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Limited-Trial Chase-Like Algorithms Achieving
Bounded-Distance Decoding

Jos H. Weber, Senior Member, IEEE, and
Marc P. C. Fossorier, Senior Member, IEEE

Abstract—A soft-decision decoder for an error-correcting block code of
Hamming distance d is said to achieve bounded-distance (BD) decoding
if its error-correction radius is equal to that of a complete Euclidean
distance decoder. The Chase decoding algorithms are reliability-based
algorithms achieving BD decoding. The least complex version of the
original Chase algorithms (“Chase-3") uses O(d) trials of a conventional
binary decoder. In this correspondence, we propose classes of Chase-like
BD decoding algorithms of lower complexity than the original Chase-3
algorithm. In particular, the least complex members of these classes
require only O(d?>/®) trials.

Index Terms—Asymptotic optimality, binary linear block codes,
bounded-distance (BD) decoding, multitrial decoding, reliability informa-
tion, soft-decision decoding.

1. INTRODUCTION

Over the years, many soft-decision decoding techniques have
been proposed for binary linear error-correcting block codes [5].
Although a maximum-likelihood (ML) decoding algorithm minimizes
the decoding error probability, other suboptimum algorithms are still
of interest as well, due to the (prohibitively) high computational
complexity of ML decoding for long codes. Of particular interest
are the ones which achieve bounded-distance (BD) decoding, i.e.,
for which the error-correction radius is the same as for a complete
Euclidean distance decoder. On certain channels, such as the additive
white Gaussian noise (AWGN) channel, this property guarantees that
an algorithm is asymptotically optimal, i.e., it has the same error
performance as ML decoding at high signal-to-noise ratios (SNRs).

Various classes of suboptimum algorithms provide an efficient
tradeoff between error performance and decoding complexity. One
such class is formed by the Chase algorithms [3], running a number of
trials of a conventional algebraic binary decoder and thus generating
a list of candidate codewords, of which the most likely one is chosen
as the final decoding result. In each trial, some of the least reliable
symbols are inverted before the actual decoding starts. The inversion
patterns, also called test patterns, are taken from a (fixed) test set.
Although the Chase decoding approach is rather old, such decoders
are still highly relevant. They can not only be used as stand-alone
decoders, but also as constituent components in modern techniques
like iterative decoding of product codes (“block turbo codes”) [8], [1].

All three methods proposed in [3] achieve BD decoding when
applied to any binary linear block code C of length n, dimension £,
and Hamming distance d. The numbers of trials are (|}, ), 2ld/2]
and |d/2] + 1, respectively. Note that for the last one, known as
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“Chase-3,” the number of trials grows only linearly with the Hamming
distance d. Limited-trial Chase-like decoding algorithms, not neces-
sarily achieving BD decoding, are proposed in [2]. In particular, [2]
provides a [(d + 2)/4]-trial BD decoding method. In [9], it is shown
that the number of trials can be further reduced to [d/6] + 1 while pre-
serving the BD decoding property. Hence, when considering the ratio
between the number of trials and the Hamming distance d when d is
approaching infinity, it follows that this ratio can be reduced from 1/2
(Chase-3) [3]to 1/4 [2] to 1/6 [9]. In this correspondence, we present
classes of limited-trial Chase-like BD decoding algorithms which
show that this ratio can be made arbitrarily small. Most strikingly, it
follows that BD decoding is possible using only O( a2/ %) trials.

The rest of this correspondence is organized as follows. Preliminary
matters are given in Section II. Next, limited-trial Chase-like algorithms
and their properties are presented in Section III. Finally, the results
are discussed in Section IV.

II. PRELIMINARIES

We assume the following setting. A sequence of & information
bits is encoded into a codeword # = (x1,%2,...,2,) according to
a binary linear code C. Binary phase-shift keying (BPSK) modula-
tion is used, i.e., a binary codeword x is represented by the vector
X = (X1,X2s.-.5Xn) through the usual componentwise mapping
from {0,1} to {£1}. Let p = (p1,p2,-..,pn) denote the received
sequence in n-dimensional Euclidean space, and ¥y = (y1, Y2, ..., Yn)
denote the binary hard-decision vector for which each y; follows
merely from the sign of p;. We define the binary error vector by
z2=x+y.

A complete channel measurement decoder generates for any re-
ceived p a codeword 2 minimizing the analog weight of z = 2 4+ ¥,
defined by

wa(2) = Zailz (1
=1

where the summation is over the real numbers, and a =
(a1, a2,...,q,) contains the channel measurement information,
which is of the format

a; = |wips] 2

with the w;’s being positive weight factors. When choosing w; = 1 for
all ¢, then minimizing the analog weight is equivalent to minimizing
Euclidean distance. For certain channels, such as the AWGN channel,
this is also equivalent to ML decoding. For other channels, fixing the
weights w; may not be the best thing to do. For example, for the co-
herent Rayleigh fading channel with channel state information (CSI),
w; should be set as the fading coefficient [3].

A complete Euclidean distance or channel measurement decoder
may be far too complex for practical implementation. The idea
behind the Chase decoding approach is to use a binary decoder
in a multitrial fashion, in combination with the reliability vector
a = (ar,a9,...,a5), to obtain a relatively small set of possible
binary error patterns, of which one of minimum analog weight is the
final decoding result. The algorithms have been designed to work
with a conventional (algebraic) binary decoder, which determines
the codeword which differs in the least number of places from the
decoder’s input sequence, provided that this number is not greater than
[(d — 1)/2]. The set of error patterns is obtained by the following
procedure. A binary test pattern t = (t1,t2,...,t,) from a test set
T of size ! is added to the received vector y. The resulting vector

0018-9448/04$20.00 © 2004 IEEE



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 12, DECEMBER 2004

¥ = y + tis fed into the binary decoder, giving either an error pattern
2" or a decoding failure. In case an error pattern has been found, the
error pattern z¢ = 2’ + ¢ relative to y is calculated. After this has been
done for all test patterns t from 7, a z; with minimum analog weight
is determined and added to ¥ to obtain the estimate for the transmitted
codeword. In case all [ trials result in decoding failures, the decoder
output is the received vector ¥ itself. In [3] Chase has proposed three
algorithms, i.e., three test sets 7. For Algorithm 1 the set 7 consists
of all binary vectors of length n which contain exactly [d/2] ones.
For Algorithm 2 the set 7 consists of all binary vectors of length n
which have the n — |d/2| most reliable positions equal to zero. For
Algorithm 3 the set 7 consists of all binary vectors of length n which
contain ones in the ¢ least reliable positions and zeros elsewhere,
where i = 0,2,4,...,d —lifdisoddandi = 0,1,3,5,...,d — 1
if d is even.

The error-correction radius of a soft-decision decoding algorithm A
is defined as the radius of the largest open sphere in Euclidean space
centered at a codeword x, such that all vectors in the spheres are de-
coded to x by .A. Algorithm A is said to achieve BD decoding if the
squared error correction radius A equals the code’s Hamming distance
d. In case of an AWGN channel, p is the sum of the transmitted se-
quence x and the noise sequence ¥ = (v1,v2,...,Vy), where the
v;s are independent zero-mean Gaussian random variables. On such
a channel, the asymptotic loss of algorithm A compared to ML de-
coding is 10log,,(d/A) dB. Hence, any BD decoding algorithm A
has an asymptotic loss of 0 dB, and is thus asymptotically optimal, i.e.,
log Pur/log P4 — 1 as the SNR approaches infinity, where Pur,
denotes the decoding error probability for an ML decoding algorithm,
and P4 denotes the decoding error probability of the suboptimum de-
coding algorithm \A.

III. LiMITED-TRIAL CHASE-LIKE DECODING

All three Chase algorithms achieve BD decoding, and give essen-
tially the same performance as ML decoding at high SNR in case of
binary antipodal signaling and transmission over the AWGN or co-
herent Rayleigh fading channel [3]. In this section, we propose Chase-
like decoding algorithms of lower complexity, but still achieving BD
decoding. Before presenting our algorithms, we first introduce some
notations. Fori = 0, 1,...,n, lett; denote the test pattern of length n
which contains ones in the ¢ most unreliable positions and zeros else-
where. Let @’ denote the concatenation of Jj times the vector a, e.g.,
(01)30* = 01010100. For convenience, we assume without loss of
generality throughout the rest of this correspondence that the ordering
of the received symbols is such that

o > g 3)
fori = 1,...n — 1. Under this assumption

t = 0" i1 @)
fori = 0,1,...,n. Note that using this notation, the Chase-3 test set

reads {to,t2,t4,...,tg_1} if d is odd, and {to,t1,ts, ..., tq_1} if
d is even. Obviously, the original Chase-3 inversion patterns were in-
spired by Forney’s Generalized Minimum Distance (GMD) decoding
algorithm [4]. In the GMD decoding approach, which is valid for both
binary and nonbinary linear codes, unreliable symbols are erased in the
various trials. It is most effective to choose the parity of the number of
erasures in a trial complementary to the parity of the code’s Hamming
distance. However, [2] shows that this is not necessarily the case when
using inversions instead of erasures, i.e., when applying the Chase de-
coding approach.

For codes of even Hamming distance d, we allow a small improve-
ment in the binary decoder, like in [6]. A binary decoder for a code of
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even Hamming distance d can be designed in such a way that any pat-
tern of up to d/2 — 1 errors is corrected, while d/2 errors are corrected
if one of these errors occurs in a predetermined position, for which we
choose the most unreliable. Throughout the rest of this correspondence
we assume the binary decoder is implemented using this feature, as it
allows to unify the cases d even and d odd.

Now we are ready to present two new classes of Chase-like BD de-
coding algorithms for binary linear block codes. As in the Chase-3 [3]
and Arico-Weber [2] algorithms, all test patterns are of the £; format.
The two classes use test sets ’1}17,” and 7.7, , respectively, where d is the
Hamming distance of the code and m is any integer satisfying m > 3
and m? — m + 1 < d. The test sets in Class 1 have a simple struc-
ture and suffice to demonstrate our main result, i.e., they show that BD
decoding is possible in O(dz/ 3 trials. The test sets in Class 2 are sub-
sets of the corresponding test sets from Class 1, i.e., L%m C 7'011,m~
Hence, Class 2 realizes further complexity reductions (but not below
O(d?/3)).

A. Class 1

The test sets in Class 1 are defined by

2
m= —3m

U {ta—ss}

[amgen
ol U

j=1

1
le,m =

U{to}. (5

{td7m2+317772mj }

For m = 3 we obtain the test set presented in [9].

Theorem 1: For any binary linear code of length n and Hamming
distance d < n, and any integer m such that m >3 and m*—m-+1<d,
the Chase-like decoder with test set T;,{m and reliability values set as
a; = |pi| for all i achieves BD decoding.

This result follows by applying the method for evaluating the error-
correction radius of reliability-based soft-decision decoding algorithms
proposed in [5]. The main steps of the procedure are given in the Ap-
pendix .

Note from (5) that

2 2
© =3 d—
|le,m|:2+m m+ m- +m . ©6)
2 2m
Consequently, for any m > 3
Tl 1
AT T ™

i.e., the ratio between the number of trials and the Hamming distance d
is 1/(2m) in case d is approaching infinity. Hence, this ratio, which is
1/2 for the Chase-3 algorithm [3] and 1/4 for the method presented in
[2], can be made arbitrarily small while maintaining the BD decoding
property.

To find the smallest test set among the ’Td],,,, in case d is finite, the
expression from (6) should be minimized over all possible m. For ex-
ample, we consider the case d = 95 in Table 1. Note that m = 4 and
m = 5 give the smallest test sets. Hence, BD decoding of a code of
Hamming distance 95 can be achieved by Chase-like decoding in 15
trials only. For comparison, also the considerably larger test sets from
[3] (Chase-3, of size 48) and [2] (of size 25) have been included in
Table 1.

In general, it follows from (6) that
m?

— 4+ O(m). (8)

d
e
7.1 2m + 2
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TABLE 1
TEST SETS IN CASE d = 95

algorithm test set size

Chase-3 [3] {toa, to2, too, tss, tse, tsa. ts2, tso, t7s, tve, tra, t72, t70, tes, tee, tea, te2, teo, - - -, t14,t12, t10, t8, te, ta, t2, to} | 48
Arico/Weber [2] | {tos,tsg, tss, ts1,t77, 673, teo, tes, te1, t57, t53, tay, tas, ta1, 37, a3, tog, tos, a1, t17, 613, tg, b5, t1, 60} 25

Weber [9] {tos, tgo, t83, t77, t71, tes, t50, t53, ta7, t41, t35, t20, t23, t17, t11, 5, 60} 17
Class 1, m =3 | {tos,ts9,ts83,t77,t71,t65, t50, t53, taz, ta1, tas, too, tos, t17, t11,t5,t0} 17
Class 1, m =4 | {tos,to3,to1,t83,t75,t67,t50,t51,t43,t35,t27,t10,t11,t3,t0} 15
Class 1, m =5 | {tos,t93,to1,ts0,ts7,t85, t75, tes, tss, tas, tas, tas, t1s, t5, to} 15
Class 1, m =6 | {tos,to3,to1,ts0,ts7,tss,ts83,t81,t79,t77, tes, t53,ta1,t20, t17, 5,0} 17
Class 1, m =7 {tos,to3, to1, tso. ts7, tss. tss, ts1, t7o, t77, t7s, trs, t71, teo, tor, tss, tao, tas, ti1, to} 20
Class 1, m =8 {tos.tos, to1, tso, tsr, tss. tss, ts1, t7o, t77, 75, trs, t71, teo, te7, tes, tes, te1, tso, ts7, tss, tag, tas, tr, to} 25
Class 1, m =9 {tos. tos, to1, tso, tsr, tss. tss, ts1, t7o, t77, 75, trs, t71, t60, te7, - -, t51, tao, ta7, tas, tas, tar, tas, ts, to} 31
Class 1, m = 10 | {tos,tos,to1,t80.ts7, tss, tys, ts1,t70, t77, t7s, t73, t71, teo, te7, - - ., t30, t37, tas, tas, 631, tag, ta7, tas. t5,t0 } 38
Class 2, m =3 {tos, tso, tsa, t77,t71, tes, tro, tss, tar, ta1, tas, tag, tas, t17, t11,t5, 0} 17
Class 2, m =4 | {tos,to1,ts3,t75,t67, t50, t51,t43,t35,t27,t10,t11,t3,t0} 14
Class 2, m =5 | {tos,t93,t89,ts5,t75,tes: ts5,tas, t3s, tas, tis, ts,to} 13
Class 2, m =6 | {tos,tos, tso,ts3,t77, tes, t53,ta1,t20,t17,t5,t0} 12
Class 2, m =7 | {tos,to3,to1,ts7,ts5,t79,t73,t67,t53,t30, tos, t11,t0} 13
Class 2, m = 8 | {tos,t93,t01,ts7.tss5,tr0.t71,t63,t55, t30, t2g, t7,t0} 13
Class 2, m =9 | {tos,to3,to1,ts80,tss5, tss, ts1,t75,t73, tes, ts7, tao, ta1, tas, ts, to} 16
Class 2, m = 10 | {tos,tos, to1,tso. tss, tss, ts1, 75, 673, tes, tos, tas, tas, tos, ts, to} 16

Since d/(2m) + m?/2 achieves a minimum value of

3x 273 x d** %~ 0.94 x d*/° )

for m = (d/2)'/*, we have the following important result.

Corollary 1: Bounded-distance decoding can be achieved by a
Chase-like decoder using ()(dg/ 3) trials.

B. Class 2

It may be possible to remove some of the test patterns from the
Class 1 test set Tdt m» While maintaining the BD decoding property. The
removal strategy is inspired by the iterative process from [5] for com-
putation of the error-correction radius, as explained in the Appendix .
The resulting test sets in Class 2 are given by

Tf,m ={tqs} U (Unez,uz,uz; {tn }) U {to} (10)
where (see (11)—(12) at the bottom of the page) and
B
I3 = U {d—m2—|—3m—2jm}. (13)
J=1

Theorem 2: For any binary linear code of length » and Hamming
distance d < », and any integer m such thatm > 3 and m? —m+1 <
d, the Chase-like decoder with test set Tfm and reliability values set
as aj = |p;| for all ¢ achieves BD decoding.

Again, the proof is provided in the Appendix.
Note from (10)—(13) that

Lm m
([

m

—i)+ %

2

]—2

S NENENE
+ "d - 7;;—1— m—‘
=5 151 —3[51+15]+ {W} (14)

L1 [ (111

T, = U U d—2(z—1)[m]—2j} U{d—m[%” (1)
[31-2

z=U {«-2[5[([3]-1)-%[5]} (12
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TABLE 1I
OVERVIEW OF LIMITED-TRIAL CHASE-LIKE ALGORITHMS ACHIEVING BD DECODING
algorithm remarks test set size of test set L/d,
L d — oo
Chase-3 [3] d>3 {to,ta 1.tqg s3.,tqg 5....} ld/2+ 1] 1/2
Arico/Weber [2] d>3 {40, ta_o.ta_6.ta_10:--- } [(d+ 2)/4] 1/4
Weber [9] d>7 {to.ta.ta_6,ta—12....} [d/6 +1] 1/6
Class 1 m > 3, {t(l’trl7t(1.—2w~~etd,m2+3my 2 +m(m — 3)/2+
d>m?—m 1 g m2im ba M2 } [(d —m? + m)/(2m)] =d/(2m) + m?/2+ O(m) | 1/(2m)
Class 2 m > 3, as defined in (10)-(13) Tm/21%/2 — [m/2]/2+
d>m?> —m+1 lm/2] + [(d — m? + m)/(2m)] =d/(2m) +m>/8 4+ O(m) | 1/(2m)

Consequently, for any m > 3,
|Tdml _ 1

2m
From (7) and (15) we conclude that Class 2 offers no essential com-
plexity reduction with respect to Class 1 in case m is finite and the
Hamming distance d approaches infinity.

However, for finite values of d, Class 2 may offer substantial com-
plexity reductions. Revisiting the d = 95 example, note from Table I
that |ng,,,,| is minimum for m = 6. Hence, BD decoding of a code
of Hamming distance 95 can be achieved by Chase-like decoding in
|7s5.¢| = 12 trials only, a reduction of three trials compared to the
smallest Class 1 test set.

In general, it follows from (14) that

lim
d—o0

15)

2

. d ]
Tl = 5 + e+ O(m). (16)
2m 8
Since d/(2m) + m* /8 achieves a minimum value of
3x 2773 x d*?* %~ 0.60 x d*/* a7

for m = (2d)'/?, there is a clear reduction in the number of trials in
comparison to Class 1 (see (9)). Still, the minimum number of trials is
O(d?/?) for Class 2 as well.

IV. DISCUSSION

In this correspondence, we have presented Chase-like decoders
which enable BD decoding of binary linear block codes of Ham-
ming distance d in only O(dz/ 3) trials, whereas the least complex
Chase(-like) algorithms known so far require O(d) trials. An overview
of limited-trial Chase-like algorithms achieving BD decoding is
provided in Table II. The Class 1 and 2 algorithms proposed in this
correspondence are similar to the Chase-3 algorithm, in the sense
that all test patterns are of the ¢; format, i.e., only the ¢ least reliable
received bits are inverted. A first improvement in comparison to the
Chase-3 algorithm, as already proposed in [2], is to choose the parity
of ¢ equal to the parity of d, rather than its complement (with the
possible exception of ¢ = 0). Hence, the proposed test sets are subsets
of Ty = Uj{tixr2;} U {to}. The next improvement is the deliberate
removal of test patterns from 7, while preserving the BD decoding
property. Several strategies, represented by the resulting test sets 7 ,,,
and Tfm have been given. The smallest of these sets have sizes of
()(dz/ %), which shows the claimed result. An interesting research
challenge is to investigate whether or not even less complex Chase-like
BD decoding algorithms do exist.

For the AWGN channel and BPSK signaling, the BD decoding prop-
erty guarantees optimal error performance when the SNR approaches
infinity. The results presented in this correspondence are mostly of the-
oretical importance, as they apply to high SNRs, extremely low error
rates, and large values of d. For practical SNR values the impact is

much smaller. Significant complexity savings are only obtained for
codes with a large minimum Hamming distance. However, for such
codes, the BD decoding criterion does not reflect well the error perfor-
mance at practical error rates [7]. For Chase-like decoders, the number
of test patterns influences the error performance more than the Eu-
clidean error correction radius at practical error rates.

APPENDIX

In this Appendix, we prove Theorems 1 and 2, i.e., we show that
the Chase-like decoders proposed in this correspondence achieve BD
decoding in case we set a; = |p;| for all 7. To do so, we apply the
method from [5], which evaluates the error-correction radii of relia-
bility-based soft-decision decoding algorithms. For a Chase-like de-
coding algorithm .4, this method can be described as follows.

1. Identify among all binary error vectors z the most likely vector

e such that the transmitted codeword is not generated in any of
the trials of \A when e occurs. In general, the weight w of e
is minimum among all valid error vectors, and the w ones in
e are in positions which are as unreliable as possible. For i =
1,2,...,w,define a; as the number of zeroes directly following

the i*® one ine,ie., e = 0°10%110%2 - - - 10**, with

2. [Initially, set b := w, N; := 2a;, D; := a; + 1, and A; :=
Ni/D;fori=1,2,...,w.Define A" = (4, As,..., Ay).

3. If there exists j, 1 < j < h — 1, such that A; < A;4; and
A; > Aiqq fori = 1,2,...,j — 1, then merge entries j and
j~+1into one new entry,i.e.,reseth := h—1, N; := N;+ N1,
D]' = Dj“’_DjJrl, AJ’ = I'VJ’/D]’,.Ni = Nij1,D; := D4y,
and A; := A;,4q fori = j + 1,5 + 2,...,h. Repeat this
until A; > Ajy; forall j = 1,2,...,h — 1. Then, define
AN = (4, As, L AY).

4. The squared error-correction radius of Algorithm A is

h

A =min{d,» ((Di = Ni/2)M? + (N;/2)(2 = M)*)}

- (18)
where M; = max{A;, 1} for all 4.

For the algorithms based on the test sets 7', (¢ = 1,2) under
consideration in this correspondence, the presence of test pattern %o
implies that e contains at least [d/2] ones in the first n — b positions,
where

i
b:{O, if d is odd (19)

1, if d is even.

Furthermore, e contains at least [d/2] — (¢ — 1)/2 ones in the first
n — i — b positions, for any odd ¢ > 1 such that £, is in the test set.
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For the case @ = 1 (Class 1), it follows from (5) that the error vector
with the minimum number of ones and with these ones in the least
reliable positions, while satisfying the restrictions just mentioned, is

d—m24m

(10’"1’”*1){ am

m2_3m

e=0"""""10)" 2

—| 101)11’7106 (20)
where b is as defined in (19) and

2m

d—m?+3m—2m [Lﬂ-m—‘

v = 5 2D
Hence,
2\ (2 0\ =5
O (010 L
where
(&) ) if d is odd
v = (%) R ifdis even andv =1 (23)
2t

(25) () (3.

with v as defined in (21). After performing the iterative process, the
final solution is

if disevenand v > 2

—m

d—m2_—m
2 &
: ) 2m [ 2m —|
Ak IN _ m *
m2—2m+1 2m v

(24
where
(vi”m) (2)"7",  ifdis odd
vt = (iﬁi) , if disevenand m > v* —v  (25)

if disevenand m < v* — v

(35) &)

with v as defined in (21). Since 1 < v < m, it follows that M =

m/(m — 1) and M; = 1 for all 7 > 2, and thus that
A = min{d, ((m® = 3m +2)/2)(m/(m — 1))*
+((m®=m)/2)(2—m/(m—1))+d+1—(m = 2m+1)}
= min{d,d} = d. (26)
Hence, BD decoding is achieved indeed for Class 1 algorithms.

For the case @ = 2 (Class 2), the BD decoding property can be
proved similarly. Actually, the removal of test patterns from ’]f,{ m Te-
sulting in Tj  has been done in such a way that the iterative evaluation
process leads to a solution which is effectively the same as (24). This

will be illustrated for the case d = 95 and m = 4, for which (20) and
(22) are

e =0"""°1010(10000111)""'1001

2=EEE0)) () @
2 2 5 1 3 1
respectively, leading to the final solution (24) reading
AFIN _ <2+2—|—8) (0+0+0+8>1° <0+0+0+4> <Q>
24245\ 14+1+145 1+1+143/)\1

-(3)6) G0

@n

and

(29)
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Removing the test pattern to3 from ’]})1;,,4 (see Table I), the Class 2
equivalents of (27) and (28) are

e =0"""°1001(10000111)""'1001 (30)

“=EOE) G0 -

respectively, leading to the final solution
AN (4 (08 (04040481 (0+0+0+4Y (0
3)\1+45/\1+1+4+1+5 1+1+143/\1
(B (B) (A (0
~\3/\6/\8 6)\1)"
Since consecutive entries in A™™ of equal value may be merged (e.g.,
(4/3)(8/6) may be replaced by (12/9)) without affecting the final

outcome of the evaluation algorithm, (29) and (32) are effectively the
same, both leading to

and

(32)

A = min{95,3 x (4/3)> +6 x (2/3)> +95+ 1 — 9}
min{95,95} = 95.

(33)

In general, it follows from (10) that the Class 2 equivalent of (20)
(i.e., e) is given by the concatenation of the binary strings

071—(1—1

o =="1l10"'1",  fori=1...., {m - QJ

2
(1()L%J 1[”7%)[”1541

d—m24+m

(1()mlmfl)’7 2m -‘ and

10°1°to® (34)

where b and v are as defined in (19) and (21), respectively. The Class 2
equivalent of (22) (i.e., AINT) is the concatenation of the strings

O GG ol
o | m m=2 [=41
(@) -

—2i

dfszrm—‘

()

where v is as defined in (23). After application of the iterative evalu-
ation process on (35), the squared error-correction radius A is again
given by (26). Hence, we can conclude that Class 2 algorithms achieve
BD decoding as well.

(35)
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A Finite Gilbert—-Varshamov Bound for Pure Stabilizer
Quantum Codes

Keqin Feng and Zhi Ma

Abstract—A finite Gilbert—-Varshamov (GV) bound for pure stabilizer
(binary and nonbinary) quantum error correcting codes is presented in
analogy to the GV bound for classical codes by using several enumerative
results in finite unitary geometry. From this quantum GV bound we obtain
several new binary quantum codes in a nonconstructive way having better
parameters than the known codes.

Index Terms—Finite fields, finite unitary geometry, quantum codes,
quantum Gilbert-Varshamov (GV) bound.

I. INTRODUCTION

The theory of quantum error-correcting codes has been developed
rapidly in recent years. Many good g-ary quantum codes have been
constructed by using classical error-correcting codes over 4 or F 2
with special orthogonal properties. Among these constructive methods,
the following result we used in this paper is effective and typical. Let
F,2 be the vector space of dimension n over F,2 with the following
hermitian inner product (, ) defined by

(a, b) = Zagbi €F, )
i=1
fora = (at,...,an), b = (b1,...,b,) € I}:;z. For a F 2-linear
subspace C' of F», the dual space of ' is defined by

ct = {a € Fi2|(a,c)=0forallc € C'}.
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Lemma 1.1: Suppose that there exists a I 2-linear subspace C' of
Fy2 with diqu2 C= % (sothat2|n — k > 0),and C C C'* (ie.,
C' is self-orthogonal). Then there exists a quantum code [[r, k, d]],
where

d = min{wr(c)|c € CL\C}

and wy(c) is the Hamming weight of c.

This result has been proved in [3] for binary case (¢ = 2) and gen-
eralized in [1] to the general case (¢ is a power of prime number). The
quantum codes constructed in this way are called stabilizer quantum
codes. If the minimum distance of C'* is d, the quantum code is called
pure. We refer [1], [3], [5] for basic concepts of quantum codes.

There are two bounds which have been established as necessary con-
ditions for quantum codes.

Lemma 1.2 (Quantum Hamming Bound): For any pure stabilizer
quantum code [[n, k, d]],

[d*l]

2

"= (- C) :

=0

Proof: See [3] for binary case. This can be easily extended to the
general case. O

Lemma 1.3 ([5] Quantum Singleton Bound): For any quantum code
([, k,d]]q,n > k + 2d — 2.

In this correspondence we present the following bound which is a
sufficient condition for the existence of pure stabilizer quantum codes
in analogy to the classical Gilbert—Varshamov (GV) bound.

Theorem 1.4: Suppose thatn >k > 2,d > 2 and n = k(mod2).
Then there exists a pure stabilizer quantum code [[n, &, d]], provided
that

qu—k'+2 -1

d—1
21 > Z(qz -1t <7Z) . )

=1

We prove this theorem in Section II. Our proof is similar with the
argument in [4, Theorem 1] for the classical case, but we need some
enumerative results in finite geometry. In Section III, we make some
remarks and, by using Theorem 1.4, present several binary quantum
codes with better parameters than the known codes listed in [2].

II. PROOF OF THEOREM 1.4

Let V' = F7» be the vector space of dimension n over 2 with the
hermitian inner product defined by (1). The unitary group

Un(Fp2) = {A = (a;) € GLn(F2) | AA” = 1.}

acts on V where A* = (a!;). This action keeps the Hermitian inner
product and has nice transitive properties (see [6, Ch. 5] for the exact
statements on the transitive properties).

Before proving Theorem 1.4 we need two simple enumerative
results.

Lemma 2.1: The number of nonzero self-orthogonal vectors in
Fpz (n > 1) is

Jvn — (qn _ (_1)n)(qn—1 _ (_1)77,—1)- (3)

Proof: For each vector x = (z1,...,7,) € F/> we know that
2 € Fysothat (v, 2) = 2™ + -« + 22" € F,. On the other
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