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Abstract

The introduction of data-based modeling in football (soccer) in the last decade
has led to the creation of models that describe player performance through key
performance indicators (KPIs). However, relying solely on historical and current
KPI values is insufficient for scouting departments, as predicting future values
could significantly enhance transfer decision-making. This research aimed to
identify the optimal model for forecasting the development of player perfor-
mance KPIs over the next year, focusing on explainability, uncertainty quantifi-
cation, and predictive performance.

To achieve this, we implemented linear models, tree-based models, and time-
series-based kNN models to forecast two specific KPIs one year in the future:
SciSkill, which measures the general quality of a player, and Estimated Trans-
fer Value, representing the player’s monetary value. Tree-based models showed
the best predictive performance. The random forest in particular emerged as the
best due to its explainable predictions, uncertainty quantification method based
on bagging, and good predictive performance. In the Sciskill case study, the ran-
dom forest model achieved low loss values, especially for young players. For the
Estimated Transfer Value, the random forest model demonstrated the best pre-
dictive performance on the general set of players, and specifically on the subset
of players valued at over €10 million.

Our findings suggest that tree-based models, particularly the random forest,
are well-suited for predicting the future development of football player perfor-
mance KPIs. Although it is important to monitor the predictive performance
using the most recent data, the insights and the resulting models of this research
can enhance scouting decisions via both data-informed and data-based decision-
making. Finally, this research paves the way to study the influence of time series
information or contextual information on player performance metrics.
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Introduction

In the evolving landscape of football analytics, the exploration of player performance
has gained momentum, driven by an increased influx of data. Improvements in data-
capturing technologies resulted in large data sets containing in-game data about foot-
ball players, which provide the possibility to obtain more complex variables on player
performance (Herold et al., 2019; Rein and Memmert, 2016). This increased amount of
available data is reflected in the performed research as there has been a surge in the
number of studies on player attributes and football performance analysis since 2012
(Principe et al., 2021; Wakelam et al., 2022). Therefore, the introduction of improved
technologies has enlarged the research in football analytics in the last decade.

Due to the increased amount of data and research, new challenges emerged in foot-
ball analytics. For example, Behravan and Razavi (2020) describe that the predominant
challenge at present time lies in working with the complexity and huge amount of data
itself. Next to this, football has a complex and dynamic nature compared to sports such
as baseball which can easily be studied by making use of the simple and discrete nature
of the games (Szczeparnski and McHale, 2015). The complex in-field nature of football
makes it hard to determine the value of players for a team in a game (Yigit et al., 2020).
These challenges create a field of study where more complex mathematical models can
be utilized to deal with the abundance of data and the complex nature of the game.

Mathematical models have been created to obtain insight into different parts of the
game of football. Models that value an on-the-ball action by estimating the differences
in scoring ability are xThreat (Roy et al., 2020; Rudd, 2011) and VAEP (Decroos et al.,
2019). Another model called xReceiver was introduced by Stockl et al. (2021) to predict
the likelihood of a player receiving the ball next. Such models result in numerical val-

ues describing in-field behavior or characteristics of football players. These numerical
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Chapter 1. Introduction

values are key performance indicators (KPIs) and can be used to analyze the behavior
and quality of football players and teams.

A possible use-case of these KPIs is aiding in transfer decisions for football clubs.
As Szczeparnski and McHale (2015) and Aydemir et al. (2021) describe, recruitment can
be distilled into two fundamental tasks: evaluating players” skills and estimating their
value. Using knowledge about a player’s performance, a club can estimate the worth
of a player to their club and assess whether the estimated transfer value is worth the
costs. With this knowledge, a club can make better-informed transfer decisions. There-
fore, KPIs about both the quality of players and their costs are important to determine
possible beneficial transfers.

However, player careers are often nonlinear and subject to randomness (Bergkamp
et al., 2019; Wolf et al., 2021), and, therefore, it is not enough to have insight into the
current values of these KPIs. In order to make a well-considered transfer decision it is
insufficient to know the current values, but also needed to have insight into the future
values of these KPIs. This is emphasized by He et al. (2023), Szczepariski and McHale
(2015), and Leifheit and Follert (2021) who state that it is necessary to obtain insight
into the future values of these type of KPIs.

Nevertheless, predicting future football performance is a topic that has not received
much attention thus far. Some studies exist about predicting future values of KPIs
which studied the future values of the number of goals and assists (Apostolou and
Tjortjis, 2019), the tier in which the player will be active in the English football system
(Barron et al., 2018), and the market value (Baouan et al., 2022). But to the best of our
knowledge, no prediction of future values of model-based KPIs has yet been conducted
in the existing literature. This means that there is a lack of studies on the prediction of
future model-based KPI values involving player performance and player values. The
aim of this research, therefore, is to create models that predict future KPI values of
model-based metrics.

It would be a straightforward choice to measure the quality of such a model using
the predictive accuracy of a model. Nonetheless, this is not a comprehensive method
to determine the quality of a model in the domain of football analytics as the domain of
football is relatively expert-based. Because of this, explanations of the inner workings
of models and explanations of their resulting predictions are important factors as these
can give trainers and coaches more confidence in the model (Rossi et al., 2021). This
means that the model should be explainable.

Moreover, the competitive environment of football has made transfer decisions in-
creasingly important for both financial and athletic goals (Yigit et al., 2020). Simulta-
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Chapter 1. Introduction

neously, progressively more money is being involved in transfers while large sums are
spent on a small group of assets with high risks (McHale and Holmes, 2023). Because of
the increased importance of transfer decisions with high risks, it is important to obtain
insight into the uncertainty of the predictions of models.

A good prediction method is, therefore, defined in this thesis as a model with a
high accuracy, good explanability, and methods to quantify the uncertainty of the pre-
dictions. The gap in the existing knowledge regarding the prediction of future model-
based KPI values will be addressed by studying the research question of the current
thesis: what is the best prediction model to predict KPI values one year ahead consid-
ering the accuracy, possibilities for uncertainty quantification of predictions, and the
explainability of the models?

This study is an external thesis project at SciSports, a sports analytics company with
a focus on football. Their main goal is to provide data-driven insights into football,
and for this purpose, they have created several KPIs. One of their main branches is the
Recruitment Center which provides data-driven insights to football clubs and player
agencies on players for scouting and recruitment purposes.

As described, KPIs of the quality of a player and their financial values are essential
to determine possible beneficial transfers when KPIs are used for scouting purposes.
The SciSports Recruitment Center contains the model-based KPIs SciSkill, a player per-
formance metric, and ETV, the Estimated Transfer Value. The SciSkill is a KPI for player
performance based on match sheet data. Because it does not need the more detailed
event data or tracking data, it can be calculated for a large amount of players. The ETV
model estimates the expected value of a transfer fee given that a transfer would occur.
The SciSkill and ETV together provide insight into the two most important things for
recruitment: the quality of players and their transfer values. The research question will,
therefore, be studied by doing case studies on the SciSkill and ETV.

This thesis consists of several chapters. First, the existing literature is studied in
chapter 2. This will provide insights into the problem and will provide knowledge
about the explainability and uncertainty quantification methods of the models. The
predictive quality of the models will be studied using the case studies on the the SciSkill
and Estimated transfer value. The methods of this case study will be described in chap-
ter 3 and the corresponding results will then be given in chapter 4. Consequently, the
results will be discussed in chapter 5, and the conclusion of the thesis will be given in
chapter 6. Finally, applications and recommendations will be discussed in chapter 7.






Literature review

The literature study first discusses literature on existing player ratings to obtain insights
into the context, possible problems, and attributes. Thereafter, the literature on player
valuation methods will be reviewed. Finally, possible statistical or machine learning
methods will be discussed to obtain insight into corresponding uncertainty quantifi-
cation methods and explainability of the models. It also provides knowledge of the

workings and potential performance of this prediction problem.

2.1 | Player ratings

In recent years, the interest of the scientific community in football analytics has grown
(Principe et al., 2021). As a part of this, a novel line of research was introduced that
utilizes the increasing amount of data on football to rate individual players (Arntzen
and Hvattum, 2020). New methods for quantification of player performance have been
introduced such as VAEP (Decroos et al., 2019), PlayeRank (Pappalardo et al., 2019),
and the SciSkill (SciSports, 2020). The application of these methods made it possible to
create databases of player ratings, which then can be used to find interesting players
for football clubs.

The determination of player performance was, historically, based on the expert
judgment of the video data and statistics describing the frequency of in-game events
(Memmert and Raabe, 2018, Ch. 1). The subjective expert judgment is, however, consid-
ered to be biased and inaccurate (Hvattum and Gelade, 2021; Pappalardo et al., 2019).
With the introduction of these data-driven methods, the opportunity to reduce this bias
is available. It is impossible to obtain a method with absolutely no bias, because, for

example, biased decisions by managers are present in the division of playing time and
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Figure 2.1: The number of papers published between 1999 and 2020 in the field of foot-

ball analytics with a focus on eleven-a-side competitive professional football. (Adapted
from Wakelam et al. (2022))

will influence the available data. Still, the introduction of data-driven methods pro-
vides the possibility to have more consistent scouting results.

The main problem of modeling player performance in football is the absence of
one ground truth (Aydemir et al., 2021). This is due to the fact that a player can have
different roles and that the performance of the player is dependent on the context (He
et al., 2023). For instance, the player performance is dependent on the dynamics of
the team. Moreover, defenders are less involved in goal scoring, a metric that is easily
studied, than attackers. Depending on the playing style of a coach, a certain player
can be a good fit or a terrible one. This makes it challenging to train comprehensive
supervised models on the performance of players to obtain a model.

Several studies (Cefis and Carpita, 2022; Chazan-Pantzalis and Tjortjis, 2020; Matano
et al., 2018; Nsolo et al., 2019; Satabun et al., 2020) exist in which the ratings of ex-
perts were studied. Satabun et al. (2020) and Nsolo et al. (2019) tried to apply super-
vised learning by considering existing ratings of players as ground truth. (Cefis and
Carpita, 2022) and (Matano et al., 2018) are examples of such studies that use ratings
from the video game FIFA/EA FC, which are based on ratings of a large number of
scouts. Chazan-Pantzalis and Tjortjis (2020) tried to predict team performance based
on player ratings obtained from the game Football Manager, which is also based on ex-

pert ratings. These studies try to create models that provide similar ratings as domain
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Chapter 2. Literature review 2.1. Player ratings

experts. Nonetheless, biases in player ratings of expert-based ratings are continued by
considering expert ratings as the ground truth.

With the introduction of data-driven methods, the opportunity to reduce this bias is
presented. Additionally, data-driven models provide the possibility to have more con-
sistent scouting results as expert ratings in football can be inconsistent (Chawla et al.,
2017). This study will, therefore, only consider data-driven player rating models. In
this section, the individual existing models are first discussed followed by a discussion
of these methods.

2.1.1 | Existing models

As there is no ground truth for player performance, there exist different interpretations
of player performance. Link et al. (2016) created a model describing player performance
based on a model obtained via domain knowledge. Pappalardo et al. (2019) considered
expert opinion as ground truth and Aydemir et al. (2021) inspected the quality of their
model using player transfer values and the quality of teams in transfers. As the ultimate
goal of a football game is to win by scoring goals, other models consider the influence of
a player on the scoring probability (Decroos et al., 2019; Kharrat et al., 2017) or winning
probability (Hvattum and Gelade, 2021) as the dependent variable. A good player is
then defined as one that increases the scoring or winning probability. In these ways, it

is possible to estimate the quality of a player over a match or season.

2.1.1.1 | Dangerousity approach

Figure 2.2: The Zone (ZO) in the Dangerousity approach in a grid of 2 x 2 meters be-
ginning 34 meters from the goal line. (Adapted from Link et al. (2016))

The Dangerousity approach was introduced by Link et al. (2016) and describes of-
fensive behavior. The value of the Dangerousity was derived via the mathematical
description of domain knowledge. The authors define a value for the Dangerosity at a

7
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moment ¢ by

. 2.1)

DA(#) = ZO(t) <1 ~ 1-CO(t) + PR(¢) —|—DE(t)> ,
where ZO(t) is the zone, which represents the danger of a goal being scored from the
position of a player in ball possession as shown in Figure 2.2. The other quantities
are the Control (CO), Pressure (PR), and Density (DE), and a constant k. This danger
of the zone is then multiplied by a factor that reduces it with at most a factor of 0.5
based on the other quantities. The Control describes the extend to which the player in
ball possession can control the ball. The Pressure is a measure of to what extent the
defending team applies pressure to the ball-possessing player. The Density consists
of a weighted average of the Shot Density, which describes the ability of defenders to
block a shot, and the Pass Density, which describes the extent to which defenders can
block a pass aimed at the area in front of the goal called the Interception Zone. The idea
behind the definition of Dangerousity in Equation 2.1 is that the danger of scoring can
be decreased by applying pressure and the ability of defenders to block the ball. A good
ball control, on the other hand, gives a higher chance of performing the desired action
and increases the multiplication factor. In this way, Link et al. (2016) defined principle
of Dangerousity.

An important part of the Dangerousity approach is that the factors like Control,
Pressure, and Density mathematically describe concepts of the domain knowledge. The
Control, for instance, is defined using the relative velocity of the ball with respect to that

of the player in ball possession using CO = 1 — ky x v, where k; is a constant and v,

2
rel’
the relative distance between the ball and the ball playing player. In similar ways, the
other factors like Control and Pressure were defined.

The resulting model describing the Dangerousity can be used to determine the Dan-
gerousity before and after an action. The value of an action can be determined by cal-
culating the increase in Dangerousity as a good action increases the Dangerousity. The
player’s performance can then be determined by summing over the values of the ac-

tions performed by a football player.

2.1.1.2 | Risk-reward approach

Power et al. (2017) introduced a combination of two logistic models to assess the quality
of passes in football. First, they trained one model to estimate the probability of a pass
being successfully completed. To this end, they included features created to describe

the situation with principles that are considered important based on domain knowl-
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edge, such as the speed of a player. As it is often unknown what the intention was of an
unsuccessful pass, they needed to determine the expected receiver. For each teammate
of the player in ball possession, the relative distance (‘Distance’) and the relative angle
("Angle’) were calculated. The expected receiver was then taken as the one with the
maximal value of yREHee x vk,
minimal values of ‘Distance” and ‘Angle’ respectively. Using the resulting data, they

where ‘Min Distance” and ‘Min Angle’ are the

trained the model to describe the probability of the pass being completed, called the
Risk model.

Additionally, they trained a model to define the possible reward of a pass. This was
done by estimating the probability that the pass made would result in a shot within
the next 10 seconds. As a shot does not often occur, their training set was unbalanced.
This was also reflected in the fact that their model only slightly improved the RMSE
compared to naively assigning the average probability of a shot occurring. This resulted
in a model that was called the Reward model as it described the probability of scoring
soon after a pass.

In their research, Power et al. (2017) trained both models on multiple feature sets
and they found that features derived from tracking data of the football players during
a match are of added value. Combined with information about the formation of the
teams describing, for instance, a high defensive block, the tracking date resulted in the
best loss values on the test set.

These two models were then used to introduce new metrics such as Passing Plus
Minus, which describes the difference between the expected number of passes com-
pleted using the Risk model and the actual number of passes completed. A player with
good passing ability can be described as completing more passes than expected. They
also described a player performance metric that describes the quality of a player to re-
ceive passes. This is done by taking 1 — P(pass completed) and summing over these
values for the passes received. Similarly, the pass executor and pass receiver metrics
were introduced counting the number of dangerous passes, which are passes that are
within the top 75% of the passes with the most reward according to the model. In this
way, they used the two models describing the risk of a pass and the reward of a pass to
determine player quality.

2.1.1.3 | VAEP

The Valuing Actions by Estimating Probabilities (VAEP) framework was introduced
by Decroos et al. (2019). It describes a model that estimates the probability of scoring

9
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using supervised learning methods like the initially implemented CatBoost algorithms.
A VAEP model considers the current state of the game, S;, as the last 3 actions. It
then estimates the probability that a goal is scored or conceded in the next 10 actions
and denotes this by Picores(S;i) and P.yycedes(Si). The offensive and defensive values
are then defined as the difference in scoring probability caused by a given action x,
APscores(Si, X) := Pscores(Si, X) — Pscores(Si—1, %) and APuoncedes(Sis X) = Proncedes(Si, X) —
Peoncedes(Si—1, x) respectively. The value of an action is then defined as the sum of the
offensive and defensive value, V (a;, x) := APscores(Si, X) + (—AProncedes(Si, x) ). The final
player rating is obtained by summing the action values of a player and rescaling it for
the number of minutes played. In this way, a VAEP model obtains a performance KPI
by assigning value to each action in a game.

Several studies have been conducted to improve the quality of the model. Decroos
and Davis (2020) studied the accuracy and interpretability of logistic regression, XG-
Boost, and GAMs. They found that XGBoost and GAMs outperform logistics regres-
sion, but that the difference in performance between XGBoost and GAMs is relatively
small. They conclude that it is better to use GAMs because these are generally better
interpretable. Van Haaren (2021) subsequently tried to improve the explainability of
the model. He did this by using fuzzy assignments to pitch zones which are used by
practitioners. In this way, he tried to make it more explainable to football staff. These
changes improved the explainability and interpretability of a black-box model.

2.1.1.4 | XThreat

A similar and more explainable model exists in the form of xThreat models (Roy et al.,
2020; Rudd, 2011). An xThreat model estimates the probability of scoring similarly to
VAEP but does this in a more simple and explainable way. xThreat models the game of
football as a Markov chain. This means that it assumes that the future is only dependent
on the current state of the game and not on what happened in the past. This is realized
by defining S; as the current situation, where the current state is defined as the position
of the ball-possessing player on the field. Using this, it is possible to estimate the prob-
abilities Picores(S;) using an iterative method, where Piores(S;) describes the chances
of scoring before losing ball possession instead of scoring within the next 10 actions.
Roy et al. (2020) compared the xThreat and VAEP models and stated that, although the
xThreat model is more interpretable to practitioners, it can only take into account the
position of an action and excludes contextual information such as the position of de-

fenders from its model. This makes it more interpretable, but less accurate. van Arem
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and Bruinsma (2024) extended the xThreat model by including variables describing the
defensive situation and height of the ball beside the position of the ball-possessing on
the field. This extended xThreat model can better differentiate between more different
situations, although VAEP models can take into account more contextual information.

Dependent on the context one model can be preferred over the other.

2.1.1.5 | Plus-minus rating

Plus-minus ratings are a different type of approach that was extensively studied in ice
hockey and basketball (Kharrat et al., 2017) before being applied to football by Hvat-
tum and Seebeo (2015). The idea behind the method is that every game of football is
partitioned into segments with every change in lineup creating a new segment. In this
way, a segment is a period for which the lineup was the same. For each segment, it is
denoted which players are actively playing by defining the variable x;; for segment ¢,
and player j as

1 if player j plays for the home team in the segment
x;j = § —1 if player j plays for the away team in the segment -

0 if player j does not play in the segment

Regularised linear regression is then applied with x;; as independent variables and the
score difference in the segment as the dependent variable. The value B; of the coefficient
corresponding to each player can then be viewed as a value of the quality of a player.
If a player’s coefficient is positive, the player is associated with a positive goal differ-
ence, whereas a negative coefficient would mean that the team of the player generally
concedes more goals than it scores with this player in the field.

In contrast to basketball and ice hockey, the number of substitutes is limited in foot-
ball, and a goal is a relatively rare event. There are, therefore, fewer segments and
the changes in goal differences during a segment are often the same. This causes the
models trained on football data to be less accurate and several solutions have been
studied for this problem. Kharrat et al. (2017) changed the dependent variables for the
PM ratings. They trained two models, one with the expected goals (xG), an estimation
of E[Number of Goals]|, created in the segment, and one with the expected points in a
competition (xP), an estimation of E[Points per game], obtained during the segments.
Both xP and xG provide more distinct values for the different segments compared to
the goal difference, which only has integers as possible values. This means that there
is more differentiation between the quality of play of a segment, making it possible
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for the model to catch more fine distinctions in player quality. Hvattum and Gelade
(2021) similarly used VAEP-values created in one segment as the dependent variable,
but this did not provide improvement over the normal PM ratings. Pantuso and Hvat-
tum (2020) presented a model that improved the normal PM ratings by taking age, red
cards, and home advantage into account. Their model had such an increased complex-
ity that it could not be viewed anymore as regularised regression but as a quadratic
programming problem. Hvattum (2020) discussed how the ratings in this model could
be split up into a defensive and offensive part. In these ways, the PM ratings have been
adapted to the sport of football.

Kharrat et al. (2017) highlighted that PM ratings have problems with distinguishing
the quality of players that often play together. This is caused by these players having
similar segments, which results in similar values in the performance values. This in-
ability to distinguish players who often play together is a downside of the PM ratings.

2.1.1.6 | Elo rating

The Elo-rating is a model originally made for one-versus-one setting, attributed to chess
Grand Master and physicist Arpad Elo (Sullivan and Cronin, 2016). It was later adapted
for application in team ratings by Hvattum and Arntzen (2010), Hubécek et al. (2019),
and Sullivan and Cronin (2016). The Elo-ratings were later adjusted to obtain perfor-
mance ratings for individual players by Wolf et al. (2021) and Aydemir et al. (2021).
The main assumption behind Elo-ratings is that a better team is more likely to win
the game. According to Sullivan and Cronin (2016), the Elo rating defines the outcome

value S of a match as

1, for a win
§=1<¢0.5, foradraw . (2.2)
0, for a loss

Let the Elo-rating of team T be denoted as R. The player rating is then updated after

every match using the formula
Rpost game — Rpre game + K(S - ]E[S])/ (23)

where K is a constant describing the weighting of the new results. This means that the
rating is adjusted by the difference between the outcome and the expected outcome. If
a team wins, while the team is expected to win, the rating is not changed much. On the
other hand, if a team has lost when it was expected to win with high probability, the
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new rating is decreased more firmly. The expected outcome of team A winning against
team B is computed by
10RA /400
E[Sa] = 10R4/400 Rp/400°
-+ 10%s

In this way, the Elo-rating for teams is computed based on the differences between the
expected outcome and the real outcome.

Wolf et al. (2021) revised the existing algorithm to obtain Elo-ratings for individual
players. Their model considers the segment of the game that a player was on the pitch

similar to PM ratings. For this segment, the rating of the team (A) was calculated using

Z?;ol Ra; - My,
Ra==Foa
Z:i:O MAi
where Ay, ..., A,_1 are the n players that played in the time segment, M, is the num-

ber of minutes played by A; and Ry, is the rating for player A;. This quantity can be
seen as the average player ranking on the field weighted by the number of minutes
played. Also the result S is defined slightly differently to adjust it for the application on
segments. They divided the game into segments similar to those of the PM ratings to
adjust Equation 2.2 to estimate the individual player quality. They then added weights
in their new expression for K(S — [E[S]), scaled the differences for the number of min-
utes played by a player, and included the rating of the team itself. Additionally, they
included the difference between the rating of a player with the rating of the team as
an extra weight. This means that a bad player will be punished less when the team
performs badly. In this way, the new Elo-rating was adjusted for the application in
football.

Elo ratings have a downside similar to that of the PM ratings. According to Wolf
et al. (2021), the Elo ratings punishes good players who play at clubs performing below
average. As it is of interest for scouting purposes to find good players at clubs perform-
ing below average, this is a considerable downside and the player Elo ratings might not
be well-suited for scouting these types of players.

2.1.1.7 | PlayeRank

Pappalardo et al. (2019) introduced the algorithm PlayeRank, which consists of both
supervised and unsupervised methods to obtain a ranking model. First, they detected
8 different player roles by applying a k-means algorithm with soft clustering to the
average positions of players. They then created 76 different features that they extracted
from event data such as the number of accurate shots and number of cross-passes that
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were an assist. The importance of each feature was subsequently extracted by training
a linear support vector machine on the problem of predicting whether a match is won
or not. The ratings obtained by their model are of a linear form. For player u in match
m, it defined as r(u, m) = w7 x where x is a vector containing all features, w is a vector

of weights and R is a scaling factor such that all values are in [0, 1].

After training the model, they then tested the quality of the model with a data set
labeled by scouts. In this way, they were able to compare it with Flow Centrality (FC),
a KPI introduced by Duch et al. (2010) defined by the fraction of the times a player is
part of a passing chain that ends in a shot, and Pass Shot Value (PSV) (Brooks et al.,
2016), a KPI that is obtained via a machine learning model that predicts whether a pass
will generate a shot. They compared the methods based on the agreement with expert
opinions of scouts, by letting scouts and the different models determine the quality of
a pass. The concordance between the scouts and the models is shown in Figure 2.3.
The results show that PlayeRank achieves better agreement with the scouts” opinions.
Additionally, they found that experts do not always agree with each other highlighting
the subjectivity of these ratings and they found that they often provide biased and in-
accurate estimates. Still, this validation method might increase the confidence of scouts
in the PlayeRank method.

100 FC PSV PlayeRank
T majority a1
& 90 4 HEEE unanimity 86
3
= 80 768 75
T 7 6870 7070 68
o 66
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S 60 J
8 55
(&) 54 53
50
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Ll L) L)
&, &, o,

Figure 2.3: Majority and unanimity concordance between FC and scouts, PSV and

scouts, and PlayeRank and scouts. (Adapted from Pappalardo et al. (2019))
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2.1.1.8 | Dimension reduction approach

Another unsupervised player performance method is the dimension reduction approach
introduced by Aydemir et al. (2021). Their method was applied to identify the quality of
3,500 fullbacks. They created features based on player match statistics, game difficulty,
and competition quality based on Elo ratings of teams. After rescaling the features,
they applied cosine kernel PCA to obtain a player ranking method. The cosine kernel
was selected to eliminate the orthogonality of the components as this would make the
PCA less suited for ranking problems. In this way, they applied the unsupervised PCA
method to obtain player ratings.

Although Aydemir et al. (2021) admit that the absence of a ground truth makes
the validation of methods nontrivial, they attempt to validate their model by imple-
menting other methods for multiple-criteria decision-making (MCDM) problems called
COMET, earlier introduced in football on a small scale by Satabun et al. (2020), and
CPP-Tri, a probabilistic sorting method introduced by Sant’Anna et al. (2015). Addi-
tionally, they considered random allocation as a baseline method. These methods were
then compared by selecting the market valuation of a player as the ground truth. They
concluded based on visual interpretation of results and a two-sample Kolmogorov-
Smirnov test that their dimension reduction approach was a better indicator of the
market value. Next to that, they validated the method by studying transferred play-
ers with the Elo ratings of the destination club. They found a significant relationship
that showed that players with a good PlayeRank transferred to clubs with a high Elo
rating. With these two relationships, they tried to validate the workings of PlayeRank.

Because of the unsupervised nature of the PlayeRank algorithm, it is hard to inter-
pret the results of the model. This makes the intuition behind the algorithm less ex-
plainable to practitioners, while this is a crucial part of football analytics. Next to that,
the application of PCA transforms the meaningful features that were used as input to
several, for which the interpretation is unclear. Therefore, the unsupervised nature of

PlayeRank algorithm makes it hard to interpret what it describes.

2.1.1.9 | SciSkill

As a last method, the SciSkill is discussed, a player rating algorithm provided by SciS-
ports (2020). The SciSkill is a player rating algorithm with online updates similar to Elo
ratings as shown in Figure 2.4. There are three main differences between the SciSkill and
the Elo algorithm. First, the SciSkill model predicts the number of goals for each team

in a match, whereas the Elo algorithm predicts the winning team. Secondly, SciSkill
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makes use of a defensive and attacking rating to predict the expected number of goals
in a match, similar to the split in the defensive and offensive PM ratings obtained by
Hvattum (2020). Third, the prediction algorithm for the expected number of goals is an
expectation-maximization algorithm which is more powerful than the rough estimate
as defined in Equation 2.3. With these differences, the SciSkill algorithm can obtain

more detailed rankings.

Real Goals Team 1 @

Exp. Goals Team 1

ATT. B
RATING S

Figure 2.4: A graphical representation of the SciSkill algorithm. (Adapted from SciS-
ports (2020))

2.1.2 | Discussion of methods

Now that we have discussed important existing methods for player rating, it is possible
to consider some overarching findings from the literature that provide extra insight or
context to the project.

2.1.2.1 | Comparison of methods

Due to the lack of ground truth, it is a challenge to compare different player rating

methods. Still, different studies did perform comparisons to validate their methods.
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For instance, Arntzen and Hvattum (2020) compared Elo ratings of teams and PM
ratings of individual players. They found that PM ratings have more predictive value
than team Elo ratings by using a linear model and a competing risk model. They found
that their PM ratings contained better predictive quality. Hvattum and Gelade (2021)
similarly studied the predictive qualities of VAEP and PM ratings by considering the
predictive accuracy of a logit regression model that predicts the outcome of a match
with the player ratings as input. Additionally, they studied the robustness by splitting
the data set into smaller parts and training the model on these parts. A model is then
considered robust if the ratings do not differ much between the different parts, and
were, therefore, not susceptible to randomness in the data.

Their results showed that the PM ratings were more robust and had a better pre-
dictive performance. However, the VAEP model is a nonlinear model and, therefore,
might favor different variables due to nonlinearities. On the other hand, the PM model
is a linear model and approximates the real relation with the best-fitting linear relation.
This best-fitting linear relation provides the information in a pattern that is the assumed
relation for the model that measures the predictive quality because this is also a linear
model. Consequently, the PM ratings can be expected to perform better, independent of
the informational quality, which means that this comparison method has a bias towards
linear models.

Instead of studying predictive information in the KPIs, Pappalardo et al. (2019) com-
pared the labels with the concordance with scouts. Aydemir et al. (2021) compared
ratings with market values of players to determine the quality of their model. Addi-
tionally, they studied the Elo ratings of destination clubs of player transfers. These
studies used substitute quantities for the player quality to examine the model quality,
despite the fact that it is debatable what substitute quantities should be used. It can
be concluded that there is no unbiased and objective method to compare the quality of

different player performance models.

2.1.2.2 | Lack of studies on future KPI values

The existing models in this literature study were constructed to estimate the current
quality of a player. As stated in chapter 1, there is a potential in the usage of future
values as it provides insight into how a possible player might develop over time, which
is an important factor in transfer decisions. To the best of our knowledge, there are only
two studies that studied predicting future values of player performance KPIs.

In the first study, Apostolou and Tjortjis (2019) tried to predict the number of goals
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in the next season of two attackers: Lionel Messi and Luis Sudrez. Next to that, they
also predicted the number of shots in the next match for only Lionel Messi. Due to the
limited amount of players and the fact that these players have been consistent in player
performance, it is not possible to generalize results from this study.

The second study was performed by Barron et al. (2018) who tried to predict whether
at what tier in the English football system football players would be active next season
using artificial neural networks. Although the tier of a player gives more information
about the level of an average player than the number of goals, it is a KPI with minimal
knowledge gained as it attains only three values.

This means that the first study does not have generalizable results due to the lim-
itations of their method and the other study considers a KPI that cannot differentiate
between players in the same league. It can, therefore, be concluded that there is a lack of
knowledge of the future values of more complex and informational KPIs in the existing

literature.

2.1.2.3 | Biases in current studies

As discussed in chapter 1, expert judgment in football was found to be biased, but there
also exist biases in current studies, both in the type of studies but also in the data set on
which the studies are performed.

The current models are often better at describing offensive quality. This is caused by
the fact that the number of goals or xG are widely used metrics, but these mostly give
direct information on attacking quality. This is also reflected in the fact that KPIs con-
cerning assists, number of key passes, and accuracy of shots were the most important
in Pappalardo et al. (2019), which are all KPIs describing attacking quality. The same
holds for xThreat and VAEP models which quantify the quality of on-the-ball actions,
which are often offensive actions. Next to that, some studies only consider attacking
players such as Satabun et al. (2020) and Apostolou and Tjortjis (2019). These studies
contain a bias towards attacking players. It can be concluded that the current knowl-
edge about the quality of football players is biased towards attackers as also described
by Chazan-Pantzalis and Tjortjis (2020).

This bias might lead to a worse valuation of more defensive players. Due to the
simplicity of the input data, the bias towards attackers is less apparent in Elo ratings
and SciSkill ratings. A study on such KPIs would, therefore, be important to reduce the

current bias in the knowledge about football rating systems.
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2.1.2.4 | Trade-off between detailed data and player set size

The last finding in the existing literature is the relation between the complexity of an
algorithm and the type of data as input. The methods discussed use event data or
match sheet data. Event data contains annotations of all actions and events that occur
during a football game. Match sheet data on the other hand is much more high level
and only contains basic information about the goals, cards, and substitutions.

Methods such as VAEP, xThreat, PlayeRank, and the dimension reduction approach
use event data to train the models and predict values. With this, more detailed infor-
mation can be used to assess the quality of a player. This makes it probable that these
methods can model more subtle differences in player qualities. Nonetheless, this extra
data might enhance the bias towards attacking players as it mainly contains on-the-ball
actions. Methods such as PM ratings, Elo ratings, and SciSkill ratings only use match
sheet data. Gelade and Hvattum (2020) tried to combine match sheet and event data in
PM ratings, but found minimal improvement in the model. The methods can, therefore,
oftentimes be categorized as either event-based or match sheet-based.

Whereas event-based methods can assess the quality of players with more details,
match sheet data is generally available for significantly more games. This makes it
possible to include many more competitions when using match sheet-based methods.
As assistance in player scouting is the main aim of rating methods, the inclusion of more
players is an important advantage of match sheet-based methods. Next to that, more
complex prediction methods for future values can be applied to the player rankings, if
more players are included as more training points are available. Because of the focus
of the current thesis on the study of prediction methods for player performance, it is
beneficial to have larger model coverage resulting in a larger data set for the research.
Thus, match sheet methods such as SciSkill are better suitable as a player performance
metric for the research in the current thesis.

2.1.2.5 | Summary

To summarize, there exist different player performance models and it is still an open
challenge to rigorously compare the quality of the different models. The models are
based on match sheet or event data of which the first is preferred for this study. There
is a bias in the existing models as the event-based models can better describe offensive
actions than defensive actions. And most importantly, there is a lack of knowledge on
the prediction of future values of player performance KPIs.
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2.2 | Transfer fee prediction

Another KPI that is considered in this thesis is the expected transfer value (ETV) of a
player. This KPI can be used to make transfer decisions. It can, for instance, be used to
determine whether a player could be bought and whether the transfer fee demanded by
a football club is a reasonable price. This section covers studies related to the prediction
of the transfer fee of football players.

First, some necessary context is provided. In the transfer system, clubs are allowed
to buy or sell players subject to regulations imposed by football associations (Payyap-
palli and Zhuang, 2019). Such regulations include that players can only be transferred
during transfer windows and that a transfer can either be permanent or temporary, in
which case it is called a "loan". With a permanent transfer, it is common that a transfer
fee is paid by the buying club. The monetary value of this transfer fee is based on the
value of the player for both clubs and historical transfers of similar players (Poli et al.,
2021).

2.2.1 | Transfer and market value

Whereas there is no data on the ground truth in player performance, there is data on
the ground truth for transfer fees. When a player is bought, a transfer sum is paid by
the buying club. The value of these fees is often not disclosed and is often estimated by
media such as Transfermarkt.de. These estimated values are samples of the distribu-
tion describing the the ground truth, which makes it possible to train models to predict
these values. These monetary values are, for instance, used in transfer and salary nego-
tiations according to Herm et al. (2014).

The values resulting from these predictive problems are called transfer values in this
research. Poli et al. (2021) defined these transfer values as the fee that an engaging team
is willing to agree with the releasing team as compensation for breaching the contract of
a player. This value also takes into account the situation of a player such as his current
club and the contract length. The transfer value, thus, gives the monetary value given
the occurrence of a transfer of the player at that specific moment.

The market value is a similar KPI describing the monetary value of a football player.
Herm et al. (2014) defined this as an estimate of the fee a club would be willing to pay
to sign a player independent of the actual transaction. This means that the current club
and the contract length are not taken into account for this KPI. Although the transfer

value and market value have this subtle difference, market values are often used as a
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substitute for transfer fees (Franceschi et al.).

Franceschi et al. also studied the relation between the crowd-sourced transfer val-
ues obtained from Transfermarkt.de and the real transfer fees that were released by the
Bundesliga. They found that there is a strong linear correlation with a significant slope
of 0.95 and an R? of 0.90. Therefore, market values have a strong relation with transfer
fees and studies on transfer values will be included in this review.

In this section, several types of models used for transfer fee prediction will be dis-
cussed for an overview of the existing methods and the behavior of the problem. There-
after, important overarching findings in the literature are discussed to consider differ-
ences within existing literature and obtain insight into possible problems for this re-

search.

2.2.2 | Existing models

The estimation of the value of a player has been an important line of research that has
developed over the last two decades. Frick (2007) states that increasingly more informa-
tion about transfer fees has become available and many studies have been performed
on this data. The first studies on player value were performed building on economical
principles (Franceschi et al., 2023). These were often based on basic analytical meth-
ods. Later studies followed a more mathematically oriented approach with many stud-
ies using linear regression models. More recently, predictive modeling using machine

learning methods has been emerging (Aydemir et al., 2022).

2.2.2.1 | Linear models

In an overview article, Franceschi et al. (2023) considered 29 studies containing 111
models on the transfer fee or market value estimation. A significant amount of these
models, 94 out of 111, were ordinary least squares (OLS) models. The OLS models
were mainly used to find which variables have a significant linear dependence on the
value of a player. The differences in the linear models can mainly be found in the
chosen independent variables and the inclusion of possible interaction terms. Many
different sets of independent variables have been used in the existing literature, which
can be described by the categories time, labor, performance, club characteristics, player
characteristics, and popularity (Franceschi et al., 2023). Figure 2.5 and Figure 2.6 show
the significance levels and the sign of the coefficients of the 10 most used variables.
The most frequently used variable in linear models is the use of age-related vari-
ables. A young player is generally worth more than an older player with the same
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Figure 2.5: Distribution of the significance levels for the 10 most tested independent
variables. (Adapted from Franceschi et al. (2023))

quality because they have more potential to increase their quality and they can play
more seasons before retiring. As the quality of a football player is widely believed to be
an approximately concave function of age, a peak is attained during the player’s career
and the quality of the player is consequently nonlinear. As can be seen in Figure 2.5,
most studies that included age also included the squared value of the features. It is also
one of the features that is most often found to be significant. Figure 2.6 additionally
shows that age? generally has a negative sign, which indeed means that the average
value of a player is approximately concave with respect to age and, therefore, attains
a maximum. The age of a player seems to be an important variable that influences the

transfer fee in a nonlinear way.

Other variables that are often significant are the number of appearances of a player
and the minutes played. One can see that minutes played are less often used than the
number of appearances. As it is reasonable to assume that the number of appearances
and number of minutes played are highly correlated, one of these variables is probably
left out to increase the quality of a model. It can be seen however that both variables
are often significant and both have a positive relation with the value of a player. Vari-
ables containing information about the amount of playing time, therefore, seem to be
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Figure 2.6: Distribution of the sign of the coefficient for the 10 most tested independent
variables when significant at 5% threshold. (Adapted from Franceschi et al. (2023))

important.

As can be seen in Figure 2.5, a variable indicating national team experience is often
used. Experience at the national level is also always found to increase the player value
as can be seen in Figure 2.6. However, this variable is found to be significant less than
half of the time. This might be because a dummy variable does not contain much in-
formation. It might be interesting to include a feature that describes the international
experience in more detail.

Figure 2.5 shows that the number of goals and assists are variables that are often
studied. This might be due to the case that these KPIs are better available. Nonetheless,
these KPIs mainly focus on attacking quality as discussed in subsubsection 2.1.2.3. Al-
though these variables provide extra information about the quality of players, it might
be better to exclude them to reduce the bias of the models towards the attackers.

The number of yellow and red cards are two other variables that are often included.
Nevertheless, these variables are often found to be of insignificant influence on the
market value. The inconclusive results about these variables can be due to differences
in playing styles and interactions. On the one hand, a defender could receive many
cards, because he enters many duels which could have a positive influence. On the

other hand, receiving a card is a disadvantage in a game, which could lead to a negative
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influence. In general, it can be concluded that the number of yellow cards and red cards
is a variable that adds minimal information to a transfer value model.

As can be seen in Figure 2.5 and Figure 2.6, time-dependent variables are not often
used. (Poli et al., 2021) is an example of a study that did include a variable modeling the
inflation by averaging the value of the 100 largest transfer fees in the last four transfer
windows. They found this variable to be significant with a positive slope, which means
that higher inflation gives higher transfer fees as would be expected. However, only
information is known on the historical inflation and the prediction of future inflation
numbers is a challenge. Such macro-economic developments are outside the scope of
this thesis.

The OLS models were generally constructed as descriptive models. The research
performed by Poli et al. (2021) and Al-Asadi and Tasdemir (2022) were exceptions on
this. In the descriptive studies, the explainability of OLS models in combination with
the significance testing makes it possible to obtain insight into what factors influence
the transfer fees. As the current thesis aims at constructing predictive models, predic-
tive quality will be assessed via out-of-sample losses instead of in-sample losses.

2.2.2.2 | Estimated Transfer Value

In contrast to these descriptive studies that used OLS models, there also exist predic-
tive studies using machine learning models. These methods are often able to find more
complex patterns in data by finding nonlinear relations and possibly interactions. Ad-
ditionally, these models are more similar to the models considered in this thesis.

2.2.2.3 | Estimated Transfer Value

First, the Estimated Transfer Value is a model created by SciSports (2024). They trained
the model on historical transfers to estimate the transfer value of a player using features
such as the league strength, age, international experience of a player, and the contract
situation. The values of this model were used in the research performed in the current

thesis. The literature on this type of models in the literature will be discussed now.

2.2.2.4 | Added value of complexity

Al-Asadi and Tasdemir (2022) studied the predictive performance of several machine
learning models on the market value using data from the video game FIFA 20. They
used the market values as an independent variable with the quality indicators of FIFA
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Figure 2.7: The performance of the models in Al-Asadi and Tasdemir (2022) for different
metrics with the models sorted on complexity. (Adapted from Al-Asadi and Tasdemir
(2022))

as predictors. These features include an overall rating and a potential rating which pre-
dicts the quality of a player in the future, which was obtained using expert judgment.
The considered models were linear regression, regression trees, and random forests and

the results are shown in Figure 2.7.

A regression tree is a relatively simple model, but the estimated loss values indicate
that it outperforms the linear regression models. As a regression tree is better able to
catch possible nonlinearities and interactions, this implies that the prediction of transfer
values seems to be a problem with nonlinearities or interactions. Methods that can
incorporate nonlinearities and interactions are, therefore, more likely to succeed in this

problem.

The models in Figure 2.7 are shown with increasing complexity of the models. It
can be seen that the random forest outperforms the other methods. As it is a more
complex and flexible method than linear regression and regression trees, it is better able
to capture certain patterns in the data. This means that more complex models seem to

perform better on this problem. As the random forest is the most complex method
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used in the study by Al-Asadi and Tasdemir (2022), it would also be interesting to see
how even more complex methods such as XGBoost and neural network-based models

would perform. These could potentially provide an improvement in accuracy.

2.2.2.5 | Study using artificial neural networks

A study with artificial neural networks was performed by Steve Arrul et al. (2022),
who studied the predictive performance of artificial neural networks (ANNSs) for the
prediction of market values. They obtained the market values and player performance
KPIs from the video game FIFA 19, similar to Al-Asadi and Tasdemir (2022). One of the
baseline models they implemented is an ANN with a linear activation function, which
is a linear regression model trained with back-propagation. They found an R? value
of 0.477, which is lower than the value of 0.61 found in Al-Asadi and Tasdemir (2022),
which might be caused by back-propagation not being the right optimization method
for the fitting of a linear model.

During the training of their first model with a Relu activation function, the initial
model was found to be overfitting. To solve this problem, they applied L!-regularization
which can prevent overfitting, and found this significantly increased the predictive per-
formance. This indicates the possible necessity of including regularization in order to
prevent overfitting.

Their final model managed to have an R? of 0.95, which is a significant improvement
on the baseline method. The R? value is similar as shown in Figure 2.7 for Random
Forest Regression. Due to the different data sets and the different performances of
the baseline methods it is not possible to compare the quality of the random forest
regression of Al-Asadi and Tasdemir (2022) and this ANN. Nonetheless, the result of
this research showed that ANNs might be a method suited for this type of prediction
problem.

2.2.2.6 | Interpretable modeling

Similarly, Yang et al. (2022) also applied random forest regressors to predict the transfer
fees that clubs pay for footballers. Next to a random forest, they also trained gener-
alized additive models (GAMs) and quantile additive models (QAMs). QAMs were
applied as these take the quantiles of the data into account which gives better results
for a skewed dataset. They used the logarithm of the transfer fee as the dependent vari-

able to make the distribution of the dataset less skewed. The authors included numer-
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ous variables for their models including player characteristics, performance indicators,
club information, and time effects.

The GAMs and QAMs are methods that provide the possibility for the visualiza-
tion of relations between the dependent and independent variables as visualized in
Figure 2.8. For instance, the results show that the number of appearances shows nearly
linear relations with the market value, but that the slope is dependent on the quantile
of the market value. This indicates that different patterns occur for different groups of
players, which makes it hard to model. If more simple models such as OLS are applied,
this could be dealt with by fitting multiple models on disjoint subsets of the data.

On the other hand, several features have nonlinear relationships with the dependent
variable. Yang et al. (2022) showed that GAMs and QAMs can be used to do significance
testing on nonlinear relations. As an example, the remaining contract and the age can
be seen to have a nonlinear relation with the estimated transfer fee. In this way, the use
of QAMs and GAMs can provide insights such as the presence of nonlinearities and

differences in slopes dependent on the size of the transfer fee.
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Figure 2.8: The selected quantile additive smooth effects of non-linear predictors of
transfer fees by Yang et al. (2022). (Adapted from Yang et al. (2022))
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Next to that, their random forest model also provided insights into the feature im-
portance as shown in Figure 2.9. It can be seen that the expenditure of the buying club
and the income of the selling club are the most influential features. This is something
that our model for future transfer values cannot take into account as it is not known
what teams would be interested in a player in the future. However, the method they
use gives insight into how feature importance can be investigated for tree-based meth-
ods.

They found that the random forest estimator performed best with the R?> = 0.67.
With this final model, they studied the performance before and during COVID-19 and
found that the predictive performance of the models was significantly less for transfers
during COVID-19. This implies that transfers during COVID-19 behaved differently.
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Figure 2.9: The feature importance according to the random forest estimator of Yang
et al. (2022). (Adapted from Yang et al. (2022))

Figure 2.9 shows that information about the buying club is the most influential fea-
ture in the random forest model. This can be expected as the fee of a transfer is likely
to be higher if the selling club knows that the buying club has a large budget. This is
in line with the findings of Depken and Globan (2020) who found that clubs in better
competitions, that have more money, tend to pay more for their players. This could
imply that it is important to involve information about the buying club in a model for
transfer fee estimation.

However, including this information does not follow the definition of either a trans-

fer value or a market value. More importantly, the addition of these features requires
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the user of the model to specify a buying club, which could reduce the use case of a
model for transfer fee estimation. Next to that, it should be noted that Yang et al. (2022)
only used basic player performance KPIs like appearances and goals of a player. It
could well be possible that the buying-club expenditure is a feature that is highly corre-
lated to player performance as a well-performing player is more likely to make a trans-
fer to a high-level club, which generally has a higher expenditure. With the inclusion of
a player performance metric in a player valuation model, the need for information on
a buying club is less. Because of these limitations, the information about a buying club
was not included in the research of this thesis.

2.2.2.7 | Prediction with advanced player performance metrics

McHale and Holmes (2023) also carried out a predictive study on the estimation of
transfer fees. They used overall ratings and potential ratings from the FIFA video game
combined with several other predictors and KPIs such as playing minutes, height, po-
sition, PM ratings based on xG, and VAEP ratings. On this data, they applied an OLS
model, a mixed effects linear model, elastic-net regression, xgbDART, and xgbTree (de-
fault XGBoost) models.

The results of McHale and Holmes (2023) are depicted in Table 2.1 and show that for
all summary statistics, the xgbTree model performed best. The xgbDart model perform
slightly less well. The fact that these models perform best could be an indicator that the
problem has nonlinear relationships that are not considered by the other models that

only consider linear relations.

Model MAE MAPE R?

xgbTree 3.60 6747 077
xgbDART 3.64 6890 0.76
mixed linear effects 4.11 69.05 0.74
elastic-net 993 90.57 0.50
OLS 10.34 91.81 0.50

Table 2.1: The accuracy results in the study performed by McHale and Holmes (2023)
with the loss functions mean absolute error (MAE), mean absolute percentage error
(MAPE), and R?. (Adapted from McHale and Holmes (2023))

The mixed linear effects model surprisingly outperforms the elastic-net and OLS
estimates although they are all linear models. The performance of the mixed linear
effects model even comes near the performance of the gradient boosting algorithms.
This might be because the mixed linear effect model compensates for the random effects
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Figure 2.10: A histogram with the distribution of the transfer fee values in the data set
of McHale and Holmes (2023). (Adapted from McHale and Holmes (2023))

of buying and selling clubs, which are important as shown in the research of Yang
et al. (2022). This shows the potential of mixed linear effects models combined with the
importance of club information in transfer fee estimation.

Next to that, the authors also compare the results of their xgbTree model with the
Transfermarkt’s market values. They find that their model outperforms these market
values in estimating the actual transfer fees on average. They also studied the perfor-
mance of the model for transfer fees with different fee values. In contrast to the average,
the Transfermarkt values outperform their model for transfers higher than 20 million
pounds. This could be caused by skewed data as their data set is highly skewed as
shown in Figure 2.10. It might be beneficial to implement a second model on data con-
taining the upper segment of the transfer fees or to create a hybrid model that gives the
final prediction based on the predictions of other models.

2.2.2.8 | Modified models

A combined model was obtained by Yigit et al. (2020), who tried to predict the market
values from Transfermarkt. They used a regularized linear model, a decision tree, a
random forest, and XGBoost model to predict the market values using performance in-
dicators of the Football Manager 2018 video game. Although they do not give extensive
consideration to the estimated losses of the models, they found that regularized linear
model outperformed the random forest model. They finally considered the XGBoost

and regularized linear models as the best methods and concluded that a weighted av-
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erage should be used where the results of XGBoost provide 70% of the outcome and the
regularized linear model 30%. This study presents an example of an approach where
multiple methods are combined to obtain one joint model.

Behravan and Razavi (2020) also introduced a method that contains a nontraditional
machine learning approach to predict market values based on FIFA 20 performance in-
dicators. They extensively used particle swarm optimization (PSO) as the first to use a
PSO-based clustering method to cluster players. On these clusters, they applied sup-
port vector regression (SVR) and used PSO to optimize the prediction accuracy. In
the optimization of SVR, the PSO algorithm also applied feature selection. The paper
lacks a baseline method to compare the quality of their model with other models, so
no conclusions can be drawn about the quality of the used methods. Nonetheless, their
research shows that evolutionary algorithms can be used for the optimization of algo-
rithms.

2.2.2.9 | Summary

To summarize, different types of models were applied in the studies discussed. The
studies in general showed that machine learning models can outperform linear meth-
ods in predicting the transfer values. For all studies, the performance improved for
more complex models, which indicates that the prediction task seems to be of a com-
plex nature. As the prediction for future values of transfer fees involves more uncer-
tainty, the prediction of transfer fees might, therefore, prove to be a difficult challenge
for which the type of model should be able to capture complex patterns present in the
data.

2.2.3 | Discussion of the studies

As the existing studies for transfer fee estimations have been discussed, overarching
topics can be discussed to obtain insight into the current state-of-the-art available in
academic literature. These insights provide supplementary understanding and context
to the project.

2.2.3.1 | Lack of studies on future value estimation

As discussed, there exist numerous studies on the transfer fees of players and influ-
ential factors for this. This could give rise to the expectation that there are studies on

future values of expected transfer fees. However, to the best of our knowledge, Payyap-
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palli and Zhuang (2019) and Baouan et al. (2022) performed the only studies consider-
ing future values of player valuations at the time of this literature review. Payyappalli
and Zhuang (2019) used a moving average window to obtain predictions for future
values, but they did not cover this in detail.

Baouan et al. (2022) studied the important indicators for future market values. They
trained a lasso regression and random forest model to predict Transfermarkt market
values based on player performance statistics from Wyscout. They trained a different
model for each player position and using the feature importances of these models, they
studied what features were influential for the development of the market value. They,
for instance, found that the inclusion of the average market value of a league was an
important indicator. A similar method could be applied in the research of this thesis to
infer the important variables.

In their study, they performed 5-fold cross-validation to tune the hyperparameters,
and their results for the lasso model and random forest models showed similar per-
formance. It should be noted that they included several higher-order polynomials and
success-ratio-based statistics in their feature set. In this way, they accounted for nonlin-
earities by performing specific feature engineering.

They found that the cross-validation estimates for the R? after hyperparameter tun-
ing were between 0.55 and 0.60, which is relatively high. However, it should be noted
that for this estimate, the cross-validation estimate was applied. This means that data
leakage probably has occurred and, additionally, the hyperparameter tuning was also
applied using this same cross-validation method. This led to an overly positive esti-
mate of their test losses. Because the authors did not include any estimations of the
losses on a separate test set, it cannot be said what the actual predictive quality of their
models on possible unseen future values is.

Baouan et al. (2022) and Payyappalli and Zhuang (2019) conducted the only re-
search on future values of transfer or market values of football players. Payyappalli
and Zhuang (2019) applied a moving average to forecast the market value, salary, over-
all rating, and potential to use it in an optimization problem. They stated that the
forecasting of these attributes could be a topic of research itself. Baouan et al. (2022)
carried out a descriptive study to identify important player characteristics to forecast
future market values. The results indicated that the age and the minutes on the field are
important variables in the development of a football player. This means that no study
has yet analyzed the predictive accuracy of forecasting future player transfers. To con-
clude, there is a lack of predictive studies on the forecasting of future player transfer

values.
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A possible reason for this is the complexity of the estimation of expected transfer
fees itself. He et al. (2015), for instance, found that their model was less accurate for the
best footballers. This was called the superstar phenomenon by Herm et al. (2014), and
is caused by the fact that the best football players are outliers of the general population.
As these football players draw the most attention, the accuracy on these players is im-
portant for the model to be accepted by practitioners. This creates extra complexity for
the modeling task.

Next to that, Herm et al. (2014) showed that public attention and performance are in-
fluential factors on the value of a player. As both of these factors can have fluctuations,
the resulting transfer fees of a model can be prone to have relatively large fluctuations
as well. The fact that the current values can be very volatile makes it a complex task to
predict future values as there is already much uncertainty involved.

In short, important factors in the development of future market values have been
studied. Still, research on predictive models to forecast the transfer values of football
players has not yet been carried out. An important factor in this is the fact that this
is a complex modeling problem due to, for instance, the superstar phenomenon and
temporal fluctuations in the estimates of a player’s value. This shows that the task at
hand might be a complex one and stresses that it is important to study the uncertainty
of the model.

2.2.3.2 | Biasin current studies

As discussed in subsubsection 2.1.2.3, there exists a bias in the current studies on player
performance because there is more knowledge on quantifying the quality of offensive
actions than on defensive actions. In contrast with player performance where models
were often only constructed for offensive performance, studies on the estimated value
of a football player are generally applied to all types of players. This bias in the existing
models for player valuation is, therefore, less apparent.

Nonetheless, player valuation methods are often trained using player performance
metrics. For instance, Yang et al. (2022) mainly take attacking KPIs into account which
creates an indirect bias in the model. This bias is caused by the fact that the features in
the model provide more knowledge about the attacking quality of a player which leads
to a better estimation of the value for offensively oriented players. This means that the
bias in the knowledge about player performance towards offensive players causes a
higher uncertainty for the player value estimation of defensive players.

Additionally, models estimating the transfer fee are trained on football players who
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make a transfer. Thus, no data is known about the players not making a transfer, which
creates a selection bias in the data (Franceschi et al., 2023). Therefore, models that esti-
mate the expected transfer fee should be used precariously when used for player val-
uation of players that do not make a transfer. Franceschi et al. (2023) state that market
values of, for instance, Transfermarkt make it possible to avoid this selection bias.

In short, there exist biases in the current research on monetary football player val-
ues, such as a bias towards attackers and a selection bias. These biases make the model
less useful for practitioners. The research in this thesis is performed on the data of the
Estimated Transfer Value, which is a model with a reduced bias toward attackers due
to the underlying SciSkill model. Consequently, there might be some bias present in
this research, although it is likely to be limited.

2.2.3.3 | Inconsistent definitions of market value

Additionally, it was discussed at the beginning of this section that the models for player
value estimation generally estimate the expected transfer fee of a player or the market
value of a player. However, according to the recent study of Franceschi et al., there did
not exist one clear definition of market value.

Nonetheless, many different studies discussed in this section have different sources
for their transfer market values. For instance, market values estimated by FIFA were
used by Al-Asadi and Tasdemir (2022), Steve Arrul et al. (2022), and Behravan and
Razavi (2020), whereas Yigit et al. (2020) used market values from Transfermarkt. As the
different sources might have different definitions, these studies might examine different
quantities because of the different underlying definitions.

The main goal of the current thesis is the estimation of future transfer values. As
discussed, many studies consider the market value of a player as a proxy variable. This,
combined with the different definitions of market values, creates a field of research that
uses several different variables to study the same concept. This gives rise to the need in

the current thesis to define the concepts involved in this study explicitly.

2.2.3.4 | COVID-19

Most of the models studied were trained on data containing seasons that were subject
to COVID-19 regulations. In these seasons, factors such as home advantage and quar-
antine regulations influenced the football transfers. Luo (2023) described the influence
of these factors and predicted that the consequences of the COVID-19 pandemic will

also be present in the years after the pandemic.
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Yang et al. (2022) confirmed this by showing that their models behaved differently
on data from the seasons influenced by the COVID-19 pandemic. Their research shows
that the fees for high- and medium-priced players were underestimated by their model
despite the fact that they included temporal variables that accounted for inflation. This
implies that the transfer fees for these transfers have increased. The COVID-19 pan-
demic, therefore, makes the modeling more difficult, which means that it might be in-
teresting to consider COVID-19-related features for the models in this research. How-
ever, the model used for the research in this thesis is time-homogeneous, and temporal

features are, therefore, not included.

2.2.4 | Economical context

As previously discussed, the early studies on influential factors for transfer fees were
based on economic approaches and principles. Franceschi et al. (2023) stated that the
focus of the field has shifted towards predictive modeling, even though the economic
approaches give important insights into the problem. Therefore, some economic prin-
ciples will now be discussed to be able to take this knowledge into account for this

research.

2.2.4.1 | Football transfer market as a labor market

The current football transfer market has been shaped by the Bosman ruling in 1995
(Frick, 2007). Before the Bosman ruling, football clubs could demand a transfer fee for
players whose contracts expired, but the Bosman ruling meant that a player could leave
transfer-free when their contract had expired. This change in rules caused an increase
in average player salary and contract length (Frick, 2007). In the new situation, the
leverage of football clubs over players was reduced. This change in regulations created
a transfer market that became similar to the general labor market.

There is much more data available on football player performance and player values
compared to a normal labor market according to McHale and Holmes (2023). This in
combination with the transfer market being similar to the general labor market makes
the transfer market an opportunity to study the valuation of human capital and labor
markets (Leifheit and Follert, 2021). This means that analyses of the transfer market are
interesting for labor market economists as some principles might be generalizable to
other labor markets.
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2.2.4.2 | Challenges of the football transfer market

However, compared to a normal market, the player market is continually changing
which makes it difficult to adequately model it (Yigit et al., 2020). In addition to this,
an increasing amount of money is involved in transfers, and high transfer fees with
a relatively high risk are paid on a small group of investments (McHale and Holmes,
2023). Moreover, some character traits are considered less important in the football
industry compared to other labor markets with, for instance, cognitive functions and
motivation being considered less important for footballers (Wakelam et al., 2022). Thus,
the transfer market differs from a general labor market, which has to be accounted for

when trying to generalize conclusions from analyses of the transfer market.

The fact that football clubs are willing to invest large sums in football players, which
generally involves large investment risks indicates the determination of football clubs
to perform well. Several researchers like (Sloane, 1971) and Dobson and Goddard (2001)
argued that football clubs should not be considered to be profit maximizers, but utility
maximizers. This means that athletic results generally have priority over financial re-
sults. Leifheit and Follert (2021) tried to obtain a more general concept of player value
by taking kit sales, influences on other players” development, and financial aspects con-
cerning athletic success into account for a player valuation. In this way, they tried to
obtain a more economic approach to the utility maximization of football clubs. In gen-
eral, it can be concluded that football clubs try to optimize the athletic performance
of the team subject to financial constraints. It is, therefore, important that the models
about player values are accurate and that the uncertainty is quantified such that this
can be taken into account by football clubs when assessing whether their transfer plans
satisfy their financial constraints.

To summarize, the football transfer market can be considered as a labor market with
a wide availability of data. Even though there exist some differences with the general
labor market, studies on the transfer market might obtain insight into the general labor
market. A main difference with the general labor market is the fact that football clubs
are utility maximizers instead of profit maximizers, which causes the focus of a football
club to be different than that of a normal company. Still, analyses of the football transfer

market might provide interesting insights into labor markets.
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2.3 | Predictive models

In this section, possible models from statistical learning for the construction of a model
for the prediction problems in the current thesis are discussed. With the knowledge
about the existing studies on player performance KPIs and player valuation, these mod-
els can be placed into context. For the different types of models, advantages and dis-
advantages will be discussed with a focus on explainability and uncertainty quantifica-
tion. Explainability is considered in the current thesis to be the extent to which it can be
explained why the model gives certain values. Uncertainty quantification is the extent
to which the uncertainty of predictions from a specific type of model can be quanti-
fied. In this section, linear, tree-based, neural network-based, and time series-oriented

methods will now subsequently be discussed.

2.3.1 | Linear methods

The first type of method is the linear method. The linear workings of these models
make it possible to interpret the results of the model and explain the values of predic-
tions. On the contrary, linear models cannot find complex patterns due to their simple
nature. Because of this, linear models are often used as baseline methods to compare

the improvement of the performance for more complex methods.

2.3.1.1 | Ordinary least squares

Ordinary least squares (OLS), sometimes called multiple linear regression (MLR), as-
sumes a linear relation between the dependent and independent variables as described
by Hastie et al. (2009) in Section 3.2. This results in the formulation y = X + € where
e ~ N(O, o2l ). With this formulation, OLS minimizes the residual sum of squares de-
fined as

minimizes RSS(B) := (y — XB)" (y — XB),

which has an unique global minimum at
pi=(X'X)" X1y

if X is of full rank.
As the predictions are obtained linearly, the explanation of the results of the model
is straightforward. Next to that, the linear model makes it possible to interpret the

meaning of parameters in the model. Consider the case where Y = ) ; ;X;. If a B;
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corresponding to X; is positive, it means that a higher value of X; is associated with a
higher value of Y. In addition to this, the relatively simple structure of OLS allows for
the construction of statistics for testing significance tests with additional assumptions
such as the normality of the features and labels. Although these assumptions do not
generally hold, they can be used as a heuristic to select features. In this way, OLS can

be used for feature selection based on statistical tests with a theoretical foundation.

The Gauss-Markov theorem also provides a theoretical analysis of the OLS method
as it proves that OLS has the smallest mean square error of all unbiased linear models
(Hastie et al., 2009, p. 51). Nonetheless, the underlying principle of the bias-variance
trade-off in statistical learning implies that introducing a bias in the model may outper-
form the unbiased case. A high number of variables leads to a high variance and causes
overfitting, and these problems can be addressed by regularization, which introduces
bias into the model. Moreover, the linearity assumption makes it harder to accurately
construct a model as nonlinearity and feature interactions can only be introduced in
feature construction. It is infeasible to include all possible interaction terms of higher
order or nonlinear transformations in a scenario with a large number of features as the
number of interaction terms blows up in this case. For the above reasons, the OLS often

has a low accuracy on prediction problems.

A benefit of the OLS model is the fact that it has natural uncertainty quantifica-
tion methods. As shown by Neter et al. (2004) in Chapter 2, the true coefficients of
OLS follow a t-distribution after ‘studentization’, which is subtraction by the estimate
and division by the estimated standard deviation. Similarly, they describe how to ob-
tain a prediction interval for unseen observations. It should be noted, however, that
these proofs have assumptions that are not met in the case studies of this research, like
normality in the response variable. Although these intervals cannot be used as true pre-
diction intervals for the potential application in this use case, they can be interpreted
as some measure of the uncertainty of the prediction. This means that the OLS model
has a naturally arising way of quantifying the uncertainty of the model, both in the

coefficients and in the predictions.

2.3.1.2 | Regularized least squares

To reduce the variance, a regularization term can be added to the OLS model which
introduces bias in the model. This is done by reformulating the optimization task by

adding a penalty term for the size or number of estimated coefficients or the number of

38



Chapter 2. Literature review 2.3. Predictive models

nonzero coefficients. The general problem that is optimized can be described as

minimizes RSS(B) + P(B) = (y — XB)" (y — XB) + P(B).

Because models with large or many coefficients are penalized, smaller values for the co-
efficients are selected or fewer coefficients are selected. This means that the addition of
the penalty term shrinks the coefficients of the optimal B towards zero which decreases
the variance of the model at the cost of some bias.

The penalty term is often chosen as P(B) = A[|B||] or the sum of multiple /, penal-
ties. The two well-known examples are lasso regression (¢; penalty) and ridge regres-
sion (¢, penalty) as described by (Hastie et al., 2009, pp. 61-73). The ridge regression
was popularized by Hoerl and Kennard (1970) and has a closed-form solution to the

optimization problem in the form of
Bridge _ (XTX + )\I) —1xTy

similarly to OLS.

Lasso regression was described by Tibshirani (1996) and is obtained by introducing
the ¢; penalty resulting in the objective function in the form of RSS(B) + A X!, |Bil-
The estimated coefficients can be described using the coefficients of OLS using

. 5 AN
}-asso = ]-OLSmax (0, 1— =5 ) .
e

This means that the coefficients could be calculated via the OLS coefficients, but this
would give computational problems due to the near-singularity of matrices in the case
in which noise features are present. To solve this, it is generally optimized using a
gradient descent algorithm.

Lasso and ridge penalties shrink the coefficients towards zero. However, the /;
penalty of lasso regression actually forces the coefficients to be equal to zero, whereas
the ridge penalty forces coefficients to be close to zero. In these ways, regularization
can be used to introduce bias and improve the predictive accuracy of linear models.
Still, the lasso model also applies feature selection by itself as it forces values to be zero.

Due to the introduction of regularization, regularised least squares loses the possi-
bility to construct significance tests for coefficients and prediction intervals. These are
obvious drawback of the regularized linear models.

39



Chapter 2. Literature review 2.3. Predictive models

2.3.1.3 | Mixed effect linear model

A linear mixed effects model is a linear model that can be used to predict transfer fees
as shown by McHale and Holmes (2023). In contrast to ordinary least squares and
regularized regression, a linear mixed effects model distinguishes between fixed and
random effects. As described by Lindstrom and Bates (1988), this is done by assuming
that

yilbi ~ N(XiB + Zibi, 0*A;),

where X; is the fixed effect of a group i and Z; is the random effect of the group i. The
distribution of the random effects is assumed to be N(0, csz), which gives that y; are
marginally independent with mean X;8 and covariance matrix X; = o2 (A + ZiDZl-T ).
The values for A; and D are then estimated by estimating the maximum likelihood esti-
mator using a Newton-Raphson method. With these estimated matrices, the estimated

parameters can be calculated by the formula
Bo) = (XTVIX)TIXTv Yy,

where V= A+ ZDZ".

In a linear fixed effects model, the fixed effects correspond to the features that are
studied for their systematic influence on the prediction, while random effects corre-
spond to variables that might influence the result in random ways like subjects in a
study where different measurements are performed on one subject. In this way, a linear
mixed effect model can take randomness in distribution the of the data into account.

Due to its linearity, a linear mixed effect model is still an interpretable model with
explainable results. On the other hand, feature selection cannot be applied and there
does not exist a regularization hyperparameter to help in the bias-variance trade-off.
Still, by distinguishing between fixed and random effects, more factors can be taken
into account by the linear model. This means that the linear mixed effects model might
perform better or worse depending on the context. As it was applied by McHale and
Holmes (2023) with promising results, this is an interesting model.

2.3.2 | Tree-based methods

More flexible prediction models can be found in the form of tree-based methods. These
are often based on fitting one or multiple decision trees to the data. As they partition
the feature space into a set of rectangles, decision trees can take nonlinearities and in-
teractions into account which makes them more suitable for more complex prediction

problems compared to linear models.
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2.3.2.1 | CART Decision Trees

The most simple tree-based method is a single decision tree, generally fitted using the
CART-method (Hastie et al., 2009, pp. 305-308). A CART decision tree divides the
feature space into rectangles and then takes the average value on each rectangle as the
predicted value. This is visualized in Figure 2.12. The CART method hierarchically
constructs the splits by empirically finding the split that would minimize the sum of
squares for each variable. The variable with the best split is then chosen. This process
can be repeated multiple times to produce splits. Each split can be represented as a
choice in a decision tree as visualized in Figure 2.11. This creates a model for which it is
easily explained how it works. Although the model is not linear, the splits give a clear
interpretation. Figure 2.12, for instance, shows that high values for X; are generally
associated with a higher value of the dependent variable.

The CART method itself works by testing all possible splitting points s for variables
j in the features as described by Hastie et al. (2009) in Section 9.2. Define

Ri(j,s) = {X|X; < s} and Ry(j,s) = {X|X; > s}.

The CART algorithm then defines the split that minimizes the optimization problem as

minimize |min ) (y; — c1)* + min ) (yi —2)?| . (2.4)
/s “ XiERl(j,S) - xi€R2(ij)

The inner optimization is solved by taking the averages of the points in Ry (j,s) and
R;y(j,s). The CART algorithm uses this by scanning through all input points to check all
possible splitting points s and variables j. In this way, the CART algorithm optimizes
the problem in Equation 2.4.

The hyperparameters of CART trees are the maximum depth and minimal leaf size.
A deeper decision tree creates a more flexible model decreasing the bias of the model.
On the other hand, it can be chosen to require more points per leaf, which decreases
the variance of the model but increases the bias. These hyperparameters can be tuned
to deal with the bias-variance trade-off. However, the decision trees generally suffer
from a high variance, fail to capture smooth surfaces, and have difficulties in capturing
additive structures (Hastie et al., 2009, pp. 310-313). A decision tree, therefore, generally

has a bad predictive performance.
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X2<t4
R Ro R3
Ry Rs
Figure 2.12: A perspective plot of
Figure 2.11: A visualisation of the prediction surface of a decision
a decision tree. (Adapted from tree. (Adapted from Hastie et al.
Hastie et al. (2009)) (2009))

2.3.2.2 | Random Forest

To solve this, bagging or bootstrap aggregation can be applied to trees. With bagging,
a model is repeatedly trained on resampled data obtained via the bootstrap method.
A new, bagged model is then obtained by taking the average resulting values of the
individual models, which reduces the variance of the model. Bagging especially works
well for methods with a high variance and low bias such as decision trees (Hastie et al.,
2009, Ch. 15). A random forest is a model obtained by applying bagging to decision

trees as this reduces the variance of a decision tree.

The decision trees in a random forest are fitted on the same data up to differences
due to the bootstrap, which creates strong correlations between the decision trees. Ran-
dom forest deals with this problem by taking a random subset of the features for the
construction of each decision tree, which improves the quality of the predictions.

The bagging method introduces a new type of hyperparameter to the tree-based
learner which is the number of trees fitted. With a high number of trees, the bias of
the method reduces, with a minimal increase in the variance and a large increase in
computational time. This hyperparameter can be taken into account when tuning the

models.

Because a random forest uses numerous different decision trees, it is no longer
straight-forward to explain how a model came to certain values as with decision trees
and the interpretation of the model itself is less straightforward. To obtain insights
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into the explainability of results, an implementation of Shapley values can be applied
to show how certain values differ from the mean and what the influence is of certain
variables (Lundberg and Lee, 2017). Next to this, it is possible to measure the feature
importance as shown in Figure 2.9. In these ways, random forests can still be an ex-
plainable method.

The random forest model consists of many decision trees that are obtained by the
bagging procedure. These individual decision trees all make their individual predic-
tions, which means that they provide a set of estimations. If the decision trees have
similar predictions, the model can be said to be certain of the final prediction and the
other way around. The method described by Wager et al. (2013) makes use of this bag-
ging procedure by applying an infinitesimal jackknife which approximates the effect of
small perturbations to the data to estimate the variance of the predictions. In this way,
it is possible to leverage the bagging procedure to obtain a model-specific uncertainty
qualification method for the random forest model.

2.3.2.3 | XGBoost

Another way of improving the predictive quality of tree-based learning is by applying
a boosting algorithm. Similarly to a random forest, numerous different decision trees
are fitted on the data to obtain a new model. In contrast with random forests, a boosting
algorithm fits these decision trees sequentially and reweighs the samples with the worst
predictive performance to improve the predictive quality on these data points. This
provides another way of making sure the predictions of the individual decision trees
are not highly correlated.

A commonly used boosting method is the XGBoost model introduced by Chen and
Guestrin (2016). They defined the objective function of the tth tree for the ith iteration
as

n

(- < (- 1
L0 =Y 19+ fi00) + Q) = Y18 + filx)) +9T + 5wl
i=1

i=1

where [ is a differentiable convex loss function. The algorithm then uses a second-order
approximation to optimize this expression where g; = d;¢-1)[(yi, 7=} is the first order
gradient statistic and h; = BE(H)I (y;, 9*=1) is the second order gradient statistic on the
loss function. Assume that a decision tree is fitted to the data called g. If ; is then the
instance set of leaf j, the optimal weight of leaf j can be derived and equals

B Zielj 8i
Zielj hi+ A

*_
wi =
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This results in the optimal value with respect to the leaf weights that is

T . 2
E(t) _ _1 E (Zlelj gl) + ’)/T
2 pt Yier hi+A
This value can be viewed as a measure of the quality of the tree structure 4.
The CART algorithm used in decision trees and random forests would now check
the value at each splitting point. The XGBoost algorithm reformulates the value as

1| (Tier, 80)° L (Ticr 8)*  (Tierg)® |
2 ZiGILhi_{—)\ ZiGIRhi+/\ Zielhi‘f")‘

*Csplit = e

where Iy and Iy are the instance sets of the left and right nodes after a split and I =
I U Ig. The XGBoost algorithm then estimates feature quantiles and uses this to find
suitable split candidates to check. This algorithm approximates the best value and also
takes into account possible sparse values of features.

Whereas random forests can fit decision trees in parallel, a gradient boosting al-
gorithm cannot due to the sequential algorithm which significantly increases the com-
putation time. However, the approximate algorithm of the XGBoost model drastically
decreases the computational time as shown in Figure 2.13 and results indicated mini-
mal costs in prediction performance.

To prevent overfitting, the XGBoost algorithm also introduces a regularization penalty
on the number of trees and the leaf weights. With several parameters for the decision
trees, the weighing function, and the regularization, the XGBoost algorithm has many
hyperparameters that need to be tuned. This takes more time, but also makes the model
more flexible which makes it possible to fit the model to many different problems. With
this, the XGBoost algorithm is a high-performance boosting algorithm with a good com-
putational time (Chen and Guestrin, 2016); (Brownlee, 2018, pp. 16-17).

Similarly to the random forests, XGBoost calculates the predicted values by taking
an average of the prediction of multiple trees although the XGBoost uses a weighted
average. Because of this, the feature importance and Shapley values can be calculated
analogous to the way these are calculated for random forests. Therefore, the explain-
ability of the model is still satisfactory. The Python implementation also provides pos-
sibilities for quantile regression, which provides uncertainty quantification. However,
this method needs a new model to be trained, which is a downside compared to the
uncertainty quantification methods of the OLS and random forest models.
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Figure 2.13: The computation time per tree in seconds plotted against the number of
threads used for the training time of a single tree in a boosting algorithm for a basic
algorithm and a sparsity-aware algorithm used in XGBoost. (Adapted from Chen and
Guestrin (2016))

2.3.3 | Neural networks

Another type of model is that of an artificial neural network (ANN). Neural networks
are based on combining linear combinations of features with nonlinear activation func-
tions, called hidden layers, as shown on the left in Figure 2.14. The universal approxi-
mation theorem introduced by Cybenko (1989) proved that with this construction it is
possible to asymptotically approximate any arbitrary continuous function on a subset
of the Euclidean space R™. For this, the width of the ANN should be able to go towards
infinity.

SHALLOW NEURAL NETWORK DEEP NEURAL NETWORK
Hidden Multiple hidden layers
layer process hierarchical features
Input
layer Output

B2
o

=‘“‘:
e
N\

AL
77

Figure 2.14: Schematic of a shallow neural network (left) and a deep neural network
(right). (Adapted from Han et al. (2020))
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2.3.3.1 | Deep neural networks

It is computationally infeasible to have a wide enough ANN to fully capture most func-
tions but it was found that an ANN can estimate functions more accurately by adding
extra hidden layers. A visualization of this is shown on the right in Figure 2.14. Neu-
ral networks with multiple hidden layers are called deep neural networks (DNN). The
weights in the linear combinations of each layer can be locally optimized by applying
methods based on gradient descent. The gradient of each linear combination can be
computed using the backpropagation algorithm which makes use of the chain rule for
taking derivatives. In this way, a DNN can be obtained that estimates a function.

There exist several methods that use gradient descent to optimize neural networks.
Stochastic gradient descent uses a stochastic approach to estimate the gradient by tack-
ing random batches of the samples to apply backpropagation. Several convergence the-
orems exist for this method providing a theoretical background (Garrigos and Gower,
2023; Zhang et al., 2021). The limited memory Broyden-Fletcher—-Goldfarb—Shanno
(LBFGS) method, on the other hand, is a quasi-Newton method with low iteration costs
that can be used for the optimization of DNNs (Liu and Nocedal, 1989). The settings of
the optimization methods can be used to prevent overfitting, but also a regularization
penalty can be added. With different choices for the optimization methods, the regu-
larization, the depth, and the width of a deep neural network, this method provides a
flexible method that can be applied to many problems.

However, DNNs generally need a large data set to perform well (Zhang et al., 2021).
Next to that, it is hard to explain how resulting values from a DNN are constructed. It
is possible to do this with Shapley values like with the tree-based methods but this is
more time-consuming for neural networks. Although a DNN does have methods to
quantify uncertainty such as utilizing the architecture or applying a Bayesian approach
(He and Jiang, 2023), the explainability of these methods in laymans terms is a problem.
To summarize, DNNs provide a method with a good predictive performance on large
data sets but with limited possibilities for explaining results and uncertainty prediction
of the model. As this type of model was not considered sufficiently explainable, they

were not implemented in the research of the thesis.

2.3.3.2 | LSTM networks

Up to now, all models had a vector of a fixed size as input to calculate a predicted
value. The prediction problem of the current thesis contains data of a fixed length such

as player age, height, and minutes played in the last season. In addition to this, it
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contains historical data on the KPIs of interest which can be viewed as a time series.
By viewing the problem as a classical prediction problem with a fixed length vector,
information is lost that might increase predictive accuracy.

Recurrent neural networks (RNNSs) are neural networks that can handle time series
as input. In contrast with a classical ANN, the RNN contains nodes that have a link
with itself as shown in red in Figure 2.15. However, training of RNNs is found to be
problematic due to the vanishing gradient problem as described by Chollet (2017). They
also write that Long short-term memory (LSTM) networks were introduced in order
to solve this problem. With a special construction of the sigmoid and tanh activation
functions, both a short-term and long-term memory information stream is obtained by
an LSTM network. Because of this, the LSTM networks do not suffer from the vanishing
gradient problem according to Chollet (2017). Next to that, it was found that LSTM
networks are good at analyzing the global, long-term structure of sequences and that
hyperparameter tuning and regularization methods are important for the performance
of LSTM networks.

Because of the ability of LSTM networks to take a time series as input, LSTM net-
works offer a method that potentially outperforms the others. As an LSTM network can
have a higher output dimension, the quantiles of the distribution can also be included
during training similar to the methods of Fan et al. (2023), which makes it possible to
perform uncertainty quantification. Nonetheless, LSTM networks are models that are
hard to explain, due to the difficulties of a neural network combined with the com-
plex construction of the LSTM network. Because LSTM networks are not sufficiently
explainable, they are not implemented in the research of this thesis.

Recurrent network

—— output layer

input layer Y (class/target)
hidden layers: “deep” if > 1

Figure 2.15: Visualsiation of a recurrent neural network. (Adapted from Mishra et al.
(2018))
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2.3.4 | k nearest neighbors

The last model considered in this research is the k nearest neighbor (kNN) model.
As described by Hastie et al. (2009) in paragraph 2.3.2, this model calculates the dis-
tance of input features X € IRV with the features of the data points in the training
set {(X1,Y1),...,(Xn, Yu)}. It then takes the k points with the least distance, called
the neighbors, and predicts the value based on the labeled values. For classification,
voting is performed and an average is taken for regression. This can be described as
f(X)=1y" ., Z,(X)Y; where Z(X) = (Z1(X), ..., Z,(X)) is the solution to the integer

—n
linear optimization problem

n
minimize Z;( X)) |1 X — X;l|,
minimize Y. Z1(X)/|X ~ X

n

s.t. Z ZZ(X) =k.

i=1

(2.5)

Dudani (1976) introduced an improvement of the KNN model by giving weights to
the different neighbors. To each neighbor, they assigned the weights w(i) := %,
where d; = ||X — Xj||, dmin 1= min{d;|i = 1,...,nand Z;(X) = 1}, and dmax =
max{d;|i = 1,...,nand Z;(X) = 1}. Equal weights were assigned in the case where
all distances d; are equal. They also provided the alternative weights w; = dl,» where
it is assumed that d; # 0. The prediction of a neighbor-weighted kNN is obtained by
f(X) = 15" wZ;(X)Y; Later, Bicego and Loog (2016) introduced a new view of the
kNN model by considering it as a combined classifier with each neighbor being an ex-
pert prediction. They showed that their method and the method introduced by Dudani
(1976) improved the predictive quality in experiments carried out in the research.

Although kNN algorithms do not have feature importances, Kononenko (1994) in-
troduced a feature importance measure based on the distances of a kNN classifier
called the ReliefF algorithm. This method was later adapted by Robnik-Sikonja and
Kononenko (1997) to be applicable to regression problems. As described by Robnik-
Sikonja and Kononenko (2003), this algorithm was called the Regressional ReliefF (RRe-
liefF) method and determines the feature importance W[A] of feature A in a kNN model

by defining

WIA] :=P(different value of A|nearest instances)

— P(different prediction|nearest instances).

These probabilities in this expression were approximated using the pseudo-code in Fig-
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ure 2.16. In this pseudo-code, the term diff is defined as

.  |value(A, I) — value(A, )|
diff(A, I, ) := max(A) — min(A)

where value(A, I) is the value of feature A for data point I. Next to this, d(i, j) should be

a measure that indicates the similarity between data point i and data point j. This d(i, j)
can be chosen with similar formulas as the d; in the neighbor weighting and should be
normalized to sum to 1 for each data point.

Algorithm RReliefF

Input: for each training instance a vector of attribute values x and predicted

value 7(x)
Output: vector W of estimations of the qualities of attributes

1. setall Nyc, N [A], Nicgda [A], W[A] to 0;

2. fori:=1 to m do begin
3. randomly select instance R;;
4, select K instances /; nearest to R;;
5. for j := 1 to k do begin
6. Nac = Nyo +diff(t(-),Ri, 1;) - d(i, j);
7. for A :=1 to a do begin
8. Nya[A] = Nya [A] + diff(A, R;. 1;) - d (i, );
9, NicsgdalA] = Nacgaa[A] + diff(t(-). Ri, f’,‘)-
10. diff(A, R;, I;) -d(i, j);
11. end;
12. end;
13. end;
14. forA:=1toado
15. WIA] = Nycgda [Al/Nac - (NaalA] — Nacaaa[A])/(m — Nac);

Figure 2.16: Pseudo code of the RReliefF algorithm (Adapted from (Robnik-Sikonja and
Kononenko, 2003))

2.3.5 | Summary

To summarize, several modeling methods have been discussed. Linear methods such as
ordinary least squares, regularized least squares, and mixed effect linear models have
good explainability, but they can be expected to have a bad performance. Tree-based
learning methods such as decision trees, random forests, and XGBoost provide more
complex methods that keep some interpretability but have better performance. The
deep neural networks and LSTM networks are not explainable enough for this research
but might perform better on complex problems with large samples. kNN is a very
explainable model, which can take nonlinearities and interactions into account. Un-

certainty quantification can be implemented for OLS, random forest, XGBoost, kNN,
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DNN, and LSTM models, but the corresponding methods have very different explain-
ability. Table 2.2 also briefly summarizes the discussed methods.
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] Model \ Model type \ Advantages \ Disadvantages
Eipiaiﬁal];}e ?Odlil Only linear relations
OLS Linear plathable rest s Limited interactions
Feature  significance .
. Prone to overfitting
testing
Explainable model
Regularised | | . Explainable results Only linear relations
inear . . o .
LS Feature selection with | Limited interactions
regularization
Explainable model Only linear relations
Mixed ef- Li Explainable results Limited interactions
inear a .
fect model Possibly improved pre- | No feature selection
dictive performance method
High variance
N Explainable model Lack of smf)oth surface
Decision Tree-based . representation
Explainable results "
trees Bad for additive struc-
] tures
Good predicted perfor-
mance
Random Tree-based Explanation via Shap- Inner workings less ex-
Forest ley values lainable
Interpretation via fea- P
ture importance
Good predicted perfor-
mance
XGBoost Tree-based Explanation via Shap- Inner workings less ex-
ley values lainable
Explainable via feature P
importance
Excellent performance , .
on laree data set No layman’s explain-
DNN Neural net- | 77 '8 . ability of model
Limited  explanation .
work . Results not explainable
via Shapley values
No layman’s explain-
LSTM Neural net- | Potential for time series | ability of model
work input Results not explainable
Explainable model
Explainable results via | Basic model that might
kNN kNN examples be unable to describe

Uncertainty prediction
method

all patterns

Table 2.2: Summary of the models discussed in this section.
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Methods

To find the best prediction method for future model-based KPI values, we studied the
application of nine predictive machine learning models. These models were imple-
mented for the values of the SciSkill and Estimated Transfer Value (ETV) as case stud-
ies. The training of the models was mainly aimed at improving predictive performance,
but the explainability and uncertainty quantification were also important for the case

studies and were considered when determining the best model.

3.1 | Data

The data used for this research was split into two datasets for the two case studies. The
two datasets contain player information and the development of the player KPIs in the
subsequent year. The datasets will be used to train models that predict the development

of these football player KPIs in the subsequent year.

3.1.1 | SciSkill

In the first case study, a dataset concerning the SciSkill, a metric for general player
performance, was obtained. The dataset was obtained from a temporal data set that
consisted of approximately 13 million data points corresponding to each game of a
player. These data points were irregularly placed in time. To obtain monthly data,
these data points were transformed into monthly data points. This was done by taking
the average value within a month if multiple values were available. Some months
contained no games due to seasonable breaks, injuries of a player, or players not being
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selected for games. For these months, the previous available SciSkill value was filled in
if the previous game was less than 6 months earlier.

To increase the quality of the data points, the monthly data set was then filtered
on players who played at least 20 games and on whom at least 2 years of data was
available. These filtering actions were used to ensure that the SciSkill values of these
players had converged to their actual values. Data points that contained missing values
were either deleted or filled in by an estimate depending on the feature. This resulted
in the data set used for the case study to predict the future values of the SciSkill. A full
list of features can be found in section E.1 in Appendix E.

The resulting data set contained information on 80,568 football players in the years
2012 up to 2023, which is on average 47.6 data points per player, corresponding to
approximately 4 seasons of data per player. The distribution of the data points over the
years is shown in Figure 3.1. The data available for this study consists of 3,834,539 data
points each representing the state of one player in one month with 86 different features
and the dependent variable. The dependent variable is the development of the SciSkill
in the subsequent year. This is defined as the difference in SciSkill between the SciSkill
value one year in the future minus the current value.
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Figure 3.1: The distribution of the data points for the SciSkill case study over the years.

3.1.2 | Estimated Transfer Value

In the second case study, the future values of the Estimated Transfer Value of football
players were investigated. This data set was obtained by combining the half-yearly
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data points with Estimated Transfer Value with the data set for the SciSkill case study. A
subset of features was used and some features were combined. In this way, many highly
correlated variables were avoided. By reusing the data set of the SciSkill problem, the
filters on the number of games and the minimal number of years of data were kept the
same. A full list of features can be found in section E.2 in Appendix E.

The data set consists of 413,177 half-yearly data points for 60,175 football players
containing 58 features and the dependent variable. The data set covers the years 2016
up to 2021 with on average 6.87 data points per player. This corresponds to approxi-
mately 3.5 seasons of data. For this case study, the dependent variable is the develop-
ment of the Estimated Transfer Value in one year. Similarly as in the SciSkill case study,
this is defined as the the ETV value one year in the ahead minus the current ETV value.

The distribution of the data points over the years is visualized in Figure 3.2. The
number of data points is slightly increasing throughout time. Whereas the SciSkill
problem consisted of data starting from the year 2014, the first data point from the
ETV model was in the year 2015. As some necessary features are based on information
on the ETV values from one year ago, the first data points to consider were those of the
year 2016. Next to that, the data of the ETV model was different for the year 2022 due
to a change in the model. That year was, therefore, not considered in this case study.
This means that the data for the ETV case study contained data points from the years
2016 up to 2021.
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Figure 3.2: The distribution of the data points for the ETV case study over the years.
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3.2 | Validation

A good prediction model was defined in chapter 1 as a method with a high accuracy
with explainable predictions, an interpretable model, and with an uncertainty quantifi-
cation method. In order to assess the predictive accuracy of the models, the following

validation methods have been applied.

3.2.1 | Train/test splits

The models were trained on the training set and the test set was used to determine the
quality of the model. Two types of train/test splits were applied in the current thesis.
The main test set of this study was obtained by taking a train/test split as visualized
in Figure 3.3. This split was carried out to estimate the quality of the predictions of
the different models and was not done using random sampling but by applying a time-
dependent split. The data points corresponding to the years up to 2020 were considered
as a training set. The data points corresponding to the later years were considered to be

the test set. These test sets were used to compare the predictive quality of the models.

A second test set was defined to study how the loss estimates develop through time.
This split was performed using stratified sampling on the SciSkill values, age, starting
date of the career, length of the available data window, player position, and the number
of matches played for each player. In this way, a representative test set with unseen data
of the whole population of football players was obtained. For each case study, the loss
estimates were calculated for the best two models. It also contains the RMSE score
when no change in SciSkill is predicted. This indicates the total change and might help
in explaining patterns. It gives information about the development of loss estimates

through time that can be used to put the estimates of the other test set into context.

3.2.2 | Choice of loss functions

Three interesting loss functions are the root mean square error (RMSE), the mean abso-
lute error (MAE), and the R?. Note that the R? is not a loss function itself, but can be

transformed into one by taking the negative R2. The considered loss functions can be
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SciSkill case study

Year 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
Usage

ETV case study

Year 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
Usage

Not included - Train set I:l Test set -

Figure 3.3: A visualization of the train and test set for both use cases.

defined as follows.

MSE(Y,Y) := (Y — Y)? (3.1)

MAE(Y,Y) :=|Y — Y| (3.2)
2y oy g (Y=Y)?

R(Y,Y):=1— 77 (3.3)

In this case, Y is the estimate of the true value Y, and Y is the sample mean. The root
mean square error is the root of the estimated or expected value of the mean square

error.

For the use cases of the current thesis, players with good values for the KPIs are the
most interesting as these will be world-class football players. It is, therefore, desirable
that the models perform best on these data points which can be considered as outliers
of the data set. The error on these data points will be larger and should be punished
more. As the RMSE punishes large deviations from the actual value more than the
MAE, the RMSE is favored. The MAE was still calculated as the comparison with the
RMSE might provide useful insights in the performance of the mdoels.

It was proven in A.1.1 that there exists a strictly monotone function between the
RMSE and the R? provided that they are applied to the same dataset. These loss func-
tions therefore contain the same information, but present it in a different way. Because
differences can be more clear in the R? and both loss functions have different interpre-
tations, both were estimated in this thesis.
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3.3 | Models

For each model, feature selection was applied using a method suited to the specific
model. The hyperparameters of the models in this research were tuned with a Bayesian

optimization algorithm as described in section 3.4.

3.3.1 | Linear models

The first model implemented was the ordinary least squares regressor (OLS). It was im-
plemented using the ‘OLS’ function from the statsmodels package in Python by Seabold
and Perktold (2010). Feature selection was performed by applying backwards feature
selection. As not all features are normally distributed, the assumptions for significance
testing in the OLS model do not hold. This means that a significance threshold of 0.01
does not correspond to a 1% probability of the Hy hypothesis being incorrectly rejected.
Nonetheless, it provides a threshold of the minimal required importance of the features.

Via trial and error on the training set, the best significance threshold found was
0.0001 for the SciSkill case study and 0.001 for the ETV case study. These values are
chosen smaller than the more classical values of 0.01 or 0.05 because of the large data
sets, the large number of features, and the fact that the assumptions of normality were
not met. No additional interaction or polynomial terms were considered because of the
high computational costs.

The second model implemented was the linear lasso model, which is a regularized
linear regression method as described in subsubsection 2.3.1.2. The implementation
used the coordinate descent implementation of the function ‘Lasso’ in the scikit-learn
package by Pedregosa et al. (2011) which follows the algorithms presented in (Friedman
etal., 2010; Kim et al., 2007). The feature selection was applied by training a lasso model
to the training data and selecting the nonzero features. Subsequently, a second lasso
model was fitted to obtain the final model. Similarly, as with OLS, no interaction terms
were considered for the lasso models.

The last linear model was the linear mixed effect (Ime) model. It was implemented
using the ‘mixedlm’” function of the statsmodels package by Seabold and Perktold (2010),
which follows (Lindstrom and Bates, 1988). This model can contain both fixed effects,
normal features, and random effects, variables that describe the random influence on
the relation between the dependent variables and the fixed effects. The random effects
are frequently used to describe the effects of different subjects on the relationship. In

this study, the first nationality of a football player was used as the random effect for
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both the SciSkill use case and the ETV use case. This was done because it provides the
possibility to identify possible discrimination based on nationality by the models and
because trial and error found that it resulted in good predictive performance compared
to other considered quantities. The feature selection was performed by taking the 20

features that had the highest feature importance for the lasso model.

3.3.2 | Tree-based models

In addition to the linear models, tree-based models were applied to the prediction
problems. First, a decision-tree model was implemented using the function “Decision-
TreeRegressor” in the scikit-learn package by Pedregosa et al. (2011) which follows the
methods as presented in (Breiman et al., 1984). Feature selection was performed by
adding noise variables as features and training the models. For each feature, the fea-
ture importance was subsequently computed, and features that had a higher feature
importance than the noise variables were selected. A final model was then trained on
the selected feature subset.

In a similar fashion random forest regressors were trained. The function ‘Random-
ForestRegressor” from the scikit-learn package by Pedregosa et al. (2011) follows the
algorithms presented in (Breiman, 2001; Geurts et al., 2006). As with the decision tree,
feature selection was performed by adding noise variables as features and training the
data, computing the feature importance, and selecting features with higher feature im-
portance than the noise variables. The final model was then trained on the feature

subset.

The last implemented tree-based model considered in this thesis was XGBoost. This
is a gradient boosting algorithm introduced and implemented by Chen and Guestrin
(2016). For hyperparameter tuning, the rule of thumb described by Brownlee (2018)
was applied, where the number of trees is first fixed at a value around 100 and the
other hyperparameters are tuned. The number of trees was afterward tuned keeping
the other hyperparameters fixed. In this way, the hyperparameter tuning was split
into two parts. Similar to the other tree-based methods, feature importance can be
calculated using an XGBoost model, which can be used for feature selection when noise
variables are added. Feature selection is thus performed by training the model on the
features with added noise features and by selecting the features with higher feature

importance than the noise variables.
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3.3.3 | kNN models

After the implementation of the linear and tree-based methods, the question was raised
whether it was beneficial to view the predictive problem as a time series or a stochastical
process. Several time-series methods were considered for the use case of the current
thesis such as the Prophet model by Taylor and Letham (2017), the vector autoregressive
processes (VAR) by Liitkepohl (2005), and a time-series-based kNN implementation.
The most promising method seemed to be a kNN implementation that takes the time
series into account next to several additional features. This was due to the explainability
of the method, the fast computation, and the limited ability of the other methods to
generalize patterns of football players” development.

In order to improve the predictive quality of the kNN model, distance-weighted
rules as described by Dudani (1976) were implemented. These methods take a weighted
average over the k neighbors and assigns stronger weights to neighbors that are closer
to the feature vector for which a prediction should be made. The weights were calcu-
lated using the inverse distance or the distance after min-max scaling within the se-
lected neighbors. In this way, it assigns heavier weights to data points that are more
similar, which improves the quality of prediction.

Using this adaptation, a study was performed to introduce feature weights to the
kNN model. The goal of this study was to introduce feature weights that improve the
quality of the predictions by assigning more importance to more important features.
This study and its results are described in Appendix B.

Based on the results of this study, three implementations of kNN regression models
were applied. All of the kNN models for the SciSkill case study contained the SciSkill
values of the last 12 months, the age, the month, and the number of months since the
last game of a player as features. These added features were selected because of their
simplicity in computing their values. This makes it more suitable for application out-

side of this research.

For the application of the kNN models on the ETV models, the last values of the
ETV, the SciSkill, and the SciSkill potential were used including the differences with
the historical data points of 6 and 12 months ago. The SciSkill potential is a metric
obtained after applying a more basic model to estimate the Sciskill 6 months in the
future iteratively. The largest value obtained can then be considered as the SciSkill
potential as it is the highest SciSkill that the player potentially is expected to attain.
Additionally, the age, the month, and the number of months without a game were
taken as features.
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All kNN models were implemented using the faiss package of Douze et al. (2024)
with hierarchical navigable small world indexing which builds a graph based on the
similarity between data points within the data set. This package provides a signif-
icant speedup for predicting values compared to the kNN implementation of scikit-
learnPedregosa et al. (2011) which follows Goldberger et al. (2004).

The first KNN that was implemented was the classical KNN model. The features
are weighted equally in this algorithm. The number of neighbors k was tuned as a
hyperparameter using the Bayesian optimization algorithm described in section 3.4.

Second, a kNN was implemented which used the Mahalabis distance metric as de-
scribed by McLachlan (1999) instead of the traditional Euclidean distance. This imple-
mentation was chosen due to the fast computing time and the high predictive perfor-
mance that were found in Appendix B.

The Mahalanobis distance can be computed using

i =l = /(i = ) T2 (31— x))

which is equivalent to the Euclidean distance in the transformed space obtained by
-1/2

the transformation x' = (x — 1)£71/2. To implement this algorithm, the covariance
matrix X was estimated using the element-wise estimation of the covariance matrix,
cov(X;, Xj) = 15 L(Xy — Xi)(Xy; — X;). The calculation of %71/2 was then per-
formed by applying a Choleski decomposition and calculating the inverse of this de-
composition matrix. Note that the true underlying X can be chosen as positive definite
by removing constant features and assuming that no linear dependencies between the
features occur. This makes it likely that the estimation ¥ was also positive definite if
enough data points are available. The number of neighbors k of this obtained kNN al-
gorithm was then determined using hyperparameter tuning with the method described
in section 3.4.

Lastly, a kNN algorithm with feature weights obtained by the RReliefF algorithm
(Robnik-Sikonja and Kononenko, 2003) was implemented. This method was imple-
mented for classification purposes, but there was a lack of available Python implemen-
tations for regression purposes. Therefore, a new vectorized implementation of the
algorithm was created in Python following the algorithm described in Figure 2.16. The
measure of similarity between two data points I;, I; was chosen to be d(i, j) := %
where ||I; — I||2 denotes the Euclidean distance between two data points I; and I.
The number of neighbors k was again viewed as a hyperparameter. A slightly more
elaborate explanation of the implementation of the RReliefF algorithm can be found in

subsubsection B.1.3.4 in Appendix B.

61



Chapter 3. Methods 3.4. Hyperparameter tuning

3.4 | Hyperparameter tuning

Most of the models considered for this study have hyperparameters that need to be
tuned when applying the model to the predictive problems in the case studies. These
hyperparameters were tuned using a Bayesian optimization algorithm which used an

adjusted time series cross-validation method as the objective function.

3.4.1 | Adjusted time series cross validation

Similar to the year-based train/test split described in subsection 3.2.1, the cross-validation
methods for the hyperparameter tuning were changed to prevent data leakage. A vi-
sualization is shown in Figure 3.4. This method prevented data leakage by splitting the
data based on the year it belongs to. The first training set was then obtained by the first
year while the second year was the test fold corresponding to the same first fold. The
next fold was then obtained by adding the second year to the training set and taking
the third year as the test set. In this way, the other folds could be created incrementally.
The final error estimate was then obtained by taking a weighted average over the folds,
where the weights are the number of data points considered in each training set.

2014 | 2015 |[2016 |2017 |2018 |2019 | 2020

Fold 1
Fold 2
Fold 3
Fold 4
Fold 5
Fold 6

Train set Test set -

Figure 3.4: A visualization of the division of the train and test set for the adjusted time
series cross-validation method for the SciSkill case study:.

This adjusted version of cross-validation could be expected to be more conservative
with respect to overfitting because some folds with a small amount of training data
were considered. This means that a small bias favoring hyperparameters that work well
for smaller data sets was introduced by using this adjusted time series cross-validation.
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On the other hand, the variance of the test error estimate was reduced by taking the
weighted average over the different folds.

In order to study the influence of this choice, a small study was performed in sec-
tion 4.3 in which test losses were calculated using a normal train/test split, a year-based
train/test split, a cross-validation method, and a time series adjusted cross-validation
method. To this end, the RMSE estimates were resampled using bootstrap for the OLS
and decision tree models. 20 bootstrap samples were taken for the SciSkill case study
and 50 for the Estimated Transfer Value case study. The mean and standard deviation
of these samples were then calculated to analyze the behavior of the different validation

methods.

3.4.2 | Bayesian optimization algorithm

For the optimization of the hyperparameters of the models, a Bayesian optimization
algorithm was implemented to minimize the estimated loss values. This method was
chosen as the Bayesian optimization algorithm with a Gaussian process generally pro-
vides the best results for hyperparameter tuning (Hutter et al., 2014). Next to that, the
Bayesian optimization algorithm provided possibilities to estimate the values of the
objective function, which gives visualization possibilities to explain the chosen hyper-
parameters.

The Bayesian algorithms were implemented using the Scikit-Optimize package pro-
vided by Louppe and Kumar (2016). The lower and upper bounds for the hyperparam-
eters chosen for the models are shown in Table 3.1. The number of function calls was
determined by trial and error with the requirement that the computing time remained
feasible. The obtained number of function calls is shown per model in Table 3.2. The
Bayesian algorithm used for the minimization of the loss values had an acquisition
function that was chosen to be a function that iteratively alternates between minimizing
the lower confidence bound, maximizing the expected improvements, and maximizing

the probability of improvement.

Model SciSkill ETV
Feature selection | Final model | Feature selection | Final model
OLS - - - -
Lasso 25 50 50 100
LME - - - -
Decision tree 25 50 50 100
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Table 3.2: (continued)

SciSkill

ETV

Feature selection ‘ Final model

Feature selection

Final model

Random forest 19 25 50 50
XGBoost 50 50 50 100
XGBoost (n_trees) 25 25 50 75
kNN - 25 - 50

kNN Mahal. - 25 - 50
kNN RReliefF - 35 - 50

Table 3.2: The number of function calls performed for the hyperparameters for each

model for the different case studies.
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|

Model Hyperparameter Lower | Upper | Type | Transformation
bound | bound
OLS - - - - -
Lasso « 107° 10? float x — 10*
LME - - - - -
Decision tree ' max depth 1 1,000 int -
min. samples per 1 920 float L D%
leaf
n_trees 20 250 int -
max. depth 1 25 int -
Random Forest | min. samples per 1 220 int £ 0
leaf
max. features 0.05 1.0 float -
max. samples 0.05 1.0 float -
n_trees 20 1,000 int -

1 2710 1 float x = 2%
subsample 0.01 1 float -
max. depth 1 15 int -

XGBoost min. child weight 1 7 int -
colsample by tree 0.01 1.0 float -
colsample by level 0.01 1.0 float -

A 2-10 210 float x 2%

« 210 210 float x 2%

kNN k 1 50 int -
kNN Mahal. k 1 50 int -
kNN RReliefF k 1 50 int -

Table 3.1: The specification of the considered values of the hyperparameters of each

model.
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Results

In this chapter, the results of the model training for the two case studies are discussed.
The results concerning the training of the individual models were studied to assess
whether the models were correctly trained. As these do not provide direct implications
for the main research question, these are described in Appendix C.

4.1 | SciSkill case study

4.1.1 | Predictive performance on test set

The values of the loss functions of the different models on the test set are visualized in
Figure 4.1. It shows that the RSME is generally between 4.4 and 4.8, the MAE between
3.1 and 3.4, and the R? between 0.25 and 0.4. The figure does not show large differences
between the RMSE and MAE values. However, the differences in the R? are more ev-
ident. As the differences are better visible and the R? is equivalent in this situation to
the RMSE as proven in section A.1, these are used interchangeably.

Figure C.4 shows the distribution of the 1000 bootstrap samples of the loss values on
the test set for the OLS model. These bootstrap samples were used to calculate a boot-
strap estimation of the standard deviation of the test loss values. These models show
that the distribution of the points appears to be symmetric. Next to that, they seem to
have a single mode around the mean value. The distribution of bootstrap samples of
the other models showed similar behavior. Therefore, the heuristic assumption is made
in the current thesis that a difference in the performance of two models of more than

two estimated standard deviations can be considered a significant difference.
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Figure 4.1: The values of the test loss estimates for the different models in the SciSkill
case study.

The largest standard deviation of the RMSE losses is 0.00607, while for the MAE and
the R? it is 0.00359 and 0.00122 respectively. This means that differences in the RMSE
should be around 0.012 to be significant, for the MAE 0.0072, and for the RZ0.0024. This
research will use these thresholds to consider two loss values as different.

It can be seen in Figure 4.1c that all models provide more insight than assuming
that every football player is constant in their SciSkill value, indicated with ‘No change’.
Moreover, all R? values are significantly larger than zero. This means that all models
show improvement over assuming no change or assuming the average change of the
whole sample.

The loss values in Figure 4.1c are the worst for the kNN-based models for all loss
functions. This is probably due to their simple and local nature. The kNN-based models
are, therefore, not considered the best models for this prediction problem with respect
to predictive accuracy.

The results also indicate that the tree-based models outperform the linear models.
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Bootstrap test RMSE of OLS model Bootstrap test MAE of OLS model Bootstrap test R? of OLS model

Mean: 4.5996

o 0
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(a) RMSE (b) MAE (c) R?

Figure 4.2: Histograms of the distributions of the 1000 bootstrap samples for the differ-
ent estimated loss functions of the OLS model in the SciSkill case study. The bootstrap
mean is indicated by a vertical line.

This is probably due to the fact that the true relation includes non-linear or interaction
terms with the features, which are not taken into account by these models. Conse-
quently, the linear models are not considered the most accurate models for this predic-
tion problem.

This means that the tree-based models have the best predictive performance. The
decision tree has the worst predictive accuracy, which could be expected as it is a sim-
ple method. It is, however, surprising that it outperforms all linear models. This is
probably due to a large amount of data and the large size of the tree, combined with
the presence of nonlinearity or interactions.

The best-performing models are the XGBoost and the random forest models. The
difference between the RMSE for these methods is 0.052038, which is significant. The
same holds for the difference between the random forest and decision tree models,
which is 0.081519. As this difference is also significant, it can be concluded that the
differences within the tree-based models are significant. The same also holds for the
MAE and the R%. This means that the model with highest predictive accuracy is the
XGBoost model, followed by the random forest model. The decision tree model is the
third best.

4.1.2 | Predictive performance on age groups

For the use-case of SciSports, the performance of the models on certain subsets of the
players is interesting. It is, for instance, important that the models perform well on
young players, as the estimates of the resulting model of the current thesis are expected

to be used the most for this subset.
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The RMSE of the players of each age were estimated on the test set. This resulted in
the visualizations in Figure 4.3. The XGBoost and random forest models perform better
for all ages. For ages above 25, the XGBoost clearly seems to have better loss values
compared to the random forest model, whereas the differences are less evident for the
lower ages. The better general RMSE loss of the XGBoost model is probably caused by
the better performance on the subset of the better players.

The results also show that the bad performance of the kNN models are mostly
caused by the larger RMSE on the lower ages. Figure 4.4 gives the distribution of the
data points per age. There are less data points corresponding to the lower ages. Because
the kNN models are local models, the small amount of data points make it harder for
the models to infer the right patterns as there are not enough data points to do this.
The kNN models, therefore, perform worse because of the low number of data points

available for the younger ages.

Model Performance Per Age

—— No change
OoLs
Lasso
LME
Decision tree
Random forest
XGBoost
— kNN
== kNN Mahalanobis
-- kNN RReliefF

RMSE

T T T T T T T T T T
18 20 22 24 26 28 30 32 34 36
Age

Figure 4.3: The estimated test RMSE for each age group for the different models.

In general, Figure 4.3 shows that all models perform best in the age group of 24 up
to 28. Figure 4.4 provides the number of data points in the data set for each age. The
group of players with ages from 24 up to 28 is also the group of players with the most
data points. The estimations of the younger and older ages are, therefore, based on
fewer data points. On top of that, the performance of a football player is often more
stable for ages from 24 up to 28, which makes it easier to estimate. This explains why

the performance of these age groups is worse than for the age group of 24 up to 28.
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Figure 4.4: The number of data points for each age group in the training and test set.

When the performances of the individual models are assessed, they clearly show
that the performances of the XGBoost and random forest models is better for the young
ages compared to the other models, whereas the XGBoost model performs better for
the later ages. Because the performance on the younger ages is the most important for

the use-case, the XGBoost and random forest are the favorable models.

4.1.3 | Predictive performance on subsets of outliers

Additionally, it is important to look at the model performance for the subsets of players
with a high SciSkill value, a large decrease in SciSkill, and a large increase in SciSkill
over a year. These cases are the most interesting for the users of the model but are
outliers of the dataset at the same time. This creates a challenging prediction problem.

The performance of the models on the data points with SciSkill values larger than
100 was studied, as well as the data points with a decrease or increase of at least 10 in
their SciSkill within a year time. These results are shown in Figure 4.5 and indicate that
the XGBoost and random forest models perform best on the data points corresponding
to players with a high SciSkill or a large decrease. The XGBoost and random forest

models are also best at predicting large increases, although the XGBoost appears to
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predict more accurately.

sciskill > 100 by Model decrease < -10 by Model

RMSE
e = N w B W O
RMSE

& ét,&@; & j@" & !
S & *\5\& &
Model
(a) Data points with a SciSkill of at least 100 (b) Data points with a decrease in SciSkill
of at least 10
increase > 10 by Model
12
10 1
o
ol
2
0 T T
I rev‘&i \"‘d} e«»"‘} & \fé‘aé‘h &\\5‘
& s * & &
< &

(c) Data points with an increase in SciSkill
of at least 10

Figure 4.5: The RMSE estimates on different subsets of the test data in the SciSkill case
study.

The XGBoost and random forest models perform well on the subsets of players with
a large decrease or increase. These correspond to the extreme values for the dependent
variable. This could be expected as the XGBoost model had good values for the RMSE,
which is dominated by the large errors that typically occur at the extreme values of the
dependent variable. Consequently, the performance on these subsets is in line with the
results shown in Figure 4.1.

4.1.4 | Summary predictive performance

To summarize the results on the predictive performance, the XGBoost model predicts
the most accurate with respect to the RMSE, MAE, and R?, followed by the random
forest model. It was found that the XGBoost and random forest models performed best
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for the younger players and that the XGBoost model had the most accurate predictions
for the older players. A study of interesting groups of outliers showed that the XGBoost
model performs best for predicting large decreases or increases in SciSkill. For the data
points with a high SciSkill or a large decrease, the random forest and the XGBoost
models had the lowest loss values. These results mean that the XGBoost and random
forest models are the best models for this case study with respect to predictive accuracy,
with the XGBoost being slightly favorable.

4.1.5 | Predictions per year

The 5% test set of this study contained a set of players that remained unseen by the
models. The two most accurate models were the XGBoost and random forest models.
Additionally, the loss values were determined on this data set when no change in the
SciSkill was predicted. This can be viewed as a baseline model. Figure 4.6 gives the loss
estimates of these two models and the case where no change in SciSkill was predicted.
The results indicate that both models have a better predictive accuracy than predicting
no change. Moreover, the random forest and XGBoost models had similar performance,
although the XGBoost model seemed to have performed slightly better. These results,
therefore, do not provide new insights into the performance of the models.

Model performance per year

—— No change
_______________________________ - Random forest
47 TESeilliieenite -—-- XGBoost

T T T T T T T T T
2014 2015 2016 2017 2018 2019 2020 2021 2022
Year

Figure 4.6: The RMSE estimates for each year on the stratified 5% test set in the SciSkill
case study.
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However, the RMSE scores of the models seem to be relatively the same but are a
bit higher for the last three years. The line representing no change indicates an even
larger difference in RMSE. This means that the distribution of the data in the last years
has changed, which might be due to the addition of new players or competitions for
instance. This change in distribution implies that there are temporal effects in the data,
which were not included in this study. It might be interesting to include features that
might influence the distribution through time, like the number of new players in the
data set in a year or the total number of players. This might improve the predictions of
models.

4.1.6 | Feature importances

All linear and tree-based models in the current thesis had possible interpretations of
feature importances. These feature importances can be studied in order to obtain in-
sight into the most influential features for estimating how football players will develop.
In order to do this, the feature importances were scaled using min-max scaling and vi-
sualized as in Figure D.14. Note that the KNN model with RReliefF features also had an
interpretation of feature importance. Because the RReliefF weights only were applied
to the time series features, these feature importances were not taken into account.

The results show a heatmap in which only a few features have a large importance.
Additionally, it indicates that the models mostly agree on the most important features.
One model that differs is the OLS model, where only age-related features seem to be
important. This might be due to strong correlations between these age-related features.
The XGBoost model is another model with different behavior in feature importance.
Although it gives more importance to the features that are deemed most important
by the other models, it gives, in general, a relatively high importance to the features
that were considered unimportant by the other methods. This might be because of the
ability of the XGBoost model to decorrelate features by using subsampling. The random
forest also performs subsampling, but the hyperparameters selected by the Bayesian
algorithm turned this off, which might have limited the working of this property. In
this way, Figure D.14 provides interesting insights into the features importances of the
models.

The figure also shows that age-related features are deemed important by all models.
As discussed in the literature study, domain knowledge indicates that the development
of a player is often dependent on age. Therefore, this is in line with what was expected.

Next to that, the current SciSkill value was an important feature. It can be expected
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that players with a very high SciSkill do not increase in quality as they will barely
increase their SciSkill by performing well, but will decrease steeply if they perform
badly. It is, therefore, not surprising that this variable influences the estimates.

Another important variable is the number of months since the most recent game of a
player (‘previous_zero_months’), resistance-related features (‘player_resistance’; ‘min-
utes_x_resistance_domestic’; “‘minutes_x_resistance_domestic_last_6m’;
‘mean_resistance_last_6m’) and the difference in the SciSkill between the player and
the average of the whole team (‘sciskill_diff mean_team’). The importance of these
variables is not surprising as these factors are known to be of influence on the underly-
ing SciSkill model itself. It is, therefore, logical that these features have an influence on
future values.

The features concerning the difference in SciSkill with the historical SciSkill val-
ues (‘sciskill_diff 1m_ago’; ‘sciskill_diff 6m_ago’; ‘sciskill_diff 12m_ago’) show a rel-
atively large feature importance. However, the KNN models with time series features
did not perform well. Models combining information of normal variables and historical
values could, therefore, be expected to predict best.

On the other hand, it might also be the case that adding features from the linear
and tree-based models to the KNN models improves the predictive quality of the kNN
models. Features with possible added value are, for instance, those related to player
resistance.

In short, the feature importances of the different models can be used to conclude
which features are important for the prediction of the development of the SciSkill val-
ues in the next year. In this case study, age-related features, features connected to the
SciSkill model, and time series information are important features. Additionally, com-
paring the feature importances of the models provides insight into different behaviors
of the model.

4.2 | Estimated Transfer Value case study

4.2.1 | Predictive performance on test set

The loss values on the test set are visualized for the different models in Figure 4.7. The
values of the RMSE are generally between 1.7 million euros and 1.8 million euros the
values of the MAE are between 440,000 and 540,000 euros, and the values of the R? are
between 0.1 and 0.2. The figure does not show large differences between the RMSE, but
the differences in the R? and the MAE are more evident.
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Figure 4.7: The values of the test loss estimates for the different models in the Estimated
Transfer Value case study.

For each model, the bootstrap estimation was applied to approximate the standard
deviation of the test losses. The distribution of these estimates is visualized in Fig-
ure 4.8, which appears to be symmetric and unimodal. Similar to the SciSkill case study,
differences are assumed to be significant if they are larger than two standard deviations,
corresponding to the 95% two-sided interval of the normal distribution. The largest
standard deviation of the RMSE losses is 44,580 euros, while for the MAE and R?2 it is
respectively 6,509 euros and 0.02202. This means that differences in the RMSE should
be around 89,000 euros to be significant. For the MAE this is around 13,000 euros and
for the R?, it is 0.044.

The largest differences in the RMSE are between the linear mixed effect model
(1,797,849 euros) and the random forest model (1,704,637 euros). This difference is
93,212 euros, which means it is a significant difference. Similarly, the RMSE of the
random forest model is significantly different with the RMSE values of the lasso and
OLS models. This means that all differences in RMSE of the random forest model and

the linear models are significant. However, the differences with all other models in
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Figure 4.8: Histograms of the distributions of the 1000 bootstrap samples for the dif-
ferent estimated loss functions of the OLS model in the ETV case study. The bootstrap
mean is indicated by a vertical line.

the RMSE are smaller than 89,000 euros and can thus not be considered as significant
differences.

For the MAE on the other hand, the differences are more obvious. The random
forest has the best MAE value (441,403 euros), with the second-best MAE value corre-
sponding to the XGBoost model (453,343 euros). The difference between these MAE
values is less than 13,000 and the difference is, therefore, not significant. As the dif-
ferences with the models other than the XGBoost model are larger, the random forest

model performs significantly better than the other models.

The differences between the linear models are less than 2,500 euros, which makes
these differences insignificant. On the other hand, the differences between any linear
models and any tree-based or KNN-based model are at least 68,726 euros, making these
differences significant. This means that linear models perform significantly worse than
the tree-based and kNN-based models with respect to the MAE.

The lasso model has a similar RMSE value to the decision tree model. At the same
time, the decision tree has a lower loss for the MAE. Large errors are penalized more
by the RMSE and small errors have, therefore, more influence on the MAE. Therefore,
the smaller MAE loss for the decision tree means that the decision tree makes relatively
better estimates on the data points with smaller errors. It is reasonable to assume that
these are the average points of the data set as the largest errors are made on the out-
liers. It can, therefore, be concluded that the decision tree performs better on those data
points.

On the other hand, the RMSE is similar for both the lasso and decision tree models.
The RMSE is heavily influenced by the large errors of the model and it can, therefore, be

concluded that they perform similar on points with a large error. In this context, these
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points can be assumed to be the players with a high ETV and changes in ETV. It can be
concluded that the lasso model and the decision tree perform similarly on the players
with a high ETV or large changes in ETV.

4.2.2 | Performance on age groups

The RMSE for each player’s age was calculated for the different models on the test set.
This resulted in the visualizations in Figure 4.9. It shows that the error of the model
decreases with age. Older players generally have a smaller transfer value and smaller
errors will generally be made on players with smaller transfer values. Moreover, their
value could be expected to be decreasing, which makes the development in the next
year more predictable. It could, therefore, be expected that the error is smaller for older

players.
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Figure 4.9: The estimated test RMSE in euros for each age group for the different models
for the ETV case study.

Figure 4.9 shows that the linear models perform worse than the tree-based and
kNN-based models for the ages of 30 and older. The errors on these data points are gen-
erally smaller and the linear models thus perform worse on this subset of data points
with relatively small errors. The bad performance on the older players could be an ex-
planation for the fact that the linear models perform worse for the MAE, but not much

worse for the RMSE as described in subsection 4.2.1.
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Figure 4.9 has different models being the best for many different age groups. Only
the random forest model appears to be slightly better for the ages 31 up to 34. In gen-
eral, the performances of the models per age do not show obvious patterns in perfor-

mance.

4.2.3 | Performance on subsets of outliers

The performance of the models was also studied on different groups of outliers in the
test set. These outliers were the players with an ETV of at least 10 million euros, players
with a SciSkill of at least 100, players with a decrease in ETV in the next year of at least
2.5 million euros, and players with an increase in ETV in the next year of at least 2.5

million euros. The results are visualized in Figure 4.10.
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Figure 4.10: The RMSE estimates in euros on different subsets of the data of the ETV
case study.

Figure 4.10a indicates that the random forest model performs much better on the
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players with a large ETV value. The error is around 5 times smaller than the other
models. The players with a large ETV value are expected to also have larger changes
in the ETV which are more likely to have larger errors. This would explain why the
random forest model has the best test RMSE estimate on the general test set.

The random forest model has the property that it can deal with highly correlated
features and data points due to the subsampling of features and data points. The XG-
Boost is the only other model that performs column subsampling. The tuned hyper-
parameter for the XGBoost model selected a larger fraction of the columns than the
equivalent hyperparameter in the random forest model. This makes the random forest
deal better with highly correlated features. Moreover, the random forest model is the
only model that performs data point subsampling to break down dependencies within
the data points. An explanation for this surprising result could, therefore, be that the
random forest model was able to deal with the correlations of the features and data
points that are stronger within this subset of data points.

Figure 4.10b indicates that the loss values on the subset of players with a high
SciSkill tend to be large compared to the general loss values as the RMSE values are
between 10 million and 12 million euros. This could be expected as this subset contains
players with larger changes, which are harder to predict. It also shows that the random
forest and the kNN-based models tend to perform best on the players with high SciSkill
values.

A similar pattern is visible for the players with a large decrease in the ETV value
albeit with smaller RMSE values and more clear differences. This might be caused by
the fact that the patterns in these subsets are similar. This is reasonable because players
with a high SciSkill have a high Estimated Transfer Value, which can generally only
decrease over time. These subsets could, therefore, be expected to behave somewhat
similarly.

A surprising result is the fact that the XGBoost model performs best on the subset of
players with a large increase in ETV values as given in Figure 4.10d. The decision tree
and random forest models also appear to perform relatively well on this subset. It can
thus be concluded that tree-based models perform better in predicting large increases
in ETV. This result might be caused by the fact that these models are able to describe
nonlinear relationships and interaction terms within variables, which linear models
cannot do. The differences with the kNN models can be described by the fact that the
tree-based models might be able to infer more of these relationships with fewer data
as the tree-based models are less flexible than the kNN models and this might help to

infer patterns better on smaller data sets.
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4.2.4 | Summary predictive performance

To summarize, the predictive performance in terms of the test RMSE loss was the best
for the random forest model closely followed by the XGBoost model. The random forest
was also the best model with respect to the test MAE loss. There did not appear to be a
large difference in performance for certain age groups. The XGBoost model performed
best at predicting large increases in estimated transfer values, although the random
forest and kNN model with Mahalanobis distance performed well on the subsets of
players with a large decrease in player value or a high SciSkill. Lastly, the random for-
est clearly outperformed the other models on the subset of players worth more than 10
million euros. Consequently, the model with the best predictive performance is the ran-
dom forest and the second-best predictive performance was achieved by the XGBoost

model.

4.2.5 | Predictions per year

A 5% test set was created described as in subsection 3.2.1 that contained players that
remained unseen by the model. The two most accurate models were the random forest
and XGBoost models. Figure 4.11 indicates the loss estimates of these two models and
the RMSE when no change in Estimated Transfer Value was predicted. The results show
that both models provide interesting information as they have lower loss values than
predicting no change. Moreover, the random forest and XGBoost models performed
similarly.

The results also show that the RMSE values increased after the year 2018. This trend
was present both for the losses of the models and the losses of predicting no change.
The increase of the loss of predicting no change indicates that more changes in the ETV
were present in the later years. This could be explained by differences in the feature
distributions. It is known that the distribution of, for instance, contract length changes
over time. This is due to the fact that more detailed information was available about
contract lengths for later data points. This resulted in less estimated contract lengths,
which have an important influence on the Estimated Transfer Value. As the contract
length is dependent on time, it can also be assumed to be influential for the Estimated
Transfer Value one year later in time. Although the distribution of this feature can be
expected to become more stable, the results indicate that the RMSE values are likely to
increase in the years after 2021.
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Figure 4.11: The RMSE estimates for each year on the stratified 5% test set in the Esti-
mated Transfer Value case study.

4.2.6 | Feature importances

The linear and tree-based models have methods to describe the importance of features
for predictions of the model. These were rescaled and visualized in Figure D.28. In gen-
eral, different features were considered important by the linear and tree-based models.

The results show that the ETV-related features (‘etv’, ‘etv_diff 6m_ago’,
‘etv_diff 6m_ago’) were most often the important features. This implies that informa-
tion about historical values contains information to predict future values.

The results indicate that, for instance, the number of minutes played in the last 6
months (‘minutes_played_last_6m’), the number of minutes played multiplied by the
resistance value of the domestic competition within the last 6 months,
(‘minutes_x_resistance_domestic_last_6m’), and the number of minutes played in an
international competition in the last 6 months (‘minutes_played_international-
_competition_last_6m’). The relatively high importance, mostly in the tree-based mod-
els, of these features indicated the importance of playing time in the development.

More surprisingly, the results show that the feature describing the month only has a
large influence on the predictions for the tree-based models and not for the linear mod-
els. This value only contained two different values, which makes it impossible that
this difference is caused by a nonlinear relationship with the dependent variable. This
means that it must be caused by the interaction terms in the underlying relationship be-
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tween the dependent variable and the variable month, as tree-based models are able to
take this interaction into account whereas these were not included in the linear models.

A similar pattern is shown for the age-related variables, which are only assigned
relatively high importance by the tree-based models. As these are continuous variables,
this indicates that there are nonlinearities or interactions with other variables that are
important.

The results also show that the linear mixed effect model and the random forest mod-
els assign relatively high importances to less important variables for the other models
such as the number of minutes played by a player in the last six months
(‘minutes_played_last_6m’) and the sum of the variances in the SciSkill historical val-
ues (‘sciskill_variance_6m’). For the random forest, this can be explained by the fact
that these features are correlated with other features combined with the fact that a ran-
dom forest has the ability to handle highly correlated features relatively well. For the
linear mixed effect model, this can be explained by the fact that only the 20 most im-
portant features in the lasso model were selected, which is a relatively small feature
set compared to the other models. The features in this set, therefore, have a relatively
larger feature importance as there are fewer features.

4.3 | Analysis time series adjustment cross-validation

For the hyperparameter tuning, an adjusted time-series cross-validation estimation
method was applied. To investigate the behavior of this method, it was analyzed by
applying bootstrap 20 times to the loss estimations. This was also done for comparison
with a time-dependent train/test split, a random train/test split, and a 5-fold cross-
validation. Because the models have to be trained repeatedly, this was only done for
the OLS and decision tree models to reduce computation time.

The results of the bootstrap analysis on the validation methods are shown in Fig-
ure 4.12 and Figure 4.13. The estimated standard deviations show that cross-validation
and the adjusted time series cross-validation methods both result less variation within
the estimates. This is due to the fact that they average over different folds and was the
behavior that was aimed for when applying cross-validation.

The results show that the time-dependent validation methods, the time-dependent
train/test split and adjusted time series cross-validation, have larger mean loss esti-
mates than the classical validation methods, the random train/test split and 5-fold

cross-validation. This difference indicates that data leakage occurred with the classi-
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Figure 4.12: The mean and standard deviation estimates using 50 bootstrap samples of
the SciSkill case study for the OLS and decision tree models.
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Figure 4.13: The mean and standard deviation estimates using 50 bootstrap samples of
the Estimated Transfer Value case study for the OLS and decision tree models.

cal validation methods, which causes an overly positive loss estimate. This means that

it was necessary to apply time-dependent validation methods.

The mean of the RMSE estimates of the time-dependent train/test split are larger
than the adjusted time series cross-validation method. This indicates that the distribu-
tion of the points can differ for each year. It could, for instance, be the case that data
points in later years are harder to estimate. Another possible explanation would be that
the most relevant information is in the last year in the test set. The adjusted time se-
ries cross-validation had folds with only one year training data and the models would
consequently not be influenced by the less relevant years. The adjusted time series
cross-validation method, thus, had less variance in its estimates at the cost of slightly
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too positive estimates of the loss functions.

The train/test split and the 5-fold cross-validation have similar mean RMSE esti-
mates. This was expected as the samples they draw from have the exact same distribu-
tion. As a result, the 5-fold cross-validation method only decreases the variance of the
loss estimates compared to the random train/test split for the predictive problems con-
sidered in these case studies and does not appear to change the mean of the estimates.

The time-dependent train/test split in the SciSkill case study is the only validation
method, where there is a large difference between the standard deviations of the OLS
and the decision tree models. Surprisingly, this difference is not present for the other
validation methods. This might be caused by the appearance of some outliers in the
training set that are very influential. As the decision tree model can split based on a
few outliers, it can result in worse estimations on data points that are non-typical for the
data set. The influence of these outliers is smaller on the OLS model, which is relatively
simple and might, therefore, be better at extrapolating patterns. This might explain the
large difference in the standard deviation of the OLS and decision tree models for the
time-dependent train/test split in the SciSkill case study.

To summarize, the analysis showed that time-dependent validation methods are
necessary to prevent data leakage. Although the adjusted time series cross-validation
gives more positive values for models that perform well on small data sets compared
to the time-dependent train/test split, its estimates have a smaller variance. It is, there-
fore, the favorable validation method is dependent on the application.
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Discussion

The aim of this research was to determine the best model to predict football player KPIs
one year ahead. The quality of the model is considered as a combination of predictive
performance, explainability, and methods to implement uncertainty quantification. The
predictive performance of the models was studied in the case studies of this research.
The explainability and methods for uncertainty quantification were covered in the lit-
erature study. Using these parts of the research, it will be concluded which model is the
best with respect to these three criteria.

To work towards a conclusion, the predictive quality, explainability, and meth-
ods for uncertainty quantification will first be discussed. Afterward, the implications,
strengths, and limitations will be covered for the different parts of the performed case

studies. These are the data, the features, and the model training.

5.1 | Model quality

The main question of the current thesis is to determine the best model to predict future
values of player performance KPIs with respect to predictive performance, explainabil-
ity, and uncertainty quantification. The quality of the models will now be discussed for
each of these aspects.

5.1.1 | Predictive performance
5.1.1.1 | SciSkill case study

As found in subsection 4.1.1, the best predictive quality for both the test estimates of
the RMSE and the MAE was obtained by the XGBoost model closely followed by the
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random forest model. The differences in the scores of the other models were almost all
significant. Additionally, the RMSE scores of the XGBoost and random forest models
performed best on the subset of young players, which was considered to be an impor-
tant subgroup for the use case of this case study. Moreover, the XGBoost model had one
of the best scores for the subset of outliers, whereas the random forest showed similar
predictive performance. This means that the XGBoost model provided the best pre-
dictive performance for the SciSkill case study closely followed by the random forest
model.

Next to that, the results show that the tree-based models had better loss values than
the linear and kNN models, and the linear models achieved better predictive perfor-
mance than the kNN models. The results show that the tree-based models performed
best for players of a young age. Moreover, the losses on the subsets of outliersindicate
that the tree-based methods generally provided better estimations for these groups.

This means that the tree-based models generally performed well.

5.1.1.2 | ETV case study

The results of the ETV case study provided less significant differences in the predictive
quality of the models. The results indicate that the linear models predicted worse than
the other models in terms of both the RMSE and the MAE. However, the differences in
the RMSE estimates of all of the tree-based models and kNN-based models were not
found to be significant. The MAE estimates did indicate the random forest model to be
significantly better than almost all other models except for the XGBoost model.

The loss scores per age did not give a distinctly better performance of a model for
this case study. The differences in performance on the subsets of important outliers
were more obvious, as the random forest estimator clearly outperformed the other
models on the subset of the players worth more than 10 million euros. Additionally,
the random forest estimator also provided one of the best loss estimates on the other
important subset. Therefore, the predictive performance of the random forest model

was the best and the XGBoost model had the second-best predictive performance.

5.1.1.3 | General prediction of player performances

Both case studies showed that tree-based models outperformed both linear and kNN-
based models. They predicted better than linear models due to their ability to deal with
nonlinearities and interaction terms, which were present as discussed in section 5.3.

The tree-based models could infer these patterns with less data than kNN-based mod-
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els, which explains the corresponding difference in predictive performance. In this way,
the tree-based models seem to have better properties to accurately predict the future
value of player performance KPIs.

From the tree-based models, the XGBoost had the best predictive performance in
the SciSkill case study, closely followed by the random forest model. Conversely, the
random forest model predicted most accurately in the Estimated Transfer Value case
study, with the XGBoost model having the second-best predictive accuracy. The differ-
ences between the two models were larger in the case study of the Estimated Transfer
Value. The results of the case studies, therefore, give rise to the conclusion that the
random forest model has the best predictive accuracy over the two case studies.

Finally, the loss estimates can be used to describe the predictive problems in this
study. First of all, the R2-values in this research were below 0.4. This indicates that
it was only possible to predict a limited part of the variance in the data. The results
also show that the predictive performance decreased on the most interesting subsets of
players, such as that of young players, good players, expensive players, and players
with large changes in KPI values. Moreover, nonlinearity and interaction effects are
important in this predictive problem. This implies that predicting the development
of player performance KPIs in football over the next year is a challenging predictive
problem.

The loss values of these models were determined in both case studies using a test set
that contained the data points after 2020. These loss values estimated the generaliza-
tion losses and were used to select the best model. These values describe the expected
predictive performance of the models on unseen data. It should be noted that for both
player performance KPIs, the changes in the player performance KPIs one year ahead
appear to have become larger. This was shown by the increased RMSE values of pre-
dicting no change of the KPIs in subsection 4.1.6 and subsection 4.2.6. Consequently,
it is important to monitor the predictive performance using the most recent data when

models are used for the prediction of player performance KPIs.

5.1.2 | Explainability

One of the aims of this study is that the models should be explainable models, where
the workings and predictions of a model can be explained. The linear models and kNN
models are explainable because of the explainable workings of the model resulting in
predictions. The tree-based models are also explainable because they are constructed

using very explainable decision trees. Additionally, their predictions can be explained
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using adjusted Shapley values by Lundberg and Lee (2017). All models in this research
are, thus, sufficiently explainable.

Nevertheless, the workings of the KNN models are even more explainable. This is
due to the fact that the general actions performed by the model are explainable in non-
technical jargon. This makes the KNN models a type of model that can be of added
value in providing explainable estimations in predictive problems.

One downside of the use of a general kNN model is the absence of feature im-
portances. To this end, the research in Appendix B was carried out. This resulted in
the implementation of the RReliefF algorithm, which estimates the feature importances
based on the kNN model. The results show that the different input features describing
the time series had different importances, with the most importance assigned to the
age and most recent SciSkill value. Because the RReliefF weights did not improve the
predictive quality compared to equal weights, the meaning of these weights is question-
able. Consequently, the RReliefF weights do not provide the improved explainability
that was aimed for.

Although all models are sufficiently explainable, there are some models that are
more explainable than others. Linear models are highly explainable as the influence
of the features can be described in layman’s terms. The workings of a kNN are also
explainable to practitioners because the algorithm provides historical data points of
which the prediction is the weighted average. The random forest and XGBoost models,
on the other hand, are less explainable compared to the other methods as a bit of the
explainability of the decision trees is lost due to the bagging and boosting procedures.
Consequently, the random forest and XGBoost models are slightly less favorable com-
pared to the other implemented models in terms of explainability, although all models

are sufficiently explainable.

5.1.3 | Uncertainty quantification

The last criterion on which models are assessed for their quality is their ability to pro-
vide uncertainty quantification. Uncertainty quantification can be solved by applying
quantile regression like performed for XGBoost by Yin et al. (2023), which was based
on changing the loss function so that it learned to estimate prediction intervals. A
downside of this method is the fact that this type of uncertainty quantification is not
explainable and needs an additional model.

This is different for uncertainty quantification methods that naturally arise from the

inner workings of the predictive models. The kNN models, for example, make pre-
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dictions based on k data points. These data points do not only provide the possibility
to explain the predictions, but also the possibility to estimate the uncertainty of the
prediction. This can be done by studying the variety between the values of the depen-
dent values in these data points. A large variety means that the prediction is unsure,
whereas a small variety within these values indicates that the model is certain about
the estimation. In this way, the k neighbors can be used to obtain confidence intervals
naturally arising from the model to provide uncertainty quantification.

Moreover, the OLS model has an underlying theory that gives prediction intervals,
which arise from the uncertainty of the estimated coefficients and the randomness in
new points. Although these prediction intervals are based on assumptions that did not
hold, such as the normality of the errors, they do provide a measure of the uncertainty
of the predictions.

Random forests are obtained using the bagging procedure, which provides a set of
predictions from which the average is taken. This set of predictions can be utilized as
described in Wager et al. (2013) to obtain uncertainty quantification. In this way, a nat-
ural uncertainty quantification method also emerges from the random forest models.

In these ways, uncertainty quantification methods can arise naturally from these
models. For the OLS, random forest, and kNN models this means that they have good
methods for uncertainty quantification. The XGBoost and the other models have the
possibility for quantile regression, which needs an additional model that makes it pos-
sible to do uncertainty quantification. As a result, these models satisfy the requirement
for uncertainty quantification, although the OLS, random forest, and kNN models are

preferable in terms of uncertainty quantification.

5.1.4 | Determination of best model

For the SciSkill case study, the findings show that the best predictive performance was
obtained using the XGBoost model, closely followed by the random forest model. Both
models achieved good loss estimates on the test set, on young players, and interesting
outliers. Due to their tree-based structure, these models are capable of describing fea-
ture importance. Moreover, their predictions can be explained using SHAP values. This
makes the random forest and XGBoost model explainable methods. The random for-
est model’s bagging procedure naturally facilitates uncertainty quantification. On the
other hand, the XGBoost model requires an additional XGBoost model with quantile
regression to do this. This makes the random forest model more advantageous com-
pared to the XGBoost model. Considering that the random forest model had nearly the
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best predictive results, is explainable, and provides naturally arising uncertainty quan-
tification, it can be concluded that the random forest model is the optimal model for the
SciSkill case study.

In the case study of the Estimated Transfer Value, the predictive quality was the best
for the random forest model. This was due to its good performance on the general test
set and the important subgroups of players. Most notable was the good performance
on the subset of players with an Estimated Transfer Value exceeding 10 million euros.
The XGBoost model emerged as the second-best. Similarly as in the SciSkill case study,
the random forest model is an explainable model and facilitates an uncertainty quantifi-
cation method naturally arising from the bagging procedure. As a result, the random
forest model is deemed the best model for the Estimated Transfer Value case study.

This research aims to find the best model with respect to the predictive quality, ex-
plainability, and methods for uncertainty quantification. In both case studies, the ran-
dom forest estimator emerges as the best model with respect to these criteria. The re-
sults of this research, therefore, show that the random forest is the best model when tak-
ing into account predictive quality, explainability, and methods for uncertainty quan-

tification.

5.2 | Used data

For the case studies of this research, two data sets were used to study. The data set for
the SciSkill case study consisted of more than 3,800,000 monthly data points on more
than 80,000 football players in the years 2014 up to 2022. Because this data set consisted
of 86 features and the dependent variable, the challenging part of this study was to
make sure that the different models could work with the size of the data set.

The data set of the SciSkill case study consisted of at least 20 data points per player
and on average approximately 48 data points per player. The different data points
corresponding to the same football player are similar, especially when close in time.
This means that the samples in the data set are dependent, which creates an additional
challenge for the models to infer patterns from the data.

On the other hand, the case study on the Estimated Transfer Value provides different
challenges. This data set consisted of approximately 7 data points per player for more
than 60,000 football players. The 413,000 data points covered the period from 2016 up
to 2021 with 57 features. This time period is shorter because of limitations for the data

availability at the time of the research. Nevertheless, the data set consists of 6 years of

92



Chapter 5. Discussion 5.3. Features

data, which should still be enough to train predictive models for the development of
the Estimated Transfer Value.

Another challenge is caused by the fact that the distribution of the ETV values is
highly skewed and mainly has data points with a small Estimated Transfer Value. Ad-
ditionally, the few players with large Estimated Transfer Values contribute to the largest
errors. This means that the main challenge for the models in this case study is to infer
patterns from a limited amount of a highly skewed data set.

The SciSkill case study comprised a data set with around 9 times as many data
points as the Estimated Transfer Value case study. At the same time, the best model in
the SciSkill case study attained an R? of 0.378, despite the best model of the Estimated
Transfer Value case study attaining 0.194. This indicates that a smaller proportion of
the variance could be predicted for the Estimated Transfer Value than for the SciSkill.
This might be due to the smaller data set available for the case study.

5.3 | Features

The features in the data sets were created to predict the development of football play-
ers. These features were constructed using domain knowledge of the football context
and the processes of the models generating the player performance KPIs. Of course,
it should be noted that it might be the case that more informative features could have
been constructed for this study. However, the data availability provided a challenge for
the construction of features such as player popularity or injury proneness.

As discussed in the literature study, the performance of a football player is known
to be dependent on the age of the football player with a nonlinear relation. To deal with
this, the age, the age squared, and the differences of the age and the average peak age
on the given player position were included as features. The feature importances in the
SciSkill case study show that the age of a football player is important for the develop-
ment of the quality of a player as these quantities had a large importance in the models.
The influence of the squared age in the linear, random forest, and XGBoost models in
the SciSkill case study shows the presence of nonlinearity in the prediction problem.
This means that the findings of this research are in accordance with the existing litera-
ture.

In the Estimated Transfer Value case study, information about the age of a footballer
was also taken into account in other features in the data set, such as the Estimated

Transfer Values itself or the difference between the SciSkill and the estimated potential
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SciSkill. Nonetheless, the results attributed importance to the age-related features like
the age or age squared. This means that the age-related features also influence the
predictions of the development of the Estimated Transfer value one year ahead.

Next to that, it was found that features such as the current SciSkill (‘sciskill’), and
differences with the SciSkill and historical values (‘sciskill_diff 1m_ago’,
‘sciskill_diff_6m_ago’, ‘sciskill_diff_12m_ago’) influenced the predictions of multiple
models in the SciSkill case study. This implies that the time series information of the
model provides useful information for the prediction of SciSkill values one year later.
A similar occurrence was visible in the Estimated Transfer Value case study, where the
current ETV (‘etv’) and differences with the ETV and historical values (‘etv_diff_6m_ago’,
‘etv_diff 12m_ago’) have high feature importances. This shows that the historical time
series of the KPI values provides information about future values.

An interesting finding is that the development of the ETV in the next year was
heavily dependent on the current month of the year. This is shown by the high feature
importance of the month and could be expected because transfer decisions are generally
different in the winter and in the summer. This was not reflected in the linear models
and the feature only attained two values. This implies that this is due to the interaction
of this variable with other variables, which was not taken into account by the linear
models. Although the month is important for the ETV development, the results show
that it is not considered important for the development in the SciSkill. This means that
the time of the year could be an important factor in the prediction of future values
dependent on the player’s KPI, but it not necessarily is.

The study performed by Baouan et al. (2022) showed that the age and the number
of playing minutes were important variables in predicting the market value of football
players one year ahead. The results in the current thesis attribute large features impor-
tance to features describing the number of minutes played. The feature importances of
the tree-based methods also indicated that age-related features were important for the
prediction of the ETV values a year later. The findings in this research are, therefore,
largely in line with the results of Baouan et al. (2022).

5.4 | Model training

5.4.1 | Hyperparameter optimization

Except for the OLS and LME models, all models in this research have been trained after
applying hyperparameter tuning. This was done by applying a Bayesian optimization
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algorithm to minimize the estimated loss values. The visualizations of the evaluations
in Appendix B show that the hyperparameter tuning algorithm evaluated the boundary
points of the hyperparameter space for every model. This can be explained by the
fact that the Bayesian optimization algorithm selects points by taking the point that
maximizes the chance of improvement and minimizes the lower confidence bound,
which is often the most extreme point as the algorithm is least sure about its value.
Consequently, the Bayesian algorithm favors the boundary points of the search domain.
With enough function evaluations for the hyperparameter tuning, this effect should be
reduced. As the Bayesian algorithm only found minimal gains for the last function
evaluations, it can be assumed that enough function evaluations have been performed.
Therefore, this bias is most likely not problematic.

The cross-validation method adjusted for time series was implemented as the ob-
jective function of the optimization problem. The results showed that the adjusted time
series cross-validation decreased the variance of the loss estimates at the cost of tak-
ing into account loss estimates of models trained on smaller data sets when they are
compared to the time-dependent train/test split. Consequently, hyperparameter val-
ues that better handle smaller data sets are favored. Therefore, the use of the time
series adjusted cross-validation results in the hyperparameter tuning method selecting
parameters corresponding to less flexible models.

As the first ten function calls of the Bayesian algorithm are chosen randomly in
the data set, the improvements after the first ten function calls are improvements that
can be attributed to the use of the Bayesian algorithm. The convergence plots in Ap-
pendix D show the improvements in the best-found value for all numbers of function
calls. It can be seen that all models improve their function value the most in the first
few function calls. The plots of all models with up to two hyperparameters show that
almost no improvement was attained after the first ten function calls. It can, therefore,
be concluded that the added value of the application of the Bayesian algorithm was
minimal for these models.

In contrast, the random forest estimator and the XGBoost estimator have more hy-
perparameters, and finding the best values, therefore, is a harder problem. As an ex-
ample, the hyperparameter tuning of the final random forest model in the Estimated
Transfer Value case study shows that the best-found value improved after the first ten
function calls. Similar behavior was more often displayed by the function values in the
convergence plots of the hyperparameter tuning for the random forest and XGBoost
models. This means that the Bayesian algorithm did manage to improve the quality of

the chosen hyperparameters for these models.
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In general, the Bayesian algorithm provides a way to minimize the losses in order to
perform hyperparameter tuning that treats all models equally. Although the algorithm
favors boundary points slightly, this does not appear to have much impact. Therefore,
the application of the Bayesian algorithm to minimize the losses in the hyperparameter

tuning was of added value to this study.

5.4.2 | Feature selection

The first part of the model training was performing feature selection. For each model, a
suitable feature selection was applied that is closest to the model itself. Consequently,
the linear models, for instance, cannot describe nonlinearities or interactions between
the features. The linear models assign higher importance to features with a linear rela-
tion. Because the different models infer patterns differently, taking one universal fea-
ture selection method would introduce favoritism in this research toward certain mod-
els. The model-specific feature selection methods provide the possibility to compare
the models without indirectly favoring a specific model.

The feature selection methods selected on average approximately 70 out of 86 fea-
tures in the SciSkill case study. This shows that the models generally excluded only a
few features. It could be an indicator of the fact that almost all features contain some

sort of information about the development of the SciSkill in the next year.

On the other hand, the feature selection methods selected on average approximately
31 out of 56 features in the ETV case study. This means that a smaller proportion of
the features was selected in the ETV case study compared to the SciSkill case study. A
possible cause for this could be the fact that fewer features contain useful information to
predict the ETV development in the next year. This could explain why the models in the
ETV case study were able to predict a smaller proportion of the differences compared to
the SciSkill case study, as reflected by the generally lower values of the R? loss estimates.

To summarize, the feature selection methods were chosen to be model-specific. This
avoids possible favoritism of certain models. Almost all features were selected in the
SciSkill case study. This was probably due to the fact that most features have some
importance. In the Estimated Transfer Value case study, around half of the features
were selected, which illustrates that the feature selection methods are able to exclude
unimportant features. The feature selection methods, therefore, performed as aimed
for.
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5.4.3 | Chosen models
5.4.3.1 | Linear models

Linear, tree-based, and kNN-based models were studied in this research, of which the
most basic type of model was that of linear models. The implemented linear models
were OLS, lasso, and linear mixed effect models. The OLS model was implemented as a
baseline. The OLS model and the lasso model performed similarly in both case studies.
This could be due to the fact that overfitting is not an issue in the OLS model, because of
the size of the data sets in this research. Nonetheless, the OLS model had large feature
coefficients due to high correlations between the age-related variables. The lasso model
shows smaller feature coefficients with similar performance. As a result, the coefficients
of the lasso model are most likely closer to the true relationship, and regularization is
of added value in the predictive problems of this study.

The third studied linear model is the linear mixed effect model. This model pro-
vides the possibility to include a random effect to correct for the random influences of
this variable on the predictions. In theory, it is possible to include multiple random
effects in the model. In practice, no suitable implementation for this was available in
Python. An own implementation of this method would have taken up too much of
the available time. The inclusion of only one random effect might be the cause of the
limited performance of this model.

The random effect considered in this study is the nationality of a football player.
This means that the influences of nationality were compensated by the model. If the
mixed linear effect model had performed differently than the other linear models, this
would have been an indicator that the other models discriminated indirectly based
on nationality. The linear mixed effect models performed similarly to the other linear
models, which means that it does not indicate discrimination based on nationality by

the models.

5.4.3.2 | Tree-based models

The tree-based models in this research are the decision tree, a random forest, and an
XGBoost model. With these models, it is possible to study the added value of the bag-
ging and boosting by the random forest and XGBoost models, respectively. Within the
tree-based models, the random forest and XGBoost models had a better predictive per-
formance than the decision tree. This shows that both bagging and boosting provided

an increased predictive performance of the models.
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Furthermore, it was observed that the tree-based models generally outperform the
linear models with respect to predictive quality. Even the decision tree model, which
was implemented as a baseline model, outperformed the linear models in terms of
predictive accuracy. The feature importances imply the presence of nonlinearities and
interaction effects between the features in the true underlying relation as discussed
in section 5.3. Tree-based models can take these into account, whereas linear models
cannot. This explains the improved qualities of the predictions by tree-based models.

A surprising finding is the fact that training loss of the XGBoost model clearly
showed that this model was overfitting in the SciSkill case study as described in subsec-
tion C.1.6. Similarly, the random forest model was overfitted in the Estimated Transfer
Value case study as discussed in subsection C.2.5. Still, these models had the best test
loss values in said case studies. This means that the overfitting of these methods does
not seem extremely harmful, although the hyperparameters could be chosen by hand
to prevent overfitting. This might result in a more robust model.

The results show that the XGBoost and random forest models had an improved
predictive performance compared to the linear models in both case studies. Still, the
linear model had an R? of at least 0.3 in the SciSkill case study. This means that the
linear models were able to infer some of the patterns of the development of the SciSkill
in the next year. It might have been interesting to create a stacked model where a tree-
based model was applied to the residuals of the OLS model. In this way, the tree-based
models could focus on specific patterns that a linear model could not describe, which
might provide new insights. Features with a large importance for the tree-based model
could, for instance, be considered to have a nonlinear influence or to have important

interaction effects. Additionally, it might improve the predictive performance.

5.4.3.3 | Time series kNN models

The kNN models are the last type of models that was studied in this research. These
models were trained with time series information as features and, in this way, did not
have access to the information contained in various features of the general data sets
of the case studies. The results show that the predictive performance of these kNN
models was not competitive with the tree-based models that were provided with more
information, although they had better predictive performance than the linear models
in the Estimated Transfer Value case study:.

The results also show that the bad performance of the kNN models was mostly
caused by the larger RMSE for the lower ages in the SciSkill case study. There were
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fewer data points corresponding to the lower ages. Because the kNN models are local
models, the small amount of data points made it more difficult to predict for the models
as there were only a few data points to infer the right patterns. The kNN models,
therefore, performed worse because of the low number of data points available for the
younger ages.

At the same time, the loss functions of some kNN models show multiple local op-
tima in the marginal objective function with respect to the number of neighbors k. This
could, for example, be found for hyperparameter tuning of the final KNN model in the
SciSkill case study. The appearance of multiple optima can be explained by the fact
that several subsets of the data have a different optimal number of neighbors. These
different optimal values were dependent on age as not many similar data points were
available for younger players as discussed. Consequently, it might be better to intro-
duce a dynamic number of neighbors or implement a hybrid model based on multiple
kNN models with different numbers of neighbors.

For the kNN models, time series information was used to predict the dependent
variable, which created extra dependencies within the features. The Mahalanobis dis-
tance transforms the features into a space where all features are independent. This
explains why the use of the Mahalanobis distance for the kNN model resulted in im-
proved predictive quality compared to the standard Euclidean distance of the normal
kNN model in the SciSkill case study.

In order to measure and use feature importance, KNN models with RReliefF weights
were implemented. The RReliefF weights, however, did not improve the loss values
for the kNN model with RReliefF weights compared to the normal kNN model. This
means that the inclusion of the feature importances did not improve predictive quality
and that the aim of the RReliefF implementation is not achieved. However, the feature
importances were multiplied in this model with the features to influence the scale, but

it might be the case that another method provides better results.

5.4.3.4 | Reflection on the methods

To summarize, the results indicate no large differences in performance between the lin-
ear models. The results show that the lasso model regularization was of added value.
The LME models did not improve the predictive quality and did not indicate discrimi-
nation based on nationality. The tree-based methods showcased the possible improve-
ments obtained by bagging and boosting. The KNN models showed that the time series
features contained interesting information, although they did not perform best. In this
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study, the tree-based models outperformed the linear and kNN-based models.

At the same time, the tree-based models are the most complex models. As they also
had the best predictive performance, this might indicate that more complex models
could obtain better predictions. Although more complex models often have a worse
explainability, they might provide better predictions. Therefore, the insights obtained
by this study in the trade-off between the different criteria are limited by the considered
models.

5.4.4 | Validation methods

Different validation methods were used to do the hyperparameter tuning and the as-
sessment of the models. The bootstrap analysis of different validation methods in sec-
tion 4.3 indicated that with normal cross-validation or a random train-test split, data
leakage would have occurred resulting in overly positive results. This means that the
implementation of time-dependent validation methods was necessary.

To estimate the generalization loss, which was used to assess model quality, the
time-dependent train/test split was considered. The results of the analysis of the val-
idation methods showed that this method had a larger variance of the predicted loss
value. Nonetheless, conclusions about differences in performance could oftentimes be
determined because bootstrap analysis was applied to study this variance. In this way,
the larger variance of the predicted loss values did not prevent the assessment of the
predictive quality of the models.

For the objective function of the hyperparameter tuning, it was not possible to do
a bootstrap analysis. Therefore, the adjusted time series cross-validation method was
applied. Although the adjusted time series cross-validation method resulted in more
positive loss values than the time-dependent train/test split, this method reduced the
variance, sometimes called noise, of the objective function of the hyperparameter tun-
ing. The reduction of noise in the objective functon was of added value, as it speeds
up convergence and results in more accurate minima. Therefore, the adjusted time se-
ries cross-validation methods were better than a time-dependent train/test split for the
purpose of hyperparameter tuning.

The root mean square error (RMSE) is the main loss function in this research. The
RMSE assigned larger penalties to large errors. This might be harmful if there are many
outliers of the data set that produce large errors and are not of specific interest. This was
not the case because the case studies contained some interesting subgroups that pro-
duced higher loss functions such as the players with large SciSkill values, Estimated
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Transfer Values, decreases, and increases. The large penalties of the RMSE for these
outliers forced the models to predict with smaller errors on these subsets. The con-
scious choice for the use of the RMSE as the mainly considered loss function, therefore,
resulted in models with a better description of the quality for the use case.

The R? and mean absolute error (MAE) were also estimated for the models. The R?
is equivalent with the RMSE in study as proven in section A.1. Nonetheless, the R? was
of added value because it provided a different interpretation as it describes the fraction
of variances in the data explained by the model.

Some studies in the literature study, such as Al-Asadi and Tasdemir (2022), attained
R? values above 0.9, although the R? values in the current thesis do not exceed 0.2.
This difference can be explained by the fact that the other studies predicted the KPI
values themselves. The current thesis, on the other hand, predicted the difference in
the current values and the values one year ahead. This is more informative as it is
actually the quantity of interest, but results in smaller R?. The way the R? is used in this
study, therefore, provides the most useful insights but should be carefully considered
when comparing the results with possible new methods.

The results in the ETV case study showe that the decision tree model performed
better than the linear models with respect to the MAE, but similarly with respect to the
RMSE. As explained in subsection 4.2.1, this is most likely due to the decision tree being
able to predict well on the average data points in the data set. In this way, the MAE
provides insights into the predictive quality with the small errors having a stronger
weight. This means that the calculation of the MAE was of added value.

In short, the results show that the time-dependent validation methods are necessary
to assess the predictive quality of models. The choice for the adjusted time series cross-
validation for the hyperparameter tuning and the time-dependent train/test split for
the generalization loss obtained better validation possibilities for their corresponding
applications. The use of the RMSE as the main loss function resulted in better per-
formance of the most interesting football players. Moreover, the R> and MAE provided
additional insights into the predictive quality of the models. This means that validation

methods are a strong point of this study.
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Conclusion

This research aimed to fill the gap in the current knowledge about predicting the values
a year later of model-based player performance KPIs. Two case studies were carried out
in order to give answer to the research question: what is the best prediction model to
predict KPI values of football players one year ahead considering the accuracy, possibil-
ities for uncertainty quantification of predictions, and the explainability of the models?

For the SciSkill case study, the results indicated that the XGBoost model had the
best predictive performance, closely followed by the random forest model. These mod-
els attained good loss estimates on the test set, the young players, and the interesting
outliers. These models have a tree-based nature and can be used to describe feature
importance. Moreover, predictions can be explained using SHAP-values. Therefore,
these models were considered to be explainable methods. The bagging procedure of
the random forest model gave a naturally arising method to uncertainty quantification,
whereas the XGBoost model needed an additional model with quantile regression to
do this. This made the random forest model more favorable than the XGBoost model.
Given that the random forest model was explainable, provided a natural uncertainty
quantification, and had nearly the best predictive results, it was concluded that the
random forest model was the optimal model for the SciSkill case study.

In the Estimated Transfer Value case study, the random forest model demonstrated
the lowest loss values on the general test set. Furthermore, it outperformed the other
methods on the subset of interesting outliers, particularly the subset of players with an
ETV of more than 10 million euros. Due to the tree-based nature of these models, the
feature importances, and the prediction explanations via SHAP values, the random for-
est model was an explainable model. The uncertainty quantification method that arose

from the bagging procedure that characterizes the random forest model was promising.
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Consequently, the random forest was the best model in the ETV case study.

In both case studies, the tree-based models came forward as models with the best
predictive accuracy due to their ability to infer nonlinear patterns and feature interac-
tions. More specifically, the random forest model came forward as the best model in
both case studies with respect to the study goals. This gave rise to the conclusion that
the random forest model was the best model to predict the player performance KPIs a
year ahead due to its good predictive accuracy, methods for uncertainty quantification

based on bagging, and the explainability of the model.
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Applications and recommendations
for future research

7.1 | Applications

The work in this thesis has resulted in predictive models for the Sciskill and ETV case
study that describe the development of the KPIs of a player in the next year. As the cur-
rent situation only provided the current values of the player’s performance KPIs, de-
scribing the expected future development adds new information to the existing models.
In this way, the models introduce methods to extract more information from the exist-
ing player performance, which provides essential information for transfer decisions.
More specifically, the SciSkill and ETV are models that describe the general player
quality and the monetary value of a football player. With the current values of these
models, a football club can determine whether the transfer of a player is good value
for money at that moment. The predicted future values of the SciSkill can be used, for
example, to determine whether a player is expected to improve in quality. This could
be useful to assess whether a young player who is not currently at the desired level of
the team, is expected to reach that level. Using this information, a club could decide to
keep players because the club expects them to improve in quality in the future. Using
the estimated future values of the ETV, it is possible to find players who are of good
value for money at the moment but whose transfer values are expected to increase. In
this case, the club should buy the player sooner rather than later. These examples show
two of many possible applications of the models predicting future values of the SciSkill

and ETV KPIs in the case of data-informed decision-making.

The information about the future values of both models can also be combined. For
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example, the models could predict that both the SciSkill and the Estimated Transfer
Value will increase in the current situation of a player on their scouting list. The SciSkill
could increase rapidly, whereas the Estimated Transfer Value increases slightly in the
player’s current situation. If the club does not have the urgent need for a player in that
position, they could choose to wait a year. In that case, they could buy the player that
increased notably in quality at a slightly increased price. This gives an example of the
added value of combining the information of both models describing the development
in the SciSkill and Estimated Transfer Value.

The model in the SciSkill described the quality of a player one year in the future.
As discussed, one of the features of the Estimated Transfer Value case study was the
potential SciSkill of a football player. This was the expected highest SciSkill value in
the future career of the player and was based on an iterative model. The models in the
current thesis could be adapted such that they could be called iteratively for multiple
years. The application of these models could possibly lead to an improved potential

estimation.

Moreover, the models predicting future SciSkill and Estimated Transfer Value can
be used to facilitate data-driven decision-making. Pantuso and Hvattum (2020) pre-
sented a method to optimize the squad of a football club. Their optimization problem
was defined using the current quality and market value of a player together with the
future quality and market value of a football player. The predictive models from this
thesis that predict the KPI values one year ahead can replace their method, which was
limited to describing historical data. By combining the newly obtained models and the
optimization methods of Pantuso and Hvattum (2020), a new optimization method can
be derived that can be applied to perform data-based decision-making.

As discussed in the literature study, the football transfer market can be seen as a
labor market with a wide availability of data on the performance of employees. A
similar approach as in this study can be used to predict future values of KPIs of other
labor markets. Moreover, the fact that interactions and nonlinearities are present in the
football transfer market means that it can be expected that these might also be present
in general labor markets. In this way, the results of this study can be generalized and
used as a foundation to study general labor markets.
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7.2 | Recommendations for future research

This study was performed to obtain insight into predicting the player performance a
year in the future. This was done based on two case studies on the values resulting
from SciSkill and the Estimated Transfer Value models. As discussed in chapter 2, there
exist various other model-based KPIs and ideally models should be trained to predict
future values of all player KPIs. However, the VAEP models, for instance, are based
on event data instead of match sheet data and can be expected to behave differently.
Additionally, the study only considers values one year in the future. It might, for in-
stance, be the case that seasonality has a stronger influence on predictions six months in
the future. Therefore, further research on the prediction of the development of metrics
describing football players is recommended.

Another possible direction of research would be to study the influence of contextual
information. The models employed in the conducted research predicted the develop-
ment of the player performance KPIs in the next year without taking into account all
contextual information. We expect that the player’s performance is dependent on, for
instance, the team’s playing style, the number of minutes given to the player, and the
teammates. It would be beneficial for a manager to ascertain the anticipated impact
of certain decisions, such as the allocation of playing time within a team, on the play-
ers’ development. Consequently, we recommend a further study of the influence of
contextual information on the players’ development.

Moreover, the results showed the presence of nonlinearities and interactions in the
development of player careers of footballers. As described by Franceschi et al. (2023),
most previous studies on player evaluation methods have often used linear models. In
recent years, more nonlinear models have been used to obtain predictive models on
player performance and player valuation as shown in the literature study. The pres-
ence of nonlinearities and interactions that were found in this thesis suggests that this
transition towards nonlinear models is beneficial for accurately describing a football
player’s career. Therefore, it would be advised to use nonlinear models in new studies
on further research of the prediction of football players” development.

A possible extension of linear models are Generalized Additive Models (GAM) and
Quantile Additive Models (QAM). The studies of Decroos and Davis (2020) and Yang
et al. (2022) showed the potential of these models in the domain of football analytics.
GAMs and QAMs might have provided interesting insights as they are able to describe
nonlinear relations and interactions while still being based on the additive structure of
the linear models. They might be of added value to the proposed studies.
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Other methods to improve the predictive accuracy and obtain new insights might
be obtained by considering the trained models in this study in a different way. The kNN
results, for instance, showed multiple local optima for the number of neighbors. This
could be dealt with by implementing a hybrid model based on multiple kNNs with
different numbers of neighbors. Another possibility would be to train a random forest
estimator on the residuals of a lasso model. This hybrid method would combine two
explainable methods and could use the uncertainty quantification of the random forest.
If a feature has a low feature importance in the lasso model and a large importance in
the random forest model, this would mean that the feature has a nonlinear influence
or interactions are present. In this way, hybrid models could provide new insights and
possibly enhance predictive performance at no cost of explainability and uncertainty
quantification. It would, therefore, be recommended to include hybrid methods in fu-
ture research about the development of model-based player performance metrics.

The findings of this research indicated that the kNN models provide improvements
in predictive quality compared to taking the mean or a constant increase. Additionally,
the feature importances showed that time series related features influence the predicted
values of the models. This means that there is useful information in the time series.
It would be beneficial to investigate whether combining certain features with a time
series model would enhance performance. Consequently, further research on the time
series perspective of player performance KPIs is recommended, as this may yield new
insights into patterns and potentially improve predictive performance.

A possible model to leverage the time series data would be recurrent neural net-
works (RNNs), which are less explainable than the GAMs, QAMs, and models con-
sidered in the current thesis. Nevertheless, RNNs such as long short-term memory
(LSTM) or gated recurrent unit (GRU) might provide improvements in predictive qual-
ity because of their ability to learn from both features and time series data. The im-
plementation and study of these models would provide further insights into the trade-
off between predictive quality and explainability. Therefore, a further study is recom-
mended on the trade-off between predictive accuracy and explainability of the models

by investigating the predictive performance of recurrent neural networks.
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Mathematical details

A.1 | Equivalence of RMSE and R?

In this research, both the root mean squared error (RMSE) and the R? are used to de-
scribe the predictive quality of the trained models. The RMSE can be considered as
the average predictive error with large errors being punished harder. The R? has the
popular interpretation that it describes the fraction of the variance explained by the
predictions of the model. It typically attains values between 0 and 1, with a value of
1 meaning that it perfectly predicts everything and 0 meaning that it predicts as well
as taking the mean. If the model predicts worse than the mean of the sample, even
negative values can be attained.

If the RMSE and R? are applied to the same sample, they can be considered equiv-
alent. A.1.1 states that the estimated loss functions are equivalent when applied to a
sample of data. It should be noted that by replacing the averages with expectations, the
same proposition and proof hold for the relation between the RMSE and R>.

Proposition A.1.1. Let (x1,y1), ..., (xn,yn) denote a data set with x; being the features and
Y; being the dependent variables of a predictive model with N data points. Assume that there
exists y; # yj for some i,j. Let f be the predictive model for which the RMSE and R* are
determined. Let

N

RMSE = J Y (i — f(xi)2,

i=1

and
g L f(x)?
Y (vi — 7)?
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Appendix A. Mathematical details A.1. Equivalence of RMSE and R?

denote the estimates of the RMSE and R? where i is the sample mean. There exists a strictly
decreasing function describing R? in terms of RMSE.

Proof. Define g : [0,00) — R as g(x) = 1 — x?/C with C > 0. Then f'(x) = —2x/C
which is strictly positive for x > 0 and equals zero at the only boundary point x = 0.
Consequently, we have that f is a strictly decreasing function.

Chose C := Y\ (y; — §)? > 0. The existence of y;, y; such that y; # y; implies
that there exists a y; such that ka # 7. This means that the chosen C > 0. Note that

— —2
R>?=1- % =1- RI”CIS E_ | We find that it is a function in the form of g. Thus,
i=1\Yi—

there exists a strictly decreasing function of the required form. O

We can consider two loss functions equivalent if the order of quality corresponding
to the loss functions is the same. Now that we have that there exists a strictly decreasing
function between the RMSE and R?, this means that this function keeps the order of the
RMSE and the other way around. This means that the RMSE and R? are equivalent loss

functions.
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kNN feature weight optimization

The implementation of the kNN model provided promising results for the SciSkill use
case despite the fact that kNN is a fairly basic algorithm. An important downside of
the interpretability of a kNN is the absence of feature importances. In order to be able
to fine-tune the kNN algorithm to the use case and to provide feature importances,

adaptations were applied. These will be discussed in this appendix.

B.1 | Methods

B.1.1 | Requirements weighting methods

The goal of this study was to fine-tune the weights for a regression prediction prob-
lem. Three requirements were defined to measure the quality of a method. The seven
different implementations were tested against these requirements to find out which are
suitable for application in the main research of this thesis.

The first goal is that the tuning of the feature weights also improves the predictive
quality of the methods. Therefore, a lower value of the RMSE is preferred and an in-
crease in performance compared to the standard kNN implementation. Without this
requirement, the feature weights would have no meaning as weights that give a worse
result than applying equal weights do not satisfactory reflect the importances of the
features in the data.

The second requirement is the maximal training time of a model. The maximal
training time is set at 20 minutes for the training set. This ensures the applicability of

the model as it makes the model fast enough to later apply hyperparameter tuning.
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The last goal is that the interpretation of feature importance can be derived from
the weighting methods. The normal kNN does not have feature importances, but by
rescaling the features with weights, the weights can be seen as feature importances. The
methods that weigh the features in a way that can be interpreted as feature importances
are preferred.

B.1.2 | Data

To compare the quality of the weighting methods, they were applied to the data for
the SciSkill case study. To prevent data leakage, the data set of the original test set
containing the years 2014 up to 2020 was used.

This data set was divided into a training set containing the years 2014-2019 and a
test set containing the data of the year 2020. This resulted in a training set of 2,348,565
data points and a test set of 442,639 data points. The distribution of data points through-
out the years can be seen in Figure B.1.
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Figure B.1: The number of data points per year for the data set used to test the different
kNN implementations.

For the purpose of studying the kNN with time-series data, a specific set of features
was used. These features mainly consisted of time-series data containing the SciSkill
values of the last 12 months of a football player. These features were complemented
with the features ‘age_years’, “previous_zero_months’, and ‘month” as these features
are cheap to compute and provide context to the time-series data. This resulted in a
data set containing 15 different features and the dependent variable containing the dif-
ference between the future value of the SciSkill in 12 months and the current SciSkill.
When the SciSkill is seen as a function with month and player as variables, this differ-
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ence can be denoted as
ASciSkill(month, player) = SciSkill(month + 12, player) — SciSkill(month, player).

The distribution of the dependent variable and two features are shown in Figure B.2.
It can be seen that the SciSkill has a distribution that seems to be close to a slightly
skewed normal distribution. The number of months since the last game of a player on
the other hand is highly skewed as almost all data points have the value 0, which can
be expected due to most players playing regularly. The distribution of the develop-
ment Sciskill over a year seems to be strongly concentrated around the value 0 with a

symmetric distribution and a points mass at 0.

(a) SciSkill (b) Dependent variable: (c) Number of months since
difference with SciSkill 12 last game
months in the future

Figure B.2: The distributions of two features and the dependent variable used in the
kNN study.

To summarize, the data set used consists of the data from the years 2014 up to 2020.
The last 12 data points of the time series were used as features complemented with 3

contextual features. The resulting data set consisted of 2,791,204 data points in total.

B.1.3 | Considered weighting methods

Several methods were considered in this study of feature importance weighting. All
kNN models were implemented using the faiss package Douze et al. (2024) with hier-
archical navigable small world indexing which builds a graph based on the similarity
between data points in the data set. This provided a significant speed-up compared to
more well-known scikit-learn implementation which follows Goldberger et al. (2004).
In order to save computation time, no hyperparameter tuning of the number of
neighbors was performed for each method. A small line search of the number of neigh-
bors for the standard kNN implementation resulted in an optimal value of around 40
neighbors. Short testing with the number of neighbors for the different algorithms did
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not result in large changes in the predictive quality. All different feature weight opti-
mization methods were therefore implemented with a 40 nearest neighbors algorithm.
In the first three optimization methods, the feature weigths are determined by con-
sidering the selection of feature weights as an optimization problem. Define the pre-
dicted value of a kNN regressor with k neighbors based on the training data (Yp, Xp)
as fx(X|Yp, Xp). When the weights of the features are denoted as w, the optimization
problem can be described as
minimize E[(Y — f (Xw|Yp, Xpw))?|Yp, Xpw]. (B.1)
In this case, (Y, X) is an unseen pair of data points and the loss function was chosen
to be the mean absolute error. The multiplication of w with X and Xp can be seen as
multiplying the features with corresponding feature importance. The expectation in
Equation B.1, the expectation was approximated by an average.

B.1.3.1 | Bayesian optimization

The first implementation of feature weight optimization was obtained by applying
Bayesian optimization to the problem described in Equation B.1. The Bayesian opti-
mization was implemented using the implementation in Scikit-Optimize as described
by Louppe and Kumar (2016).

The influences of the weights in the optimization problem Equation B.1 are relative
to the other weights. For instance, two weight vectors result in the same results if they
are linearly dependent. This means that the relative differences in order of magnitude
are more important. To make the algorithm optimize these instead of the actual values,
a softmax transformation was applied to the weights. The softmax function of a vector

ew]-

is defined elementwise as o(w); := 57 In this way, the optimization algorithm was

1 ew, *
better able to determine the desired differences in the order of magnitude between the

different feature weights.

The Bayasian optimization algorithm was implemented with the optimization space
defined as the [—20,20]” hypercube of the input variables of the softmax transforma-
tion. The implementation was done using the scikit-optimize package. The acquisition
function was chosen to be a function that iteratively alternates between minimizing the
lower confidence bound, maximizing the expected improvement, and maximizing the
probability of improvement.

The evaluation of the objective function consists of first training a kNN model and

subsequently evaluating it on a test set. This resulted in a model that took considerably
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longer than 20 minutes to train due to the costly objective function. To decrease the
computation time, a subset of the training data was taken to compute the objective
function on. This resulted in a trade-off between the quality of the estimate of the
objective function and the computation time. A trial and error-investigation of this
trade-off resulted in the best results. It was determined that taking a new 1% training set
and a new 1% test set for each objective function call gave the best results in this trade-
off between computation time and accuracy of the estimate of the objective function.

B.1.3.2 | Genetic Algorithms

The second optimization method was optimizing the weights using a Genetic Algo-
rithm. Similarly to the implementation of the Bayesian optimization, the weights were
calculated after a softmax transformation. Next to that, the objective function was also
obtained by taking a 1% subset for both the training and test set like was done for the
Bayesian optimization. As Genetic Algorithms are robust against noisy objective func-
tions, it was expected that the Genetic Algorithms could improve the quality of the
performance.

The Genetic Algorithm was implemented using the toolbox provided in the pack-
age ‘deap’ by Fortin et al. (2012). The algorithm was applied with uniform initiation,
tournament selection, a population of 20, and 50 generations. The best three individ-
uals were kept in the new generations and the final best individual was taken as the

solution.

B.1.3.3 | Zeroth order optimization

The predictive function of the kNN algorithm is not a smooth function because it con-
sists of the sum of multiple indicator functions, the optimization problem described in
Equation B.1 does not have a gradient or Hessian available to use for optimization the
problem. For this type of problem, zeroth order optimization methods were introduced
which try to make local approximations of the objective functions without the gradient
to obtain the next step to optimize the objective function (Liu et al., 2020).

To study the performance, an implementation using the method provided by Liu
et al. (2022) was applied in the package ‘ZOOpt’. Again, a softmax transformation was
applied to the feature weights and the objective function was calculated with 1% sub-
sets to obtain the train and test data. In order to deal with the noisy objective function,

re-sampling was applied which re-evaluated the best solution 10 extra times.
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B.1.3.4 | RReliefF algorithm

Relief algorithms are methods to determine feature importance on a dataset based on
the workings of a kNN algorithm (Robnik—éikonja and Kononenko, 2003). The original
Relief algorithm estimates the feature quality for classification problems by calculating
the difference in feature value for the nearest neighbor having the same class and the
nearest neighbor having another class label. In this way, the Relief algorithm measures
how many differences exist for a feature between different class labels.

Kononenko (1994) introduced several extensions of the Relief method, including
the ReliefF algorithm. Kononenko extended the Relief method by making it applicable
to multiclass problems. He did this by considering the k nearest neighbors having the
same class, and the k nearest neighbors for each different class. This method makes the
ReliefF algorithm also more robust to noise (Robnik-éikonja and Kononenko, 2003).

In order to make the algorithm applicable for regression problems, Robnik-Sikonja
and Kononenko (1997) adapted the original algorithm to introduce the Regressional
ReliefF (RReliefF) algorithm. This method determines the feature importance W[A] of
feature A in kNN by defining

WIA] :=P(different value of A|nearest instances)
— P(different prediction|nearest instances).
These probabilities in this expression were approximated using the pseudo-code in Fig-
ure B.3. In this pseudo code, the term diff is defined as

)  |value(A, L) — value(A, )|
diff(A, Iy, o) := max(A) —min(A)

where value(A,I) is the value of feature A for data point I. Next to this, d(i, j) should
be a measure that indicates the similarity between data point i and data point j. This
can chosen as the number of data points that are closer to data point i than j. It can
also be chosen as the reciprocal of the distance between the data points. This similarity
measure should then be normalized such that it sums to 1 for each data point.

In this study, a kNN algorithm was first trained in order to calculate the neighbors
for the RReliefF algorithm. The feature importances were then used to rescale the stan-
dardized features of the original kNN algorithm. By doing this, differences within a
feature with high feature importance weigh more heavily in computing the final dis-
tances.

The implementation of the RReliefF method was done using the algorithm described

in Figure B.3. In order to speed up the calculation time, a vectorized version of the al-
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Algorithm RReliefF

Input: for each training instance a vector of attribute values x and predicted
value 7(x)

Output: vector W of estimations of the qualities of attributes

1. setall Nyc, Nja [A], Njcgda [A], W[A] to 0;
2. fori:=1to m do begin
3 randomly select instance R;;
4 select K instances /; nearest to R;;
5. for j := 1 to k do begin
6 NdcZ=NJC+diff(T(-),R5,1j‘)-d(i,j);
7 for A :=1 to a do begin
8. Nua[A] = Naa[A] + diff(A, R;, ;) - d (i, J):
9. NicgdalA] = NacgdaA] + diff(t(-). R, f’,)
10. diff(A,R;, I;) - d(i. j):
11. end;
12. end;
13. end;
14. forA:=1toado
15. WIA] = Nycsa [Al/Nac - (NaalA] — Nacaaa[A])/(m — Nac);

Figure B.3: Pseudo code of the RReliefF algorithm (Adapted from (Robnik-Sikonja and
Kononenko, 2003))

gorithm was implemented from scratch. Next to that, using trial and error d(i,j) :=
[[Ti=1j] 12

L [L=1]l2

data points I; and I,.

was chosen as d(i, j) where ||I; — Ij|| is the Euclidean distance between two

B.1.3.5 | Predictive performance of individual feature

Feature importances can also be quantified by determining the quality of the predic-
tive performance using each feature individually. The estimated decrease in the loss
function could then be seen as the feature importance.

This study introduced the method where an individual kNN algorithm was trained
individually for each feature in order to estimate the predictive quality of each feature.
This was done by splitting the training data into a training (80%) and test (20%) set. The
model with one feature was fitted on the training set and the quality was determined

using a loss estimate on the test set. The feature importance could then be defined as

WI[A] := max {0/ % i(Yi - kaN,A(Xi))z} , (B.2)
i3

where finn 4(X;))? is the kNN estimation based of the model with the feature A. The
idea behind this feature importance metric is that features that have a large predictive
value are seen as more important. A downside of this method is that possible interac-

tions between the features are not taken into account.
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B.1.3.6 | Mahalanobis distance

A different method of rescaling the features is by applying an affine transformation of
the features. This can be done by multiplying the features with a matrix instead of a
vector as done for the other methods and additionally adding a matrix. The new matrix
of features X’ can then be obtained by X’ := TX + U, where X is the original feature
matrix X and both T and U are chosen matrices. When X has p features and X’ has p’
features, this results in an optimization problem that can be described as

minimize  B[(Y — fu (TX + U|Yp, TXp + U))?]. (B.3)

TeRP*P,UeR'?

The resulting optimization problem described in Equation B.3 is complex due to
the high number of decision variables in T and U compared to the optimization prob-
lem described in Equation B.1. In order to make an educated guess, the Mahalanobis
distance was used as described by McLachlan (1999). The Mahalanobis distance is a
special choice of T and U in Equation B.3 such that a generalization of standardization
is applied.

Let X denote the covariance matrix of the random variables which are the features
and let u denote the average value of these random variables as described by McLach-
lan (1999). The Mahalanobis distance is then obtained by applying the affine transfor-
mation ¥’ = (x — u)X~1/2, where x is a random vector having the distribution of the
features. Note that X is positive semi-definite by definition and can be assumed to be
positive definite by dropping random variables with a single value. The expression
¥.1/2 is therefore valid.

The idea behind this method is that it not only standardizes the variances of the
features but also takes the covariances into account when doing so. This is reflected
by the fact that the covariance matrix of the transformed features is an identity matrix.
Therefore, a more general standardization is applied. The final distances within the

features are then calculated using the expression

[l = x| = 3/ (s — x) 7= (3 — x7),

In this study, the covariance matrix X~ was estimated using the element-wise esti-

. . . 1 > > .
mation of the covariance matrix, cov(X;, X;) = ;=5 Y= (X1; — X;) (X ; — Xj). The esti-

mation of X ~1/2

was then performed by calculating the Choleski decomposition of the
Y and subsequently calculating the inverse of this decomposition matrix. The values
of y were estimated by calculating the sample mean value of each feature. Using both
the estimated £71/2 and I, the data was transformed using x' = (x — #1)~71/2. The

transformed data was then used to train the kNN algorithm.
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B.1.3.7 | PCA distance

Another possible way to preprocess the input features is to apply principal component
analysis (PCA). The PCA algorithm identifies new, simplified features by finding the
best linear combinations of the original features that capture the greatest variance. This
process helps to reduce the number of dimensions in the dataset while retaining most
of the essential information that distinguishes the data points.

The PCA algorithm was implemented using the PCA implementation in the scikit-
learn package which follows the implementations of (Halko et al., 2011; Martinsson
et al., 2011). This resulted in principle components with the explained variance ratio
as shown in Figure B.4. It shows that most of the information on the variances is con-
tained within the first 7 principle components. It was therefore chosen to do the PCA
implementation with the first 7 principle components.
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Figure B.4: A plot of the explained variance ratio for PCA.

B.2 | Results
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B.2.1 | Predictive quality

The decrease in RMSE and the R? of the different weighting methods are shown Fig-
ure B.5. It can be seen that the GA weight optimization method perform clearly worse
than an unweighted kNN implementation. This means that these weighting methods
did not improve the predictive performance as desired.

The Bayesian weight optimization, zeroth order weight optimization, RReliefF
weights, the weights based on individual predictive performance, and PCA transfor-
mation all had similar performance to the kNN model with equal weights. These mod-

els, therefore, do not provide a clear improvement in predictive quality.
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weighted kNN

Figure B.5: Two performance metrics of the predictive quality of the models compared
to an unweighted implementation. The unweighted implementation has RMSE = 4.76
and R* = 0.31.

On the other hand, Mahalanobis distance method improved the quality of the pre-
dictions compared to the normal kNN implementation. This is probably because of
the large correlations between the different time series features, which can be handled
well by the Mahalanobis distance as transforms the features to an uncorrelated state.
This means that it is a very suitable candidate considering that the requirement that the
weighting methods should improve the predictive quality.

B.2.2 | Running time

The running times of the applied methods are shown in Figure B.6. It shows that
all methods have a running time within the desired 20 minutes. More specifically,
the methods that determine the weights based on an optimization algorithm have the

longest computing time. This is because of the high computational costs for the esti-
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mated objective function that is used. Next to that, it can be seen that the Mahalanobis
distance and PCA methods increase the computation time the least.

Training Time Comparison

Training Time (minutes)

No weights
Bayesian WO |
GA WO |
ZOO WO |

RReliefF
Individual features |
Mahalanobis distance |
Pca |

Method

Figure B.6: The running times in minutes of the feature weighting methods.

B.2.3 | Interpretation

Lastly, it was desired that the weighting methods should have some interpretation of
feature importance. All methods had some sort of feature importance measure as will
be described below. The resulting feature importances are shown in Table B.1.

The Bayesian weight optimization, Genetic Algorithm weight optimization, and ze-
roth order weight optimization methods are based on the optimization problem as de-
scribed in Equation B.1. The optimally found values for w in Equation B.1 can then be
considered as the feature importances because a large weight value for a certain feature
means that it has a large importance in predicting the dependent variable. Because the
Bayesian optimization method and the zeroth order optimization method both improve
the predictive quality, their weights can therefore in some way be interpret as feature
importance.

The individual feature predictive performance method gives a larger weight to a
feature that has a better predictive quality for the dependent variable. It therefore has
a clear interpretation of their feature importance. However, the predictive quality is
not better than assigning equal feature weights in this prediction problem. This can
be caused by the fact that this method ignores the possible dependence and interac-
tions between the features. The possible interpretation does therefore not have much
interpretive value similar to the genetic algorithm.
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The RReliefF method is a method that was originally meant for feature importance
based on a kNN algorithm. The resulting weights W[A]| from the algorithm can there-
fore be interpreted as the feature importances as it will assign large values to more
important values that have the largest influence on making good predictions for a kNN
algorithm.

The Mahalanobis distance implementation is based on the optimization problem
described in (B.3). As the influences of the different features are not weighted per fea-
ture, the interpretation is not as clear as for the methods based on (B.1). Still, the trans-
formed features are linear combinations of the original features. When the coefficients
that correspond to the original feature are added, this represents a single weight for the

original feature. Let T = (£~ 2); ;- The weight of feature j can then be formulated as

=

Ti .

Il
—

i
This provides a method to calculate an interpretation of the feature importance based
on the Mahalanobis distance.

This interpretation however does not take into account correlations between the
variables. In this specific case, it is known that the SciSkill-related features are strongly
correlated. As some values in the transformation matrix T are negative, this means
that the combination of linear variables might cancel each other partly. This above-
described method is, therefore, not useful for this application.

The PCA method also performs a linear transformation from the original space to
a new feature space. The feature importance of this method has the same problem as
the kNN model with Mahalanobis distance. On top of that, the PCA method does not
provide a better predictive performance than an unweighted kNN. The PCA method is
therefore considered a method without feature importance interpretation.

B.3 | Conclusion and discussion

It can be concluded that all methods satisfy the computing time requirement and almost
all satisfy the requirement for a meaningful interpretation of the feature importance.
The Mahalanobis distance is the only technique that clearly improves the predictive
quality of the kNN model as it can deal with highly correlated features. With this, the
kNN implementation with Mahalanobis distance provides the largest improvement in
the predictive quality and has a short computation time. This method, therefore, is the

most promising weighting method for this use-case.
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Appendix B. kNN feature weight optimization B.3. Conclusion and discussion

Feature Bayesian WO GA WO ZO WO RReliefF Indiv. perf.

Age (years) 1.67 x 10~ T 732x10° 7 | 1.34x 10T | 415x10°% | 399 x 1071

#Months inactive | 1.67 x 107! 376 x107° | 1.34 x 1071 | 146 x10~* | 1.19 x 1071
Month 707 x10719 | 123 x1078 | 922 x107* | 7.90 x 10~* 0.00

SciSkill (current) 1.67 x 1071 1.08 x 1071 | 1.34x 107! | 699 x 107* | 3.52 x 102

SciSkill (—Ay) 347 x107° 1.01 x 1073 | 2.33x107¢ | 457 x10~* | 5.70 x 102

SciSkill (—2A¢) 7.07 <1071 | 218 x 1073 | 1.34 x 107! | 420x10~* | 7.40 x 1072
SciSkill (—3A¢) 1.67 x 1071 1.77 x107* | 230 x 1077 | 413 x107* | 8.67 x 1072
SciSkill (—4A;) 7.07 x 10719 | 4.67 x1072 | 1.34 x 107! | 413 x10™* | 9.56 x 1072
SciSkill (—5A;) 1.79 x 10711 | 848 x 1077 | 595x 1072 | 3.99 x 10~* | 1.04 x 107!
SciSkill (—6A;) 1.67 x107!1 | 558 x107° | 1.63x107° | 3.76 x 107* | 1.12 x 107*
SciSkill (—7Ay) 214 %107 | 113x1072 | 1.34x 107" | 354 x107* | 1.12x 107!
SciSkill (—8A¢) 821x107* | 974x107* | 1.88x107* | 322x107* | 1.23x 107!
SciSkill (—9A;) 122 %1071 | 855x 1078 | 1.60x107* | 3.02x10~* | 1.22 x 107!
SciSkill (—10A;) 1.67 x107! | 575x 1073 | 234 x 1075 | 3.16 x 107* | 1.38 x 107*
SciSkill (—11A;) 7.07x 1071 | 922x 1072 | 1.34 x 107! | 3.63 x107* | 1.49 x 107!

Table B.1: The feature weights of the different weighting methods. "WO’ corresponds to
"weight optimization’, ‘GA’ to ‘Genetic Algorithms’, "ZO’ to "zeroth order’, and "Indiv.
perf.” to 'Inidividual feature predictive performance’.

The other methods did not provide an improvement compared to the normal kNN
model. This is probably due to the difficult nature of the predictive predictive problem,
possibly caused by the highly correlated features and the fact the largest errors are
caused by the outliers of the data set. It could also be the case that weighting every
feature equally gives good weights for this kNN weighting problem.

The most promising model of the features with similar performance is the RReliefF
method. This is due to the fact that it is well-known for its feature importance and that it
has a short computation time. Although it most probably did not show improvements
on the data of the SciSkill case study, it might perform relatively well for the Estimated
Transfer Value case study in this thesis.

Lastly, it can be seen that the feature weights in Table B.1 differ strongly in their
values. Surprising is the fact that the Bayesian algorithm weight optimization only
gives a very small or very large weight. This is probably caused by the fact that these
values are the given boundary values which are more thoroughly discovered by the
Bayesian weight optimization algorithm compared to the genetic algorithms and the
zeroth order optimization. By doing this, the Bayesian algorithm practically applies
feature selection.
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Model specific results

This appendix presents the results of the training of the individual models. Visualiza-

tions that take in much space are placed in Appendix D to improve readability.

C.1 | SciSkill case study

For all implemented models, the loss values were estimated on the test and train sets
in the SciSkill case study. These results are given in Table C.1. The results generally
show that the XGBoost shows the most overfitting but also attains the best loss scores
as discussed in subsection 4.1.1. In the following section, the results of the individual
models will be discussed.

Model Train set Test set
RMSE | MAE | R? RMSE (Std. dev.) [ MAE (Std. dev.)) [ R* (Std. dev)
OLS 43096 | 3.2040 | 0.3364 45996 (0.0053) 3.4086 (0.0034) | 0.3223 (0.0056)
Lasso 43096 | 3.2038 | 0.3364 4.5998 (0.0054) 3.4088 (0.0033) | 0.3222(0.0011)
LME 43586 | 3.2273 | 0.3212 4.6595 (0.0057) 3.4362 (0.0035) | 0.3045 (0.0011)
Decision tree 41797 | 3.0958 | 0.3758 45414 (0.0054) 3.3577 (0.0033) | 0.3393 (0.0012)
Random forest 3.7500 | 2.8264 | 0.4975 4.4599 (0.0053) 3.3001 (0.0033) | 0.3628 (0.0011)
XGBoost 1.0817 | 0.7606 | 0.9582 4.4078 (0.0051) 3.2707 (0.0033) | 0.3776 (0.0012)
kNN 42844 | 3.1500 | 0.3441 4.7307 (0.0059) 3.4655 (0.0036) | 0.2831 (0.0011)
kNN Mahalanobis | 4.2930 | 3.1579 | 0.3415 4.7006 (0.0058) 3.4443 (0.0034) | 0.2922 (0.0011)
kNN RReliefF 42688 | 3.1337 | 0.3489 4.7684 (0.0061) 3.4907 (0.0036) | 0.2716 (0.0011)

Table C.1: The estimates on the train and test set for the different loss functions in
the SciSkill case study. The standard deviations of the estimates on the test set were
calculated using 1000 bootstrap samples.
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Appendix C. Model specific results C.1. SciSkill case study

C.1.1 | Ordinary least squares

Backwards selection algorithm resulted in the 70 selected features out of 86. This feature
subset was then used to train a final model.

Figure C.1 shows the feature importances of the features in the final OLS model. It
can be seen that the age-related features have the strongest feature importance. These
are the age of the player (‘age_years’), the age of the player squared (‘age_years_squared’),
and the difference between the age of the player and the peak age of his position in
years (‘years_diff_peak_age’). Other variables that seem to be of medium importance
are for instance the current SciSkill, the number of minutes played in a domestic league
multiplied by the resistance factor of the league both in the last month and the last 6
months, the position line of the player, and the difference between the player’s SciSkill
and the average SciSkill of the team.

Feature importances using the OLS model

Figure C.1: The feature importance in the RMSE decrease for each feature for the final
OLS model in the SciSkill case study.

Figure C.2 provides a visualization of the coefficients in the final OLS model. These
coefficients were standardized before the model training. It shows that a higher SciSkill
(“sciskill’), age (“age_years’), position line (“position_line’), or difference with the mean
SciSkill of the team (‘sciskill_diff mean_team’) indicates that the SciSkill one year later
is lower. On the other hand, a higher value for the age in years squared (‘age_squared’),
the number of minutes times the resistance factor of the domestic competition (“min-

utes_x_resistance_domestic’), or the difference in SciSkill with 12 months ago
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Appendix C. Model specific results C.1. SciSkill case study

(“sciskill_diff 12m_ago’) results in a higher predicted SciSkill value for one year later.

Coefficient values of the OLS model for standardized features
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Coeficient value

Figure C.2: The coefficients of the final OLS model of the standardized features in the
SciSkill case study.

Because of the standardization of the features, these coefficient values cannot di-
rectly be used to describe the influence of the features on the prediction in the original
scale. In order to do this, the coefficients can be rescaled to correspond to the original
features before standardizing. These values values are shown in Figure C.3.

For example, it shows a coefficient of around -2.9 for the age of a player (‘age_years’).
This means that for each year increase in the player’s age, the model will predict a value
of 2.9 lower. It can also be seen that there seem to be mostly large negative influences of
the features. The different scales of the features should, however, be taken into account.
The indicator of the player being an attacking midfielder (‘position_most_played_6")
has one of the largest coefficients and the SciSkill of a player (‘sciskill’) has a smaller
coefficient. Because the first only takes values in {0,1} and the latter takes values in
(0,00), the scales of these variables should also be taken into account. If this is done,
the influence of the SciSkill is larger than the influence of the player being an attacking
midfielder as indicated by Figure C.1 and Figure C.2. The results in Figure C.2, there-
fore, only provide insight into the influences of the features on the predictions in their
original scale, but cannot be used to infer the feature importances.

This final model had the estimated loss values as shown in Table C.1. It shows that
the loss values are slightly higher for the test set than for the training set. However,
overfitting is probably not a problem due to the small differences.
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Appendix C. Model specific results C.1. SciSkill case study

Coefficient values of the OLS model in original feature scale

Coefficient value

preferred_foot_1

Figure C.3: The coefficients of the final OLS model in the original scale of the features
in the SciSkill case study.

Table C.1 includes the bootstrap estimates of the standard deviations of the loss val-
ues on the test set. These were obtained using bootstrap resampling of the test set with
1000 samples. These models show that the distribution of the points appears to be sym-
metric. Next to that, they appear to have a single mode around the mean value. The
distribution of bootstrap samples of the other models showed similar behavior. There-
fore, the someone heuristic assumption is made in the current thesis that a difference in
the performance of two models of more than two estimated standard deviations can be

considered a significant difference.

Bootstrap test RMSE of OLS model Bootstrap test MAE of OLS model Bootstrap test R? of OLS model

200

Frequency
Frequency
Frequency

100 100

Mean: 4.5996

[
4585 4590 4595 4600 4605  4.610 33975 3.4000 3.4025 3.4050 3.4075 3.4100 3.4125 34150 34175 0319 0320 0321 0322 0323 0324 0325 0326
RMSE (sciskill) MAE (sciskill) R2 (sciskill)

(a) RMSE (b) MAE (c) R?

Figure C.4: Histograms of the distributions of the 1000 bootstrap samples for the differ-
ent estimated loss functions of the OLS model in the SciSkill case study. The bootstrap
mean is indicated by a vertical line.
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Appendix C. Model specific results C.1. SciSkill case study

C.1.2 | Lasso

The feature selection for the lasso model was performed by first shortly tuning the
hyperparameters. This process and the results are shown in Figure D.1. It can be seen in
Figure D.1a that most function evaluations were performed for the lower values of the
hyperparameter «. This is reasonable as the algorithm estimates that the loss function
is large for larger values of « as shown in Figure D.1b. Although the objective function
was called 25 times by the optimization algorithm, Figure D.1c indicates that the best-
found value was obtained after just two function calls and that the Bayesian algorithm
did not manage to significantly improve the objective function afterward. Next to that,
the found objective value is relatively flat. It would, therefore, have been possible to do
the hyperparameter tuning with less objective function calls from hindsight.

This hyperparameter tuning resulted in a model that was used for feature selection.
There were 80 features with a nonzero coefficient that were selected out of the 86 fea-
tures. Figure C.5 shows the feature importance obtained by this model and indicates
the selected features. It can be seen that there were many features with a small feature
importance and only a few features were not selected.

Feature importances using the linear regression model

g

cumulative_minute:

Figure C.5: The feature importance of the features in the lasso model for feature selec-
tion in the SciSkill case study. Selected features are indicated with a red (¥).

Figure D.2 shows the process and the results of the Bayesian algorithm on the hy-
perparameter of the final model, which was trained on the selected features. As more

function calls were applied, the estimated objective function in Figure D.2b appears to
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Appendix C. Model specific results C.1. SciSkill case study

be more smooth than Figure D.1b. Similar to the hyperparameter tuning for the feature
selection, almost no improvement in the best-found objective function was found after
only two function calls. This hyperparameter tuning could, therefore, be performed in
fewer calls too.

Figure C.6 shows the feature importance of the final lasso model. It can be seen that
the features related to age are the most influential features. Next to that, there are many
features with only a limited feature importance. This means that the feature selection

probably has been too conservative.

Feature importances using the linear regression model

Figure C.6: The feature importance of the final lasso model in the SciSkill case study.

The coefficients of features in the final lasso model are visualized in Figure C.7.
They show that the age in years (‘age_years’) has a negative influence on the predicted
SciSkill values one year later of the lasso model. This is opposite to the influence of this
feature in the OLS model, which can be explained by the collinearity of the age-related
features such as the age (‘age_years’), the age squared (‘age_years’), and the difference
in age with the peak age of the players’ position (‘years_diff_peak_age’). This also
explains the lower coefficient values for these variables as they are not blown up by
collinearity. The negative coefficient values of the SciSkill (‘sciskill’), position line (“posi-
tion_line’), and difference with the mean SciSkill of the team (‘sciskill_diff_mean_team”)
are similar as in the OLS model.

Also for the lasso model, the rescaled coefficients were calculated as visualized in
Figure C.8. Here, a difference of 1.0 in the feature will give the corresponding difference
in the estimated value that is shown for that feature. For instance, if the difference with
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Coefficient values of the lasso model for standardized features

Coefficient value

001= " m I' II.I —=- - ] I
-0

-10

minutes

5
2

Figure C.7: The coefficients of the final lasso model for the standardized features in the
SciSkill case study.

the peak age is 1 year, this means that the model will add 1.0 x 0.4 = 0.4 to the expected
rise in SciSkill in a year. It can also be seen that a player with “position_most_played_1’,
corresponding to a left back, is predicted to have a 0.35 lower SciSkill the next year.

Coefficient values of the lasso model in original feature scale
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Figure C.8: The coefficients of the final lasso model in the original scale of the features
in the SciSkill case study.

The losses on the training and test set were estimated and are given in Table C.1.
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It can be seen that the training scores are slightly more positive, but the difference is
limited. It can, therefore, be concluded that there have most likely not been problems
with overfitting for the training of this model.

The estimated losses of the lasso model seem to have similar values as those of
the OLS model. This could be expected as the used a hyperparameter gives the im-
portance of the regularization term. The Bayesian algorithm selected the value of
a = 1073205 ~ 0.000588 which is a relatively small value, most likely chosen be-
cause of the large number of data points. The regularization penalty does, therefore,
not influence the actual predictions much, which makes it behave similarly to the OLS
model.

It should, however, be noted that the feature importances in the OLS model are
more distinct than for the lasso model. This is most likely due to the age-related fea-
tures being highly correlated, which might cause a small blow-up in these coefficients.
Because of the regularization term, this is prevented for the lasso model.

C.1.3 | Linear mixed effect models

The linear mixed effect model was trained on the subset of the 20 most important fea-
tures of the lasso model. The model was trained on these features with the nationality
of the football player as the random effect. Figure C.9 shows the resulting feature im-
portance. It can be seen that the player’s resistance and the total minutes played per
player are by far the most important features, as opposed to the OLS and lasso models.

The feature coefficients of the final linear mixed effect model are shown in Fig-
ure C.10. The coefficients of the age (‘age_years’) and resistance level of the player
(“player_resistance’) indicate that larger values for these features result in a lower pre-
diction for the SciSkill one year later. Conversely, larger values for the age squared
("age_years_squared’) and minutes played multiplied with the resistance level of the
domestic competition in the last 6 months (‘minutes_x_resistance_domestic_last_6m”)
are associated with larger predicted values for the SciSkill a year later. These results are
similar to the coefficients of the lasso model.

The feature coefficients rescaled to the original feature scales are shown in Fig-
ure C.11. They show that the increase in age of one year results in a predicted SciSkill
of around 0.48 lower. At the same time, the increase of the age of a player will also
give a smaller value of the difference between the age and the peak age. This will result
also result in a smaller predicted SciSkill development value of 0.3. This means that
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Feature importances using the linear mixed effects model

Mean MSE decrease
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Figure C.9: The feature importance of the final linear mixed effects model in the SciSkill
case study.

Coefficient values of the linear mixed effects model for standardized features
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Figure C.10: The coefficients of the final linear mixed effects model for the standardized
features in the SciSkill case study.

an increased age of one year makes the model predict SciSkill development values of
around 0.8 lower. This means that older players are predicted to have less increase in
SciSkill as could be expected.

Table C.1 shows the estimated training and test losses by the linear mixed effects
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Coefficient values of the linear mixed effects model in original feature scale
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Figure C.11: The coefficients of the final linear mixed effects model in the original scale
of the features in the SciSkill case study.

model. It is significantly less than the predictive performances of the OLS and lasso
model for all loss functions. It can, therefore, be concluded that the performance was
decreased by either the small subset of the features or the inclusion of the nationality of
a player as a random effect. Further research could be done to draw this conclusion.

C.1.4 | Decision tree

To train the decision tree model, feature selection was first applied. To this end, the
decision tree model was trained after a short hyperparameter tuning with 25 objective
function calls. The process is visualized in Figure D.3. This process selected a tree depth
of 24 with a minimum of 2! = 1024 data points per leaf.

Figure D.3b shows that the differences in the objective value differ a lot for the
parameter giving the minimal number of samples in a leaf, whereas the objective func-
tion for tree depth only slightly changes. As this means that the algorithm focussed
on exploring the minimal leaf size, this might explain why Figure D.3a shows that the
majority of the evaluated values of the tree depth are at the boundaries of the domain.

Figure D.3b also shows the interaction between the two hyperparameters. For the
low and high values of the minimal leaf size, the objective values for the maximal depth
seem to be similar, which indicates that there is only a limited interaction in these parts
of the search domain. However, the objective function for minimal leaf sizes around
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10 does differ horizontally for the different values of the maximal tree depth. This
means that the tree depth influences the objective function for these parts of the domain,
indicating some interaction between these hyperparameters.

Figure D.3c shows that after the first 10 evaluations, almost no improvement was
found. As can be seen in Figure D.3a, only a specific part of the domain was discov-
ered extensively by the algorithm. Although it is unlikely that this will provide large
improvements, running the Bayesian algorithm for some more iterations might give
improved hyperparameters.

The feature importances of the features with the added noise features are visual-
ized in Figure C.12. It shows that there is only a small part of the features with a clear
nonzero feature importance. It does, however, show that the noise variables were al-
most never selected by the decision tree algorithm. This could be expected as they
could not be selected by coincide as there is no random part in this decision tree model.
This means that the features with a nonzero feature importance were selected by the
algorithm. Because many features had a really small nonzero feature importance, this
resulted in the selection of 70 out of the 86 features. As many of these features only
have a limited feature importance, the algorithm probably was too conservative with
the feature selection.

Feature importances using MDE

Figure C.12: The feature importance of the features in the decision tree model for feature

selection in the SciSkill case study. The first 70 features were selected and the feature
importances of added noise variables are shown in red.

After the feature selection, the hyperparameter tuning was applied to the decision

135



Appendix C. Model specific results C.1. SciSkill case study

tree model with 50 function calls for the selected features. The process is visualized in
Figure D.4. It shows some clearly distinct patterns compared to those for the hyperpa-
rameter tuning for feature selection. Figure D.4a shows that more non-boundary points
were evaluated, which might be caused by the increased number of function calls. The
two-dimensional estimation of the objective function in Figure D.4b shows that the dif-
ferences in the objective function are less vertically oriented. This means that there is

more interaction now that the unimportant and noise variables are removed.

The convergence plot shown in Figure D.4c also shows similar behavior as in Fig-
ure D.3c. This is reflected by the fact that no significant improvement was obtained
after the 14th function call. This means that the increased number of function calls did

not necessarily improve the best-found hyperparameter values.

However, the marginal influence plot of the minimal number of samples in the
leaves still shows larger differences than the marginal influence plot of the tree depth.
It can also be seen that the selected combination of hyperparameters is at the lowest
point of the marginal influence of the minimal number of samples in the leaves, while
it does not have a value that seems to be optimal in the marginal influence plot for the
tree depth. This means that the minimal number of samples in the leaves is the most

important parameter.

The feature importances of the final decision tree model are visualized in Figure C.13.
The feature importances show nearly identical behavior compared to the feature im-
portances for feature selection in Figure C.12. As many of the variables have almost no
importance, a more rigorous feature selection method might have been better for the

decision tree method.

The training and test losses of the final decision tree are given in Table C.1. It shows
that the training losses are more positive compared to the test losses, which might indi-
cate that a small amount of overfitting has occurred. But as the differences are limited,

this probably does not cause problems.

The results of the decision tree also show an improved performance compared to
all linear models. As the decision tree is still a fairly simple model, this is a surprising
result. A possible explanation for this is the fact that the decision tree is able to take
interactions between the different into account, whereas the linear models could not
due to computational infeasibility. This indicates that there might be interactions within

the features in the data.
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Feature importances using MDE
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Figure C.13: The feature importance of the final decision tree model in the SciSkill case
study.

C.1.5 | Random forest

To perform the feature selection for the random forest model, a model was trained on
the features after hyperparameter tuning with 19 function calls and added noise vari-
ables. The tuning process is visualized in Figure D.5. Figure D.5a shows that the tried
parameter values are quite uniformly distributed for all hyperparameters. It should be
noted that this model has four hyperparameters which is more than the models before.
This means that the Bayesian algorithm needs more function evaluations to get near the
optimal value. This is also shown by Figure D.5c as it still decreases in the last function
calls. This means that the algorithm has not converged yet. Due to the high computa-
tional costs for the random forest algorithm, it was decided not to increase the number

of function calls.

Because of the relatively low amount of function calls, the visualizations of the ob-
jective function in Figure D.5b should be interpreted with care. On top of that, the
model has more than two hyperparameters. This means that the visualization of the
objective function consists of multiple two-dimensional marginalizations of the hyper-
parameter pairs. The actual objective function can, therefore, not be inferred using this
method.

However, it is possible to draw certain conclusions. It can be seen that the one-

dimensional marginal plots in Figure D.5b show that more difference is found by the
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algorithm in the hyperparameters ‘max_depth” and ‘min_samples_leaf’. It can also be
seen that the best-found values are near the optimal values for these parameters. It can,
therefore, be concluded that the maximal tree depth and the minimal samples of the
leaf are the most hyperparameters in this problem for the random forest model.

The feature importances with added noise variables resulting from this model are
shown in Figure C.14. It can be seen that many features have a larger feature impor-
tance than with Figure C.12. This also holds for the noise variables, which are more
important than more than half of the features. Therefore, 41 features with a larger fea-
ture importance than the noise variables were selected by this feature selection method
based on a random forest model. As discussed in the literature study, the random forest

Feature importances using MDE
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Figure C.14: The feature importance of the features in the random forest model for
feature selection in the SciSkill case study. The first 41 features were selected and the
feature importances of added noise variables are shown in red.

models are known to have favor variables with a variety of possible values, such as con-
tinuous variables. This is also reflected in the results in Figure C.14, as most binary and
categorical variables such as the position variables have a small feature importance. It
is also shown by the fact that the categorical noise variables were given a higher impor-
tance by the random forest. It can, therefore, be concluded that in this application, the
random forest model favors the use of non-discrete variables.

Figure D.6 shows the process of the hyperparameter tuning of the final random
forest model trained with 25 function calls and the selected features. It can be seen
in Figure D.6a that the distribution of the assessed hyperparameters is not uniformly
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distributed, in contrast with Figure D.5a. Additionally, Figure D.6 shows that the best-
found value only minimally decreased after 9 function calls. This shows that the re-

moval of unimportant variables speeds up the optimization problem.

The marginal influences of the hyperparameters are shown in Figure D.6b. As op-
posed to Figure D.5b, the influences of the number of trees ('n_estimators’), the sam-
pling fraction of the features (‘max_features’), and the sampling fraction of the samples
are visible in the marginal influence plots (‘max_samples’). A larger number of ran-
dom forests marginally gives better estimations as could be expected via theorems on
random forests. Using a larger fraction of the features and the samples increases the

predictive performance in general.

It can also be seen that there seem to be visible interactions within the hyperparam-
eters. This can be concluded from the fact that the plots in Figure D.6b do not consist
of vertical or horizontal patterns. The marginal plot of the maximal tree depth and the
minimal samples in a leaf shows that the best models are obtained for deep trees with
a relatively low minimal number of samples in the leaf.

Next to that, the patterns in the plots for the sampling fractions of the features
and the samples are really similar. This holds for both the one-dimensional and two-
dimensional marginal plots. It, therefore, seems that both have a similar influence on
the performance of the model.

Figure C.15 shows the feature importance of this final random forest model. It can
be seen that age-related features are the most important. Additionally, the information
about how long a player has not played a game, and about the SciSkill values com-
pared to the team seem to be of relatively important. It also shows that the SciSkill and
features describing the difference with historical SciSkill values are used by the model
to make predictions. This means that there appears to be information in the time series
of the SciSkill values.
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Figure C.15: The feature importance of the final random forest model in the SciSkill
case study.

The feature importance in Figure C.15 indicates that the random forest does not
have many discrete variables to make predictions. This is not surprising because of the
known bias of random forest models against discrete variables with a low number of
possible values. This bias was also apparent in the feature importances of the feature
selection model.

The estimated loss values on the training and test set of the random forest model are
shown in Table C.1. The values are better than those of the decision tree, which means
that the bagging procedure of the random forest increases the predictive quality.

On top of that, the random forest shows that the loss values of the training set are
clearly lower than the test losses. This means that overfitting is occurring for the ran-
dom forest model. If more conservative hyperparameters had been chosen than those
found by the Bayesian optimization algorithm, the performance of the model could

have been increased.

C.1.6 | XGBoost

The feature selection for the XGBoost was performed by selecting the features that had
a larger feature importance than added noise features. This was done by fitting a model
after a hyperparameter tuning of the XGBoost model with 50 function calls. Figure D.7
and Figure D.8 show the visualizations of this hyperparameter tuning process.
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The XGBoost model has eight hyperparameters to be tuned, which is the most of
all models in the current thesis. The first hyperparameter tuning is visualized in Fig-
ure D.7 in which seven parameters were tuned. It can be seen that the 1 parameter
had a significant influence, which is the learning rate of the boosting algorithm. Next
to that, the subsample rate of the data points (‘subsample) and the maximal tree depth
(‘max_depth’) appear to be influential hyperparameters. This can be seen that the val-
ues in their marginal plots seem to influence the predictive values quite much.

Figure D.7b also shows that the sampling rate of the features per tree level (‘colsam-
ple_bylevel’) and the regularization term & (“alpha’) have almost no interaction with
the other hyperparameters. This is shown by the fact that these hyperparameters show
horizontal and vertical patterns in the two-dimensional marginal plots.

The convergence plot shown in Figure D.7c shows that most improvements in per-
formance were found in the first 20 objective calls. After this, only a small improvement
was obtained with the last 30 function calls.

The second part of the hyperparameter optimization was to optimize the number of
trees ('n_estimators’). Figure D.8 contains visualizations of the process of the Bayesian
algorithm. Figure D.8b shows that tuning the number of decision trees can provide a
small improvement in performance. It also shows that the optimal value is attained
with the upper bound given to the optimization algorithm. This means that adding
more decision trees would increase the performance of the models. However, this
would also result in longer computation times and the gains seemed to be limited as
the curve has almost flattened out at that point.

Figure D.8c shows that all improvement was attained in one step of the optimiza-
tion. This was the step where it tested the value of the maximal bound, which is ex-
pected behavior given the seemingly monotone relation of the number of decision trees.

The tuned hyperparameters were used to train a model to perform feature selection.
Figure C.16 shows the feature importance of the features and the noise variables in the
XGBoost model. It can be seen that the XGBoost model is good at filtering out the
noise variables as all noise variables have a very low feature importance. This could
also mean that all other features appear to contain some information on the SciSkill
development of players over the next year. It can also be seen that the month-related
features have a small feature importance. Still, these features were selected as they were
considered to be discrete variables and they have a larger feature importance than all
discrete noise variables.

The same hyperparameter tuning process was applied to the features without the
noise variables as visualized in Figure D.9 and Figure D.10. It shows that the influences
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Figure C.16: The feature importance of the features in the random forest model for
feature selection in the SciSkill case study. All features were selected and the feature
importances of added noise variables are shown in red.

of the hyperparameters significantly differ without the presence of the noise variables.
Although 7 (‘eta’) appears to have a similar behavior, the influence of the data sub-
sample rate (‘subsample’) is significantly different. Instead of a monotone influence as
in Figure D.7b, it shows multiple local minima and maxima in Figure D.9b. Whereas
the sampling rate for each tree (‘colsample_bytree’) had a visual influence on the per-
formance in the marginal plot in Figure D.7b, it does not seem to be influential in Fig-
ure D.9b. Conversely, the influence of the sampling rate of columns for each tree level
was clearly visible with the presence of noise variables although it does not seem to
have a clear influence without noise variables. This might be occurring because of the
fact that the column sampling rate for the tree and per level have similar functions.

Figure D.9c shows that the algorithm still had improved just 10 objective function
calls before the end of the tuning process. It could be possible that further hyperparam-
eter tuning would increase the predictive quality of the models. This was not explored
because of the large computational costs of training an XGBoost model.

The tuning process of the number of decision trees (‘n_etimators’) is shown in Fig-
ure D.10. It can be seen that the estimated loss appears to have a decreasing relation-
ship with the number of decision trees similar to in Figure D.8b. The absence of noise
variables does not seem to influence the behavior of the number of decision trees very

much.
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The feature importances of the final XGBoost model are shown in Figure C.17. It
can be seen that the differences between the most important features are more apparent
than in Figure C.16 with the absence of the noise variables. It can be seen that the
number of months without a game of a player (‘previous_zero_months’) is the most
important feature. This is not surprising as the SciSkill gives a penalty for inactivity if a
player did not play for a long time. As the SciSkill is not updated in the meantime, this
means that this penalty is given in the first game after the absence. It is, therefore, not
surprising that it has a large influence on the prediction.

Table C.1 shows the estimated train and test losses for the XGBoost model. This
shows that the other model seems to show overfitting behavior as the training loss is
much too positive compared to the test loss. However, despite the overfitting behavior
of the model, it attains the lowest test loss so far. This means that it is able to generalize
the patterns in the training data the best, despite the fact that it overfits. This surprising
behavior indicates that the prediction in this case study appears to be hard to model.

Feature importances using MDE
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Figure C.17: The feature importance of the final XGBoost model in the SciSkill case
study.

A surprising occurrence is that the best-attained value of the adjusted cross-validation
was lower for the hyperparameter tuning with noise variables instead of the one with-
out the noise variables. This is visible in the values Figure D.8c and Figure D.10c. This
might be explained by the fact that the presence of noise forces the hyperparameters
to be chosen more conservatively. As the model appears to be overfitting, this would
decrease the overfitting behavior and improve the predictive performance.
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C.1.7 | kNN

The features chosen for the KNN model were the age in years of the player, the number
of months since the last game, and the SciSkill values of the last 12 months as times
series. The hyperparameter tuning process is visualized in Figure D.11.

Figure D.11b shows that the estimated loss is decreasing for values larger than 20
for k, the number of neighbors. An increased number of neighbors could, therefore,
have been interesting to investigate. The results also show a local minimum around
k = 10, which might be caused by the fact that certain subsets of the test set can be pre-
dicted better with a fewer number of neighbors. The results also show that the neigh-
bor weighting method based on the distance with the data point (“‘uniform’) marginally
gives a higher loss function. There appears to be a large interaction of the performance
between the number of neighbors and the neighbor weighting function. In the end,
k = 50, and the uniform weighting method were selected.

Table C.1 gives the estimated loss functions on the training and test set. The results
do not imply that overfitting is a large problem, although it might be apparent. At the
same time, it has a worse test loss as the random forest and linear models. The normal
kNN, therefore, does not have a competitive predictive accuracy compared to the other

implemented models.

C.1.8 | kNN with Mahalanobis distance

The kNN with Mahalanobis distance was trained on the same features as the nor-
mal kNN implementation. The hyperparameter tuning process was visualized in Fig-
ure D.12.

It can be seen that the marginal estimation of the objective function for this model
is nearly flat after k = 20. This means that the model is able to obtain the same amount
of information using less data. Nevertheless, the algorithm still found some small im-
provement in predictive accuracy for the larger values of the hyperparameter k and
selected k = 47 as the best number of neighbors.

The 2-dimensional estimation of the objective function in Figure D.12b shows dif-
ferent interaction effects as Figure D.11b. The performance of the ‘inverse distance’
weighting method is more competitive with the other loss functions. The marginal plot
for the weighting method even shows that the ‘inverse distance” method attains the
lowest marginal loss. However, due to interactions with the number of neighbors, the
uniform weighting method found to be the best weighting method.
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Table C.1 shows the training and test score estimates of the KNN model with Ma-
halanobis distance. The results do not indicate a large difference in the training and
test losses. The test losses are slightly better than those of the normal kNN model.
This means that the introduction of the Mahalanobis distance increases the accuracy.
Nonetheless, this did not result in loss values that were competitive with the linear and

tree-based models.

C.1.9 | kNN with RReliefF weights

The kNN model with RReliefF weights was trained on the same features as the nor-
mal kNN implementation. The hyperparameter tuning process was visualized in Fig-
ure D.13.

In this figure, it can be seen that the kNN model with RReliefF weights behaves
similarly to the normal kNN model with Mahalanobis distance. The largest difference
in the behavior is the fact that the ‘inverse distance” weighting method performs rela-
tively worse. The Bayesian algorithm selected the uniform neighbor weighting method
as the best.

The results also showed that the predictive performance appeared to increase with
the number of neighbors k, albeit in a less smooth relation. It could still have been
beneficial to have increased the number of neighbors. With 50 as a maximum, the best-
found number of neighbors was found to be k = 47.

The training and test scores of the KNN with RReliefF weights are given in Table C.1.
The results show that the KNN method with RRliefF weights performs worse than the
kNN model with Mahalanobis distance and the normal kNN model. This is in line
with the results in Appendix B, where it was found that the RReliefF weights did not
significantly the predictive performance of the methods.

The RReliefF model also resulted in the feature importance as shown in Figure C.18.
For instance, the number of months since the most recent game of a player (‘previous
zero months’) appears to have almost no feature importance according to the RReliefF
algorithm. This is surprising because this appeared to be an important variable in other
models. It might be possible that this is due to the fact that most samples have a value
of 0 for this variable. As the RReliefF algorithm determines the differences within each
feature for the k closest points, it might be the case that this value is often the same for
points close to each other. This would make the RReliefF method incorrectly determine
that the feature has a low importance. This could possibly be solved by adjusting the

RReliefF algorithm to also take into account the k furthest points.
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Figure C.18: The feature importance of the final KNN model with RReliefF weights in
the SciSkill case study.

Still, the results show that the most important feature is the age of the player in
years. The most recent values in the time series features appear to be the most influ-
ential. Surprisingly, the oldest value of the time series features also appears to have
an important influence. This data point was most close to the same data point a year
ago, and might, therefore, contain information about seasonal changes. In this way, the
RReliefF algorithm shows that the age, the most recent time series value, and the oldest
time series value were the most important features in the RReliefF kNN model.

C.2 | Estimated Transfer Value case study

C.2.1 | Ordinary least squares

The backwards feature selection algorithm was applied using the OLS regression model
using a significance threshold of 0.001. This resulted in 31 features being selected out
of 57 features.
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Model Train set Test set
RMSE | MAE | R?” [ RMSE (Std. dev) | MAE (Std. dev) | R* (Std. dev)
OLS 1,506,568 | 410,451 | 0.1465 | 1,795,871 (43,924) | 533,513 (5,492) | 0.1059 (0.0148)
Lasso 1,506,621 | 408,783 | 0.1464 | 1,795,462 (43,978) | 531,579 (6,494) | 0.1063 (0.0140)
LME 1,507,395 | 409,854 | 0.1455 | 1,797,849 (44,063) | 531,049 (6,509) | 0.1039 (0.0141)
Decision tree 1,410,098 | 319,703 | 0.2523 | 1,783,137 (43,923) | 462,347 (6,492) | 0.1185 (0.0141)
Random forest 991,242 | 266,296 | 0.6305 | 1,704,637 (41,258) | 441,403 (6,215) | 0.1944 (0.0220)
XGBoost 1,243,872 | 297,811 | 0.4182 | 1,737,930 (41,412) | 453,343 (6,381) | 0.1626 (0.0181)
kNN 1,307,758 | 299,970 | 0.3569 | 1,766,151 (44,580) | 457,924 (5,420) | 0.1352(0.0171)
KNN Mahalanobis | 1,348,455 | 309,709 | 0.3162 | 1,743,481 (43,385) | 450,904 (6,309) | 0.1573 (0.0165)
kNN RReliefF 1,342,309 | 318,041 | 0.3224 | 1,760,266 (42,905) | 460,119 (6,461) | 0.1410 (0.0176)

Table C.2: The estimates on the train and test set for the different loss functions in the
Estimated Transfer Value case study. The standard deviations of the estimates on the
test set were calculated using 1000 bootstrap samples. The values for the RMSE and
MAE are given in euros.

Figure C.19 shows the feature importance of the selected features for the OLS model.
It can be seen that the ETV-related features (‘etv’; ‘etv_diff_6m_ago’; ‘etv_diff_6m_ago’)
are considered to be the most important features. Next to that, historical transfer infor-
mation of both the club and the player is considered important (‘club_average_paid_fee_36m’;

‘player_max_fee’; ‘player_cumsum_fee’) by the OLS model.

Feature importances using the OLS model
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Figure C.19: The feature importance in the RMSE decrease in euros for each feature for
the OLS model in the Estimated Transfer Value case study.

The coefficients of the OLS model are visualized in Figure C.20. The results show
that a positive development of the ETV in the last 6 months results in higher prediction
for the ETV one year later, whereas a positive development of the ETV in the last 12
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Coefficient values of the OLS model for standardized features
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Figure C.20: The coefficients of the final OLS model of the standardized features in the
Estimated Transfer Value case study.

months is associated with a lower precited value of the ETV one year later. High values
for the current ETV result in lower predictions of the ETV one year later. This might be
due to the fact that players with a large ETV value will decrease in value somewhere
in their career combined with the fact that it might be hard for them to increase their
value as it is already one of the highest.

Figure C.21 describes the coefficients of the features in the OLS model in their
original scale. It can be found that having been inactive for some months (‘previ-
ous_zero_months’) has a negative influence on the development of the ETV. It can
also be see that the influence of having had a paid transfer in the last six months
(‘paid_transfer_last_6m’) has a positive influence on the ETV. This can be because of
the fact that the ETV-values are influenced by recent transfers. The features with large-
scale differences in their original features, such as the ETV, and club expenses seem to
have small coefficient values. These are due to the fact that their differences are of a
larger scale and these might, therefore, have a large influence. This is actually the case
as the ETV itself has quite a large feature importance as shown in Figure C.19.

The values of the estimated loss values are given in Table C.2. It can be seen that
the test losses are slightly larger than the training losses and that the value of the test
RMSE is around 1.8 million euros. This is relatively large and at the same time, the R?
is relatively small. This means that the OLS model gives less information compared to
taking the mean in this case study than in the SciSkill case study.
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Figure C.21: The coefficients of the final OLS model in the original scale of the features
in the Estimated Transfer Value case study.

C.2.2 | Lasso

The feature selection process for the lasso model was performed by selecting the fea-
tures with nonzero coefficient values in a lasso model. To this end, a short hyperpa-
rameter tuning was performed of which the process is visualized in Figure D.15. It can
be seen that the function is relatively flat for small values of the hyperparameter a and
rises steeply for values with a > 10%. There appears to be a minimum around & = 1073
which is reflected by the fact that almost all function evaluations were around this point
as shown in Figure D.15a.

The lasso model trained with these hyperparameters was trained on the data. The
feature importances are displayed in Figure C.22 and show that most features have
nonzero coefficients as 51 out of 57 features have been selected. It can be seen that the
last 20 features have limited feature importance and it could, therefore, be the case that
the feature selection method was not rigorous enough and a higher value of « should
have been chosen.

The hyperparameter process was again applied to the subset of the selected features
as visualized in Figure D.16. The estimated objective function in Figure D.16b and the
function evaluations in Figure D.16a are similar to those of the hyperparameter tuning
for the feature selection. A similar value of & was selected and the algorithm reached
this value much faster as reflected by Figure D.16c.
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Figure C.22: The feature importance of the features in the lasso model for feature selec-
tion in the Estimated Transfer Value case study. Selected features are indicated with a
red (*).

This resulted in a lasso model with the feature importances as depicted in Fig-
ure C.23. It can be seen that the feature importances of the final lasso model are similar
to those of the lasso model for feature selection. Moreover, both the lasso and the OLS
model give a large importance to similar features, which is, for instance, reflected in
ETV-related variables being important.

The estimated values of the coefficients in the final lasso model are visualized in
Figure C.24. The results show that the coefficients for the ETV-related features (‘etv’;
‘etv_diff_6m_ago’; ‘etv_diff_6m_ago’) had nearly identical coefficients as in the OLS
model. It also indicates that the average fee paid by the club in the last three years
(‘club_average_paid_fee_36m’) results in a larger predicted value for the ETV one year
later. The influence of this feature is surprisingly much larger than that of the average
sold player in the last three years (‘club_average_sold_fee_36m’). This might happen
because the average fee paid by a club might represent the prestige of the club or the
club’s competition, which is could be expected to result in larger transfer values.

The feature coefficients in their original scale are visualized in Figure C.25. These
coefficients are very similr to those of the OLS model, although more variables have
been selected by this method.

The estimated losses of the lasso model for the ETV case study are given in Table C.2.
It can be seen that the differences in the test loss functions with those of the OLS model
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Figure C.23: The feature importance in the RMSE decrease in euros for each feature for
the final lasso model in the Estimated Transfer Value case study.
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Figure C.24: The coefficients of the final lasso model of the standardized features in the
Estimated Transfer Value case study.

in Table C.2 are not significant. Their predictive performance can, therefore, be consid-
ered to be similar. This is the case despite the relatively large value of the regularization
parameter x = 103965 ~ 1160.75. It can, therefore, be concluded that the addition of a

bias using a ¢; penalty does not improve the predictive accuracy.
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Figure C.25: The coefficients of the final lasso model in the original scale of the features
in the Estimated Transfer Value case study:.

C.2.3 | Linear mixed effect model

The third linear model is the linear mixed effect model. The 20 features with the largest
feature importance of the lasso model were used for this model and the first nationality

of the player was taken as the random effect.

This resulted in the feature importances as shown in Figure C.26. It can be seen
that again the same features were considered significant, but that the most important
‘feature” was the intercept. The other features are similarly behaving as in the OLS and
lasso models, except for the fact that the importance of feature describing the difference
between the current ETV and the ETV of six months ago (‘etv_diff_6m_ago’) is a little
bit less important. This might have been caused by the introductions of the random

intercepts in this linear mixed effect model.

Figure C.27 shows the estimated coefficients of the linear mixed effects model. The
coefficients of the ETV-related features (‘etv’; ‘etv_diff 6m_ago’; ‘etv_diff 6m_ago’) are
similar to the coefficients of the OLS and lasso models. This also holds for the coeffi-
cients corresponding to the other selected features, which means that the inclusion of

the random effects did not have a large influence on the estimated coefficient values.

The rescaled model coefficients are visualized in Figure C.28. These values have
completely different scales compared to those of the OLS and lasso models as no binary
features have been included. As binary values have a relatively small difference in their
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Figure C.26: The feature importance in the RMSE decrease in euros for each feature for
the final linear mixed effect model.
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Figure C.27: The coefficients of the final linear mixed effect model of the standardized
features in the Estimated Transfer Value case study.

original scale (0 and 1), they need to have large rescaled coefficients to be of any influ-
ence. The absence of these binary features, therefore, gives another scale. It can still be
seen however, that many changes in the historical values both have both a negative in-

fluence (‘sciskill_variance_6m’) and a positive influence (‘sciskill_roughness_measure_6m’)
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on the ETV development. The feature ‘sciskill_variance_6m’ is proportional to the
squares of the changes in the velocity of the SciSkill, while “sciskill_roughness_measure_é6m’
is proportional to the squares of the in the numerical approximation of the acceleration
of the historical values. It can, therefore, be said that many changes in acceleration have
a negative influence on the ETV development whereas changes in the velocity of of the

SciSkill have a positive influence on the prediction.

Coefficient values of the linear mixed effects model in original feature scale
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Figure C.28: The coefficients of the final linear mixed effect model in the original scale
of the features in the Estimated Transfer Value case study.
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The estimated loss values for the linear mixed effects model are given in Table C.2.
They show similar values as the OLS and lasso models. Additionally, the differences
with both the OLS and the lasso model are less than two times the standard deviation
of the training set, which means that the loss values are not considered significantly
different.

C.2.4 | Decision tree

The feature selection for the decision tree was performed by training a decision tree
on the predictive task with added noise variables and by selecting the features with
a higher feature importance than the noise variables. To this end, a hyperparameter
tuning was performed using Bayesian optimization as visualized in Figure D.4. Fig-
ure D.3c shows that most gain was obtained in the first five function calls and that later

function calls gained no significant improvement. Additionally, the fact that the one-
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dimensional marginal plot of the maximal tree depth (‘max_depth’) does not select the
lowest value in Figure D.17b, indicates that there is some interaction between the maxi-
mal tree depth and the minimal number of samples per leaf. This is also reflected in the
two-dimensional marginal plot as not all patterns are either horizontal or vertical lines.
However, the best-found value is close to the optimal minimal number of samples per
leaf in the one-dimensional marginal plot. As this is not the case for the maximal tree
depth, it can be concluded that the most influential hyperparameter appears to be the
maximal number of samples per leaf.

These hyperparameters were used to train a decision tree model with added noise
features. The feature importances of the resulting model are shown in Figure C.29. It
can be seen that only a few features were of large importance, which was reflected by
the fact that only 28 features were selected out of 57.

Feature importances using MDE

Figure C.29: The node impurity feature importances of the decision tree model for fea-
ture selection in the Estimated Transfer Value case study.

A hyperparameter tuning was again applied to the decision tree model on the data
set with the selected features as visualized in Figure D.18. It shows similar behavior as
the hyperparameter process for the feature selection, especially in the best value for the
number of function calls in Figure D.18c. The evaluated points and the estimated ob-
jective function in Figure D.18a and Figure D.18b show small differences, but generally
the same behavior. It can, therefore, in a similar fashion be concluded that the minimal
number per leaf is the most influential hyperparameter.

The final decision tree model was trained using these optimized hyperparameters
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and the selected features. This resulted in the feature importances in Figure C.30. The
feature importances are similar to those of the decision model for hyperparameter tun-
ing. Opposed to the linear models, the month variable is the second most important
feature in the model. The month variable only takes two values as all data points are
in January or July, which means that it cannot indicate a nonlinear relation of this fea-
ture. The inclusion of the month variable in the decision tree model could, therefore,
indicate that the month variable has an interaction term with another variable which is

important for the prediction of the development in the Estimated Transfer Value.

Feature importances using MDE
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Figure C.30: The node impurity feature importance in euros for each feature for the
final decision tree model in the Estimated Transfer Value case study.

The estimated loss values of the decision tree model are given in Table C.2. The loss
values of the decision tree appear to be better than those of the linear models. However,
the difference with the best RMSE value of the linear models is 12,325, which is less than
the standard deviation of the estimates. The decision tree model can, therefore, not be

considered to be significantly better performing.

C.2.5 | Random forest

The feature selection for the random forest was performed by training a random forest
regressor to the full data set with added noise features and selecting the best features.
To do this, a hyperparameter tuning was first performed. The process of the hyperpa-

rameter tuning is visualized in Figure D.19.
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Figure D.19¢ shows that the convergence of the optimization algorithm was signif-
icantly slower than that of the decision tree algorithm. This could be expected as there
are five hyperparameters instead of two, which increases the dimensionality of the hy-
perparameter space and slows down the convergence of the optimization algorithm.

The best-found hyperparameters are placed on the or close to boundaries of the hy-
perparameter space of the dimensions corresponding to the number of decision trees
(‘'n_estimators’), the maximal tree depth (‘max_depth’), and the minimal number of
data points per leaf (‘min_samples_leaf’) as shown in Figure D.19b. The values seem to
indicate that more complex models perform better and that the hyperparameter space
should be extended at these boundaries. It was chosen not to do this because the ran-
dom forest model was found to be a computationally expensive algorithm, and making
the model more flexible using these parameters would significantly increase the com-
putability. Extending the hyperparameter space was, therefore, not possible for this
research.

It can be seen that the estimations of the visualizations of the objective function in
Figure D.19b are clearly different from those in Figure D.5b. This can be explained by
the increased number of objective function calls, which makes it possible to explore
more of the hyperparameter space and improves the quality of the estimates. It can
also be due to different behavior in this case study compared to the SciSkill case study.

The feature importances from the random forest model for the feature selection are
shown in Figure C.31. The random forest model gives more importance to noise vari-
ables compared to the decision tree model. This could be expected as the random forest
model randomly includes features in the different decision trees, which makes it possi-
ble that noise features are selected randomly. Similarly as with the decision tree, only
a few features have a large feature importance. Based on these feature importances, 24
features were selected for the random forest model.

The selected features were used to apply hyperparameter tuning on to find the hy-
perparameters for the final model. This process is visualized in Figure D.20. The speed
of convergence of the model as depicted in Figure D.20c appears to be slightly slower
than the hyperparameter tuning for the feature selection random forest model.

Figure D.20a and Figure D.20b show similar behavior of the hyperparameters as in
the case of the hyperparameter tuning for the feature selection random forest model.
They show that generally, most hyperparameters appear to interact with each other
as the patterns in the two-dimensional marginal plots appear to be nonhorizontal or
nonvertical. The function evaluations for the number of decision trees (‘n_estimators’),

the maximal tree depth (‘max_depth’), and the minimal number of samples per leaf
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Feature importances using MDE
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Figure C.31: The node impurity feature importances of the random forest model for
feature selection in the Estimated Transfer Value case study. Noise variables are high-
lighted in red.

(‘min_samples_leaf’) seem to be concentrated around the found optimal values, while
this is less clearly visible for the other hyperparameters. This difference indicates that
the number of decision trees, the maximal tree depth, and the minimal number of sam-
ples per leaf are considered the most important by the Bayesian optimization algorithm.

Similarly as with the random forest model for feature selection, the values of these
three hyperparameters indicate that more flexible random forest estimators are pre-
ferred by the optimization algorithm. Although it would be interesting to expand the
hyperparameter space, this would increase the computational costs, which would make
it computationally infeasible. Because of this, we chose not to expand the hyperparam-
eter space in this study.

The best-found value of the fraction of the sampled data points for the training of
each individual decision tree (‘max_samples’) was not on the boundary but around
0.85. This is opposed to the earlier model for feature importance. This makes corre-
lation within the data points a smaller problem for training the model. As the data
points of one football player are similar, they can be expected to have collinearity. This
problem might be solved by selecting this specific value of this parameter.

The random forest model resulting from the hyperparameter tuning resulted in fea-
ture importances as in Figure C.32. It shows that the variables describing the last values
of the ETV (‘etv_diff 6m_ago’, ‘etv’, ‘etv_diff 12m_ago’) are important features. The
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month of the year also seems to be an important feature. This is similar to the feature
importance of the decision tree model, although the features with small importance are
relatively more important for the random forest model. This is in line with the theory as
the random forest model randomly selects features for each decision tree, which makes

less important features having a larger importance.

Feature importances using MDE
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Figure C.32: The node impurity feature importance in euros for each feature for the
final random forest model in the Estimated Transfer Value case study.

The estimated loss values of the random forest model are given in Table C.2. The
training losses are clearly lower than the test losses, which indicates that the random
forest model is overfitting. At the same time, the test estimates of the RMSE, the MAE,
and the R? of the random forest are better than those of the other models up to now.
This means that despite the overfitting, it still performs relatively well for the prediction
of unseen data. When the estimated standard deviations for these losses are taken
into account, the differences in the MAE and the R? are significant. The differences
in the RMSE are slightly less than two times the standard deviation, which makes the
difference in RMSE nonsignificant.

C.2.6 | XGBoost

The last tree-based model in this study is the XGBoost model. To apply feature selec-
tion, the model was first trained on the full data set with added noise variables. To this

end, hyperparameter tuning was first applied in two steps. The first step optimized
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seven hyperparameters as visualized in Figure D.7. It can be seen that the improve-
ment in the best value was mostly obtained in the first 10 function calls. At later points,
some small improvements were found. As the exact hyperparameters are less impor-
tant for the feature selection model, the number of function evaluations are considered
to be enough.

Figure D.22b shows that the data points are highly concentrated around the value
of 1074 for the learning rate 1. As this is not the case for the other hyperparameters,
it indicates that this hyperparameter is considered to be the most important hyperpa-
rameter. For the other hyperparameters except for ‘subsample” and ‘max_depth’, the
influence on the two-dimensional marginal plots with # is minimal, which indicates
only a small interaction with this hyperparameter. The learning rate 7 is thus an impor-
tant hyperparameter with only limited interaction with the other hyperparameters.

The fraction of the columns sampled per tree level (‘colsample_bylevel’) appears
to have almost no influence on the predictive quality of the XGBoost model. This is
shown by the flat one-dimensional marginal plot and the vertical nature of the two-
dimensional marginal plots with the other parameters in Figure D.22b. On the con-
trary, the columns sampled per tree (‘colsample_bytree’) do have an influence on the
predictive quality as shown by the marginal plots of this feature. As these two hyperpa-
rameters have similar functions, it is not surprising that only one of them has influence
on the values chosen by the Bayesian optimization algorithm.

The best maximal depth (‘max_depth’) of the XGBoost model was found at a value
that was not near the boundaries. This indicates that a more flexible model is most
probably not necessary. Another hyperparameter influencing this is the number of de-
cision trees which was tuned in the second hyperparameter tuning as visualized in Fig-
ure D.22. The optimal found value in this hyperparameter tuning also had a relatively
low value of the number of estimators. This gives that the space of these hyperparam-
eter is most probably sufficient to offer a flexible enough model for the problem.

The resulting feature importances are visualized in Figure C.33. They show that the
binomial noise feature
(‘noise_binomial_20") and the uniform noise feature (‘noise_uniform’) have relatively
high feature importances. Because of this, only 19 features were selected for the XG-
Boost model.

Based on these selected features, the final XGBoost model was trained. Before the
final model was trained, the hyperparameters were optimized in two steps. The first
step optimized seven hyperparameters and is visualized in Figure D.23. For all hyper-

parameters, the one-dimensional marginal plots are more flat as shown in Figure D.24b.
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Feature importances using MDE
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Figure C.33: The node impurity feature importances of the XGBoost model for feature

selection in the Estimated Transfer Value case study. Noise variables are highlighted in
red.

The predictive performance on this subset of features thus behaves differently com-
pared to the first step in the hyperparameter tuning for the feature selection.

This is most strongly visible in the two-dimensional marginal plots for the learning
rate hyperparameter 77. Whereas Figure D.7b showed bad performance for small values
of 7, taking a small value for 7 does not seem to influence the predictive quality in
Figure D.9b. The removal of irrelevant features, therefore, allows for smaller values of

the learning rate.

Another difference with the hyperparameter tuning for the feature selection model
is that there are more two-dimensional marginal plots of the objective function with
elliptic shapes instead of linear patterns. This difference is most obvious for the sample
rate of the columns per tree level (‘colsample_bylevel’). This implies the occurrence of
different interactions between the parameters.

The results also show that the found value of the column subsampling rate per level
of the tree (‘colsample_bylevel’) is 1.0, which means that no subsampling occurs. This is
opposed to the hyperparameter tuning for the feature selection model, which attained
a value of around 0.6. On the other hand, the column subsampling rate per decision
tree (‘colsample_bytree’) changed from 1.0 for feature selection to around 0.85 for this
final model. As both parameters have similar purposes, it can be concluded that the

column sampling per tree has taken over the role of the column sampling per tree level.
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Figure D.24 visualizes the process of the second hyperparameter tuning which tuned
the number of decision trees in the XGBoost model. The behavior of this hyperparam-
eter is similar to the behavior in the hyperparameter tuning for feature selection. In
similar fashion, it can be concluded that the the space of this hyperparameter is most
probably sufficient to offer a flexible enough model for the problem.

Using these optimized hyperparameters, the final model was trained. The fea-
ture importances of this model are given in Figure C.34. It can be seen that the in-
fluence of the difference between the current ETV value and that of six months ago
(‘etv_diff_6m_ago’) is not the most important feature and is less important than in the
other models so far. Instead, the variable indicating the month is the most important
variable, which was an important variable in the decision tree and random forest mod-
els too. More surprising is the fact that the number of minutes played by the player in
an international competition in the last six months
(‘minutes_played_international_competition_last_6m’) is an important feature in this
XGBoost model. This was not the case for the other models. It can be concluded that
the XGBoost model assigns different importances to the features compared to the other
models. Based on this, it could be expected that the behavior of the model is differently.

Feature importances using MDE
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Figure C.34: The node impurity feature importance in euros for each feature for the
final XGBoost model in the Estimated Transfer Value case study.

This difference is obvious in the estimated loss functions that are given in Table C.2.
The values of the test losses are not very different from the other models. The loss

estimates of the XGBoost estimator are worse than that of the random forest model,
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but better than the decision tree model and the linear models. It can be seen using two
times the standard deviation that the differences in performance in the RMSE are not

significant.

C.2.7 | kNN

Similarly as with the SciSkill case study, three KNN models were trained on the pre-
dictive problem. First, a normal kNN model was trained, and to do this, hyperparam-
eter tuning was performed on the number of neighbors k and the sample weighting
method. The resulting process is visualized in Figure D.25. Figure D.25b shows that
the performance is bad for low values of k. For the larger values, the predictive perfor-
mance appears to become slightly worse with an increase in k. The distribution of the
function evaluations for the neighbor weighting method in Figure D.25a shows that
the algorithm clearly favors the distance-based weighting method for the neighbors
("distance’). Because of the low dimension of the hyperparameter space, the algorithm
seems to converge fast as visible in Figure D.25c. In this way, the hyperparameter tun-
ing was performed for the kNN model which resulted in selecting k = 33 and the
neighbor weight method based on the distance between the neighbors.

Table C.2 gives the estimated loss values for the kNN model. It can be seen that
the training losses are smaller than the test losses, which indicates some type of over-
fitting. Finally, the RMSE and MAE of the method have better values than those of the
linear models. Additionally, the value of the RMSE is better than that of the decision
tree. However, when taking into account the standard deviation of the RMSE, these

differences are not significant.

C.2.8 | kNN Mahalanobis

The kNN model with Mahalanobis distance was obtained by first applying hyperpa-
rameter tuning. This was visualized in Figure D.26. It is surprising that this method
does not show a clear preference for the distance-based neighbor weighting method,
but also has many function calls for the uniform weights of the neighbors as shown in
Figure D.26a. Moreover, the influence of the predictive performance on the k param-
eter is less simple as it has a second peak around k = 30 both in the one-dimensional
marginal plot and the two-dimensional plot of the objective function in Figure D.26b.
It can be concluded that the hyperparameters for the kNN behave differently when the
Mahalanobis distance is used.

163



Appendix C. Model specific results C.2. Estimated Transfer Value case study

The one-dimensional marginal plot in Figure D.26b shows a higher loss value for
the distance-related neighbor weighting method. The Bayesian optimization algorithm,
however, selected this method. This is probably due to the fact that the parameter k
is the most important hyperparameter and that for the best values of k, the distance-
based weighting method performs best. In this way, the interaction between the two
hyperparameters influences the selection of the final parameter values.

Table C.2 gives the estimated loss values for the KNN model with Mahalanobis dis-
tance. It can be seen that the Mahalanobis distance improves the predictive quality of
the kKNN model. The RMSE loss value of this model is similar to that of the XGBoost
model. Similarly, as with the other loss values, the differences of the RMSE and MAE
are not large enough to be significant based on the bootstrap test.

C.2.9 | kNN RReliefF

The last model was the kNN model with RReliefF feature weighting. Hyperparameter
tuning was applied using the Bayesian optimization algorithm and the process is vi-
sualized in Figure D.27. The hyperparameters behave similarly to those of the normal
kNN model.

One small difference is the fact that the marginal plot of the k hyperparameter in
Figure D.27b has a less steep slope for low values of k. This means that the KNN model
with RReliefF feature weighting needs more neighbors to infer the optimal amount of
data. This is also reflected in the fact that the selected value of k is 50, the maximal value.
The predictive performance of the model might have been improved by increasing the
maximal number of neighbors.

The RReliefF algorithm was applied to obtain feature weights. These feature weights
are shown in Figure C.35. The most important feature according to the RReliefF algo-
rithm is the month variable. This is in accordance with the feature importances of the
tree-based methods. Additionally, the current SciSkill (‘sciskill”) and the SciSkill po-
tential (‘sciskill_potential’) are important features. Surprisingly, the features describ-
ing the current and historical ETV values (‘etv’, ‘etv_diff_6m_ago’, ‘etv_diff 12m_ago’)
only have small importance. This means that the time series of the other variables con-
tains more information about the future ETV development than the ETV itself. This
could be expected as the SciSkill and the SciSkill potential are important features in the
underlying model of the ETV values.

The estimated loss values of the KNN model with RReliefF feature weights are given
in Table C.2. It can be seen that the RReliefF feature weights give better test loss val-
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Figure C.35: The feature importance of the final KNN model with RReliefF weights for
the ETV case study.

ues compared to the normal kNN. Additionally, the training errors resulting from the
RReliefF weighting are worse than for the normal kNN. Thus, overfitting appears to be
a smaller problem for the kNN model with RReliefF weighting than with the normal
kNN model.

It can be seen that the addition of the Mahalanobis distance provides better predic-
tive performance than the RReliefF feature weighting. This might be due to the fact that
there are correlated features that are handled by the Mahalobis distance.

In general, the KNN model with RReliefF feature weights does not have the best
predictive performance compared to the other models, although it has better loss values
than the linear models. However, it should be noted that the differences with the other

loss values are not significant.
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D.1 | SciSkill case study

(a) The distribution of the function (b) The estimated objective function.
evaluations. The red line indicates the best solu-
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(c) The best value after the number of
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Figure D.1: The visualizations obtained by the hyperparameter tuning for the lasso
model for feature selection in the SciSkill case study.
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(c) The best value after the number of function calls.

Figure D.2: The visualizations obtained by the hyperparameter tuning for the final lasso
model in the SciSkill case study.

169



Appendix D. Visualizations of hyperparameter tuning process D.1. SciSkill case study

max_depth max_depth
200 400 600 800 200 a0 600 800

Number of samples.
Partial dependence

min_samples_leaf
[} 1

min_samples leaf
16 3 1 16

s . E sé
5 e & e ’ £ e & &
(a) The distribution of the function evalua- (b) The estimated objective function. The
tions. red line and the star (*) indicate the best so-
lution.
so Convergence plot
4.9
4.8 1
B 4zl
S
£
* 4.6
£
£
45
4.4 4
43 - * b °
o 5 10 15 20 25

Number of calls n

(c) The best value after the number of function calls.

Figure D.3: The visualizations obtained by the hyperparameter tuning for the decision
tree model for feature selection in the SciSkill case study.
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Figure D.4: The visualizations obtained by the hyperparameter tuning for the final de-
cision tree model in the SciSkill case study:.
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Figure D.5: The visualizations obtained by the hyperparameter tuning for the random
forest model for feature selection in the SciSkill case study.
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Figure D.6: The visualizations obtained by the hyperparameter tuning for the final ran-

dom forest model in the SciSkill case study:.
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Appendix D. Visualizations of hyperparameter tuning process D.1. SciSkill case study
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(c) The best value after the number of function calls.

Figure D.7: The visualizations obtained by the first hyperparameter tuning for the XG-
Boost model for feature selection in the SciSkill case study.
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Figure D.8: The visualizations obtained by the second hyperparameter tuning for the
XGBoost model for feature selection in the SciSkill case study:.
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(c) The best value after the number of function calls.

Figure D.9: The visualizations obtained by the first hyperparameter tuning for the final
XGBoost model in the SciSkill case study.
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(c) The best value after the number of function calls.

Figure D.10: The visualizations obtained by the second hyperparameter tuning for the
final XGBoost model in the SciSkill case study.
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(c) The best value after the number of function calls.

Figure D.11: The visualizations obtained by the hyperparameter tuning for the kNN

model in the SciSkill case study.
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(c) The best value after the number of function calls.

Figure D.12: The visualizations obtained by the hyperparameter tuning for the kNN
Mahalanobis model in the SciSkill case study.
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(c) The best value after the number of function calls.

Figure D.13: The visualizations obtained by the hyperparameter tuning for the kNN

RReliefF model in the SciSkill case study.
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Figure D.14: An oversight of the rescaled (min-max) feature importances of each feature
for the different models in the SciSkill case study.
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D.2 | ETV case study
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Figure D.15: The visualizations obtained by the hyperparameter tuning for the lasso
model for feature selection in the Estimated Transfer Value case study.
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(c) The best value after the number of function calls.

Figure D.16: The visualizations obtained by the hyperparameter tuning for the final
lasso model in the Estimated Transfer Value case study.

183



Appendix D. Visualizations of hyperparameter tuning process D.2. ETV case study

max_depth max_depth
200 400 ~ 600 800 200 400 600 800 o

Partial dependence

Number of samples

-
1

mmEsamp\esl_z\eaf s A mmgsamplesi;ear
é‘ s e H 2
10Z ///___ L
£ & ° £ &
max_depth max_depth
(a) The distribution of the function evalua- (b) The estimated objective function. The
tions. red line indicates the best solution.
1e6 Convergence plot
1.66 1 T
" 1.64 1
% 1.62 4
g
E
1.60 1
1.58 4
o 10 20 0 2 50

Number of calls n

(c) The best value after the number of function calls.

Figure D.17: The visualizations obtained by the hyperparameter tuning for the decision
tree model for feature selection in the Estimated Transfer Value case study.
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Figure D.18: The visualizations obtained by the hyperparameter tuning for the final
decision tree model in the Estimated Transfer Value case study. (The bounds of the
hyperparameters are not right and will be adjusted.)
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Figure D.19: The visualizations obtained by the hyperparameter tuning for the random
forest model for feature selection in the Estimated Transfer Value case study.
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Figure D.20: The visualizations obtained by the hyperparameter tuning for the final
random forest model in the Estimated Transfer Value case study.
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Figure D.21: The visualizations obtained by the first hyperparameter tuning for the
XGBoost model for feature selection in the Estimated Transfer Value case study.
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(c) The best value after the number of function calls.

Figure D.22: The visualizations obtained by the second hyperparameter tuning for the
XGBoost model for feature selection in the Estimated Transfer Value case study.
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(c) The best value after the number of function calls.

Figure D.23: The visualizations obtained by the first hyperparameter tuning for the
final XGBoost model in the Estimated Transfer Value case study.
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Figure D.24: The visualizations obtained by the second hyperparameter tuning for the
final XGBoost model in the Estimated Transfer Value case study.

191



Appendix D. Visualizations of hyperparameter tuning process D.2. ETV case study

Number of samples.

’ $ £l » ®
.
(a) The distribution of the function evalua- (b) The estimated objective function. The
tions. red line indicates the best solution.
1e6 Convergence plot
1.552 1
1.550 1

1548 1

1.546 1

minfix) after n calls

1544 1

1.542 1 4

0 10 20 30 40 50
Number of calls n

(c) The best value after the number of function calls.

Figure D.25: The visualizations obtained by the hyperparameter tuning for the final
kNN model in the Estimated Transfer Value case study.
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Figure D.26: The visualizations obtained by the hyperparameter tuning for the final
kNN model with Mahalanobis distance in the Estimated Transfer Value case study.
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Figure D.27: The visualizations obtained by the hyperparameter tuning for the final
kNN model with RReliefF weights in the Estimated Transfer Value case study.
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Figure D.28: An oversight of the rescaled (min-max) feature importances of each feature
for the different models in the Estimated Transfere Value case study.
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Descriptions of data sets

E.1 | SciSkill case study

Table E.1: Label description of the SciSkill case study

Label Name

Type

Description

sciskill_diff 12m_future

Float

The difference in SciSkill at current moment

and one year later

Table E.2: Feature descriptions of the SciSkill case study

Feature Name Type Description

month Integer Month of the year (1 to 12)

month_sin Float Sine transformation of the month for season-
ality

month_cos Float Cosine transformation of the month for sea-
sonality

sciskill Float SciSkill of the player

defensive_skill Float Player’s defensive skill level

offensive_skill Float Player’s offensive skill level

player_resistance Float The resistance factor attributed to the player

total_minutes_played Integer Total number of minutes played by the
player in his carreer
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Appendix E. Descriptions of

data sets

E.1. SciSkill case study

Table E.2 — continued from previous page

Feature Name Type Description

previous_zero_months Integer Number of previous months with zero min-
utes played

position_most_played_1 Boolean Whether the player mostly played as left
back

position_most_played_2 Boolean Whether the player mostly played as right
back

position_most_played_3 Boolean Whether the player mostly played as centre
back

position_most_played_4 Boolean Whether the player mostly played as defen-
sive midfielder

position_most_played_5 Boolean Whether the player mostly played as centre
midfielder

position_most_played_6 Boolean Whether the player mostly played as attack-
ing midfielder

position_most_played_7 Boolean Whether the player mostly played as left
winger

position_most_played_8 Boolean Whether the player mostly played as right
winger

position_most_played_9 Boolean Whether the player mostly played as centre
forward

position_line Integer Line of the position the player mostly played
(0 for goalkeeper, 1 for defense, 2 for mid-
field, 3 for attack)

has_second_position Boolean Whether the player has a secondary position

has_third_position Boolean Whether the player has a tertiary position

eu_member Boolean Whether the player is a member of the Euro-
pean Union

height Integer Height of the player in centimeters

preferred_foot_1 Boolean Whether the player prefers to use left foot

preferred_foot_2 Boolean Whether the player prefers to use right foot

age_years Float Age of the player in years

age_years_squared Float Age of the player squared
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E.1. SciSkill case study

Table E.2 — continued from previous page

Feature Name Type Description

years_diff_peak_age Float Difference in years from the peak age at the
player’s position

minutes_played Integer Minutes played in the last month

minutes_x_resistance_ Float Product of the minutes played and resis-

domestic tance in domestic competitions in the last
month

minutes_played_ Integer Minutes played in international competi-

international_competition tions in the last month

minutes_played_ Integer Minutes played for the national team in last

national_team month

cumulative_minutes_ Integer Cumulative minutes played in the interna-

played_international _ tional competitions

competition

cumulative_minutes_ Integer Cumulative minutes played for the national

played_national_team team in carreer

minutes_played_last_6m Integer Minutes played in the last 6 months

minutes_x_resistance_ Float Product of minutes played and resistance

domestic_last_6m in domestic competitions over the last 6
months

minutes_played_international _ | Integer Minutes played in international competi-

competition_last_6m tions over the last 6 months

minutes_played_national _ Integer Minutes played for the national team over

team_last_6m the last 6 months

mean_resistance_last_6m Float Mean resistance level of the competition of
the player over the last 6 months

sciskill_diff 1m_ago Float Difference in SciSkill from 1 month ago

sciskill_diff 6m_ago Float Difference in SciSkill from 6 months ago

sciskill_diff 12m_ago Float Difference in SciSkill from 12 months ago

sciskill_acceleration Float Numeric backwards second derivative of
the SciSkill

sciskill_variance Float Squared difference of SciSkill value of the

current and previous month
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E.1. SciSkill case study

Table E.2 — continued from previous page

Feature Name Type Description

sciskill_roughness_measure Float Squared numeric backwards second deriva-
tive of the SciSkill

sciskill_mean_acceleration_6m | Float Mean numeric backwards second derivative
of the SciSkill over the last 6 months

sciskill_variance_6m Float Mean squared difference of subsequent
SciSkill values over the last 6 months

sciskill_roughness_measure_ | Float Mean squared numeric backwards second

6m derivative of the SciSkill over the last 6
months

sciskill_diff mean_team Float Difference in SciSkill from the team average
of the last half year

sciskill_diff_mean_position Float Difference in SciSkill from the average for
the position in his team of the last half year

sciskill_diff mean_position_ Float Difference in SciSkill from the average for

group the position group in his team of the last half
year

sciskill_diff mean_position_ Float Difference in SciSkill from the average for

line the position line in his team of the last half
year

sciskill_diff max_team Float Difference in SciSkill from the team’s maxi-
mum of the last half year

sciskill_diff_max_position Float Difference in SciSkill from the position’s
maximum in the team of the last half year

sciskill_diff_max_position_ Float Difference in SciSkill from the position

group group’s maximum in the team of the last half
year

sciskill_diff max_position_line | Float Difference in SciSkill from the position line’s
maximum in the team of the last half year

club_sum_expenses_12m Integer Sum of club expenses over the last 12
months

club_n_expenses_12m Integer Number of club expenses over the last 12

months
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E.1. SciSkill case study

Table E.2 — continued from previous page

Feature Name Type Description

club_sum_income_12m Integer Sum of club income over the last 12 months

club_n_incoming_12m Integer Number of club incoming transfers over the
last 12 months

club_n_internal_transfers_ Integer Number of internal transfers to the club over

to_12m the last 12 months

club_n_internal_transfers_ Integer Number of internal transfers from the club

from_12m over the last 12 months

club_n_incoming_loans_12m | Integer Number of incoming loans to the club over
the last 12 months

club_n_outgoing_loans_12m Integer Number of outgoing loans from the club
over the last 12 months

club_max_expenses_12m Integer Maximum single expense by the club over
the last 12 months

club_max_income_12m Integer Maximum single income for the club over
the last 12 months

club_transfer_profit_12m Integer Transfer profit of the club over the last 12
months (income minus expenses)

club_sum_expenses_36m Integer Sum of club expenses over the last 36
months

club_n_expenses_36m Integer Number of club expenses over the last 36
months

club_sum_income_36m Integer Sum of club income over the last 36 months

club_n_incoming_36m Integer Number of club incoming transfers over the
last 36 months

club_n_internal_transfers_ Integer Number of internal transfers to the club over

to_36m the last 36 months

club_n_internal transfers_ Integer Number of internal transfers from the club

from_36m over the last 36 months

club_n_incoming loans_36m | Integer Number of incoming loans to the club over
the last 36 months

club_n_outgoing_loans_36m Integer Number of outgoing loans from the club

over the last 36 months
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Table E.2 — continued from previous page

Feature Name Type Description

club_max_expenses_36m Integer Maximum single expense by the club over
the last 36 months

club_max_income_36m Integer Maximum single income for the club over
the last 36 months

club_transfer_profit_36m Integer Transfer profit of the club over the last 36
months (income minus expenses)

player_max_fee Integer Maximum historical transfer fee paid for the
player

player_cumsum_fee Integer Cumulative historical transfer fees paid for
the player

last_market_value Integer Last recorded market value of the player

max_market_value Integer Maximum historical market value of the
player

n_loans Integer Number of times the player was loaned

n_paid_transfers Integer Number of paid transfers for the player

transfer_last_6m Boolean Whether the player was transferred in the

last 6 months

paid_transfer_last_6m Boolean Whether the player had a paid transfer in the
last 6 months

E.2 | Estimated Transfer Value case study

Table E.3: Label description of the Estimated Transfer Value case study

Label Name Type Description

etv_diff 12m_future Float The difference in Estimated Transfer Value

at current moment and one year later
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E.2. Estimated Transfer Value case study

Table E.4: Feature descriptions of the Estimated Transfer Value case study

Feature Name Type Description

month Integer Month of the year (1 or 7)

sciskill Float Current skill level of the player

sciskill_diff_potential Float Difference in SciSkill potential

defensive_skill Float Player’s defensive skill level

offensive_skill Float Player’s offensive skill level

total_minutes_played Integer Total minutes played by the player in the
month

etv Integer Current Estimated Transfer Value

etv_diff_6m_ago Integer Difference in Estimated Transfer Value from
6 months ago

etv_diff 12m_ago Integer Difference in Estimated Transfer Value from
12 months ago

previous_zero_months Integer Number of previous months with zero min-
utes played

position_most_played_1 Boolean Whether the player mostly played as left
back

position_most_played_2 Boolean Whether the player mostly played as right
back

position_most_played_3 Boolean Whether the player mostly played as centre
back

position_most_played_4 Boolean Whether the player mostly played as defen-
sive midfielder

position_most_played_5 Boolean Whether the player mostly played as centre
midfielder

position_most_played_6 Boolean Whether the player mostly played as attack-
ing midfielder

position_most_played_7 Boolean Whether the player mostly played as left
winger

position_most_played_8 Boolean Whether the player mostly played as right
winger

position_most_played_9 Boolean Whether the player mostly played as centre

forward
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E.2. Estimated Transfer Value case study

Table E.4 — continued from previous page

6m

Feature Name Type Description

position_line Integer Line of the position the player mostly played
(0 for goalkeeper, 1 for defense, 2 for mid-
field, 3 for attack)

has_second_position Boolean Whether the player has a secondary position

eu_member Boolean Whether the player is a member of the Euro-
pean Union

height Integer Height of the player in centimeters

preferred_foot_1 Boolean Whether the player prefers to use left foot

preferred_foot_2 Boolean Whether the player prefers to use right foot
2

age_years Float Age of the player in years

age_years_squared Float Age of the player squared

years_diff_peak_age Float Difference in years from the peak age at the
player’s position

minutes_played_last_6m Integer Minutes played in the last 6 months

minutes_x_resistance_ Float Product of minutes played and resistance

domestic_last_6m in domestic competitions over the last 6
months

minutes_played_international _ | Integer Minutes played in international competi-

competition_last_6m tions over the last 6 months

minutes_played_national _ Integer Minutes played for the national team over

team_last_6m the last 6 months

mean_resistance_last_6m Float Mean resistance level of the competition of
the player over the last 6 months

sciskill_diff 6m_ago Float Difference in SciSkill from 6 months ago

sciskill_diff 12m_ago Float Difference in SciSkill from 12 months ago

sciskill_variance_6m Float Mean squared difference of subsequent
SciSkill values over the last 6 months

sciskill_roughness_measure_ | Float Mean squared numeric backwards second

derivative of the SciSkill over the last 6

months
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E.2. Estimated Transfer Value case study

Table E.4 — continued from previous page

Feature Name Type Description

sciskill_diff mean_team Float Difference in SciSkill from the team average
of the last half year

sciskill_diff_mean_position Float Difference in SciSkill from the average for
the position in his team of the last half year

club_max_expenses_12m Integer Maximum single expense by the club over
the last 12 months

club_max_income_12m Integer Maximum single income for the club over
the last 12 months

club_transfer_profit_12m Integer Transfer profit of the club over the last 12
months (income minus expenses)

club_average_paid_fee_12m Integer Average transfer fee paid by the club over
the last 12 months

club_average_sold_fee_12m Integer Average transfer fee received by the club
over the last 12 months

club_max_expenses_36m Integer Maximum single expense by the club over
the last 36 months

club_max_income_36m Integer Maximum single income for the club over
the last 36 months

club_transfer_profit_36m Integer Transfer profit of the club over the last 36
months (income minus expenses)

club_average_paid_fee_36m Integer Average transfer fee paid by the club over
the last 36 months

club_average_sold_fee_36m Integer Average transfer fee received by the club
over the last 36 months

player_max_fee Integer Maximum historical transfer fee paid for the
player

player_cumsum_fee Integer Cumulative historical transfer fees paid for
the player

last_market_value Integer Last recorded market value of the player

max_market_value Integer Maximum historical market value of the
player

n_loans Integer Number of times the player was loaned
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E.2. Estimated Transfer Value case study

Table E.4 — continued from previous page

Feature Name Type Description

n_paid_transfers Integer Number of paid transfers for the player

transfer_last_6m Boolean Whether the player was transferred in the
last 6 months

paid_transfer_last_6m Boolean Whether the player had a paid transfer in the
last 6 months
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