
Systematically Applying High-Level Mutations for Fuzz Testing Big Data
Applications

Lars van Koetsveld van Ankeren , Burcu Kulahcioglu Ozkan
Software Engineering Research Group

Technical University Delft
L.vanKoetsveldvanAnkeren@student.tudelft.nl, B.Ozkan@tudelft.nl

Abstract
As the amount of data worldwide continues to grow
the big data field is becoming increasingly impor-
tant. Fuzz testing has shown to be an effective test-
ing tool, and recent work has applied fuzz testing to
big data applications. This study aims to contribute
to knowledge on fuzz testing big data applications
by extending on BigFuzz, a state-of-the-art fuzzing
framework for big data applications. Our study of-
fers an alternative mutation approach by system-
atically applying combinations of seven high-level
mutation types, instead of selecting mutations ran-
domly. Our findings show that 1) for three out
of five benchmarks, systematic exploration finds a
higher number of failures; 2) the amount of trials
needed to find an equal number of failures is not
increased by testing systematically for the majority
of the benchmarks; 3) our configuration returns the
best results when it explores with increased exhaus-
tiveness; Thus, we show that systematically apply-
ing high-level mutations can find a higher number
of unique failures in an equal number of trials.

1 Introduction
Data-intensive scalable computing (DISC) applications such
as Apache Spark [1] are becoming increasingly important as
the amount of data continues to grow worldwide. The im-
portance of testing these applications is rising accordingly,
emphasizing the relevancy of this field of study.

A testing method that can be applied to DISC systems is
fuzz testing. Fuzzing frameworks have emerged as a popu-
lar testing tool, demonstrated by the success of AFL [2] and
the discovery of the Heartbleed bug by fuzz testing [3]. Fuzz
testing frameworks test applications by repeatedly mutating -
altering - an input seed and consequently running the appli-
cation with the mutated input.

For this purpose BigFuzz was implemented, a fuzz test-
ing framework for Spark applications [4]. The six mutation
types introduced by BigFuzz are error-type guided based on
six common types of errors for Spark applications. BigFuzz
applies one random high-level mutation on the seed input ev-
ery trial run. An alternative approach is to combine muta-
tions by applying them consecutively over separate runs. This

a form of higher order mutation (HOM) testing, defined in
2009 by Jia and Harman, referring to mutants with multiple
faults injected instead of one [5]. For a small number of pos-
sible mutations (e.g. six for BigFuzz), systematically apply-
ing high-level mutations may find additional unique failures
in the program under test (PUT).

However, there is a lack of research on the possible benefits
of this approach. HOM testing generally applies multiple mu-
tations in the same run, instead of applying mutations in con-
secutive runs. Additionally, related research on HOM testing
usually restrict the search space, due to the significant amount
of possible mutants [6, 7]. In contrast, search techniques are
not required for small amounts of possible mutations.

Furthermore, few research has been conducted on explor-
ing alternative approaches to fuzz testing big data applica-
tions [8–10]. Out of these studies the focus of Olston et
al. [8] lied on the generating of input data for dataflow ap-
plications, and the research conducted by Li et al. [10] and
Gulzar et al. [9] aimed to test dataflow applications symbol-
ically, which is a manner of testing that can not be applied
to all data centric applications [4]. Therefore this study aims
to fill the gap in the literature by providing knowledge of the
performance of fuzzing DISC applications with a systematic
testing approach.

The main question that this study will aim to answer is the
following: ’How does systematic exploration of high-level
mutations affect the performance of a fuzz testing frame-
work?’. The main research question can be further subdivided
into the following sub-questions:

1. How can high-level mutations be applied systemati-
cally?

2. How does systematic exploration perform when com-
pared to random selection of mutations?

• What is the difference in numbers of errors found?
• What is the difference in number of runs needed?
• How does the configuration of the exploration in-

fluence the performance?
3. Which program properties determine the performance of

systematic exploration?
The following sections of this paper give an overview of the

performance of systematic exploration by answering these re-
search questions. The first section below will extend on nec-
essary background information for this study. Following it,

1

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering

sections four and five line out the methodology and contri-
bution of this research. Section five contains the results and
experimental set-up for replicating this study. Encountered
limitations and ethical aspects related to the performed re-
search are included in section six. Finally, the last section
seven outlines conclusions on the conducted research.

2 Background
The following three section provide the background informa-
tion on the most relevant parts of our study.

2.1 Fuzzing
Fuzzing is a test generation technique. It is a form of random
testing, creating different inputs with the goal of finding unex-
pected behaviour. In a survey on fuzzing conducted by Manes
et al. fuzzing is defined as the following: "the execution of
the program under test using input(s) sampled from an input
space ... that protrudes the expected input space of the pro-
gram under test" [11]. Different versions of fuzzing software
exist, distinguished mainly by the amount of analysis used
to guide the fuzzing framework. Blackbox fuzzing refers to
frameworks that perform fuzzing without first analysing the
program and thus having only random or unguided fuzzing.
See this paper by Woo et al. for a mathematical definition of
blackbox fuzz testing [12] and the research of Kim et al. for
a scenario in which blackbox fuzzing was chosen over white-
box [13]. Contrarily, whitebox fuzzing frameworks perform
an in-depth analysis of the PUT and are in this manner able
to explore the PUT systematically. The research of Bouni-
mova et al. is an example of whitebox fuzzing in produc-
tion [14]. Greybox fuzzing lies between blackbox and grey-
box, analysing only a limited amount. AFL is an example
of a greybox fuzzer [15], as well as the studies extending on
it [16]. Since this study does not analyse the PUT, our fuzzer
is a form of blackbox testing. However, some whitebox ap-
proaches also use a systematic search.

2.2 BigFuzz
This study extends on the BigFuzz study from 2020 [4]. Big-
Fuzz was introduced as a fuzzing framework for Spark appli-
cations. The fuzzing framework is built upon JQF, "a plat-
form for performing coverage-guided fuzz testing in Java"
[17]. BigFuzz utilizes the event tracking of JQF to abstract
coverage guidance of dataflow operators. This is the first
of three components that enable BigFuzz to make coverage-
guided fuzz testing possible for big data applications. The
second component consists of rewriting the Spark applica-
tion to a Java application, hereby reducing the latency of run-
ning the tests. This is very effective since initiating Spark
requires over 10 seconds per test. The third component is
the manner in which mutations are generated in BigFuzz. It
attempts to generate valid inputs and mutates schema-aware
and error-type guided, which is how it can resemble real-
world errors. Using such a schema improves performance by
avoiding crashes early on. To be able to represent these errors
Zhang et al. investigated the most common types of errors
and how these can be replicated in their framework. These
three components have together enabled BigFuzz to lay the

the foundation for coverage-guided fuzz testing for Big Data
analytics, which this study builds upon.

3 Methodology
This paper has the following methodologies defined per sub-
question.

The first research question, how can high level mutations
by applied systematically, can be answered by performing a
literature search for means to systematically apply all combi-
nations of mutations. This search consists of two parts: first,
what research has been conducted on HOM testing; second,
which algorithms exist to explore the mutation space. By
combining the findings to these two questions an approach to
systematic mutation with seven mutations can be formulated.

For the second research question, how does systematic ex-
ploration perform in comparison to random selection, several
metrics can be measured for an indication of performance dif-
ferences. In the literature the most used measure for evaluat-
ing performance is the number of unique crashes found per
run [18]. This amount can be misleading however, since it
depends on the ability of the fuzzing tool, in this case the
BigFuzz application, to remove crashes with equal causes.
Despite this issue, finding bugs is the purpose of a fuzzing
tool, and is therefore the main evaluation metric for this study.
Another metric that could be evaluated is the coverage of the
fuzzing framework, however this is difficult to evaluate for
the BigFuzz framework, since it currently does not include
an analysis of the total amount of paths or branches of the
PUT.

To answer the third and last research question, on which
program properties determine the performance of systematic
exploration, the benchmarks that were used by the authors
of the BigFuzz paper are analysed and compared. These
benchmarks differ in several aspects that can influence per-
formance, such as the amount of columns in the input file
and the input specification. By linking the performance per
benchmark to these properties, conclusions can be drawn on
when the fuzzing framework performs best.

4 Systematic Application of Mutants
Our approach to fuzzing DISC applications aims to explore
combinations of high level mutations systematically, con-
trary to applying mutations randomly on the seed input every
run. Exploring combinations in this manner can be achieved
only for a small amount of mutation types, since the num-
ber of combinations increases exponentially with the amount
of times mutations are combined. Section 4.1 shows related
research which our approach is based on.

Our implementation is an extension of the BigFuzz func-
tionality that was available in the repository of the authors
of the BigFuzz paper [19]. Similar to the BigFuzz framework
we apply mutations for a set number of trials, however instead
of applying mutation to one initial input we also use mu-
tants as input. Our implementation applies seven mutations
of which six were based on the BigFuzz mutations, listed in
Table 1. The seventh mutation M7 was added to replicate null
errors similar to M5. The first level of mutations are applied
to an input seed of the application, which generally consist

2

ID Mutation Description Column specific
M1 Data value Change data to arbitrary integer. Yes
M2 Data type Change data type from float to string, integer to float or string to integer. Yes
M3 Data format Change delimiter to "~" or if "~" to ",". No
M4 Data column Insert arbitrary character in data. Yes
M5 Null data Remove column from a row of data. Yes
M6 Empty data Mutate data to empty string. Yes
M7 Add data Add a column to row of data. No

Table 1: Systematically applied mutation types

of multiple columns of data. Following mutations are then
applied on the previously mutated input. Mutations are ap-
plied either on all columns for M3 and M7 or one specific
column for the other mutation types. The number of explored
combinations of mutations depend on the configuration of our
fuzzing tool, which Section 4.2 will elaborate on. Our fuzzing
tool runs until a set number of trials is reached.

4.1 High-Level Mutation Algorithms
To answer our first research question, how can high-level mu-
tations be applied systematically, we searched for literature
answering the following questions: what research has been
conducted on HOM testing; which algorithms exist to explore
the mutation space. The findings for these searches are the
foundation our approach is built upon.

The first question concerns research conducted on HOM
testing, since it is similar to our research in that multiple mu-
tations are applied. However, it is different in that most stud-
ies apply multiple mutations in one run, instead of combining
mutations over multiple runs as can be done for a small num-
ber of mutation types.

The question is answered by two studies published in 2017
and 2019 listing higher order mutation studies [6, 20]. The
study by Ghiduk et al. is the first literature review conducted
on HOM testing, listing research objectives, techniques and
outcomes. Two of their findings are strategies for handling
the issue of the great number of HOMs that could be gener-
ated by combining mutations. The first strategy is the use of
search based techniques, for instance the genetic algorithm;
the second strategy is to reduce the number of HOMs. This
first strategy is not applicable to our research, since our aim
is to search the mutation space systematically. For the second
strategy the study found three ways researches had reduced
the amount of HOMs: (1) reduce the number of mutation op-
erators; (2) select a subset of HOMs based on an attribute;
(3) reduce the number of locations where the original pro-
gram can be mutated. For our study the number of mutation
operators can not be reduced further, since it is already a min-
imum number of high-level mutation types representing real-
world errors. Additionally, our approach does not mutate at
a location in the program since it is a fuzz testing tool, in-
stead applying mutations to a seed input. However, we can
reduce the amount of combinations of mutation types by ex-
cluding certain combinations that do not seem beneficial to
explore. These exclusion rules are explained in section 4.2.
The research performed by Lima et al. is similar to the litera-
ture review from Ghiduk et al., although it is more recent and

focusses on HOM generation and selection techniques. The
goal of HOM generation in most studies is to cover multiple
first order mutations (FOMs) in less test runs, one of the most
successful methods is described by Polo et al. [21]. However,
for this study our aim is to cover more edge cases, which is
why we choose not to generate only a subset of mutants.

The second aim of our search was to find algorithms for ex-
ploring combinations of high-level mutations. Since our ex-
ploration is not search based, our approach needed a traversal
for the entire set of possible mutants. We choose to employ
a pre-order depth-first algorithm, since it can be used for a
bounded exhaustive search of the mutation space [22].

4.2 Systematic Exploration
To explore the mutation space, our approach uses a data tree
combined with a depth-first pre-order search. An overview
of this search is shown in Figure 1, however in practice some
nodes may be excluded, which the next two parts describe.
On every test run the tree is traversed for the next mutation
type to be applied for generating the next input and is sub-
sequently tested on the PUT. The top node represents the
columns of the input seed file. The children of a node rep-
resent the next mutations to be applied, and mutate upon the
data of their parent. The nodes shown contain fields for the
previously applied mutations, their level in the tree and the
column to apply the mutation to. The mutated data is not
stored in the nodes of the tree, instead all columns are saved
once for every level in the tree to be more space efficient. For
this reason the tree is traversed with a depth-first search, in-
stead of a breadth-first exploration. Since any child mutates
upon the data of its parent, a child node needs only access
to its parent’s mutation data. In the case of a breadth-first
search, the data of the entire level in the tree would need to
be stored. This number increases as the number of nodes per
level grows exponentially. When the entire tree is explored,
the tree restarts from the first mutation again, until the maxi-
mum amount of trials is reached.
Tree construction. The tree structure is not generated in its
entirety when it is constructed. Instead, only the root node
is added and children are generated lazily by constructing
and adding children to a node when the nodes are visited
for the first time. The root node does not contain a mutation
type but exists only to traverse the rest of the tree. Children
are removed from their parents when they are traversed, to
avoid applying the same combinations of mutations repeat-
edly. Furthermore, a child is only generated for combina-
tions of mutation type and columns that have not been ap-

3

Figure 1: Mutation tree with column exploration turned off, there-
fore each mutation is only applied to one column of the input seed
file. Some nodes could be excluded when applied to the same col-
umn.

plied by either its parents or itself. In addition, children are
excluded for sequences of combinations without added ex-
ploration value. For instance: when a value is changed for a
column, and continuing the column is set to an empty string,
the effect of the changed value is nullified. The exclusion
rules are listed in Table 2. As can be seen in the table, muta-
tions exclude themselves when applied to the same column.
Note that some mutations are not column specific: M3 and
M7. These mutations are always excluded if they occurred
previously, however the remainder of the mutations are only
excluded when applied to the same column as previous mu-
tations. To implement this behaviour child nodes that fit the
exclude rules are removed from the parent node. The exclu-
sion rules bound the exhaustiveness of the systematic search,
however also improve efficiency and increases the number of
times the exploration of the tree is restarted.
Configuration. The systematic exploration can be config-
ured by two parameters to control the size of the tree and by
one parameter to set the maximum number of testing trials.

The first parameter is a boolean to indicate whether to ex-
plore each mutation per column, for the mutations that apply
to all columns. This parameter determines how children are

Excludes M1 M2 M3 M4 M5 M6 M7
M1
M2
M3
M4
M5
M6
M7

Table 2: Exclusion rules

generated. If column exploration is turned off, children are
generated for a random column and with mutation types that
have not been applied on any column by the parents of the
child node. The exclusion rules still apply however, which
can lead to mutations being discarded. If column exploration
is turned on, a child node is generated for each column. In-
stead of checking which mutation types have been applied to
any column by the parents of the node, only the previous mu-
tation types for the column of the child node are used. Thus
the amount of nodes generated is increased by the amount of
columns of the input file.

The second parameter is the maximal depth of the tree. The
tree does not generate any additional children for a mutation
at the level of the maximal depth. When column exploration
is turned of, the maximum depth of the tree becomes seven,
since this is the amount of possible mutations.

The last parameter determines the amount of times mutants
are tested on the PUT.

5 Empirical Evaluation Results
Our evaluation aims to compare the performance of system-
atic exploration to random mutation in the following aspects:

1. What is the difference in numbers of errors found?

2. What is the difference in number of runs needed?

3. How does the configuration of the exploration influence
the performance?

The random selection approach consists of applying one ar-
bitrary mutation type to the seed input for every test run. The
difference in number of errors found is the difference in num-
ber of errors found at the end of program. The number of
runs refers to the amount of trials before the amount of errors
starts to converge. Lastly, the evaluation of the configuration
assesses how the column exploration and mutation depth, de-
tailed in Sec 4.2, impact the results.

Besides providing answers to these questions, we aim to
answer our third research question, on which program prop-
erties systematic exploration performs different compared to
random mutation.

5.1 Benchmarks
Experimental setup. To evaluate the performance we ap-
plied five benchmarks compiled from various sources, listed
in Table 3. Several of these benchmarks are from authors
of the BigFuzz study and others originated from public ap-
plications or the BigTest repository [4]. We choose to use

4

ID Program Output
P1 IncomeAggregation Average income per age range in a district
P2 StudentGrade List of classes with more than 5 failing students
P3 MovieRating Total number of movies with rating ≥4
P4 FindSalary Total income of individuals earning ≤$300 weekly
P5 InsideCircle Check whether the point (x,y) is in a circle

Table 3: BigFuzz benchmarks

Figure 2: Benchmark P1 without column exploration and varying
tree depths.

the BigFuzz benchmarks for comparison purposes, evaluating
the benchmarks present in the BigFuzz repository [19]. The
setup used was twenty iterations per benchmark with a trial
length of 10000. The evaluation metric is the number of fail-
ures, which are unique unexpected exceptions thrown by the
PUT. To compare our performance with a random mutation
selection approach, our implementation contains an alterna-
tive method applying one arbitrary mutation type to the seed
input for every test run.
Benchmark P1. The input of benchmark P1 contains three
columns and has been tested extensively to show the differ-
ence for varying mutation depth settings. Figures 2 and 3
show the amount of unique failures found for this benchmark
on average with and without column exploration. The graph
without column exploration is more smooth than with column
exploration, since randomly selected columns lead to differ-
ent mutations between iterations. The figures show that col-
umn exploration finds a higher amount of unique failures for
this benchmark overall. Furthermore a tree depth of 4 leads
to the best results for both column exploration and random
column selection. The performance with a tree depth of 3, 5
and 6 are similar to 4, a tree depth of 2 or 7 finds less unique
failures. The following benchmarks are evaluated with a tree
depth of 4 based on this result.

Figure 4 compares these results with random selection. On
average systematic mutation is able to find 50% more unique
failures than random mutation with column exploration. Sys-
tematic mutation without column exploration also reaches a

Figure 3: Benchmark P1 with column exploration and varying tree
depths.

higher number of failures compared to random mutation. The
number of trials needed before converging is about 5000 trials
for systematic exploration in comparison to 1000 for random
mutation.
Benchmark P2. The seed for this benchmarks contains two
columns. Figure 5 shows the evaluation results for this bench-
mark. As can be seen in the figure the difference between the
number of errors found after 10000 trials is small. However,
random selection finds failures in less trials when compared
to systematic exploration overall. For this benchmark column
exploration performs similar to the random column configu-
ration.
Benchmark P3. The MovieRating benchmark P3 is a bench-
mark with two columns, and three delimiters. This made it
a difficult benchmark to test for our implementation, since it
stores only one delimiter. As Figure 6 shows, the difference
in results is again less than one unique failure on average.
Random mutation finds a 16% higher number of failures in
10000 trials compared to systematic exploration. In contrast
to other benchmarks the amount of errors does not converge
before 10000 trials for random mutation, however it does for
systematic exploration - around 6000 trials.
Benchmark P4. The FindSalary benchmark P4 is a bench-
mark containing only one column. Therefore there is no
difference between mutating with or without column explo-
ration. Figure 7 provides the number of unique failures found
for this benchmark. The results show that systematic explo-
ration finds 38% more unique failures on average compared

5

Figure 4: Benchmark P1 with systematic mutation compared to ran-
dom mutation. The systematic exploration tree depth is 4.

Figure 5: Benchmark P2 with systematic mutation compared to ran-
dom mutation. The systematic exploration tree depth is 4.

to random mutation. Both results converge at a similar num-
ber of trials.
Benchmark P5. Figure 8 shows the results for benchmark
P5. For this benchmark systematic exploration finds 30% in-
creased unique failures compared to random mutation testing.
Systematic exploration finds the same number of failures af-
ter 10000 trials for both configurations. The number of tests
needed to find the maximum amount of bugs is furthermore
comparable for all results. Interestingly, random mutation
converges within only 500 trials for this benchmark, while
our systematic approach converges at 5000 trials with random
columns and 1000 trials with column exploration.

5.2 Findings
To assess the performance of our implementation we aim to
answer the following questions.

1. What is the difference in numbers of errors found?

Figure 6: Benchmark P3 with systematic mutation compared to ran-
dom mutation. The systematic exploration tree depth is 4.

Figure 7: Benchmark P4 with systematic mutation compared to ran-
dom mutation. The systematic exploration tree depth is 4.

2. What is the difference in number of runs needed?

3. How does the configuration of the exploration influence
the performance?

Comparing the benchmarks results leads to the following
findings: (1) Out of the five benchmarks evaluated system-
atic fuzzing finds more unique failures in three benchmarks,
P1; P4; P5, performs similar to random fuzzing for bench-
marks P2 and is slightly outperformed for benchmark P3. (2)
The number of runs before the amount of failures starts to
converge is similar between random and systematic mutation
testing for two out of five benchmarks. For benchmarks P3
random mutation testing does not converge, while systematic
mutation converges at a higher number of trials for bench-
marks P1 and P5. Because of these conflicting results no
conclusion can be drawn on systematic exploration in gen-
eral. Future research could verify whether the amount of runs
needed is larger when using systematic exploration for test-

6

Figure 8: Benchmark P5 with systematic mutation compared to ran-
dom mutation. The systematic exploration tree depth is 4.

ing most applications. (3) For all benchmarks besides P3 the
configuration without column exploration finds equal or less
unique failures than with column exploration enabled. Addi-
tionally, Figures 2-3 show that a mutation depth between 3
and 6 result in a similar amount of unique failures. A muta-
tion depth of four appears to give the best results.

The results found furthermore answer our third research
question: which program properties determine the perfor-
mance of systematic exploration? For three out of the five
benchmarks, P1; P4; P5, systematic exploration finds a higher
number of failures than random mutation. These three bench-
marks have in common that they have only one delimiter. Our
implementation uses a "," as delimiter, as listed in Table 1,
for all benchmarks. For the benchmarks that have multiple
delimiters this could decrease the usefulness of systematic
exploration, since differing delimiters are not mutated. This
hypothesis can be verified in future work by applying our im-
plementation to additional applications. Other properties for
these three benchmarks are different, such as the the number
of columns and the data types per column.

These findings answer our main research question, how
does systematic exploration of high-level mutations affect the
performance of a fuzz testing framework. Systematic explo-
ration can find a higher number of failures, for benchmark P1
50%. However, systematic exploration requires more trials to
converge to a maximum number of failures for two out of five
benchmarks.

6 Limitations and Responsible Research
This section offers perspective on possible ethical concerns
for this research, as well as encountered limitations.

6.1 Limitations
Our evaluation faced several limitations, which should be
kept in mind while considering the results. First, since this
study is an extension of the BigFuzz framework it relies heav-
ily upon previous work done by the BigFuzz authors [4].
However, the repository linked to in the paper [19] does not

resemble the paper in its entirety. Several components were
either missing or non-functional at the time of writing. For
instance, only two out of six mutations were implemented on
the repository. Thus, for this paper the mutations are not ex-
tended from BigFuzz. Instead the mutations are implemented
as described in the BigFuzz paper, with the extension of M7
as described in Figure 1. Furthermore the implementation of
BigFuzz contained classes specifically made for each bench-
mark, leading to tailored results. For this reason this study
does not compare between the performance of the BigFuzz
repository and this study. Additionally, our approach consists
of one set of classes designed for all benchmarks instead of
one version for each benchmark. An explanation for these
problems could be that the public code was not the latest ver-
sion of the BigFuzz framework.

Second, the evaluation of the research is reliant upon the
BigFuzz framework in its ability to remove duplicate failures.
The BigFuzz repository code contained a bug causing dupli-
cate unique failures which we have since fixed, however there
may be additional bugs such as these. This is a general limita-
tion of evaluating fuzz testing frameworks as noted by Klees
et al [18].

Third, out of the twelve benchmarks used in the BigFuzz
paper only six error-seeded versions were present in the Big-
Fuzz repository. One of those six benchmarks could also not
be used due to missing input specification functionality. This
benchmark applied a loop for a number of iterations based on
a column in the input file. Because of the missing function-
ality our implementation can generate large numbers, which
resulted in our implementation being practically inapplica-
ble to test the benchmark. Another limitation concerning the
benchmarks is that it is unclear exactly how many errors were
present in the benchmarks found in the BigFuzz repository.
We can therefore not remark on the best possible performance
that could be achieved.

6.2 Responsible Research
To ensure this study has been conducted responsibly several
measures were taken, listed in this section. (1) Our imple-
mentation, seeds and results are freely accessible for verifi-
cation purposes: https://github.com/LvKvA/SysFuzz. Note
that the repository also contains code from our research group
from independent studies. This repository can be used to con-
firm that our results were not fabricated. However, our im-
plementation does use random values at multiple points, for
instance for choosing the character or value to be inserted
into a column. Consequently, some results may be difficult
to reproduce. Our results are best reproduced by using the
same configurations with at least twenty iterations. (2) We
aim to mention all obtained results in this paper. The evalua-
tion data is thus not trimmed in other means than mentioned
in this paper, for instance for benchmarks that were excluded.
Therefore the number of unique failures may differ for config-
urations not mentioned in the paper. All tested configurations
are either shown or mentioned in the results section.

The authors report no conflicts of interests. There is no
connection with the authors of the BigFuzz paper, or other
involved parties. The research was carried out in a research
group for The Delft University of Technology, with no grants.

7

7 Conclusion
Testing DISC applications is becoming increasingly relevant.
To extend knowledge on this topic, we extend a state-of-
the-art fuzzing framework for DISC applications, called Big-
Fuzz. Our approach explores combinations of high-level mu-
tations by combining seven high-level mutation types with
the goal of finding a higher number of failures. To this end
our implementation consists of a depth-first traversal of a
data tree structure, bounded by a set depth and pruned by re-
moving illogical mutations. The obtained results answer our
main research question: ’How does systematic exploration of
high-level mutations affect the performance of a fuzz testing
framework?’.

The results show that systematic exploration can outper-
form random testing, depending on both the configuration we
apply and the type of benchmark. In three out of five bench-
marks, the number of failures found is higher for system-
atic exploration than by applying mutations randomly with-
out combining mutations. Furthermore, the number of runs
required before the amount of failures starts to converge is
not increased by testing systematically, for the majority of
the benchmarks. Lastly, for the configuration we conclude
that exhaustively exploring the mutation types for all columns
leads to better results than applying mutations on one random
column. The depth bound of the tree seems to have a lesser
impact on the number of failures found compared to the type
of column exploration.

Based on our results, we hypothesise that the input specifi-
cation of the application determines the effectiveness of sys-
tematic mutation. Further research is needed to show the per-
formance of systematic high-level mutation testing for other
fields.

8 Acknowledgement
We would like to thank the members of our research group
for their guidance and contributions: Melchior Oudemans,
Martijn Smits, Lars Rhijnsburger en Bo van den Berg. The
feedback received by anonymous reviewers was also greatly
appreciated.

References
[1] Apache Spark™, “Apache Spark™ - Unified Analytics

Engine for Big Data,” 2005. [Online]. Available:
https://spark.apache.org/

[2] “American fuzzy lop.” [Online]. Available: https:
//lcamtuf.coredump.cx/afl/#bugs

[3] “Heartbleed Bug.” [Online]. Available: https:
//heartbleed.com/

[4] Q. Zhang, J. Wang, M. A. Gulzar, R. Padhye, and
M. Kim, “BigFuzz: Efficient Fuzz Testing for Data An-
alytics Using Framework Abstraction,” Proceedings -
2020 35th IEEE/ACM International Conference on Au-
tomated Software Engineering, ASE 2020, pp. 722–733,
2020.

[5] Y. Jia and M. Harman, “Higher Order Mutation
Testing,” Information and Software Technology, vol. 51,

no. 10, pp. 1379–1393, 2009. [Online]. Available:
http://dx.doi.org/10.1016/j.infsof.2009.04.016

[6] A. S. Ghiduk, M. R. Girgis, and M. H. Shehata, “Higher
order mutation testing: A Systematic Literature
Review,” Computer Science Review, vol. 25, pp. 29–48,
2017. [Online]. Available: www.elsevier.com/locate/
cosrev

[7] R. R. A. Silva, S. S. d. R. Senger de Souza, and P. S. P.
Lopes de Souza, “A systematic review on search based
mutation testing,” Information and Software Technol-
ogy, vol. 81, pp. 19–35, jan 2017.

[8] C. Olston, S. Chopra, and U. Srivastava, “Generating
Example Data for Dataflow Programs,” 2009.

[9] M. A. Gulzar, S. Mardani, M. Musuvathi, and M. Kim,
“White-box testing of big data analytics with complex
user-defined functions,” ESEC/FSE 2019 - Proceedings
of the 2019 27th ACM Joint Meeting European Software
Engineering Conference and Symposium on the Foun-
dations of Software Engineering, pp. 290–301, 2019.

[10] K. Li, C. Reichenbach, Y. Smaragdakis, Y. Diao, and
C. Csallner, “SEDGE: Symbolic example data genera-
tion for dataflow programs,” in 2013 28th IEEE/ACM
International Conference on Automated Software Engi-
neering, ASE 2013 - Proceedings, 2013, pp. 235–245.

[11] V. J. Manès, H. S. Han, C. Han, S. K. Cha, M. Egele,
E. J. Schwartz, and M. Woo, “The Art, Science, and
Engineering of Fuzzing: A Survey,” arXiv, pp. 1–21,
2018.

[12] M. Woo, S. K. Cha, S. Gottlieb, and D. Brumley,
“Scheduling black-box mutational fuzzing,” Proceed-
ings of the ACM Conference on Computer and Commu-
nications Security, pp. 511–522, 2013.

[13] S. J. Kim, J. Cho, C. Lee, and T. Shon, “Smart
seed selection-based effective black box fuzzing for
IIoT protocol,” Journal of Supercomputing, vol. 76,
no. 12, pp. 10 140–10 154, 2020. [Online]. Available:
https://doi.org/10.1007/s11227-020-03245-7

[14] E. Bounimova, P. Godefroid, and D. Molnar, “Billions
and billions of constraints: Whitebox fuzz testing in
production,” Proceedings - International Conference on
Software Engineering, pp. 122–131, 2013.

[15] M. Zalewski, “American Fuzzy Lop.” [Online]. Avail-
able: https://lcamtuf.coredump.cx/afl/

[16] C. Lemieux and K. Sen, “Fairfuzz: A targeted mutation
strategy for increasing Greybox fuzz testing coverage,”
in ASE 2018 - Proceedings of the 33rd ACM/IEEE Inter-
national Conference on Automated Software Engineer-
ing. Association for Computing Machinery, Inc, sep
2018, pp. 475–485.

[17] R. Padhye, C. Lemieux, and K. Sen, “JQF: Coverage-
guided property-based testing in Java,” in ISSTA 2019
- Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2019, pp.
398–401.

8

https://spark.apache.org/
https://lcamtuf.coredump.cx/afl/#bugs
https://lcamtuf.coredump.cx/afl/#bugs
https://heartbleed.com/
https://heartbleed.com/
http://dx.doi.org/10.1016/j.infsof.2009.04.016
www.elsevier.com/locate/cosrev
www.elsevier.com/locate/cosrev
https://doi.org/10.1007/s11227-020-03245-7
https://lcamtuf.coredump.cx/afl/

[18] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks,
“Evaluating fuzz testing,” in Proceedings of the
ACM Conference on Computer and Communications
Security. New York, NY, USA: Association for
Computing Machinery, oct 2018, pp. 2123–2138.
[Online]. Available: https://dl.acm.org/doi/10.1145/
3243734.3243804

[19] Q. Zhang, J. Wang, M. A. Gulzar, R. Padhye,
and M. Kim, “BigFuzz repository,” 2020. [Online].
Available: https://github.com/qianzhanghk/BigFuzz

[20] J. A. do Prado Lima and S. R. Vergilio, “A
systematic mapping study on higher order mutation
testing,” Journal of Systems and Software, vol.
154, pp. 92–109, aug 2019. [Online]. Available:
https://doi.org/10.1016/j.jss.2019.04.031

[21] M. Polo, M. Piattini, and I. García-Rodríguez,
“Decreasing the cost of mutation testing with second-
order mutants,” Software Testing, Verification and
Reliability, vol. 19, no. 2, pp. 111–131, jun 2009.
[Online]. Available: http://doi.wiley.com/10.1002/stvr.
392

[22] R. Tarjan, “Depth-First Search and Linear Graph
Algorithms,” SIAM Journal on Computing, vol. 1,
no. 2, pp. 146–160, jun 1972. [Online]. Available:
http://epubs.siam.org/doi/10.1137/0201010

9

https://dl.acm.org/doi/10.1145/3243734.3243804
https://dl.acm.org/doi/10.1145/3243734.3243804
https://github.com/qianzhanghk/BigFuzz
https://doi.org/10.1016/j.jss.2019.04.031
http://doi.wiley.com/10.1002/stvr.392
http://doi.wiley.com/10.1002/stvr.392
http://epubs.siam.org/doi/10.1137/0201010

	Introduction
	Background
	Fuzzing
	BigFuzz

	Methodology
	Systematic Application of Mutants
	High-Level Mutation Algorithms
	Systematic Exploration

	Empirical Evaluation Results
	Benchmarks
	Findings

	Limitations and Responsible Research
	Limitations
	Responsible Research

	Conclusion
	Acknowledgement

