataset will keep on increasing the longer the network
is trained. Initially this is also true for the performance of the testing dataset, but there is a law of diminishing
returns and at some point even a reversal in testing dataset performance. A dynamic early break condition
will be used that monitors this divergence of the testing dataset performance, as a cue to stop training the
network.

5.2.4. Model Comparison
Strictly speaking only NN #2 would be required to result at a usable output that could satisfy the external goal
of this research. However, the internal goal is arrive at a quantitative comparison between various approaches
to benchmark these and find the optimum among them.

Therefore, the intention is to train various architectures with certain choices in place or not, possible mod-
ules to alter/activate/deactivate are:

• Addition of derivatives
• Preprocessing with NN #1
• Preprocessing with PCA
• Post training with NN #3

5.3. Live Interaction 51

• Training networks simultaneously vs in sequence
• Different types of recurrent units
• …other options as time allows

To ensure that we’re not comparing apples with oranges, for each model the intention is to run BHPO on
each configuration to allow for the comparison of the ’optimal’ layout for each configuration.

After having trained the individual models, a comparison on the various architecture performances and a
subsequent selection of the best models is to take place. The final model will be selected an prepared for live
inference.

5.3. Live Interaction
There are commonly 2 stages to applying deep learning in practice:

1. Training/optimization (Preparation):

• The ’learning’ process, converting data into knowledge
• Slow: runs on professional hardware
• Requires large amounts of data

2. Inference (Application):

• The ’deployment’ process, utilizing the network to achieve a goal
• Fast: can run on ’consumer’ hardware
• Requires (live) samples to be processed

For the model to be used in the final showpiece, there are 3 main tasks that need to performed:

1. Modifying the network to be usable with ’live’ data
2. The development of a virtual simulation environment in which the model output can be observed
3. Creating a safety design that checks the output of the NN, before sending the data to the drone hardware

5.3.1. ’Online’ Modifications
After finalization of the NN model, it is taken ’out of the lab and onto the stage’.

The NN is adapted to handle live data input from the OptiTracks UDP broadcast and profiled respectively
such that its runtime performance matches, at least, the update rate of the drone hardware. Due to some
technical issues with the communication protocol to the drones this update rate is currently as low as 10Hz,
although the hardware developers strive for a update rate of 100Hz. This is equal to the frame-rate of the
recorded dataset and can be considered the desired update rate for the model in this research.

5.3.2. Simulation
To visualize the results generated by the NN to be assessed by the researcher and to allow for live interaction
with the dancer, a simulation environment needs to be developed. This live-visualization environment will be
developed within the ’Unreal Engine 4’, which allows for visualization of a skeletal rig, as it is applied to and
transforming a character model.

While this task is mentioned rather late in this report it might be something that will be developed in par-
allel to the NN development, as it allows for a better insight into the networks operations during development.

As a final touch the desired view medium for this visualization will be a VR environment, more specifically
AkoBs HTC vive setup. This will have the added benefit that the dancer has a visualization of the virtual
dancer in a setting that is as natural as possible.

5.3.3. Safety Design
Last but certainly not least the ’Additional Challenges’, as mentioned in chapter 1, will need to be addressed.

Even though the goal is to give the drone-dancer as much ’free will’ as possible, we’ll ultimately still be
dealing with real drones and real people, which should NOT cross paths under any circumstance.

Therefore a system of final sanity checks needs to be put in place that analyzes the output of the generator
network and ensures non of the limits, as described in section 1.2.2 will be violated.

This effectively results in a hybrid approach to the final model, as we can not with 100% certainty tell how
the resulting NN will react to truly novel data.

52 5. Development Plan

Harm done to the dancer or the audience is NOT an option. ⁴

5.4. Validation
As a final step to all the previous development there needs to be a form of final validation, which ensures that
the developed system performs as intended in the environment that it has been designed for.

For this 2 final tests have been envisioned:

• The ’Human-Discriminator’ test
• Live inference with dancer

5.4.1. ’HumanDiscriminator’ Test
As proposed in section 4.5, an experiment is to be developed and executed that may prove the perceptual
validity of the final motion generation.

As the final audience for this research will be the general public, in theory the test can be executed with
any participants. In practice the most meaningful results will be achieved by using the creators of the original
data as participants. These include the choreographer, as well as the participating dancers.

5.4.2. Live Inference with Dancer
The primary issue with training on pre-existing data is that we’re generating new motions for the ’output’
dancer, but the ’input’ dancer will keep on repeating the same moves independent of the newly generated
motions of the ’output’ dancer.

In reality two dancers improvising together is a constant feedback loop between the two dancers motions.
This effect was attempted to be minimized by the introduction of a specified ’leading’ and ’following’ dancer
in every take, however it can never truly be removed.⁵

Therefore it is expected that the introduction of a live dancer interacting with the generation output mo-
tions will result in an additional feedback loop that has not been properly assessed in the models training
procedures.

There is enough budget left over for a full day of live inference testing with the dancers to assess the
validity of the model in a realistic environment and to see the extent of the existence of a ’reality-gap’ for the
final model.

⁴I’ve seen dancers cut by drones before and it is not pleasant!
⁵Except perhaps with a blindfold on the ’input-dancer’

6
Project Planning

For the planning of this project a work-package based approach is used, specifying the various tasks to be
performed. However due to the nature of the grounded theory approach there might be several iterations
that arise during the research which may adapt the planning presented here. Therefore this planning is to be
utilized as a guidance tool rather than an end in itself.

3 weeks of holiday are planned in the summer periods (June/July), however due to the uncertainties sur-
rounding the corona crisis no exact date has been fixed so far.

6.1. Milestones & Deliverables
The following milestones and their associated deliverables, listed in chronological order, are defining the pro-
gression of the research; the various primary stakeholders are indicated by the prefix for each milestone:

1. AkoB - Funding proposals

• Hand-in funding proposal #1 [EU] (20.06.2019)
• Hand-in funding proposal #2 [Stimuleringsfonds (NL)] (27.01.2020)

2. TU Delft - Initial Project Approval (25.06.2019)

• Preliminary project proposal V1 (23.06.2019)

—- Start of thesis project —-

3. TU Delft - Kick-Off Meeting/Formal starting date (07.01.2020/10.02.2020)

• Preliminary project proposal V2 (04.01.2020)
• Thesis Kick-off form (02.03.2020)

4. AkoB - Kick-Off Meeting (21.02.2020)

• Preliminary project planning
• Requirements for data acquisition

5. TU Delft - Preliminary Report Hand-in (31.05.2020)

• Literature study report
• Literature study presentation (12.06.2020)

6. TU Delft - Mid-term Review (21.08.2020)

• List of requirements for the final model
• Individual model tests finalized
• Finalization of model evaluation methods

7. TU Delft - Green-light Review (23.10.2020)

• Architectural definition of the final model
• Plan for the final optimization strategy

54

6.2. WorkPackages 55

8. TU Delft - Thesis Hand-In (20.11.2020)

• MSc. Thesis report

9. AkoB - Model Hand-over (27.11.2020)

• Finalized & trained neural network model
• Live Visualization environment
• Documentation for executing and developing the code

10. TU Delft - Thesis Defense (TBD - latest 18.12.2020)

• Master Thesis presentation

—- End of thesis project —-

11. ’Stimuleringsfonds’ - Public Presentation (TBD - ca.12.2020-01.2021)

• Live demonstration in front of public audience

12. AkoB - ’AI-Man’ Theater performance (TBD - ca. 09.2021)

6.2. WorkPackages
Work packages have been defined and are being maintained within my proprietary project management tool
’TaskScheduler’. As of to date a total of 115 work-packages (93 tasks) have been defined, of which 52 have
been completed, which represent 37% of the total 8.5 months (approx. 1360h) workload to be completed.

The major work packages that have been envisioned for the development phase are directly linked to the
structure of the development plan, in chapter 5.

The detailed overview and time-line can be found within the Gantt-chart in Appendix C.

7
Conclusions

In conclusion the goal of the research is to design and deploy a NN based drive algorithm for a virtual skeleton
that is capable of live interaction with a human dancer.

The related research objective is as follows:

’to design an algorithm that generates a virtual skeleton in reaction to motioncaptured
dance improvisations […], by comparing existing and creating newalgorithms, within the
domain of deeplearning architectures, capable of ’fooling’ the creator of the original data,
beyond reasonable doubt. ’

This is accompanied by the following research hypothesis:

’Neural networks are capable of generating natural motion in reaction to live fullbody
human input, which is indistinguishable of real motion, for a human expert.’

The external goal of this research will be of practical nature and comprises of an inference NN model, to be
run on ’conventional hardware’ (e.g. gaming PC) and a 3D visualization environment for the dancer to engage
with.

The internal goal of this research is to explore the applicability and performance of NNs for real-time
motion synthesis for human-machine interaction.

7.1. Expected Results
The desired results of this research will be a functional demonstrator of a NN driven virtual skeleton, which
is capable of choosing appropriate reactions in real-time to an improvising dancer. The skeletal motions will
be presented in the same streaming format as the original input motion data, to ensure compatibility with the
original drone swarm control system.

In a nutshell it is desired to obtain quantitative knowledge and best practices to train a NN on human
movement and generate natural, dynamic and fluent reactionary motions. This will allow not only AkoB, but
also future researchers and animators, to bridge the gap between art and technology to create more immersive
real-time human-machine interactions.

Ultimately there are 4 resulting products that this research desired to produce:

• Large public MoCap dataset:
A clean and accessible version of the vast dataset, as recorded by AkoB

• Functional motion model:
Including the working knowledge of the underlying principles allowing its operations

• Functional visualization environment:
Allowing the researcher to review the data and a dancer to interact with the system

• Statistical analysis of the obtained results:
Providing a quantifiable measure for the external validity of the research

56

7.2. Research Gap 57

7.2. Research Gap
While the field of AI and NNs is continuously and rapidly expanding, the applicability of the field is seemingly
endless and the highly data depended nature of this methodologymakes it hard to find applicable literature for
niche applications. This results in a lot of fundamental literature being available, while very little are actually
directly applicable to the research at hand. Some researcher show signs of exploration in the direction of live
human-machine interactions within a creative setting, but this particular field appears to have a lot of potential
to expand and grow.

Particularly most papers on NNs solely base their performance on the optimization of the loss-function
alone, while for creative settings the perceptual aspect is completely ignored. This research intends to quantify
this ’perceived’ performance, bridging the gap between objective and subjective evaluation.

Personally I believe that this research can give deeper insight into how neural networks ’understand’ mo-
tion and open up a lot of opportunities for artists around the world to engage in creative interaction with
technology. Hopefully bridging the gap between art and technology in a creative and exciting manner, such
as AkoB has already successfully demonstrated over the past decade.

7.3. Project reflection
Reflecting on the experimental setup and planning, it can be said that in the light of the uncertainty surround-
ing the exact outcome of the research, the proposed strategy of a grounded theory approach is deemed most
appropriate, to develop theories on how the vast field of AI can best be applied to the specific niche application
at hand. The basis of this assumption is that by applying various strategies on the same data, new fundamen-
tal correlations will be discovered that can provide the researcher with new insights that should lead to the
development of new theories and models that can be tested, with the underlying assumption of improving the
model at hand.

Once the theoretical basis for themodel has been fully established this will allow the researcher to optimize
the model for practical application, to the best of his knowledge and based on empirically backed experience.

Scope The researcher is well aware that the scope of the proposed research is large and will require a lot
of time and work. This is why some research questions have internally been marked as ’optional’ and the
intention is to fully define the necessity of some approaches together with the supervisor, during or soon-after
the ’preliminary green-light meeting’. All options have been left in this report, as to highlight all possibilities
and for the supervisor to reflect on their expected applicability.

7.4. Future Development What is next?
The final product following this research will be a live virtual performance of a dancer within the OptiTrack
system and a projection of the virtual environment in which the drone swarm is to be seen. This will be a
public performance towards the end of 2020.

Continuing the previous developments as outlined in chapter 1, the final form of this research will result
in the actual showpiece ’AI-Man’ to be performed in theaters during the season of 2021, where the control of
the physical drones, from ’Airman’, will be added to the system.

AI-Man: As an initial step the dancer will be equipped with appropriate VR gear to rehearse together with
the new AI in a common environment. The final form that is chosen for the machine is a swarm of drones that
can form a human but also other shapes, as utilized prior in ‘Airman’. The control algorithms of this swarm
will need to be augmented with appropriate anti-collision routines to ensure safe execution of the new and
unknown outputs and ensure that no drone were to harm the dancer or the audience. Finally the entire show
will be taken on tour around the Netherlands and showcased on international stages as well.

Continuation Summary: After completion of the project the work is intended to be continued, in the form
of a public presentation with ’virtual drones’ by the end of 2020, and followed the ’real’ theater performance
’AI-Man’ to be seen in theaters by the end of 2021, made possible by ’Stimuleringsfonds’, ’Another kind of
Blue’ & ’CompactCopters’.

IV
Addendum

58

Bibliography
A. Aristidou, D. Cohen-Or, J. K. Hodgins, and A. Shamir. Self-similarity analysis for motion capture cleaning.

Computer Graphics Forum, 37(2):297–309, 2018a. ISSN 14678659. doi: 10.1111/cgf.13362.

Andreas Aristidou, Daniel Cohen-Or, Jessica K. Hodgins, Yiorgos Chrysanthou, and Ariel Shamir. Deep motifs
and motion signatures. SIGGRAPH Asia 2018 Technical Papers, SIGGRAPH Asia 2018, 37(06), 2018b. ISSN
15577368. doi: 10.1145/3272127.3275038.

Joel Auslander, Alex Fukunaga, Hadi Partovi, Jon Christensen, Lloyd Hsu, Peter Reiss, Andrew Shuman, Joe
Marks, and J. Thomas Ngo. Further Experience with Controller-Based Automatic Motion Synthesis for
Articulated Figures. ACM Transactions on Graphics (TOG), 14(4):311–336, 1995. ISSN 15577368. doi: 10.1145/
225294.225295.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An Empirical Evaluation of Generic Convolutional and Recurrent
Networks for Sequence Modeling. 2018. arXiv-ID: arXiv:1803.01271v2.

Ilya Baran and Jovan Popovi´. Automatic Rigging and Animation of 3D Characters. ACM SIGGRAPH, 2007.
ISSN 13000144.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new perspectives.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8):1798–1828, 2013. ISSN 01628828. doi:
10.1109/TPAMI.2013.50. arXiv-ID: 1206.5538.

Amit Bleiweiss, Dagan Eshar, Gershom Kutliroff, Alon Lerner, Yinon Oshrat, and Yaron Yanai. Enhanced inter-
active gaming by blending full-body tracking and gesture animation. ACM SIGGRAPH ASIA 2010 Sketches,
SA’10, pages 2–3, 2010. doi: 10.1145/1899950.1899984.

A. Bondu, V. Lemaire, and M. Boullé. Exploration vs. exploitation in active learning: A Bayesian approach.
In Proceedings of the International Joint Conference on Neural Networks, 2010. ISBN 9781424469178. doi:
10.1109/IJCNN.2010.5596815.

Caroline Chan, Shiry Ginosar, Tinghui Zhou, and Alexei Efros. Everybody dance now. In Proceedings of the
IEEE International Conference on Computer Vision, volume 2019-Octob, 2019. ISBN 9781728148038. doi:
10.1109/ICCV.2019.00603.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder-decoder for statistical
machine translation. EMNLP 2014 - 2014 Conference on Empirical Methods in Natural Language Processing,
Proceedings of the Conference, pages 1724–1734, 2014. doi: 10.3115/v1/d14-1179. arXiv-ID: 1406.1078.

Junyoung Chung. Gated Recurrent Neural Networks on Sequence Modeling. pages 1–9, 2014. arXiv-ID:
arXiv:1412.3555v1.

Qiongjie Cui, Huaijiang Sun, Yupeng Li, and Yue Kong. A deep bi-directional attention network for human
motion recovery. IJCAI International Joint Conference on Artificial Intelligence, 2019-Augus:701–707, 2019.
ISSN 10450823. doi: 10.24963/ijcai.2019/99.

Pedro Domingos. A Few Useful Things to Know about Machine Learning.

Minjing Dong and Chang Xu. On retrospecting human dynamics with attention. IJCAI International Joint
Conference on Artificial Intelligence, 2019-Augus:708–714, 2019. ISSN 10450823. doi: 10.24963/ijcai.2019/100.

K Eggensperger, M Feurer, F Hutter, J Bergstra, J Snoek, H Hoos, and K Leyton-Brown. Towards an Empirical
Foundation for Assessing Bayesian Optimization of Hyperparameters. BayesOpt workshop (NIPS), 2013.

60

Bibliography 61

Felix Gaisbauer, Jannes Lehwald, Philipp Agethen, Julia Sues, and Enrico Rukzio. Proposing a co-simulation
model for coupling heterogeneous character animation systems. VISIGRAPP 2019 - Proceedings of the 14th
International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications,
1(Visigrapp):65–76, 2019a. doi: 10.5220/0007356400650076.

Felix Gaisbauer, Jannes Lehwald, Janis Sprenger, and Enrico Rukzio. Natural posture blending using deep
neural networks. Proceedings - MIG 2019: ACM Conference on Motion, Interaction, and Games, 2019b. doi:
10.1145/3359566.3360052.

Felix Gaisbauer, Eva Lampen, Philipp Agethen, and Enrico Rukzio. Combining heterogeneous digital human
simulations: presenting a novel co-simulation approach for incorporating different character animation
technologies. Visual Computer, 2020. ISSN 01782789. doi: 10.1007/s00371-020-01792-x.

Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. Image Style Transfer Using Convolutional Neural
Networks. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
2016-Decem:2414–2423, 2016. ISSN 10636919. doi: 10.1109/CVPR.2016.265.

Partha Ghosh, Jie Song, Emre Aksan, and Otmar Hilliges. Learning human motion models for long-Term
predictions. Proceedings - 2017 International Conference on 3D Vision, 3DV 2017, pages 458–466, 2018. doi:
10.1109/3DV.2017.00059.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative Adversarial Nets. In Proceedings of the International Conference
on Neural Information Processing Systems (NIPS 2014), pages 2672–2680, 2014.

Anirudh Goyal, Alex Lamb, Ying Zhang, Saizheng Zhang, Aaron Courville, and Yoshua Bengio. Professor
forcing: A new algorithm for training recurrent networks. Advances in Neural Information Processing Systems,
(Nips 2016):4608–4616, 2016. ISSN 10495258. arXiv-ID: 1610.09038.

Liang Yan Gui, Yu Xiong Wang, Xiaodan Liang, and José M.F. Moura. Adversarial Geometry-Aware Human
Motion Prediction. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics), volume 11208 LNCS, pages 823–842. Springer Verlag, 2018. ISBN
9783030012243. doi: 10.1007/978-3-030-01225-0_48.

Ikhsanul Habibie, Daniel Holden, Jonathan Schwarz, Joe Yearsley, and Taku Komura. A recurrent variational
autoencoder for human motion synthesis. British Machine Vision Conference 2017, BMVC 2017, 2017. doi:
10.5244/c.31.119.

Alejandro Hernandez, Jurgen Gall, and Francesc Moreno. Human motion prediction via spatio-temporal in-
painting. Proceedings of the IEEE International Conference on Computer Vision, 2019-Octob(Iccv):7133–7142,
2019. ISSN 15505499. doi: 10.1109/ICCV.2019.00723. arXiv-ID: 1812.05478.

Geoffrey E. Hinton and Richard S. Zemel. Autoencoders, Minimum Description Length and Helmholtz Free
Energy. In Advances in neural information processing systems, volume 6, pages 3–10, 1994.

Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Computation, 9(8):1735–1780,
1997. ISSN 08997667. doi: 10.1162/neco.1997.9.8.1735.

Alex O. Holcombe. Seeing slow and seeing fast: two limits on perception. Trends in Cognitive Sciences, 13(5):
216–221, 2009. ISSN 13646613. doi: 10.1016/j.tics.2009.02.005.

Daniel Holden. Robust solving of optical motion capture data by denoising. ACM Transactions on Graphics, 37
(4):1–12, 2018. ISSN 15577368. doi: 10.1145/3197517.3201302.

Daniel Holden, Jun Saito, and Taku Komura. Learning an inverse rig mapping for character animation. In
Proceedings - SCA 2015: 14th ACM SIGGRAPH / Eurographics Symposium on Computer Animation, pages
165–173, 2015. ISBN 9781450334969. doi: 10.1145/2786784.2786788.

Daniel Holden, Jun Saito, and Taku Komura. A deep learning framework for character motion synthesis and
editing. ACM Transactions on Graphics, 35(4), 2016. ISSN 15577368. doi: 10.1145/2897824.2925975.

62 Bibliography

Daniel Holden, Taku Komura, and Jun Saito. Phase-Functioned Neural Networks for Character Control. ACM
Transactions on Graphics, 36(4), 2017a.

Daniel Holden, Jun Saito, and Taku Komura. Learning Inverse Rig Mappings by Nonlinear Regression. 23(3):
1167–1178, 2017b.

Jensen Huang. Accelerating AI with GPUs: A New Computing Model. Nvidia, 2016.

Du Q. Huynh. Metrics for 3D rotations: Comparison and analysis. Journal of Mathematical Imaging and Vision,
2009. ISSN 09249907. doi: 10.1007/s10851-009-0161-2.

John Kender and One Microsoft Way. HP-GAN : Probabilistic 3D human motion prediction via GAN Emad
Barsoum. 2018. doi: 10.1109/CVPRW.2018.00191.

Taku Komura, Ikhsanul Habibie, and Jonathan Schwarz. Data-Driven Character Animation Synthesis Taku.
Handbook of Human Motion, pages 1–29, 2017. doi: 10.1007/978-3-319-30808-1.

Yann Lecun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. 2015. doi: 10.1038/nature14539.

Chen Li. Convolutional Sequence to Sequence Model for Human Dynamics. pages 5226–5234, 2018. doi:
10.1109/CVPR.2018.00548.

Maosen Li, Siheng Chen, Xu Chen, Ya Zhang, Yanfeng Wang, and Qi Tian. Symbiotic Graph Neural Networks
for 3D Skeleton-based Human Action Recognition and Motion Prediction. pages 1–19, 2019. arXiv-ID:
1910.02212.

Zachary C Lipton and Jacob Steinhardt. Troubling Trends in Machine Learning Scholarship. pages 1–15, 2018.
arXiv-ID: arXiv:1807.03341v2.

Weibo Liu, Zidong Wang, Xiaohui Liu, Nianyin Zeng, Yurong Liu, and Fuad E. Alsaadi. A survey of deep neural
network architectures and their applications. Neurocomputing, 2017. ISSN 18728286. doi: 10.1016/j.neucom.
2016.12.038.

NaureenMahmood, Nima Ghorbani, Nikolaus F. Troje, Gerard Pons-Moll, andMichael Black. AMASS: Archive
of motion capture as surface shapes. In Proceedings of the IEEE International Conference on Computer Vision,
volume 2019-Octob, 2019. ISBN 9781728148038. doi: 10.1109/ICCV.2019.00554. arXiv-ID: 1904.03278.

Alessandro Manzi, Laura Fiorini, Raffaele Limosani, Paolo Dario, and Filippo Cavallo. Two-person activity
recognition using skeleton data. IET Computer Vision, 12(1), 2018. ISSN 17519640. doi: 10.1049/iet-cvi.2017.
0118.

M L Mar, Abdelrahman Mohamed, Matthai Philipose, Matt Richardson, and Rich Caruana. Do Deep Convo-
lutional Nets Really Need to be Deep and Convolutional? (2014):1–13, 2017. arXiv-ID: arXiv:1603.05691v4.

Gary Marcus. Deep Learning: A Critical Appraisal. pages 1–27, 2018. arXiv-ID: 1801.00631.

Julieta Martinez, Michael J. Black, and Javier Romero. On human motion prediction using recurrent neural
networks. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-
Janua:4674–4683, 2017. doi: 10.1109/CVPR.2017.497. arXiv-ID: 1705.02445.

Radford M. Neal. Bayesian Learning for Neural Networks (Lecture Notes in Statistical Vol. 118). Journal of the
American Statistical Association, 92(438):791, 1995. ISSN 01621459. doi: 10.2307/2965731.

Dario Pavllo and Michael Auli. QuaterNet : A Quaternion-based Recurrent Model for Human Motion. 2018.
arXiv-ID: arXiv:1805.06485v2.

Dario Pavllo, Z Eth, Christoph Feichtenhofer, and David Grangier. 3D human pose estimation in video with
temporal convolutions and semi-supervised training. pages 7745–7754, 2019a. doi: 10.1109/CVPR.2019.
00794.

Dario Pavllo, Christoph Feichtenhofer, Michael Auli, and David Grangier. Modeling Human Motion with
Quaternion-Based Neural Networks. International Journal of Computer Vision, 128(4):855–872, 2019b. ISSN
15731405. doi: 10.1007/s11263-019-01245-6. arXiv-ID: 1901.07677.

Bibliography 63

T. Pejsa and I. S. Pandzic. State of the art in example-basedmotion synthesis for virtual characters in interactive
applications. Computer Graphics Forum, 29(1):202–226, 2010. ISSN 14678659. doi: 10.1111/j.1467-8659.2009.
01591.x.

Xue Bin Peng, Glen Berseth, and Michiel Van De Panne. Dynamic terrain traversal skills using reinforcement
learning. ACM Transactions on Graphics, 34(4), 2015. ISSN 15577368. doi: 10.1145/2766910.

Harry Pratt, Bryan Williams, Frans Coenen, and Yalin Zheng. FCNN: Fourier Convolutional Neural Networks.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 10534 LNAI:786–798, 2017. ISSN 16113349. doi: 10.1007/978-3-319-71249-9_47.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and U C Berkeley. Do CIFAR-10 Classifiers Generalize to
CIFAR-10 ? pages 1–25, 2018. arXiv-ID: arXiv:1806.00451v1.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ”Why should i trust you?” Explaining the predictions
of any classifier. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 13-17-Augu:1135–1144, 2016. doi: 10.1145/2939672.2939778. arXiv-ID: arXiv:1602.04938v3.

David E. Rumelhart, Geoffrey E. Hintont, and Ronald J. Williams. Learning representations by back-
propagating errors. Nature, 323:533–536, 1986.

Ju Shen and Jianjun Yang. Automatic Human Animation for Non-Humanoid 3D Characters. In Proceedings
- 2015 14th International Conference on Computer-Aided Design and Computer Graphics, CAD/Graphics 2015,
pages 220–221, 2016. ISBN 9781467380201. doi: 10.1109/CADGRAPHICS.2015.31.

Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Josh Susskind, Wenda Wang, and Russ Webb. Learning from
Simulated and Unsupervised Images through Adversarial Training. 2016. arXiv-ID: arXiv:1612.07828v2.

Sebastian Starke, He Zhang, Taku Komura, and Jun Saito. Neural state machine for character-scene interac-
tions. ACM Transactions on Graphics, 38(6), 2019. ISSN 15577368. doi: 10.1145/3355089.3356505.

Klaas Jan Stol, Paul Ralph, and Brian Fitzgerald. Grounded theory in software engineering research: A critical
review and guidelines. Proceedings - International Conference on Software Engineering, 14-22-May-(Aug 2015):
120–131, 2016. ISSN 02705257. doi: 10.1145/2884781.2884833.

Yongyi Tang, Lin Ma, Wei Liu, and Wei-shi Zheng. Long-Term Human Motion Prediction by Modeling Motion
Context and Enhancing Motion Dynamic. pages 935–941, 2017.

Thomas Geijtenbeek, Michiel van de Panne, and A. Frank van der Stappen. Flexible Muscle-Based Locomotion
for Bipedal Creatures. ACM Transactions on Graphics, 32(6), 2013.

Ruben Villegas and Honglak Lee. Neural Kinematic Networks for Unsupervised Motion Retargetting. pages
8639–8648, 2018. doi: 10.1109/CVPR.2018.00901.

JueWang, Shaoli Huang, XinchaoWang, and Dacheng Tao. Not all parts are created equal: 3D pose estimation
by modeling bi-directional dependencies of body parts. Proceedings of the IEEE International Conference on
Computer Vision, 2019-Octob:7770–7779, 2019. ISSN 15505499. doi: 10.1109/ICCV.2019.00786.

Qi Wang, Thierry Artières, Mickael Chen, and Ludovic Denoyer. Adversarial learning for modeling human
motion. Visual Computer, 36(1):141–160, 2020a. ISSN 01782789. doi: 10.1007/s00371-018-1594-7.

Xin Wang, Xiaotao Jiang, Gloria Rumbidzai Regedzai, Haohao Meng, and Lingyun Sun. Gated neural network
framework for interactive character control. Multimedia Tools and Applications, 2020b. ISSN 15737721. doi:
10.1007/s11042-020-08792-y.

Junyuan Xie, Linli Xu, and Enhong Chen. Image denoising and inpainting with deep neural networks. Advances
in Neural Information Processing Systems, 1:341–349, 2012. ISSN 10495258.

Tao Xu, Pengchuan Zhang, Qiuyuan Huang, Han Zhang, Zhe Gan, Xiaolei Huang, and Xiaodong He. AttnGAN:
Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks. Proceedings of
the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 1316–1324, 2018.
ISSN 10636919. doi: 10.1109/CVPR.2018.00143. arXiv-ID: 1711.10485.

64 Bibliography

Katsu Yamane and Yoshihiko Nakamura. Natural motion animation through constraining and deconstraining
at will. IEEE Transactions on Visualization and Computer Graphics, 9(3):352–360, 2003. ISSN 10772626. doi:
10.1109/TVCG.2003.1207443.

Katsu Yamane, Yuka Ariki, and Jessica Hodgins. Animating non-humanoid characters with human motion
data. Computer Animation 2010 - ACM SIGGRAPH / Eurographics Symposium Proceedings, SCA 2010, pages
169–178, 2010.

Xinchen Yan, Akash Rastogi, Ruben Villegas, Kalyan Sunkavalli, Eli Shechtman, Sunil Hadap, Ersin Yumer,
and Honglak Lee. MT-VAE: Learning Motion Transformations to Generate Multimodal Human Dynamics.
In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), volume 11209 LNCS, pages 276–293. Springer Verlag, 2018. ISBN 9783030012274.
doi: 10.1007/978-3-030-01228-1_17. arXiv-ID: 1808.04545.

Fan Yang, Yang Wu, Sakriani Sakti, and Satoshi Nakamura. Make skeleton-based action recognition model
smaller, faster and better. In 1st ACM International Conference on Multimedia in Asia, MMAsia 2019, 2019.
ISBN 9781450368414. doi: 10.1145/3338533.3366569. arXiv-ID: 1907.09658.

Songyang Zhang, Yang Yang, Jun Xiao, Xiaoming Liu, Yi Yang, Di Xie, and Yueting Zhuang. Fusing geomet-
ric features for skeleton-based action recognition using multilayer LSTM Networks. IEEE Transactions on
Multimedia, 20(9), 2018. ISSN 15209210. doi: 10.1109/TMM.2018.2802648.

Dongsheng Zhou, Xinzhu Feng, Pengfei Yi, Xin Yang, Qiang Zhang, Xiaopeng Wei, and Deyun Yang. 3D
Human Motion Synthesis Based on Convolutional Neural Network. IEEE Access, 7:66325–66335, 2019a.
ISSN 21693536. doi: 10.1109/ACCESS.2019.2917609.

Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao Li. On the continuity of rotation representations
in neural networks. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2019b. ISBN 9781728132938. doi: 10.1109/CVPR.2019.00589. arXiv-ID: 1812.07035.

Julian Georg Zilly, Rupesh Kumar Srivastava, Jan Koutnik, and Jürgen Schmidhuber. Recurrent highway
networks. 34th International Conference on Machine Learning, ICML 2017, 8:6346–6357, 2017. arXiv-ID:
1607.03474.

A
Machine Learning Algorithms Overiew

On the next page an overview of the various machine learning algorithms and their applicability is presented.

66

B
Dataprocessing Framework

On the next page the detailed data processing framework for the model to be design is presented. This is the
extended version of the summary presented in figure 5.4, in chapter 5.

68

C
Gantt Chart

On the next page an overview of the project time-line, including all work packages to be performed, is sum-
marized in a gantt-chart.

Legend:

• Boxes: Task

– Blue: Parent Task, contains sub-tasks (creates grey bounding box around sub-tasks)
– Grey: To be completed
– Yellow: Currently active
– Green: Finished
– Red: Canceled
– Light Blue-bar: Estimated progress-bar

• Vertical lines:

– Light Grey - Dashed: Day delimiter
– Light Grey - Solid: Week delimiter
– Dark Grey - Solid: Month delimiter
– Green: Current date

70

	MSc Thesis HN Basien - Neural Network Based Generation of Reactionary Dance Improvisations.pdf
	Abstract
	Preface
	Table of Contents
	List of Abbreviations
	List of Symbols
	List of Figures
	List of Tables
	List of Equations
	List of Algorithms
	I Thesis Context & Summary
	1 Introduction
	1.1 Industry Context
	1.1.1 Industry Partners
	1.1.2 Past Projects
	1.1.3 AI-man

	1.2 Problem Statement
	1.3 The 'Creative Problem'
	1.4 Thesis Structure

	2 Research Planning
	2.1 Research Goals
	2.2 Research Objective
	2.3 Research Questions
	2.4 Research Hypothesis
	2.5 Research Framework

	3 Research Summary
	3.1 Data Handling
	3.1.1 Data Acquisition
	3.1.2 Data Structure
	3.1.3 Data Preparation
	Filtering
	Finger Removal
	Dataset Splitting
	Normalization

	3.2 Training
	3.3 Neural Network Design
	3.3.1 Regression Model
	Trivial Solution
	Feedback Test

	3.3.2 Generative Model
	Generative Adversarial Network
	Model Improvements

	3.4 Results
	3.5 Live Interaction
	3.6 Discussion

	II Research & Development
	4 Data Handling
	4.1 Data Acquisition
	4.1.1 Public Datasets
	4.1.2 Procedure
	4.1.3 Anonymization
	4.1.4 Filename Convention
	Labels

	4.2 Data Structure
	4.2.1 The (Digital) Human Body
	General Formats
	Position vs Angle
	Absolute vs Relative

	4.2.2 Biovision Hierarchy (BVH)
	4.2.3 ArangoDB

	4.3 Data Cleaning
	4.3.1 Limit detection
	Manual Review

	4.3.2 Skeletal Simplification
	4.3.3 Data Filtering
	Dynamic Exponential Filtering
	SLERP
	Outlier repair

	4.4 Data Preparation
	4.4.1 Data Normalization
	6D-Rotations
	Principal Component Analysis
	An example
	Application
	Human interpretability
	Data Dimensionality Reduction

	4.4.2 Dataset Splitting
	Chunk Splitting
	Training, Test & Validation Set

	4.5 Dataset Overview
	4.5.1 AMASS MoCap Dataset Comparison

	5 DanceNet-BHPO Framework
	5.1 Training Framework
	5.1.1 Reality gap
	5.1.2 Early Breaking
	5.1.3 Hyperparameters

	5.2 Optimization Framework
	5.2.1 Bayesian Optimization
	Utility Function
	Exploration vs Exploitation
	Initialization

	5.2.2 Scope Creep & Re-parameterization
	5.2.3 Hyper-Hyperparameters

	5.3 Cluster Framework
	5.4 Data Output

	6 Regression Model
	6.1 Design Choices
	6.1.1 MLP & CNN: Sliding Time-Window Trade-off
	6.1.2 RNN: LSTM vs GRU

	6.2 Implementation
	6.2.1 Hyperparameters
	Training Framework Hyperparameters

	6.2.2 Data & Loss Function
	6.2.3 Weights & Biases

	6.3 Results
	6.3.1 Loss Progression
	6.3.2 Observations
	Average Angular Error
	Run Time
	Reality Gap
	Learning Rate
	Outliers

	6.3.3 Chebyshev's Inequality

	6.4 Feedback Dilemma
	6.4.1 Model with Feedback
	Initialization

	6.4.2 Results
	6.4.3 Trivial Solution
	6.4.4 Training with Feedback
	Dual Feedback Problem
	Single Solution Problem

	6.4.5 Deep Thought

	7 Generative Model
	7.1 Generative Adversarial Network
	For an intuitive understanding
	7.1.1 Loss Metric
	7.1.2 Training Algorithm
	7.1.3 Problems with GANs
	Progress Insight
	For an intuitive understanding

	Training Instability
	For an intuitive understanding

	7.1.4 Best Practices

	7.2 Initial Design Problems
	7.3 Model Design Improvements
	7.3.1 Stacked RNN Units
	Architecture
	Problem
	Rationale
	Hyperparameters
	Trade-off

	7.3.2 Fully-Connected Final Layer
	Architecture
	Problem
	Rationale
	Hyperparameters
	Trade-off

	7.3.3 Derivative Output
	Architecture
	Problem
	Rationale
	Hyperparameters
	Trade-off

	7.3.4 Derivative Input
	Architecture
	Problem
	Rationale
	Hyperparameters
	Trade-off

	7.3.5 Soft-Self-Attention
	Architecture
	Problem
	Rationale
	Hyperparameters
	Trade-off
	Weight Initialization

	7.3.6 Pain
	Architecture
	Problem
	Rationale
	Hyperparameters
	Trade-off

	7.3.7 Limited Judgement
	Architecture
	Problem
	Rationale
	Hyperparameters
	Trade-off
	Hidden State Initialization

	7.4 DRA-GAN
	7.4.1 Hyperparameters
	7.4.2 Weights and Biases
	7.4.3 Advanced Loss
	Discriminator Metrics
	Combined Loss

	7.5 Results
	7.5.1 Model Development
	7.5.2 Visual Output
	7.5.3 Training Progression
	7.5.4 Extended Results

	III Application & Relevance
	8 Live Interaction
	8.1 Live Simulation
	8.1.1 Model Inference
	Data Input Sources
	Communication
	UDP vs TCP:
	Message content:

	8.1.2 OptiTrack Streaming
	Right Leg Bug
	Speed

	8.1.3 AI-man Framework
	True Feedback

	8.2 Live Visualization
	8.2.1 VPython
	8.2.2 Unreal Engine
	Rotation Conversion Bug

	9 Future Work
	9.1 Data
	9.1.1 Data Pre-processing
	Data Augmentation
	Extended Chunk Splitting
	Data Shuffling

	9.1.2 Data Input
	Smart Hidden Vector Initialization
	BDF Input
	Noisy Labels
	Noise Input

	9.2 Architecture
	9.2.1 Current Model Improvements
	Multiple Discriminators
	Inject Past Models
	Residual Connections

	9.2.2 Alternative Network Models
	Alternative Recurrent Units
	Phase Functioned Neural Network
	Sequential-Hierarchical Network
	Neural Turing Machine

	9.2.3 Advanced Layers
	Dropout
	Noisy Layers

	9.3 Training
	9.3.1 Loss Functions
	Normalized Power Spectrum Similarity
	Label Classification
	Foot Contact Loss
	Predict Leading Motion

	9.3.2 Limits
	Higher Derivative Limits
	PCA Histograms

	9.4 Optimization
	9.4.1 Optimizers
	Layered Optimizers
	Gradient Norms
	Gradient Clipping
	Truncated Backpropagation Through Time

	9.4.2 BHPO
	Practical Application
	κTuning
	Logarithmic Hyperparameters
	Expand Hyperparameters

	9.5 Validation
	Simplified Network
	Past Model Progression
	Turning Test for Motion Synthesis

	10 Conclusions
	10.1 Scientific Contribution
	10.1.1 Deep Learning
	GAN Training
	Improved GAN Insight
	Early Break
	Limited Judgement

	DRA-GAN
	Derivative Input

	10.1.2 Miscellaneous
	κTuning
	Analytical Model of the Human Body

	10.2 Discussion

	IV Appendices
	Bibliography
	A Coordinate System Definitions
	A.1 OptiTrack
	A.2 BVH
	A.3 Blender
	A.4 Unreal Engine 4

	B Statistical Human Motion Model
	B.1 Histograms
	B.1.1 Histogram Resolution
	B.1.2 Histogram Cleaning
	Spikes

	B.2 PDFs
	B.2.1 Distributions Used
	B.2.2 Bi-Modal Regression

	B.3 Edge-case 'Hips-ψ'
	B.4 Regression Parameters

	C BHPO GUI
	D Algorithms
	Source Code for Scientific Purposes

	E DRA-GAN Results
	E.1 V1.0-23 | 6D-ATT-DI-DO-LSTM-GAN | e406d70f24
	E.1.1 Data
	E.1.2 Brief Analysis
	E.1.3 Plots

	E.2 V1.1 | 6D-ATT-DI-DO-LSTM-Pain-GAN | d9be67f6a7
	E.2.1 Data
	E.2.2 Brief Analysis
	E.2.3 Plots

	E.3 V1.1 | 6D-ATT-DI-DO-LSTM-Pain-GAN | 42241955b0
	E.3.1 Data
	E.3.2 Brief Analysis
	E.3.3 Plots

	E.4 V1.2 | 6D-PCA-ATT-DI-DO-LSTM-Pain-GAN | 96142329a6
	E.4.1 Data
	E.4.2 Brief Analysis
	E.4.3 Plots

	E.5 V1.3-7 | 6D-PCA-ATT-DI-DO-LSTM-Pain-LJ-GAN | 7d2d6588e0
	E.5.1 Data
	E.5.2 Brief Analysis
	E.5.3 Plots

	E.6 V1.3-15 | 6D-PCA-ATT-DI-DO-GRU-Pain-LJ-GAN | 89ba1481a7
	E.6.1 Data
	E.6.2 Brief Analysis
	E.6.3 Plots

	F Preliminary Report

	MSc Thesis HN Basien - 'AI-Man' Preliminary Report (31.05.2020)
	Abstract
	Table of Contents
	Nomenclature
	List of Figures
	List of Tables
	I Project Context
	Introduction
	Report Overview
	Industry Context
	Past Projects:
	Additional Challenges:

	Research Summary:

	Research Overview
	Research Questions
	Research Objective
	Research Hypothesis
	Research Framework

	II Literature Study
	Literature Review
	Fields of Research
	Character Animation
	Animation Concepts
	Animation Techniques
	Human Motion Modeling

	Deep Learning
	[Nomenclature]blackAI Fundamentals
	The "Black Art" of Machine Learning
	Selection of Methodology
	Motion Synthesis & Analysis
	The Future of Motion Synthesis

	Literature Analysis
	Statistics
	Most applicable Papers
	Reflection on Analysis

	Methodology
	Grounded Theory Approach
	Neural Network Architectures
	Overview
	Multilayer Perceptron
	Recurrent Neural Networks
	Convolutional Neural Networks
	Encoder-Decoder Networks
	Generative Adversarial Networks
	Phase-Functioned Neural Networks

	Data Pre-processing
	Derivation
	Transformation
	Data Augmentation

	Hyperparameter Optimization
	Grid Search
	Bayesian Optimization

	Human Perception Experiment

	III Project Plan
	Development Plan
	Data Handling
	Data Acquisition
	Final Dataset
	Data Pre-processing

	Model Development
	Framework & Hardware
	Model Design
	Training & Optimization
	Model Comparison

	Live Interaction
	'Online' Modifications
	Simulation
	Safety Design

	Validation
	'Human-Discriminator' Test
	Live Inference with Dancer

	Project Planning
	Milestones & Deliverables
	Work-Packages

	Conclusions
	Expected Results
	Research Gap
	Project reflection
	Future Development - What is next?

	IV Addendum
	Bibliography
	Machine Learning Algorithms Overiew
	Data-processing Framework
	Gantt Chart

