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Abstract
This paper proposes a new method to improve the training efficiency of deep convolutional neural networks. During

training, the method evaluates scores to measure how much each layer’s parameters change and whether the layer will

continue learning or not. Based on these scores, the network is scaled down such that the number of parameters to be

learned is reduced, yielding a speed-up in training. Unlike state-of-the-art methods that try to compress the network to be

used in the inference phase or to limit the number of operations performed in the back-propagation phase, the proposed

method is novel in that it focuses on reducing the number of operations performed by the network in the forward

propagation during training. The proposed training strategy has been validated on two widely used architecture families:

VGG and ResNet. Experiments on MNIST, CIFAR-10 and Imagenette show that, with the proposed method, the training

time of the models is more than halved without significantly impacting accuracy. The FLOPs reduction in the forward

propagation during training ranges from 17.83% for VGG-11 to 83.74% for ResNet-152. As for the accuracy, the impact

depends on the depth of the model and the decrease is between 0.26% and 2.38% for VGGs and between 0.4 and 3.2% for

ResNets. These results demonstrate the effectiveness of the proposed technique in speeding up learning of CNNs. The

technique will be especially useful in applications where fine-tuning or online training of convolutional models is required,

for instance because data arrive sequentially.

Keywords Fast learning � CNN � Fine-tuning � Layer dropping

1 Introduction

The use of deep learning models is increasing over time,

since they perform well in various areas, such as computer

vision, natural language processing, and speech

recognition. In computer vision, a popular deep learning

model is the Convolutional Neural Network (CNN), which

consists of deep models with many different layers pro-

cessing the input by mapping it to the expected output [1].

The training time of CNNs is sometimes very long and

could last hours, days or even weeks depending on the task,

the size of the dataset and the available hardware. Nowa-

days, the trend is to increase the depth and size of archi-

tectures [2]; this usually leads to better performance

despite a heavy computational cost. Although modern deep

CNNs are composed of a variety of layer types, convolu-

tional layers are the building blocks of CNNs and con-

tribute greatly to the overall computational load of the

network.

In recent times, the deep learning community has

focused on how to improve the efficiency of CNNs while

saving time, computational costs, and energy without

compromising the accuracy of the results [2]. We can

divide the methods that improve the efficiency of CNN into

two categories [2], depending on the stage in which they

seek to achieve better efficiency:
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• methods for inference efficiency: this category includes

methods that compress the network during the training

phase to use a more compact model during

inference [3–7];

• methods for training efficiency: fall into this category

methods that improve the efficiency of model training

only, for example by freezing some layers during

training but continuing to use the entire model during

the inference phase [8–10].

At first glance, one might think that methods for inference

efficiency are the most relevant because a model is trained

once and used to infer multiple times. However, there are

applications where new data arrives sequentially and the

model has to be adapted and retrained using this new data.

An example is visual tracking where the model is often

used to represent the target appearance. Since appearance

changes over time, it is required that the model adapts to

such changes. In that case, slow retraining of the network

may affect the real-time capabilities of the tracker. Also,

recommendation systems or large language models (LLM)

must be regularly retrained, and the training can last sev-

eral weeks

The goal of this work is to improve the training effi-

ciency of a CNN. During training, the model is gradually

compressed by dropping convolutional layers. The pro-

posed strategy stores the feature maps produced by the

layer to drop and feed the remaining layers with them,

reducing the training time. At inference time, the entire

model (with all its layers) is used.

To demonstrate the main idea, we apply the method to

some of the most popular CNNs such as VGG [11] and

ResNet [12] by observing their learning behavior through

gradient monitoring. However, the method is general and

applicable to any modular model, namely models that can

be partitioned into convolutional sub-blocks.

The two main steps in neural network training are for-

ward and backward propagation; both steps have a high

computational cost, which increases according to the

complexity of the network. In general, forward propagation

is the process of passing data through the network from one

layer to another. In each layer, the input data are processed

taking into account the weight matrix of the layer itself and

a suitable activation function to produce the layer output.

The output of each layer becomes the input of the next

layer repeating this process until the output of the final

layer is produced. The back-propagation algorithm [1] is

used to train a neural network by updating its weights to

minimize the error between the predicted and expected

output. The algorithm computes the gradient of the loss

function with respect to each weight via the chain rule,

starting at the output layer and propagating the gradient

backwards through the network from one layer to another.

The magnitude of the gradient permits to understand

how the parameters of the model vary during training: the

closer it is an optimal point, the lower the value of the

gradient. The variation of the gradient magnitude across

the epochs provides a learning curve that can be calculated

separately for each layer of the network. We have empir-

ically found similarities among these learning curves when

analyzing different CNNs and, in particular, we have found

that the layers’ parameters are learned sequentially from

the first to the last layer. Thus, in this paper, we propose to

sequentially eliminate the convolutional layers during the

training phase. Layers to drop are selected based on a

metric related to the layer gradient. The adopted metric

gives us an indication of which layer has stopped learning

and can, therefore, be temporally eliminated from the

model. However, when we drop a layer, we have to find a

way to feed the next layer to continue its training. This is

done by feeding the remaining model (the one without the

deleted layers) with the feature maps produced from the

last dropped layer. We stress here that dropping the layers

has a double consequence: the weights of the removed

layers are no longer modified and, moreover, a compressed

model is trained in the next epochs. During the test, the

entire model is used and each layer will have as weights

those obtained when the layer was selected for dropping.

This method shows an huge acceleration of the training

process. We can summarize the main contributions of this

work as it follows:

• A new method to improve the efficiency of training

CNNs by dropping layers based on the metric derived

from gradients.

• A significant speed-up of the training process of CNNs

compared to state-of-art methods, given by the possi-

bility of processing directly feature maps extracted

from dropped layers and calculating the back-propaga-

tion only for the remaining layers. We empirically show

that, by using our technique, the training time of a CNN

is more than halved.

The paper is organized as it follows. In Sect. 2, we sum-

marize the main differences between methods for inference

efficiency and methods for training efficiency. We also

detail how our method relates to former works. In Sect. 3,

we detail the way we score convolutional layers in a given

architecture and how we select layers to be dropped. We

illustrate how our approach can be used during the training

process by highlighting its main steps. Sect. 4 presents the

results of an extensive validation of our approach over

different architectures belonging to the family of VGG and

ResNet models demonstrating the effectiveness of the

methods on CNNs of varying depth. Three different and

well known, publicly available datasets have been used to

demonstrate that the proposed approach does not affect
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much the accuracy values of the trained models and con-

tributes to greatly reduce the training time. In particular, a

discussion about the time reduction is presented in Sect. 5

while Sect. 6 presents conclusions and future work.

2 Related work

In recent years, many works have focused on how to reduce

the parameter size of deep learning models. This is quite a

challenge considering the energy impact of training large

networks. The goal of compression techniques is to achieve

a more efficient representation in a neural network,

improving the generalization of the model if the model is

overly parameterized. Model optimization is performed

with respect to model size or training time in exchange for

as little accuracy loss as possible. A popular method of

reducing the complexity of neural networks is to perma-

nently remove neurons, filters, or layers for training. This

technique is called pruning. Pruning can be performed

based on different aspects of neural networks, for example

it may be possible to remove parameters with low saliency

scores from a pre-trained network. These techniques are

often referred to as Optimal Brain Damage or Optimal

Brain Surgeon and were first introduced by LeCun et al.

[13] and Hassibi et al. [14], respectively. The goal of this

process is to minimize the impact of compressing the

network on its performance, as measured by its validation

loss. OBD approximates the saliency score by using a

second-derivative of the parameters ðo2L
ow2

i

Þ, where L is the

loss function, and wi is the candidate parameter for

removal. In [15], it is suggested that a greedy method be

used to determine the minimum set of neurons needed to

minimize the reconstruction loss, but this approach has a

high computational cost. Other methods that prune by

‘‘saliency‘‘ consider the magnitude of the weights [16, 17].

Sparse Momentum [18] determines where to grow new

weights in a sparse network by looking at the weighted

average of recent gradients (momentum) to find weights

and layers which reduce the error consistently. The

method: (1) determines the importance of each layer

according to the mean momentum magnitude; (2) for each

layer, removes the 50% of the smallest weights; (3)

redistributes the weights across layers according to layer

importance. In particular, it grows weights of layers whose

momentum magnitude is large. The previously described

methods for removing sparse neurons are examples of

unstructured pruning methods. On the other hand, struc-

tural pruning aims at reducing the number of filters as

in [19] where the L1-norm is used to select the filters to be

removed without affecting the accuracy of the classifica-

tion. A similar idea is presented in [20] where the feature

map channels that do not contribute to the result are

removed.

In addition to pruning filters and channels, there are also

methods of pruning entire layers [21–23]. Using different

criteria, the selected layers from the network are removed

to obtain a compact model. These methods claim the model

obtained from layer pruning require less inference time and

memory usage at runtime with similar accuracy values than

the model obtained from filter pruning methods. The work

in [21] uses independently trained linear classifiers per

layer to rank their importance. After ranking, they remove

less important layers and fine-tune the remaining model.

However, their method requires additional rank training.

All the previously described methods fall into the category

of inference efficiency methods because they produce

compressed model to be used at inference time.

In other efficiency training approaches like in [24], the

gradient computation through the chain rule is stopped.

To speed-up training and increase accuracy in very deep

networks, AFNet [24] investigates a different use of back-

propagation. Only a subset of layers is trained while the

others are frozen. Frozen layers weights do not need to be

updated during back-propagation. In [8], a metric F, named

Freezing Rate, is defined as a function of the gradient

values of the set of weights of a layer. This metric is used

in [8] to decide which layer should be frozen during the

training. The frozen layers must be subsequent to not break

the layers chain, and therefore the freezing of the layers

start from the first layer and advances to the subsequent

ones. During training, the layers are not removed and

therefore the computational advantage of the method

concerns only limiting the calculation of the gradient and

the modification of the weights of the frozen layers. Our

approach is inspired by [8], in the sense that we adopt the

same metric F. However, unlike the method in [8], our

method consists in performing a layer elimination (drop)

during the training phase. Once a layer is removed, the

remaining model is fed through the feature maps produced

by the last deleted layer. This speeds up both forward

propagation, since there is no need to recalculate the fea-

ture maps of the deleted layers, and backward propagation,

since the gradient is not calculated in the dropped layers

and there is no need to update their weights. Our experi-

ments demonstrate how this approach increases training

efficiency by gradually reducing the number of FLOPs over

the epochs. At the same time our method is different from

classic pruning methods, as our method does not perma-

nently remove the layers by performing a network com-

pression but only temporarily drops them during the

training phase. In fact, in the test phase, the model will

contain all the layers of the one originally created.
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3 Dropping layers for training efficiency

Our method is described in Algorithm 1 and its main steps

are:

• Compute the ‘‘Layer Importance metric’’ based on the

gradient of the layer’s weights;

• Apply the ‘‘Fast Learning‘‘ algorithm, the core of our

method. The algorithm consists of steps to: (1) select

the layers to be dropped, (2) split the network into a

‘‘tail,’’ composed of the dropped layers, and a ‘‘head,‘‘

composed of the layers to still train, (3) compute and

store output feature maps from the tail, (4) train the

head by using output feature maps from the tail.

3.1 Layer importance

Our layer dropping method is based on the observation of

the loss function gradients rg. Generally, the gradient

values can be interpreted as the rate of change of the

weights. The sign of the partial derivatives represents

instead the inverse direction in which weights should be

changed to reach a minimum.

Given a neural network with layers L ¼ fl0; l1; :::; lLg,
the average absolute partial derivative value g

ðkÞ
l corre-

sponding to the weights of the l-th layer is calculated as:

g
ðkÞ
l ¼ 1

N

XN

i¼1

XM

j¼1

j gðkÞlij j ð1Þ

where N is the number of weights in layer l, M is the

number of iterations in epoch k, and g
ðkÞ
lij is the partial

derivative of the loss function with respect to the i-th

weight in layer l at the j-th iteration in epoch k. Figure 1

shows two graphs representing the average absolute partial

derivative value g
ðkÞ
l of each convolutional layer in the

VGG-11 and ResNet-18 models. The layers closest to the

input in both networks have a greater average partial

derivative value than the layers closest to the output. In

practice, the figure suggests that weights in the first layers

undergo much higher changes than the weights in the

layers closest to the output, especially at the beginning of

the training.

Thus, partial derivative values can help understanding if

the weights of a layer are still changing or not. However,

using directly the average absolute partial derivative values

could be misleading since the weights may have small

magnitude but still change.

Hence, we decided to adopt the metric proposed in [8]

and define for the l-th layer the score:

P
ðkÞ
l ¼ 1�

PN
i¼1 j

PM
j¼1 g

ðkÞ
lij j

PN
i¼1

PM
j¼1 j g

ðkÞ
lij j

ð2Þ

with 0�P
ðkÞ
l � 1, where P

ðkÞ
l measures the degree of

changes of the weights in layer l at the k-th epoch. P
ðkÞ
l will

be 1 if the partial derivatives cancel each other across the

M iterations. In such a case, within the epoch, the layer

weights do not change much and, intuitively, the layer has

stopped to learn. P
ðkÞ
l will tend to 0 if most of the partial

derivatives are in the same direction across iterations. In

this case, layer weights are changing during the epoch.

Thus, the layer is learning something about the problem to

solve. We note here that the normalization factors make the

scores comparable across the layers despite the different

magnitude of the weight’s partial derivatives.

Under this point of view, the score P
ðkÞ
l is measuring the

importance of the layer during training. Layers with a score

close to 0 must be trained. Layer with a score approaching

1 are not learning much and probably can be dropped to

speed-up the model training. Unlike [8], where this score is

used to freeze the layer and stop the back-propagation

Fig. 1 The graphs represent the average absolute partial derivative

(AAPD) value of each convolutional layer in the VGG-11 (left) and

ResNet-18 (right) on the MNIST dataset (AAPD on the y-axis, epochs

on the x-axis). Each curve represents a different layer (purple for

layers close to the input, red for those close to the output). Weights in

the first layers undergo higher changes than those in the layers closest

to the output. AAPD help measuring if a layer is still learning or not
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computation up to the l-th convolutional layer, our algo-

rithm uses Pl to drop the l-th convolutional layer. The

feature maps produced by the last dropped layer are used as

input to the remaining model.

3.2 Improving training efficiency

In our approach, the removal of layers from the model to

improve the training efficiency must take place in

sequential order. At the k-th epoch, the layers to be dropped

are selected based on the importance score P
ðkÞ
l .

Thus, our fast learning algorithm works as it follows:

1. At the end of epoch k, the metric P
ðkÞ
l is calculated for

each layer l. The score values are then standardized:

P0
l ¼

Pl � P

rp
ð3Þ

where P and rp represent the average score over the

layers and the standard deviation, respectively. We

omitted the apex k for simplicity.

Ideally, we want to drop all subsequent layers for

which the parameters do not change much anymore

starting from the first layer of the network. The stan-

dardized scores P0
l can have positive and negative

values. Positive values indicate that the layer’s weights

are changing less than the average (hence, the layer is

likely not learning much), while negative values indi-

cate that the layer’s weights are changing more than

the average (hence, the layer is still learning some-

thing).

The problem of selecting the subsequent layers to

drop starting from the first layer turns into the problem

of finding the sub-vector of maximum sum starting

from the first element of an array. In our case, the array

represents the list of scores P0
l with l 2 L.

Let us assume that the current layers in the model

are L ¼ flz; lzþ1; . . .; lLg. Candidate layers to drop are

lz:::ln� with n� computed as:

n� ¼ min
t

t 2 ½z; . . .; L� 1� : P0
lt
[ 0 ^ P0

ltþ1
\0

n o
:

ð4Þ

2. As soon the candidate layers to drop lz:::ln� are found,

to avoid dropping them too early, we estimate the

median Mc of the scores P0
lt
with lt 2 lz:::ln� (namely

the scores of the candidate layers to drop) and compare

it with the median Md of the scores P0
lt

with lt 2

l0:::lz�1 (namely the scores of the layers dropped in

previous iterations and estimated when the decision of

dropping the layers was taken). We perform layer

dropping if Mc �Md. In this way, we limit the effects

that early layer dropping may have on the network

accuracy value.

Once the layers to drop are identified, the network is

split into two parts: the ‘‘tail,’’ composed of the layers

in the network up to ln� , and the ‘‘head,‘‘ composed of

the layers from ln�þ1 to the network output.

3. In epoch k þ 1, the tail is used to extract feature maps.

These feature maps are stored on a memory, such as a

disk, and are also used to feed the head to continue its

training.

4. In epoch k þ 2, the stored feature maps are retrieved

from the memory and used to train the head.

These 4 steps are within an iterative procedure repeated

until the maximum number of epochs is reached or the

convolutional layers are exhausted, namely the head does

not have any layer.

Our approach differs from the one in [8]. In the latter

approach, layers with a high score are not ‘‘physically’’

removed from the network but their weights are not

trained. The main limitation of the approach in [8] is that,

during forward propagation, the data must be processed at

each iteration even by layers for which the weights are not

updated. Our approach overcomes this limitation by

removing layers in order starting with the first. We

experimentally demonstrate the advantages of this

approach in significantly reducing the computational cost

of the training process.

Furthermore, in [8], layers to exclude from the training

are selected after a prefixed number of epochs based on the

vector f ¼ ½f1; f2; :::; fn�. Each value fi indicates the number

of epochs between one freezing and another at a specific

learning rate.

Hyper-parameters in f are empirically defined and

change over the adopted datasets. In our approach, the

decision to drop a layer is fully automatic. After each

epoch, the method analyzes the scores P
ðkÞ
l to detect can-

didate layer to be dropped and, as already described, the

decision to remove the layers or not depends also on the

median of the estimated scores.
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Algorithm 1 Fast Learning by layer dropping

3.3 Fast-training algorithm

Our approach is described in Algorithm 1 and represented

as diagram block in Fig. 2 It starts with a few warm-up

epochs e1 where the model is trained to move from the

initial random weights. After this warm-up, the weights of

model are copied to the head model, which is initially equal

to model, while the tail model is empty. From now on, only

the head model is trained. The tail model stores the

dropped layers and is used to estimate the features maps

needed to feed the head model. Each time the head model

is trained, the corresponding weights in the model are

updated accordingly. In practice, model always contain all

layers, whose weights are iteratively updated based on the

weights learned by the head model. The save features flag

is used to indicate whether the tail model should be used to

estimate feature maps using the dropped layers. Data stores

the data for training the model. Initially, Data stores the

training images. When layers are dropped, Data stores the

features maps produced by the dropped layers, i.e., the tail

model. At each iteration, the layer importance P0
l is

recomputed only for each layer of the head model as

described in Eqs. 2 and 3.

Then, n� is computed based in Eq. 4. Layer dropping is

performed if it is found a maximum sum sub-sequence of

scores P0
l starting from the first layer of the head that

includes at least one layer and the median value of the

scores in the found sub-sequence is greater than the median

score of the previously dropped layers. The scores of the

dropped layer are not recomputed every time but stored

during the training process and kept updated till the layer is

not dropped. The index n� is also used to further compress

the head model. In particular, the tail model stores the

dropped layers, namely the first n� layers of the head

model. These same layers are pulled out from the head

model, resulting in a reduced model.

The described process is iterated until only the last

convolutional and dense layers remain; they continue to

train till the maximal number of epochs e2 is not reached.

We emphasize that the whole model (model) is tested on

a validation set; this proves that removing the layers does

Fig. 2 The image shows how the process flows through the sequence

of stages. At the first stage the input is the original image,

subsequently the features maps stored from dropped layers are used

as input for the remaining layers
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not affect the accuracy of the original model. The model is

optimized using SGD method in order to maintain a fixed

learning rate over the different iterations. This is not a

limitation, and other optimizers might be used as well.

Also, early stopping may be included in the algorithm to

add more regularization. In our experiments, we did not use

early stopping to compare different training strategies on

equal terms of number of epochs.

4 Experimental results

In this section, we present results of the validation of our

method. We first present the selected neural architectures

used to assess our method. We also provide details about

how to apply our method to improve the training efficiency

of these architectures. Then, we detail the datasets selected

to perform the experiments and the hyper-parameters

adopted on each dataset.

The results of our experiments are reported in Tables 1

and 2. In each table, ‘‘Network‘‘ indicates the neural

architecture; ‘‘Dataset’’ specifies the dataset used for

training and testing the model; ‘‘SGD,‘‘ ‘‘Freezing’’ and

‘‘Dropping‘‘ indicate the strategy used to train the network.

In particular, SGD is the baseline method, namely the

model is trained in a standard way without attempting any

training efficiency. Freezing represents our implementation

of the method in [8] where, however, layers to freeze are

selected in the same way as we do in our method. In this

case, weights of selected layers are excluded from the

training (frozen) but the layers are not physically removed

from the trained model. The column Dropping reports

results of our layer dropping method. The columns indi-

cated with ‘‘T’’ report the duration of the training and refers

to the time in minutes required to complete the expected

number of training epochs, including the warm-up epochs.

Columns ‘‘A‘‘ report the test accuracy values, measuring

the percentage of correct predictions made by the model on

the test set. Finally, columns ‘‘DT’’ report the percentage of
time saved by applying a training efficiency strategy

(Freezing or Dropping) with respect to the baseline (SGD).

In particular, we compute this metric as:

DT ¼ TSGD � T

TSGD
� 100: ð5Þ

All experiments have been carried on a machine equipped

with: GPU RTX 3090 24GB, RAM 96 GB, processor

Intel(R) Xeon(R) CPU E5-2403 1.80GHz.

In our implementation, feature maps produced by the

dropped layers are stored on disk directly as PyTorch

tensor using the ‘‘Pickle‘‘ Python package [25], that

implements binary protocols for serializing and de-serial-

izing a Python object. We experimentally noted that using

Pickle is faster than writing and reading files on disk with

the Numpy package [26] and PyTorch [27].

4.1 Neural architectures

In this paper we focused on improving training efficiency

of CNNs. To assess our method, we considered two neural

network architectures widely adopted in the computer

vision field. VGG (Visual Geometry Group) is a convolu-

tional neural network introduced in [11]. The VGG archi-

tecture is characterized by its depth and the use of small

convolutional filters. It consists of a sequence of convolu-

tional layers, followed by a sequence of fully-connected

layers. There are several configurations of the VGG

architecture. The smaller version is the VGG-11 with only

Table 1 Fast Training of VGG

architectures
SGD Freezing Dropping (Ours)

Network Dataset T (min) A (%) T (min) A (%) DT (%) T (min) A (%) DT (%)

VGG-11 MNIST 20.83 98.64 19.58 98.25 6.00 8.74 98.25 58.04

VGG-11 CIFAR-10 23.83 92.02 23.54 91.72 1.21 8.21 91.72 65.54

VGG-11 Imagenette 61.01 75.33 59.33 74.08 2.75 18.32 74.08 69.97

VGG-16 MNIST 22.54 98.85 21.45 98.26 4,24 9.01 98.26 60.03

VGG-16 CIFAR-10 26.54 93.12 24.94 92.84 6.03 9.56 92.84 63.98

VGG-16 Imagenette 74.73 78.76 71.21 77.83 4.71 25.23 77.83 66.24

VGG-19 MNIST 23.02 98.52 22.68 96.22 1.48 9.45 96.22 58.95

VGG-19 CIFAR-10 27.02 93.10 25.78 91.71 4.59 11.53 91.71 57.33

VGG-19 Imagenette 110.35 80.32 105.34 78.13 4.54 37.76 78.13 65.78

SGD refers to the standard training strategy of the entire model. Freezing refers to excluding the parameters

of some layers from the training without removing the layers from the model. Dropping is our method

where layers are deleted from the trained model. T is the training time in minutes. A is the test accuracy

value. DT is the percentage of reduced training time with respect to the time of SGD

Bold values indicate the best metric value
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11 layers. The VGG-16 has 16 layers and the VGG-19 has

19 layers. As the number of layers in VGG increases, so do

the training time and memory requirements.

From the experiments carried out with VGG, we found

out that the order of the curves representing the layer scores

P0
l across the epochs depends on the inclusion in the model

of the batch normalization layer. In fact, as it can be seen in

Fig. 3, we note that the scores order of the layers of

VGG?BN is inverse respect to the scores order of the

VGG without BN. This is because batch normalization

speeds up learning in neural networks by normalizing the

inputs to each layer, which reduces the internal covariate

shift. This makes the optimization more stable and allows

the network to learn more quickly and with higher accu-

racy. Hence, based on our experiments, to use our tech-

nique with a VGG it is recommended to include the batch

normalization layer (one after each convolutional layer).

ResNet (Residual Network) is a convolutional neural

network introduced in [12]. ResNet is characterized by the

use of residual blocks, which help to alleviate the vanishing

gradient problem and allow for the creation of much deeper

neural networks. The original ResNet architecture has

several configurations, including ResNet-18, a relatively

small version of the ResNet architecture with only 18

Table 2 Fast Training of

ResNet architectures
SGD Freezing Dropping (Ours)

Network Dataset T (min) A (%) T (min) A (%) DT (%) T (min) A (%) DT (%)

ResNet-18 MNIST 23.67 98.2 23.10 97.78 2.41 8.64 97.78 63.50

ResNet-18 CIFAR-10 27.67 92.25 25.97 91.82 6.14 11.90 91.82 56.99

ResNet-18 Imagenette 253.07 80.12 242.32 79.07 4.25 83.78 79.07 66.89

ResNet-50 MNIST 35.43 98.75 35.02 96.85 1.16 11.23 96.85 68.30

ResNet-50 CIFAR-10 38.43 94.40 35.40 92.05 7.88 13.05 92.05 66.04

ResNet-50 Imagenette 336.00 82.78 315.34 80.34 6.15 86.28 80.34 74.32

ResNet-101 MNIST 53.12 97.81 51.64 95.45 2.79 18.56 95.45 65.06

ResNet-101 CIFAR-10 56.12 93.98 52.03 91.26 7.29 19.53 91.26 65.20

ResNet-101 Imagenette 402.34 82.23 380.23 80.75 5.29 120.44 80.75 70.06

ResNet-152 MNIST 70.76 97.43 65.30 95.12 7.72 23.34 95.12 67.01

ResNet-152 CIFAR-10 74.76 93.45 68.93 91.03 7.80 25.75 91.03 65.56

ResNet-152 Imagenette 540.76 82.65 504.72 79.45 6.66 180.34 79.45 66.65

SGD refers to the standard training strategy of the entire model. Freezing refers to excluding the parameters

of some layers from the training without removing the layers from the model. Dropping is our method

where layers are deleted from the trained model. T is the training time in minutes. A is the test accuracy

value. DT is the percentage of reduced training time with respect to the time of SGD

Bold values indicate the best metric value

Fig. 3 The plots show the scores P
ðkÞ
l on the MNIST dataset for a

VGG-11 trained with (on the left) and without batch normalization

(on the right). Bath normalization reverses the order of the score

curves and reduces the internal covariate shift making the optimiza-

tion more stable and quick. As an effect, layers are learned

sequentially from input to output
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layers. ResNet-50, ResNet-101, and ResNet-152 are much

deeper versions of the ResNet architecture with 50, 101,

and 152 layers, respectively.

We point out that in the case of ResNet, we have to save

not only the features maps but also the output of the skip

connections to maintain the original behavior as shown in

Fig. 4.

4.2 Dataset and hyper-parameters

To evaluate our algorithm, we use three popular classifi-

cation datasets: MNIST [28], CIFAR-10 [29], and

Imagenette [30].

The MNIST dataset contains 60,000 gray scale images,

with 50,000 for training and 10,000 for test. It includes 10

classes, and each class is represented by 6,000 images.

The CIFAR-10 dataset contains 60,000 color images,

with 50,000 for training and 10,000 for test. Overall, there

are 10 classes, and, for each class, 6,000 images.

Imagenette [30] includes a subset of 10 classes from the

larger Imagenet [31].

The classes are tench, English springer, cassette player,

chain saw, church, French horn, garbage truck, gas pump,

golf ball, parachute. Overall, the adopted dataset includes

about 1,000 color images per class with a resolution of 160

x 160 pixels. The images are obtained from the ones in the

original Imagenet dataset by performing a resizing that

preserves the original aspect ratio.

We opted to use MNIST and CIFAR-10 datasets to

ensure the comparability of our work with [8]. In addition,

we included the more complex Imagenette dataset to

evaluate the performance of our work on a more chal-

lenging dataset.

In all our experiments, we use a batch size of 256

samples. We set the learning rates to values generally used

in literature, while the number of epochs and warm-up are

selected empirically. On the MNIST and CIFAR-10 data-

sets, the total number of epochs (including the model

warm-up) is set to 60. On the MNIST dataset, the learning

rate is fixed to 0.001. The warm-up epochs are 5. On the

CIFAR-10 dataset, the learning rate is fixed to 0.1 and

scaled x10 after 20 epochs. The warm-up epochs are 10.

Finally, on the Imagenette, the number of epochs is set to

150 and the learning rate is fixed to 0.01 and scaled x10

after 50 epochs. The warm-up epochs are 25.

4.3 Results and comparison

Table 1 reports the results obtained by applying our

method to models of various depth (11, 16, and 19) in the

family of VGG architectures. All models include batch

normalization. First, we note that, across the models and

datasets, the impact on accuracy values of freezing or

dropping layers to increase training efficiency is negligible.

The differences in the accuracy values vary, for both

techniques, in the range 0.26 (for VGG-16 trained on

CIFAR-10) and 2.38 (for VGG-19 trained on MNIST).

These differences increase slightly with network depth and

are generally higher for the Imagenette dataset. However,

these small decreases in accuracy values come with a

reduction in training time. As shown in the table, for VGG

models, while the training time reduction with the freezing

layer technique varies in the range 0:40% (for VGG-16 on

the MNIST dataset) and 6:03% (for VGG-16 on the

CIFAR-10 dataset), with our layer dropping technique the

training time reduction varies in the range of 58:04% (for

VGG-11 on the MNIST dataset) and 69:97% (for VGG-11

on the Imagenette dataset). While on average these per-

centages are 3:52% for the freezing layer method, they are

62:87% with our technique.

These results are not limited to VGG architectures.

Indeed, Table 2 reports similar achievements for ResNet

architectures of various depth (18, 50, 101, and 152). In

particular, analyzing the results in a similar way to what

was done for the VGG architectures, the differences in the

accuracy values vary, for the layer freezing and dropping

techniques, in the range 0:4% (for ResNet-18 on the

MNIST dataset) and 3:2% (for ResNet-152 on the Ima-

genette dataset). For both techniques, the impact on accu-

racy values generally increases with network depth. In

terms of training time reduction, with the layer freezing

technique, the percentages vary in the range 1:16% (for

ResNet-50 on the MNIST dataset) and 7:8% (for Resnet-

152 on the CIFAR-10 dataset). Our approach achieves

training time reduction percentages in the range 56:99%
(for ResNet-18 on the CIFAR-10 dataset) and 74:32% (for

ResNet-50 on the Imagenette dataset). While, on average,

layer freezing accounts for a 5:46% of training time

Fig. 4 The image shows how dropping takes place in the ResNet at

any residual block. The feature maps saved to the memory come from

the layers in red inside the residual block and on the skip connection.

The layers on the left of the vertical dotted line are dropped and

belong to the tail, the ones on the right belong to the head model and

are trained based on the stored feature maps
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reduction; our method results in average training time

reduction in approximately 66:30%.

Overall, the training time for the VGG and ResNet

architectures is more than halved with our technique

despite the loss in accuracy values being comparable to that

obtained by freezing the layers.

5 Training time and parameter reduction

The results discussed in Sect. 4 refer to the impact of our

technique on model accuracy and the training time reduc-

tion achieved on our machine. To further analyze and

explain the performance of our technique, this section

refers to the effect it has on the number of parameters and

operations performed during forward propagation at train-

ing time. Indeed, our technique not only reduces the

number of weights for which it is necessary to estimate

partial derivatives during gradient back-propagation, but

also affects the number of operations performed during

forward propagation.

A potential bottleneck in our method is the feature map

saving to disk whenever layer dropping occurs. In some

networks, the size of the features maps produced by a layer

may be greater than the size of the input images; thus,

reading and writing feature maps with large dimensions

can cause a slowdown of the training. However, we have

observed empirically that layer dropping never takes place

layer by layer but generally several subsequent layers are

dropped together. Figure 5 shows (on the left) the test

Fig. 5 The plots on the left show the test accuracy values of a ResNet-

18 (top) and VGG-16 (bottom) trained on the MNIST dataset with

different strategies: SGD (red curves), layer freezing (blue curves),

and layer dropping (green curves). The experiments were repeated 10

times with different starting weights and data randomization. Freezing

and dropping layers achieve nearly equivalent test accuracy values,

and the values are slightly lower than those achieved by training the

entire model. On the right, the plots show training time per epoch.

Starred curves show the time required to store the feature maps to

disk, while the other curves show the training time which decreases

over the epochs due to the lower cost of forward propagation in our

method
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accuracy values of ResNet-18 (top row) and VGG-16

(bottom row) on the MNIST dataset over the epochs for

SGD, the layer freezing method and our technique. As

already discussed, our technique and the freezing layers

one has a limited impact on the final model accuracy. On

the right, the figure shows the training time per epoch of

each technique. In particular, the time spent by our method

refers to: the time to store feature maps on the disk

whenever layer dropping arises, and the time to train the

model. As shown in the plot, the time to store feature maps

on the drive is concentrated only in few epochs since, as

already said, our method does not constantly drop layers.

The time to store the maps to disk depends on their size

and, thus, is higher for the VGG model. The time to train

the model includes, for all methods, the time for computing

the gradients, updating the layer weights, loading the

training data and performing forward propagation. The plot

shows how, in our technique, this time decreases over time

and becomes much lower than that of the other methods.

To further investigate this result, we discuss the FLOPs

(floating point operations per second) of our method versus

the baseline method (SGD) and the layer freezing tech-

nique we are comparing. More specifically, we measured

the MMAC (Mega Multiply-Accumulate), a FLOPs metric

that counts the number of matrix multiplications and

accumulations (MACs) a neural network performs in one

second. The metric is expressed in millions (mega) of

operations and is useful for evaluating the computational

complexity of a neural network and comparing the per-

formance of different architectures. Figure 6 shows, on the

left, the number of parameters per each epoch for the

ResNet-101 (top) and VGG-16 (bottom). Red curves

Fig. 6 Left plots show the number of network parameters in each

epoch for the ResNet-101 (top) and VGG-16 (bottom). The number of

parameters remains constant when training or freezing the layers (red

curves); it decreases with our approach (green curves). This parameter

reduction is correlated with the MMAC reduction, shown in the plots

on the right, because our method reduces the number of operations

during forward propagation
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represent the number of model parameters when using the

baseline and the layer freezing techniques; Green curves

are the number of parameters when using our method.

Since our method compresses the model at training time,

there is a strong reduction in the number of parameters

corresponding to the epochs when layer dropping arises.

This reduction in parameters is correlated with the MMAC

reduction during forward propagation, shown in the plots

on the right. While the MMAC is constant for the baseline

and the layer freezing techniques, in our method, it keeps

decreasing due to the shrinkage in the number of

parameters.

Table 3 reports the FLOPS required for the forward

propagation during training by using SGD versus our

approach (Dropping). The FLOPs refer to various deep

learning models, including VGG-11, VGG-16, VGG-19,

ResNet-18, ResNet-50, ResNet-101, and ResNet-152. The

second column shows the FLOPs required when training

the entire model, the third column shows the FLOPs

required when using our approach. The final column

DFLOPs show the percentage difference between the

FLOPs of the two approaches.

Overall, Table 3 suggests that the Dropping approach is

more efficient than the baseline method. The percentage

difference between the two approaches ranges from

17.17% (for VGG-11) to 83.74% (for ResNet-152), indi-

cating that Dropping can significantly reduce the compu-

tational burden of training deep neural networks, especially

for very deep models like ResNet-101 and ResNet-152.

Table 3 also shows that the reduction in the FLOPs

increases with the depth of the model. Moreover, as also

indicated by the magnitude of the FLOPs, the VGG family

performs more operations than the ResNet due to the

presence of dense layers applied to feature maps of greater

size.

6 Conclusion and future works

This work proposed a method to improve the training

efficiency of convolutional networks. The method reduces

the computational cost of the forward propagation by

gradually dropping subsequent layers from the model to

train based on the computed parameter gradient. This is

different from previous work, which freeze layers without

removing them.

The method has been validated on three popular datasets

to train models of various depth in the VGG and ResNet

families. On average, our method achieves a time reduction

in 62:87% on VGG architectures, and of 66:30% on ResNet

models with a limited impact on the model accuracy that,

in our experiments, never exceeds the 3:2% for very deep

network (ResNet-152).

A typical limitation of fast training and network com-

pression algorithms is that the network must be initialized

through a warm-up training. Rather than using an empirical

number of warm-up epochs, our method might use a

threshold on the layer score to decide when the warm-up is

ended. Since our method significantly reduces the training

time, it might also alternate among training the whole

model and the head model to refine the first dropped layers’

weights. This strategy would account for the accuracy drop

of the model.

In future work, we intend to investigate to what extent

our approach can be applied to other more complex

architectures such as multi-branches and recurrent memory

cells. In multi-branch networks, one should check whether

learning proceeds similarly along each of the branches. In

recurrent memory cells, it can be interesting to study how

the gradient-based scores of these memory cells change

over the epochs. Furthermore, it will be useful to study

whether similar techniques can be applied to visual

transformers.

Finally, we will also investigate an adaptive method to

estimate optimal batch size while layer dropping is applied.

Indeed, as the model size is reduced over time, the memory

usage for feature maps and gradients reduces accordingly

making it possible to dynamically increase the batch size

and reduces the number of iterations in an epoch.
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study are openly available. The Minst dataset can be downloaded

Table 3 FLOPs reduction across architectures

SGD Dropping (Ours)

Network FLOPs FLOPs DFLOPs (%)

VGG-11 31,203.60 25,847.02 17.17

VGG-16 50,311.19 33,049.44 34.31

VGG-19 66,000.00 44,079.31 33.21

ResNet-18 1,987.80 640.53 67.78

ResNet-50 4,704.59 2,193.45 53.38

ResNet-101 9,262.2 1,667.27 82.00

ResNet-152 13,823.39 2,247.46 83.74

SGD refers to the standard training strategy of the entire model.

Dropping is our method where layers are deleted from the trained

model. FLOPs are measured during the forward propagation. DFLOPs
is the percentage of reduced FLOPs with respect to SGD. Our

approach reduces the FLOPs of all architectures, especially of the

largest ones

Bold values indicate the best metric value
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from http://yann.lecun.com/exdb/mnist/. The Cifar-10 dataset can be

downloaded from https://www.cs.toronto.edu/*kriz/cifar.html. The

Imaginette dataset can be downloaded from https://github.com/fastai/

imagenette/. No new data were created in this study.
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