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Abstract—A soft-decision decoder for an error-correcting block code of
Hamming distance is said to achieve bounded-distance (BD) decoding
if its error-correction radius is equal to that of a complete Euclidean
distance decoder. The Chase decoding algorithms are reliability-based
algorithms achieving BD decoding. The least complex version of the
original Chase algorithms (“Chase-3”) uses ( ) trials of a conventional
binary decoder. In this correspondence, we propose classes of Chase-like
BD decoding algorithms of lower complexity than the original Chase-3
algorithm. In particular, the least complex members of these classes
require only ( ) trials.

Index Terms—Asymptotic optimality, binary linear block codes,
bounded-distance (BD) decoding, multitrial decoding, reliability informa-
tion, soft-decision decoding.

I. INTRODUCTION

Over the years, many soft-decision decoding techniques have
been proposed for binary linear error-correcting block codes [5].
Although a maximum-likelihood (ML) decoding algorithm minimizes
the decoding error probability, other suboptimum algorithms are still
of interest as well, due to the (prohibitively) high computational
complexity of ML decoding for long codes. Of particular interest
are the ones which achieve bounded-distance (BD) decoding, i.e.,
for which the error-correction radius is the same as for a complete
Euclidean distance decoder. On certain channels, such as the additive
white Gaussian noise (AWGN) channel, this property guarantees that
an algorithm is asymptotically optimal, i.e., it has the same error
performance as ML decoding at high signal-to-noise ratios (SNRs).

Various classes of suboptimum algorithms provide an efficient
tradeoff between error performance and decoding complexity. One
such class is formed by the Chase algorithms [3], running a number of
trials of a conventional algebraic binary decoder and thus generating
a list of candidate codewords, of which the most likely one is chosen
as the final decoding result. In each trial, some of the least reliable
symbols are inverted before the actual decoding starts. The inversion
patterns, also called test patterns, are taken from a (fixed) test set.
Although the Chase decoding approach is rather old, such decoders
are still highly relevant. They can not only be used as stand-alone
decoders, but also as constituent components in modern techniques
like iterative decoding of product codes (“block turbo codes”) [8], [1].

All three methods proposed in [3] achieve BD decoding when
applied to any binary linear block code C of length n, dimension k,
and Hamming distance d. The numbers of trials are n

bd=2c
, 2bd=2c,

and bd=2c + 1, respectively. Note that for the last one, known as
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“Chase-3,” the number of trials grows only linearly with the Hamming
distance d. Limited-trial Chase-like decoding algorithms, not neces-
sarily achieving BD decoding, are proposed in [2]. In particular, [2]
provides a d(d+ 2)=4e-trial BD decoding method. In [9], it is shown
that the number of trials can be further reduced to dd=6e+1while pre-
serving the BD decoding property. Hence, when considering the ratio
between the number of trials and the Hamming distance d when d is
approaching infinity, it follows that this ratio can be reduced from 1=2
(Chase-3) [3] to 1=4 [2] to 1=6 [9]. In this correspondence, we present
classes of limited-trial Chase-like BD decoding algorithms which
show that this ratio can be made arbitrarily small. Most strikingly, it
follows that BD decoding is possible using only O(d2=3) trials.
The rest of this correspondence is organized as follows. Preliminary

matters are given in Section II. Next, limited-trial Chase-like algorithms
and their properties are presented in Section III. Finally, the results
are discussed in Section IV.

II. PRELIMINARIES

We assume the following setting. A sequence of k information
bits is encoded into a codeword xxx = (x1; x2; . . . ; xn) according to
a binary linear code C. Binary phase-shift keying (BPSK) modula-
tion is used, i.e., a binary codeword xxx is represented by the vector
��� = (�1; �2; . . . ; �n) through the usual componentwise mapping
from f0; 1g to f�1g. Let ��� = (�1; �2; . . . ; �n) denote the received
sequence in n-dimensional Euclidean space, and yyy = (y1; y2; . . . ; yn)
denote the binary hard-decision vector for which each yi follows
merely from the sign of �i. We define the binary error vector by
zzz = xxx + yyy.

A complete channel measurement decoder generates for any re-
ceived ��� a codeword xxx minimizing the analog weight of zzz = xxx + yyy,
defined by

w���(zzz) =

n

i=1

�izi (1)

where the summation is over the real numbers, and ��� =
(�1; �2; . . . ; �n) contains the channel measurement information,
which is of the format

�i = j!i�ij (2)

with the !i’s being positive weight factors. When choosing !i = 1 for
all i, then minimizing the analog weight is equivalent to minimizing
Euclidean distance. For certain channels, such as the AWGN channel,
this is also equivalent to ML decoding. For other channels, fixing the
weights !i may not be the best thing to do. For example, for the co-
herent Rayleigh fading channel with channel state information (CSI),
!i should be set as the fading coefficient [3].
A complete Euclidean distance or channel measurement decoder

may be far too complex for practical implementation. The idea
behind the Chase decoding approach is to use a binary decoder
in a multitrial fashion, in combination with the reliability vector
��� = (�1; �2; . . . ; �n), to obtain a relatively small set of possible
binary error patterns, of which one of minimum analog weight is the
final decoding result. The algorithms have been designed to work
with a conventional (algebraic) binary decoder, which determines
the codeword which differs in the least number of places from the
decoder’s input sequence, provided that this number is not greater than
b(d � 1)=2c. The set of error patterns is obtained by the following
procedure. A binary test pattern ttt = (t1; t2; . . . ; tn) from a test set
T of size l is added to the received vector yyy. The resulting vector
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yyy0 = yyy+ ttt is fed into the binary decoder, giving either an error pattern
zzz0 or a decoding failure. In case an error pattern has been found, the
error pattern zzzttt = zzz0+ ttt relative to yyy is calculated. After this has been
done for all test patterns ttt from T , a zzzttt with minimum analog weight
is determined and added to yyy to obtain the estimate for the transmitted
codeword. In case all l trials result in decoding failures, the decoder
output is the received vector yyy itself. In [3] Chase has proposed three
algorithms, i.e., three test sets T . For Algorithm 1 the set T consists
of all binary vectors of length n which contain exactly bd=2c ones.
For Algorithm 2 the set T consists of all binary vectors of length n
which have the n � bd=2c most reliable positions equal to zero. For
Algorithm 3 the set T consists of all binary vectors of length n which
contain ones in the i least reliable positions and zeros elsewhere,
where i = 0; 2; 4; . . . ; d � 1 if d is odd and i = 0; 1; 3; 5; . . . ; d � 1
if d is even.

The error-correction radius of a soft-decision decoding algorithmA
is defined as the radius of the largest open sphere in Euclidean space
centered at a codeword ���, such that all vectors in the spheres are de-
coded to ��� by A. Algorithm A is said to achieve BD decoding if the
squared error correction radius� equals the code’s Hamming distance
d. In case of an AWGN channel, ��� is the sum of the transmitted se-
quence ��� and the noise sequence ��� = (�1; �2; . . . ; �n), where the
�is are independent zero-mean Gaussian random variables. On such
a channel, the asymptotic loss of algorithm A compared to ML de-
coding is 10 log10(d=�) dB. Hence, any BD decoding algorithm A
has an asymptotic loss of 0 dB, and is thus asymptotically optimal, i.e.,
logPML= logPA ! 1 as the SNR approaches infinity, where PML
denotes the decoding error probability for an ML decoding algorithm,
and PA denotes the decoding error probability of the suboptimum de-
coding algorithm A.

III. LIMITED-TRIAL CHASE-LIKE DECODING

All three Chase algorithms achieve BD decoding, and give essen-
tially the same performance as ML decoding at high SNR in case of
binary antipodal signaling and transmission over the AWGN or co-
herent Rayleigh fading channel [3]. In this section, we propose Chase-
like decoding algorithms of lower complexity, but still achieving BD
decoding. Before presenting our algorithms, we first introduce some
notations. For i = 0; 1; . . . ; n, let ttti denote the test pattern of length n
which contains ones in the i most unreliable positions and zeros else-
where. Let aaaj denote the concatenation of j times the vector aaa, e.g.,
(01)302 = 01010100. For convenience, we assume without loss of
generality throughout the rest of this correspondence that the ordering
of the received symbols is such that

�i � �i+1 (3)

for i = 1; . . .n � 1. Under this assumption

ttti = 0n�i1i (4)

for i = 0; 1; . . . ; n. Note that using this notation, the Chase-3 test set
reads fttt0; ttt2; ttt4; . . . ; tttd�1g if d is odd, and fttt0; ttt1; ttt3; . . . ; tttd�1g if
d is even. Obviously, the original Chase-3 inversion patterns were in-
spired by Forney’s Generalized Minimum Distance (GMD) decoding
algorithm [4]. In the GMD decoding approach, which is valid for both
binary and nonbinary linear codes, unreliable symbols are erased in the
various trials. It is most effective to choose the parity of the number of
erasures in a trial complementary to the parity of the code’s Hamming
distance. However, [2] shows that this is not necessarily the case when
using inversions instead of erasures, i.e., when applying the Chase de-
coding approach.

For codes of even Hamming distance d, we allow a small improve-
ment in the binary decoder, like in [6]. A binary decoder for a code of

even Hamming distance d can be designed in such a way that any pat-
tern of up to d=2�1 errors is corrected, while d=2 errors are corrected
if one of these errors occurs in a predetermined position, for which we
choose the most unreliable. Throughout the rest of this correspondence
we assume the binary decoder is implemented using this feature, as it
allows to unify the cases d even and d odd.
Now we are ready to present two new classes of Chase-like BD de-

coding algorithms for binary linear block codes. As in the Chase-3 [3]
and Arico-Weber [2] algorithms, all test patterns are of the ttti format.
The two classes use test sets T 1

d;m and T 2
d;m, respectively, where d is the

Hamming distance of the code andm is any integer satisfyingm � 3
and m2 � m + 1 � d. The test sets in Class 1 have a simple struc-
ture and suffice to demonstrate our main result, i.e., they show that BD
decoding is possible in O(d2=3) trials. The test sets in Class 2 are sub-
sets of the corresponding test sets from Class 1, i.e., T 2

d;m � T 1
d;m.

Hence, Class 2 realizes further complexity reductions (but not below
O(d2=3)).

A. Class 1

The test sets in Class 1 are defined by

T 1
d;m =

j=0

ftttd�2jg

[
j=1

ftttd�m +3m�2mjg [ fttt0g: (5)

For m = 3 we obtain the test set presented in [9].

Theorem 1: For any binary linear code of length n and Hamming
distance d < n, and any integerm such thatm�3 andm2�m+1�d,
the Chase-like decoder with test set T 1

d;m and reliability values set as
�i= j�ij for all i achieves BD decoding.

This result follows by applying the method for evaluating the error-
correction radius of reliability-based soft-decision decoding algorithms
proposed in [5]. The main steps of the procedure are given in the Ap-
pendix .
Note from (5) that

jT 1
d;mj = 2 +

m2 � 3m

2
+

d�m2 +m

2m
: (6)

Consequently, for any m � 3

lim
d!1

jT 1
d;mj

d
=

1

2m
(7)

i.e., the ratio between the number of trials and the Hamming distance d
is 1=(2m) in case d is approaching infinity. Hence, this ratio, which is
1=2 for the Chase-3 algorithm [3] and 1=4 for the method presented in
[2], can be made arbitrarily small while maintaining the BD decoding
property.
To find the smallest test set among the T 1

d;m in case d is finite, the
expression from (6) should be minimized over all possible m. For ex-
ample, we consider the case d = 95 in Table I. Note that m = 4 and
m = 5 give the smallest test sets. Hence, BD decoding of a code of
Hamming distance 95 can be achieved by Chase-like decoding in 15
trials only. For comparison, also the considerably larger test sets from
[3] (Chase-3, of size 48) and [2] (of size 25) have been included in
Table I.
In general, it follows from (6) that

jT 1
d;mj =

d

2m
+

m2

2
+O(m): (8)
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TABLE I
TEST SETS IN CASE d = 95

Since d=(2m) +m2=2 achieves a minimum value of

3� 2�5=3 � d2=3 � 0:94� d2=3 (9)

form = (d=2)1=3, we have the following important result.

Corollary 1: Bounded-distance decoding can be achieved by a
Chase-like decoder using O(d2=3) trials.

B. Class 2

It may be possible to remove some of the test patterns from the
Class 1 test set T 1

d;m, while maintaining the BD decoding property. The
removal strategy is inspired by the iterative process from [5] for com-
putation of the error-correction radius, as explained in the Appendix .
The resulting test sets in Class 2 are given by

T 2

d;m = ftttdg [ ([h2I [I [I fttthg)[ fttt0g (10)

where (see (11)–(12) at the bottom of the page) and

I3 =
j=1

d�m2 + 3m� 2jm : (13)

Theorem 2: For any binary linear code of length n and Hamming
distance d < n, and any integerm such thatm � 3 andm2�m+1 �
d, the Chase-like decoder with test set T 2

d;m and reliability values set
as �i = j�ij for all i achieves BD decoding.

Again, the proof is provided in the Appendix.
Note from (10)–(13) that

jT 2

d;mj =1 +

b c�1

i=1

m

2
� i +

m

2
� 2

+
d�m2 +m

2m
+ 1

=

d e�1

i=1

i�
m

2
�

m

2
+

m

2

+
d�m2 +m

2m

=
1

2

m

2

2

�
1

2

m

2
+

m

2
+

d�m2 +m

2m
: (14)

I1 =

b c�1

i=1

d e�1�i

j=1

d� 2(i� 1)
m

2
� 2j d� 2i

m

2
(11)

I2 =

d e�2

j=1

d� 2
m

2

m

2
� 1 � 2j

m

2
(12)
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TABLE II
OVERVIEW OF LIMITED-TRIAL CHASE-LIKE ALGORITHMS ACHIEVING BD DECODING

Consequently, for any m � 3,

lim
d!1

jT 2
d;mj

d
=

1

2m
: (15)

From (7) and (15) we conclude that Class 2 offers no essential com-
plexity reduction with respect to Class 1 in case m is finite and the
Hamming distance d approaches infinity.

However, for finite values of d, Class 2 may offer substantial com-
plexity reductions. Revisiting the d = 95 example, note from Table I
that jT 2

95;mj is minimum for m = 6. Hence, BD decoding of a code
of Hamming distance 95 can be achieved by Chase-like decoding in
jT 2
95;6j = 12 trials only, a reduction of three trials compared to the

smallest Class 1 test set.
In general, it follows from (14) that

jT 2
d;mj =

d

2m
+
m2

8
+O(m): (16)

Since d=(2m) +m2=8 achieves a minimum value of

3� 2�7=3 � d2=3 � 0:60� d2=3 (17)

for m = (2d)1=3, there is a clear reduction in the number of trials in
comparison to Class 1 (see (9)). Still, the minimum number of trials is
O(d2=3) for Class 2 as well.

IV. DISCUSSION

In this correspondence, we have presented Chase-like decoders
which enable BD decoding of binary linear block codes of Ham-
ming distance d in only O(d2=3) trials, whereas the least complex
Chase(-like) algorithms known so far requireO(d) trials. An overview
of limited-trial Chase-like algorithms achieving BD decoding is
provided in Table II. The Class 1 and 2 algorithms proposed in this
correspondence are similar to the Chase-3 algorithm, in the sense
that all test patterns are of the ttti format, i.e., only the i least reliable
received bits are inverted. A first improvement in comparison to the
Chase-3 algorithm, as already proposed in [2], is to choose the parity
of i equal to the parity of d, rather than its complement (with the
possible exception of i = 0). Hence, the proposed test sets are subsets
of Td = [jftttd�2jg [ fttt0g. The next improvement is the deliberate
removal of test patterns from Td, while preserving the BD decoding
property. Several strategies, represented by the resulting test sets T 1

d;m

and T 2
d;m have been given. The smallest of these sets have sizes of

O(d2=3), which shows the claimed result. An interesting research
challenge is to investigate whether or not even less complex Chase-like
BD decoding algorithms do exist.

For the AWGN channel and BPSK signaling, the BD decoding prop-
erty guarantees optimal error performance when the SNR approaches
infinity. The results presented in this correspondence are mostly of the-
oretical importance, as they apply to high SNRs, extremely low error
rates, and large values of d. For practical SNR values the impact is

much smaller. Significant complexity savings are only obtained for
codes with a large minimum Hamming distance. However, for such
codes, the BD decoding criterion does not reflect well the error perfor-
mance at practical error rates [7]. For Chase-like decoders, the number
of test patterns influences the error performance more than the Eu-
clidean error correction radius at practical error rates.

APPENDIX

In this Appendix, we prove Theorems 1 and 2, i.e., we show that
the Chase-like decoders proposed in this correspondence achieve BD
decoding in case we set �i = j�ij for all i. To do so, we apply the
method from [5], which evaluates the error-correction radii of relia-
bility-based soft-decision decoding algorithms. For a Chase-like de-
coding algorithm A, this method can be described as follows.

1. Identify among all binary error vectors zzz the most likely vector
eee such that the transmitted codeword is not generated in any of
the trials of A when eee occurs. In general, the weight w of eee
is minimum among all valid error vectors, and the w ones in
eee are in positions which are as unreliable as possible. For i =
1; 2; . . . ; w, define ai as the number of zeroes directly following
the ith one in eee, i.e., eee = 0s10a 10a � � � 10a , with

s = n� w �

w

i=1

ai:

2. Initially, set h := w, Ni := 2ai, Di := ai + 1, and Ai :=
Ni=Di for i = 1; 2; . . . ; w. DefineAAAINI = (A1; A2; . . . ; Aw).

3. If there exists j, 1 � j � h � 1, such that Aj < Aj+1 and
Ai � Ai+1 for i = 1; 2; . . . ; j � 1, then merge entries j and
j+1 into one new entry, i.e., reseth := h�1,Nj := Nj+Nj+1,
Dj := Dj+Dj+1, Aj := Nj=Dj ,Ni := Ni+1,Di := Di+1,
and Ai := Ai+1 for i = j + 1; j + 2; . . . ; h. Repeat this
until Aj � Aj+1 for all j = 1; 2; . . . ; h � 1. Then, define
AAAFIN = (A1; A2; . . . ; Ah).

4. The squared error-correction radius of Algorithm A is

� = minfd;

h

i=1

((Di �Ni=2)M
2
i + (Ni=2)(2�Mi)

2)g

(18)
where Mi = maxfAi; 1g for all i.

For the algorithms based on the test sets T a
d;m (a = 1; 2) under

consideration in this correspondence, the presence of test pattern ttt0
implies that eee contains at least dd=2e ones in the first n � b positions,
where

b =
0; if d is odd
1; if d is even.

(19)

Furthermore, eee contains at least dd=2e � (i � 1)=2 ones in the first
n� i� b positions, for any odd i � 1 such that ttti+b is in the test set.
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For the case a = 1 (Class 1), it follows from (5) that the error vector
with the minimum number of ones and with these ones in the least
reliable positions, while satisfying the restrictions just mentioned, is

eee = 0n�d�1(10) (10m1m�1) 10v1v�10b (20)

where b is as defined in (19) and

v =
d�m2 + 3m� 2m d�m +m

2m

2
: (21)

Hence,

AAAINI =
2

2

2m

m+ 1

0

1

m�1

vvv (22)

where

vvv =

2v

v+1

0

1

v�1
; if d is odd

4

3
; if d is even and v = 1

2v

v+1

0

1

v�2 2

2
; if d is even and v � 2

(23)

with v as defined in (21). After performing the iterative process, the
final solution is

AAAFIN =
m2 �m

m2 � 2m+ 1

2m

2m
vvv� (24)

where

vvv� =

2v

v+m

0

1

v�1
; if d is odd

2v+2

2v+m
; if d is even andm > v2 � v

2v

v+m

2

v
; if d is even andm � v2 � v

(25)

with v as defined in (21). Since 1 � v � m, it follows that M1 =
m=(m� 1) andMi = 1 for all i � 2, and thus that

� = minfd; ((m2 � 3m+ 2)=2)(m=(m� 1))2

+((m2�m)=2)(2�m=(m�1))2+d+1�(m2�2m+1)g

= minfd; dg = d: (26)

Hence, BD decoding is achieved indeed for Class 1 algorithms.
For the case a = 2 (Class 2), the BD decoding property can be

proved similarly. Actually, the removal of test patterns from T 1
d;m re-

sulting in T 2
d;m has been done in such a way that the iterative evaluation

process leads to a solution which is effectively the same as (24). This
will be illustrated for the case d = 95 andm = 4, for which (20) and
(22) are

eee = 0n�961010(10000111)111001 (27)

and

AAAINI =
2

2

2

2

8

5

0

1

3
11

4

3

0

1
(28)

respectively, leading to the final solution (24) reading

AAAFIN=
2+2+8

2+2+5

0+0+0+8

1+1+1+5

10
0+0+0+4

1+1+1+3

0

1

=
12

9

8

8

10
4

6

0

1
: (29)

Removing the test pattern ttt93 from T 1
95;4 (see Table I), the Class 2

equivalents of (27) and (28) are

eee = 0n�961001(10000111)111001 (30)

and

AAAINI =
4

3

0

1

8

5

0

1

3
11

4

3

0

1
(31)

respectively, leading to the final solution

AAAFIN=
4

3

0+8

1+5

0+0+0+8

1+1+1+5

10
0+0+0+4

1+1+1+3

0

1

=
4

3

8

6

8

8

10
4

6

0

1
: (32)

Since consecutive entries inAAAFIN of equal value may be merged (e.g.,
(4=3)(8=6) may be replaced by (12=9)) without affecting the final
outcome of the evaluation algorithm, (29) and (32) are effectively the
same, both leading to

� = minf95; 3� (4=3)2 + 6� (2=3)2 + 95 + 1� 9g

= minf95; 95g = 95: (33)

In general, it follows from (10) that the Class 2 equivalent of (20)
(i.e., eee) is given by the concatenation of the binary strings

0n�d�1

(10)d e10i+11i; for i = 1; . . . ;
m� 2

2

(10b c1b c)d e

(10m1m�1) and

10v1v�10b (34)

where b and v are as defined in (19) and (21), respectively. The Class 2
equivalent of (22) (i.e., AAAINI) is the concatenation of the strings

2

2

d e 2 + 2i

2 + i

0

1

i

; for i = 1; . . . ;
m� 2

2

2 m

2

m+2

2

0

1

b c d e

and

2m

m+ 1

0

1

m�1

vvv (35)

where vvv is as defined in (23). After application of the iterative evalu-
ation process on (35), the squared error-correction radius � is again
given by (26). Hence, we can conclude that Class 2 algorithms achieve
BD decoding as well.
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A Finite Gilbert–Varshamov Bound for Pure Stabilizer
Quantum Codes

Keqin Feng and Zhi Ma

Abstract—A finite Gilbert–Varshamov (GV) bound for pure stabilizer
(binary and nonbinary) quantum error correcting codes is presented in
analogy to the GV bound for classical codes by using several enumerative
results in finite unitary geometry. From this quantum GV bound we obtain
several new binary quantum codes in a nonconstructive way having better
parameters than the known codes.

Index Terms—Finite fields, finite unitary geometry, quantum codes,
quantum Gilbert–Varshamov (GV) bound.

I. INTRODUCTION

The theory of quantum error-correcting codes has been developed
rapidly in recent years. Many good q-ary quantum codes have been
constructed by using classical error-correcting codes over q or q

with special orthogonal properties. Among these constructive methods,
the following result we used in this paper is effective and typical. Let
n
q be the vector space of dimension n over q with the following

hermitian inner product (; ) defined by

(a; b) =

n

i=1

a
q
i bi 2 q (1)

for a = (a1; . . . ; an), b = (b1; . . . ; bn) 2 n
q . For a q -linear

subspace C of n
q , the dual space of C is defined by

C
? = a 2 n

q j(a; c) = 0 for all c 2 C :
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Lemma 1.1: Suppose that there exists a q -linear subspace C of
n
q with dim C = n�k

2
(so that 2jn� k � 0), and C � C? (i.e.,

C is self-orthogonal). Then there exists a quantum code [[n; k; d]]q
where

d = minfwH(c)jc 2 C
?nCg

and wH(c) is the Hamming weight of c.
This result has been proved in [3] for binary case (q = 2) and gen-

eralized in [1] to the general case (q is a power of prime number). The
quantum codes constructed in this way are called stabilizer quantum
codes. If the minimum distance of C? is d, the quantum code is called
pure. We refer [1], [3], [5] for basic concepts of quantum codes.
There are two bounds which have been established as necessary con-

ditions for quantum codes.

Lemma 1.2 (Quantum Hamming Bound): For any pure stabilizer
quantum code [[n; k; d]]q

q
n�k �

[ ]

i=0

(q2 � 1)i
n

i
:

Proof: See [3] for binary case. This can be easily extended to the
general case.

Lemma 1.3 ([5] Quantum Singleton Bound): For any quantum code
[[n; k; d]]q , n � k + 2d � 2.

In this correspondence we present the following bound which is a
sufficient condition for the existence of pure stabilizer quantum codes
in analogy to the classical Gilbert–Varshamov (GV) bound.

Theorem 1.4: Suppose that n > k � 2, d � 2 and n � k(mod2).
Then there exists a pure stabilizer quantum code [[n; k; d]]q provided
that

qn�k+2 � 1

q2 � 1
>

d�1

i=1

(q2 � 1)i�1
n

i
: (2)

We prove this theorem in Section II. Our proof is similar with the
argument in [4, Theorem 1] for the classical case, but we need some
enumerative results in finite geometry. In Section III, we make some
remarks and, by using Theorem 1.4, present several binary quantum
codes with better parameters than the known codes listed in [2].

II. PROOF OF THEOREM 1.4

Let V = n
q be the vector space of dimension n over q with the

hermitian inner product defined by (1). The unitary group

Un( q ) = fA = (aij) 2 GLn( q ) j AA� = Ing

acts on V where A� = a
q
ji . This action keeps the Hermitian inner

product and has nice transitive properties (see [6, Ch. 5] for the exact
statements on the transitive properties).
Before proving Theorem 1.4 we need two simple enumerative

results.

Lemma 2.1: The number of nonzero self-orthogonal vectors in
n
q (n � 1) is

Nn = (qn � (�1)n)(qn�1� (�1)n�1): (3)

Proof: For each vector x = (x1; . . . ; xn) 2
n
q we know that

x
q+1
i 2 q so that (x; x) = x

q+1
1 + � � � + xq+1n 2 q . On the other
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