<]
TUDelft

Delft University of Technology

Efficient Methods for Spectral Geometry Processing

Nasikun, A.

DOI
10.4233/uuid:2bd86¢48-8b81-4a66-838f-c85bdb7db334

Publication date
2022

Document Version
Final published version

Citation (APA)
Nasikun, A. (2022). Efficient Methods for Spectral Geometry Processing. [Dissertation (TU Delft), Delft
University of Technology]. https://doi.org/10.4233/uuid:2bd86c48-8b81-4a66-838f-c85bdb7db334

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.4233/uuid:2bd86c48-8b81-4a66-838f-c85bdb7db334
https://doi.org/10.4233/uuid:2bd86c48-8b81-4a66-838f-c85bdb7db334

EFFICIENT METHODS
FOR SPECTRAL GEOMETRY PROCESSING

EFFICIENT METHODS
FOR SPECTRAL GEOMETRY PROCESSING

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology
by the authority of the Rector Magnificus Prof.dr.ir. T.H.J.J. van der Hagen,
Chair of the Board for Doctorates,
to be defended publicly on
Monday, 21 March 2022 at 10.00

by

Ahmad NASIKUN

Master of Science in Electrical Engineering and Computer Science,
Seoul National University (SNU), Seoul, South Korea,
Born in Jepara, Indonesia.

This dissertation has been approved by the promotor.

Composition of the doctoral committee:

Rector Magnificus, chairperson

Prof.dr. E. Eisemann, Delft University of Technology, promotor

Dr. K.A. Hildebrandt, Delft University of Technology, co-promotor
Independent members:

Prof.dr.ir. C. Vuik, Delft University of Technology

Prof.dr. M. Botsch, Technical University Dortmund, Germany
Prof.dr. D. Bommes, University of Bern, Switzerland

Dr.J. Digne, LIRIS, University of Lyon, France

Dr. A. Vaxman, Utrecht University

Prof.dr. G. Smaragdakis, Delft University of Technology, reserve member

''§
% vIpd
Delft
e t University of
Technology lembaga pengelola dana pendidikan

Keywords: geometry processing, spectral methods, model order reduction, multi-
grid, Laplace-Beltrami operator, vector fields

Printed by: Gildeprint
Front & Back: ~ by Ahmad Nasikun and Alfina Dewi.

Copyright © 2022 by Ahmad Nasikun
ISBN 000-00-0000-000-0

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

To Bubu Fina, Aziz, and Ziza,
Thank you for always being on my side
going through this wonderful journey together.

Ayah Nasikun

CONTENTS

Summary ix
Samenvatting xi
1 Introduction 1
2 Fast Approximation of Laplace-Beltrami Eigenproblems 9
2.1 Introduction i i e e e e e e 10
22 RelatedWork L e 11
2.3 Background: Laplace-Beltrami Eigenproblem 13
2.4 Fast Approximation Algorithm 0oL, 15
25 Experiments e e e e e e e e e 21
2.6 Applications e e e e e e e e e e 25
27 Conclusions. L e 32
Appendix 41
2.A Choiceofbasisfunctions 0000 L. 41
2.B Eigenfunctionsandedgeflips. 43
2.C Comparisontomeshcoarsening 44
3 Locally Supported Tangential Vector, n-Vector, and Tensor Fields 47
3.1 Introduction e e 48
3.2 Relatedwork L 49
3.3 Laplace operators. v v vt v e e e e e e e e e e e e e e e e e 50
3.4 Spacesoflocallysupportedfields. 52
3.5 Subspacemethods 0. 56
3.6 Experimentso e e e e e 58
3.7 Comparisons hu i e e e e e e e e e e e 63
3.8 Applications e e e e e e e e e e 68
3.9 Conclusion e e e 73
Appendix 81
3.A Construction of the tensor field Laplacian 81

4 TheHierarchical Subspace Iteration Method for Laplace-Beltrami Eigenprob-

lems 83
4.1 Introduction e e e e e e e e e e e e e 84
4.2 RelatedWork e e e e 85
43 Background. Lo 87
4.3.1 Laplace-Beltramieigenproblem. 87
4.3.2 Subspaceiterationmethod (SIM) 88

vii

viii CONTENTS

4.4 Hierarchical Subspace Iteration Method 90
4.4.1 Hierarchyconstruction 90

4.4.2 HierarchicalSolver. L. 94

4.5 Experiments Lol e e e e e e e 95
4.6 CompariSons v v v vt e e e e e e e e e e e e e e e e 102
47 Conclusion L. L e 106
Appendix 115
4.A Justification of Design Choices 115
4.A.1 Distancecomputation. o0 115

4.A2 Samplingmethod L. 115

4.A.3 Convergencetolerance. v v v v v v v v v e 119

4B Comparisons o .o e e e e e e e 120
4.B.1 Lanczos and preconditioned eigensolver 120

4.B.2 FastApproximation oo 120

4.C Generalization e 122
4.C.1 Hamiltonian operators. v v v v v v v v e e 122

4.D Applications e e e e e e e e e e e 123
4.D.1 ShapeSignatures. oo 123

4.D.2 Projection oo o e e e e e e e 124

5 Conclusion 129
5.1 Limitationand futurework Lo Lo 130
Acknowledgements 131
Curriculum Vitae 135

List of Publications 137

SUMMARY

Research in geometry processing concerns the design of algorithms and mathematical
models for the analysis and manipulation of geometric data. Examples of its applica-
tions are shape projection (e.g. smoothing and filtering), shape correspondence (e.g.
functional maps), shape descriptors (e.g. heat and wave kernel signatures), segmenta-
tion, and surface parameterization. A set of tools that have proven to be useful for solving
such tasks are spectral methods. In general, spectral methods solve geometry process-
ing problems by taking the benefit of the spectra and the eigenfunctions of the Laplacian
operator defined on a surface mesh. This allows us to extend the notion of Fourier anal-
ysis from signal and image processing to surface processing, a theoretically sound and
well-researched concept. In practice, the decomposition of the Laplacian operator into a
diagonal matrix of eigenvalues and a rectangular matrix of eigenvectors enables efficient
treatment of a broad range of geometry processing problems.

A main adversity in spectral geometry processing is the expensive computational
cost attached to the eigendecomposition of the Laplacian operator, before we can use
the spectra and the eigenfunctions for the applications. Since analytical solutions are
not known, one needs to opt for a numerical method to solve the eigenvalue problem. It
is a numerically expensive computation, especially for a complex mesh. Another chal-
lenge comes from the storage requirement. Considering that the Laplace-Beltrami oper-
ator has global support, it takes a dense matrix to represent the eigenvectors. Therefore,
the memory requirement for saving the eigenbasis can be high, particularly when a large
number of eigenfunctions need to be stored. These challenges hinder the use of spectral
methods for geometry processing applications.

In this thesis, we introduce new methods addressing the aforementioned challenges.
In Chapter 2, we propose a fast algorithm that allows for approximating the smallest
eigenvalues and the corresponding eigenvectors of the Laplace-Beltrami operator in just
a fraction of the time needed to solve the original eigenvalue problem. We construct
subspaces of the space of all functions that include low frequency functions and restrict
the solution of the eigenproblem to the subspace. It enables the fast approximation of
the eigenproblem, independent of the size of the original problem. Our novel scheme
also enables significantly more efficient storage of the approximated eigenfunctions. We
show that the approximated spectra are close to the reference spectra and that the fast
approximation method benefits geometry processing applications, such as shape classi-
fication, geodesic distance computation, shape projection (e.g. filtering), and vibration
modes of deformable objects.

We consider localized eigenfields of the Hodge-Laplacian, which serve as a sparse
basis for the efficient design and processing of tangential fields, in Chapter 3. The ba-
sis spans subspaces of the spaces of tangential vector, n-vector, and tensor fields on a
surface mesh. Restricting the design and processing of tangential fields to the subspace
allows us to decouple the degrees of freedom we use for design and processing tasks from

ix

X SUMMARY

the complexity of the mesh representation. The construction is scalable, so we can effi-
ciently compute and store subspaces for large meshes. We evaluate the performance of
the novel method on various modeling and processing tasks in vector fields (fur design),
n-vector fields (n-field design and hatching/line-art design), and tensor fields (curva-
ture fields smoothing) and show that the computation time decreases up to two orders
of magnitude compared to that of the original problem.

Chapter 4 introduces a novel multigrid method for numerically solving the Laplace-
Beltrami eigenproblems on a surface mesh. Our new technique, the Hierarchical Sub-
space Iteration Method (HSIM), works on a hierarchy of nested vector spaces, in which
the solution of the coarser level is used as an initial solution on the finer level. We con-
struct the coarsest level such that the eigenproblems can be solved efficiently using a
dense eigensolver. On every level, the prolongation operator maps the solution from the
coarser to the finer level. The result then can be used as an initialization for subspace
iterations to approximate the eigenpairs. This approach significantly reduces the num-
ber of iterations in the finest level, compared to the non-hierarchical subspace iteration
method. We show that HSIM outperforms the Locally Optimal Block Preconditioned
Conjugate Gradient method and the state-of-the-art Lanczos-based eigensolvers, such
as Matlab’s ei g s, Manifold Harmonics, and SpectrA.

In summary, each of the chapters in this thesis proposes efficient algorithms for
computing the eigendecompositions of Laplace-Beltrami and Hodge-Laplace opera-
tors, mainly using model order reduction and multigrid approaches. These methods
reduce computational costs (Chapter 1-3) and storage requirements (Chapter 1-2) for
the spectral processing of scalar functions and tangential fields on surface meshes.

SAMENVATTING

Onderzoek op het gebied van geometrieverwerking betreft het ontwerp van algoritmen
en modellen voor de analyse en bewerking van geometrische gegevens. Voorbeelden van
toepassingen hiervan zijn projectie van vormen (b.v. egaliseren en filteren), vormcorres-
pondentie (b.v. functionele kartering), vormdescriptoren (b.v. warmte- en golfkernsig-
naturen), segmentatie, en oppervlakteparametrisering. Een set hulpmiddelen die nuttig
zijn gebleken voor het oplossen van dergelijke taken worden spectrale methoden ge-
noemd. In het algemeen lossen spectrale methoden geometrieverwerkingsproblemen
op door gebruik te maken van zowel spectra als eigenfuncties van de Laplace-Beltrami
operator, gedefinieerd over een oppervlaktemaas. Deze methoden stellen ons in staat
om Fourieranalyse uit te breiden tot oppervlaktes, een theoretisch verantwoord en goed
onderzocht concept. In de praktijk maakt de ontbinding van de Laplace-Beltrami opera-
tor in een diagonaalmatrix van eigenwaarden en een orthogonale matrix van eigenvec-
toren een efficiénte behandeling mogelijk van een uitgebreide selectie aan problemen
binnen de geometrieverwerking.

Een belangrijke uitdaging bij de verwerking van spectrale geometrie zijn de hoge
computationele kosten die verbonden zijn aan de eigendecompositie van de Laplaci-
aanse operator, alvorens we de spectra en de eigenfunctie voor de toepassing kunnen
gebruiken. Aangezien analytische oplossingen niet bekend zijn, moet men opteren voor
dure numerieke oplossingen. Een ander probleem heeft te maken met de vereiste op-
slagruimte. Aangezien de Laplace-Beltrami operator een globale ondersteuning heeft,
zijn eigenfuncties een dichtbezette vector, wat een dichtbezette matrix vereist om de ei-
genfuncties weer te geven. Er is dus een grote opslagcapaciteit nodig om een voldoende
groot aantal eigenfuncties op te slaan. Deze uitdagingen belemmeren het gebruik van
spectrale geometrie verwerking.

In dit proefschrift introduceren we nieuwe methoden om de bovengenoemde uitda-
gingen aan te pakken. In hoofdstuk 2 stellen we een vlot algoritme voor waarmee de
kleinste eigenwaarden en de corresponderende eigenfuncties van de Laplace-Beltrami
operator kunnen worden benaderd in slechts een fractie van de tijd die de huidige nieuw-
ste methoden in het veld nodig hebben, onze methode is een orde van grootte(s) sneller.
We beperken de oplossing tot de deelruimte van gladde functies, onafthankelijk van de
grootte van het oorspronkelijke probleem. Dit laat het algoritme ook toe om de bena-
derde eigenfuncties op een veel efficiéntere manier op te slaan. We tonen experimenteel
aan dat deze snelle benaderingsmethode geometrieverwerkingstoepassingen ten goede
komt, zoals vormclassificatie, geodetische afstandsberekening, vormprojectie (bv. filte-
ring), en trillingsmodi van vervormbare objecten.

In hoofdstuk 3 beschouwen we gelokaliseerde eigenvelden van de Hodge-Laplaciaan
die als schaarse basis dienen voor het efficiént ontwerpen en bewerken van tangentiéle
velden. De basis beslaat deelruimten van de ruimten van de gladste tangentiéle vec-
torvelden, n-vectorvelden, en tensorvelden op oppervlakken. Door het ontwerp en de

Xi

Xii SAMENVATTING

verwerking van tangentiéle velden te beperken tot de deelruimte, kunnen we de vrij-
heidsgraad van ontwerp- en verwerkingstaken loskoppelen van de complexiteit van de
maasrepresentatie. De constructie is schaalbaar, wat een efficiénte berekening en op-
slag van de deelruimte voor grote mazen mogelijk maakt. We evalueren de prestaties
van de nieuwe methode op verschillende modelleer- en verwerkingstaken in vectorvel-
den (ontwerpen van vacht), n-vectorvelden (ontwerpen van n-velden, ontwerpen van
arceer-/lijnkunst), en tensorvelden (egaliseren van kromming in tensorvelden) en tonen
aan dat de rekentijd aanzienlijk afneemt, ordes van grootte sneller dan het oplossen van
het niet-gereduceerde systeem.

Hoofdstuk 4 introduceert een nieuwe methode om het Laplace-Beltrami eigenpro-
bleem numeriek op te lossen. Onze nieuwe techniek, de Hiérarchische Subruimte Ite-
ratie Methode (HSIM), werkt op een hiérarchie van geneste vectorruimten, waarbij de
oplossing van het grovere niveau gebruikt wordt als initiéle oplossing voor een fijner ni-
veau, wat goede benaderingen oplevert en daardoor de iteratieve oplosser aanzienlijk
sneller naar de oplossing laat convergeren. Het grofste niveau wordt zo geconstrueerd
dat het efficiént kan worden opgelost met een dichte eigenoplosser. De verlengings-
operator kan de oplossing efficiént naar een fijner niveau leiden en deze gebruiken als
initialisatie voor de deelruimte-iteratie om de eigenparen te benaderen. Deze aanpak
vermindert het aantal iteraties op het fijnste niveau aanzienlijk, vergeleken met de niet-
hiérarchische Subruimte Iteratie Methode (SIM).

Samenvattend stelt elk van de nieuwe benaderingen in dit proefschrift efficiénte al-
goritmen voor om de eigendecompositie van de Laplace-Beltrami en de Hodge-Laplacian
operator te berekenen, waarbij voornamelijk gebruik gemaakt wordt van model orde
reductie en multigrid benaderingen. Deze bijdragen bieden nieuwe oplossingen voor
spectrale geometrie verwerking van scalaire functies en tangentiéle velden op veelhoeks-
mazen.

1

INTRODUCTION

2 1. INTRODUCTION

Geometry processing allows us to analyze and manipulate geometric data using a com-
puter, employing concepts from applied mathematics, computer science, and engineer-
ing. The field of geometry processing encompasses a wide range of research areas that lie
between 3D data acquisition and fabrication/consumption of 3D contents. It deals with
the representation, reconstruction, processing, modeling, optimization, analysis, sim-
ulation, and fabrication of geometric data. Albeit being a relatively new research field,
the application of geometry processing spans a broad spectrum of fields: from charac-
ter animation in movies, fracture analysis in structural engineering, surface modelling
in automotive design, aneurysm detection in medical study, to combustion simulation
in rocket science, to name a few.

Geometry processing applications require an input of geometric data, which can be
generated by capturing real-world objects using technology such as 3D laser scanning,
radar, computer tomography, and magnetic resonance imaging (MRI). Another source of
3D data is models created by designers using computer-aided design (CAD) or computer
animation systems. One can also synthesize geometric input via mathematical model-
ing. The increase in the complexity of 3D geometric data leads to significant challenges
in geometry processing. It is because, in general, the complexity of the problem is pos-
itively correlated to the complexity of the model. For example, in computing geodesic
distance on a surface mesh using the Heat Method [2], one needs to solve two linear
systems. The number of unknowns in the linear systems corresponds to the number
of vertices and faces of the surface mesh, respectively. This means that the more com-
plex our model, the more computationally intensive the system to be solved. Such a
challenge amplifies the complexity of geometry processing applications, and therefore
efficient computational methods are of great necessity.

Diffusion distance Heat Kernel Signature (HKS) Shape filtering

Figure 1.1: Examples of spectral methods in geometry processing: diffusion distance, heat kernel signature,
and shape filtering.

An important family of methods in geometry processing is spectral methods. These
methods constitute a research topic called spectral geometry processing [4, 9, 10] and
are proven to successfully address a variety of problems, such as the aforementioned
geodesic distance computation, point signature, mesh filtering (Fig. 1.1), compression,

Figure 1.2: Visualization of the eigenvectors corresponding to the 17, 10%", and 50" smallest eigenvalues of
the Laplace-Beltrami operator, computed on a sphere, the Rocker-Arm, and the Chinese Dragon models.

surface segmentation, and shape correspondence. The main ingredient of spectral meth-
ods is the use of eigenvalues and the corresponding eigenvectors of appropriately cho-
sen linear operators. There have been different linear operators proposed in the litera-
ture. These can depend only on the intrinsic geometry of the surface or also on the em-
bedding of the surface in space. One widely adopted operator is the Laplace-Beltrami
operator, which, in the discrete setting, has cotangent values as matrix elements. Func-
tions on a surface can be viewed as signals (from a perspective of signal processing) and
the eigenbasis of the Laplace-Beltrami operator allow us to correlate a frequency spec-
trum to a function, extending the notion of Fourier decomposition in signal and image
processing. Figure 1.2 shows examples of eigenfunctions of the Laplace-Beltrami oper-
ator corresponding to some selected eigenvalues (the 1°%, 107", and 50*" eigenvalues).

One important attribute of the Laplace-Beltrami operator is its invariance under iso-
metric deformation of the surface mesh, meaning that the matrix representation of iso-
metrically deformed objects is identical. This property makes the Laplace-Beltrami op-
erator well-suited for mesh-invariant shape descriptors, both global and local descrip-
tors. Global shape descriptors (e.g. the Shape-DNA [7]) allow for the clustering of similar
objects and discriminating different shapes. Local shape descriptors (e.g. heat [8] and
wave kernel signatures [1]) enable the identification of points on a surface with similar
properties. In addition to its use as a shape descriptor, the isometry-invariance of the
Laplace-Beltrami operator is well-suited for shape correspondence, i.e. finding a mean-
ingful relation between elements of multiple objects. An example of a method for shape
correspondence is functional maps [5] that uses the eigenfunctions of two objects to cre-
ate a linear operator that can map functions from one surface to the other. This is useful
for many applications, such as texture mapping.

A major challenge in spectral methods is the requirement to compute the lowest part

4 1. INTRODUCTION

of the spectrum and its frequency (generally the first 50-5000) in a precomputation. It
amounts to solving an eigenvalue problem S® = MA®, where S is the matrix represent-
ing the Laplace operator and M is the mass matrix. We need to solve such a large-scale,
sparse eigenproblem numerically because the closed-form solution is not known. This
yields a long preprocessing time before spectral methods can be applied to solve ge-
ometry processing problems. Another challenge concerns the storage requirements. As
each of the eigenfunctions of the Laplace-Beltrami operator has global support, it spans
the entire surface mesh and needs to be stored as a dense vector. In consequence, it re-
quires an extensive amount of memory to store a dense matrix that represents the eigen-
functions of the Laplace operator, particularly for a large number of eigenfunctions on a
complex mesh.

In this thesis, novel methods for spectral geometry processing, in particular for the
efficient computation and storage of the eigenvectors of the Laplace operator, are in-
troduced. In Chapter 2, we present a novel scheme that enables a fast approximation
of the low frequency eigenvalues and the corresponding eigenfunctions of the Laplace-
Beltrami operator on a surface mesh. The underlying idea is to construct subspaces of
the spaces of all functions spanning low frequency functions and to restrict the solution
of the eigenproblem to the subspace. This scheme yields three benefits: (1) computing
the approximated spectra is significantly more efficient than solving the original eigen-
value problems, (2) storing the approximated eigenfunctions requires considerably less
memory, and (3) running the applications that utilize the reduced eigenpairs takes a no-
ticeably shorter time. We consider this work a step forward in reducing the computa-
tional burden attached to spectral geometry processing. To show the effectiveness of
our method, we demonstrate experimentally that the resulting spectra are close to the
reference spectra and that spectral methods built on top of that produce similar results
to those using the reference spectra.

A fast algorithm for tangential fields design and processing is introduced in Chap-
ter 3. We propose a novel construction of locally supported tangential vector, n-vector,
and tensor fields on a triangle mesh surface. Those sparse fields span subspaces of the
spaces of tangential fields and serve as sparse linear bases for the design and process-
ing of tangential data. Restricting the design and processing of tangential fields to the
subspaces allows us to decouple the degrees of freedom of design and processing tasks
from the complexity of the mesh representation. The construction is also scalable, which
enables efficient computation and storage of the subspaces on large meshes. We eval-
uate the performance of the novel method for various tasks in vector field (fur design),
n-vector field (n-field design and hatching/line-art design), and tensor field (curvature
tensor fields smoothing) design and processing, and show that the computation can be
up to two orders of magnitude faster compared to solving the unreduced systems.

We extend the fast approximation method (introduced in Chapter 2) to build the Hi-
erarchical Subspace Iteration Method (HSIM), an efficient solver for Laplace-Beltrami
eigenproblems, in Chapter 4. The main idea is to employ a multigrid approach in build-
ing the eigensolver, in which the converged solution of a lower level in the hierarchy is
used as an initialization for the next level. The lowest level is constructed such that all
eigenpairs can be solved using a dense eigensolver. On each level of the hierarchy, a
subspace iteration method (SIM) is employed to let the initial eigenpairs converge up

to a predefined accuracy. This scheme allows for a substantial reduction in the num-
ber of iterations on the finest level, compared to the standard SIM. We show that HSIM
is consistently faster than state-of-the-art schemes, such as Lanczos-based eigensolvers
(Matlab’s ei gs, Manifold Harmonics [9], and SpectrA [6]), the original Subspace Iteration
Method, and a preconditioned eigensolver (LOBPCG [3]).

In summary, this thesis presents novel methods that enable the efficient treatment of
spectral methods. When accuracy is not the main interest, our fast approximation eigen-
solver and sparsified eigenfields reduce the computation time by around two orders of
magnitude and significantly lower the required memory. In the case that an accurate
solution is needed, our hierarchical eigensolver (HSIM) outperforms existing state-of-
the-art methods in solving the eigenproblem, particularly when large numbers of eigen-
pairs on complex meshes are sought. These are important steps towards a widespread
application of spectral methods in geometry processing.

Each chapter in this thesis provides a short conclusion that highlights the contribu-
tions, mentions limitations, and suggests a number of interesting future directions to
further develop the proposed methods into. The concluding Chapter 5 summarizes all
chapters in this thesis in a broader context and discusses future directions of research in
spectral geometry processing.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

BIBLIOGRAPHY

M. Aubry, U. Schlickewei, and D. Cremers. “The wave kernel signature: A quantum
mechanical approach to shape analysis”. In: ICCV. 2011, pp. 1626-1633.

Keenan Crane, Clarisse Weischedel, and Max Wardetzky. “Geodesics in heat: Anew
approach to computing distance based on heat flow”. In: ACM Transactions on
Graphics (TOG) 32.5 (2013), pp. 1-11.

Andrew V Knyazev. “Toward the optimal preconditioned eigensolver: Locally op-
timal block preconditioned conjugate gradient method”. In: SIAM journal on sci-
entific computing 23.2 (2001), pp. 517-541.

Bruno Lévy and Hao Zhang. “Spectral mesh processing”. In: ACM SIGGRAPH ASIA
Courses. 2009, pp. 1-47.

Maks Ovsjanikov et al. “Functional Maps: A Flexible Representation of Maps Be-
tween Shapes”. In: ACM Trans. Graph. 31.4 (2012), 30:1-30:11.

Yixuan Qiu. SpectrA: C++ Library For Large Scale Eigenvalue Problems. https://spectralib.org/.

2015.

Martin Reuter, Franz-Erich Wolter, and Niklas Peinecke. “Laplace-Beltrami spec-
traas "Shape-DNA" of surfaces and solids”. In: Computer-Aided Design 38.4 (2006),
pp. 342-366.

Jian Sun, Maks Ovsjanikov, and Leonidas J. Guibas. “A Concise and Provably In-
formative Multi-Scale Signature Based on Heat Diffusion.” In: Computer Graphics
Forum 28.5 (2009), pp. 1383-1392.

Bruno Vallet and Bruno Lévy. “Spectral Geometry Processing with Manifold Har-
monics”. In: Computer Graphics Forum 27.2 (2008), pp. 251-260.

Hao Zhang, Oliver van Kaick, and Ramsay Dyer. “Spectral Mesh Processing”. In:
Computer Graphics Forum 29.6 (2010), pp. 1865-1894.

FAST APPROXIMATION OF
LAPLACE-BELTRAMI
EIGENPROBLEMS

There is no royal road to geometry.

Euclid

The spectrum and eigenfunctions of the Laplace-Beltrami operator are at the heart of
effective schemes for a variety of problems in geometry processing. A burden attached
to these spectral methods is that they need to numerically solve a large-scale eigenvalue
problem, which results in costly precomputation. In this chapter, we address this prob-
lem by proposing a fast approximation algorithm for the lowest part of the spectrum of
the Laplace-Beltrami operator. Our experiments indicate that the resulting spectra well-
approximate reference spectra, which are computed with state-of-the-art eigensolvers. More-
over, we demonstrate that for different applications that comparable results are produced
with the approximate and the reference spectra and eigenfunctions. The benefits of the
proposed algorithm are that the cost for computing the approximate spectra is just a frac-
tion of the cost required for numerically solving the eigenvalue problems, the storage re-
quirements are reduced and evaluation times are lower. Our approach can help to sub-
stantially reduce the computational burden attached to spectral methods for geometry
processing.

This chapter is based on the paper Fast Approximation of Laplace-Beltrami Eigenproblems published in Euro-
graphics Computer Graphics Forum (2018) [48].

10 2. FAST APPROXIMATION OF LAPLACE-BELTRAMI EIGENPROBLEMS

2.1. INTRODUCTION

The spectrum and eigenfunctions of the Laplace-Beltrami operator proved to be an ef-
fective tool for a variety of tasks in geometry processing, leading to their own research
branch, called spectral mesh processing. Spectral methods profit from properties of the
Laplace-Beltrami operator and its spectrum. From a signal processing point of view,
functions on a surface can be seen as signals and the eigenbasis of the Laplace-Beltrami
allows us to associate a frequency spectrum to a function analogous to the Fourier de-
composition. This enables applications such as spectral filtering of functions on a mesh
as well as the embedding of the mesh. Another important property of the Laplace-
Beltrami operator is that it is invariant under isometric deformations of the surfaces.
This property makes the spectrum attractive as an ingredient to pose-invariant shape
descriptors and the eigenfunctions a tool for establishing correspondences, explicit or
functional, between shapes in different poses. The downside of spectral methods on
meshes is that the lowest part of the spectrum (typically the first 100-5000 eigenpairs)
has to be computed. Since closed-form solutions are not available and large-scale sparse
eigenproblems needs to be numerically solved, which leads to long precomputation
times before spectral processing tools can be applied.

In this chapter, we introduce a fast approximation algorithm for the lowest part of
the spectrum and the corresponding eigenfunctions of the Laplace-Beltrami operator
on surface meshes. Computing the approximation requires only a fraction of the time
required for solving the original problem. For example, in our experiments, the low-
est 2500 eigenvalues and eigenfunctions of a mesh with 240k vertices are approximated
in less than one minute, while solving the full-resolution eigenproblem requires almost
three hours. Further benefits are that the storage requirements are reduced, which en-
ables working with larger bases in-core. Also, the computation of the approximate spec-
tra does not require solving a large-scale eigenvalue problem but only a low-dimensional
eigenproblem, which can be done by dense eigensolvers. Our experiments demonstrate
that the approximated spectra are close to the reference solutions. We show that for
spectral methods, such as shape DNA, diffusion distance, and spectral filtering, using
the approximated spectra and eigenfunctions leads to results that closely approximate
results produced with reference spectra and eigenfunctions, while requiring about two
orders of magnitude shorter precomputations. The proposed approach can be applied
for the computation of approximate spectra and eigenfunctions for other discrete op-
erators as well. We show that for parameter-dependent operators, which are used for
spectral shape analysis, approximations of the lowest 100 eigenvalues and eigenfunc-
tions can be computed at interactive rates. This enables interactive exploration of the
parameter space. Extending the range of applications, we apply the proposed scheme to
the computation of approximations of vibration modes of elastic objects and show that
our method reduces precomputation times, storage requirements and enables simula-
tion with larger modal bases.

The idea underlying our approach is to take advantage of the fact that we can ex-
plicitly construct subspaces of the space of all functions on a mesh that include the
low-frequency functions. The lowest part of the spectrum and the corresponding eigen-
functions can be characterized as the minimizers of the Dirichlet energy subject to unit
L2-norm and pairwise L?-orthogonality constraints. The approximation algorithm first

2.2. RELATED WORK 11

constructs a subspace, and then solves the optimization problem restricted to the sub-
space. For this approach to be effective, the subspace construction needs to be fast,
the subspaces should contain approximations of the low-frequency functions, and an
efficient solver for the restricted optimization problem is needed. The subspace con-
struction we propose draws on ideas used for generating weights for character skinning
and shape deformation and is designed to allow for the fast construction of larger, e.g.
10k-dimensional, subspaces. Furthermore, the subspace basis is designed to be sparse,
which reduces the computational cost for setting up the restricted optimization problem
and allows to efficiently store and access the approximate eigenbasis and the subspace
matrix. Since the approximate eigenpairs are minimizers of the restricted optimization
problems, they also preserve properties of the true eigenfunction, e.g., they form an L?-
orthonormal system in the space of functions on the mesh. For solving the restricted
eigenvalue problem, we found that GPU-based dense QR solvers allow to compute all
eigenpairs of the restricted problem in a reasonable time. The fact that all eigenpairs
are computed helps to avoid missing eigenfunctions in eigenspace of dimension two or
higher as well as eigenspaces with almost identical eigenvalues.

2.2. RELATED WORK

Spectral mesh processing In the following, we discuss some spectral mesh processing
methods. For an introduction to the topic, we refer to [73]. Vallet and Lévy [65] explored
schemes for the numerical computation of the eigendecomposition of discrete Laplace-
Beltrami operators on triangle meshes. They also proposed a framework for spectral
filtering of functions on a mesh. The filtering can be used to process the embedding of
the surface itself which allows for surface smoothing and sharpening filters. Karni and
Gotsman [39] introduced a method for the compression of the vertex positions of a mesh
using the eigenfunctions of a combinatorial Laplace matrix. The scheme was extended
to the compression for mesh sequences by Vésa et al. [66]. Dong et al. [25] used the
critical points of low-frequency eigenfunctions as a starting point for the construction
of coarse quadrangulations of surfaces. This approach was extended to provide users
with control over shape, sizes and alignment of the quadrilaterals by Huang et al. [35]
and Ling et al. [42]. Sharma et al. [59] and Huang et al. [36] proposed spectral methods
for surface segmentation. Musialski et al. [46] used the low-frequency eigenfunctions
to create a low-dimensional space that describes surface deformation in order to ob-
tain a reduced-order model for shape optimization problems. Song et al. [61] defined a
saliency measure on surfaces that combined spectral and spatial information and takes
advantage of the global nature of information embedded in the low-frequency eigen-
function. Spectral methods have also been used for tangential vector and n-vector field
processing on surfaces [3, 4, 11, 10].

Spectral shape analysis The isometry invariance and the underlying continuous for-
mulation make the Laplace-Beltrami spectrum and eigenfunctions well-suited as a ba-
sis for mesh-invariant and pose-invariant shape descriptors and signatures. Examples
of such descriptors are the Shape-DNA [54, 53], the diffusion distance [47], the global
point signature [56], the heat kernel signature [62], the Auto Diffusion Function [28] and

12 2. FAST APPROXIMATION OF LAPLACE-BELTRAMI EIGENPROBLEMS

the wave kernel signature [2]. These shape descriptors can be combined to form bags
of features that can be used to design algorithms for pose and mesh invariant shape
search and retrieval [13]. In addition to their use as shape descriptors, the invariance
properties of the eigenfunctions make them well-suited for the construction of shape
correspondences. Ovsjanikov at el. [51] use the eigenfunctions of the Laplace-Beltrami
operator of two near-isometric shapes to construct a functional map, which is a linear
operator between the function space of the surfaces. The functional map can be used to
map information, given in the form of a function on the surface, from one surface to the
other. Rustamov et al. [57] use functional maps between surface to analyzed difference
between shapes. While functional map compute the eigenfunctions on the two shape in-
dependently, Kovnatsky et al. [40] propose an approach that couples the computation of
the eigenfunctions of a pair of shapes using landmarks correspondences as input. Spec-
tral methods for shape matching can profit from looking at local shape matches and par-
tial correspondences [55, 43]. For an introduction to functional maps, we refer to [50].
Spectral methods are also used in the context of geometric deep learning [15, 8, 24, 41,
14].

Beyond Laplacian While for some applications, invariance under isometric deforma-
tions is desirable, in other settings, extrinsic information about shapes, such as sharp
bends, needs to be considered. In [31, 34], a modified Laplace-Beltrami operator that
includes information about the extrinsic curvatures of the surface is proposed. Recently,
alternative constructions of extrinsic operators based on the Dirac operator [44] and the
Steklov eigenvalue problem [69] have been introduced. Choukroun et al. [19, 18] ex-
plored the construction of Schrodinger operators for spectral processing and analysis.
The Schrodinger operator augments the Laplacian with a potential, which can be specif-
ically designed for the different applications. A related construction is introduced by
Melzi et al. [45]. Though we focus the presentation on the Laplace-Beltrami operator,
our our approach can be used for fast approximations of the spectra and eigenfunctions
for these operators as well. In Section 3.6, we show how the fast responses of the approx-
imation algorithm can be used to interactively explore parameter values.

Nystrom method An alternative approach for approximating the spectrum and eigen-
functions of linear operators is the Nystrém method [71]. The Nystrom method is used
in the context of machine learning for accelerating kernel methods [26] and spectral
clustering [27] as well as for approximating large scale singular value decompositions
for manifold learning [63]. The Nystrom method constructs a submatrix A of the large
matrix M that is built by selecting a some landmark indices and removing all rows and
columns that are not landmarks from M. An eigendecomposition of A is computed and
lifted to the high-dimensional space. While this approach works well for the matrices
that appear in learning applications, such as covariance matrices, it cannot be used for
the extremely sparse matrices we consider in this work. The reason is that the small
matrix A constructed from matrices like the cotangent matrix is a diagonal matrix if the
landmarks are not chosen to be neighboring vertices. Hence an eigendecomposition of
the small matrix is trivial and does not provide additional information unless the sam-
pling is so dense that for every landmark some neighboring vertices are also landmarks.

2.3. BACKGROUND: LAPLACE-BELTRAMI EIGENPROBLEM 13

The same holds for variants of the Nystrom method, like column sampling, which selects
columns of the large matrix and performs an SVD in the resulting rectangular matrix.
Unless the sampling is very dense, sampling columns from the cotangent matrix results
in a rectangular matrix that has only one entry per row.

Subspace projection A second method for approximating eigenproblems in machine
learning is random projection [30]. First, a random rectangular matrix A of size nm,
where 7 is the number of variables and m the number of desired eigenvectors, is con-
structed. Then the large matrix M is multiplied with A one or more times, similar to
power iterations. Finally a singular value decomposition of the result is computed to get
approximate eigenvectors. Random projection is used to approximate the eigenvectors
corresponding to the largest eigenvalues, e.g., for principle component analysis. Here,
we are interested in the lowest eigenvectors of matrices. To use random projection for
our purposes, we would need to multiply A with the inverse of M to A towards to lowest
eigenvectors. The subspace iteration method [7], used in continuum mechanics for the
computation of vibration modes, alternates between inverse iteration and orthonormal-
ization for computing the lowest eigenvectors. Compared to the computational cost of
our approximation algorithm, subspace projection iterations are expensive. Even a sin-
gle iteration of subspace projection is far more expensive than our whole approximation
algorithm.

Kernel approximations The eigenvalues and eigenfunctions of the Laplace-Beltrami
operator can be used to compute the heat kernel and spectral distance. Then, using only
the lowest part of the spectrum and corresponding eigenfunctions, the kernel and the
distance measures can be approximated. Once the eigenproblem is solved, the kernel
and the distances can be evaluated at low computational cost. Since the computation
of the eigenfunctions is costly, alternative approaches for approximating the heat kernel
and the spectral distances have been proposed. Vaxman et al. [67] proposed a multi-
resolution hierarchy for the approximation of the heat kernel and used the scheme for
diffusion-based feature extraction from surfaces. Patané [52] proposed a scheme that
can approximate the heat kernel and spectral distances by solving sparse linear systems.
This approach reduces the precomputation time since it avoids solving an eigenvalue
problem. On the other hand, compared to spectral methods, the computational cost for
solving individual distance queries is higher.

2.3. BACKGROUND: LAPLACE—BELTRAMI EIGENPROBLEM

In this section, we first briefly introduce the continuous eigenproblem of the Laplace-
Beltrami operator, then we describe the discrete setting and the discrete eigenproblem.

Continuous eigenproblem We consider a smooth, compact surface Z and the two bi-
liner forms

(f.8)2 =fzfgdA @.1)

14 2. FAST APPROXIMATION OF LAPLACE-BELTRAMI EIGENPROBLEMS

and
(f,g)Hé :L(grad frgrad g)s dA 2.2)

that are defined on the space H' of functions on = whose weak derivatives are square
integrable. The eigenvalue problem of the Laplace-Beltrami operator is to find pairs
(A,¢) € R x H! such that

<‘P’f>H& = A<¢rf>L2 (2.3)

holds for all f € H'. Since {f, f) ! vanishes for constant functions f, the constant func-

tions form a one-dimensional eigenspace with eigenvalue 0. The first non-zero eigen-
value can be characterized as the minimum of (¢, ¢) ;1 among all functions in H ! that
0

have unit L>-norm and are L?-orthogonal to the constant functions. A similar variational
characterization can be formulated for the other eigenvalues by adding the constraints,
that the eigenfunctions need to be L?-orthogonal not only to the constant functions but
to all eigenfunctions with smaller eigenvalue.

Discrete setting In the discrete setting, we consider triangle meshes in R® and the
space of a functions that are continuous on the whole surface and linear polynomials
over the triangles. The functions can be described by nodal vectors, that is, by vectors
listing the function values at the vertices of the mesh. The polynomial correspondingto a
nodal vector can be explicitly constructed since there is a unique linear polynomial over
a triangle that interpolates three given function values at the vertices. We denote by ¢;
the function that takes the value one at the i’ vertex and zero for all other vertices. For
the continuous and piecewise polynomial functions the bilinear forms are well-defined,
hence they can be represented by matrices, w.r.t. to the nodal basis. The resulting matri-
ces M and S with entries

Mij={¢i,9j)p and Sij=(9i,¢j)y- (2.4)

are called the mass matrix and the stiffness matrix (or cotangens matrix). Explicit for-
mulas for M;; and S;; can be found, for example, in [70] and [65].

While in our experiments we consider the setting described above, our approach can
be applied to other settings, such as discrete Laplacians for polygonal meshes [1], higher-
order finite elements on meshes [54, 53] or Discrete Exterior Calculus discretizations [23]
as well.

Discrete eigenproblem Our goal is to compute approximations of the lowest m eigen-
vectors and eigenvalues of the discrete Laplace-Beltrami operator of a mesh with »n ver-
tices. Analogous to the continuous case, the m lowest eigenpairs can be characterized as
solutions of the variational problem:

min_tr(®7 S0) (2.5)
QeR*m

subject to @7 M® = Id.

2.4. FAST APPROXIMATION ALGORITHM 15

The columns of the minimizer ® are the nodal vectors of the eigenfunctions and the
corresponding eigenvalues are given by 1; = (DZ.TS(I),-, where ®; is the i*" column of the
minimizer ®. The eigenpairs (A;, ®;) satisfy the equation

SO, =A; MY, (2.6)

which is the discrete analog of (2.3).

2.4. FAST APPROXIMATION ALGORITHM

In this section, we introduce our approach for the fast approximation of the lowest eigen-
values and corresponding eigenfunctions of the discrete Laplace-Beltrami operator. The
ideais to construct a subspace of the space of all functions on the mesh. Then we restrict
the computation of the eigenvalues and eigenfunctions to the subspace, that is, we solve
the optimization problem (3.3) restricted to the subspace. For the approach to be effec-
tive, the subspace construction needs to be fast and the constructed subspace needs to
be able to approximate eigenfunctions from the lower end of the spectrum well.

Subspace construction We construct a d-dimensional subspace of the space of con-
tinuous, piecewise linear functions on the mesh. The basis vectors that span the sub-
space are stored as the columns of a matrix U € R"*?. The construction draws on ideas
used for the construction of weights spaces for skinning and deformation, such as bounded
biharmonic weights [38] and the linear subspace construction proposed in [68]. How-
ever, there are essential differences to these approaches. For example, while [38] solve a
box constraint quadratic optimization and [68] solves a linear system for every basis vec-
tor, we only query a local neighborhood of a sample point to the construct a basis vector.
This is important for our construction since we want to be able to construct larger, e.g.
10k-dimensional, subspaces in a few seconds.

The subspace construction proceeds in three steps. First, a point sampling of the
surface is constructed. Then, basis functions, which are locally supported around the
sample points, are constructed. Finally, the functions are modified to form a partition of
unity.

The goal of the sampling stage is to select a subset of the set of vertices from the mesh
such that the subset provides an evenly distributed sampling of the surface. A require-
ment for the choice of the sampling scheme is that it needs to be able to compute a sam-
pling with several thousand sample points in a few seconds. In our experiments, we ob-
served that the constrained Poisson-disk sampling on triangle meshes introduced in [22]
satisfies our requirements. We denote the indices of the sample vertices by {sy, 52, ..., S4}
and the set of sampled vertices by {vy,, vs,, .., Us,}. Examples of samplings are shown in
Figure 2.1.

In the second step, we construct a preliminary matrix U € R"*?, The i’ column of
the matrix represents a locally supported function centered at the sample point vy,. The
function takes the value one at vy;, monotonically decreases (in radial direction) in a
neighborhood around vy;, and vanishes outside of the neighborhood. The size of the
support of the functions is controlled by a global parameter p . We denote by d(v;, vs;)

16 2. FAST APPROXIMATION OF LAPLACE-BELTRAMI EIGENPROBLEMS

Figure 2.1: Examples of samplings used for the construction of the subspace bases showing between 1000 and
5000 samples on meshes with 100k to 2m vertices. The samples are computed with the constrained Poisson
disk sampling scheme proposed in [22].

the geodesic distance between v; and vs; and we consider the polynomial

3

33,2

Z r°+1 forr=p

3
=d p?
Po(1) 0 forr>p

which is the unique cubic polynomial satisfying p,(0) = 1, %pp (0) =0,pp(p) =0, and
% Pp(p) = 0. Then, the matrix entries i;; of U are given by

Uij = pp(d(vi, vs))).

We choose the parameter p such that the support of every function contains a small
number of sample points, e.g. 7 - 15 sample points. The entries #;; can be interpreted
as weights measuring the influence of sample vy; on vertex v; of the mesh. Each sam-
ple only influences vertices in a local neighborhood. Within the neighborhood, the in-
fluence weights decrease as the geodesic distance between the vertex and the sample
increases. A visualization of a resulting function is shown in Figure 2.2.

We use a growing geodesic disk strategy for the construction of the locally supported
functions. To obtain the j" column of U, we start with the sample vs; and process the

2.4. FAST APPROXIMATION ALGORITHM 17

ial Map for Basis C

Figure 2.2: Visualization of a locally supported basis function used for the construction of the subspace bases
on the Fertility model. The image on the right shows a plot of the polynomial p, (r), see Equation (2.A), for

p=1

Figure 2.3: Comparison of approximate (bottom row) and reference (top row) eigenfunctions of the Laplace—
Beltrami operator on the Kitten model. The reference solutions are computed with MATLAB’s sparse eigen-
solver.

other vertices in order of increasing geodesic distance to vy;. For each visited vertex v;, a
triplet <, j, %;j > is created. Once the distance to vy; is larger than p, all triplets for the
j*" column are collected and the triplets for the next column are assembled. After the
triplets for all columns are collected, the sparse matrix U is generated.

The benefit of the growing disk strategy is that for the construction of the locally sup-
ported functions, only the local neighborhoods of the samples vertices are processed.
In other words, this is a strategy for selecting exactly those pairs (v;, vs;) that contribute
non-zero entries to the sparse matrix J. As a consequence, the computational cost for
the construction of U depends on the number of non-zero entries. Since for a larger
number on samples, we decrease the size of the support of the functions in a way that the
number of entries of the matrix remains (approximately) constant, the computational
cost is independent of the size of the space we construct. This can also be observed in
Table 2.1, which lists timings for the individual steps of the basis construction.

We experimented with three different variants of the growing disk strategy that differ

18 2. FAST APPROXIMATION OF LAPLACE-BELTRAMI EIGENPROBLEMS

in the way they approximate the geodesic distance. The first variant is to use Dijkstra’s
single source algorithm, see [21], on the edge graph of the mesh, where the weights of
the edges are the edge lengths. An alternative is the use of the Short-Term Vector Dijk-
stra algorithm proposed in [16]. This algorithm is a variant of Dijkstra’s algorithms that
corrects distance computations by unfolding the computed edge paths to a plane and
measuring the distance in the plane. The third variant is to use Dijkstra’s algorithm and
correct the distances by taking the Euclidean distance in ambient R? instead of the edge
path distance. This variant is motivated by the fact that the diameter of the support of
the functions we construct is quite small and for small distances, the Euclidean distance
provides a good approximation of the geodesic distance. We refer to [60], where it is
proven by Taylor expansion that squared Euclidean and the squared geodesic distances
between two points agree up to third order in the geodesic distance of the points. We
compared the three variants by looking at approximation quality of the resulting spectra
as well as the required run time and found the third variant to provide the best trade-off.

In the last step of the basis construction, the matrix U is generated by normalizing

the rows of U
1

d ..
Yoy lij

u,-j: u,‘j.

This step ensures that the functions U form a partition of unity on the surface. Though,
we did not encounter such a situation in our experiments, it is possible that a vertex of
the mesh is not in the support of any of the functions. This case could be dealt with by
adding a functions centered the vertex to the basis.

Restricted eigenproblem The subspaces are designed such that when the subspace di-
mension d is large enough, low- and mid-frequency functions can be well-approximated.
To get approximations of the lowest m eigenvalues and eigenfunctions, we restrict the
optimization problem (3.3) to the subspace spanned by U. This means that instead of
searching for a minimizer in the set of all matrices ® € R"*"", we restrict the search space
to matrices ® € R that have the form ® = U¢, where ¢ is a matrix in R?*™, Our
experiments, we chose d = 2m.

To formulate the restricted optimization problem, we use the restricted mass and
stiffness matrices

M=U"MU and S§=UTsU.
Then the restriction of (3.3) is
min_ tr(¢p’S¢) 2.7)
peRdxm

subject to ¢ M¢ = Id.

The columns ¢; of the resulting minimizer ¢ are the restricted eigenvectors. The corre-
sponding restricted eigenvalues are A; = ([)iTS(pl-. The pairs of (1;, ¢;) satisfy the equation

Spi=A;Mp;. (2.8)

2.4. FAST APPROXIMATION ALGORITHM 19

035 T T T T
—Dijkstra
0.3 ||—STVD (k=3)
| —STVD (k=6)

025 Euclidean
25 —Reference

2]

®

= 02

©

>

@

©0.15

Ll

0.1

0.05

0
0 100 200 300 400 500 600 700 800 900 1000
Eigenvalues' index

1 1 1

Figure 2.4: Approximations of the lowest 500 eigenvalues for different subspace constructions on the Fertility
model: The subspace constructions differ in the scheme that is used for the approximation of the geodesic
distances. The schemes used are: Dijkstra’s algorithm, Dijkstra’s algorithm with Euclidean distance correction,
and Short Term Vector Dijkstra (STVD) with two different parameter settings. The subspace used is 1000-
dimensional. All 1000 eigenvalues are shown, though, we recommend using only the first 500.

The eigenvectors ¢; are d-dimensional vectors listing coordinates with respect to the
basis U. The vectors can be lifted to nodal vectors

&, =Up; (2.9)
that describe functions on the mesh, which we call the restricted eigenfunctions.

Solving the eigenproblem The restricted problem is a low-dimensional eigenproblem
involving sparse matrices. Explicitly, the matrices M and S have 29 and 32 non-zero en-
tries per row for the Kitten model in a 1000-dimensional subspace. We observed similar
numbers for other models and subspace dimensions. We experimented with solvers for
sparse matrices and GPU-based dense solvers for the restricted problem, developing a
preference for the latter. The dense solver computes all d eigenvectors of the reduced
problem in a reasonable time for sizes up to d = 10k. Timings are listed in Table 2.1.

Storage requirements In addition to the accelerated basis construction, less data is
required to represent the approximate bases. For spectral methods, this implies less
storage is required. Hence larger bases can be used in-core and evaluations, like re-
constructing a shape from the reduced representation, are faster. Explicit timings for the
latter can be found in the paragraph on simulation in modal coordinates in Section 3.6.
Since the eigenfunctions have dense nodal vectors, for a mesh with 7 vertices, storing
m (unreduced) eigenvectors requires O (n m) storage. The approximate eigenvectors are

20 2. FAST APPROXIMATION OF LAPLACE-BELTRAMI EIGENPROBLEMS

represented by two matrices: the sparse matrix U representing the subspace basis and a
dense matrix representing the reduced coordinates of the eigenvectors. Since we choose
the size of the support of the subspace basis functions such that in average about 10
samples influence each vertex, the matrix U has on average 10 entries per row. Hence, U
requires O (n) storage, which is independent of d, the dimension of the space. The intu-
ition is that if more samples are used, the support of the basis functions shrinks. Since we
choose d to be 2m, the matrix storing the reduced coordinates of the approximate eigen-
functions requires 6(m?) storage. Together, the two matrices require & (n + m?) storage.
For example, representing 5k eigenfunctions on a mesh with 1M vertices in double (8
byte) precision requires 5k * 1M * 8 byte = 40 GB storage. An approximate basis com-
puted in a 10k-dimensional subspace requires about (10 * 1M + 10k * 5k) * 8 byte < 0.5
GB storage.

Properties of the restricted eigenfunctions In the following, we discuss properties of
the restricted eigenfunctions. First, we show that the lifted restricted eigenfunctions,
given by nodal vectors @, are L2-orthonormal on the full resolution mesh.

Lemma 1. The restricted eigenfunctions are pairwise L? -orthonormal.

Proof. Using the definition of the restricted eigenfunctions (2.9), we obtain
- =T 1k FT T T _ 1T
(), @), =P; MO =¢p; U MUPj = p; M =5,

where §;;, the Kronecker delta, is 0 for i # j and 1 for i = j. For the last step, we use the
property that the solutions (3.7) of the minimization problem (3.6) are orthonormal with
respect to M. O

The second property we want to discuss relates to the Dirichlet energy of the re-
stricted eigenfunctions. The Dirichlet energy of a functions f is the quadratic func-
tional (f, f) ! associated to the bilinear form (2.2). Equation (2.3) implies that, for

(L?-normalized) eigenfunctions of the Laplace-Beltrami operator, the eigenvalue agrees
with the Dirichlet energy of the corresponding eigenfunction. We show that an analo-
gous relation holds true for the restricted eigenfunctions and eigenvalues.

Lemma 2. The Dirichlet energy of the i'" restricted eigenfunction equals the restricted
eigenvalue A;.

Proof. Using the definition of the restricted eigenfunctions (2.9), we get
(®i, i)y = @ SO = U SUP; = §; Shi = Lip; Mepi = Ai.

In the last step, we used the orthogonality constraint of the restricted eigenvalue prob-
lem (3.6). O

A consequence of Lemma 2 is that if the restricted eigenvalues A; are close to the
eigenvalues 1;, then the Dirichlet energies of the corresponding restricted and unre-
stricted eigenfunctions, ®; and ®;, are close.

2.5. EXPERIMENTS 21

The restricted eigenfunctions ®; can be written as a linear combination of the eigen-
functions @y
®;=) aixPr, 2.10)
k

with Fourier coefficients a;; = (®;, ®k),>. Since the ®; have unit L%-norm, the coeffi-
cients satisfy
Yt =1 2.11)
3

for any i. Using Lemma 2, we get a relation of the Fourier coefficients a;; of the restricted
eigenfunctions, the restricted eigenvalues A; and the unrestricted eigenvalues 1.

Theorem 3. The Fourier coefficients of the restricted eigenfunctions satisfy

A=Y ai A (2.12)
k

Proof. Using Lemmas 1 and 2, we get

Ai=®]$d; = au®)" SO ai®) = (Y au®)" Y ajxA MO,
] k] 3
=Y > Magag® MO =Y Acas,
Tk k
which proves the theorem. O

The combination of equations (2.11) and (2.12) indicates that any restricted eigen-
function ®; is a linear combination of eigenfunctions ®; with eigenvalues A close to
the restricted eigenvalue A;.

2.5. EXPERIMENTS

We implemented our approximation algorithm using the Eigen [29] and LibIGL [37] li-
braries. For solving the restricted, low-dimensional eigenproblems, we use the GPU-
based solver provided by the cuSOLVER library.

Approximation In our experiments, we found that the spectrum computed with the
proposed scheme approximates well the spectrum of a numerical reference solution,
which is computed with MATLAB’s sparse eigensolver. Figure 2.5 shows plots of the
first one hundred reference and approximate eigenvalues for three different models.
Figure 2.4 shows plots of the first 1000 eigenvalues of the reference solutions as well
as approximations that are computed in a 1000-dimensional subspace using different
schemes for the bases constructions. Note that while the figure shows all 1000 eigenval-
ues, we recommend using only the first half of the computed eigenvalues, which in this
case are the first 500 eigenvalues. The figure stills shows all eigenvalues to give a better
comparison. The schemes for basis construction that are compared differ in the way the
geodesic distance is approximated. Results using Dijkstra’s graph distances, the Dijkstra
distances with Euclidean distance as correction and the Short Term Vector Dijkstra with
two different parameter settings are shown. The figure illustrates that all four variants

22 2. FAST APPROXIMATION OF LAPLACE-BELTRAMI EIGENPROBLEMS

Model Vertices SubspEigen- M,S Sam- Adja- Basis M,S Solve Total Reference
‘ dim. pair:‘ pling cency eigenp. H ‘
Chinese-Dragon 127K 1K 500 | 0.42 0.11 0.19 0.27 023 1.39 2.61 225.62
Kitten 137K 1K 500 | 0.42 0.12 0.15 024 017 1.34 2.44 242.99
Fertility 241K 1K 500 | 0.61 0.24 0.25 0.44 034 1.37 3.26 452.34
Red Circular Box 701K 1K 500 | 1.60 1.69 0.85 1.18 095 1.39 7.67 1196.37
Isidore Horse 1104K 1K 500 | 230 3.23 1.28 192 158 141 11.63 2001.12
Neptune 2003K 1K 500 | 4.34 4.65 2.79 432 330 131 20.70 || Memory bound
Chinese-Dragon 127K 5K 25K | 0.42 0.13 0.19 0.47 023 5218 53.62 4000.01
Kitten 137K 5K 25K | 0.42 0.12 0.15 0.49 0.19 55.94 57.31 5932.93
Fertility 241K 5K 25K | 0.62 0.19 0.25 1.02 032 56.58 58.99 10,707.84
Red Circular Box 701K 5K 25K | 1.52 0.61 0.83 292 1.08 50.20 57.17 || Memory bound
Isidore Horse 1104K 5K 25K | 239 1.15 1.29 472 149 5254 63.60 | Memory bound
Neptune 2003K 5K 25K | 460 476 282 9.06 3.58 56.21 81.03 || Memory bound
Chinese-Dragon 127K 10K 5K 0.43 0.17 0.20 0.80 0.25 421.86 | 423.71 15,479.83
Neptune 2003K 10K 5K 453 2.88 2.80 1558 3.47 434.36 || 463.64 | Memory bound

Table 2.1: Timings (in seconds) for the individuals steps of the proposed approximation algorithm. From left to
right: number of vertices of the mesh, dimension of subspace, number of eigenpairs computed, construction
of matrices M and S, sampling stage, construction of vertex neighborhoods, construction of subspace basis
functions, computation of reduced matrices M and S, solving restricted eigenproblem, total time for approxi-
mation algorithm, and comparison timings of MATLAB’s eigensolver for the same setting.

produce good approximation results. Taking the timings, shown in Table 2.3, into ac-
count, we favored the Euclidean correction of Dijkstra’s algorithm for our experiments.

To evaluate the approximation of the eigenvectors, we compute the Fourier coef-
ficients of the approximate eigenfunctions ®; with respect to the reference eigenbasis
{®}, see Equation (2.10). Figure 2.7 and a supplementary video show plots of Fourier
coefficients for an approximate basis computed in the 1000-dimensional space on the
Kitten model. While for the lower eigenfunctions we observe a sharp peak at the index
of the eigenfunction, the higher approximate eigenfunctions are a linear combination
of reference eigenfunctions with similar eigenvalue. To put this result into a broader
context, we want to point the reader to the supplementary material that includes an ex-
periment in which we explore how the Laplace-Beltrami eigenfunctions change when
the metric of the kitten model is slightly altered. In a second experiment, we evaluate
how well the space spanned by the approximate eigenfunctions can approximate the
reference eigenfunctions. Figure 2.8 shows a plot of the norms of the difference between
reference eigenfunction @4 and its projection onto the space spanned by the first 500
approximate eigenfunctions ®;. The figure additionally shows an analogous plot where
the roles of the approximate and the reference eigenfunctions are exchanged. For a vi-
sual comparison, Figure 2.3 shows color plots of some of the reference and approximate
eigenfunctions on the kitten mesh.

’ Solver ‘ MATLAB (500) MATLAB (1000) CUDA (1000) ‘
’ Time ‘ 5.30 21.45 1.40 ‘

Table 2.2: Performance of MATLAB’s sparse eigensolver vs. the GPU-based dense solver from the cuSOLVER
library for computing the first 500 (left) and all 1000 (middle and right) eigenvalues of the restricted 1000-
dimensional eigenvalue problem.

2.5. EXPERIMENTS 23

0.07
006 N
0.05 W
. B w {4\ 4
LS I
0.04 - Cat1 Cat 2

Eigenvalues
o
o
w
T

0.02 -
— Cat 1
- - Cat 1-Approx. ||
0.01 — Cat2
- - Cat 2-Approx.
0 — Centaur I
- - Centaur-Approx.
-0.01 | | 1 | | | T T
0 10 20 30 40 50 60 70 80 90 100

Eigenvalues' index

Figure 2.5: Comparison of the first 100 eigenvalues, approximation and reference solution, for three models,
two Cat and one Centaur models. Reference solutions are computed using MATLAB’s sparse eigensolver.

Comparison to mesh coarsening Mesh coarsening can be used for the fast approxi-
mation of the eigenvalues of the Laplace-Beltrami operator. Instead of computing the
spectrum on the full-resolution mesh, the mesh is coarsened and the spectrum of the
coarse mesh is computed. Figure 2.6 shows 1000 reference eigenvalues (computed us-
ing MATLAB’s sparse eigensolver on the full-resolution mesh), approximations obtained
with our scheme using 2k and 5k dimensional subspaces, and eigenvalues computed
from simplified meshes with 2k and 5k vertices. The figure demonstrates the benefits
in approximation quality of our scheme compared to the mesh simplification scheme.
The computation times for both, our approximation scheme and mesh coarsening, are
comparable as the most expensive step for both schemes is solving the low-dimensional
eigenvalue problem.

An essential difference between mesh coarsening and our approach is that our scheme
solves an eigenproblem in a subspace of the function space on the full-resolution mesh.
Therefore, we can use restrictions on the matrices M and S. In contrast, the mesh coars-
ening scheme creates a new function space and new matrices. As a consequence, our
scheme results in approximate eigenfunctions on the full-resolution mesh. By construc-
tion the functions are L?-orthonormal on the full-resolution mesh and their Dirichlet
energy agrees with the approximate eigenvalues. We refer to Section 3.4 for a discussion
of the properties. In contrast, the mesh coarsening scheme computes eigenfunction in a
function space on the coarse mesh. These eigenfunctions could be mapped to functions
on the full-resolution mesh, but the resulting functions would not be L?-orthonormal
and lose their connection to the approximate eigenvalues.

Chuang et al. [20] introduced a scheme for estimating the Laplace-Beltrami operator
that constructs a coarse voxel grid containing the surface mesh and creates a function

!

24 2. FAST APPROXIMATION OF LAPLACE-BELTRAMI EIGENPROBLEMS

0.45 ;
—Reference
0.4 H—Our Approx (2.5k samples)
—Our Approx (5k samples)
0.35 |/~~Coarsened (2.5k vertices)
------- Coarsened (5k vertices)
0.3
2]
S
20251 N
>
3
o 02 b
i}
0.15 A
0.1} A
0.05} .
O 1 | 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000

Eigenvalues' index

Figure 2.6: Approximations of the first 1000 eigenvalues of the Laplace-Beltrami operator on the Chinese
Dragon mesh. The reference solution (blue), computed with MATLAB's sparse eigensolver, is compared with
approximations computed with the proposed scheme with 2k (green) and 5k (red) dimensional subspaces and
also computed from coarsened meshes with 2k (dashed green) and 5k (dashed red) vertices.

space by restricting a set 2nd-order tensor-product B-splines defined on the voxel grid
to the surface mesh. The dimension of the function space depends on the voxel grid that
is used and is independent of the resolution of the surface mesh. This approach can be
used to approximate the eigenvalues of the Laplace-Beltrami operator. To put this ap-
proach in context to our scheme, we want to note that similar to the mesh coarsening
approach, the scheme constructs a new function space and new mass and stiffness ma-
trices. In particular, the approximate eigenfunctions are elements of the function space
induced by the voxel grid. This means, to use them for spectral methods, the functions
need to be mapped to the function space of the mesh and the resulting functions will
not be L?-orthonormal anymore.

Computation times Computation times for the individual steps of the proposed ap-
proximation algorithm for different numbers of eigenpairs and sizes of meshes are shown

Dijkstra Euclidean STVD STVD
(k=3) (k=6)

Basis Construction 2.72 2.73 7.07 14.66

Table 2.3: Timing of basis construction with different methods for the approximation of the geodesic distance
on the mesh. From left to right: Dijkstra’s algorithm, Dijkstra’s algorithm with Euclidean distance correction,
Short term vector Dijkstra with window size 3, Short term vector Dijkstra with window size 6.

2.6. APPLICATIONS 25

1 T T T T T T T

—i=10=——i=50 — =125 —i=200 —i=300 —i=450
0.9r N

0.8

0.7
0.6 A

0.4

0.2
0.1

T
Fr,——
1
i
E
S
f

L . ' 2ol o s JE I LS FORMALIUNT AL 2 ‘_—#‘A‘M}_‘iza.&hLLMMALMA‘..
0 50 100 150 200 250 300 350 400 450 500
k

Figure 2.7: Plots of the Fourier coefficients, a;i = (®;, @y);2, of restricted eigenfunctions ®; in the reference
eigenbasis {®y}. The ®; are computed in a 1000-dimensional space on the Kitten model.

in Table 2.1. For reference, timings of MATLAB’s ARPACK-based large-scale sparse eigen-
solver for the same configurations are shown. For the some problems the MATLAB solver
failed because it reached the bound of the available main memory. This could be avoided
by using an out-of-core implementation, as discussed in [65]. However, this comes at
the cost of much higher computation times. The approximation algorithm, on the other
hand, requires less memory, since only reduced coordinates need to be stored for every
eigenvector, and we can solve all the problems listed in the table in-core. For the Fertil-
ity model with 241k vertices, the computation of 500 and 5000 eigenfunctions takes 3.3
and 59 seconds. For the computation of 500 restricted eigenfunctions all steps require
a substantial part to the total time. However, for 2500 eigenfunctions and more, solving
the restricted eigenproblem is the most expensive step.

We experimented with different solvers for the restricted eigenproblem. Since the
restricted stiffness and mass matrices are still sparse matrices, we experimented with
sparse and dense solvers for the low-dimensional eigenvalue problems. Table 2.2 shows
representative times we obtained with MATLAB’s sparse eigensolver and a GPU-based
dense solver from the cuSOLVER library. Based on the run times obtained in our experi-
ments, we recommend using the dense solver.

2.6. APPLICATIONS

To evaluate the proposed approximation scheme, we use the approximate eigenvalues
and eigenfunctions for different spectral methods and compare the results to those ob-
tained with reference eigenvalues and eigenfunctions, which we compute with MAT-
LAB’s eigensolver.

26 2. FAST APPROXIMATION OF LAPLACE-BELTRAMI EIGENPROBLEMS

-3
70 x 10 T T T T T T
—Projection of Approximation onto Reference

60 ||—Projection of Reference onto Approximation

50
8 40l |
2 40
o
(0]
£ 30l |
5 30

20+

[
10 a
e
0 ¥ | | | | | | | |
0 50 100 150 200 250 300 350 400 450 500

Index

Figure 2.8: The norms of the difference between reference eigenfunction ®; and its projection onto the space
spanned by the first 500 approximate eigenfunctions ®@; for k € {1, 2, ...,500} are shown in red and an analogous
plot with roles of ®;. ad ®; exchanged in blue.

Shape DNA Shape DNA [53] is a simple, yet effective, spectral shape descriptor. The
simplicity makes it well-suited for our comparison. Figure 2.9 compares results obtained
with the approximate and the reference spectra, where the lowest 100 eigenvalues are
used for the Shape DNA. The test dataset, which is part of the TOSCA data set [12], con-
sists of a variety of shapes with different poses for each of the shapes. The Shape DNA
of each shape and the pairwise shape distances are computed. The resulting distances
are visualized by an MDS projection to the plane. The figure illustrates that the approx-
imate eigenvalues yield comparable results to the reference solution. For three exam-
ples shapes, hundred approximate and reference eigenvalues are shown in Figure 2.5.
The figure illustrates that the differences between approximate and reference spectra
are small compared to the difference of eigenvalues of different shapes.

Diffusion distance The second spectral method we consider is the diffusion distance [47].

We chose this spectral distance because the computation combines eigenvalues and
eigenfunctions and the distance has fewer parameter than alternatives, such as the heat
kernel signature. The latter makes it easier to compare results. Figure 2.10 shows results
for two models and different values of the parameter ¢. The results obtained using the
lowest 1000 approximate eigenvalues and eigenfunctions and reference eigenvalues and
eigenfunctions are shown. Furthermore, the relative L? approximation error, denoted
by €, of the differences between approximate and reference result is shown. The visual
comparison indicates that the resulting distances are quite close, which is confirmed by
the computed approximation errors. As discussed in Section 3.6, the precomputation
time for the approximate solution is two orders of magnitude shorter.

2.6. APPLICATIONS 27

3 3
2010 2010
W cats (1) @cats (1)

15| M Centaurs (5) 15 @ Centaurs (5) “
B Michael (10) u @ Michael (10)
10 [l Horses (6)] 10} @ Horses (6)
M Victoria (5) h @ vicoria (5)
5+ Il David (7) 5 @ David (7) .
o 0
n |
.o : .
s = '
-10 10
MDS of the original eigenvalues. MDS of the approximated eigenvalues.
-15 15
-20
-200 150 100 50 0 50 100 150 200 250 200 150 50 100 150 200 250
10° 10°
r\s o F) 1N ?,’ P B Al ‘?g b (73 ~ & % ﬂ) (\E
e [>, IR ¢
Wl B W N 9 IRV 3 ¢ BAR N N
M { Y
), o Q R O
A N\ % A o o _ pos e AR &
| R M o/ (¥ 7 R W R Ko 7. / R
{ ¢ '\ [/ - r) ¢ x / /o= Y (R
P AR AN = 4 NR \\\ R r\\\ﬁ I feg= Y @
[/ \ ' (A !) 1 N I \ ¥)

Figure 2.9: Plots visualizing the shape distances of a collections of models. The shape distances are computed
from the Shape DNA, approximated with the proposed method (top-right) and reference eigenvalues (top-left)
computed using MATLAB's sparse eigensolver. The plots are generated with multi-dimensional scaling applied
to the matrix containing all pairwise distances. Visualization of the models, which are taken from the TOSCA
data set, are shown at the bottom.

Mesh filtering Figures 2.11 and 2.12 show the results of spectral filtering [65] using the
approximate eigenvalues and eigenfunctions. For comparison, results obtained using
the reference eigenvalues and eigenfunctions are shown. The visual comparison shows
that results of comparable quality can be obtained using the approximate basis. The
benefit of using the approximate basis is the reduced precomputation time. This is a
crucial factor as with the approximation the overall time needed for spectral filtering
becomes comparable to the time required by alternative state-of-the-art mesh filtering
schemes. Moreover, with the approximation, the filtering approach only requires solv-
ing alow-dimensional dense eigenproblem, which is in contrast to many recent filtering
schemes that are based on large scale, non-convex optimization problems. The bene-
fits that spectral filters can enhance frequencies and can be interactively modified are
preserved. Due to the lower storage requirements, the approximation method can also
process larger meshes and more eigenfunctions in-core than the original scheme us-
ing unreduced eigenfunctions. Though approximation of the reference solution is not
a quality criteria for the result of filtering, we are listing the approximation errors since
they evaluate how-well the low frequency subspaces are approximated.

Parameter-dependent operators Recent work [31, 19, 44, 69] indicates that spectral
methods can profit from using not only the Laplacian but also other operators. For ex-
ample, the Laplacian can be augmented with a potential that includes additional infor-
mation about the extrinsic curvature. The operators considered usually depend on one
or more parameters. For example, a parameter that weights the importance of extrin-
sic information against the importance of intrinsic information. The proposed approx-
imation algorithm provides the possibility to efficiently explore such parameter spaces.
Once the subspace basis is constructed and the reduced matrices of the relevant opera-
tors are generated, the approximation of the lowest 100 eigenpairs for different param-

28 2. FAST APPROXIMATION OF LAPLACE-BELTRAMI EIGENPROBLEMS

Figure 2.10: Comparison of diffusion distances computed using reference eigenpairs (first and third rows) and
our approximations (second and fourth rows) on the Vase-Lion and Kitten models. Parameter of the diffusion
distance, t, and relative 12 approximation error, €, are shown.

2.6. APPLICATIONS 29

—t—t +—t—— + —t—t + ———t
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
Index

£=7.01x10° €7.61x10° £=2.92x10° £=2.98x10°

Figure 2.11: Comparison of results of spectral mesh filtering on the Chinese-Dragon model using 5000 ap-
proximated eigenvalues and eigenfunctions (bottom row) and 5000 eigenvalues and eigenfunctions computed
using MATLAB (top row). Relative L? approximation errors, €, are shown.

eter settings can be computed at interactive rates. For example, a user can change the
parameters and receive interactive feedback, such as visualizations of the eigenfunctions
at the current parameter setting. Figure 2.13 shows examples of results obtained with the
family of operators described in [58, pages 72-73], which extends the construction of a
modified Laplacian from [31]. In the discrete setting, the matrix A with entries

Ajj=(N(;),N(v)))S;;

is contructed, where S;; are the entries of the cotangent matrix and N(v;) is the normal
at vertex v;. Then a one-parameter family of operators is defined as

1-0S+tA. (2.13)

The operators are intrinsic for £ = 0 and a potential, dependent on the extrinsic curva-
ture, is blended in for # > 0. Figure 2.13 shows examples of approximate eigenfunctions
for different values of ¢.

Simulation of elastic deformables In the following, we will discuss how our approach
can be used for fast approximation of vibration modes of deformable objects. Vibration

30 2. FAST APPROXIMATION OF LAPLACE-BELTRAMI EIGENPROBLEMS

3 /l 5

= SN XN
- I655% |\
- A 1
7 (\:,—’ 7\ \ %
: £ =

S)\ d e
\‘»’t‘?\i‘ A = i/;}ﬂ
S T

P

Z o A

Figure 2.12: Results of a sharpening filter using 5000 approximate eigenpairs on the Red Circular Box model.
Top row shows input and bottom row results.

modes are widely used in graphics for fast simulation [5, 64], simulation-based shape
editing [33], sound synthesis [17], editing simulations [6], and for deformable motion
design [32]. Yang et al. [72] propose a model reduction for the simulation of deformable
objects that involves the construction of a linear subspace. They state that solving the
eigenproblem to obtain vibration modes is computationally expensive and they there-
fore use a Krylov subspace method to compute linear inertia modes instead. Our al-
gorithm would enable the method proposed in [72] to compute approximate vibration
modes in less time than what is needed for their construction of the linear inertia modes.

We want to emphasize that the approximations are solutions of a restricted eigen-
value problem. Hence the eigenvalues are physically meaningful and the approximate
eigenvalues and eigenmodes can be used for simulation in modal coordinates. More-
over, the reduced storage requirements, which were discussed in Section 3.4, also extend
to the approximate vibration modes.

We consider a discrete elastic object modeled by a triangle or tetrahedral mesh and
describe the configurations of the object by 3n-dimensional vectors listing the coordi-
nates of all n vertices. We look at a rest configuration xg of the object and use displace-
ment vectors u to describe deformed configurations. The energy stored in any configu-
ration x = xp + u is measured by an elastic potential E(x). The vibration modes are the
eigenfunctions ®; to the generalized eigenvalue problem

H®; = AM®;, (2.14)

2
where H = aa?E(xo) is the Hessian of the elastic energy at xy and M is the mass matrix.
The linearized equations of motion of the discrete elastic object are

Mii(t) + (aM+ BH)u(t) + Hu(t) = F, (2.15)

2.6. APPLICATIONS 31

1st

6th

t=0.0 0.4 1.0

Figure 2.13: Eigenfunctions of a one-parameter family of operators are shown. For ¢ = 0, the operator is the
Laplace-Beltrami operator. For other values of ¢ the operator includes extrinsic information. The higher the
value of ¢ the stronger the influence of the extrinsic information. The proposed approximation scheme allows
to interactively explore the eigenfunctions the one-parameter family of operators.

subject to suitable initial conditions on positions #(0) and velocities %(0). Here F rep-
resents external forces. We can express any displacement u as a superposition of eigen-
modes, u = ®q, where @ is the matrix whose columns are the vibration modes ®; and
q is the vector listing the modal coordinates of u. In the basis of vibration modes, the
equations of motion decouple to 37 independent ODEs

Gi (D + @+ PA)Gi (1) + A1 qi (1) = (OT F), (2.16)

to which analytic solutions are known. Being able to compute analytic solutions has
many benefits over numerical integration. For example, the solution at any point in time
can be computed without time-step restrictions and there is no numerical damping. For
efficiency, not all vibration modes but only the lowest m are computed and used for
the simulation. Then, ® is the 3n x m matrix storing the first m vibration modes as its
columns.

Our approach offers different benefits for the simulation in modal coordinates. One
is that the computational cost for constructing the modal basis is significantly reduced.
Moreover, the transformation from modal coordinates g to world coordinates u is faster.
The reason is that the matrix ® storing the first m approximate vibration modes can be
decomposed ® = U¢, where U € R3*¢ is the sparse matrix storing the subspace basis
and ¢ € R?*™ is the matrix representing the approximate vibration modes in reduced
coordinates. This means that instead of a matrix-vector product with a dense 3n x m-
matrix, only products with a dense d x m-matrix and a sparse 3n x d-matrix are needed
to transform from modal to world coordinates. The third benefit is that the approximate

32 2. FAST APPROXIMATION OF LAPLACE-BELTRAMI EIGENPROBLEMS

5.9 3.1

Figure 2.14: Real-time simulation of an elastic deformable (165k vertices) using 500 approximated vibration
modes. A strong point force is applied to the back. High frequent details in the dynamics that spread across
the mesh without (numerically) dissipating are observed.

modal basis requires less memory since only the low-dimensional dense matrix ¢ and
the sparse matrix U are stored instead of the matrix ®. This is crucial when memory
requirements for storing @ exceed the GPU storage space.

In a supplementary video we show an evaluation of this application, where we simu-
late the Armadillo model (unsimplified, 165k vertices) using 500 approximated vibration
modes, which were computed using our subspace construction from d = 1000 samples.
In Figure 2.14 we show snapshots of this simulation. To highlight the fine resolution of
the dynamics that can be expressed using this approach, we set the damping quotients «
and S to very low values and “poke” the mesh by shortly applying large external forces to
a single vertex (shown by a blue arrow). The resulting simulation shows the advantages
of using vibration modes to reduce and solve the linearized equations of motion, as we
observe high frequent details in the dynamics as well as no dissipation due to numerical
damping, such that even small shock waves can slowly propagate across the entire mesh.
The computation of the approximated vibration modes is only 15.2 seconds, whereas
computing 500 full vibration modes using MATLAB takes 30.1 minutes on the same ma-
chine. For a quantitative comparison of the simulation using fully computed vibration
modes to the simulation using our approximated vibration modes, we computed the
relative error between the two simulations, that is eﬁel =x@-0) =X -O)p/ Nl x@-0)pg.
Here, 0 is the time-step, i the index of the frame, and x(#) and X%(¢) are the vertex posi-
tions of the solutions to (2.16) using fully computed vibration modes and approximated
vibration modes respectively. For the first 250 frames of the simulation shown in Figure
2.14, we got an average relative error of 0.00698 and a maximal relative error of 0.01141.
Visually, the two simulations are indistinguishable. Updating the current state using the
product U-(¢- (1)) requires around 7 milliseconds, whereas the product ®¢(¢) takes 120
milliseconds of computation time on average, which prohibits real-time applications.

2.7. CONCLUSIONS

We present a fast approximation algorithm for the lowest part of the spectrum of the
Laplace-Beltrami operator. Our experiments demonstrate that the approximate spectra

2.7. CONCLUSIONS 33

are close to the reference spectra, which were computed with state-of-the-art large-scale
sparse eingensolvers. We also show that spectral methods produce comparable results
with the approximate and the reference spectra. The benefit of the approximation algo-
rithm is the lower computational cost, which reduces precomputation time for spectral
methods by two order of magnitude and thereby make spectral methods even more at-
tractive for geometry processing applications. A second benefit is the computation of
the approximate spectra does not require a sophisticated large-scale sparse eigensolver,
but only requires to solve a low- dimensional eigenproblem.

Concerning future work, we see potential that the proposed approach can be ex-
tended to a fast approximation algorithm for the computation of compressed manifold
modes [49] and compressed vibration modes [9]. Due the sparsity enforcing term that
is integrated to the eigenproblem, the computation of compressed modes poses a chal-
lenging problem. Moreover, we think that reduced simulation in modal coordinates can
benefit from the proposed approach. Since computation times for approximating vibra-
tion modes are greatly reduced, one direction would be to use the approach for basis
update in reduced non-linear elastic simulation. Furthermore, the fact that the approx-
imate modes can be efficiently stored and processed makes the method interesting for
sound synthesis as more eigenfunctions produce richer sound.

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

BIBLIOGRAPHY

J

Marc Alexa and Max Wardetzky. “Discrete Laplacians on General Polygonal Meshes”.
In: ACM Trans. Graph. 30.4 (2011), 102:1-102:10.

M. Aubry, U. Schlickewei, and D. Cremers. “The wave kernel signature: A quantum
mechanical approach to shape analysis”. In: ICCV. 2011, pp. 1626-1633.

Omri Azencot et al. “An Operator Approach to Tangent Vector Field Processing”.
In: Computer Graphics Forum 32.5 (2013), pp. 73-82.

Omri Azencot et al. “Discrete Derivatives of Vector Fields on Surfaces — An Opera-
tor Approach”. In: ACM Trans. Graph. 34.3 (2015), 29:1-29:13.

Jernej Barbi¢ and Doug L. James. “Real-Time subspace integration for St. Venant-
Kirchhoff deformable models”. In: ACM Trans. Graph. 24.3 (2005), pp. 982-990.

Jernej Barbi¢, Funshing Sin, and Eitan Grinspun. “Interactive editing of deformable
simulations”. In: ACM Trans. Graph. 31.4 (2012), 70:1-70:8.

Klaus-Jiirgen Bathe. “The Subspace Iteration Method - Revisited”. In: Computers
and Structures 126 (2013), pp. 177-183.

D. Boscaini et al. “Learning class-specific descriptors for deformable shapes us-
ing localized spectral convolutional networks”. In: Computer Graphics Forum 34.5
(2015), pp. 13-23.

Christopher Brandt and Klaus Hildebrandt. “Compressed Vibration Modes of De-
formable Bodies”. In: Computer Aided Geometric Design 52-53 (2017), pp. 297-312.

Christopher Brandt et al. “Modeling n-Symmetry Vector Fields using Higher-Order
Energies”. In: ACM Trans. on Graph. 37.2 (2018), 18:1-18:18.

Christopher Brandt et al. “Spectral Processing of Tangential Vector Fields”. In: Com-
puter Graphics Forum 36.6 (2017), pp. 338-353.

A. M. Bronstein, M. M. Bronstein, and R. Kimmel. Numerical geometry of non-rigid
shapes. Springer, 2008.

Alexander M. Bronstein et al. “Shape Google: Geometric Words and Expressions
for Invariant Shape Retrieval”. In: ACM Trans. Graph. 30.1 (2011), 1:1-1:20.

Michael M. Bronstein et al. “Geometric Deep Learning: Going beyond Euclidean
data”. In: IEEE Signal Process. Mag. 34.4 (2017), pp. 18-42.

Joan Bruna et al. “Spectral networks and locally connected networks on graphs”.
In: International Conference on Learning Representations (2014).

Marcel Campen, Martin Heistermann, and Leif Kobbelt. “Practical Anisotropic Geodesy”.

In: Computer Graphics Forum 32.5 (2013), pp. 63-71.

35

36 BIBLIOGRAPHY

[17] Jeffrey N. Chadwick, Steven S. An, and Doug L. James. “Harmonic shells: a practi-
cal nonlinear sound model for near-rigid thin shells”. In: ACM Trans. Graph. 28.5
(2009), 119:1-119:10.

[18] Yoni Choukroun, Gautam Pai, and Ron Kimmel. “Schrédinger Operator for Sparse
Approximation of 3D Meshes”. In: Symposium on Geometry Processing 2017-Posters.
2017.DOI: 10.2312/sgp. 20171205

[19] YoniChoukroun et al. “Elliptic operator for shape analysis”. In: ArXivabs/1611.01990
(2016).

[20] Ming Chuang et al. “Estimating the Laplace-Beltrami Operator by Restricting 3D
Functions”. In: Computer Graphics Forum 28.5 (2009), pp. 1475-1484.

[21] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to
Algorithms. MIT Press, 1990.

[22] Massimiliano Corsini, Paolo Cignoni, and Roberto Scopigno. “Efficient and flexi-
ble sampling with blue noise properties of triangular meshes”. In: IEEE Transac-
tions on Visualization and Computer Graphics 18.6 (2012), pp. 914-924.

[23] Keenan Crane et al. “Digital Geometry Processing with Discrete Exterior Calculus”.
In: ACM SIGGRAPH 2013 courses. SIGGRAPH ’13. 2013.

[24] Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. “Convolutional Neu-
ral Networks on Graphs with Fast Localized Spectral Filtering”. In: Proceedings of
the 30th International Conference on Neural Information Processing Systems. 2016,
pp. 3844-3852.

[25] Shen Dong et al. “Spectral surface quadrangulation”. In: ACM Trans. Graph. 25.3
(2006), pp. 1057-1066.

[26] Petros Drineas and Michael W. Mahoney. “On the Nystrom Method for Approxi-
mating a Gram Matrix for Improved Kernel-Based Learning”. In: J. Mach. Learn.
Res. 6 (2005), pp. 2153-2175.

[27] C.Fowlkes et al. “Spectral grouping using the Nystrom method”. In: IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 26.2 (2004), pp. 214-225.

[28] Katarzyna Gebal et al. “Shape Analysis Using the Auto Diffusion Function”. In:
Computer Graphics Forum 28.5 (2009), pp. 1405-1413.

[29] Gaél Guennebaud, Benoit Jacob, et al. Eigen v3. http://eigen.tuxfamily.org. 2010.

[30] N. Halko, P. G. Martinsson, and J. A. Tropp. “Finding Structure with Randomness:
Probabilistic Algorithms for Constructing Approximate Matrix Decompositions”.
In: SIAM Review 53.2 (2011), pp. 217-288.

[31] Klaus Hildebrandt et al. “Eigenmodes of surface energies for shape analysis”. In:
Advances in Geometric Modeling and Processing. Vol. 6130. Lecture Notes in Com-
puter Science. Springer, 2010, pp. 296-314.

[32] Klaus Hildebrandt et al. “Interactive spacetime control of deformable objects”. In:
ACM Trans. Graph. 31.4 (2012), 71:1-71:8.

[33] Klaus Hildebrandt et al. “Interactive surface modeling using modal analysis”. In:
ACM Trans. Graph. 30.5 (2011), 119:1-119:11.

https://doi.org/10.2312/sgp.20171205

BIBLIOGRAPHY 37

[34] Klaus Hildebrandt et al. “Modal shape analysis beyond Laplacian”. In: Computer
Aided Geometric Design 29.5 (2012), pp. 204-218.

[35] Jin Huang et al. “Spectral quadrangulation with orientation and alignment con-
trol”. In: ACM Trans. Graph. 27.5 (2008), pp. 1-9.

[36] Qixing Huang et al. “Shape Decomposition Using Modal Analysis”. In: Computer
Graphics Forum 28.2 (2009), pp. 407-416.

[37] AlecJacobson, Daniele Panozzo, et al. libigl: A simple C++ geometry processing li-
brary. http://libigl.github.io/libigl/. 2016.

[38] AlecJacobson et al. “Bounded biharmonic weights for real-time deformation”. In:
ACM Trans. Graph. 30.4 (2011), 78:1-78:8.

[39] Zachi Karni and Craig Gotsman. “Spectral Compression of Mesh Geometry”. In:
ACM SIGGRAPH. 2000, pp. 279-286.

[40] Artiom Kovnatsky et al. “Coupled quasi-harmonic bases”. In: Comput. Graph. Fo-
rum 32.2 (2013), pp. 439-448.

[41] Ron Levie et al. “CayleyNets: Graph Convolutional Neural Networks with Complex
Rational Spectral Filters”. In: ArXiv abs/1705.07664 (2017).

[42] Ruotian Ling et al. “Spectral Quadrangulation with Feature Curve Alignment and
Element Size Control”. In: ACM Trans. Graph. 34.1 (2014), 11:1-11:11.

[43] Or Litany et al. “Fully Spectral Partial Shape Matching”. In: Comput. Graph. Forum
36.2 (2017), pp. 247-258.

[44] DerekLiu, AlecJacobson, and Keenan Crane. “A Dirac Operator for Extrinsic Shape
Analysis”. In: Computer Graphics Forum 36.5 (2017).

[45] S. Melzi et al. “Localized Manifold Harmonics for Spectral Shape Analysis”. In:
Computer Graphics Forum 37 (2018).

[46] Przemyslaw Musialski et al. “Reduced-order Shape Optimization Using Offset Sur-
faces”. In: ACM Trans. Graph. 34.4 (2015), 102:1-102:9.

[47] BoazNadler et al. “Diffusion Maps, Spectral Clustering and Eigenfunctions of Fokker-
Planck Operators”. In: Proceedings of the 18th International Conference on Neural
Information Processing Systems. 2005, pp. 955-962.

[48] Ahmad Nasikun, Christopher Brandt, and Klaus Hildebrandt. “Fast Approxima-
tion of Laplace-Beltrami Eigenproblems”. In: Comp. Graph. Forum 37.5 (2018).

[49] T. Neumann et al. “Compressed Manifold Modes for Mesh Processing”. In: Com-
put. Graph. Forum 33.5 (2014), pp. 35-44.

[50] Maks Ovsjanikov et al. “Computing and Processing Correspondences with Func-
tional Maps”. In: SIGGRAPH ASIA 2016 Courses. ACM, 2016, 9:1-9:60.

[51] Maks Ovsjanikov et al. “Functional Maps: A Flexible Representation of Maps Be-
tween Shapes”. In: ACM Trans. Graph. 31.4 (2012), 30:1-30:11.

[52] Giuseppe Patane. “Accurate and Efficient Computation of Laplacian Spectral Dis-
tances and Kernels”. In: Comput. Graph. Forum 36.1 (2017), pp. 184-196.

38 BIBLIOGRAPHY

[53] Martin Reuter, Franz-Erich Wolter, and Niklas Peinecke. “Laplace-Beltrami spec-
traas "Shape-DNA" of surfaces and solids”. In: Computer-Aided Design 38.4 (2006),
pp. 342-366.

[54] Martin Reuter, Franz-Erich Wolter, and Niklas Peinecke. “Laplace-Spectra as Fin-
gerprints for Shape Matching”. In: Proceedings of the ACM Symposium on Solid
and Physical Modeling. 2005, pp. 101-106.

[55] Emanuele Rodola et al. “Partial Functional Correspondence”. In: Comput. Graph.
Forum 36.1 (2017), pp. 222-236.

[56] Raif M. Rustamov. “Laplace-Beltrami eigenfunctions for deformation invariant
shape representation”. In: Symposium on Geometry Processing. 2007, pp. 225-233.

[57] Raif M. Rustamov et al. “Map-based Exploration of Intrinsic Shape Differences and
Variability”. In: ACM Trans. Graph. 32.4 (2013), 72:1-72:12.

[58] Christian Schulz. “Interactive Spacetime Control of Deformable Objects and Modal
Shape Analysis beyond Laplacian”. PhD thesis. Freie Universitét Berlin, 2013. URL:
http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000095730.

[59] Avinash Sharma et al. “Mesh Segmentation Using Laplacian Eigenvectors and Gaus-
sian Mixtures”. In: Manifold Learning and Its Applications. 2009.

[60] O.G. Smolyanov, H. von Weizicker, and O. Wittich. “Brownian motion on a man-
ifold as limit of stepwise conditioned standard Brownian motions”. In: Stochastic
processes, physics and geometry: new interplays, 1I (Leipzig, 1999). CMS, 2000.

[61] Ran Songetal. “Mesh Saliency via Spectral Processing”. In: ACM Trans. Graph. 33.1
(2014), 6:1-6:17.

[62] Jian Sun, Maks Ovsjanikov, and Leonidas J. Guibas. “A Concise and Provably In-
formative Multi-Scale Signature Based on Heat Diffusion.” In: Computer Graphics
Forum 28.5 (2009), pp. 1383-1392.

[63] Ameet Talwalkar et al. “Large-scale SVD and Manifold Learning”. In: Journal of
Machine Learning Research 14 (2013), pp. 3129-3152.

[64] Christoph von Tycowicz et al. “An Efficient Construction of Reduced Deformable
Objects”. In: ACM Trans. Graph. 32.6 (2013), 213:1-213:10.

[65] Bruno Vallet and Bruno Lévy. “Spectral Geometry Processing with Manifold Har-
monics”. In: Computer Graphics Forum 27.2 (2008), pp. 251-260.

[66] Libor Vasa et al. “Compressing dynamic meshes with geometric Laplacians”. In:
Computer Graphics Forum 33.2 (2014), pp. 145-154.

[67] Amir Vaxman, Mirela Ben-Chen, and Craig Gotsman. “A Multi-resolution Approach
to Heat Kernels on Discrete Surfaces”. In: ACM Trans. Graph. 29.4 (2010), 121:1-
121:10.

[68] Yu Wang et al. “Linear Subspace Design for Real-time Shape Deformation”. In:
ACM Trans. Graph. 34.4 (2015), 57:1-57:11.

[69] Yu Wang et al. “Steklov Geometry Processing: An Extrinsic Approach to Spectral

Shape Analysis”. In: ArXiv abs/1707.07070 (2017).

http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000095730

BIBLIOGRAPHY 39

[70] Max Wardetzky et al. “Discrete quadratic curvature energies”. In: Computer Aided
Geometric Design 24.8-9 (2007), pp. 499-518.

[71] Christopher K. I. Williams and Matthias Seeger. “Using the Nystrom Method to
Speed Up Kernel Machines”. In: Advances in Neural Information Processing Sys-

tems 13. MIT Press, 2001, pp. 682-688.

[72] Yin Yang et al. “Expediting Precomputation for Reduced Deformable Simulation”.
In: ACM Trans. Graph. 34.6 (2015), 243:1-243:13.

[73] Hao Zhang, Oliver van Kaick, and Ramsay Dyer. “Spectral Mesh Processing”. In:
Computer Graphics Forum 29.6 (2010), pp. 1865-1894.

APPENDIX

This supplementary material contains additional experimental results concerning the
method presented in the submission Fast Approximation of Laplace—Beltrami Eigen-
problems.

2.A. CHOICE OF BASIS FUNCTIONS

In Section 4 of the submission, the construction of the subspace basis is introduced. Af-
ter sampling, a preliminary matrix J € R”*¢ in which the i‘" column represents a locally
supported function centered at the sample point vy, is constructed. The function takes
the value one at vs;, monotonically decreases (in radial direction) in a neighborhood
around vy;, and vanishes outside of the neighborhood. The size of the support of the
functions is controlled by a global parameter p. We use the cubic polynomial

2,
pp(")z{ °

which satisfies p,(0) =1, %pp (0)=0,p,(p) =0, and 66—rpp (p) = 0 for our construction.

3 2

-3r2+1 forrs<p

p ’
0 forr>p

T
25 7—O.r|g|nal /l
—Linear
3rd-Order Polynomial
9 H—5th-Order Polynomial]

—Exponential

Eigenvalues
N
o
T
1

N
T
!

o
)]
T
I

0
0 100 200 300 400 500 600 700 800 900 1000
Index

Figure 2.A.1: Experimental results that compare the approximate eigenvalues computed using different func-
tions for basis construction to a reference solution are shown.

Of course, other choices of functions are possible. In this section, we describe three
alternative choices of functions. Figure 2.A.2 shows graphs of the functions for illustra-
tion. Figure 2.A.1 shows experimental results that compare the resulting approximate
eigenvalues to a reference solution.

41

42 BIBLIOGRAPHY

Various Functions for Basis Construction

1 T T T T
—Linear
—3rd-Order Polynomial
0.8 5th-Order Polynomial|]
—Exponential
0.6
x
0.4r
0.21
0 Il
0 0.2 0.4 0.6 0.8 1

X

Figure 2.A.2: Graphs of the four functions for p = 1 are shown.

The first alternative function is the linear polynomial

; 1-L forrs<
pf)lnear(r) :{ o p

0 forr>p ’

that satisfies p,(0) = 1 and p,(p) = 0. Compared to the cubic polynomial, this poly-
nomial is simpler, but only conituous and not differentiable at p.

The second alternative is the fifth-order polynomial

6 .5, 15,4 _10.3
fifth(r)—{ Ikt =T +1 forr=p

Pe 0 forr>p ’

that satisfies p,(0) = 1, < p,(0) = 0, g—:zpp (0)=0,pp(p) =0, 2 pp(p) =0, and %pp (p) =
0. This polynomial is not just once, but twice differentiable at p.
The third alternative is an exponential function

_log)r?
2,2 _
pf,x’”(r) ={ e 5" = forr<p ,
0 forr>p

that we cut off at p.

In our experiments, we compared the approximation error for the eigenvalues we
obtain with the different functions and found that the third-order and fifth-order poly-
nomial and the exponential function, produce comparable approximation errors, where
the third-order polynomial performs slightly better than the other two. The linear func-
tion produced higher errors. An example of results is shown in Figure 2.A.1. In this ex-
ample 1000 approximate eigenvalues that computed in a 1000-dimensional space are
shown. Note that in the submission we suggest not to use all 1000 eigenvalues but rather
only the first 500.

2.B. EIGENFUNCTIONS AND EDGE FLIPS 43

Y -

[—i=10—i= 50—| 125—1 200—| 300 —i= 450

09 b
0.8~ h
0.7 - b
0.6~ ‘ B
0.5
0.4
03

021

Figure 2.B.1: Eigenfunction of the kitten model before and after flipping some edges are compared. The top
row show an image of the kitten model and zoom-in images of the mesh before and after some edge flips. The
bottom row shows plots of the Fourier coefficients, a;i = (®;,®);2, of eigenfunction ®; of the kitten with
flipped edges in the eigenbasis {®} of the kitten before edges are flipped.

2.B. EIGENFUNCTIONS AND EDGE FLIPS

To put the approximation results for the Laplace-Beltrami eigenfunctions discussed in
Section 5 of the paper into a broader context, we want to add an experiments that ex-
plores how the eigenfunctions change when the metric of a surface is slightly changed.
For this, we re-meshed the kitten model by applying a series of edge flips. All vertices are
kept in place, but the flips change the metric and hence the discrete Laplace-Beltrami
operator. Images of the two meshes are shown in Figure 2.B.1. We computed the lowest
500 eigenfunctions of both meshes. To compare them, we looked at the Fourier coeffi-
cients, a; = (@i , @ k) 12, of eigenfunction ®; of the kitten with flipped edges in the eigen-
basis {®} of the kitten before edges are flipped. Plots of the Fourier coefficients of some
of the eigenfunctions are shown in Figure 2.B.1. We observed that the difference of the
eigenfunctions resulting from the edge flips is of similar magnitude as the difference to
the approximate eigenfunctions computed with our approximation algorithm as shown
in Figure 7 of the paper.

44 BIBLIOGRAPHY

2.C. COMPARISON TO MESH COARSENING

In Section 5 of the submission, the proposed method is compared to a mesh coarsen-
ing approach for eigenvalue approximation and Figure 6 (of the submission) shows one
example of approximate eigenvalues computed with the proposed method and mesh
coarsening. Figure 2.C.1 of this supplementary material shows more examples with a
comparable setting on different surfaces.

2.C. COMPARISON TO MESH COARSENING

45

—Original Mesh
0-2—our Approx (2.5k samples) |
—Our Approx (5k samples)
------- Coarsened (2.5k vertices)
8 0.15 ... Coarsened (5k vertices)
=]
©
g
o 01F 1
Ry
i}
0.05 1
0 , . , ,
0 200 400 600 800 1000
Eigenvalues index
1 :
— Original Mesh
—Our Approx (2.5k samples)
0.8 H—Our Approx (5k samples) —
------- Coarsened (2.5k vertices)
w | Coarsened (5k vertices)
Po6f
©
>
C
S
i 0.4
0.2)
0 . | | |
0 200 400 600 800 1000
Eigenvalues index
8000 T
—Original Mesh
7000 ||—Our Approx (2526 samples) 1
—Our Approx (5093 samples) _
6000 |- ~ Coarsened (2525 vertices) P
- - Coarsened (5047 vertices) L=
£ 5000 - el T .
=] P
2 4000 Z e, i
5 A
o z - g
{1 3000 - A 1
2000 - e 1
1000 1
0 , . | |
0 200 400 600 800 1000

Eigenvalues index

Figure 2.C.1: Approximations of the first 1000 eigenvalues of the Laplace-Beltrami operator on the Fertility,
the Kitten and the Armadillo mesh are shown. The reference solutions (blue), compute with MATLAB'’s sparse
eigensolver, is compared with approximations computed with the proposed scheme with 2k (green) and 5k
(red) dimensional subspaces and computed from coarsened meshes with 2k (dashed green) and 5k (dashed

red) vertices.

LOCALLY SUPPORTED TANGENTIAL
VECTOR, n-VECTOR, AND TENSOR
FIELDS

Science is a differential equation.
Religion is a boundary condition.

Alan Turing

We introduce a construction of subspaces of the spaces of tangential vector, n-Vector, and
tensor fields on surfaces. The resulting subspaces can be used as the basis of fast approxi-
mation algorithms for design and processing problems that involve tangential fields. Im-
portant features of our construction are that it is based on a general principle, from which
constructions for different types of tangential fields can be derived, and that it is scalable,
making it possible to efficiently compute and store large subspace bases for large meshes.
Moreover, the construction is adaptive, which allows for controlling the distribution of the
degrees of freedom of the subspaces over the surface. We evaluate our construction in sev-
eral experiments addressing approximation quality, scalability, adaptivity, computation
times and memory requirements. Our design choices are justified by comparing our con-
struction to possible alternatives. Finally, we discuss examples of how subspace methods
can be used to build interactive tools for tangential field design and processing tasks.

This chapter is based on the paper Locally Supported Tangential Vector, n-Vector, and Tensor Fields published
in Eurographics Computer Graphics Forum (2020) [49].

47

48 3. LOCALLY SUPPORTED TANGENTIAL VECTOR, n-VECTOR, AND TENSOR FIELDS

3.1. INTRODUCTION

Directional information along a surface is usually encoded as a tangential vector, n-
vector or tensor field. Many applications in computer graphics, such as line art ren-
dering, meshing, texturing, and BRDF design, rely on techniques for the design and
processing of such tangential fields. A problem arises from the fact that the triangular
meshes describing the surface are usually of high resolution and the complexity of the
tangential fields is connected to that of the meshes. As a result, large-scale equations
and optimization problems have to be solved for field design and processing, while the
applications expect fast response times because workflows often involve user interac-
tion. Established acceleration methods, such as radial basis functions, which proved
to be effective for problems like interactive shape deformation, cannot be used for the
processing of tangential fields since the fields are defined on curved surfaces and the
tangential bundles of the surfaces are non-trivial.

We introduce constructions of tangential vector, n-vector and tensor fields on meshes
and use them to construct subspaces for design and processing tasks. By restricting the
equations and optimization problems to such a subspace, the degrees of freedom of a
design or processing problem can be adjusted detached from the complexity of the tri-
angle mesh representing the surface. This is an important step towards enabling inter-
active techniques for the design and processing of tangential fields on large meshes.

The idea underlying our approach is to construct tangential fields by computing the
lowest eigenfields of a suitable Laplace operator restricted to small disk-shaped subsets
of the surface. Boundary conditions on the eigenproblems are imposed to guaranty that
each of the resulting fields vanishes at the boundaries of its subset. The construction of
the individual fields is combined with a procedure that defines the subsets in the surface
so that useful bases of subspaces are created. Important aspects of our construction are:

* Generality Our construction is derived from a general principle. By choosing an
appropriate Laplace operator, specific constructions for the different types of tan-
gential fields can be derived. We explicitly describe constructions of vector, n-
vector, and tensor fields.

* Scalability We show that large subspaces with several thousand dimensions on
meshes with more than a million triangles can be efficiently constructed and stored.
A prerequisite for this is the localization of the tangential fields, which facilitates
the efficient computation and storage of the individual fields. The cost for field
construction depends only on the size of the disk-like subsets and storage require-
ments are low as the fields can be represented by sparse vectors.

* Smoothness The construction is chosen so that the resulting fields are smooth. The
eigenproblems we solve can be written as optimization problems, and, as mini-
mizers, the lowest eigenfields are the smoothest fields that vanish outside their as-
signed subsets. Here smoothness is measured by the Dirichlet energy correspond-
ing to the Laplace operator that is used.

* Approximation We show that the resulting subspaces can approximate smooth
fields well. To evaluate this aspect, we compute residuals when projecting fields
into the subspace and when solving optimization problems in the subspaces, and

3.2. RELATED WORK 49

compare the approximation results with results obtained using other possible con-
structions of tangential fields.

* Adaptivity We show that adaptivity can be effortlessly integrated to the construc-
tion. This allows for controlling the distribution of the degrees of freedom of a
subspace over the surface. For example, fields that include details in designated
areas of the surface can be better represented in the subspaces.

This is the first method for constructing tangential vector, n-vector and tensor fields
with these properties. In particular, scalability and adaptivity distinguish the construc-
tion from alternative vector field constructions. These two points are crucial for effi-
ciently generating subspaces with good approximation properties and modeling capac-
ity on larger meshes. To justify our design choices for the proposed construction, we
compare our construction with other existing and possible constructions in Section 3.7.
In addition, we evaluate the approximation quality of the subspaces in different settings,
Section 3.6, and show the benefits of the bases for the applications in Section 3.8.

3.2. RELATED WORK

Tangential fields The efficient design and processing of tangential vector, n-vector and
tensor fields is important for a broad range of applications in computer graphics. Exam-
ples are texture generation[56, 67, 74, 16, 41], line art [30] and painterly rendering [77],
anisotropic shading [47, 62], image stylization [76], surface segmentation [64, 80], sur-
face construction [35, 51], meshing [61, 39, 8, 43, 65], and the simulation of fluid and
liquids on surfaces [4, 5]. Tangential field design and processing presents many chal-
lenges, and different approaches have been proposed to address these problems. In the
following, we briefly discuss approaches that are closely related to our work. For further
background information and references, we refer to the surveys [24, 70].

Variational approaches for the design and processing of tangential fields minimize
an objective that combines a fairness measure and functionals that penalize the devia-
tion of the field from user input or geometric properties of the surface like curvature di-
rections. The fairness measures quantify the variation of the field along the surface. For
vector field design, quadratic objectives based on the divergence and curl of the fields
can be used [21]. Discrete differentiable operators for tensor fields, based on Discrete
Exterior Calculus [20], are introduced in [25]. For n-rotational symmetric vector fields
(n-fields), the fairness measure introduced in [30] measures the deviation in angle be-
tween close-by n-vectors. To disambiguate the definition of angles between n-vectors, a
periodic function is used in the fairness measure. The concept of representation vectors
corresponding to n-vectors [61, 50] allows to model n-vector design using optimization
of the representation vector fields. The representation vectors can be used to define a
linear structure on n-vectors. This allows to model n-field design and processing prob-
lems using linear systems [40, 45, 11]. For the design of general, not necessarily rota-
tional symmetric, n-fields, the polyvector representation [22, 23, 63] was introduced.
While typically fairness measures are modeled as intrinsic objectives, an extrinsic objec-
tive was proposed in [38, 34]. The objective combines intrinsic fairness and alignment to
curvature, while at the same time avoiding the need to use parallel transport on the sur-
face for evaluation of the objective. In another line of work, explicit matchings that en-

50 3. LOCALLY SUPPORTED TANGENTIAL VECTOR, n-VECTOR, AND TENSOR FIELDS

code the n pairs of corresponding vectors between neighboring n-vectors are used [39,
60, 8]. In an optimization, the matchings are treated as variables which leads to mixed-
integer problems that have to be solved. In addition to variational design of vector fields,
approaches that construct vector fields from user input specifying the location and de-
gree of singularities have been proposed [78, 50, 59, 17, 42]. A subdivision scheme for
discrete differential forms on meshes was introduced in [71]. The scheme combines dif-
ferent subdivision rules for the different k-forms such that the subdivision operations
commute with the exterior derivative. This approach was extended to a subdivision exte-
rior calculus [26] that provides a way to apply the numerical tools from Discrete Exterior
Calculus to subdivision surfaces. Among other applications, the approach can be used
for the design of vector fields on subdivision surfaces. In recent work [19], a structure-
preserving subdivision approach for tangential direction fields was developed and used
for directional field design on subdivision surfaces.

Subspace methods Subspace methods can be used for the design of fast approxima-
tion algorithms for complex systems. In the preprocessing stage, the subspace and addi-
tional structures for evaluation the objective and its derivatives are constructed. In the
online stage, the precomputed structures are used to accelerate computations. The low
computational cost in the online stage, makes subspace methods attractive for interac-
tive graphics applications. Reduced systems have been proposed for the simulation of
fluids [66, 44, 18], elastic solids and shells [6, 1, 75, 9], fluid-solid interaction [46, 13],
example-based elastic material [79], motion planning [7, 31, 52], clothing [28], and hair
[14].

In the context of mesh processing, subspace methods have been introduced for sur-
face modeling [33, 32, 37, 72], shape interpolation [69, 58], injective mappings [29], mo-
tion processing [10], and spectral mesh processing [48]. The goal of this chapter is to
explore subspace constructions for tangential vector, n-vector, and tensor fields on sur-
faces and the use of subspace methods for the design and processing of tangential fields.

Subspace methods for tangential fields For tangential vector fields, eigenfields of vec-
tor Laplace operators have been used for defining functional operators on spaces of
vector fields [2, 3], subspace fluid simulation on surfaces [44] and spectral vector field
processing [12]. Eigenfields on an n-vector field Laplacian were used as the basis of an
approach for interactive n-field design in [11]. Although eigenfields are useful for the
construction of subspace in certain scenarios, there are also fundamental limitations.
We propose an alternative construction of subspaces that addresses these limitations.
In particular, we aim at reducing the memory requirements for storing the bases and the
computational cost for constructing the bases. In Section 3.7, we compare the proposed
subspaces to eigenspaces.

3.3. LAPLACE OPERATORS

In this section, we briefly describe the discrete Laplace operators for tangential vector,
n-vector, and tensor fields that are needed for the proposed construction of localized
fields. To our knowledge, the tensor field Laplacian we describe is novel.

3.3. LAPLACE OPERATORS 51

Discrete Fields There are various possibilities for discretizing fields on meshes. De-
grees of freedom of the fields can be associated with the meshes’ vertices, edges, faces or
combinations of these. We refer to the survey [24] for a detailed discussion of the bene-
fits and drawbacks of different discretizations. Our basis construction can be used with
any discretization as long as a Laplace operator on the space is available. For the evalua-
tion of our construction, we consider vector, n-vector, and tensor fields that are constant
and tangential in every face. We denote by k the dimension of the space of fields we con-
sider. For tangential vector fields, for example, k equals twice the number of triangles of
the mesh.

Laplacian for vector fields A discrete Hodge-Laplace operator A for piecewise con-
stant vector fields is discussed in [12]. The operator combines discrete divergence and
curl operators with the gradient and a 90-degree rotation in the tangent plane, which we
denote by J,

A = —grad div—J grad curl”. (3.1

The divergence and curl operators map piecewise constant fields to piecewise linear
polynomials and the gradient maps piecewise linear polynomials to piecewise constant
vector fields. Matrix representation of all involved operators are described in [12]

For the piecewise constant fields on a mesh, a Hodge decompositions can be de-
fined [55, 73]. This is an orthogonal decomposition of the space of piecewise constant
fields in gradients and co-gradients (J grad) and harmonic fields. For the decomposi-
tions, two function spaces are needed: the space of continuous, piecewise linear poly-
nomials (linear Lagrange finite elements) and the space of edge-midpoint continuous,
piecewise linear polynomials (linear Crouzeix-Raviart elements). The Hodge-Laplacian
can be constructed such that it respects the decomposition, which means that it maps
gradient fields to gradient fields, co-gradient fields to co-gradient fields, and has exactly
the harmonic fields in its kernel. To achieve this, one of the div and curl operators has
to map to the space of continuous, piecewise linear polynomials and the other one to
the edge-midpoint continuous, piecewise linear polynomials. In equation (3.1), we in-
dicate that the curl operator maps to the space of edge-midpoint continuous functions
by adding an asterisk.

Laplacians for n-fields Laplace operators for n-fields were proposed for a vertex-based
representation in [40] and for face-based representation in [22, 11]. For our experiments,
we use the face-based Laplacian. It computes differences of the n-vectors of each trian-
gle to the n-vectors of the neighboring triangles. For this, the n-vectors of the neighbor
triangles are parallelly transported to the corresponding triangle. In order to be able to
form differences between n-vectors, a linear structure for n-vectors is required. This can
be obtained using the concept of the representation vector of an n-field [61, 50]. The
n-vectors are first converted to the corresponding representation vectors, then the dif-
ference is computed and the result is converted back to an n-vectors. For the choice of
weights for the differences and a matrix representation of the Laplace operator, we refer
to [11].

52 3. LOCALLY SUPPORTED TANGENTIAL VECTOR, n-VECTOR, AND TENSOR FIELDS

Laplacians for tensor fields We introduce a discrete Laplace operator for piecewise
constant tensor fields on surface meshes. In this paragraph, we provide an overview of
the construction and discuss details in the appendix. The operator is a weighted finite
difference operator on the triangles of the mesh. To compute a difference between the
tensor A; of triangle T; and the tensor A; of a neighbor triangle T;, we transport A;
parallelly to triangle T;. The transport of a tensor to its neighboring triangle varies for
the different tensor types depending on how the tensor transforms from one basis to
another. We illustrate this at the example of (1,1)-tensors in the appendix. To describe
the construction of the Laplace operator, we denote the transport of the tensor A; to the
triangle T; by 7;;. The Laplacian of a tensor field A is again a tensor field. In the triangle
T; the tensor field A A is given by

1
AA);=— Y w;j(A;i—T1ji(A)), (3.2)
Mi jen;

where N; is the list of the three neighbors of triangle T; and

Y
wij= w and m; =area(T;)
area(T; U Tj)
are weights depending on the geometry of the triangles T; and T;. In the appendix, we
show how Voigt’s notation can be used to derive a linear representation of the tensors
and the transport operator 7;;. This can be used to construct the stiffness and mass
matrices for this Laplacian.

3.4. SPACES OF LOCALLY SUPPORTED FIELDS

In this Section, we describe our construction of subspaces of the spaces of tangential
vector, n-vector and tensor fields. Our construction is based on a general principle that
can be applied to the different types of tangential fields. We first introduce the con-
struction of individual fields, then we describe how the field construction can be used to
assemble bases of subspaces.

Field construction The input to the field construction are a Laplace operator, given by
a stiffness matrix S and a diagonal mass matrix M, and a subset D of the set of triangles
of the mesh that serves as the support of the field. Depending on whether the Laplacian
operates on vector, n-vector or tensor fields, corresponding fields are constructed. Our
approach is to compute the m lowest eigenfields of the Laplace operator subject to the
constraint that the field is zero for all triangles that are not in the subset D. These fields
can be characterized as the minimizers of the optimization problem

min tr(®7S®) (3.3)
PeRkxm
subject to @' M® = Id and

®;; =0if i belongs to a triangle not in D.

3.4. SPACES OF LOCALLY SUPPORTED FIELDS 53

Figure 1: Examples of localized tangential vector fields computed with our approach are shown. On the left,
the locations of the support areas of the fields, and, on the right, four fields are shown.

Each column of the minimizer ® describes a localized field. The first constraint ensures
that the fields are M-orthonormal and the second constraint ensures that the fields van-
ish outside of the specified region.

Since the second constraint is linear, we can specify a basis for the space of vector
fields that satisfy the constraints. We construct a matrix V € R¥*k> whose columns form
abasis of the space of admissible fields, where kp is the dimension of the space of admis-
sible fields. This matrix has one non-zero entry per column and the entries are located
at the degrees of freedom of the vector associated with the selected triangles. Each entry
takes the value 1/v/M;;, where M;; is the diagonal entry of the mass matrix M and i is
the row index of the entry. The matrix V allows us to parametrize the space of admissible
fields, i.e. for any admissible field X € R¥ there is a corresponding x € R*? such that

X=Vx. (3.4)
We consider the restricted stiffness and mass matrices
S=vIsv and M=VTMmV. (3.5

By our construction of V, the restricted mass matrix M is the kp x kp identity matrix.
Using (3.4) and (3.5), we can rephrase the optimization problem (3.3)

min tr (¢’ S¢) (3.6)
¢€Rk pxm
subject to ¢T ¢ = Id.
Benefits of this formulation are that we reduced the problem’s dimension to kp m, sim-
plified the second constraint, and eliminated the third constraint.

54 3. LOCALLY SUPPORTED TANGENTIAL VECTOR, 7-VECTOR, AND TENSOR FIELDS

Figure 2: Examples of localized tensor fields computed with our construction are shown. For each tensor, the
shown sticks point in the two eigendirections and the lengths of the sticks are proportional to the absolute
values of eigenvalues of the tensor.

The problem (3.6) is a sparse eigenvalue problem and the solutions are pairs (1;,¢;)
satisfying the equation
S¢pi = Aii. (3.7)

The solutions ¢; € R*> are mapped to the corresponding vectors ®; € R* by multiplying
them with the matrix V. Examples of local vector and tensor fields are shown in Figures
1 and 2.

Subspace construction To construct subspace bases using the field construction, we
need to define the support regions for the individual basis fields. Our approach is to
cover the surface with disk-shaped regions. In this paragraph, we discuss a uniform dis-
tribution of the regions and extend the approach to adaptive distributions of the regions
in the last paragraph of this section.

Each region is an approximate geodesic disk. All disks have the same radius r and
the value of r is chosen such that the disks have sufficient overlap. We will discuss the
choice of r we used for our experiments in Section 3.6. To place the disks on the surface,
we sample triangles of the mesh that serve as the centers of the disks. To distribute the
sampling uniformly, we use a furthest point sampling scheme. The distance is measured
by a weighted Dijkstra algorithm that operates on the mesh’s dual graph. The nodes of
this graph are the mesh’s triangles and there are edges between nodes if the faces are
neighbors. The weights for the edges are the geodesic distances of the barycenters of
the triangles. Examples of resulting samplings are shown in Figure 4.A.1. After placing
the samples, we define the regions associated with the samples using a region growing
algorithm. The algorithm is using the Dijkstra distance and grows the regions until the
distance r is reached.

To ensure the geodesic disks cover the whole surface, we can use the distance p of
the last sample placed by the furthest point sampling. If r is larger than p, then the disks
cover the whole surface. In practice, we choose r much larger than p as we want the
disks to have sufficient overlap.

3.4. SPACES OF LOCALLY SUPPORTED FIELDS 55

Figure 3: Examples of farthest point samplings (1k-5k samples) constructed on various mesh models (50k-2m
faces).

Once the regions are defined, we compute m eigenfields for each region by solv-
ing the sparse eigenvalue problem (3.7). The choice of m depends on the type of field.
For example, for vector fields and rn-fields, we set m = 2, and, for (1,1)-tensors, we set
m = 3. This choice is based on the multiplicity the lowest eigenvalue of the correspond-
ing Laplace operator and our experimental results as discussed in Section 3.6. The size
kp of the sparse matrix occurring in the eigenvalue problem depends on the number
of triangles belonging to the region. The resulting kp-dimensional eigenvectors ¢; de-
scribe the fields in the regions. We lift the ¢;s to vector fields ®; defined on the whole
surface using (3.4) and stack the lifted fields ®; as the columns of a k x d matrix U. Here
d denotes the total number of fields that are constructed, which is m times the number
of regions. Since each ®; vanishes outside of its support region, the matrix U is sparse.

Scalability Our subspace construction is designed to be scalable, meaning that we
want to be able to efficiently construct and store large subspaces on large meshes. Our
motivation to aim for a scalable construction is that we want to be able to obtain sub-
spaces that, on the one hand, include enough degrees of freedom to support general
purpose design and processing tasks, and, on the other hand, allow to control the size of
the optimization problem independently of the resolution of the meshes that are used.
One important feature that makes the method scalable is the localized support of the
basis fields. For storing the basis, this means that the vector representing the basis fields
are sparse vectors. The size of the support of the fields needs to be large enough such that
there is sufficient overlap of each basis field with some other fields. On the other hand,
a too large support is less efficient in terms of storage requirements. This means that if
we construct two spaces with different dimension on the same surface, then the individ-
ual basis fields of the larger space will have a smaller support. Since the basis fields are
stored as sparse vectors, this implies that the higher dimensional space requires more
basis fields to be stored while each basis fields requires less storage. In our experiments,
we found that the storage requirements for storing spaces of different dimension on the

56 3. LOCALLY SUPPORTED TANGENTIAL VECTOR, n-VECTOR, AND TENSOR FIELDS

same mesh are approximately the same. This enables us to work with large subspaces
with 500 to 5000 or even more dimensions. In addition, the method allows us to con-
struct spaces on larger meshes, as the computation of the individual fields only requires
solving an eigenvalue problem for a small region of the surface (the support of the field).
These properties are advantages of our construction over eigenbases of Laplace opera-
tors, which have higher storage requirements, as a large dense matrix must be stored,
and require higher computational costs for solving the large scale eigenvalue problems.

Adaptive subspaces Adaptivity can be integrated to the basis construction in a way
that is simple to implement. The sampling method and the size of the regions depend
on the weighted Dijkstra distance on the dual graph. For the uniform construction, the
edge weights are chosen according to the geodesic distances of the barycenters of the
triangles. To make the method adaptive, we change the edge weights in the dual graph.
Changing the edge weights in some part of the surface affects the sampling and the sizes
of the support regions of the basis fields. For example, when the weights are increased
in some part of the surface, the sampling in the part of the surface becomes denser and
the support regions of the basis fields decrease. The resulting subspace has more de-
grees of freedom in the part of the surface where the weight is increased, and, therefore,
can better represent fields that have high frequency features and details in these areas.
If the weights are reduced, fewer and larger regions are constructed in the correspond-
ing part of the surface. For the subspaces, this means that fields with little detail in the
corresponding part of the surface are represented more efficiently. The adaptive con-
struction is simple to implement as after rescaling of the edge weights of the dual graph,
the same algorithm as in the uniform case is executed. Scaling factors for the edges can
be obtained for example from user input or an analysis of example fields.

3.5. SUBSPACE METHODS
The main goal of our construction is to enable subspace methods for vector, n-vector
and tensor field design and processing. In this section, we will discuss a model problem
that we will later use as part of the evaluation of our subspace construction.

We consider the following least-squares problem

min (usXTSX +upX"BX +pclCX - cll?), (3.8)
where C is a matrix that defines weak constraints, ¢ specifies the values of the con-
straints, the ys are a positive weights, M is the mass matrix, S is the stiffness matrix
of the Laplacian and B = SM~!S. The first two summands are the harmonic and bihar-
monic energies of X, which act as regularizers. This type of problem arises in field design
tasks, for example, when fields are modeled with a stroke-based user interface. The re-
sulting fields should align with the strokes but not follow them exactly. Other examples
of applications that can be formulated as in (3.8) are smoothing of an input fields and ex-
trapolating fields that is given only on parts of the surface to fields defined on the whole
surface. For the smoothing application, C is the identity matrix and ¢ the input field. For
the stroke-based design and the extension of the field, C is a selector matrix that selects
the vectors (n-vectors, tensors) of the parts of the surface where the input field is defined

3.5. SUBSPACE METHODS 57

L\‘V
4&“

[/ A
Wm“'\ v AVA»A

»
».§ "

A‘
(V CUAK \V &
‘V \\~A)\v AV \
"&:;u»« v";;*" ST e
R o 5%‘,\24,

A
X 2 L 7
RSO SIEITE SS

X
‘é\«ﬁ SIS
S ~.\\ WA SATAN

Figure 4: We tested our approach on irregular meshes having many acute angles.

and c specifies the vectors of the field in these regions. The minimizer of (3.13) satisfies
(usS+ugB+ucClo) X =pccCle. (3.9)
The reduced minimization problem, which restrict the optimization to the subspace, is

mln(ugx UTsUx+pugx"UTBUx + pc |CUx - cII) (3.10)

xeRd

The solution can be computed by solving the system
Ul (usS+upB+ucCrOUx=pcU’C’e. (3.11)

The advantage of the reduced problem is that (3.11) is a sparse low-dimensional system.
In particular, the system is independent of the resolution of the mesh and only depends
on the dimension of the subspace. The scalability of our basis construction allows for
working with spaces of several thousand dimensions, which provide a rich space for de-
sign and processing problems. At the same time, solving the reduced problems only
takes few milliseconds which enables interaction and interactive steering of parameters.
For example, a user can change the parameters ugs, up, and pc and receive immediate
feedback. In contrast, without reduction, any parameter adjustment requires solving a
large-scale sparse linear system, which is prohibitive for interactive applications.

The reduction of the model problem (3.8) can be extended to include more features.
For example, hard constraints can be efficiently included using a Schur complement
approach. We refer to [12, 11] for details. The subspaces can also be used to reduce
the complexity of general non-linear problems. Reducing the problem’s dimension low-
ers the computational cost of minimization steps and accelerates the convergence of
solvers. However, a difference to the model problem is that the evaluations of a non-
linear objective and its gradient and Hessian still depend on the complexity of the mesh.
Methods for fast approximation of a non-linear objective and its derivatives have been
proposed, for example, in the context of real-time simulation [1, 68, 75, 9]. In this chap-
ter, we use the model problem (3.8) for evaluating the quality of the proposed subspace
basis and leave the adaption of fast approximation schemes for non-linear objectives as
future work.

58 3. LOCALLY SUPPORTED TANGENTIAL VECTOR, n-VECTOR, AND TENSOR FIELDS

Basis construction (secs.) Sparsity

Subspace dim. | Sampling Patches Eigensolve Total | #nnz U #nnz S
500 1.6 82.9 168.8 253.4 80.4m 78.3k

1k 1.9 84.0 1259 211.8 80.4m | 163.0k

2k 2.4 80.5 126.2 209.1 80.4m | 333.0k

5k 3.5 77.2 152.1 232.8 | 80.4m | 854.5k

10k 5.3 80.1 182.6 2679 | 80.5m 1.7m

20k 8.4 103.1 283.7 3953 80.5m 3.5m

Table 1: Scalability analysis of our basis construction. Computation times and numbers of non-zero entries
(#nnz) of the matrices storing the basis (U) and the restricted stiffness matrices (S) for subspaces of different
dimension on the Bimba model with 1m triangles are shown.

3.6. EXPERIMENTS

In this section, we discuss our experimental evaluation of our subspace construction
focusing on scalability, approximation and adaptivity. We tested our approach on differ-
ent meshes including some with low mesh quality exhibiting a large number of triangles
with acute angles. Figure 4 shows examples of meshes we used.

Implementation We implemented our subspace constructions using the Eigen [27]
and LibIGL [36] libraries. The basis fields of the subspaces are constructed in paral-
lel. To solve the local eigenproblems, we use the SpectrA library [57] with Cholmod’s
supernodal sparse Cholesky decomposition [15] being applied to solve the linear sys-
tems. CUDA’'s GPU-based cuSparse is employed to lift the fields from the reduced space
to the full space, which requires matrix-vector multiplication with the sparse matrix U
that stores the subspace basis. To solve the linear systems in the design and processing
applications, we use Pardiso’s symmetric indefinite factorization [53].

Scalability In our experiments, we evaluated the memory requirements for storing the
subspace basis and the computation times required for the construction of the basis for
large subspaces and also for larger meshes. When reporting results, we state the sub-
space dimension we worked with. Since we compute a constant number of basis fields
per region, 2 for vector fields and n-fields and 3 for (1,1)-tensor fields, the number of re-
gions is half of the subspace dimension for vector and n-fields and a third for the tensor
fields.

In the first experiment, we constructed subspaces of different dimension d ranging
from 500 to 20k on a mesh with 1m triangles and report the number of non-zero entries
of the subspace bases as well as computational times required for basis construction.
The data is summarized in Table 1. For each subspace dimension, we need to choose
a proper value r for the radii of the geodesics disks. It is important to choose r large
enough such that the individual vector fields can interact with their neighbors and in-
formation can spread. On the other hand, a too large value of r makes the basis less

3.6. EXPERIMENTS 59

Mesh 4Faces | Dim. Basis Construction (in seconds)
Sampling [Patches | Eigensolve | Total
1k 0.54 18.32 38.70 57.56
Kitten 274k 2k 0.67 18.88 34.83 54.37
10k 1.43 22.45 45.53 69.41
1k 1.10 35.63 64.42 | 101.16
Fertility 483k 2k 1.33 32.52 64.97 98.82
10k 2.70 41.67 77.95 | 122.33
1k 1.94 83.98 125.90 | 211.83
Bimba 1m 2k 2.41 80.48 126.20 | 209.09
10k 5.25 80.06 182.56 | 267.87
1k 4.50 178.81 261.89 | 445.20
Ramses 1.65m 2k 5.20 168.17 222.36 | 395.73
10k 10.70 159.61 347.29 | 517.61
. 1k 5.02 213.02 366.57 | 584.60

Isidore

2.21m 2k 6.10 203.36 286.89 | 496.35
horse 10k 13.25 199.49 457.64 | 670.38

Table 2: Timings for the constructions of subspaces of different dimension on various meshes are shown. Com-
putation times for farthest point sampling (Sampl.), construction of the local patches and corresponding ma-
trices (Patches), solving the eigenproblems (Eig. solv.), and the total time for all three steps (Total) are shown.

efficient as more storage is required. Explicitly, we set

N (3.12)
“Vodn’ ’

where A is the area of the surface, d the dimension of the subspace and ¢ a parameter,
which we set to 40 for this experiment. The motivation for using this formula is that we
want to find the radius r such that the combined area of all disks is o times the area of
the surface. To arrive at a simple formula, we replaced the average area of the geodesic
disks by 7?7, which is the the area of the Euclidean disk of radius r. In this experiment,
setting o = 40 results in matrices U whose average number of non-zero entries per row
is about 40. This means that in average every triangle is in the support of 40 basis fields.

The total time required for basis construction is listed in the fifth column of the ta-
ble. The higher the dimension of the subspace, the more eigenvalue problems need to
be solved. On the other hand, each of the eigenvalue problems is smaller as the support
of the fields decreases. The total time for constructing the bases for the different sub-
spaces on a regular desktop computer is between 3.5 and 7 minutes. The dimensions
are between 500 and 20k and the underlying mesh has 1m triangles.

In the second experiment, we constructed 1k, 2k, and 10k-dimensional subspaces
on meshes with a number of triangles in the range of 274k to 2.21m and measured the
time needed for basis construction. Experimental results are summarized in Table 2.
As in the first experiment, we observe that the computation time required for the con-
struction of subspaces of different dimension on the same mesh changes only slightly.

60 3. LOCALLY SUPPORTED TANGENTIAL VECTOR, 7-VECTOR, AND TENSOR FIELDS

Figure 5: Visual comparison of a reference vector fields (blue) and its projection to a 2k-dimensional subspace
(red). The relative L% approximation error is 1.93 x 1072,

When comparing the construction time for the different meshes, we observe an increase
in computation time that is approximately linear in the number of triangles.

Approximation In addition to the scalability of the basis construction, the approxima-
tion quality of the resulting subspace is important. In the first series of experiments, we
evaluate the approximation quality by projecting a set of tangential vector fields to the
subspace and computing the relative L?-norm of the difference between the input field
and projected field. For different meshes, we created sets of 50 test fields by placing 10-
50 interpolation constraints at random locations on the surfaces and using the vector
field construction method from [12] to generate fields interpolating the constraints. For

Thar- ' Patched
Mesh Method | Ours B1ha1‘r Variant ?c © Gradients
monic of ours Eigenfields

. IZ-proj. | 0.02 0.05 0.06 0.14 0.16
Armadillo Minim. | 0.04 0.21 0.11 0.25 0.48
. . IZ-proj. | 0.02 0.07 0.06 0.10 0.19
Chinese Lion o i | 0.03 0.18 0.09 0.18 0.46
Fertl IZ-proj. | 0.02 0.03 0.04 0.71 0.59
ty Minim. | 0.02 0.09 0.10 0.71 0.65

Table 3: Approximation errors of L2-projection of vector fields to a 2k-dimensional subspaces and solutions
of the optimization problem (3.8) for subspaces resulting from the proposed subspace construction and four
possible alternative constructions.

3.6. EXPERIMENTS 61

Figure 6: Approximations of harmonic fields in subspaces on models with non-trivial genus (Kitten, genus=1
and Fertility, genus=4).

AR
WA%&A VNN
NN

Figure 7: Example showing the placement of singularities in the subspace.

an input field X on the surface, the projection x to the subspace with basis U is defined
as the minimizer of the quadratic objective

2
IX - Uxl?,. (3.13)

The relative L2-error is | X — Ux|| M/ 1 X|lIps. Table 3 shows the resulting average errors for
50 test fields on three different meshes. For all three models, the relative L? error using a
2k-dimensional subspace is 2 percent. Figure 4.C.3 shows an overlay of a test field and its
projection on the Armadillo mesh. In addition to evaluating the projection error, we also
compare the solutions of the optimization problem (3.8) and solution of the correspond-
ing reduced problem (3.10). The relative error of the optimization problem is between
2 and 4 percent as listed in Table 3 (rows labeled ‘Minim.”). Based on the comparisons
to alternatives and variations of our construction, which are discussed in Section 3.7, we
consider this a very good approximation quality.

In the second experiment, we measured how the relative L? approximation error
changes with increasing size of the subspace. The test fields were generated in the same

!

Rel. L2-norm error
o
o
=

62 3. LocALLY SUPPORTED TANGENTIAL VECTOR, 1n-VECTOR, AND TENSOR FIELDS

Projection to the subspace

o
o
&

o
o
&

o
o
¥

0 |
500 1K 2k 5k 10k 20k

Subspace dimension (log)

Figure 8: The relative L? approximation error for subspaces of different dimension is shown.

way as in the previous experiment. We constructed 500-20k dimensional subspaces on
the Fertility mesh (483k triangles). To set the radii of the geodesic disk, we use equation
(4.10) and set o = 80 for all spaces. Results are shown in Figure 8. The results illustrate
that the approximation error can be reduced when subspaces of higher dimension are
used. The approximation error will vanish once the subspace dimension equals the di-
mension of the full space. As increasing the dimension of the subspace causes higher
computational cost for constructing the subspace and solving the reduced problems, in
practice one needs to find a compromise between expressiveness of the space on the
one hand and computational costs on the other hand.

In the third experiment, we tested whether the subspaces of vector fields we con-
struct include approximations of the harmonic fields. On smooth surfaces the harmonic
fields are the eigenfields of the Hodge-Laplace operator with vanishing eigenvalue. A
surface of genus g has 2g linearly independent harmonic fields. The discrete Hodge-
Laplacian (3.1) is designed such that it preserves this structure and has a 2g-dimensional
kernel of discrete harmonic fields. We wanted to test whether our subspaces contain ap-
proximations of these fields. In our experiments, we obtained 2g approximate harmonic
fields with very small, though not vanishing, eigenvalues. Examples of these fields are
shown in Figure 6. Additionally, Figure 19 shows plots of the approximate eigenvalues
for some meshes, two genus zero meshes and the genus one Kitten model. In the lower
left corner, the first eigenvalues are shown. For the Kitten model, the first two values are
are the eigenvalues of the approximate harmonic fields.

In the fourth experiment, we evaluated the capabilities of the subspaces to support
the placement of singularities. In Figure 7, we show an example of a vector field in a
200-dimensional subspace on which singularities at certain locations on the surface are
enforced using the approach discussed in [11].

3.7. COMPARISONS 63

Figure 9: Results of an experiment with our adaptive subspace construction. The figure shows (on top left)
the Bimba mesh with 1m triangles and a selected region on the surface, (a) a vector field on the surface, (b)
the sampling used for the adaptive subspace construction, (c) an overlay of the vector field in blue and its I2%-
projection to an adaptive subspace in green, and (d) an overlay of the vector field in blue and its L2-projection
to a uniform subspace in red.

Adaptivity To explore the benefits of adaptive subspaces, we conducted an experiment
in which a vector field, which has many features concentrated in some area of a surface
and almost vanishes away from that region, is projected to a uniform and an adaptive
subspace. The adaptive subspace is constructed by rescaling the weights of the dual
graph in a region of the surface, which we defined by hand. Results of the experiment
are shown in Figure 9. The figure illustrates the benefits of adaptive subspaces for the ap-
proximation of the fields. As a quantitative evaluation, we computed the relative L> ap-
proximation errors. The adaptive subspace yields a relative L? error of 9.2 x 1072, which
compares to 35.2 x 102 for the uniform subspace.

3.7. COMPARISONS

During the development of the proposed subspace construction, we implemented and
tested various possible alternatives. In this section, we provide some comparisons of the
proposed and possible alternative constructions. In addition, we compare our subspace
construction with Laplace eigenfields.

Alternative constructions We report approximation results for four alternative con-
structions in Table 3. The first alternative is to use not only the lowest two eigenfields
for every geodesic disk, but more. The column “Variant of ours” shows results for the
case that the lowest 10 eigenfields are used for each geodesic disk. In order to get a fair
comparison, fewer disks are used in total such that the dimensions of the subspaces are
the same. The second alternative is to solve two biharmonic problems on each geodesic
disk instead of the eigenproblems. For the biharmonic problems, we set interpolation
constraints: we specify a unit vector in the center triangle of the geodesic disk and en-

64 3. LOCALLY SUPPORTED TANGENTIAL VECTOR, 7-VECTOR, AND TENSOR FIELDS

N

Ours Biharmonic Gradients Patched Eigenf.

Variant of ours

Figure 10: Examples of basis fields resulting from the alternative constructions we compare to in Table 3. For
the construction that involves 10 eigenfunctions per geodesic disk (“Variant of ours”), the 3rd, 4th, 9th and
10th eigenfields on a geodesic disk are shown.

force that the field vanishes for all triangles not in the geodesic disk. The latter constraint
implements zero Dirichlet and Neumann boundary conditions for the biharmonic prob-
lem. Two fields are generated by specifying orthogonal vectors in the center triangle. For
details on how to solve biharmonic problems with interpolation constraints for tangen-
tial vector fields, we refer to [12]. The results for this construction are listed in the column
labeled “Biharmonic”. The third construction makes use of radial basic functions on sur-
faces as described in [48]. The radial basis functions are defined on the surface and are
localized. To obtain vector fields from the radial basis functions, we compute the gra-
dients and their co-gradients. This construction is labeled “Gradients” in the table. The
fourth alternative also uses the radial basis functions. The idea is to compute two eigen-
fields of the whole surface and to use the radial basis functions to scale the vectors of
the fields. This results in localized fields, which we use as subspace bases. The approx-
imation results for these bases are listed in the column labeled “Patched Eigenf.” in the
table. The experiments we performed are the same tests as discussed in the paragraph
Approximation of Section 3.6. 2k-dimensional subspaces were used for all tests. In our
experiments, the proposed basis construction outperformed the alternative construc-
tion by a large margin as also documented in Table 3.

3.7. COMPARISONS 65

500

450

400 Gradients
— Reference

w
a1
o

w
o
o

Eigenvalues
N nN
o n
o o

-
(o))
o

100

50

10 20 30 40 50 60 70 80 90 100
Index of eigenvalues

Figure 11: Approximation of eigenvalues using various alternatives of locally supported basis functions.

In the second experiment, we computed approximations of the lowest eigenvalues of
the Laplace operator in subspaces constructed with the different schemes. For quanti-
tative evaluations, we compare the results to the eigenvalues computed in the full space.
Results are shown in Figure 11. Our construction very closely matches the true eigenval-
ues and outperforms all other constructions. Examples of basis fields resulting from the
different constructions are shown in Figure 10. Though at first sight the fields obtained
solving a biharmonic problem look similar to the field resulting from the proposed con-
struction. A closer look reveals differences in the scaling of the vectors, which turns out
to be important for the performance of the resulting subspaces.

Mesh coarsening In addition to the four alternatives discussed above, we can also use
mesh coarsening for constructing subspaces. We compared the performance of the pro-
posed construction to a mesh coarsening scheme that we developed. As for the approx-
imation experiments in Section 3.6, we evaluated the relative approximation error for
L? projection and the residual for the minimization problem (3.8). Results are shown
in Table 4. In all our experiments, the results of the proposed method are significantly
better than those of the coarsening approach. Figure 12 illustrates the coarsening-based
subspace construction and includes a visual comparison of results obtained with our
construction and the coarsening-based construction. The coarsening-based approach
starts with coarsening of the mesh. To map a vector field on the coarse mesh to the fine
mesh, we find for every triangle on the fine mesh the closest triangle of the coarse mesh
and project the vector of the coarse mesh to the plane containing the fine triangle. The
images of the canonical basis fields on the coarse mesh provide us with a subspace on
the fine mesh.

66 3. LOCALLY SUPPORTED TANGENTIAL VECTOR, 7-VECTOR, AND TENSOR FIELDS

1
Y
i ‘“x}“\'\\‘\‘t\
TN
A\
AW

Figure 12: Comparison to a subspace construction based on mesh coarsening. The coarsening approach is
illustrated in images (a)-(d). For comparison, a smooth tangential field (e) is projected onto the coarsening-
based subspace (f), and onto the subspace proposed in this work (g).

Laplace eigenbasis To our knowledge, the only alternative construction of subspace of
spaces of tangential vector and n-vector fields on surfaces are the eigenfields of vector
field Laplacians and n-field Laplacians. In our experiments, we compared the eigen-
bases against our construction. The approximation quality of the eigenbases also serves
as a baseline as using eigenmodes is a common subspace construction method in other
contexts. While low-dimensional subspaces constructed from eigenfields can approxi-
mate smooth fields well, the eigenfields are globally supported. This means storing an
eigenbasis is expensive as a large dense matrix must be stored. As a result, the eigenba-
sis cannot compete with the proposed construction in terms of scalability. In addition
to storage requirements, the computation of the eigenfield is more costly than the local
eigenproblems we need to solve for our construction. Table 5 shows results of our exper-
iments that compare L? approximation error and residuals of the minimization prob-
lem (3.8) as well as the number of non-zero entries of the matrix storing the basis. For
our construction the radius of the geodesic balls is set using formula (4.10) with o = 40.
The results show that an eigenbasis with just 40 eigenfields has similar storage require-
ment as our basis spanning a 2000-dimensional subspace. Concerning the approxima-
tion quality, however, a 2000d subspace resulting from our construction is much better
than a 40d space spanned by the lowest eigenfields. To achieve a comparable approx-
imation quality, more than 600 eigenfields are necessary. The storage requirements for
such an eigenbasis is more than an order of magnitude higher than for 2000 basis fields

3.7. COMPARISONS 67

Model Basis I? Projection Mimimization
Kitten Ours 1.77 x 1072 2.75x1072
Coarsening | 14.8 x 1072 48.5x1072
CDragon Ours 6.67x1072 3.12x10°°
Coarsening | 25.6 x 1072 70.0x 1072
Fertility Ours 1.76x1072 2.27x1072
Coarsening | 20.0 x 1072 51.2x1072

Table 4: The comparison of the proposed subspace construction and a possible alternative construction based
on mesh coarsening.

Model #Faces \ Basis Dim. #NNZ L? proj Minim.

40 2.19x107 | 0.42 0.40

Eigenf. 250 1.37x10%® | 0.06 0.06

667 3.66x10% | 0.02 0.02

Ours 2000 2.19x107 | 0.02 0.03

40 3.87x107 | 0.37 0.36

Eigenf. 250 2.42x10% | 0.21 0.21
667 6.45x10% | Memory bound

Ours 2000 3.87x107 | 0.02 0.02

40 8.04x107 | 0.33 0.33
Eigenf. 250 5.03x10° | Memory bound
667 1.34x10° | Memory bound

Ours 2000 8.04x107 | 0.02 0.03

Kitten 274k

Fertility 483k

Bimba 1m

Table 5: Comparison to eigenfields. Given the same storage, our locally supported bases outperform the eigen-
bases. Our method can achieve similar performance while requiring less storage.

computed with our construction.

Comparison to Instant Field Aligned Meshes In this paragraph, we discuss how our
approach compares to the approach for real-time n-fields design that was introduced in
[38]. They use an extrinsic energy, which combines fairness of the field and alignment
to the surface curvature directions, to guide their n-field construction. In a precompu-
tation, a multilevel hierarchy is constructed. Then, for field design, minimization steps
with respect to the extrinsic energy are performed on the different levels of the hierar-
chy from coarse to fine. When used as an interactive design tool, the number of min-
imization steps per level are fixed in order to get fast responses. Due to the strict time
constraint, the number of steps is typically not sufficient for the solver to converge to
a minimum. We show a comparison of results in Figure 13. In the shown example, we
compute smooth curvature aligned 4-fields on different meshes that approximate the
same rockerarm surface. One can see that our approach produces more consistent fields
for the different meshes compared to the approach from [38]. We refer the reader to [11]
for additional evaluation of the Instant Field Aligned Meshes approach.

68 3. LOCALLY SUPPORTED TANGENTIAL VECTOR, 7-VECTOR, AND TENSOR FIELDS

Figure 13: Comparison of smooth, curvature-aligned 4-fields computed on different meshes that approximate
the same surface using the proposed techniques (top row) and the approach proposed in [38].

3.8. APPLICATIONS

In this section, we discuss some applications of the proposed subspace construction.

Vector fields design The tangential vector field design approach proposed in [21] com-
putes fields that are on the one hand smooth and on the other hand align with input data
such as strokes drawn by a user and an input field. This is modeled as a minimization
problem similar to problem (3.8). Computing the minimizer requires solving a sparse
linear system, whose size depends on the number of triangles of the surface. For fast
solving, a sparse Cholesky factorization of the system is computed once and used for
solving the systems. Cholesky updates are applied to update the system’s matrix when
the user changes the constraints. Though backsubstitution and the Cholesky updates are
fast, they still scale with size of the mesh. As a result this approach enables interactive
design only for a limited mesh resolution. Moreover, the interaction is limited to those
operations that can be treated with Cholesky updates of the system’s matrix. In contrast
to this, the reduced system (3.10) is independent of the mesh’s resolution. The proposed
subspace construction allows the construction of subspaces that are large and therefore
provide a rich modeling spaces to designers while keeping the computational cost for
solving the reduced systems low. Figure 15 shows results of a modeling session using our
approach, on the Antique Head model of 1.3m faces with a 2k-dimensional subspace.
Our subspace methods provides interactive feedback. Timings are: 45ms for comput-

3.8. APPLICATIONS 69

Figure 14: Interactive vector field editing on the Wolf mesh (left, 1m triangles, 2k dimensional subspace) and
the resulting fur rendering (right).

ing a factorization of the reduced system, which includes the harmonic and biharmonic
energies, 1.4ms for solving a system using the factorization and 23ms for mapping the
reduced coordinates to a vector field on the surface. For comparison, we list correspond-
ing timings for the unreduced system: 43s for computing the sparse factorization and
2.2s for solving a system using the factorization.

Fur design An application of the vector field design is fur editing. We used our sub-
spaces in the fur editing approach proposed in [12]. Results for a modeling session that
involves a Wolf mesh with 1m triangles and a 2000-dimensional subspace are shown
in Figure 14. The tools allows to specify hard constraints and a Schur complement ap-
proach is used for solving the resulting reduced linear systems. The system requires less
than 40ms for computing a solution when the interpolation constraints are modified.

n-field design The n-field design approach proposed in [11] computes fields that min-
imize a biharmonic energy subject to interpolation constraints imposed by a user. Ad-
ditionally, a penalty for deviation from an input field can be included to the optimiza-
tion. The approach requires solving a linear system and a reduction of the problem using
eigenfields of the biharmonic energy is discussed in the paper. Since our subspace con-
struction is more efficient for larger meshes and larger subspaces than the eigenbasis,
see Section 3.7, our construction can be used to improve the scalability of the n-field
design approach. Figure 16 shows results for n-fields design using our subspaces. In
our experiments, the design tool achieved 30 fps when working with a 2k-dimensional
subspace on a model with 1m triangles.

Hatching n-field design can be used to control the stroke directions of line art render-
ings. We used our subspaces in combination with the approach for controlling hatchings
of surfaces from [9]. The approach uses 2-fields to control hatching directions. The fields

70 3. LOCALLY SUPPORTED TANGENTIAL VECTOR, 7-VECTOR, AND TENSOR FIELDS

Figure 15: Interactive stroke-based vector field design on the Antique Head model (1.3m triangles, 2k sub-
space).

Figure 16: Example of 4-field design with interpolation constraints. Fields can be aligned to the curvature
directions (left). Additional interpolation constraints allow users to modify the 4-field such that it better aligns
to surface features (right). Our tool provides interactive responses when interpolation constraints are added,
removed or modified.

3.8. APPLICATIONS 71

Figure 17: Hatching of the Blade model (390k faces) generated from 2-fields aligned to the maximal principal
curvature (left). Modified fields, subject to interpolation constraints (right). The constraints are shown in the
middle.

are first aligned to the maximum principal curvature directions of the surface. Then, the
users can use interpolation constraints to modify the 2-field. Results are shown in Fig-
ure 17.

Tensor field smoothing We implemented a tensor field smoothing tool that minimizes
a weighted sum of a function penalizing the deviation from the input field and the har-
monic and biharmomic energies for tensor fields as fairness energies. The resulting op-
timization problem is analogous to problem (3.8). The tool uses our subspace construc-
tion to build a subspace and solves the reduced problem. This allows users to interac-
tively adjust the weights for the three terms. To realize this, we precompute the reduced
matrices for the three terms during the preprocessing stage, and, in the online stage,
we build the weighted sum of the matrices and solve the resulting sparse linear system,
whose size equals the dimension of the subspace.

We used the tool for smoothing the shape operator, whose eigenvectors are the prin-
cipal curvature directions. Results are shown in Figure 18. We found this a useful tool
for curvature computations, which usually need to be smoothed and require users to
specify how strongly the field should be smoothed. With the tool, users receive imme-
diate feedback when adjusting the smoothing parameters. For example, in the case of
the Oil Pump model (1.1m faces) shown in Figure 18, our reduced system (using a 2k
dimensional subspace) requires 45ms to compute a factorization, 1.5ms to solve using
the factorization, and 55ms to lift the reduced solution to a tensor field defined on the
whole surface. For comparison, the timings for solving the unreduced system are: 49s
to compute a factorization and 2.7s to solve using the factorization. We want to empha-
size that many operations, such as changing the weights for the harmonic or biharmonic
energy, require computing a new factorization as the system’s matrix changes.

While we show an example, in which the user can only modify the weights, a more

72 3. LOCALLY SUPPORTED TANGENTIAL VECTOR, 7-VECTOR, AND TENSOR FIELDS

Figure 18: Results of our tensor smoothing tool. Curvatures computed on a mesh with 1m triangles (left).
Smoothing results for different parameter settings (middle and right). When parameters are changed, new
solutions are computed at interactive rates.

Model Faces | B35S Red. Eigen | pof Speed up
const. system solve

Armadillo 86k 9 3.5 3.4 419 26.1

Ch.Dragon 255k 42 10.1 3.3 1376 25.0

Fertility 483k 99 17.7 34 Inf.

Ramses 1.6m 401 84.4 3.3 | Memory Inf.

Neptune 4.0m 1200 2126 4.8 | bound Inf.

Table 6: Timings (in seconds) for the approximation of 500 eigenfields are shown (3-5th) columns). For com-
parison timings for computing the unreduced reference eigenvalues (6th column) using MATLAB’s sparse
eigensolver are shown.

sophisticated interactive tool that allows users to specify different weights for different
areas of the surface can be realized in a similar way. Another possible extension of this
smoothing method would be a fast non-linear smoothing scheme that iteratively solves
linear systems in the subspace.

Laplace spectrum Our subspaces can be used to efficiently compute approximations
of the eigenvalues and eigenfields of Laplace operators. For computing approximations
of m eigenfields, we construct a 2m-dimensional subspace and compute the restricted
eigenvalue problem in the subspace. This technique has been recently introduced for
the case of eigenfunction of the Laplace-Beltrami operator in [48]. We refer to this paper
for a description of the reduced eigenvalue problem, which is analogous to the reduced
eigenvalue problem for eigenfields. Table 6 compares timings for solving the reduced
and unreduced eigenproblems. Figure 19 compares the reference and approximated
eigenvalues.

3.9. CONCLUSION 73

400 T T T T
350/ |'
300 -
=== T
< Sl 1 1 e e
S
§
Z 200
@
kel
Y150+
— Kitten (Ref.) I
100 - Kitten (Approx.)
— Armadillo (Ref.)
50 .. - Armadillo (Approx.) H
gl = — Chinese-Dragon (Ref.)
4 ‘ | | - Chinese-Dragon (Approx.)
1 T T

0 10 20 30 40 50 60 70 80 90 100
Eigenvalues' index

Figure 19: Approximation of eigenvalues of the Hodge-Laplace operator. For different meshes, approximated
and reference eigenvalues are shown.

3.9. CONCLUSION

We introduce a construction of subspaces of tangential vector, n-vector, and tensor fields
that is scalable and results in subspaces that can approximate smooth fields well. The
construction can easily be extended to a construction of adaptive subspaces. We experi-
mentally evaluate the approach and justify our construction by comparing it to possible
alternative constructions. Finally, we discuss applications of our approach.

Challenges and limitations Our goal is to develop the techniques that enable interac-
tive field design and processing tools that work on large meshes. The proposed subspace
construction takes a step in this direction by enabling us to decouple the resolution of
the meshes from the degrees of freedom used for the design and processing problems.
In this work, we limit our focus to optimization problems with quadratic objectives. For
more general problems, additional techniques need to be developed that allow us to ap-
proximate the objective and its gradients at a cost that does not depend on the mesh
resolution. Developing such techniques for field design and processing problems poses
interesting challenges that are beyond the scope of this chapter. Another potential use of
the proposed fields would be to build subspaces for a multilevel solver for problems in-
volving tangential fields. Due to the scalability of our approach, it could be used to build
subspaces of different resolution in which systems are solved and solutions are propa-
gated. Finally, our approach could be extended to include more sophisticated bound-
ary conditions for the eigenvalue problems we use for field construction. For example,
boundary conditions that fit to the Hodge decomposition of vector fields have been pro-
posed in [54].

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

BIBLIOGRAPHY

Steven S. An, Theodore Kim, and Doug L. James. “Optimizing cubature for efficient
integration of subspace deformations”. In: ACM Trans. Graph. 27.5 (2008), 165:1—
165:10.

Omri Azencot et al. “An Operator Approach to Tangent Vector Field Processing”.
In: Computer Graphics Forum 32.5 (2013), pp. 73-82.

Omri Azencot et al. “Discrete Derivatives of Vector Fields on Surfaces — An Opera-
tor Approach”. In: ACM Trans. Graph. 34.3 (2015), 29:1-29:13.

Omri Azencot et al. “Functional Fluids on Surfaces”. In: Comp. Graph. Forum.
Vol. 33. 5. Wiley Online Library. 2014.

Omri Azencot et al. “Functional Thin Films on Surfaces”. In: Symposium on Com-
puter Animation. 2015, pp. 137-146.

Jernej Barbi¢ and Doug L. James. “Real-Time subspace integration for St. Venant-
Kirchhoff deformable models”. In: ACM Trans. Graph. 24.3 (2005), pp. 982-990.

Jernej Barbi¢, Marco da Silva, and Jovan Popovi¢. “Deformable Object Animation
Using Reduced Optimal Control”. In: ACM Trans. Graph. 28.3 (2009), 53:1-53:9.

David Bommes, Henrik Zimmer, and Leif Kobbelt. “Mixed-integer Quadrangula-
tion”. In: ACM Trans. Graph. 28.3 (2009), 77:1-77:10.

Christopher Brandt, Elmar Eisemann, and Klaus Hildebrandt. “Hyper-reduced pro-
jective dynamics”. In: ACM Trans. Graph. 37.4 (2018), 80:1-80:13.

Christopher Brandt, Christoph von Tycowicz, and Klaus Hildebrandt. “Geometric
Flows of Curves in Shape Space for Processing Motion of Deformable Objects”. In:
Comp. Graph. Forum 35.2 (2016).

Christopher Brandt et al. “Modeling n-Symmetry Vector Fields using Higher-Order
Energies”. In: ACM Trans. on Graph. 37.2 (2018), 18:1-18:18.

Christopher Brandt et al. “Spectral Processing of Tangential Vector Fields”. In: Com-
puter Graphics Forum 36.6 (2017), pp. 338-353.

Christopher Brandt et al. “The Reduced Immersed Method for Real-Time Fluid-
Elastic Solid Interaction and Contact Simulation”. In: ACM Trans. Graph. 38.6 (2019).

Menglei Chai, Changxi Zheng, and Kun Zhou. “A reduced model for interactive
hairs”. In: ACM Trans. Graph. 33.4 (2014), 124:1-124:11.

Yanging Chen et al. Algorithm 887: CHOLMOD, Supernodal Sparse Cholesky Fac-
torization and Update/Downdate. New York, NY, USA, Oct. 2008. DOI: 10. 1145/
1391989.1391995. URL: http://doi.acm.org/10.1145/1391989.1391995.

75

https://doi.org/10.1145/1391989.1391995
https://doi.org/10.1145/1391989.1391995
http://doi.acm.org/10.1145/1391989.1391995

76 BIBLIOGRAPHY

[16] Ming-Te Chi et al. “Optical illusion shape texturing using repeated asymmetric
patterns”. In: The Visual Computer 30.6-8 (2014).

[17] Keenan Crane, Mathieu Desbrun, and Peter Schroder. “Trivial Connections on
Discrete Surfaces”. In: Comp. Graph. Forum 29.5 (2010), pp. 1525-1533.

[18] Qiaodong Cui, Pradeep Sen, and Theodore Kim. “Scalable Laplacian eigenfluids”.
In: ACM Trans. Graph. 37.4 (2018), 87:1-87:12.

[19] Bram Custers and Amir Vaxman. “Subdivision Directional Fields”. In: ACM Trans.
Graph. 39.2 (2020).

[20] M. Desbrun et al. “Discrete Exterior Calculus”. preprint, arXiv:math.DG/0508341.
2005.

[21] “Design of tangent vector fields”. In: ACM Trans. Graph. Vol. 26. 3. ACM. 2007, p. 56.

[22] Olga Diamanti et al. “Designing N-PolyVector Fields with Complex Polynomials”.
In: Comp. Graph. Forum 33.5 (2014), pp. 1-11.

[23] Olga Diamanti et al. “Integrable PolyVector Fields”. In: ACM Trans. Graph. 34.4
(2015), 38:1-38:12.

[24] Fernando de Goes, Mathieu Desbrun, and Yiying Tong. “Vector Field Processing
on Triangle Meshes”. In: SIGGRAPH Asia 2015 Courses. 2015, 17:1-17:48.

[25] Fernando de Goes et al. “Discrete 2-Tensor Fields on Triangulations”. In: Comput.
Graph. Forum 33.5 (2014), pp. 13-24.

[26] Fernando de Goes et al. “Subdivision exterior calculus for geometry processing”.
In: ACM Trans. Graph. 35.4 (2016), 133:1-133:11.

[27] Gaél Guennebaud, Benoit Jacob, et al. Eigen v3. http://eigen.tuxfamily.org. 2010.

[28] Fabian Hahn et al. “Subspace clothing simulation using adaptive bases”. In: ACM
Trans. Graph. 33.4 (2014), 105:1-105:9.

[29] Eden Fedida Hefetz, Edward Chien, and Ofir Weber. “A Subspace Method for Fast
Locally Injective Harmonic Mapping”. In: Comput. Graph. Forum38.2 (2019), pp. 105—
119.

[30] Aaron Hertzmann and Denis Zorin. “Illustrating smooth surfaces”. In: Proc. SIG-
GRAPH. 2000.

[31] Klaus Hildebrandt et al. “Interactive spacetime control of deformable objects”. In:
ACM Trans. Graph. 31.4 (2012), 71:1-71:8.

[32] Klaus Hildebrandt et al. “Interactive surface modeling using modal analysis”. In:
ACM Trans. Graph. 30.5 (2011), 119:1-119:11.

[33] Jin Huang et al. “Subspace gradient domain mesh deformation”. In: ACM Trans.
Graph. 25.3 (2006), pp. 1126-1134.

[34] Zhiyang Huang and Tao Ju. “Extrinsically smooth direction fields”. In: Computers
& Graphics 58 (2016), pp. 109-117.

[35] Emmanuel larussi, David Bommes, and Adrien Bousseau. “Bendfields: Regular-

ized Curvature Fields from Rough Concept Sketches”. In: ACM Trans. Graph. 34.3
(2015).

BIBLIOGRAPHY 77

[36] Alec Jacobson, Daniele Panozzo, et al. libigl: A simple C++ geometry processing li-
brary. http://libigl.github.io/libigl/. 2016.

[37] Alec Jacobson et al. “Fast automatic skinning transformations”. In: ACM Trans.
Graph. 31.4 (2012), 77:1-77:10.

[38] Wenzel Jakob et al. “Instant Field-Aligned Meshes”. In: ACM Trans. Graph. 34.4
(2015), 189:1-189:15.

[39] Felix Kilberer, Matthias Nieser, and Konrad Polthier. “QuadCover - Surface Param-
eterization using Branched Coverings”. In: Comp. Graph. Forum 26.3 (2007).

[40] Felix Knoppel et al. “Globally optimal direction fields”. In: ACM Trans. Graph. 32.4
(2013), 59:1-59:10.

[41] Felix Knoppel et al. “Stripe Patterns on Surfaces”. In: ACM Trans. Graph. 34 (4
2015).

[42] Yu-Kun Lai et al. “Metric-Driven RoSy Field Design and Remeshing”. In: IEEE Trans.
Vis. Comput. Graph. 16.1 (2010).

[43] ErLietal “Meshless quadrangulation by global parameterization.” In: Computers
& Graphics (2011).

[44] Bei-Bei Liu et al. “Model-reduced variational fluid simulation”. In: ACM Trans.
Graph. 34.6 (2015), 244:1-244:12.

[45] Beibei Liu et al. “Discrete Connection and Covariant Derivative for Vector Field
Analysis and Design”. In: ACM Trans. Graph. 35.3 (2016), 23:1-23:17.

[46] Wenlong Lu, Ning Jin, and Ronald Fedkiw. “Two-way coupling of fluids to reduced
deformable bodies”. In: ACM SIGGRAPH/Eurographics Symposium on Computer
Animation. 2016, pp. 67-76.

[47] Soham Uday Mehta et al. “Analytic Tangent Irradiance Environment Maps for Anisotropic
Surfaces”. In: Comp. Graph. Forum 31.4 (2012).

[48] Ahmad Nasikun, Christopher Brandt, and Klaus Hildebrandt. “Fast Approxima-
tion of Laplace-Beltrami Eigenproblems”. In: Comp. Graph. Forum 37.5 (2018).

[49] Ahmad Nasikun, Christopher Brandt, and Klaus Hildebrandt. “Locally supported
tangential vector, n-vector, and tensor fields”. In: Computer Graphics Forum. Vol. 39.
2. Wiley Online Library. 2020, pp. 203-217.

[50] Jonathan Palacios and Eugene Zhang. “Rotational symmetry field design on sur-
faces”. In: ACM Trans. Graph. Vol. 26. 3. ACM. 2007, p. 55.

[51] Hao Pan et al. “Flow Aligned Surfacing of Curve Networks”. In: ACM Trans. Graph.
34.4 (2015).

[52] Zherong Pan and Dinesh Manocha. “Active Animations of Reduced Deformable
Models with Environment Interactions”. In: ACM Trans. Graph. 37.3 (2018), 36:1—
36:17. URL: https://dl.acm.org/citation.cfm?id=3197565.

(53] Intel MKL PARDISO. Parallel direct sparse solver interface. 2013.

https://dl.acm.org/citation.cfm?id=3197565

78 BIBLIOGRAPHY

[54] Konstantin Poelke and Konrad Polthier. “Boundary-aware Hodge decompositions
for piecewise constant vector fields”. In: Computer-Aided Design 78 (2016), pp. 126—
136.

[55] Konrad Polthier and Eike PreuB. “Variational Approach to Vector Field Decompo-
sition”. In: Symposium on Data Visualization. Springer, 2000, pp. 147-155.

[56] Emil Praun, Adam Finkelstein, and Hugues Hoppe. “Lapped textures”. In: Proc.
SIGGRAPH. 2000, pp. 465-470.

[57] Yixuan Qiu. SpectrA: C++ Library For Large Scale Eigenvalue Problems. https:/ /spectralib.org/.
2015.

[58] Philipp von Radziewsky et al. “Optimized Subspaces for Deformation-Based Shape
Editing and Interpolation”. In: Computers & Graphics 58 (2016), pp. 128-138.

[59] Nicolas Ray et al. “Geometry-aware Direction Field Processing”. In: ACM Trans.
Graph. 29.1 (2009).

[60] Nicolas Ray et al. “N-symmetry Direction Field Design”. In: ACM Trans. Graph.
27.2 (2008).

[61] Nicolas Ray et al. “Periodic Global Parameterization”. In: ACM Trans. Graph. 25.4
(2006), pp. 1460-1485.

[62] Boris Raymond et al. “Optimizing BRDF Orientations for the Manipulation of Anisotropic
Highlights”. In: Comput. Graph. Forum 33.2 (2014), pp. 313-321.

[63] Andrew Sageman-Furnas et al. “Chebyshev Nets from Commuting PolyVector Fields”.
In: ACM Trans. Graph. 38.6 (2019).

[64] Justin Solomon et al. “Discovery of intrinsic primitives on triangle meshes”. In:
Comp. Graph. Forum 30.2 (2011), pp. 365-374.

[65] Marco Tarini et al. “Simple Quad Domains for Field Aligned Mesh Parametriza-
tion”. In: Proc. SIGGRAPH Asia 2011 30.6 (2011).

[66] Adrien Treuille, Andrew Lewis, and Zoran Popovic. “Model reduction for real-time
fluids”. In: ACM Trans. Graph. 25.3 (2006), pp. 826-834.

[67] GregTurk. “Texture synthesis on surfaces”. In: Proc. SSIGGRPAH. 2001, pp. 347-354.

[68] Christoph von Tycowicz et al. “An Efficient Construction of Reduced Deformable
Objects”. In: ACM Trans. Graph. 32.6 (2013), 213:1-213:10.

[69] Christoph von Tycowicz et al. “Real-time Nonlinear Shape Interpolation”. In: ACM
Trans. Graph. 34.3 (2015), 34:1-34:10.

[70] Amir Vaxman et al. “Directional Field Synthesis, Design, and Processing”. In: Comp.
Graph. Forum 35.2 (2016), pp. 545-572.

[71] Ke Wang et al. “Edge subdivision schemes and the construction of smooth vector
fields”. In: ACM Trans. Graph. 25.3 (2006), pp. 1041-1048.

[72] Yu Wang et al. “Linear Subspace Design for Real-time Shape Deformation”. In:
ACM Trans. Graph. 34.4 (2015), 57:1-57:11.

[73] Max Wardetzky. “Discrete Differential Operators on Polyhedral Surfaces-Convergence

and Approximation”. PhD thesis. Freie Universitit Berlin, 2006.

BIBLIOGRAPHY 79

[74]

[75]

[76]

[77]

(78]

[79]

(80]

Li-Yi Wei and Marc Levoy. “Texture Synthesis over Arbitrary Manifold Surfaces”.
In: SIGGRAPH. 2001.

Yin Yang et al. “Expediting Precomputation for Reduced Deformable Simulation”.
In: ACM Trans. Graph. 34.6 (2015), 243:1-243:13.

Chih-Yuan Yao et al. “Region-Based Line Field Design Using Harmonic Functions”.
In: IEEE Transactions on Visualization and Computer Graphics 18.6 (2012).

Eugene Zhang, James Hays, and Greg Turk. “Interactive Tensor Field Design and
Visualization on Surfaces”. In: IEEE Transactions on Visualization and Computer
Graphics 13.1 (2007), pp. 94-107.

Eugene Zhang, Konstantin Mischaikow, and Greg Turk. “Vector field design on sur-
faces”. In: ACM Trans. Graph. 25.4 (2006), pp. 1294-1326.

Wenjing Zhang, Jianmin Zheng, and Nadia Magnenat-Thalmann. “Real-Time Sub-
space Integration for Example-Based Elastic Material”. In: Comput. Graph. Forum
34.2 (2015), pp. 395-404.

Yixin Zhuang et al. “Anisotropic geodesics for live-wire mesh segmentation”. In:
Comput. Graph. Forum 33.7 (2014).

APPENDIX

3.A. CONSTRUCTION OF THE TENSOR FIELD LAPLACIAN

In this section, we provide details on the construction of the tensor field Laplace operator
that is introduced in Section 3.3. We describe the construction at the example of second-
order symmetric (1,1)-tensors. For other types of tensors, the Laplacians are constructed
analogously. The tensor fields we consider are constant in every triangle of the surface
mesh.

Transport of tensor We fix the coordinate system in every triangle by taking the first
oriented normalized edge vector as the x-axis and the 90-degree rotated edge vector as
the y-axis. Let A be the matrix representing a tensor in a triangle 7;. We want to transport
the tensor to triangle T;. In the case that the x-axes of the local coordinate systems
in both triangles T; and T; are aligned with common edge e;;, the transport is simply
the identity. In general, this is not the case. Then, to transport A from T; to T}, we
first transform the tensor in T; to the e;j-aligned coordinate system in T;. Let R; be the
rotation matrix that maps the coordinates of vectors in the coordinate system in T; to the
coordinates of the vectors in the e; j-aligned coordinate system. Then the transformation
of Ais R,-ARl.T. The transport of RiARl.T to the e; j-aligned coordinate system in 7T} is the
identity. Finally, we transform to the non e; j-aligned coordinate system in T;. Denoting
the rotation matrix that transforms the coordinates in T to the e;;-aligned coordinate
system by R;, the transported tensor in the coordinate system of T} is R].TR,'ARiT R;.

Mandel-Voigt notation When working with a linear operators on tensor fields, it is
convenient to represent the tensors as vectors instead of matrices. Any matrix repre-
senting a symmetric (1, 1)-tensor is a linear combination of the three matrices

1 0 00 0 1/V2
(0 0)’ (o 1)’ and (1/\/5 0) (3.14)

which are orthonormal with respect to the Frobenius norm. The vector a that stacks the
coefficients of a symmetric matrix A with respect to the three matrices (3.14),

a a @
A:(! 2)~>a= as |, (3.15)
az dasz \/Eaz
is called the Mandel-Voigt representation of the matrix A.

81

82 BIBLIOGRAPHY

Transport in Mandel-Voigt notation To write the tensor field Laplacian in Mandel-
Voigt representation, we need to describe the transport of tensors in this representation.
LetG = Rl.TR i, then the transport of A is given by GT AG. We want to find the matrix P €
R3*3 such that for any tensor A with Mandel-Voigt representation a, Pa is the Mandel—
Voigt representation of GT AG.

Let G = (gl gz)y A= (a1 ag)’ B = GT AG, and b the Mandel-Voigt representation

83 & a as
of B. Then,
B=GTAG
:(gl 83)(611 dz)(gl gz) (3.16)
8 84j\ax a3z)\8 &
- (giPa +2g183a2 +g3°as g182a1+(8283+8184) A2+ 838413
818241 +(8283+8184) a2+ 83843 g2l a1 +2g281a2 + g4 a3

In Mandel-Voigt notation

g1ia1+2g183az + gs*as

b= g2 ar+2g284a2 + 4% as (3.17)
V2(g180a1 + (8283 + 8184) a2 + 8384.43)
g1° gs° V28183 a
=| &° 84° V28284 as (3.18)
\/58182 \/§g3g4 8184+ 8283 V2ay
= Pa. (3.19)

Laplacian for tensor fields A benefit of using the Mandel-Voigt representation is that
the transport of tensors is realized by matrix multiplication. This gives the tensor field
Laplacian (3.2) a structure that is similar to the usual structure of discrete Laplace oper-
ators. Let P;; € R3*3 denote the matrix realizing the transport of tensors from triangle T;
to T;. Then the tensor field Laplacian in Mandel-Voigt notation is

1
(Aa)i =—). wijla; - Pj;a;). (3.20)
Mi jen;

A matrix representation of the Laplace operator can be obtained by collecting the w;;
and P;; in a stiffness matrix S and the m; in a diagonal mass matrix M.

THE HIERARCHICAL SUBSPACE
ITERATION METHOD FOR
LAPLACE-BELTRAMI
EIGENPROBLEMS

Geometry enlightens the intellect and sets one’s mind right. All of its proofs are very clear
and orderly. It is hardly possible for errors to enter into geometrical reasoning, because it
is well arranged and orderly. Thus, the mind that constantly applies itself to geometry is
not likely to fall into error. In this convenient way, the person who knows geometry
acquires intelligence.

Ibn Khaldun

Sparse eigenproblems are important for various applications in computer graphics. The
spectrum and eigenfunctions of the Laplace—Beltrami operator, for example, are funda-
mental for methods in shape analysis and mesh processing. In this work, we introduce the
Hierarchical Subspace Iteration Method (HSIM), a novel solver of sparse eigenproblems
that operates on a hierarchy of nested vector spaces. The hierarchy is constructed such
that on the coarsest space all eigenpairs can be computed with a dense eigensolver. HSIM
uses these eigenpairs as initialization and iterates from coarse to fine over the hierarchy.
On each level, subspace iterations, initialized with the solution from the previous level, are
used to approximate the eigenpairs. This approach substantially reduces the number of
iterations needed on the finest grid compared to the non-hierarchical Subspace Iteration
Method. Our experiments show that HSIM outperforms state-of-the-art methods based on
Lanczos and subspace iterations.

This chapter is based on the paper The Hierarchical Subspace Iteration Method for Laplace-Beltrami Eigen-
problems in ACM Transactions on Graphics (to appear) [52].

83

4. THE HIERARCHICAL SUBSPACE ITERATION METHOD FOR LAPLACE-BELTRAMI
84 EIGENPROBLEMS

4.1. INTRODUCTION

Large-scale sparse eigenvalue problems occur in many applications of computer graph-
ics. An important example is the computation of the low and medium frequency spec-
trum and the corresponding eigenfunctions of the Laplace-Beltrami operator of a sur-
face. These are used in a range of applications in shape analysis and mesh process-
ing. Commonly used methods for solving Laplace-Beltrami eigenproblems are based
on Lanczos iterations. These are highly efficient solvers for sparse eigenvalue problems.
However, in order to be efficient, they combine various extensions of the basic Lanc-
zos iterations, which makes the algorithms complex and introduces parameters that
need to be set. One problem is that Lanczos iterations are inherently unstable, which
can be counteracted by re-starting strategies. Another issue is that Lanczos iterations
lead to orthogonal eigenvectors only if the arithmetic is exact. Due to rounding errors,
re-orthogonalization strategies are required. An alternative to Lanczos schemes is the
Subspace Iteration Method (SIM). This method does not suffer from instabilities and is
therefore easier to analyze and implement. On the other hand, the SIM is often slower
than Lanczos schemes.

In this chapter, we introduce the Hierarchical Subspace Iteration Method (HSIM).
This method is suitable for computing the eigenpairs in the low and mid frequency part
of the spectrum of an operator defined on a mesh, such as the discrete Laplace-Beltrami
operator. Our goal is to maintain the benefits of the SIM while reducing the computa-
tional cost significantly. One reason why the SIM is expensive is that many iterations
are needed before the method converges. Our idea is to take advantage of the fact that
low and mid frequency eigenfunctions can be approximated on coarser grids. Instead
of working only on the finest grid, we shift iterations to coarser grids. This enables us
to perform effective subspace iterations with little computational effort on coarse grids
and substantially reduce the number of iterations needed on the finest grid.

We design the hierarchical solver so that it starts on the coarsest grid. The complexity
of this grid is chosen such that the relevant matrices can be represented as dense matri-
ces and all eigenfunctions on the coarsest grid can be efficiently computed with a stan-
dard dense eigensolver. Then the hierarchy is traversed from coarse to fine, whereby the
eigenproblem on each grid is solved to the desired accuracy by subspace iterations and
the solution on the previous grid is used as an initialization for the subspace iterations.
To make the subspace iterations more efficient, we use the eigenvalues computed on
one grid to determine a value by which we shift the matrix on the next grid. To construct
the hierarchy, we use vertex sampling to create a vertex hierarchy and build prolongation
operators based on the geodesic vicinity of the samples. The prolongation operators are
used to define a hierarchy of nested function spaces on the mesh whose degrees of free-
dom are associated with the vertex hierarchy. The advantage of the resulting hierarchy
over alternatives, such as mesh coarsening-based hierarchies, is that we obtain a hierar-
chy of nested spaces. This is important for our purposes because the prolongation to the
finer grids then preserves properties of a subspace basis like its orthonormality.

We evaluate our HSIM scheme on the computation of the lowest p eigenpairs of
the Laplace-Beltrami operator, where p ranges from 50 to 5000. Our experiments show
that the HSIM significantly reduces the number of iterations needed on the finest grid
and thus accelerates the SIM method. HSIM has also outperformed three state-of-the-

4.2. RELATED WORK 85

art Lanzcos solvers and the Locally Optimal Block Preconditioned Conjugate Gradient
Method in our experiments. HSIM was consistently faster than the fastest of the three
Lanczos solvers over a range of computations on a variety of meshes and different num-
bers of eigenpairs to be computed. In particular, for challenging settings, in which more
than a thousand eigenpairs needed to be computed, HSIM was up to six times faster
than the fastest Lanczos solver.

We expect that applications that need to compute low and medium frequency eigen-
functions of the Laplace-Beltrami operator will benefit from the properties of HSIM, in
particular methods that need to continuously solve new eigenproblems, for example in
the context of isospectralization [19, 56] and geometric deep learning [14], and methods
that need to compute a larger number of eigenfunctions, for example, for shape com-
pression [36, 69], filtering [68], and shape signatures[67] L

4.2. RELATED WORK

Spectral shape analysis and processing The eigenfunctions of the Laplace-Beltrami
operator on a surface have many properties that make them useful for applications.
First, the eigenfunctions form an orthonormal basis for functions on the surface, which
generalizes the Fourier basis of planar domains to curved surfaces. With the help of
the spectrum and the eigenfunctions, a frequency representation can be associated to
functions on a surface and spectral methods from signal and image processing can be
generalized to methods for the processing of surface. Examples of mesh processing ap-
plications that use the Laplace-Beltrami spectrum and eigenfunctions are surface filter-
ing [68], mesh and animation compression [36, 69], quad meshing [22, 33, 44], surface
segmentation [63, 34], vector field processing [4, 12], mesh saliency [65] and shape op-
timization [49]. Further properties of the Laplace-Beltrami eigenfunctions are that they
are invariant under isometric surface deformation and that they reflect the symmetries
of a surface. These properties make them a powerful tool for non-rigid shape analysis.
For example, they are used to efficiently compute shape descriptors, such as the the Dif-
fusion Distance [50], the Shape-DNA [58, 57], the Global Point Signature [60], the Heat
Kernel Signature [67], the Auto Diffusion Function [25] and the Wave Kernel Signature
[3]. Moreover the eigenfunctions are the basis for Functional Maps [54, 61, 39, 53, 59,
45], isospectralization [19, 56] and spectral methods in Geometric Deep Learning [15, 9,
14, 64].

Krylovschemes Krylov methods, such as Lanczos schemes for symmetric and Arnoldi
scheme for general matrices, are effective solvers for large scale eigenproblems. For a
comprehensive introduction to Krylov schemes, we refer to the textbook by Saad [62].
One way to apply Lanczos schemes to generalized eigenproblems, such as the Laplace-
Beltrami problem we consider, is to convert them to ordinary eigenproblems by a change
of coordinates. In particular, if the scalar product is given by a diagonal mass matrix,
the change of coordinates is not costly [68]. For non-diagonal matrices, the coordinate

lIn the supplementary material, we demonstrate that projections into subspaces spanned by Laplace—
Beltrami eigenfunctions, and, at the example of the heat kernel signature, that shape signatures can benefit
from using a larger number of eigenfunctions.

4. THE HIERARCHICAL SUBSPACE ITERATION METHOD FOR LAPLACE-BELTRAMI
86 EIGENPROBLEMS

transformation can be done using a Cholesky decomposition of the mass matrix [62].
ARPACK [41] provides implementations of the Implicitly Restarted Lanczos Method for
symmetric eigenproblems and the Implicitly Restarted Arnoldi Method for non-symmetric
eigenproblems. ARPACK is so widely used that it can be seen as the standard Lanczos
and Arnoldi implementations. For example, MATLAB’s sparse eigensolver eigs inter-
faces ARPACK. SPECTRA [55] is a library offering a C++ implementation of an Implicitly
Restarted Lanczos Method build on top of the EIGEN matrix library [27]. An alternative to
the implicitly restarted Lanczos method is the band-by-band, shift-and-invert Lanczos
solver for Laplace-Beltrami eigenproblems on surfaces that was introduced in [68].

Subspaceiterations An alternative to Krylovschemes is the Subspace Iteration Method
(SIM). A comprehensive introduction to the SIM can be found in the textbook by Bathe
[6]. Matrix shifting is important to make the subspace iterations effective. Different
heuristics have been proposed ranging from conservative choices [3, 26] to more aggres-
sive shifting strategies [79]. The SIM is well-suited for parallel computing as discussed in
[71.

Preconditioned Eigensolvers The lowest eigenpairs of a matrix can be computed by
minimizing the Rayleigh coefficient. The Locally Optimal Block Preconditioned Conju-
gate Gradient Method (LOBPCG) [37] uses a preconditioned conjugate gradient solver
for this minimization. A property of the method is that it does not need to explicitly
access the matrix but only needs to evaluate matrix-vector products, which can be of
benefit when dealing with large matrices. In recent work [23], an improved basis se-
lection strategy is proposed that improves the robustness of the method when larger
numbers of eigenpairs are computed. LOBPCG was used for solving Steklov eigenprob-
lems in [71]. A method that uses hierarchical preconditioning to approximate a few of
the lowest eigenpairs was presented in [40]. While LOBPCG is reported to be efficient for
different eigenproblems, our experiments, see Section 4.6, indicate that for the Laplace-
Beltrami eigenproblems we consider, eigensolvers that use sparse direct solvers are more
efficient.

Approximation schemes Schemes for the approximate solution of eigenproblems are
static condensation [6] in engineering and the Nystrém method [73] and random projec-
tions [29] in machine learning. Approximation schemes for the Laplace-Beltrami eigen-
problem on surfaces have been introduced in [18, 51, 46, 42]. In contrast to the eigen-
solvers we consider in this work, these schemes do not provide any guarantee on the
approximation quality of the eigenpairs.

Multigrids on surfaces The multigrid hierarchy we need is challenging since we are
working with an irregular grid on a curved surface. One way to build a multigrid hierar-
chy for a surface mesh is to use mesh coarsening algorithms [31, 1]. This is, however, not
ideal for our setting because the resulting spaces are not nested, as each space is defined
on different surface. Another possibility is to build hierarchical grids on ambient space
and then restrict the functions to the surface [18]. The function spaces generated by this
approach, however, do not resemble the linear Lagrange finite elements on the mesh

4.3. BACKGROUND 87

that we want to work with. Algebraic multigrids [66] are an alternative that would fit our
setting. However, unlike the proposed hierarchy, algebraic multigrids only use the oper-
ator to build the hierarchy, while we also use the geometry of the surface. A multi-level
approach for the computation of the heat kernels on surfaces was introduced in [70].

Multilevel eigensolvers A traditional multigrid approach to eigenproblems is to treat
them as a nonlinear equation and to apply nonlinear multigrid solver to the equation
[28, 11]. These methods have the advantage that they can be extended or even applied
directly to nonlinear eigenproblems. For linear eigenvalue problems, however, this tech-
nique is not always efficient because the specific properties of eigenvalue problems are
not used when a general nonlinear solver is used.

Another approach is to integrate a multigrid scheme for solving linear systems into
an eigensolver [48, 5, 47, 2]. A solver for linear eigenproblems that needs to solve linear
systems in every iteration, such as Krylov and subspace iteration methods, is used as
an outer iteration. In every outer iteration, the linear systems are solved in an inner
multigrid loop. For our HSIM solver, we use sparse direct solvers for the linear systems,
as these are more efficient in our setting than multigrid solvers, see [10]. In a different
application context, however, it could be useful to use a multigrid linear solver.

An approach in which also the outer iterations operate on two different grids was
proposed in [76]. In this method, the lowest eigenpair of an elliptic operator is approx-
imated by first computing the eigenpair on the coarse grid and then correcting it by a
boundary value problem on the fine grid. This approach was accelerated in [32] and
extended to include matrix shifting in [77]. A multigrid extension of this scheme was in-
troduced in [43, 17] and later integrated with wavelet bases [75] and algebraic multigrid
procedures [78]. The multigrid scheme has been used for the computation of Laplace
spectra on planar domains [32] and parametrized surfaces [13]. A key difference to the
HSIM is that the HSIM provides users explicit control of the residual of the resulting
eigenpairs. In contrast, the multigrid approaches do not provide control over the resid-
ual. Instead, the resulting residual depends on the approximation quality of the grids in
the hierarchy. We include a discussion and comparison in Section 4.6.

4.3. BACKGROUND

In this section, we first briefly review the Laplace-Beltrami eigenproblem, which we
use for evaluating the proposed eigensolver. Then we describe the Subspace Iteration
Method, which will be the basis of the novel Hierarchical Subspace Iteration Method.

4.3.1. LAPLACE—-BELTRAMI EIGENPROBLEM

In the continuous case, we consider a compact and smooth surface X in R%. A function
¢ is an eigenfunction of the Laplace-Beltrami operator A on X with eigenvalue A € R if

~APp= AP (4.1)

holds. For discretization, the weak form of (4.1) is helpful. This can be obtained by mul-
tiplying both sides of the equation with a continuously differentiable function f and

4. THE HIERARCHICAL SUBSPACE ITERATION METHOD FOR LAPLACE-BELTRAMI
88 EIGENPROBLEMS

integrating
f grad¢-grad fdA = /lf ¢fdA. 4.2)
z b

On the left-hand side of the equation, we applied integration by parts. A function ¢ is
a solution of (4.1) with eigenvalue A if and only if (4.2) holds for all continuously differ-
entiable functions f. A benefit of the weak form is that evaluating both integrals in (4.2)
only requires functions to be weakly differentiable (with square-integrable weak deriva-
tive) and does not involve differentials of the surface’s metric tensor.

In the discrete case, X is a triangle mesh and we consider a finite-dimensional space
of functions defined on the mesh, usually the space F of continuous functions that are
linear polynomials over every triangle. Then, for functions ¢, f € F, the integrals in (4.2)
can be evaluated and ¢ is an eigenfunction of the discrete Laplace-Beltrami operator if
there is a A € R such that (4.2) holds for any f € F.

Any function in F is uniquely determined by its function values at the vertices of the
mesh. The nodal representation of a function in F is a vector ® € R” that lists the function
values at all vertices. If a nodal vector @ is given, the corresponding function in F can be
constructed by linear interpolation of the function values at the three vertices in every
triangle. Let ¢; € F be the function that takes the value one at vertex i and vanishes at
all other vertices. Then, the stiffness, or cotangent, matrix S and the mass matrix M are
given by

Sij:fzgrad(p,--grad(pjdA and Mij:fz(pi(pjdA. 4.3)

Explicit formulas for S;; and M;; can be found in [72, 68]. The eigenfunctions ® and
eigenvalues A can be computed as the solution to the eigenvalue problem

SO=AMO. (4.4)

This is a sparse, generalized eigenvalue problem where M is symmetric and positive def-
inite and S is symmetric. We refer to [30, 21] for more background on the discretization
of the Laplace-Beltrami operator on surfaces.

4.3.2. SUBSPACE ITERATION METHOD (SIM)

The subspace iteration method (SIM) is an approach for computing eigenpairs of gener-
alized eigenvalue problems such as (4.4). We outline the SIM in Algorithm 1. The input
to the method are the stiffness and mass matrices S, M € R, a matrix ® € R"*9 that
specifies an initial subspace basis, the number of desired eigenpairs p, a tolerance € and
a shifting value u. The dimension g of the subspace needs to be larger or equal to p.
We will first discuss the subspace iterations without shifting, i.e. assuming u = 0, and
then discuss choices of subspace dimension, initial subspace basis, tolerance and shift-
ing value.

The SIM iteratively modifies the initial basis, which consists of g vectors ®;, such that
it more and more becomes the desired eigenbasis. In each iteration, first an inverse itera-
tion is applied to all g vectors (Algorithm 1, line 4), thereby increasing the low-frequency
components in the vectors. For this, g linear systems of the form

(S—puMV¥Y;=M®; (4.5)

4.3. BACKGROUND 89

need to be solved. The second step in each iteration is to solve the eigenproblem re-
stricted to the subspace spanned by the vectors ¥; (Algorithm 1, lines 5-7). For this, the
reduced stiffness and mass matrices are computed and the g-dimensional dense eigen-
problem is solved using a dense eigensolver, e.g. based on a QR factorization. The third
step is to replace the current subspace basis with the eigenbasis (Algorithm 1, line 8).
The inverse iterations amplify the low frequencies in the subspace basis. The second
and third steps are needed in order to prevent the vectors from becoming linearly de-
pendent. Without these steps, the vectors would all converge to the lowest eigenvector.

ALGORITHM 1: Subspace Iteration Method

Input: Stiffness matrix S € R"*", mass matrix M € R™*", initial vectors ® € R"*9, number
of eigenpairs p, tolerance ¢, shifting value u
Output: Matrix A with lowest eigenvalues of (4.4) on diagonal and @ listing eigenvectors
as columns. First p pairs converged.
1 Function SIM(S, M, ®, p,&, 1)+
2 Compute sparse factorization: LDLT =5— uM
3 repeat
4 Solve using factorization: (S — puM)¥ = M

5 Compute reduced stiffness matrix: S — w1y

6 Compute reduced mass matrix: M — T M¥

7 Solve dense eigenproblem: S® = M®A

8 Update vectors: ® — ¥

9 until pairs (A;;,®;) pass convergence test (4.6) foralli < p

10 return A and ®
11 End Function

The final step of each iteration is the convergence check, which tests whether or not
the first p eigenvectors have converged. For each eigenpair ®; and A, the relative norm
of the residual of equation (4.4) is computed

|SP; — A; MD; ||

_— (4.6)
1S |l

and the test is passed if it is below the threshold . The choice of the value for the con-

vergence tolerance depends on the application context. In most of our experiments, we

used £ = 1072, which based on our experiments, see Section 4.5, we consider appropriate

for applications in shape analysis and spectral mesh processing.

Subspace dimension The choice of the dimension g affects the computational cost
per iteration and the number of iterations needed for convergence. A larger subspace
size increases the computational cost per iteration as more linear systems have to be
solved (line 4 of Algorithm 1) and the dimension of the dense eigenproblem (line 7) in-
creases. On the other hand, the algorithm terminates when the subspace contains (good
enough approximations of) the lowest p eigenvectors. This is easier to achieve if the
subspace is larger. Therefore, with a larger subspace, fewer iterations may be needed.
An effective choice, which is derived and justified in [7], is g = max{2p, p + 8}.

4. THE HIERARCHICAL SUBSPACE ITERATION METHOD FOR LAPLACE-BELTRAMI
90 EIGENPROBLEMS

Initialization The subspace basis @ can be initialized with a random matrix. An al-
ternative is to use information extracted from the matrices for initialization, which can
help to reduce the required number of subspace iterations. One heuristic from [6] is to
use the diagonal of the mass matrix M as the first column of the matrix representing ini-
tial vectors, random entries for the last column, and unit vectors e; with entry +1 at the
degree of freedom with the smallest ratio of k;;/m;; for the remaining g — 2 columns.

Shifting One way to make the subspace iterations more effective is to shift the matrix
S, which means to replace it with the shifted matrix S — yM. The shifted matrix keeps
the same eigenvectors while the eigenvalues are shifted by —u. As a consequence, the
inverse iteration, line 4 of algorithm 1, focuses on enhancing the frequencies around p
instead of around zero. This can help to reduce the number of iterations required for
convergence. Different heuristics for setting the shifting value have been proposed. A
conservative choice is to set u to the average of the last two converged eigenvalues [8].
Alternative shifting strategies are to set u to the average of the last converged and the first
non-converged eigenvalue [74] or to the average of the first two non-converged eigen-
values [26]. An aggressive shifting technique that places p further into the range of the
non-converged eigenvalues is shown to accelerate the SIM in [79].

Direct solver For the inverse iterations of the subspace basis, line 4 of Algorithm 1, g
linear systems with the same matrix S — uM need to be solved. It can be effective to use
a direct solver for this task since a factorization once computed can be used to solve all
the systems. For the Laplace-Beltrami eigenproblems we consider, a sparse symmetric
indefinite decomposition LDLT = § — uM is adequate.

4.4. HIERARCHICAL SUBSPACE ITERATION METHOD

In this section, we introduce the Hierarchical Subspace Iteration Method (HSIM). We
first describe the construction of the hierarchy of function spaces on a mesh. Then we
detail the multilevel eigensolver that operates on the hierarchy.

4.4.1. HIERARCHY CONSTRUCTION

Important goals for the construction of the hierarchy are that the construction is fast
since the hierarchy must be built as part of the HSIM algorithm, that the basis functions
are locally supported and the prolongation and restriction operators are sparse, and that
the functions spaces are nested. Moreover, the function spaces need to be able to ap-
proximate low and mid-frequency functions well.

We describe the construction of the subspaces in three steps. First, we describe the
construction of a hierarchy on the set of vertices of the mesh. Then, we define prolonga-
tion and restriction operators that act between the levels of the vertex hierarchy. Finally,
we explain how the vertex hierarchy and the operators can be used to obtain the hierar-

4.4. HIERARCHICAL SUBSPACE ITERATION METHOD 91

chy of nested function spaces.
ALGORITHM 2: Construction of the vertex hierarchy

Input: Surface mesh X, number of levels T, number of vertices per level n!,n?, ..., nT-1
Output: Set of vertex indices vive . .., yT-1

1 VT — {Random number from {0, 1,..., Vs -1}
2T7—T-1

3 repeat

4 VT — Vr+1

5 repeat

6 ‘ VT — V7 U {Index of vertex farthest away from V'}
7 until |[VT|=n"

8 T—1-1

9 until7=0

return Vl, Vz,..., yT-1

—
=

Vertex hierarchy We consider a hierarchy with T levels ranging from 0 to T — 1, where
0 is the finest level. We denote by V7 the set of vertices in level T and by n* the number
of vertices in V. The sets V7 are nested, V¥ < V*~!, and V? is the set of all vertices of
the mesh. Since we will solve a dense eigenproblem to get all eigenpairs at the coarsest
level, we want to control the number nT~! of vertices in VI 1, which we set to

n’~! = max{[1.5p],1000}. 4.7)
The numbers of vertices in the other levels are determined by the growth rate u

n'=pun", (4.8)

— T no
=1/ 4.9)

The trade-off for the choice of the number of levels is that a larger number of levels helps
to reduce the required number of iterations on the finest level. On the other hand, each
level adds computational cost, e.g. for computing the reduced matrices S* and M. In
our experiments, we found HSIM to be most effective with a low number of levels. We
used three levels in most cases and opted for two levels when only a small number of
eigenpairs, i.e. p <200, needs to be computed.

To form the sets V¥, we use a scheme based on farthest point sampling [24]. The
set V11 is initialized to contain one random vertex. Then, iteratively the vertex farthest
away from all the vertices that are already in V7! is added to V' ~! until the desired
number of vertices is reached. The sets V=2 to V! are created in a similar manner. The
scheme is summarized in Algorithm 2. The most expensive step is the computation of
the farthest point in line 6. The farthest point can be computed efficiently by maintain-
ing a distance field that stores for each vertex of the mesh the distance to the closest
vertex in the current set V7. Since the vertices are inserted one after another, in each
iteration the distance field only needs to be updated locally around the newly inserted

where p is given by

4. THE HIERARCHICAL SUBSPACE ITERATION METHOD FOR LAPLACE-BELTRAMI
92 EIGENPROBLEMS

V°={aII vertices}
V'={@,0}
V={@}

Figure 1: Illustration of a vertex hierarchy with three sets V2 c V! c V0. The coarsest set V2 consists of the
red vertices, V! of the blue and the red vertices and V0 of all vertices of the mesh. The light red and light blue
regions are geodesic disks of radii p? and p! around the highlighted red and blue vertices in the centers of the
regions and illustrate the support regions of the highlighted vertices.

vertex, and the maximum of the field has to be computed. We compute the distances
between vertices using Dijkstra’s algorithm on the edge graph with weights correspond-
ing to the length of the edges. We found Dijkstra’s distance a sufficient approximation of
the geodesic distance in our experiments. Alternatively, the Short-Term Vector Dijkstra
(STVD) algorithm [16] could be used, which computes a more accurate approximation
of the geodesic distance while still keeping computations localized. The supplementary
material includes examples that illustrate that farthest point sampling generates hierar-
chies that are suitable for our purposes.

Prolongation and restriction A function on level 7 is represented by a vector f7 e R"".
We will first describe the prolongation and restriction operators and show in the next
paragraph how the prolongation operator can be used to construct the piecewise linear
polynomial corresponding to a vector f7. The 7/" prolongation operator is given by a
matrix UT € R” *""" that maps vectors f7+! e R representing functions on level 7 + 1
to vectors f7 € R*' representing functions on the finer level 7. The restriction operator
maps from level 7 to the coarser level T + 1 and is given by the transpose U of the pro-
longation matrix. This relationship of the prolongation and restriction operators ensures
that the restricted matrices S* and M, see lines 4 and 5 of Algorithm 3 for a definition of
the matrices, on all levels are symmetric.

The i row of U” describes how the value associated with the i*" vertex of level 7 + 1
is distributed among the vertices on level 7. This means the entry UL.T]. is a weight of
how much vertex j on level 7 receives from vertex i on level 7 + 1 during prolongation.
This weight decreases with increasing geodesic distance of the vertices. To obtain sparse

4.4. HIERARCHICAL SUBSPACE ITERATION METHOD 93

operators, the weight vanishes when the distance of the vertices reaches a threshold p?,
which differs per level. We set p” to be

P’ = . (4.10)

where A is the area of the surface and ¢ is a control parameter. This choice of p” yields
matrices U’ that have about o non-zero entries per row. For our experiments, we choose
o =7. The reasoning behind (4.10) is that we want the sum of the areas of the geodesics
disks of radius p’ around all the vertices of level 7 to be o times the area of the sur-
face. To make this idea easily computable, we approximate the combined areas of all the
geodesic disks by n* times the area of the Euclidean disk of radius p°*.

T+1

To construct the matrices U7, we first construct preliminary matrices U € R *7
that have the entries

1 d('/zﬁl'y}) for d(v™! v7) < o”
=1 T e @1y
0 ford(vi ,v].)>p
where d (vl.”l, v}) is the geodesic distance of the i’ vertex of V'*! to the j'" vertex of

V". The matrix U” is then obtained by normalizing the rows of U*

1

T =———U. (4.12)

ij T3 ij
YU

The normalization ensures that all function spaces will include the constant functions.
This is important for our purposes as the constant functions make up the kernel of the
Laplace-Beltrami operator. Another property is that the set of functions on each level
forms a partition of unity. As for the sampling scheme, we use Dijkstra’s distance on
the weighted edge graph of the mesh in our experiments to approximate the geodesic
distance. A discussion of two alternatives, the Short-Term Vector Dijkstra algorithm [16]
and the Heat Method [20], is included to the supplementary material.

Function spaces So far we have considered abstract vectors f* € R". Now, we de-
scribe how the continuous piecewise linear polynomial corresponding to f* can be con-
structed. On the finest level, any fO € [R”O is the nodal vector, which lists the function
values of the continuous, piecewise linear polynomial at the vertices. To get the contin-
uous, piecewise linear polynomial that corresponds to a f* € R"" for any 7, we use the
prolongation operators to lift 7 to the finest level. The resulting vector

vout.uTifT (4.13)

is the nodal vector of the continuous, piecewise linear polynomial corresponding to f°.
By construction, the resulting function spaces are nested and the functions are locally
supported. The HSIM algorithm does not need to lift the functions using (4.13). Instead,
the reduced stiffness and mass matrices S* and M" are directly computed for each level.

4. THE HIERARCHICAL SUBSPACE ITERATION METHOD FOR LAPLACE-BELTRAMI
94 EIGENPROBLEMS

4.4.2. HIERARCHICAL SOLVER

The HSIM is outlined in Algorithm 3. The algorithm starts with preparing the multilevel
subspace iterations. First, the number of levels, the vertex hierarchy and the prolonga-
tion matrices U" are computed. Then the reduced stiffness and mass matrices, S* and
M7, for all levels are constructed from fine to coarse starting with level 1. In this com-
putation, we benefit from the fact that the prolongation matrices U" are highly sparse.
The next step is to determine the dimension g of the subspace that is used. Our exper-
iments indicate that values between g = 1.5p and g = 2p are suitable. Following [7], we
set g = p + 8 for small values of p

g =max{[1.5p],p+8}. (4.14)

The last step before the multilevel iterations start is the computation of an initial sub-
space. This is done by solving the eigenproblem on the coarsest level of the hierarchy
completely using a dense eigensolver. The dimension of the coarsest space is chosen,
see (4.7), such that the dense eigenproblem can be solved efficiently. To obtain the ini-
tialization of the multilevel iterations, the first g eigenvectors are lifted to level T —2 of
the hierarchy using the prolongation matrix U !, This initialization of the multilevel
subspace iterations can be computed quickly and results in a subspace basis that is al-
ready a rough approximation of the desired eigenbasis.

ALGORITHM 3: Hierarchical Subspace Iteration Method

Input: Stiffness and mass matrices of finest level $°, M0 € R”*", number of eigenpairs p,
number of levels T, tolerance €

Output: p lowest eigenpairs of the generalized eigenproblem (4.4)

Function HSIM(S?, M0, p, T,):

1
2 Compute vertex hierarchy (Section 4.4.1)

3 Build matrices U* fort=0,1,..., T —2 (Section 4.4.1)

4 fort—1t0T-1do

5 Build level 7 stiffness matrix: ST — (U*~1)Ts7-1yT-1

6 Build level T mass matrix: M* — (U7~)T p7-1y7-1

7 end

8 | Setsize of subspace: ¢ — max([1.5p],p+8)

9 Compute first g eigenpairs of ST 1T -1 = AT-1pyT-1pT-1
10 fort — (T'-2) t00do
11 Prolongation of subspace basis: ®% — UT®**!
12 Set shifting parameter: p — A;}rl with j = Ll—%J
13 (AT, ®7) — SIM(ST, MT,®7, p, e, 1)
14 end

15 return First p diagonal entries of A? and first p columns of ®°
16 End Function

The multilevel iterations traverse the hierarchy from coarse to fine starting with the
second coarsest level. At each level, the eigenproblem is solved up to the tolerance by
subspace iterations. The subspace iterations are initialized with the eigenvectors com-
puted at the coarser level. To make the subspace iteration more effective, we use the ap-
proximate eigenvalues computed on the previous level to specify a shifting parameter for
the iterations on the current level. We employ an aggressive shifting strategy, which sets

4.5. EXPERIMENTS 95

0.95 (1.7%)

® Prolongation mSIM

B Solving lin. system (2&4)

m Reduced matrices (5-6)

H Red. eigenproblem (7)
Update eig. Vectors (8)

m Convergence check (9)

Hlevel0 Mlevell Level 2

(a) (b) (c)

Figure 2: Analysis of timings of the HSIM for the Laplace-Beltrami eigenproblem. Distribution of the runtimes
to the three levels (a), split of the time spent at the finest level between the prolongation of the solution from
level 1 and the subspace iterations at the finest level (b) and distribution of the time of the subspace iteration
to the individual steps in Algorithm 1. The 200 lowest eigenpairs are computed on the Dragon mesh with 150k
vertices.

the shifting value to be the estimated eigenvalue with index | p/10|. The shifting value is
set only once for each level and used for all subspace iterations on this level. Then, only
one sparse factorization of the shifted stiffness matrix ST — u” M" has to be computed per
level. This way we achieve that, on the one hand, the shifting value is regularly updated,
while, on the other hand, no additional factorizations have to be computed.

To further accelerate the subspace iterations, we do not perform additional inverse
iterations, step 4 of the Algorithm 1, on the lowest r vectors that are already converged.
However, to avoid error accumulation, we stop iteration of vectors only after the residual,
eq. (4.6), of the first r vectors has reached one tenth of the specified tolerance ¢. A further
acceleration is achieved by performing two inverse iterations before orthonormalizing
the vectors. Thus we execute step 4 in algorithm 1 twice before we continue with step 5.

The subspace iteration method converges quickly when the desired eigenspace is
close to the initial subspace. Our hierarchical method makes use of this property by pro-
viding the subspace iterations on each level with the solution from the coarser level. As a
result, only few iterations are needed on each level. In particular, the multilevel strategy
substantially reduces the necessary number of iterations on the finest level compared
to the SIM. The price to pay is that the hierarchy has to be built and iterations on the
coarse levels are needed. Nevertheless, HSIM is 4-8 times faster than SIM in our exper-
iments. The highest acceleration is achieved in the difficult case that a large number of
eigenvectors must be computed.

4.5, EXPERIMENTS

Implementation Our implementation of HSIM uses Eigen [27] for linear algebra func-
tionalities and LibIGL [35] for geometry processing tasks. OpenMP is used to solve the
linear systems in each subspace iteration, step 4 of Algorithm 1, in parallel and to com-
pute the prolongation and projection matrices in parallel during hierarchy construction.

4. THE HIERARCHICAL SUBSPACE ITERATION METHOD FOR LAPLACE-BELTRAMI

96 EIGENPROBLEMS
St

360 == —

[&]

g — |

° 40 .

£

|_

N
o

--Chinese Dragon|-
—~+-Blade

OHHH‘ L | I R Ll L Livw v v w L | I Ll L
1072 1073 10 107° 108 107 108 107
Relative residuals

Figure 3: The plot of required computation time to achieve the desired accuracy, in computing the first 100
eigenpairs of Laplace-Beltrami operator on the Chinese Dragon (127k vertices) and on the Blade model (200k
vertices).

Figure 4: The 10th eigenfunction of the Laplace-Beltrami operator for the models for which the time points
are listed in Table 1.

Moreover, we solve the low-dimensional eigenproblems at the coarsest level of the hier-
archy, step 9 of Algorithm 3, and in each subspace iteration, step 7 of Algorithm 1, on the
GPU using a direct solver for dense generalized eigenproblems from CUDA’s CUSOLVER
library.

Timings Table 1 lists timing for our HSIM implementation for the computation of the
p lowest eigenpairs of the discrete Laplace-Beltrami operator, eq. (4.4), for meshes with
different sizes and values of p. Individual timings for hierarchy construction and solving
the problem using the hierarchy are listed. Moreover, iteration counts for subspace iter-
ations on the individual levels are provided. For the coarsest level, a dense solver is used
instead of the subspace iteration, therefore, the table lists F’s instead of a number for the
coarsest level. The convergence tolerance for the solver is set to 1072 for all examples.
In all cases, the required number of iteration on the finest level is reduced to one by the
hierarchical approach. Figure 2 provides more details for one example, the computation
of the lowest 200 eigenpairs on a dragon model with 150k vertices using a hierarchy with
three levels. The figure shows (a) how the runtimes split over the different levels of the

4.5. EXPERIMENTS 97

Model . Timings of HSIM
(#Verts) #Eigs || #lters Hier. | Solver | Total
Kitten 50 Fl1 1.9 6.2 8.1
(137K) 250 F|1|1 3.7 28.4 32.1
1000 FI2|1 4.3 118.9 123.2
Vase-Lion 50 F|1 3.2 5.3 8.5
(200K) 250 || F|2[L | 7.3 | 412 | 485
1000 F|3|1 9.2 188.0 197.2
50 F|1 9.9 28.4 38.3
Knot-Stars

4501 250 || F2[1 | 29.1 | 131.0 | 160.1
1000 | F3[1 | 363 | 505.7 | 542.0
50 F1| 92| 319 4Ll
250 || F2[1 | 31.6 | 122.6 | 154.2
1000 || F3[1 | 40.3 | 650.6 | 690.9
50 F1 | 102 | 655]| 757
250 || F2[1 | 40.6 | 199.3 | 239.9
1000 || FJ4[1 | 55.0 | 1061.2 | 1116.2

Oilpump
(570k)

Red-Circular
(700k)

Table 1: Timings of HSIM for the computation of the lowest eigenpairs of the Laplace-Beltrami operator on
surface meshes with different numbers of vertices. The error tolerance ¢ is set to 1072, Individual timings
for constructing the hierarchy and for solving the eigenproblem using the hierarchy are listed (in seconds).
Meshes are shown in Figure 4.

hierarchy, (b) for the finest level the division between prolongation of the solution for
the second finest level and subspace iterations, and (c) the split for the individual steps
of the subspace iterations (Algorithm 1) on the finest level. The figure illustrates that,
when three levels are used, most of the runtime is spent on the finest level, almost 80%
for the shown example, and that the restriction of the stiffness and mass matrices and
solving the linear systems are the most costly steps of HSIM.

Figure 5 lists runtimes for different numbers of eigenpairs to be computed. In our
experiments, we found that the runtime grows linearly even when computing several
thousand eigenpairs. This is illustrated by the timings listed in the figure. We expect this
linear trend to continue as long as the runtime is dominated by the time needed for the
solving of the linear systems (step 4 of Algorithm 1). At some point, solving the dense
eigenproblem (step 7 of Algorithm 1), which does not scale linearly with the number of
eigenpairs, will be the most expensive step and the trend will no longer be linear.

For most experiments, we set the convergence tolerance, € in Algorithm 3, to 1072,
Figure 3 lists runtimes over the convergence tolerance for the computation of 100 eigen-
pairs on two different meshes, the Blade model with 200k vertices and the Chinese Dragon
with 127k vertices. The figure illustrates that low tolerances such as 10~ can be achieved
and that the time grows proportional with the relative residual. Roughly speaking, we
observe in our experiments that the number of iterations that are needed on the finest
grid grows by two for a decrease of one order of magnitude in the relative residual.

4. THE HIERARCHICAL SUBSPACE ITERATION METHOD FOR LAPLACE-BELTRAMI
98 EIGENPROBLEMS

1000

800 7 A\ AT

6004 TN e A

400 M= T e

Time (secs)

200 ATt

1750 -
2000 ———

Num. of eigenpairs

Figure 5: Plot listing the runtime of HSIM over the number of Laplace-Beltrami eigenpairs to be computed on
the Rocker Arm model with 270k vertices.

Termination criterion To test for convergence, see line 9 of Algorithm 1, we use the
criterion stated in (4.6). This test concerns the convergence of the eigenvalues as well as
the convergence of the eigenvectors. To determine a suitable value for the convergence
tolerance €, we performed several experiments. We discuss two experiments in this para-
graph, the supplementary material includes additional experiments. Based on the re-
sults of these experiments, we used a tolerance of € = 1072 for the evaluation of HSIM. In
the first experiment, we consider three different discretizations of the unit sphere with
regular meshes (consisting of 10k, 100k and 1m vertices) and measure the difference be-
tween the computed eigenvalues for different tolerances (¢ = 107!,1072,107,107%) and
the analytical solution. The results are shown in Figure 6. For all three discretizations,
the difference between the numerical solutions for different tolerances is small com-
pared to the approximation error, that is, the difference to the analytical solution. We
would like to note that the convergence test establishes an upper bound on the conver-
gence of the eigenpairs. In particular, for the lowest tolerance, £ = 10!, the solutions
computed by HSIM are often already more accurate when the process terminates. One
reason for this is that the method terminates only after all eigenpairs pass the conver-
gence test. We therefore conducted an additional experiment using the inverse power
method to compute the eigenpairs one by one and stop the iteration for each eigenpair
when the convergence tolerance is reached. The results are shown in Figure 6 (d). In this
experiment, differences in accuracy occur between the numerical solution for £ = 107!
and the other solutions (e = 1072,1074,107%), which indicates that a tolerance of € = 1071
is not sufficient.

In a second experiment, we compute eigenpairs for two different meshes approxi-
mating the same surface. The second mesh was created by flipping edges of the first

4.5. EXPERIMENTS 99

Index Index

S
&
Il

—
&

&

=)

IS

Relative Difference
3 3 2
Relative Difference

E o
105 r,_,_’_,_’_'_’— o
0 20 40 60 80 100

Index Index

(c) HSIM, 1m (d) IPM, 100k

=)
&

Figure 6: Relative difference of numerical approximations of the eigenvalues of the unit sphere to the analytic
solutions are shown.

mesh. For both meshes, we compute the lowest eigenpairs for the tolerance £ = 1072 and
as reference for £ = 1078, Since the two meshes have the same vertices, we can compare
both the eigenvalues and the eigenvectors. Figure 7 shows the difference between the
reference solutions (¢ = 10~8) on both meshes (blue graph) and for one mesh, the differ-
ence between the solutions for e = 1072 and € = 1078 (red graph). It can be seen that the
difference between the reference solutions on the two meshes is more than three orders
of magnitude larger than the difference between the solutions for different tolerances.
We want to note that the convergence test (4.6) does not directly measure the deviation
from the exact solution. In our experiments (for example in Figure 7), we see that the
relative difference between the solution for a tolerance of € = 1072 and the reference so-
lution, which is computed with € = 1078 is usually much smaller than 1072, In Figure 7,
and also in Figure 11, one can observe that the errors generated by HSIM are smaller for
the eigenvalue pairs whose index is about one-third of the total number of computed
eigenvalues than for the others. This is due to our shifting strategy, which makes these
eigenpairs converge faster.

Number of levels A parameter HSIM needs as user input is the number of levels of
the hierarchy, see Algorithm 3. By increasing the number of levels, one can reduce the
number of iterations required on the finest grid. On the other hand, by increasing the
number of levels, the computational cost of the computations on the levels increases

4. THE HIERARCHICAL SUBSPACE ITERATION METHOD FOR LAPLACE-BELTRAMI

100 EIGENPROBLEMS
0 . .
10°] 10°
g J\WV\/VVJM\[W/\N §
8 10° S
£ £
o [a]
(9] [}
= [=105"
F1070 g0
e &
|—Edge flip —Edge flip
o5 —Diff. Accuracy —Diff. Accuracy
! 0 20 0 20
Index Index
(a) Eigenvalues (b) Eigenvectors

Figure 7: Comparison of the relative difference of the eigenvalues and the eigenvectors between two meshes
that approximate the same surface (blue graph) and solutions for different convergence tolerance on one of
the meshes (red graph).

Model #Eigs | Tol Level=2 Level=3 Level=4 Level=5

(#Verts) #Iters | Time | #Iters | Time #Iters Time #Iters Time
Rocker 50 le-2 | F|1 17.2 | F11 31.1 | Fj111 66.0 | F|1|1]1|1 123.8
Arm le-4 | F|3 26.0 | F|3|2 38.2 | F|2|2|3 76.8 | F|2|2[2]2 135.3

le2 | F3 | 10786 | F]2[T | 650.7 | F|I[I|1 | 885.3 | F|I[I[I[1 | 1412.0

@70k | 2000 o Fg | 25954 | F[7jd | 2137.1 | Fl6jala | 2967.8 | E3l4 | 3586.4

Ramses 50 F|1 453 | F[I]T | 101.0 | FI|I|]1 | 244.0 | FII[I|T | 495.0
(@200 300 | le-2 | F2 2464 | F2[1 | 2345 | F2[1]1 | 417.6 | F1I1]L | 700.6
750 F|2 969.6 | Fl2[1 | 657.5 | Fl2[1|2 | 1521.1 | F|2[1[1[T | 1607.0

Table 2: Performance of HSIM with different numbers of levels.

rapidly. Table 2 lists computation times and iteration counts for the individual levels
for computations with different meshes sizes, number of eigenpairs and convergence
tolerances. For most of these examples, three levels yield the shortest runtime.

Support region For the construction of the prolonga-
tion matrices U’ the radius of its domain of influence,
p", must be defined individually for each level. We use
eq. (4.10), which allows us to set the radii on all levels by
means of a control parameter o. This value is the aver-
age expected number of non-zero entries per row of the
matrices U'. The inset figure shows the areas of influence X
around one point for different values o. A smaller value
for o results in matrices U” with less non-zero entries and
thus less computational effort per iteration. On the other

hand, a too small value for o can increase the number of
iterations needed on each level.

In our experiments, we have identified a value of o0 = 7 as a good trade-off. This
means that in each level, each vertex of V" in average is coupled to six neighbor ver-
tices, which agrees with the average valence in a triangle mesh. Table 3 shows iteration

4.5. EXPERIMENTS 101

Model #Eigs 2.5 5 7 10 20

(#Verts) #Iters‘ Time #Iters‘ Time #Iters‘ Time #Iters‘ Time #Iters‘ Time
Vase- 100 | F2| 159]| F2| 170 | F1]| 122 | K1 | 134 | F2| 236
Lion 400 || F3[2 | 783 | FI3]1 | 60.4 | FB]L | 69.6 | Fl2]1 | 74.3 | Fj2]L | 110.4

(200k) | 750 || Fj4[2 | 175.4 | Fj3]2 | 174.8 | F[3[1 | 138.9 | F|3]2 | 219.5 | F|3]2 | 3015
100 | F2 | 557 | F[1| 422 | FJ1| 430| F2| 653 | F_2| 717
400 || F|23 | 2736 | F|22 | 231.9 | F|2]1 | 169.8 | F|4|1 | 207.2 | FJ4[1 | 292.7
750 || F[3J4 | 710.2 | F|23 | 580.5 | F|4|1 | 465.5 | F|4|2 | 567.8 | F[5|2 | 758.7

Eros
(475k)

Table 3: Runtimes and iteration counts for different values of the parameter o that determines the supports of
the functions.

. . Shift ratio
#Bigs | Residue e T 01 [02 [025 | 1/3 | 04 | 045
50 Fl1| FL| F1| FL| F1| F2| F2
250 | le-2 Fl2[T | F21 | Fl2|T | F2[L | F2|1 | E21 | F)2|1
1000 F3[1 | Fl2[T | Fl2]T | 2|1 | Fj2|1 | E3[2 | El42
50 F5 | FEj5| F4| F4| Fa| Fa| Fp
250 | le-4 F6[2 | E[6|4 | F|5/4 | F53 | F[5[3 | F|4|3 | F[5/4
1000 84 | F8[4 | F[7]4 | E[7|4 | 6|3 | E[6[4 | E[7|5

Table 4: Iteration counts for different choices of shifting values are shown. Computations are done using the
Gargoyle model with 85k vertices.

counts and runtimes for different values for o for eigenproblems on two meshes with
200k and 475k vertices and different numbers of eigenpairs to be computed. The value
o =7 reaches in all cases either the lowest runtime or a time close to the lowest runtime.

Shifting strategy Matrix shifting reduces the number of required subspace iterations
on all levels. In our experiments, we use a heuristic, which is described in step 12 of Algo-
rithm 3, to automatically determine p. This heuristic is based on the aggressive shifting
technique from [79]. We set u equal to the current approximate eigenvalue A j; with in-
dex j = |ap]. Here a is a value between 0 and 0.5. Table 4 listed iteration counts for
different values of a. Results for different numbers of eigenpairs and different error mar-
gins are shown. We used values between 0.1 and 1/3 for « in our experiments.

Surface withboundary We applied HSIM to the computation of Laplace-Beltrami eigen-
problems on surfaces with boundary. We experimented with Dirichlet and Neumann
boundary conditions and used the same hierarchy and basis construction as for surface
without boundary. Examples of eigenfunctions on surfaces with boundary are shown
in Figure 8. Table 5 shows for an example mesh the runtimes and iteration counts for
Dirichlet and Neumann boundary conditions. The runtimes are comparable to the run-
times we get for meshes without boundary and a similar number of vertices.

4. THE HIERARCHICAL SUBSPACE ITERATION METHOD FOR LAPLACE-BELTRAMI

102 EIGENPROBLEMS
Boundary | #Eigs | #Iters Timing
v & Hierarchy [Solve | Total
L. 50 F|2 5.8 30.0 35.8
Dirichl
mehlet o0 [FRl 193 | 93.7 | 113.0
Neumann 50 F|2 5.7 29.8 35.4
250 | F2|L 189 | 949 | 1133

Table 5: Timings and iteration counts for solving eigenproblems with boundary conditions on the Julius Caesar
model with 370k vertices.

(b) Neumann

(a) Dirichlet

Figure 8: The first (left) and tenth (right) eigenvector of the Laplace-Beltrami operator on a surface with bound-
ary using Dirichlet and Neumann boundary conditions are shown.

4.6. COMPARISONS

In this section, we discuss comparisons of HSIM to alternative methods. Laplace-Beltrami
eigenproblems are commonly solved in graphics applications using Lanczos methods
[68]. Therefore, we begin this section with the comparison to Lanczos solvers. An alter-
native to Lanczos schemes is the SIM, which is used in structural engineering applica-
tions [7]. Since HSIM is based on SIM, this comparison provides a basis to quantify the
gains resulting from our hierarchy. The third solver to which we compare HSIM is the
Locally Optimal Block Preconditioned Conjugate Gradient Method [37]. Lastly, we com-
pare HSIM to the multilevel correction scheme that was introduced in [17, 43]. We use
the same convergence test (4.6) for all methods and set the tolerance to £ = 1072, which
is the value we determined in our experiments, see Section 4.5.

4.6. COMPARISONS 103

Lanczos methods Methods based on Lanczos iterations are commonly used for solv-
ing large-scale, sparse, symmetric eigenproblems. These methods have been studied
and improved over decades. ARPACK’s implementation of the Implicitly Restarted Lanc-
zos Method is well-established [41]. We compare HSIM with MATLAB’s eigs that in-
terfaces ARPACK and with SPECTRA [55] that offers an alternative implementation of the
Implicitly Restarted Lanczos Method. In addition to that, we compare to the authors’ im-
plementation of the band-by-band, shift-and-invert Lanczos solver that was introduced
in [68]. We denote this solver by Manifold Harmonics (MH). If a diagonal, or lumped,
mass matrix is used in (4.4), the generalized eigenproblem can easily be transformed to
an ‘ordinary’ eigenproblem as described in [68]. We have tested all three Lanczos solvers
on the ‘ordinary’ eigenproblem.

The runtimes for meshes of different complexity and different numbers of eigenpairs
are given in Table 6. The listed runtimes for HSIM also include the construction of the
hierarchy and prolongation operators. In our experiments, HSIM was consistently faster
than all three Lanczos schemes. This is also reflected in the table where HSIM is the
fastest method for all combinations of meshes complexity and numbers of eigenpairs.
In particular in the difficult cases, where a larger number of eigenpairs have to be com-
puted, HSIM is much faster.

Figure 9 shows plots of the lowest eigenvalues for two surfaces computed with differ-
ent solvers. On the left side of the figure, numerical approximations of the eigenvalues
of the unit sphere computed with the different solvers on a mesh with 320k triangles ap-
proximating the sphere are shown. For reference, the analytical solution is included to
the plot. On the right side of the figure results for a surface that exhibits different symme-
tries are shown. SPECTRA and MATLAB applied to the ordinary eigenproblem provided
accurate results in our experiments that for the sphere example well-approximate the
analytic solution. The results obtained with HSIM match the accuracy of SPECTRA and
MATLAB. The band-by-band, shift-and-invert solver [68] meets the convergence toler-
ance for the individual eigenpairs, but some eigenpairs are skipped. This seems to hap-
pen at the transitions between the bands and we have observed it in our experiments
consistently for different bandwidths.

- SIM [par. SIM | HSIM I Lanczos methods [Prec. Solver |

‘ Model (#vert ‘ #Eigs | #lters | Time | Time | #Iters [Time || Matlab [MH [SpectrA || LOBPCG |
50 7 494 238 F1| 117 162 | 272 244 48.0
som 250 7| 2745 1557 | F2[1 | 513 943 | 2853 | 1248 268.3
fsoire 1000 7 | 1088.0 6422 | F|2]1 | 1656 | 921.8 | 11322 | 12355 2601.1
(160k) 2500 7| 32282 | 1930.7 | F|2]1 | 529.8 || 77845 | 2987.1 | 7552.7 || Mem. bound
2000 8 | 10687.8 | 8913.0 | T2l | 1431.2 || 11745.1 | 5836.1 | 13100.1 || Mem. bound
50 8 749 122 F1| 146 186 | 264 258 1265
Rocker Arm 250 8| 5417 3001 | Fj2]1 | 796 || 1303 | 1787 | 1853 7115
(270k) 1000 8| 21189 | 1228.0 | F|2[1 | 342.1 | 1549.0 | 696.4 | 13594 40145
2500 8 | 102785 | 8658.4 || F|2[1 | 1108.1 || 13018.3 | 1798.9 | 9543.0 | Mem. bound
Rolling st 50 7| 2125 1025 F1| 579 62.7 | 100.1 777 3842
(gé(;;gs 8¢ ™ 250 7 | 13088 6644 | F[2[1 | 2066 || 3625 | 7733 | 6754 1885.2
1000 7| 8058.2 | 53589 | T3]l | 937.8 || 4072.6 | 30345 | 8396.0 | Mem. bound

Table 6: Comparison of HSIM to the (non-hierarchical) SIM, different Lanczos solvers, and LOBPCG. Runtimes
are listed in seconds.

4. THE HIERARCHICAL SUBSPACE ITERATION METHOD FOR LAPLACE-BELTRAMI
EIGENPROBLEMS

104

170

240

220

210

200

190

195

200 205 210 215 220 225 230

Eigenvalue

H

(~Analytic Solution
—Matlab (Lanczos)
—SpectrA (Lanczos)
—MH (Lanczos)

- LOBPCG
‘ ‘ ‘ Ours (HSIM)
50 100 Index 150 200 250
055
054
053
052
051
05 : . :
216 218 220 222 224 226 228 230 232
0 e . .
—Matlab (Lanczos)
—SpectrA (Lanczos)
—MH (Lanczos)
=LOBPCG
‘ ! ‘ | -Ours (HSIM)
0
50 100 Index 150 200 250

(b) Ball, 90k

Figure 9: The lowest 250 Laplace-Beltrami eigenvalues computed with HSIM and three different Lanczos
solvers on a discrete sphere with 160k vertices (left) and a surface with many symmetries and 90k vertices
(right). For the sphere the analytic solution is shown as a reference.

4.6. COMPARISONS 105

~Qurs (HSIM) ~Qurs (HSIM)

107" --SIM 107 --SIM
© ©»
(] ©
3107 3107
[7] o
o o
%1073 %10
= =

4 -4
10 X N 10 N
107 ‘ 10°°
12 3 4 5 6 7 8 9 10 11 12 13 12 3 45 6 7 8 9 1011121314
Iter Iter

(a) 250 eigs (Vase-Lion, 200k V) (b) 100 eigs (Eros, 475k V)

Figure 10: Plot of the maximum residual and the numbers of iterations for SIM and HSIM are shown. For
HSIM the number of iterations on the finest level is used.

SIM In addition to the runtimes for Lanczos schemes, Table 6 also lists times and it-
eration counts for the (ordinary, non-hierarchical) SIM. If one compares the number of
iterations required by HSIM on the finest level with the number of iterations required
by SIM, one sees that HSIM effectively reduces the number of iterations from 7-8 to 1.
Accordingly, we observe that HSIM is 4-8 times faster than SIM. The table lists additional
runtimes for an optimized SIM implementation in which the linear systems in step 4 of
Algorithm 1 are solved in parallel using OpenMP and the dense eigenproblems, step 7 of
Algorithm 1, are solved on the GPU using CUDA’s CUSOLVER library. Figure 10 shows for
two examples how the number of iterations changes if a lower convergence tolerance is
requested. It can be seen that the increase of iterations is less for HSIM than for SIM.

LOBPCG The last column of Table 6 lists timings for the Locally Optimal Block Pre-
conditioned Conjugate Gradient Method (LOBPCG). To generate the timings, we used
the author’s implementation [38]. We experimented with different preconditions and
report the best results. These we obtained with the preconditioner S — vId, which was
suggested in [37]. Here S is the stiffness matrix (of the transformed ordinary eigenvalue
problem that we also used for the Lanczos solvers), v € R is approximately in the middle
of the first ten eigenvalues [37], and Id is the identity matrix. The results demonstrate
that HSIM can solve the eigenproblems faster than (LOBPCG). Both LOBPCG and HSIM
have to solve a number of sparse linear systems of equations to compute the eigenpairs.
LOBPCG uses a preconditioned conjugate gradient method and HSIM uses a sparse di-
rect solver for this. For the Laplace matrices we consider, the direct solvers are efficient
solvers [10]. Furthermore, HSIM benefits from the fact that a factorization once com-
puted can be reused to solve many systems.

Multilevel correction scheme We compare with the multilevel correction scheme (MCS)
from [43, 17], which is an extension of the two-grid scheme from [32]. This method has
in common with our HSIM method that for initialization, an eigenvalue problem on the

4. THE HIERARCHICAL SUBSPACE ITERATION METHOD FOR LAPLACE-BELTRAMI

106 EIGENPROBLEMS

10° y————— 10°
107 107
102 102
10° 1 10

K] K]

S 10 S 10

b=} b=}

@ . 5 @ . 5

8o g0 N7
10 / 10
107 —~MCS 107 —MCS
10° —-HSIM (e=1x10"2) 10° —HSIM (e=1x10"2)

HSIM (e=1x107%) HSIM (e=1x107%)

5 10 15 20 25 30 50 100 150 200 250
Eigenvalue index Eigenvalue index

(a) 32 eigenpairs (b) 250 eigenpairs

Figure 11: Plot of the residuals of MCS and our novel HSIM eigensolver. Not only HSIM is substantially
more accurate, it also has explicit control on the accuracy of the eigenvalues and corresponding eigenvectors.
(Dragon model, 150k vertices.)

coarsest grid is solved. However, the multilevel iterations differ substantially from HSIM.
In their method, the coarse space is used in all levels and it is enriched by vectors that
are computed in the multilevel iterations. An essential difference to HSIM is that HSIM
reduces the error on each level to the desired tolerance margin, while in their approach
there is no direct control over the accuracy of the solution. The accuracy depends on the
approximation quality of the coarse grid and the growth rate between the grids. There-
fore an aggressive growth rate, which is essential to the performance of our scheme,
would lead to an increase in approximation error. Another substantial difference is that
their scheme is focused on computing only one or a few eigenpairs, less than 30 eigen-
pairs in all shown experiments. This contrasts this work from our setting in which we
compute more than a thousand eigenpairs. In Figure 11, we show a plot of the accuracy
of the eigenpairs computed with MCS and HSIM with convergence tolerance 1072 and
10~%. The error produced by MCS is orders of magnitude higher than that produced by
HSIM. Moreover, the plot on the right shows that the error increases with the index of the
eigenvalue. This illustrates the point that MCS is focused on the computation of a few of
the lowest eigenpairs. Since the MCS scheme is formulated for regular grids, we use our
hierarchy with three levels in the comparisons for both schemes, MCS and HSIM.

4.7. CONCLUSION

We introduce HSIM, a hierarchical solver for sparse eigenvalue problems and evaluate
HSIM on the computation of the lowest p eigenpairs of the discrete Laplace-Beltrami
operator on triangle surface meshes. HSIM first constructs a hierarchy of nested sub-
spaces of the space functions on the mesh. Then, HSIM iterates from coarse to fine over
hierarchy solving the eigenproblem on all levels to the desired accuracy. HSIM is ini-
tialized with the solution of the eigenproblem on the coarsest level, which is computed
by solving a low-dimensional dense eigenproblem. Our comparisons show that HSIM
outperforms state-of-the-art Lanczos solvers and demonstrate the advantages of the hi-

4.7. CONCLUSION 107

erarchical approach over the plain SIM.

We think that the benefits of HSIM over Lanczos and SIM solvers make HSIM attrac-
tive for methods in shape analysis and mesh processing. Therefore, we plan to release
our implementation of HSIM.

Our experiments clearly show the advantages of the hierarchical approach for solving
Laplace-Beltrami and related eigenproblems on surface meshes. We expect that this
type of solver will be further explored. Directions of future work are to explore alternative
hierarchies, e.g. wavelet bases on surfaces, and to extend the method to compute not
only the lowest but arbitrary eigenpairs. Moreover, the method could be improved by
further exploring the possibilities of parallelization of the method and by integrating out-
of-core techniques for the computation of larger eigenbases.

A benefit of the HSIM is that it directly works for generalized eigenvalue problems,
such as (4.4), and does not require to transform these to ordinary eigenvalue problems.
This could be helpful when using the method for solving eigenproblems in which the
mass matrix M is not a diagonal matrix, such as the discretization of the Laplace-Beltrami
operator with higher-order elements [57].

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their constructive feedback. This project is partly
supported by the Indonesia Endowment Fund for Education (LPDP) through a doctoral
scholarship for Ahmad Nasikun. For our experiments, we used models from the AIM@SHAPE
repository, the Stanford Computer Graphics Laboratory (Stanford 3D Scanning Reposi-
tory), Turbosquid, Al-Badri and Nelles (Nefertiti), and INRIA.

BIBLIOGRAPHY

[1] Burak Aksoylu, Andrei Khodakovsky, and Peter Schroder. “Multilevel Solvers for
Unstructured Surface Meshes”. In: SIAM J. Sci. Comput. 26.4 (2005), pp. 1146-1165.

[2] Peter Arbenz et al. “A comparison of eigensolvers for large-scale 3D modal anal-
ysis using AMG-preconditioned iterative methods”. In: International Journal for
Numerical Methods in Engineering 64.2 (2005), pp. 204-236.

[3]1 M. Aubry, U. Schlickewei, and D. Cremers. “The wave kernel signature: A quantum
mechanical approach to shape analysis”. In: ICCV. 2011, pp. 1626-1633.

[4] Omri Azencot et al. “An Operator Approach to Tangent Vector Field Processing”.
In: Computer Graphics Forum 32.5 (2013), pp. 73-82.

[5] Randolph E. Bank. “Analysis of a Multilevel Inverse Iteration Procedure for Eigen-
value Problems”. In: SIAM Journal on Numerical Analysis 19.5 (1982), pp. 886-898.

[6] Klaus-Jiirgen Bathe. Finite element procedures. 2nd edition. Prentice Hall, 2014.

[7] Klaus-Jirgen Bathe. “The Subspace Iteration Method - Revisited”. In: Computers
and Structures 126 (2013), pp. 177-183.

[8] Klaus-Jiirgen Bathe and Seshadri Ramaswamy. “An accelerated subspace itera-
tion method”. In: Computer Methods in Applied Mechanics and Engineering 23.3
(1980), pp. 313-331.

[9]1 D. Boscaini et al. “Learning class-specific descriptors for deformable shapes us-
ing localized spectral convolutional networks”. In: Computer Graphics Forum 34.5
(2015), pp. 13-23.

[10] Mario Botsch, David Bommes, and Leif Kobbelt. “Efficient Linear System Solvers
for Mesh Processing”. In: Mathematics of Surfaces. Ed. by Ralph R. Martin, Hel-
mut E. Bez, and Malcolm A. Sabin. Vol. 3604. Lecture Notes in Computer Science.
Springer, 2005, pp. 62-83.

[11] A. Brandt, S. McCormick, and J. Ruge. “Multigrid Methods for Differential Eigen-
problems”. In: SIAM J. Sci. Stat. Comput. 4.2 (June 1983), pp. 244-260. I1SSN: 0196-
5204.

[12] Christopher Brandtet al. “Spectral Processing of Tangential Vector Fields”. In: Com-
puter Graphics Forum 36.6 (2017), pp. 338-353.

[13] James Brannick and Shuhao Cao. Bootstrap Multigrid for the Shifted Laplace-Beltrami
Eigenvalue Problem. arXiv preprint arXiv:1511.07042. 2015.

[14] Michael M. Bronstein et al. “Geometric Deep Learning: Going beyond Euclidean
data”. In: IEEE Signal Process. Mag. 34.4 (2017), pp. 18-42.

[15] Joan Bruna et al. “Spectral networks and locally connected networks on graphs”.
In: International Conference on Learning Representations (2014).

109

110 BIBLIOGRAPHY

y

[16] Marcel Campen, Martin Heistermann, and Leif Kobbelt. “Practical Anisotropic Geodesy”.
In: Computer Graphics Forum 32.5 (2013), pp. 63-71.

[17] Hongtao Chen, Hehu Xie, and Fei Xu. “A full multigrid method for eigenvalue
problems”. In: Journal of Computational Physics 322 (2016), pp. 747-759.

[18] Ming Chuang et al. “Estimating the Laplace-Beltrami Operator by Restricting 3D
Functions”. In: Computer Graphics Forum 28.5 (2009), pp. 1475-1484.

[19] LucaCosmo etal. “Isospectralization, or How to Hear Shape, Style, and Correspon-
dence”. In: IEEE CVPR. 2019, pp. 7529-7538.

[20] Keenan Crane, Clarisse Weischedel, and Max Wardetzky. “Geodesics in heat: A new
approach to computing distance based on heat flow”. In: ACM Transactions on
Graphics (TOG) 32.5 (2013), pp. 1-11.

[21] Keenan Crane et al. “Digital Geometry Processing with Discrete Exterior Calculus”.
In: ACM SIGGRAPH 2013 courses. SIGGRAPH '13. 2013.

[22] Shen Dong et al. “Spectral surface quadrangulation”. In: ACM Trans. Graph. 25.3
(2006), pp. 1057-1066.

[23] Jed A. Duersch et al. “A Robust and Efficient Implementation of LOBPCG”. In:
SIAM J. Sci. Comput. 40.5 (2018), pp. C655-C676.

[24] Y. Eldar et al. “The Farthest Point Strategy for Progressive Image Sampling”. In:
Trans. Img. Proc. 6.9 (1997), pp. 1305-1315.

[25] Katarzyna Gebal et al. “Shape Analysis Using the Auto Diffusion Function”. In:
Computer Graphics Forum 28.5 (2009), pp. 1405-1413.

[26] Yu-cai Gong et al. “Comparison of subspace iteration, iterative Ritz vector method
and iterative Lanczos method”. In: Journal of Vibration Engineering 18.02 (2005),
pp. 227-232.

[27] Gaél Guennebaud, Benoit Jacob, et al. Eigen v3. http://eigen.tuxfamily.org. 2010.

[28] W. Hackbusch. “On the Computation of Approximate Eigenvalues and Eigenfunc-
tions of Elliptic Operators by Means of a Multi-Grid Method”. In: SIAM Journal on
Numerical Analysis 16.2 (1979), pp. 201-215. I1SSN: 00361429.

[29] N. Halko, P. G. Martinsson, and J. A. Tropp. “Finding Structure with Randomness:
Probabilistic Algorithms for Constructing Approximate Matrix Decompositions”.
In: SIAM Review 53.2 (2011), pp. 217-288.

[30] Klaus Hildebrandt, Konrad Polthier, and Max Wardetzky. “On the convergence of
metric and geometric properties of polyhedral surfaces”. In: Geometricae Dedicata
123 (2006), pp. 89-112.

[31] Hugues Hoppe. “Progressive meshes”. In: ACM SIGGRAPH. 1996, pp. 99-108.

[32] Xiaozhe Hu and Xiaoliang Cheng. “Acceleration of a two-grid method for eigen-
value problems”. In: Mathematics of Computation 80.275 (2011), pp. 1287-1301.
ISSN: 00255718, 10886842.

[33] Jin Huang et al. “Spectral quadrangulation with orientation and alignment con-
trol”. In: ACM Trans. Graph. 27.5 (2008), pp. 1-9.

BIBLIOGRAPHY 111

[34] Qixing Huang et al. “Shape Decomposition Using Modal Analysis”. In: Computer
Graphics Forum 28.2 (2009), pp. 407-416.

[35] Alec Jacobson, Daniele Panozzo, et al. libigl: A simple C++ geometry processing li-
brary. http://libigl.github.io/libigl/. 2016.

[36] Zachi Karni and Craig Gotsman. “Spectral Compression of Mesh Geometry”. In:
ACM SIGGRAPH. 2000, pp. 279-286.

[37] Andrew V Knyazev. “Toward the optimal preconditioned eigensolver: Locally op-
timal block preconditioned conjugate gradient method”. In: SIAM journal on sci-
entific computing 23.2 (2001), pp. 517-541.

[38] AndrewV.Knyazev etal. “Block Locally Optimal Preconditioned Eigenvalue Xolvers
(BLOPEX) in Hypre and PETSc”. In: SIAM J. Sci. Comput. 29.5 (2007), pp. 2224—
2239.

[39] Artiom Kovnatsky et al. “Coupled quasi-harmonic bases”. In: Comput. Graph. Fo-
rum 32.2 (2013), pp. 439-448.

[40] Dilip Krishnan, Raanan Fattal, and Richard Szeliski. “Efficient preconditioning of
laplacian matrices for computer graphics”. In: ACM Transactions on Graphics (TOG)
32.4 (2013), pp. 1-15.

[41] R.Lehoucq, D. C. Sorensen, and C. Yang. ARPACK Users’ Guide: Solution of Large-
Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM, 1998.

[42] Thibault Lescoat et al. “Spectral Mesh Simplification”. In: Computer Graphics Fo-
rum 39.2 (2020), pp. 315-324.

[43] QunLinand HehuXie. “A multi-level correction scheme for eigenvalue problems”.
In: Math. Comp. 84 (2015), pp. 71-88.

[44] Ruotian Ling et al. “Spectral Quadrangulation with Feature Curve Alignment and
Element Size Control”. In: ACM Trans. Graph. 34.1 (2014), 11:1-11:11.

[45] Or Litany et al. “Fully Spectral Partial Shape Matching”. In: Comput. Graph. Forum
36.2 (2017), pp. 247-258.

[46] Hsueh-Ti Derek Liu, Alec Jacobson, and Maks Ovsjanikov. “Spectral coarsening of
geometric operators”. In: ACM Trans. Graph. 38.4 (2019), 105:1-105:13.

[47] Janne Martikainen, Tuomo Rossi, and Jari Toivanen. “Computation of a few small-
est eigenvalues of elliptic operators using fast elliptic solvers”. In: Communica-
tions in Numerical Methods in Engineering 17.8 (2001), pp. 521-527.

(48] Stephen E McCormick. “A Mesh Refinement Method for Ax = ABx”. In: Mathe-
matics of Computation 36.154 (1981), pp. 485-498.

[49] Przemyslaw Musialski et al. “Reduced-order Shape Optimization Using Offset Sur-
faces”. In: ACM Trans. Graph. 34.4 (2015), 102:1-102:9.

[50] BoazNadler et al. “Diffusion Maps, Spectral Clustering and Eigenfunctions of Fokker—
Planck Operators”. In: Proceedings of the 18th International Conference on Neural
Information Processing Systems. 2005, pp. 955-962.

112

BIBLIOGRAPHY

(51]

(52]

[53]

(54]

(55]

(56]

(57]

(58]

(59]

[60]

[61]

(62]

(63]

(64]

[65]

[66]

(67]

(68]

Ahmad Nasikun, Christopher Brandt, and Klaus Hildebrandt. “Fast Approxima-
tion of Laplace-Beltrami Eigenproblems”. In: Comp. Graph. Forum 37.5 (2018).

Ahmad Nasikun and Klaus Hildebrandt. “Hierarchical Subspace Iteration Method
for Laplace-Beltrami Eigenproblems”. In: ACM Trans. on Graphics ().

Maks Ovsjanikov et al. “Computing and Processing Correspondences with Func-
tional Maps”. In: SIGGRAPH ASIA 2016 Courses. ACM, 2016, 9:1-9:60.

Maks Ovsjanikov et al. “Functional Maps: A Flexible Representation of Maps Be-
tween Shapes”. In: ACM Trans. Graph. 31.4 (2012), 30:1-30:11.

Yixuan Qiu. SpectrA: C++ Library For Large Scale Eigenvalue Problems. https://spectralib.org/.
2015.

Arianna Rampini et al. “Correspondence-Free Region Localization for Partial Shape
Similarity via Hamiltonian Spectrum Alignment”. In: IEEE 3D Vision. 2019, pp. 37—
46.

Martin Reuter, Franz-Erich Wolter, and Niklas Peinecke. “Laplace-Beltrami spec-
traas "Shape-DNA" of surfaces and solids”. In: Computer-Aided Design 38.4 (2006),
pp. 342-366.

Martin Reuter, Franz-Erich Wolter, and Niklas Peinecke. “Laplace-Spectra as Fin-
gerprints for Shape Matching”. In: Proceedings of the ACM Symposium on Solid
and Physical Modeling. 2005, pp. 101-106.

Emanuele Rodola et al. “Partial Functional Correspondence”. In: Comput. Graph.
Forum 36.1 (2017), pp. 222-236.

Raif M. Rustamov. “Laplace-Beltrami eigenfunctions for deformation invariant
shape representation”. In: Symposium on Geometry Processing. 2007, pp. 225-233.

Raif M. Rustamov et al. “Map-based Exploration of Intrinsic Shape Differences and
Variability”. In: ACM Trans. Graph. 32.4 (2013), 72:1-72:12.

Yousef Saad. Numerical methods for large eigenvalue problems: revised edition.
Vol. 66. Siam, 2011.

Avinash Sharma et al. “Mesh Segmentation Using Laplacian Eigenvectors and Gaus-
sian Mixtures”. In: Manifold Learning and Its Applications. 2009.

Nicholas Sharp et al. “Diffusion is All You Need for Learning on Surfaces”. In: CORR
abs/2012.00888 (2020). URL: https://arxiv.org/abs/2012.00888.

Ran Song et al. “Mesh Saliency via Spectral Processing”. In: ACM Trans. Graph. 33.1
(2014), 6:1-6:17.

Klaus Stiiben. “A review of algebraic multigrid”. In: Journal of Computational and
Applied Mathematics 128.1 (2001), pp. 281-309.

Jian Sun, Maks Ovsjanikov, and Leonidas J. Guibas. “A Concise and Provably In-
formative Multi-Scale Signature Based on Heat Diffusion.” In: Computer Graphics
Forum 28.5 (2009), pp. 1383-1392.

Bruno Vallet and Bruno Lévy. “Spectral Geometry Processing with Manifold Har-
monics”. In: Computer Graphics Forum 27.2 (2008), pp. 251-260.

https://arxiv.org/abs/2012.00888

BIBLIOGRAPHY 113

[77]

Libor Vasa et al. “Compressing dynamic meshes with geometric Laplacians”. In:
Computer Graphics Forum 33.2 (2014), pp. 145-154.

Amir Vaxman, Mirela Ben-Chen, and Craig Gotsman. “A Multi-resolution Approach
to Heat Kernels on Discrete Surfaces”. In: ACM Trans. Graph. 29.4 (2010), 121:1-
121:10.

Yu Wang and Justin Solomon. “Intrinsic and extrinsic operators for shape analy-
sis”. In: Handbook of Numerical Analysis. Vol. 20. Elsevier, 2019, pp. 41-115.

Max Wardetzky et al. “Discrete quadratic curvature energies”. In: Computer Aided
Geometric Design 24.8-9 (2007), pp. 499-518.

Christopher K. I. Williams and Matthias Seeger. “Using the Nystrom Method to
Speed Up Kernel Machines”. In: Advances in Neural Information Processing Sys-
tems 13. MIT Press, 2001, pp. 682-688.

Edward L Wilson and Tetsuji Itoh. “An eigensolution strategy for large systems”.
In: Computers & Structures 16.1-4 (1983), pp. 259-265.

Hehu Xie, Lei Zhang, and Houman Owhadi. “Fast Eigenpairs Computation with
Operator Adapted Wavelets and Hierarchical Subspace Correction”. In: SIAM Jour-
nal on Numerical Analysis 57.6 (2019), pp. 2519-2550.

Jinchao Xu and Aihui Zhou. “A Two-Grid Discretization Scheme for Eigenvalue
Problems”. In: Mathematics of Computation 70.233 (2001), pp. 17-25. 1SSN: 00255718,
10886842.

Yidu Yang and Hai Bi. “Two-grid finite element discretization schemes based on
shifted-inverse power method for elliptic eigenvalue problems”. In: SIAM Journal
on Numerical Analysis 49.3/4 (2011), pp. 1602-1624. 1SSN: 00361429.

Ning Zhang et al. An Algebraic Multigrid Method for Eigenvalue Problems in Some
Different Cases. arXiv:1503.08462. 2015.

Qian-Cheng Zhao et al. “Accelerated subspace iteration with aggressive shift”. In:
Computers & structures 85.19-20 (2007), pp. 1562-1578.

APPENDIX

4.A. JUSTIFICATION OF DESIGN CHOICES

In this section, we present experiments that address the justification of our design and
evaluation choices for the Hierarchical Subspace Iteration Method (HSIM).

4.A.1. DISTANCE COMPUTATION

The construction of the basis functions, see Equation (11) in [8], requires the computa-
tion of geodesic distances. For the evaluation of HSIM, we used Dijkstra’s algorithm on
the weighted edge graph of the mesh using the edge lengths as weights. Since the basis
functions have local support, we stop the single source Dijkstra computation when all
vertices in the support of the basis function have been processed. Alternatives to Dijk-
stra’s algorithm are the Short Term Vector Dijkstra (STVD) algorithm [1] and the Heat
Method [3]. Table 4.A.1 compares timings and iteration counts obtained by using Dijk-
stra’s algorithm, the STVD algorithm and the heat method for basis construction. One
can see that the required numbers of iterations are similar for all three methods with
some slight variations. Therefore, the timings for the case that Dijkstra’s algorithm is
used are comparable to those when the STVD algorithm is used. There is only a small
overhead resulting from the additional computational effort of the STVD algorithm com-
pared to Dijkstra’s algorithm. The heat method is much slower since for each point the
distance to all other points is computed instead of only in a local neighborhood. We
would like to note that there are also possibilities to localize the distance computation
with the heat method [4]. This, however, would be beyond the scope of this experiment.
These results illustrate our impression that the STVD algorithm or a localized version
of the heat method can be used as alternatives for the basis construction. Since we did
not observe any substantial advantages of STVD or the Heat method over Dijkstra’s algo-
rithm in our experiments, and to keep the method simple, we used Dijkstra’s algorithm
for our evaluation of HSIM.

4.A.2. SAMPLING METHOD

The nested function spaces we use for HSIM are constructed from a vertex hierarchy,
which assigns a level to every vertex of the mesh. We use farthest point sampling for
computing the distribution of the vertices. In this section, we show examples of vertex
hierarchies on different meshes to illustrate why we think farthest point sampling is suit-
able for this process. In the examples, we use meshes with spatially varying resolution,
in some areas of the surfaces the triangles are much smaller than in others. Figure 4.A.1
shows vertex hierarchies on four surfaces. The hierarchies shown have four levels, color-
coded in red, blue, and green, with the finest levels encompassing all vertices and not
shown. It can be seen that the vertices in the different levels are distributed fairly uni-
formly over the surface despite the irregular mesh. In Figure 4.A.2 four more examples

115

116 BIBLIOGRAPHY

Figure 4.A.1: Results of vertex hierarchy construction using farthest point sampling on meshes with spatially
varying sampling densities are shown.

Figure 4.A.2: Results of vertex hierarchy construction using farthest point sampling are shown for four meshes
that approximate the same surface but have different spatially varying sampling densities.

4.A. JUSTIFICATION OF DESIGN CHOICES 117

10°

2 » 10°

e :

2100 4071

= in 10

8,2 T

510 § 102

2100 e

<10
2 s
4

E0 104

o o

> -

F10° £10°

o T

[€.

10 10
0 20 40 60 80 100
Index Index

(a) HSIM, 10k vertices (b) HSIM, 100k vertices

=)
°©
=)
©

o
S,

o
[
[

Relative Diff to Analytical EigVals
. 3 3 3 35 3
&
Relative Diff to Analytical EigVals
o

o
&
o

S,

S,
IS

|

o
&
S,
&

20 40 60 80 100
Index Index

(c) HSIM, 1m vertices (d) IPM, 100k vertices

Figure 4.A.3: Relative difference of numerical approximations of the eigenvalues of the unit sphere to the ana-
lytic solutions.

0
10 10°
3 WWWW% 3
c c
£ £
a s}
o o
5
21070 g1
¢ ¢
—Edge flip | —Edge flip
10715 —Diff. Accurac: |[—Diff. Accuracy
0 20 0 20
Index
(a) Eigenvalues (b) Eigenvectors

Figure 4.A.4: Comparisons of the relative difference of the eigenvalues and the eigenvectors between two
meshes that approximate the same surface (blue graph) and solutions for different tolerance on one of the

meshes (red graph).

118 BIBLIOGRAPHY

10°
g 10%)
c
& 10°]
g :
5 g 10°" 1
) £
210710 o
© o
kol 210710
& F100
3 I
—Diff. Decimation 14 I
10715 —Diff. Accuracy |"Edge fip
107'% —Diff. Accuracy
0 20 0 20
(a) Bimba, 100k (b) Nefertiti 100k
10°
10%)
3
g g 10°
g s
g 10° e
L [[a)
a)
® ! ©
© t 4
@ “Edge fi —Diff. Decimation
10'15>—Difgel-\c§urac 1071 \—Diff. Accuracy
0 20 40 0 20
Index Index
(c) Ramses 100k (d) Ramses, 500k.

Figure 4.A.5: For four pairs of meshes, each pair approximating the same surface, comparisons of the relative
differences between the eigenvalues of the two meshes (blue graphs) and solutions for different convergence
tolerance on one of the meshes (red graphs) are shown.

4.A. JUSTIFICATION OF DESIGN CHOICES 119

g@gﬁl&) Type Acc. | Hier. Iterso\lv"?ime Total
Dijstra 1T 22 s iss 10
w0 S0 er| 49 i a0e| 2
HeatM. |17 2036 |30 |62
Dijlsra |10 96 i o5 |69
oo | SV eq| %4 [ag | sia| 752
HeatM. | 107 12188 |50 s
Dijstra |17 303 | a0 | 142
oo | STVP e 1901 e
e [152 s | T2 0 s

Table 4.A.1: The timings and iteration counts for computing 100 eigenpairs on different meshes with three
different schemes for approximating the geodesic distances are shown. The timings for the construction of the
hierarchy are additionally listed.

are shown. In this case, we show vertex hierarchies with the same numbers of vertices in
each level on different meshes that approximate the same surface. As illustrated in the
shown results, we consider the farthest point sampling as a suitable method to build up
the vertex hierarchies for HSIM. Nevertheless, one could also use alternatives like Pois-
son disk sampling, which is used in [7] for the construction of function spaces.

4.A.3. CONVERGENCE TOLERANCE

This paragraph includes further experiments related to the discussion of the conver-
gence tolerance that we used for the evaluation of HSIM, see also Section 5 of [3]. Fig-
ure 4.A.3 shows a variant of Figure 7 from [8], where we consider non-regular meshes
inscribed to the sphere. Figure 4.A.4 shows a variant of Figure 8 from [8], using a differ-
ent mesh.

In Figure 4.A.5, we show results of an additional experiment. As in Figure 4.A.4, we
computed eigenpairs on two meshes with tolerances £ = 1072 and as reference with
£ = 1078, We generated the meshes by simplifying one mesh with two different mesh
coarsening algorithms. We used the Bimba mesh with 500k vertices to get two simpli-
fied meshes with 100k vertices each, the Nefertiti mesh with 1m vertices to obtain two
simplified meshes with 100k vertices and the Ramses mesh with 750k vertices to get two
meshes with 500k vertices and two meshes with 100k vertices. In Figure 4.A.5, we plot for
all four pairs of meshes the differences between the reference results that are computed

120 BIBLIOGRAPHY

Figure 4.A.6: Renderings of the meshes used for the comparisons listed in Table 4.A.2.

with a tolerance of € = 1078 on both meshes and for one mesh the difference between
the results for € = 1072 and € = 1078. For all four pairs of meshes, the difference between
the reference results on the two meshes is much larger than the difference between the
results for e = 1072 and e = 1078.

4.B. COMPARISONS

In this section, we show additional comparisons to alternative approaches for solving
eigenproblems.

4.B.1. LANCZOS AND PRECONDITIONED EIGENSOLVER
In Section 6 of [8], the timings of HSIM are compared with the timings of Lanczos solvers
and LOBPCG. Table 4.A.2 shows additional results that complement Table 4 in [8].

4.B.2. FAST APPROXIMATION

We compare HSIM with the fast approximation method from [7]. The approximation
method has the advantage that the computation times are much shorter and storing
the approximate eigenfunctions requires less memory. On the other hand, the approxi-

4.B. COMPARISONS 121

Model #Verts. | #Eigs. | HSIM | Matlab LOBPCG

50 4.2 5.1 27.1

Gargoyle 85k 250 19.9 49.3 154.7
1000 88.6 442.3 995.0

50 7.5 7.6 57.7

Chinese Dragon 135k 250 30.5 56.3 298.0
1000 | 127.5 523.3 1678.7

50 7.2 9.6 83.0

Dragon 150k 250 36.5 65.7 325.1
1000 143.8 795.9 2102.5

50 10.5 14.1 97.9

Blade 200k 250 49.2 93.9 453.6
1000 | 177.8 | 1091.9 2591.0

50 14.6 16.6 133.3

Fertility 240k 250 90.8 121.6 678.6
1000 | 236.1 | 1369.9 4003.0

50 17.5 222 135.9

Rocker-Arm 270k 250 73.9 175.8 744.4
1000 | 252.1 | 1537.2 4837.9

50 19.5 21.1 228.3

Pulley 300k 250 85.3 222.1 837.3
1000 339.5 | 1795.0 5416.9

50 30.7 43.6 194.5

Eros 400k 250 | 127.2 267.7 1305.5
1000 | 322.6 | 2748.4 | Mem. Bound

50 294 314 236.1

Bimba 500k 250 | 132.8 254.9 1255.3
1000 | 569.3 | 3208.0 | Mem. Bound

50 41.1 46.1 310.3

Oilpump 570k | 250 | 154.2 | 315.6 1864.4
1000 690.9 | 3354.7 | Mem. Bound

50 54.6 57.8 326.3

Rolling stage 680k 250 197.6 386.5 2301.2
1000 | 891.6 | 4064.1 | Mem. Bound

50 49.1 62.6 458.9

Ramses 825k 250 | 2214 413.4 2339.9
1000 | 1149.1 | 4979.2 | Mem. Bound

50 64.0 62.8 396.2

Nefertiti Im 250 | 3054 682.7 2482.2
500 277.9 | 1654.5 | Mem. Bound

Table 4.A.2: Comparisons of timings of HSIM, Matlab’s Lanczos solver and LOBPCG for Laplace-Beltrami
eigenproblems on different meshes. Renderings of the meshes are show in Figure 4.A.6.

122 BIBLIOGRAPHY

. H Laplacian H Hamiltonian (t=0.1) H Hamiltonian (t=1.0) ‘

‘ Model #Eigs | Hier. | Solve | #ter | Total || Hier. [Solve [#Iter | Total || Hier. | Solve [#Iter [Total |
50 0.3 2.1 F|1 2.4 0.3 2.1 Fl1 2.4 0.3 2.1 F|1 2.4
Cube (25k) 250 0.6 6.7 | F|1 7.3 0.7 6.6 | F|1 7.3 0.7 9.2 | F|3 9.9

1 1 1
1000 0.7 67.1 | F|52 66.8 0.8 65.9 | F|52 66.8 0.6 67.3 | F|5]2 67.9
50 2.8 7.4 F|1 10.2 2.9 7.4 F[1 10.3 2.8 10.5 F[2 13.3
Blade (200k) 250 7.3 42.8 | F|2|]1 50.1 7.1 42.7 | F2]1 49.8 7.2 45.8 | F|3]1 53.0
1 1 1
1 1 2
1 1 1
1 1 1

1000 8.8 | 158.7 | F|2 167.5 8.8 | 167.5 | F|2 176.3 8.9 | 204.0 | F|4 212.9

50 7.9 22.6 F 30.5 8.0 | 238 F 31.7 7.7 30.9 F 38.7
Bimba (500k) 250 || 26.4 | 105.1 | F|2 131.6 26.4 | 106.8 | F|2 133.2 26.3 | 121.3 | F|3| 147.6
1000 || 34.1 | 519.5 | F|3 553.6 33.5 | 510.0 | F|3 543.5 34.9 | 643.3 | F|6| 678.2

Table 4.A.3: Timings and iteration counts for Laplace-Beltrami and Hamiltonian eigenproblems are shown.

mation errors of [7] are much larger than the errors resulting from HSIM. The top row
of Figure 4.B.1 shows plots of residuals of eigenpairs computed with the approxima-
tion scheme from [7] and compares them with the residuals from HSIM with tolerances
e€=10"2and ¢ = 10~%. The residuals obtained for the approximation scheme from [7] are
10°. In contrast, HSIM allows for controlling the residuals. The bottom row of the Figure
additionally shows the computed eigenvalues. While visually there is no difference be-
tween the two HSIM results, the eigenvalues computed with [7] differ significantly from
the results of HSIM. We would like to note that in [7] it is advised to use only the first
half of the computed eigenvalues. However, significant deviations can be observed in
the first half as well.

4.C. GENERALIZATION

4,C.1. HAMILTONIAN OPERATORS

Our evaluation of HSIM is focused on Laplace-Beltrami eigenproblems. In this section,
we consider a related operator, the Hamiltonian operator, and present some results for
solving Hamiltonian eigenproblems using HSIM. For a background on Hamiltonian op-
erators and their use in spectral analysis, we refer to [2]. The Hamilton operators on
surfaces we consider are of the form

H:u—Au+Vu,

where A is the Laplace-Beltrami operator and V a scalar potential function. For our
experiments, we used the scalar potential

V=t? +x3),

where t € R? and x; and «x are the principal curvatures. The eigenmodes of this opera-
tor have been studied in the context of shape analysis in [5]. In contrast to the Laplace-
Beltrami eigenfunctions, the eigenfunctions of this operator depend not only on the in-
trinsic properties of the surface but also on its extrinsic curvatures. Even for ¢ = 0.1, the
eigenfunctions of this operator are fundamentally different from those of the Laplace-
Beltrami operator as illustrated in Figure 4.B.2. Table 4.A.3 lists iteration counts and tim-
ings for solving Hamiltonian eigenproblems for a = 0.1 and a = 1. As a reference, we
also list the timings for the corresponding Laplace-Beltrami eigenproblem. For a = 0.1,

4.D. APPLICATIONS 123

10° 10°
1072 102
©® 0
S0 g10*
o °
9] 7] /
& y
& 10 / 108
—Fast Approx. —Fast Approx.
»8 —HSIM (e=1x10"2) & —HSIM (e=1x10"2)
10 HSIM (e=1x107%) 10 HSIM (e=1x10~%)
5 10 15 20 25 30 50 100 150 200 250
Index Index
(a) 32 eigenpairs (b) 250 eigenpairs
30
250
251
%ol 200
E o 7 s
gt L § wp
) ." &
o T ! ©100
—Fast A, u
_______ ast Approx. 5 = —Fast Approx.
5f —HSIM (e=1x10"?) 50 —HSIM (e=1x10-2)
0 | HSIM (e=1x10"*) P HSIM (e=1x10~1)
0~
5 10 15 20 25 30 50 100 150 200 250
Eigenvalue index Eigenvalue index
(c) 32 eigenpairs (d) 250 eigenpairs

Figure 4.B.1: Top row: Plot of the residuals for the computation of the lowest 32 and 250 Laplace-Beltrami
eigenvalues of the Dragon model with 150k vertices. Results for the fast approximation scheme from [7] and
HSIM with tolerance £ = 1072 and ¢ = 10™# are shown. Bottom row: The computed eigenvalues are plotted.

we obtain almost the same timings as for the Laplace-Beltrami eigenproblems and for
a = 1, we noticed in some cases an increase of the required computation time of up to
30%.

4.D. APPLICATIONS

In this section, we consider methods that use the Laplace-Beltrami eigenfunctions for
shape analysis and processing. We demonstrate that the methods can benefit from using
a larger number of eigenfunctions. HSIM facilitates the computation of larger numbers
of eigenfunctions.

4.D.1. SHAPE SIGNATURES

We first consider the Heat Kernel Signature [9] as an example of a shape signature. Fig-
ure 4.C.1 shows the Heat Kernel Signature color-coded on two meshes. For both meshes,
results using 100 and 1000 eigenfunctions are shown. One can see that the surface details
such as the curls of the Chinese lion model are better resolved when 1000 eigenfunctions
are used. As a consequence, the Heat Kernel Distance delivers better results for finding

124 BIBLIOGRAPHY

\‘i < . |
5

35

Figure 4.B.2: Eigenfunctions of the Hamilton operator are shown.

similar points on a surface when more eigenfunctions are used. Figure 4.C.2 shows re-
sults where similar points to a given point are searched. The results are shown by binary
color-coding, where similar points are orange. On the Armadillo mesh, a point at the fin-
gertip is given and on the dinosaur mesh, a point at the toe is given. It can be seen that if
1000 eigenfunctions are used, on both meshes all fingertips and toe tips are found. For
100 eigenfunctions this is not the case. Only about half of the fingertips and toes are
found.

4.D.2. PROJECTION

Methods such as mesh filtering [10] and mesh compression [6] need to project the em-
bedding of a surface to the space spanned by the lowest n eigenfunctions. Figure 4.C.3
shows the results of this projection for the centaur mesh with different values of n rang-
ing from 10 to 4000. One can see that the higher the number of eigenfunctions is, the
more surface details are preserved. Even when 2000 eigenfunctions are used the result-
ing projection is visually smoother than the original mesh.

4.D. APPLICATIONS 125

(a) Gargoyle (b) Chinese Dragon

Figure 4.C.1: Heat Kernel Signatures (HKS) computed with 100 and 1000 eigenpairs are shown.

Figure 4.C.2: Points similar to the fingertip of the armadillo mesh and to the toe tip for the dinosaur mesh are
indicated by binary color-coding. The similarity is computed using the heat kernel distance. Results for heat
kernel distance estimation using 100 and 1000 eigenpairs are shown.

orig 10 50 250 500 2000 4000
| f
L2

Figure 4.C.3: Geometric reconstruction of the Centaur model (left-most) using an increasing number of
Laplace-Beltrami eigenfunctions. A sufficient number of eigenfunctions is required to obtain reconstruction
that preserves details of the shape.

BIBLIOGRAPHY

4

[11 Marcel Campen, Martin Heistermann, and Leif Kobbelt. “Practical Anisotropic Geodesy”.
In: Computer Graphics Forum 32.5 (2013), pp. 63-71.

[2] YoniChoukroun et al. “Hamiltonian operator for spectral shape analysis”. In: [EEE
transactions on visualization and computer graphics 26.2 (2018), pp. 1320-1331.

[3] Keenan Crane, Clarisse Weischedel, and Max Wardetzky. “Geodesics in heat: A new
approach to computing distance based on heat flow”. In: ACM Transactions on
Graphics (TOG) 32.5 (2013), pp. 1-11.

[4] Philipp Herholz, Timothy A. Davis, and Marc Alexa. “Localized solutions of sparse
linear systems for geometry processing”. In: ACM Trans. Graph. 36.6 (2017), 183:1-
183:8.

[5] Klaus Hildebrandt et al. “Modal shape analysis beyond Laplacian”. In: Computer
Aided Geometric Design 29.5 (2012), pp. 204-218.

[6] Zachi Karni and Craig Gotsman. “Spectral Compression of Mesh Geometry”. In:
ACM SIGGRAPH. 2000, pp. 279-286.

[71 Ahmad Nasikun, Christopher Brandt, and Klaus Hildebrandt. “Fast Approxima-
tion of Laplace-Beltrami Eigenproblems”. In: Comp. Graph. Forum 37.5 (2018).

[8] Ahmad Nasikun and Klaus Hildebrandt. “Hierarchical Subspace Iteration Method
for Laplace-Beltrami Eigenproblems”. In: ACM Trans. on Graphics ().

[9] Jian Sun, Maks Ovsjanikov, and Leonidas J. Guibas. “A Concise and Provably In-
formative Multi-Scale Signature Based on Heat Diffusion.” In: Computer Graphics
Forum 28.5 (2009), pp. 1383-1392.

[10] Bruno Vallet and Bruno Lévy. “Spectral Geometry Processing with Manifold Har-
monics”. In: Computer Graphics Forum 27.2 (2008), pp. 251-260.

127

CONCLUSION

Spectral methods have proven to be well-suited for solving various tasks in geometry
processing. However, a crucial step in applying spectral methods for geometry process-
ing is computing the smallest eigenvalues and the corresponding eigenvectors of the
Laplace operator. This is a computationally expensive step, especially for large surface
meshes, thus making it a challenging bottleneck in spectral geometry processing. In ad-
dition, spectral methods require an extensive amount of memory to store the eigenfunc-
tions. All eigenfunctions have global support so they must be represented by a dense
matrix, which is memory extensive for large meshes.

Our techniques enable efficient computation and storage of the spectra and eigen-
functions of Laplace operators. In Chapter 2, we introduced a fast approximation al-
gorithm for the Laplace-Beltrami eigenproblem, which allows for a significantly faster
computation time and a substantial decrease in memory required to store the approxi-
mated eigenfunctions. We presented sparsified eigenfields of the Hodge-Laplacian, in
Chapter 3, which serve as the basis for fast approximation algorithms for the design
and processing of tangential vector, n—vector, and tensor fields. Our novel, efficient
hierarchical solver for Laplace-Beltrami eigenproblems, HSIM, is presented in Chapter
4. We showed that HSIM outperforms state-of-the-art eigensolvers, such as Implicitly
Restarted and shift-and-invert Lanczos methods, particularly when a large number of
eigenpairs of a complex mesh model are sought.

In summary, we believe that reducing the computation burden of eigenproblems is
an essential step for the widespread adoption of spectral methods in geometry process-
ing. We observed that approximate eigenfunctions are sufficient for many spectral ge-
ometry applications, and therefore advocate their use when applicable. We also learned
that the sparsification of eigenvectors and approximation of eigenfunctions using the
subspace method can lower the storage requirements of spectral geometry processing
methods. Moreover, the approximate eigenfunctions provide a good initialization for
the hierarchical iterative solver, reducing the required number of iterations significantly.

129

130 5. CONCLUSION

5.1. LIMITATION AND FUTURE WORK

We limited our scope to focus on triangular mesh representations of surfaces. Extend-
ing our approaches to other polygonal mesh representations is an interesting direction,
provided that a Laplace operator is readily available. We also think that generalizing the
methods to point clouds is an appealing direction for future research, since the use of
point cloud is increasing, particularly in spectral and geometric deep learning.

Important elements of our methods are constructions of subspaces and hierarchies
of nested spaces, which are ingredients for model order reduction and multigrid ap-
proaches, respectively. Unfortunately, these steps take a considerable amount of time.
Further research into more efficient constructions of subspaces and hierarchies is an in-
teresting research direction.

With the increased availability of 3D data, robustness is a challenging problem in
solving the eigenproblems in a large collection of data, such as the Thingy10K dataset’,
in which no guarantee is provided on manifoldness, quality of the triangulation, and reg-
ularity. Moreover, in the context of deep learning, online computation of the eigenfunc-
tions is preferable over storing them, due to memory restriction. Storing a considerable
number of eigenfunctions for all 3D models in the dataset requires gigantic memory. Un-
less one is willing to store and to access them offline, on the disks, in which the retrieval
is costly. As a future research direction, we consider constructing a discrete Laplace op-
erator that can robustly handle such representations and designing a robust eigensolver
for the operator. Another challenge relates to the increasing complexity of 3D geometric
models. For example, (reconstructed) models in the Tanks and Temples dataset® have
several million vertices. Devising efficient algorithms for extremely large models is an
interesting avenue for research in spectral geometry processing. To do so, we envision
a set of techniques using out-of-core computations or a divide-and-conquer approach
where the domain is divided in patches for efficient computation.

In terms of applications where accuracy is required, one has to, unfortunately, accept
the costly computation of the eigenpairs. On contrary, one may opt for fast approxima-
tion of eigenvalues and the corresponding eigenfunctions when accuracy is not the main
concern. An example is spectral surface filtering, in which the filtering function is gen-
erally smooth. Hence one might not need to compute every eigenfunction accurately.
This is the case in our fast approximation algorithm. The approximated eigenfunctions
are linear combinations of the reference eigenfunctions with a similar eigenvalue. It is
therefore interesting to identify which applications need accuracy and for which tasks
approximations of the spectra and eigenfunctions are sufficient. For a large mesh, com-
puting a considerable number of eigenfunctions is generally very costly, and therefore
fast approximation could be preferable. Regarding the trade-off of accuracy for speed,
our fast approximation algorithms (Chapter 2 and 3) do not provide the users with con-
trol over the accuracy of the resulting sparsified eigenbasis. This remains as another
direction for future work, including a guaranteed error bound.

Lhttps://ten-thousand-models.appspot.com/
2https:/ /www.tanksandtemples.org/

ACKNOWLEDGEMENTS

Alongjourney, such as pursuing a doctoral study, is not possible without a great support-
ing system. This thesis represents not only my academic journey at Delft University of
Technology (TU Delft) but also lessons that I learned along the way from colleagues and
friends that I met during the course of my doctoral study. For that, I am truly indebted
to them.

I would like to start by expressing my sincere gratitude to my academic supervisor,
Dr. Klaus Hildebrandt, for guiding me to learn so much about various interesting top-
ics in geometry processing during my 4.5-year stay at TU Delft. Your supervisory and
guidance skills are fantastic. I thank you for making the time to meet and discuss our
research progress almost every week. I consider myself super lucky to be one of your
doctoral students. I also have learned a lot from your great dedication toward research
and education, and balancing them with endless love to your family. For my promotor,
Prof. Elmar Eisemann, I thank you for providing me such a great opportunity to be part
of the Computer Graphics and Visualization (CGV) group and to strive together along
with excellent researchers at the group that you lead. Your deep and broad knowledge
in computer graphics, excellent leadership, great communication skills, and exceptional
teaching finesse are always inspiring.

My sincere thanks to faculty members of the CGV group, Prof. Anna Vilanova, Assoc.
Prof. Rafael Bidarra, Dr. Ricardo Marroquim, Dr. Thomas Ho6llt, Dr. Michael Weinmann,
and Dr. Petr Kellnhofer. It is such a pleasure to learn and to interact with all of you during
the course of my Ph.D. The discussions that we all have during the VisuLunch have been
very crucial in the development of my knowledge in computer graphics.

I'would like to thank my co-authors, Christopher Brandt and Ruben Wiersma. Christo-
pher has been super helpful in helping me with both research and personal matters at
the start of my study. He is such an inspiring researcher with a deep conceptual under-
standing and technical skills. I thank you for all the discussions on vector fields data
processing, simulation, and research in general. I hope all the best for you, Lara, and
lovely little Filine. From the start, Ruben has shown what a fantastic doctoral student
he is. It is my honor to work with you on the geometric deep learning project and on
being teaching assistants for the computational simulation course for the architecture
students.

I am extremely indebted to Markus Billeter and Leo Scandolo. Markus has been my
way out whenever I have questions about computer programming. His excellence in
efficient programming is one of a kind. Leo, together with Jerry, has been showcasing
an amazing job in being the motor of the group activities at CGV and is super helpful to
everyone. I thank you for your assistance in providing nice rendering for my works and
in helping me with a variety of technical questions that I have.

To postdoctoral researchers in CGV (Tim Balint, Pablo Bauszat, Thomas Kroes, Mar-
tin Skrodzki, Pierre Ambrosini, Mark Winter, and Amal Parakkat), please accept my deep-

131

132 5. CONCLUSION

est thanks for the interaction that we had in the CGV group. It is always nice to be sur-
rounded by distinguished researchers in the office. For that, I thank Baran, Annemieke,
Niels, (late) Leo Torok, and Mathijs. To Jerry, Faizan, Mijael, Nicolas, Yang, Xuejiao, Mar-
cos, Peiteng, Mark, Tom, Alex, Tim (Kol), Nicola, Jingtang, Changgong, Victor, Pedro,
Rafael, Qiaomu, Ali, and Chaoran, thank you very much for all the fun that we have at
CGV. You all have been positively influential for the completion of my doctoral degree.
Thank you to the postdocs and PhD colleagues who helped me with the proofreading
and translation of my dissertation: Annemieke, Ruben, Mark, Jerry, Baran, and Fabrizio.

My special thanks go to Ruud and Bart, who consistently support our research by
providing exceptional helps with all technical problems that we encounter: from fixing
our NetID issue, providing an awesome microphone for Eurographics video recording, to
helping out in bringing my PC and monitors to my place. You guys are the hidden super
heroes of our CGV group. On this opportunity, I would like to also express my sincere
gratitude to the secretariat team whose support has been immensely important to my
research and study. Thank you Lauretta, Marloes, and Sandra for all your support with
all administrative works without which our research and study would not be running
well.

Many thanks to the Indonesian Endowment Fund for Education (LPDP) for giving
me the opportunity to pursue my dream of becoming a Ph.D. in one of the finest insti-
tutions in Europe. I truly appreciate the confidence that you showed in me by providing
funding for my studies and research at TU Delft. I would like to thank faculty members
and academic staff at the Department of Electrical and Information Engineering, Uni-
versitas Gadjah Mada (UGM) for their continuous support and motivation, particularly
Pak Sardjiya, Pak Hanung, Pak Teguh Bharata Adji, and Pak Lesnanto. I cannot wait to re-
join the department for a fruitful collaboration in research and teaching with the faculty
members of the department.

I am very grateful to be surrounded by awesome friends that have kept me motivated
in completing my Ph.D. journey at TU Delft. I highly appreciate the friendship from fel-
low Indonesian doctoral students in Delft, both at IHE Delft and TU Delft. I hope you
guys can have more frequent Ph.D. gatherings when the pandemic is over. To my friends
at KMD Delft and FORKOM-NL, I really appreciate the time and effort that you all spent
together to help and to cherish the community. Special thanks to Pak Aries, Mas Agung,
Kang Mamin, Mas Ando, and Mas Sebri for the inspiration, guidance, and teamwork
at KMD. To the board member of KMD 2019/2020: Aldy, Andya, Angka, Ardiana, Arry,
Asmita, Bramka, Firas, Indra, Krisna, Mikhta, Retna, Sindu, and Sulton, thank you very
much for the time that you spent growing our community. My highest respect and ad-
miration to Pak Eko, Kang Rihan, Pak Raymon, Mas Arianto, Mas Verdy, Mas Fajar, Kang
Juris, Mas Ega, Mas Pandu, Mas Dicko, Mas Yasir, Mas Yasri, and Kang Yudi at FORKOM-
NL that have given so much to Indonesian community in the Netherlands. It has been
a lot of pleasure to be the neighbor of Mas Wicak and Mbak Desi, Mas Aga and Mbak
Kitty, Mas Irfan and Mbak Liza, Mas Sebri and Mbak Siska, Mas Mikhta and Mbak Rara,
and Fidllan and Devi. Thank you so much for your kindness during our stay in Delft. My
thanks also go to PPI Delft for always organizing cool activities for Indonesian students
in Delft and helping us when we need it. Thank you Shiddiq, Ryan, Agung, Sulton, Firdo,
and the board members of PPI Delft.

5.1. LIMITATION AND FUTURE WORK 133

I'would like to dedicate the last paragraph to the most important supporting system
during my doctoral study. To my wife, Alfina Dewi, I cannot possibly thank you enough
for the unconditional support that you give, particularly when I am down and need an
extra push at my research and study. Your dosirak for my lunch at the office are the best,
representing how magnificent your support to me is. This Ph.D. is also yours! Aziz and
Ziza, when you grow up and can read this, ayah wants to thank the two of you for always
bringing up extra energy and smiles every day. You two are amazing and I am super
lucky to be your father. To my father (Pak Turki), my mother (Bu Ruminah), my brother
(Irul), and my sister (Nisa), thank you very much for all of the prayers and good wishes
for me. Thank you to my father and mother-in-law (Pak Suprihadi dan Bu Dewi) for ev-
ery prayer and your guidance. We cannot wait to see you all once we return to Indonesia.

Alhamdulillah.

Delft, 3 Feb 2022.

Ahmad Nasikun

08-01-1988

EDUCATION

2007-2012

2013-2015

CURRICULUM VITAE

Ahmad NASIKUN

Born in Jepara, Indonesia.

Bachelor of Electrical Engineering

Universitas Gadjah Mada (UGM), Indonesia

(with an exchange program at Daejeon University in 2009)
Bachelor Simulation of UAVs Autonomously Approaching Cer-
project: tain Target Using Dubins Algorithm

Supervisor: Assoc. Prof. Teguh Bharata Adji

Master of Electrical Engineering and Computer Science
Seoul National University (SNU), South Korea

Thesis: 3D Printing of Deformable Objects
Promotor: Prof. Kim Myung-Soo

PROFESSIONAL EXPERIENCE

02.2012-08.2012

10.2015-06.2016

07.2017-now

Assistant to Public Relations division
Department of Electrical Engineering, Universitas Gadjah Mada

Research assistant
Department of Electrical Engineering, Universitas Gadjah Mada

Faculty member

Department of Electrical and Information Engineering
Universitas Gadjah Mada

135

136

CURRICULUM VITZAE

AWARDS AND SCHOLARSHIP

2010

2011

2012

2012-2015

2017-2022

First Winner of Mahasiswa Berprestasi
(the Most Outstanding Students Award)
Universitas Gadjah Mada

Best Paper at WCOMLIS 2011
World Congress of Muslim Librarians and Scientists
at International Islamic University Malaysia (ITUM)

Best Graduate of Dept. of Electrical Engineering
and Information Technology
with GPA 3.92/4.00

Recipient of KGSP (Korean Government Scholarship Program)
for Korean Language at Keimyung University
and Master Degree at Seoul National University (SNU) South Korea

Recipient of LPDP Scholarship
Indonesia Endowment Fund for Education
for doctoral program at Delft University of Technology

ACADEMIC ACTIVITIES

2015-2017

Since 2015

Since 2015

Since 09.2020

07.2021

Organizing Comittee of CITEE and ICITEE
(International) Conference on Information Technology
and Electrical Engineering

KMTIL Thailand and DTETI UGM

Reviewer of JNTETI

National Journal for Electrical Engineering and Information Technology
Department of Electrical and Information Engineering

Universitas Gadjah Mada

Reviewer of ICITEE

International Conference on Information Technology
and Electrical Engineering

KMTIL Thailand and DTETI UGM

Reviewer of IEEE Transactions on Signal Processing
Reviewer for ISITIA ITS

International Seminar of Intelligent Technology and Its Applications
Institut Teknologi Sepuluh November (ITS), Surabaya

LIST OF PUBLICATIONS

3. Nasikun, A. and Hildebrandt, K. (2022, April). The Hierarchical Subspace Iteration Method
for Laplace-Beltrami Eigenproblems. In ACM Transactions on Graphics (Vol. 41, No.2, pp.
1-14).

2. Nasikun, A., Brandt, C., and Hildebrandt, K. (2020, May). Locally supported tangential vec-
tor, n-vector, and tensor fields. In Computer Graphics Forum (Vol. 39, No. 2, pp. 203-217).

1. Nasikun, A., Brandt, C., and Hildebrandt, K., (2018, August). Fast approximation of Laplace-
Beltrami eigenproblems. In Computer Graphics Forum (Vol. 37, No. 5, pp. 121-134).

137

https://doi.org/10.1145/3495208
https://doi.org/10.1145/3495208
https://onlinelibrary.wiley.com/doi/full/10.1111/cgf.13924
https://onlinelibrary.wiley.com/doi/full/10.1111/cgf.13496

	Summary
	Samenvatting
	Introduction
	Fast Approximation of Laplace–Beltrami Eigenproblems
	Introduction
	Related Work
	Background: Laplace–Beltrami Eigenproblem
	Fast Approximation Algorithm
	Experiments
	Applications
	Conclusions

	Appendix
	Choice of basis functions
	Eigenfunctions and edge flips
	Comparison to mesh coarsening

	Locally Supported Tangential Vector, n-Vector, and Tensor Fields
	Introduction
	Related work
	Laplace operators
	Spaces of locally supported fields
	Subspace methods
	Experiments
	Comparisons
	Applications
	Conclusion

	Appendix
	Construction of the tensor field Laplacian

	The Hierarchical Subspace Iteration Method for Laplace–Beltrami Eigenproblems
	Introduction
	Related Work
	Background
	Laplace–Beltrami eigenproblem
	Subspace iteration method (SIM)

	Hierarchical Subspace Iteration Method
	Hierarchy construction
	Hierarchical Solver

	Experiments
	Comparisons
	Conclusion

	Appendix
	Justification of Design Choices
	Distance computation
	Sampling method
	Convergence tolerance

	Comparisons
	Lanczos and preconditioned eigensolver
	Fast Approximation

	Generalization
	Hamiltonian operators

	Applications
	Shape Signatures
	Projection

	Conclusion
	Limitation and future work

	Acknowledgements
	Curriculum Vitæ
	List of Publications

