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Preface

Dear reader,

This report describes my work for almost one year on a topic that took me a long time to find. I wanted
my last student project to be on something difficult and industry relevant. At the time of writing, fiber rein-
forced polymers are gaining ground in the commercial aircraft industry with the recently introduced Boeing
787 and the Airbus A350. In my courses on composite materials I encountered multiple times remarks like:
"compression in composites is a Pandora’s box" or "composites and compression should not be used in the
same sentence". Enticed by the challenge I started looking for subjects into this field. Dr. Chen was interested
in the topic so, under his guidance, I started a long phase of literature study trying to find something new and
yet feasible to do for my master thesis. While reading I discovered a world of overall disagreement between the
believed compressive mechanisms of fibers in compression and simulation frameworks that treat compres-
sion as if it was tension. Nevertheless there are also extremely valuable researches, some of which provided
a foundation for this thesis. We decided to focus the thesis on the industry relevant open hole compression
problem which would be modelled using our own physically based constitutive law for fibers in compression.
This be implemented into the relatively new Floating Node Method (used for the first time for an Open Hole
Compression simulation). This report presents the constitutive law proposed, describes concisely how the
Floating Node Method works and how are the two integrated. Anyone with interest in the field of composite
design will enjoy reading this report. Readers with prior experience with the Open Hole Compression prob-
lem and the Floating Node Method are encouraged to read directly from chapter 4. The writer would like to
express his gratitude towards his supervisor, Dr. Boyang Chen, for his invaluable advises. Moreover, a big
thanks to Bas Tijs from Fokker Aerostructures for his help during the meetings. Finally, my productivity level
would not have been the same without the office provided by the department of Aerospace Structures and
Computational Mechanics.

V.T. Mateescu
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Abstract

Strong, stiff and lightweight, high performance Fiber Reinforced Polymers (FRP) meant for the aerospace in-
dustry a turning point in terms of structural design. In a time where fuel efficiency (society expectations) and
cost reduction (economics) are the major terms deciding if an aircraft will sell, composite materials quickly
gained importance, offering the perspective of lighter structures. The Boeing 707, launched at the end of the
50‘s, was the first commercial airliner to use composites, representing about 2% of the structural weight. In
2015 the Airbus 350 was launched, containing composite materials accounting for just over 50% of the struc-
tural weight. Those very prudent steps made by the industry are, among others, an indicator that also down-
sides are associated with composites: high cost, the need of specialized repair techniques, damage tolerance
requirements, non-destructive inspection requirements, troubles in failure prediction and the absence of ex-
isting design data. Despite decades of research trying to improve on the mentioned downsides, composite
materials are still not used at their full potential. Meeting damage tolerance requirements is challenging as,
due to their anisotropic nature, FRP are characterized by higher than normal concentration factors in the
presence of damage and structural holes. Even if somehow damage is avoided (which is impossible), aircraft
structures are clustered with holes of different sizes e.g. windows, doors, passing fuel and hydraulic pipes,
outside sensors (Pitot tubes), etc.. Holes are the actually one of the most common stress raisers, making their
design one of the most critical parts in composite structures. But even without the holes present there is
a general inability of making consistent accurate failure predictions, aspect made clear by The World Wide
Failure Exercise. State of the art Finite Element based Progressive Damage Analyses (PDA) are limited by the
poor modelling of composites governing mechanisms. Academia is actively striving to find new failure the-
ories that capture the correct physical basis. Compression failure mechanisms are arguably less understood
than those tension related, which has led a number of authors to model compression as if it was identical to
tension. In compression however, despite the fibers being the main load bearers, the matrix plays the essen-
tial role of laterally supporting the fibers. Failure of the matrix results in local instabilities and further into
complex strain fields. These cause compression failure to occur at significantly lower stresses than tension
failure and makes it a more critical design factor. Using FRP efficiently requires then, among other things, a
good understanding of its compressive mechanisms and behavior in the presence of holes or notches. This is
what makes the problem of Open-Hole Compression in FRP panels to be extensively treated by the academic
and industrial environments.

This thesis is focused on delivering a computational framework capable of accurately simulating OHC. The
increasingly popular Discrete Crack Models (DCM) are preferred to Continuum Damage Models (CDM) for
modelling cracks in PDAs as they explicitly represent discontinuities. The popular state of the art eXtended
Finite Element Method as implemented in Abaqus is shown in this report to be unable to simulate the prob-
lem of OHC beyond an incipient state of failure. A novel approach, the Floating Node Method (FNM), that has
been used recently to simulate several Open Hole Tension (OHT) problems is adopted instead. The method
had no convergence issues up to an extensive failure propagation state. In addition to the explicit repre-
sentation of cracks, the OHC simulation requires a physically accurate constitutive model for compression
specific failure modes. The expected dominant failure mode for OHC is fiber kinking. This work proposes a
new 3D constitutive law that incorporates the microscale bending stress of a fiber, under the assumptions of
the Euler-Bernoulli beam theory, in the kink band within the framework of meso scale CDM. The proposed
hypothesis for kinking onset is that the following three non-competing requirements need to be met: 1) the
matrix around the kinking fibers must have failed locally; 2) the maximum bending stress in a fiber should be
large enough to fracture it; 3) the longitudinal compressive stress must be large enough to satisfy the previous
requirement when the shear in the kink plane is smaller than the traverse shear strength of a ply. While the
first requirement is commonly adopted in kinking theories, the second is new and based on fractographic in-
vestigation of kink bands. The third requirement, supported by experimental results, is meant to distinguish
fiber kinking from the similar shear dominated fiber splitting phenomenon. After kinking onset, in contrast
to using standard linear softening laws, a bilinear cohesive law, obtained via superimposition, is used to more
accurately represent the physics behind softening and assure that the dissipated fracture energy is mesh ob-
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jective. In the last softening stages, where constitutive laws typically assume that stress converges to a traction
free or crushing state, the proposed model assumes that a traction free state can only be achieved if the kink
band terminations are able to escape out of plane on either side of the ply through existing delaminations.

The model described for kinking is implemented within the FNM and the full simulation framework is used to
model different sized [45/90/−45/0]s OHC laminates using the IM7/8552 ply material system. This validation
against experimental results shows that the predicted panel strengths do not exceed experimental results by
more than 8% while both thickness and in plane size effects are captured.



Nomenclature

Acronyms

C3D8 8 node linear brick element

CDM Continuum Damage Model

CE Cohesive Element

CLPT Classical Laminated Plate Theory

COH3D8 8 node 3D cohesive element

DCM Discrete Crack Model

DGD Deformation Gradient Decomposition

DoF Degree of Freedom

FEM Finite Elements Method

FNM Floating Node Method

FRP Fiber Reinforced Polymers

LEFM Linear Elestic Fracture Mechanics

OH Open Hole

OHC Open Hole Compression

OHT Open Hole Tension

PDA Progressive Damage Analysis

PNM Phantom Node Method

PSM Point Stress Model

SCF Stress Concentration Factor

UMAT User Material Subroutine

VCCT Virtual Crack Closure Technique

XFEM eXtended Finite Element Method

Greek Symbols

β (only in ch 2) kink band angle rad

σ(θ) kink plane stress matrix MPa

σ(ϕ) misalignment plane stress matrix MPa

σ stress matrix MPa

δl separation between surfaces in longitudinal shear direction mm

δn separation between surfaces in normal direction mm
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δt separation between surfaces in traverse shear direction mm

δc traction free axial displacement mm

ηL longitudinal angle of internal shear rad

ηT traverse angle of internal shear rad

ΓΩ (only in ch 2) boundary of a physical domain −
ΓΩc (only in ch 2) surface of a cohesive crack −
ε (only in ch 2) strain tensor −
ν‘ damaged ply poisson ratio −
φ0 fracture plane angle under a purely compressive load rad

ΦK MC compression matrix failure index in the kinking criterion −
ΦK MT tension matrix failure index in the kinking criterion −
ΦK M matrix failure index in the kinking criterion −
σc (only in ch 2) critical kinking stress MPa

σ11mi n minimum axial stress for kinking MPa

σbmax maximum bending stress in a fiber MPa

σcr ush mean crushing stress MPa

σ f i bmax strength of a single fiber MPa

σsi mul ati on simulated panel strength MPa

σtest experimentally determined panel strength MPa

τ(θ)
12 kink plane shear stress MPa

τl longitudinal shear traction on matrix crack surface MPa

τn normal traction on matrix crack surface MPa

τt traverse shear traction on matrix crack surface MPa

τ12 shear stress MPa

θ (in ch 2) the location along the circumference of a circular hole rad

θ kink plane angle rad

υ f fiber volume fraction −
ε0 longitudinal strain at kinking onset −
ϕ fiber misalignment angle rad

ϕ0 initial misalignment angle rad

wki nk kink band width mm

Roman Symbols

∆Tmi n minimum allowed time increment s

E
Enn

(only in ch 3) penalty stiffness in mode i MPa/mm
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G1
Ess

(only in ch 3) penalty stiffness in mode ii MPa/mm

G2
Et t

(only in ch 3) penalty stiffness in mode iii MPa/mm

γm shear strain −
γmC shear strain at failure under a purely compressive load −
J jacobian matrix −
K stiffness matrix MPa

Q tensor of forces kN

q tensor of degrees of freedom mm

R transformation matrix −
u tensor of displacements mm

x tensor of nodal coordinates mm

ν poisson’s ratio −
ϕ0 initial misalignment angle rad

ϕC misalignment angle at failure under a purely compressive load rad

a0 (only in ch 2)characteristic distance in the method of Whitney and Nuismer m

A f i b fiber cross sectional area mm2

d0 (only in ch 2) characteristic distance in the method of Whitney and Nuismer m

d f fiber damage variable −
dm matrix damage variable −
d f i b fiber diameter mm

E1 longitudinal axial stiffness MPa

E L
11 (only in ch 2) smeared laminate elastic longitudinal stiffness Pa

E L
22 (only in ch 2) smeared laminate elastic traverse stiffness Pa

E ‘1 damaged ply longitudinal stiffness MPa

E ‘I I ,sl ender equivalent elastic modulus for orthotropic materials MPa

E ‘I I equivalent elastic modulus for a slender body MPa

fi ndexc matrix failure index for compression −
fi ndext matrix failure index for tension −
Gm (only in ch 2) effective longitudinal shear modulus of the laminate MPa

GL
12 (only in ch 2) smeared laminate shear modulus Pa

G1
f c individual ply compressive fracture toughness kJ/m2

Gn
f c ply block compressive fracture toughness kJ/m2

I f i b area moment of inertia of a fiber mm4

Kl penalty stiffness in longitudinal shear direction MPa/mm
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Kn penalty stiffness in normal direction MPa/mm

Kt penalty stiffness in traverse shear direction MPa/mm

k∞
t stress concentration factor of a plate with infinite width −

lch cohesive zone length mm

M moment due to fiber misalignment N×m

Rc (only in ch 2)characteristic distance in the method of Garbo and Ognowski m

SL ply longitudinal shear strength MPa

ST ply traverse shear strength MPa

t (ϕ)
L longitudinal shear traction on the fracture plane MPa

t (ϕ)
N normal traction on the fracture plane MPa

t (ϕ)
T traverse shear traction on the fracture plane MPa

u0 displacement at failure onset mm

u1 vertical displacement mm

wM A moment arm mm

Xc ply longitudinal compressive strength MPa

X t ply longitudinal tensile strength MPa

t (only in ch 2) traction on a material boundary MPa

d hole diameter mm

f (only in ch 2) body force per unit volume N/m3

h (only in ch 3) half laminate thickness mm

m fracture toughness ratio −
N shape function −
n peak stress ratio −
t panel thickness mm

u (only in ch 2) displacement vector of a point mm

v (only in ch 2) test function −
W plate width mm
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1
Introduction

Background and motivation

High performance Fiber Reinforced Polymers (FRP) are a type of composite materials that are used increas-
ingly more. The aerospace industry has been for decades the largest and arguably most important market
for composite materials. Their popularity was propelled by their impressive strength to weight ratio which
offered the perspective of lighter structures in a time of more and more strict environmental regulations and
rising fuel costs. Being made of at least two unhomogenized materials they have a strong heterogeneous and
anisotropic nature making them exhibit a multitude of failure mechanisms (damage may be specific to either
constituent as well as an interaction of the two). The journey of integrating composites in aviation was long
and lined with pitfalls and is far from over. The Boeing 707, launched at the end of the 50‘s, was the first com-
mercial airliner to use composites, representing only about 2% of the structural weight. In 2015 the Airbus 350
was launched, containing composite materials accounting for just over 50% of the structural weight. Decades
of research were needed to get here and a lot of problems still exist making aircraft manufacturers hesitant
in adopting composites at a faster pace. Aside from the higher cost associated that comes with them (raw
material, clear rooms, specialized repair techniques) they have problems meeting damage tolerance require-
ments and troubles in failure prediction. Damage tolerance means that the structural design is made such
that the damage expected to occur throughout the lifetime of a structure will not result in a loss of load car-
rying capacity. If the force causing the damage is strong enough to penetrate through the thickness, then the
appropriate term to use is a puncture or damage hole. But even without any prior damage, aircraft structures
are full of holes of different sizes [48]. A short walk through the materials hall of the Aerospace Engineering
faculty at the Technical University of Delft is enough to such examples eg. fuselage skin cutouts for windows
presented in figure 1.1, lightening holes and cutouts for stringers (both in the fuselage frames) are both shown
in figure 1.2 alongside a tube reaching out through the skin.

FRP are known to be notch sensitive and despite having some reduced load redistribution capabilities rep-
resented by the formation of a damage zone around the notch, they are generally more notch sensitive than
metals. The study of open holes is divided in Open Hole Tension (OHT) and Open Hole Compression (OHC)
the two being characterized by different failure mechanisms. Unlike tension, in compression the matrix plays
the essential role of laterally supporting the fibers. Failure of the matrix results in local instabilities and fur-
ther into complex strain fields. These cause compression failure to occur at significantly lower stresses than
tension failure and makes it a more critical design factor. With the industry relying more and more on the
predictive capability of modern computational tools, a high demand exists on delivering them. While OHT
has seen some recent success in modelling, due to the arguably less understood compressive failure modes
of FRP, OHC is lagging behind. A proof of the deficiencies and disagreements of modern failure theories for
compression was provided by The World Wide Failure Exercise (WWFE) [47] which showed relatively large
discrepancies between the proposed failure envelopes when axial compression was applied (eg. the LaRC‘s,
Hashin, Hashin-Rotem, Puck, etc..). The academic world is still actively proposing new failure theories with
larger physical basis [7]. State of the art Finite Element based Progressive Damage Analyses (PDA) are lim-
ited by the inaccurate modelling of compressive governing mechanisms. Using FRP efficiently in airplanes

1



2 1. Introduction

Figure 1.1: Fuselage cutouts for windows Figure 1.2: General aviation airplane: 1)Lightening Hole; 2)Stringer
passing through fuselage frame; 3)Tube reaching out

requires then, among other things, a good understanding of their compressive mechanisms and behavior in
the presence of holes or notches. This is what makes the problem of Open-Hole Compression so important
in the industrial and academic environments.

Research Scope

The problem statement as resulting from the previous discussion can be written as: In an ideal scenario,
the aerospace industry will have the simulation capabilities to design more efficient compressively loaded
composite structures while decreasing the overall price of product development. An accurate and reliable
simulation framework capable of modelling open hole compression problems of fiber reinforced polymer
structures is largely unavailable. In response to this issue, the current work will investigate the possibilities
to improve the current simulation methods. The proposed improvements will be implemented and tested
against experimentally obtained values of open hole compression tests of fibre reinforced polymers.

A set of four research questions can be formulated in response to the problem statement:

1. What are the main shortcomings of the existing simulation frameworks for composites in compression?

2. How can each of these shortcomings be addressed?

3. What is the performance of a simulation framework where the shortcomings have been addressed?

(a) How mesh objective is the new solution to the OHC problem?

(b) Is the proposed method time step dependent?

(c) Can thickness size effects be captured?

(d) Can in plane size effects be captured?

The research objective of the thesis can then be formulated as: The aim of the current research is to create a
simulation framework that can accurately model the OHC problem of fiber reinforced polymers.

The research approach will be here shortly described. It starts by investigating the past approaches to the
Open Hole Compression problem in Fiber Reinforced Polymers from the beginning all the way to the current
state of the art. The main shortcomings and conclusions obtained from the earlier investigation will be col-
lected. A new model will be proposed addressing the main shortcomings of the discussed models and will
be verified. Open Hole Compression simulations will then be performed and assessed against experimental
values.
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Report Layout

The report starts with a review of the relevant literature for OHC presented in chapter 2. In here concepts
like stress concentration factor, damage zone and continuum damage approach are introduced and the main
shortcomings of existing OHC models are identified. In short, it is concluded that two of the most impor-
tant deficiencies of the existing Progressive Damage Analyses for OHC are the unsatisfactory representation
of matrix cracks (and other discontinuities) as well as the insufficient physical basis behind the modelling
of failure mechanisms specific to fibers in compression. Therefore Discrete Crack Models are preferred to
Continuum Damage Models for modelling cracks and a more physically accurate longitudinal compressive
constitutive law is has to be used. Chapter 3 is dedicated to Discrete Crack Modelling techniques. The com-
mercially available state of the art eXtended Finite Element Modelling is used to reproduce a compressive
test presented in Appendix A. Afterwards the recent Floating Node Method is introduced and used to simu-
late the same test and the performances of the two methods are compared. Chapter 4 focuses on the second
identified issue of modelling longitudinal compression and describes a proposed Continuum Damage Model
for the fiber kinking failure mode. The kinking model implementation, validity and robustness are verified in
chapter 5 while the full simulation framework is used in chapter 6 to model the OHC problem and validate
the results against experimental data.





2
Existing Approaches to the Open Hole

Compression problem

2.1 Early approaches and theoretical concepts

Before the emergence of numerical methods in structural design, analytic methods were used to estimate
stress in the surroundings of holes. These methods become mathematically challenging for anisotropic ma-
terials such as Fiber Reinforced Polymers. Only in 1963, the first successful expression for the stress around
an elliptical hole in an infinite orthotropic symmetric laminate, was made by Lekhnitskii [53]. The circumfer-
ential Stress Concentration Factor (SCF) derived is presented in equation (2.1). This formulation is applicable
only to laminates behaving linearly elastic at the edge of a hole. The terms E L

11, E L
22, GL

12 and ν12 are constants
representing of the laminate (smeared ply elastic properties). FRP are not fully notch sensitive [48], meaning
that the actual failure of the panel occurs significantly after the material has failed near the hole. Fracture
right on the hole edge only creates a damage zone, depicted in figure 2.1, which redistributes the stress and
decreases the SCF. What this means is that accurate prediction of the final failure load of a wide (infinite plate
assumption) panel is not equivalent to dividing the unnotched panel strength by the SCF in equation (2.1).

k∞
t = −K cos2θ+ (1+p

2K −m)sin2θ

sin4θ−m sin2θcos2θ+K 2 cos4θ
where K =

√√√√E L
11

E L
22

m = 2ν12 − E11

G12
(2.1)

Figure 2.1: Damage zone around the edges of the hole [48] Figure 2.2: Load drop at the edges of a hole due to the damage zone [48]
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6 2. Existing Approaches to the Open Hole Compression problem

Figure 2.3: Comparison PSM with experimental data (based on [13])

The first analytic approach for estimating the strength of notched plates was proposed, more than a decade
after Lekhnitskii (1963), by Whitney and Nuismer [77] (1974). This approach commonly adopted to this day,
in applications where computational resources are limited, by virtue of its simplicity. The authors acknowl-
edged the existence of the damage zone and proposed two approaches that don‘t require the knowledge of
the redistributed stress after the damage zone is created. Both approaches require an estimation of the cir-
cumferential stress evolution away from the hole edge. Tan [72] proposed such an approximation, provided
in equation (2.2) at θ = 90◦ (see figure 2.2). The stress is given as a function of the distance from the hole
center y . R represents the radius of the hole, σ0, the stress applied at the top and k∞

t is the SCF for a plate
with infinite width that can be approximated using the equation of Lekhnitskii (eq. (2.1)).

σx (x = 0, y) =σ0

[
1+ 1

2

(
R

y

)2

+ 3

2

(
R

y

)4

− (k∞
t −3)

(
5

2

(
R

y

)6

− 7

2

(
R

y

)8)]
(2.2)

In the method of Whitney and Nuismer, the stress is evaluated at a characteristic distance d0 from the edge
of the hole (eg. using (2.2) provided that the highest stress occurs at θ = 90◦). If the stress value is superior
to the strength of the un-notched panel, the has panel is deemed failed. In the second approach, the average
stress over a characteristic distance a0 is evaluated and is compared again to the un-notched plate strength
to declare failure. The distances d0 and a0 have to be determined experimentally. They are different from
each other and are different for tension and compression. At first they were thought to be material constants,
but it was further determined that they vary from layup to layup, making the approach unpractical due to
extensive need of experimental data [42]. The work of Whitney and Nuismer [77] can then be regarded as
a failure criteria that does not capture any undergoing physical mechanism. It however represents the first
endeavour to estimate the strength of OH composite panels. Due to its success, some researchers suggested
improvements to this approach.

Garbo and Ognowski [31] proposed to use the Classical Laminated Plate Theory (CLPT) to determine the
stress in each ply of the laminate. Then, as before, the stress would be evaluated at a characteristic distance
Rc from the hole. Failure occurs if the stress there is larger than the the un-notched ply strength. The novelty
of this method is that it treats the laminate not as a homogenous material, but as being made of distinct parts
(plies). The method is however not any more practical than that of Whitney and Nuisemer as the characteris-
tic distance Rc is still not a material constant and depends on the layup. The problem in general with criteria
not representing undergoing failure mechanisms is that they have a limited scope of applicability. They work
well for specimens very similar to those used to get the inputs they needed. Camanho [13] shows the reduced
envelope of applicability of the Point Stress Model (PSM) by comparing its strength predictions with experi-
mental data for a larger set of coupon sizes. The results of the comparison can be seen in figure 2.3. As one
may expect, the PSM provides accurate results only for specimens with holes of diameters similar to those
used to obtain the material properties and characteristic distance.
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Kassapoglou [48] proposes a variant of the PSM that aims to solve this limitation. In this work an analytic
approach to estimate the characteristic length a0 of the Whitney Nuismer method is provided, eliminating
the extensive need of empirical data given that the maximum SCF around the hole is at θ = 90◦ in figure
2.2. The characteristic length a0 is estimated as a function of the hole radius R and the width of the panel
W . From the validation performed [48], the author shows that improved results compared to the original
Whitney and Nuismer could be obtained for a [30/-30/0]s layup especially. In comparisons where layups
[15/-15/0]s , [45/-45/0]s the correlation between estimations and experimental results diminishes, predomi-
nantly for larger holes. Finally, when a [90]4 layup is used, the match with experimental data is unsatisfactory.
The reason for that is because failure mechanisms are layup, geometry and size dependent and cannot all be
captured. Moreover, the author explains that due to the damage accumulating in the laminate (eg. traverse
matrix cracks), the traverse stiffness decreases in that ply and the location of the maximum SCF would move
as well from θ = 90◦. This discussion proves the importance of accounting for the right failure mechanisms
and the changes in the panel as damage evolves when modeling holes in composite panels. For this rea-
son Progressive Damage Analyses (PDA) based on the Finite Element Method (FEM), discussed later in this
chapter, represent the current state of the art in terms of accuracy. Before jumping into discussing FE based
modelling approaches one needs to understand the failure mechanism needs to be modelled.

2.2 The fiber kinking phenomenon

Studies performed on the OHC tests of fiber reinforced
composites show that the dominant failure mecha-
nism, given the matrix material is ductile, is kinking of
the 0◦ plies [73]. The failure mode is of primary con-
cern in FRP as it can lower the failure load of a struc-
ture significantly [69]. Therefore, an accurate repre-
sentation of this failure mode is necessary for a good
OHC prediction. The truth is that the fiber kinking
phenomenon is not that well understood to this day.
This can be attributed to the fact that experimental
observations of kink bands are difficult as a result of
their reduced size (only 10-20 times the fiber diame-
ter [29][35]). Moreover, they are generally observed in
materials after they have failed, so not much is known
about their formation. To this day, conflicting theories
still exist regarding the initiation.

Figure 2.4: Kink band depiction [8]

At the basis of most kinking approximation models stand three hypotheses: micro-buckling theory, kinking
theory and bending theory.

• The first scientific writing on micro buckling theory was performed in 1965 by Rosen [68]. According to
which the fiber kinking failure mode is the result of the micro-buckling of fibres. His approximation for
the critical kinking stress is σc =Gm/(1−υ f ). In this last equation, the term Gm represents the effective
longitudinal shear modulus of the laminate, while υ f is the fiber volume fraction. It was later discov-
ered by Budiansky and Fleck [11] that the above formula is generally substantially overestimating the
reality. Finally, Waas et. al. [76] argues against micro mechanical theories stating that if micro buck-
ling theories would indeed describe kink band formation, the micro buckling of the fibers should occur
almost simultaneously in the panel (which is not the case, as this was determined to be a progressive
failure).

• Another popular hypothesis is that of Argon [4] (kinking theory) arguing that kinking is a result of local
matrix failure in the kink band. An idealized depiction of the kink band can be seen in figure 2.4. In this
figure, the main parameters observed are the fiber misalignment angle ϕ, the kink band angle β and
the band width of the kink wki nk (or W according to other sources). The kinking theory considers that
specimens contain initially misaligned fibers (misalignment angle ϕ0). As the externally applied load
increases, the initially misaligned fibers rotate within their initial band. The shear stress thus appearing
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damages the matrix, which softens, and further allows for fiber rotation. Upon the matrix material in
the kink band reaching its maximum strength, fibers quickly fail as they lose their latral support.

• Finally, bending theories were proposed by Fleck and Budiansky [29]. As the name suggests, the main
characteristic of those theories is that they account for the bending stiffness of the fibres in the kink
band. It was demonstrated however that the bending resistance of those fibers have a limited effect on
the pre or early post failure behaviour in FRP failing in fiber kinking [25].

Researchers like Andrew C. et. al. [7] support the idea that the poor physical basis of the current progressive
damage analysis is one of the main factors of their insufficient accuracy when modelling compressive tests.
Fiber kinking is the expected dominant failure mechanism in the OHC problem, and the accuracy of such a
simulation depends a lot on accurately modelling fiber kinking.

2.3 Numerical FE based concepts and tools

After the emergence of the Finite Elements Method (FEM) effort has been put into developing simulations for
OHC problems using this method. The empirical dependency of the previous methods is diminished at the
expense of increasing computational load.

2.3.1 Basic concepts

FEM is capable of solving the static equilibrium of a body of volumeΩ, acted upon by body forces of density
f and traction t on its boundary ΓΩ, in its weak form (shown in equation (2.3)). Furthermore, the method can
account for the evolution of loads and damage in solids. For this reasons, FEM represents a powerful tool for
performing complex PDA.

∫
Ω
εT(v)σ(u)dΩ=

∫
Ω

vTfdΩ+
∫
ΓΩ

vTtdΓΩ (2.3)

Chen et al [21] states that accurately modelling discontinuities (eg. matrix cracks) is crucial for approximating
the solution of OH problems. A standard FE is quite limited when it comes to modelling domain discontinu-
ities due to its simple element formulation which cannot incorporate displacements and stress jumps. This
led to the use of remeshing methods for modelling progressing damage [43]. In general, the latter uses the
standard FE definition and periodically updates the geometrical description of the domain. This way it allows
the discontinuities to propagate, but only along an element‘s boundary. For each time increment in which
discontinuities have propagated, remeshing is needed such that the element boundaries can adapt to the
discontinuities (the new geometry). In the case of composite laminates, where an extensive system of cracks
precedes the final failure [60], remeshing methods become unpractical. Considering remeshing methods to
be a special case, damage modelling in composite laminates is divided into two categories: Continuum Dam-
age Models (CDM‘s) and Discrete Crack Models (DCM‘s). The most appropriate damage model can depends
on simulation modelling scale. Currently, composite laminate models exist at three different observation
scales:

• Micro-scale has the highest resolution that is commonly used in fiber reinforced composites simula-
tions. Here, fibres and the surrounding matrix material are explicitly modelled. Local failures as well as
the effects of imperfections or fiber dimensions are usually examined in this scale.

• Meso-scale considers each ply forming the laminate as an individual orthotropic and homogeneous
material. The effects of micro scale phenomena need thus to be smeared throughout the homogeneous
plies.

• In Macro-scale models, the entire composite laminate is considered a homogenous (anisotropic) ma-
terial. These models are generally adopted for very large low fidelity simulations, where computational
time must be kept within reach of available resources.
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OHC simulations have been developed at all modelling scales. However, micro-scale modelling is usually
avoided in the design of actual aircraft components due to the need of keeping the computational cost mod-
erate. On top of that, despite the high resolution, to the knowledge of the author, no micro-scale OHC sim-
ulation has been proposed that accurately estimates the strength for a wide range of material parameters.
Among the most notable micro-scale works on the problem of OHC is that of H.K. Lee et. al. [51], where the
authors could only prove that their physically representative model is accurate only for laminates having a
fiber volume fraction no higher than 45%. When factoring in the computational cost, these simulations be-
come non attractive for direct applications on design. At the other end of the spectrum, a typical macro-scale
model would not be able to capture the evolution of all failure mechanism. Therefore, most models are done
at meso-scale, which will be the focus for the rest of the current work.

2.3.2 Continuum Damage Models

CDMs work by performing local decrease in properties in the regions undergoing damage, usually by im-
plementing a material constitutive law that degrades the stiffness and Poisson ratio of the material. Con-
sequently, CDMs are implemented as User defined MATerial subroutines (UMAT). An accurate meso-scale
CDM can represent micro and meso-scale failure mechanisms without the computational effort associated
with modelling the fiber-matrix interaction. Examples of recent, complex methods have been proposed that
promise to account for micro scale phenomena such as fiber kinking [68], within a meso scale computational
frame [37] [38] [7].

In order to separate the damaged and non-damaged states of the material, a trigger function (failure criteria)
is required. This is a critical part in every progressive failure simulation as the failure type governing the
softening behaviour is determined here. Clearly, damage evolution (eg. axial stiffness degradation) should be
different if it‘s caused by tensile fiber failure or matrix compression. Therefore, even if there is a plethora of
stress or strain based criteria available for damage initiation, in order to account for the different composite
failure mechanisms, the criteria chosen must be representative to the failure mode. And while a clear trend
exists now for using physically based failure criteria [75] (such as the set of LaRC criteria or the Puck criteria),
those models generally come at a higher complexity and may require a greater computational effort than a
mode-independent one.

Figure 2.5: CDM representation of a crack [66]

While the CDM has previously been successfully used in modelling structural problems [57], a number of
issues are typically encountered when these models are used for representing cracks. For example, the di-
rection of crack propagation is mesh dependent [20] and the interaction between cracks is not physically
captured . As an example for the latter, take delaminations that are induced by the matrix cracks exclusively
(see figure 2.6). It is clear that if this phenomena occurs extensively, good estimations cannot be obtained
with this approach [18]. Another problem is that sharp matrix cracks are represented by lines of softened ele-
ments, as depicted in figure 2.5. This means that the stress concentration/intensity factors are not accurately
captured [21].

For these reasons Discrete Crack Models (DCM), where matrix cracks are explicitly represented, serve a better
alternative for modelling matrix cracks in simulations.

Modelling other failure mechanisms, such as fiber kinking, is usually done with CDM. Creating an accurate
PDA of an OHC composite plate can be done using a CDM that is physically representative to the undergoing
failure mechanisms of fibers in compression.
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Figure 2.6: Delamination formed by intersection of cracks from different orientations [48]

.

2.3.3 Discrete Crack Models

The issues associated with smeared damage degradation constitutive models have led to the investigation
of DCMs. The former can represent matrix cracks/delaminations and their interactions explicitly, without
relying on remeshing methods.

One common way of modelling damage in composites is by introducing Cohesive Elements (CE) [33] on po-
tential fracture paths. This approach is especially useful when modelling delaminations as they can only
occur at the ply interfaces. But the location of matrix cracks is generally not known a priori [21]. Another
method, called the Virtual Crack Closure Technique (VCCT) [49], is often employed and is available in stan-
dard FEM software packages (eg. Abaqus). It however functions best when modelling matrix cracks/delaminations
in unidirectional laminates as the propagating crack needs to be self-similar with a predefined path. When
multi-directional laminates are used however, the crack path is hard to predict (not to mention it can travel
across interfaces) and the method becomes less practical [78]. Attempts have been made to use the VCCT
in modelling fracture of composite laminates (not OHC) and they have not succeeded in simulating more
complex simulations [78].

Another popular DCM, also available in standard FEM packages, is the eXtended Finite Element Method
(XFEM) [45]. Based on the partition of unity [44], it allows for a crack to extend through a domain without
knowing its path location or orientation from before. The core concept behind XFEM is to account for dis-
continuities by changing the displacement definition of a standard FE. Considering a simple 2D model as in
figure 2.7. One can see that the nodes surrounding the crack are depicted differently. In a general form, the
definition of all nodes in a simulation done with XFEM can be seen in equation (2.4). A standard node (nodes
i) in this simple 2D model would have two DoF per node (one per Cartesian direction) with the standard
global shape function. The nodes that are circled have two additional DoF (nodes j) whose shape functions
are multiplied by the Heaviside function (or jump function) H(x) and are consequently called "Heaviside"
enrichment nodes. The shape functions N j are also related to the discontinuity at a node j. Another category
of nodes (nodes k) are surrounding the crack tip. Those have eight DoF more (c l

k ) than the standard (10 in
total) and are called "Crack-tip" nodes. Fl are the 4 crack tip enrichment functions while Nk are the specific
shape functions.

A standard FE displacement approximation would only have the first term on the RHS of equation(2.4). One
simply traversed by a crack would contain the first two terms on the RHS while one at the crack tip would
have the first and last terms on the RHS.

uh(x) = ∑
i∈I

ui Ni +
∑
j∈J

b j N j H(x)+ ∑
k∈K

Nk

[
4∑

l=1
c l

k Fl (x)

]
(2.4)
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Figure 2.7: XFEM enriched elements [28]

After the emerge of XFEM, other mesh independent methods have been proposed for modelling progressive
damage in composite materials. Those include the Phantom Node Method (PNM), PNM proposed by Hansbo
and Hansbo [40], augumented FEM, as well as some elements with embedded discontinuities such as the
cohesive segment method. Of those XFEM is commonly employed in practice and is available in standard FE
software such as Abaqus.

2.4 Main take-aways

"By hand" approximation methods often have small applicable domains or are highly dependent on experi-
mental data. FE based PDAs allow for modelling of a wide variety processes and are less reliant on empirical
data. Meso-scale models are the most attractive for PDA of composite OHC problems. Depending on the
failure mode (cracks, delamination, fiber kinking..), CDM or DCM may be better suited. Due to their very
localized nature, matrix cracks are best modelled via DCM. Other phenomena, such as fiber kinking, can be
well represented by CDM provided that physically representative constitutive laws are used. It is therefore
expected that an accurate OHC simulation should address the following requirements:

1. The modelling of matrix cracks and delaminations should be done via a DCM as opposed to CDM.

2. A physically representative CDM should be used for governing compressive fiber damage initiation and
propagation. Recent studies have shown that the failure mechanism governing composite longitudinal
compression is fiber kinking [64].

An evaluation of the performance of the popular XFEM is done in section 3.1 while the rest of chapter 3 is
dedicated to a recently proposed DCM called the Floating Node Method. Furthermore, chapter 4 proposes a
CDM for fiber kinking.





3
Discrete Crack Models in OHC

3.1 Existing Simulation Capabilities

The FE software package Abaqus currently allows the use of the eXtended Finite Element Method (XFEM) as
standard. The current capabilities of this FE software in simulating an OHC problem of a composite panel
will be shown. For that, a 3D Finite Element model with a refined structured mesh is built. The elements
of each ply are enriched with XFEM and cohesive elements are used to model each ply interface to capture
delamination.

The panel geometry, layup as well as ply and inter-ply properties are presented in Appendix A together with
the experimental setup. Specimen No.1 from table A.1 will be modelled as, by virtue of its reduced size and
number of interfaces, it should have the smallest computational expense. To further reduce the computa-
tional effort, due to the symmetry of the stacking sequence [45n/90n/−45n/0n]s , only half of the plies are
physically added to the model [45n/90n/−45n/0n]. The remaining half is accounted for by preventing out of
plane displacement on the surface of the 0◦ ply.

The damage initiation, evolution and stabilization properties are prescribed using a maximum stress traction-
separation law. The material properties used are those of the IM7/8552 fiber epoxy system presented in table
A.2. For describing the behaviour of the ply interfaces, a quadratic stress traction-separation law is used. The
elastic behaviour of the cohesive elements is governed by penalty stiffness. The later aims at limiting inter-
penetration of bodies by through very high stiffness. However it was determined that too high of a stiffness
may result in simulation convergence issues. Since a trade-off needs to be made when choosing a penalty
stiffness, a method for estimating the penalty stiffness is used. This is provided by equations (3.1), (3.2) and
(3.3) from [74]. In those equations the term h represents the half laminate thickness. For a 2 mm thick lami-
nate, h = 1 mm.

E

Enn
≈ 50E1

h
= 7.5 ·106 (3.1)

G1

Ess
≈ 50G12

h
= 0.23 ·106 (3.2)

G2

Et t
≈ 50G23

h
= 0.17 ·106

[
N

mm3

]
(3.3)

Viscous regularization is used in the simulation to minimize the chances of un-convergence due to the neg-
ative tangent of the stress-displacement curve when softening (instability). The value of the viscous regu-
larization parameter needs to be high enough to aid convergence but low enough not to pollute the results
of the analysis. Unfortunately an appropriate value for the viscous parameter is hard to guess and often has
to be picked by trial and error. The impact of the viscous regularization can be checked once the analysis
is completed. One has to verify that the energy contribution from the viscosity (creep dissipation energy in
Abaqus) is predominantly after the peak load of the analysis. For this analysis, an initial value of 10−4 is used
for the viscosity coefficient.

Another important term for achieving convergence of the analysis is the minimum allowed time increment
the solver can use. When performing a material nonlinear analysis, with viscosity, the minimum time in-

13
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crement should be smaller than the viscous parameter defined (for the viscous regularization technique to
work). To aid convergence, a very small minimum allowed time increment will be used (∆Tmi n = 1.0E −20).
The load is introduced into the panel as a negative vertical velocity of -1 mm/s as described in appendix A.
The total time is chosen as such that the panel is reduced in length by 3 %.

The mesh is one of the most critical parts of a FE analysis. One generally desires a structured mesh that is
refined enough to obtain accurate simulation results and coarse enough to result in a reasonable simulation
time. The modelling of delamination using cohesive elements is sensitive to the size of the element [41]. For
accurately capturing delamination via cohesive elements at the ply interfaces, one must make sure that the
element dimensions (in critical regions) are sufficiently smaller than the size of the cohesive zone. Normally,
mode I loading is the most critical (and requires a smaller cohesive element size). In the experiment repro-
duced however, because the plate is loaded in-plane and supported from the sides, the ply interfaces will slide
upon each another in mode II shear loading. Therefore, for this analysis, mode II shear loading is considered
the dominant mode producing delamiantion. The cohesive zone length for mode II can be estimated using
equation (3.4) from [41]. In this equation, the E ‘I I and E ‘I I ,sl ender are equivalent elastic moduli. According
to [41], two to three cohesive elem are required per cohesive zone. To be conservative Z.C. Su et. al. used
h=0.125 mm (the thickness of a single ply) in their model. Sticking to the same degree of conservativeness
and using the material properties in table A.2 one obtains a cohesive zone length of lch=1.42 mm. Assum-
ing that two cohesive elements per cohesive zone length is sufficient a required maximum cohesive element
length of 0.71 mm is determined. This is the maximum element size for which delamination is accurately
captured.

lch = 0.5 ·min(lch,I I , lch,sl ender,I I ) where: lch,I I = E ‘I I
Gc

s

(σc
s )2 ; lch,sl ender,I I =

√(
E ‘I I ,sl ender

Gc
s

(σc
s )2

)
h (3.4)

Using elements of maximum 0.71 mm everywhere would result in very high computational costs, therefore
it shall only be used in the delamination critical regions around the hole (near the hole the approximate
element size is 0.5 mm). Experimental checks have shown a clear tendency for matrix splits in the 0◦ oriented
plies [71] in the laminates with thicker plies (ply-level scaled). Since the model has to be able to predict the
progressive failure for all laminates, the model needs to have its mesh aligned with the longitudinal splits [70].
The plies of the composite have been meshed with a C3D8, 8 node linear brick element, while the cohesive
interfaces are modelled with COH3D8, 8 node 3D cohesive element. The mesh can be seen in figure 3.1. In
order to minimize the computational effort, only one element per ply will be used in the thickness direction.

To account for the presence of the anti-buckling plate in the experiment, the outer surfaces of the panel are
not allowed to move out of plane (U3=0). In order to capture the crushing (post failure) behaviour of the
panel, a displacement control velocity of 1 mm/s is applied to the top of the panel while the bottom is fully
clamped.

Simulation outcome

The force displacement curve in figure 3.2 presents no load drop before the end of the simulation. The simu-
lation could converge up to a displacement of u1 = 0.259 mm and an equivalent total vertical force applied of
15.32 kN. The experimentally predicted panel strength force has been exceeded by 30%.

The extent of delamination between the plies can be seen in figures 3.3, 3.5 and 3.6 (legend in figure 3.4,
a value of 1 represents full delamination). Delamination is predicted via the quadratic stress criteria. As
expected, delamination occurred in the regions in the vicinity of the hole. The biggest extent of the delami-
nation is visible the interface between the −45◦ and 0◦ ply. The high quadratic stress at the edges of the panel
are caused by the shear stresses between the plies. Since the plies have different orientations, they tend to
deform differently upon loading, creating those shear stresses. The predicted crack network is very limited.
Only the outer 45◦ ply has a crack, near the hole, as can be seen in figure 3.7.



3.1. Existing Simulation Capabilities 15

Figure 3.1: Frontal view of the meshed panel Figure 3.2: XFEM simulation Force-Displacement curve

Figure 3.3: Delamination between the 45◦ and 90◦ plies

Figure 3.4: Legend
quadratic stress criteria

(for delamination)

Figure 3.5: Delamination between the 90◦ and −45◦ plies Figure 3.6: Delamination between the −45◦ and 0◦ plies

All in all, the model made using the current capabilities of Abaqus could not provide a satisfactory solution to
the OHC problem. On top of this, existing literature argues that XFEM can introduce errors when mapping a
discontinuity from the physical to the natural space [20]. This sparks the need for an alternative DCM to the
present eXtendended Finite Element Method.



16 3. Discrete Crack Models in OHC

Figure 3.7: Crack on the 45◦ ply near the hole

A novel method for modelling multiple discontinuities within the framework of FE is mentioned in [18] and
described by Chen et. al. in [20]. The floating node method (FNM), has been used successfully in modelling
several challenging cases of tensile failure in composite laminates. A description of the particularities of the
FNM is given in section 3.2. Among those is the capability of modelling widespread delamination and matrix
cracks. Chen et. al. [21] demonstrated that the fracture mechanisms in a [454/904/−454/04]s laminate have
been captured despite using a random, unstructured mesh. Figure 3.8 shows the damage extent predicted
for an OHT simulation [21]. Similar to the OHT model of Chen et. al.[21], it is intended to simulate OHC
problems using the FNM to model the matrix cracks. To the knowledge of the author this is the first time the
FNM would be used for modelling OHC.

Figure 3.8: Extensive damage pattern predicted in an OHT problem using FNM [21]

3.2 The Floating Node Method

This chapter provides a concise description of the particularities of the Floating Node Model and how it is
used to model composite OHC problems. Since the FNM has been previously used, all of its details as well as
how it is implemented in Abaqus will not be focused on. For more information about the FNM, the reader is
referred to [20] and [21].
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3.2.1 Method Description

Just like XFEM, the FNM allows for explicit representation of discontinuities without relying on remeshing.
This method is however different in computational architecture from XFEM. The latter, depicted in figure 3.9,
works by changing the definition of the displacement approximation of an element, as explained previously.
The FNM on the other hand, just like the PNM [3] [40], works by replacing a damaged element by multiple
sub-elements. The main difference between the FNM and the PNM is that in the PNM the Jacobian of the
transformation from physical to natural space and the vector of nodal coordinates remain the same as the
element before it is partitioned. that the independent sub-element Jacobians (the transformation and the
mapping of the new elements into a natural coordinate system) which uses only the Jacobian of the un-split
element for the mapping. Chen et. al. [20] explains that in the PNM, because the active element formed with
the phantom node is mapped into the natural coordinate system via the original transformation function,
errors are introduced in the representation of its geometry.

Global System

Element 1 Element NElement i

Global System

Element 1 Element i Element N

Subelement i1 Subelement i2

Figure 3.9: eXtended FEM computational architecture
(reproduced from [20])

Figure 3.10: Floating Node Method computational
architecture (reproduced from [20])

In the FNM, just like in standard FEM, each real node i has its vector of nodal coordinates xi, and degree
of freedom vector qi. In addition, in the FNM each element contains a number of extra DoF without any
predefined nodal position, hence "floating". In the case of a simulation where no discontinuity is present, the
problem is formulated identically with standard FEM (and XFEM). When a strong discontinuity occurs (eg.
a matrix failure is initiated, see section 3.2.3), the intersection points of the crack and element edges, points
Xr and Xs are determined. The map in figure 3.11 describes the vector of nodal coordinates, the Jacobian of
the transformation, the DoF vector, the displacement approximation, the strain approximation, the stiffness
matrix, the force vector and the equilibrium equation for an element in the FNM. In the depicted scenario,
a quadrilateral element is split into two quadrilateral sub-elements, ΩA and ΩB . These two sub-elements
will each get their own vector of nodal coordinates XΩA and XΩB as well as their own Jacobian transformation
matrices JA and JB. The newly formed sub-elements behave then identically to a normal standard FE (eg.
their individual stiffness matrices and force vectors have to satisfy the equilibrium relation: K ·q = Q).

Figure 3.12 presents the ways in which a discontinuity can be represented with the FNM. From left to right,
the initial elementΩmay be split into:

• Two sub-elements ΩA and ΩB , each having their own floating DoF at the crack interface (for weak
discontinuities).

• Two sub-elementsΩA andΩB sharing the floating DoF at the interface (for strong discontinuities).

• Two sub-elementsΩA andΩB and a cohesive surface ΓΩC .

Weak and strong discontinuities are modeled the same essentially, the only difference is that fewer DoF are
needed for the representation of a weak discontinuity (nodes can be shared between the sub-elements), as
can be seen in figure 3.12. For the purpose of modeling matrix cracks however, a third approach is adopted.
In this case the discontinuity representing the crack is modelled using a Cohesive Element. This scenario
is depicted on the right side of figure 3.12 (for a simple case). Without the cohesive element, crack exten-
sion is assumed to take place when a fracture criterion, based on a critical stress or deformation near the
crack tip is satisfied. But crack growth is also dependent on the measured fracture energy which cannot be
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3.3. With a strong discontinuity

Once a discontinuity in the element is predicted (see Section 3.9.4), and thus the coordinates of the points which define
the intersection between the discontinuity and the element (xr and xs in Fig. 4) defined, the proposed formulation becomes
different from the PNM presented in Section 2.3. As the discontinuity is defined, the element is split in two or more sub-
elements (depending on the discontinuity). Without loss of generality, we will illustrate in detail firstly the most typical
situation in which the element is split in two sub-elements, XA and XB (Fig. 4).

Unlike in the PNM, we make direct use of the coordinates of crack boundaries, xr and xs, and define a vector of nodal
coordinates for each sub-element XA and XB;xXA and xXB respectively. For the case in Fig. 4, these would be (c.f. Eq. (2)):

xT
XA
¼ xT

r ;x
T
s ; x

T
3;x

T
4

� �
and xT

XB
¼ xT

1; x
T
2;x

T
s ; x

T
r

� �
: ð27Þ

Unlike in the PNM, each sub-element has then a separate Jacobian (c.f. Eq. (3)),

JA ¼
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xXA and JB ¼
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xXB : ð28Þ

The displacements uA and uB, in sub-elements XA and XB respectively, are interpolated separately from the respective
DoF. Assuming an isoparametric formulation,

uA ¼ NqA and uB ¼ NqB: ð29Þ

qA and qB are formed by using a suitable number of floating DoF. In the case of Fig. 4, which represents a strong discontinuity,
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which employs four sets of floating DoF: q5;q6;q7 and q8. Note that no initial

coordinates need to be associated with these floating DoF; they are not needed in the analysis. If, for instance, a weak dis-
continuity were to be modelled, only two sets of floating DoF would be included in the element, i.e.,
q5 and q6would coincide withq7 and q8 (Fig. 5a).

The strains then become (c.f. Eqs. (10) and (11)):

�A ¼ Lx uAð Þ ¼ Ln Nð ÞJ�1
A qA ¼ BAqA with BA ¼ Ln Nð ÞJ�1

A ; ð30Þ
�B ¼ Lx uBð Þ ¼ Ln Nð ÞJ�1

B qB ¼ BBqB with BB ¼ Ln Nð ÞJ�1
B : ð31Þ

Fig. 4. Floating node method.
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Figure 3.11: Element with a discontinuity in the Floating Node Method [20] (the element in the natural coordinate system is on the
bottom)

incorporated. If a cohesive element is used, the response of the discontinuity interface can be described by
a cohesive traction-separation law incorporating the effect of of the fracture energy. When the cohesive ele-
ment is used, the element equilibrium equation becomes different to that in equation (2.3). The new form is
given in equation (3.5). Here J•K represents the jump of a function from one side to the other of the cohesive
surface.

� the FNM makes direct use of the available crack boundary coordinates for the definition and transformation of the
sub-elements (Section 3.3), for which the PNM uses the coordinates of the phantom nodes instead (Section 2.3); the coor-
dinates of the floating nodes in the FNM are not used in the calculation and effectively they can be anywhere (Section 3.3),
while those of the phantom nodes need to coincide with the coordinates of the real nodes in the PNM;
� in the FNM, the sub-elements are transformed onto the natural space for integration through different Jacobians, and the

integrands for the calculation of system matrices of the two sub-elements are different (Section 3.3); while in the PNM,
the Jacobians and the integrands of the two sub-elements are the same (Section 2.3); the integration in the FNM is per-
formed on the full domain where the standard Gauss integration can be employed (Fig. 4); the integration over the partial
domains NA and NB in the PNM (Fig. 2) and XFEM [36] is not required in the FNM;
� unlike the PNM and XFEM (see Section 2.5.2), the FNM leads to equations of equilibrium (Eq. (34), see also Fig. 4) which

coincide exactly with those that would correspond to an equivalent FE mesh representing the same discontinuity explic-
itly (Fig. 3), and thus the respective numerical solutions will always coincide; the error in the representation of discon-
tinuities in the natural coordinates associated with the PNM and XFEM (see Section 2.5.2) is mitigated in the FNM (Fig. 4);
� the FNM is naturally well suited for representing weak discontinuities and cohesive cracks (Section 3.4); unlike the PNM,

weak discontinuities in the FNM lead directly to fewer DoF than strong discontinuities; cohesive cracks can be readily
represented exactly with cohesive sub-elements, as if cohesive elements were used directly, thus simplifying consider-
ably its calculation and assembly procedures as compared to the case with the PNM (Section 3.4);
� while modelling more types of cracking scenarios in the PNM is challenging, this can be achieved with the FNM by simply

adopting the appropriate partitioning strategies and activating the correct sets of floating DoF topologically associated
with the FN element (Section 3.6);
� by avoiding the initial choice of requiring that the extra nodes be coincident with the real nodes (as is the case in the

PNM), the FNM is conceptually simpler to understand, as the floating DoF have a direct meaning: the displacement at
a defined material point on the surface of the discontinuity.

3.7.2. Comparison with remeshing
In terms of the final solution, the FNM effectively implements a local remeshing within the cracked element. However,

the FNM differs from remeshing [17–32] in terms of the methodology. Remeshing models discontinuities by essentially

Fig. 9. A FN element can represent a wide range of cracking scenarios by adopting different partitioning strategies to form sub-elements for integration; the
change from one scenario to another can be achieved by switching between the different partitioning strategies within the local element calculation.
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Figure 3.12: Different ways of modelling discontinuities [20]

∫
Ω
εT (v)σ(u)dΩ=

∫
ΩA

εT (v)σ(u)dΩ+
∫
ΩB

εT (v)σ(u)dΩ+
∫
ΓΩC

JvKτC(JvK)(u)dΓΩC (3.5)

The stiffness matrix of the cohesive element is calculated in a manner analogous to that of a sub-element,
described by the map in figure 3.11. This time however, the shape of the element is described by the vector

of nodal coordinates xT
ΓC

= [xT
r ,xT

s ] and the Jacobian is JC E = dx
dζ = dNCE

dζ xΓΩc
. Since the traction τc is related to

the displacement jump via a relation τc = DCEJuK, the stiffness matrix KCE can be reduced to equation (3.6).
This stiffness matrix of the cohesive element is then assembled into the stiffness matrix of the entire element.
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KCE =
∫
ΓΞc

[NCE,−NCE]TDCE[NCE,−NCE]JCEdΓΞc (3.6)

3.2.2 Modelling of Composite Laminates

The partitioning of an element as explained above is not equivalent to the propagation of a matrix crack
through that element. Different failure criteria are used for partitioning the FN element (which forms the CE)
and failing the CE (cohesive law). Matrix cracks are simply represented by the cohesive elements generated
at the sub-element interface (concept named Cohesive Zone Modeling). The cohesive zone is a couple of
elements long and has the numerical crack tip at the edge of the cohesive zone in the direction where the
crack extends. When a criterion for the propagation of cracks is satisfied the cohesive zone advances and the
crack tip moves to the edge of the new element. A more in depth explanation of how matrix cracks propagate
in the FNM is given in [21].

Criteria for predicting the onset of fiber and matrix failure need to be chosen. It is considered that fiber failure
causes also matrix cracking, meaning that fiber failure is a sufficient requirement also for matrix failure. In
the absence of fiber failure, matrix failure onset can of course be predicted independently using a dedicated
failure criterion. Once either failure criteria is satisfied, the partitioning of the element is performed and a CE
is placed in place of the crack. The CE will trigger the failure onset immediately while the damage evolution
of this element will follow a specific cohesive law for its softening.

If fiber failure is detected first, it means that the softening behaviour of the sub-elements should reflect a
fiber failure type of fracture. The softening behavior in this case is characterized by a damage variable d f ,
0 ≤ d f ≤ 1. The variable is used to define the new material properties (with [′]) in the following way:

E ′
1 = E1(1−d f ),

ν′12 = ν12(1−d f ),
ν′13 = ν13(1−d f )

If matrix failure were to happen first, it would happen for example when the normal and shear tractions
on the matrix crack surface, τn ,τt ,τl , satisfy the matrix failure criteria. Unlike in the case of fiber failure,
the softening associated with matrix cracking does not begin immediately, but only after the failure criteria
in the cohesive element satisfied. Afterwards, the softening is done by degrading the material parameters
at the integration points of the cohesive element (denoted by crosses × in figure 3.13). The cohesive crack
element will follow a softening curve represented by the damage variable dm . This damage variable can be
seen in equation (3.7), the relation between the traction and separation on the cohesive element. In this
system of equations, the τ represent the tractions, the δ the separations and K the penalty stiffnesses. The
newly modified (degraded) material parameters are updated at the cohesive element (ΓΩc ) integration points
depicted in figure 3.13.


τn

τt

τl

=
Kn(1−dm) 0 0

0 Kt (1−dm) 0
0 0 Kl (1−dm)


δn

δt

δl

 (3.7)

Finally, a great asset of the FNM that needs to be mentioned is that it allows for the sharing of information
between the different plies and interfaces that belong to the same local (laminate) element. This represents
a very powerful tool when modeling inter-ply interactions, for example matrix cracking - delamination inter-
action (depicted in figure 2.6).
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The stiffness matrices for sub-elements XA and XB are (c.f. Eq. (12)):

KA ¼
Z

N
BT

ADBA det JAð ÞdN and KB ¼
Z

N
BT

BDBB det JBð ÞdN: ð32Þ

Note that the integrands for sub-elements XA and XB in Eq. (32) are different but the integration domain (N) is the same (the
usual integration domain of a standard finite element). Similarly, the force vectors are (c.f. Eqs. (13) and (14)):

Q A ¼
Z

N
NTf det JAð ÞdNþ

Z
CN

NTt det JAð ÞdCN and

Q B ¼
Z

N
NTf det JBð ÞdNþ

Z
CN

NTt det JBð ÞdCN:

ð33Þ

From Eq. (1), the equations of equilibrium for the two sub-elements are:

KAqA ¼ Q A and KBqB ¼ Q B: ð34Þ

Finally, in the same way as the PNM, the equation of equilibrium of the Floating Node (FN) element is the assembly of those
of the two sub-elements:

Kq ¼ Q : ð35Þ

where

K ¼
KA

KB

� �
; ð36Þ

and

qT ¼ qT
A; qT

B

� �
; ð37Þ

and

Q T ¼ Q T
A; Q T

B

h i
: ð38Þ

Comparing Fig. 4 with Fig. 3, it is easy to verify that unlike in the PNM, the system equations of a sub-element in the FNM
are the same as those of a standard finite element defined on the same domain. Therefore, in terms of the solution, the FN
element after splitting (Fig. 4) is equivalent to a FEM mesh representing the same cracking scenario (Fig. 3), and thus the
error in the representation of the discontinuity geometry associated with the PNM (Section 2.5.2) is mitigated in this case.

3.4. With weak discontinuities and cohesive cracks

The representation of weak discontinuities is analogous to the representation of strong discontinuities, requiring only
fewer floating DoF, the latter being shared (through the assembly process) between both sub-elements (Fig. 5a). This is sim-
pler to implement and involves less DoF, than in the PNM where the modelling of a weak discontinuity requires constraints
imposed on generally all the DoF (Section 2.4).

Cohesive cracks (Fig. 5b) can be represented by partitioning the integration domain X into two quadrilaterals (XA and XB)
and a surface (CXc ). Consider an element as in Fig. 5b with integration domain X partitioned into two sub-elements with
integration domains XA and XB, as well as a cohesive sub-element with integration domain CXc . The left hand side of the
equilibrium equation (Eq. (1)) can be expanded from the integration domain X to the three integration domains XA;XB

and CXc :Z
X
�T vð Þr uð ÞdX ¼

Z
XA

�T vð Þr uð ÞdXþ
Z

XB

�T vð Þr uð ÞdXþ
Z

CXc

svt
Tsc sutð ÞdCXc : ð39Þ

Fig. 5. Weak discontinuity and cohesive crack.
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Figure 3.13: Integration points sub-elements (adapted from [21])

.

3.2.3 OHC simulation with the FNM

Using the same test setup as for the XFEM simula-
tion done earlier in this chapter, the OHC problem is
simulated using the FNM to demonstrate its capability
(in dealing with crack-rich problems). To demonstrate
the good convergence capabilities of the latter, an un-
structured mesh, presented in figure 3.14, is used in
the simulation. As explained earlier, fiber and matrix
failure criteria are needed in order to split a FN ele-
ment. Once and element is divided, as in figure 3.13,
the softening behaviour of the newly created matrix
crack will be governed by the cohesive law in the cohe-
sive element (C.E.). Similarly, the softening behaviour
of the sub-elements (eg. sub-elements ΩA and ΩB in
fig 3.13) is governed by a cohesive law in these sub-
elements, associated with fiber failure. Figure 3.14: Panel with unstructured mesh used for the

FNM simulation

Cohesive laws correlate the cohesive forces and displacement jumps along an interface in normal and tan-
gential directions [32]. Mainly by virtue of their simplicity, bi-linear cohesive laws are the most popular. A
large number of cohesive laws exist that are best suited for different applications (particle-matrix decohe-
sion, solute segregation, crack growth in elasto-plastic material, peeling of adhesive joints, etc..). The crucial
characteristic of cohesive laws is that they maintain a constant fracture energy dissipated for fully damaging
a material point regardless of the element size or time increment used in that simulation. For this reason they
are commonly adopted to ensure mesh objectivity. The failure criteria and softening behaviour characteriz-
ing the cohesive laws adopted here for fiber and matrix failure respectively will now be described.

Fiber Failure

It is assumed that the material behaves perfectly elastic up to the failure onset point. For this simulation, the
Maximum Stress failure criterion is used to predict fiber failure onset. The material then reaches its maximum
load carrying capability when the axial stress in the ply element is equal to the ply strength (X t and Xc for
tension and compression respectively). The criterion is given in equation (3.8).

max(σ11,0)

X t
+ min(σ11,0)

Xc
> 1(for failure onset) (3.8)

After failure onset the material starts to soften. This part the curve is calculated such that the fracture tough-
ness requirement, given in equation (3.10), is satisfied. In this equation u1 is the vertical displacement and
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u1 f is the vertical displacement at complete failure. In other words, the area under the traction separation
curve is equal to the ply fracture toughness, as in figure 5.7. In order to account for a kind of thickness size ef-
fects (ply scaling), the cohesive law that governs the ply element response is scaled as in equation (3.9). That
is, the fracture toughness for a block of n plies is n times larger than that of an individual ply. This is based
on the experimental observations of [59]. It should be mentioned however that the fracture toughness that
will be used (given in table A.2) is the compression fracture toughness of the laminate which may contain en-
ergy dissipated also through matrix cracking, delamination, etc.. not specifically the energy dissipated by the
fiber kinking mechanism in a ply. It is expected however that the energy dissipated through kinking/micro
buckling is dominant [71].

Gn
f c = n ×G1

f c (3.9)

∫ u1 f

0
σ1du1 =Gn

f c (3.10)

Matrix failure

Matrix failure is predicted using a quadratic failure criteria. Since the C.E. is supposed to have its damage
onset at the same time when the element is split, the matrix failure criteria described here applies both to un-
split elements and the C.E. The criteria for tension and compression loads are differentiated. The failure index
for tension, fi ndext , and for compression, fi ndexc , are given in equation (3.11) and equation (3.12) respectively.
The tractions τN , τL and τT are the stresses along a potential fracture angleα that maximizes the failure index.
They are calculated using equation (3.13) and the maximizing angle is determined iteratively. The terms Yt ,
St and SL are ply properties. Finally, the terms ηL and ηT are traverse and longitudinal frictional parameters.
They can be estimated using equation (3.14) and (3.15) from Pinho et. al. [62] provided the angle φ0 of the
fracture plane for a purely compressive load. This typical value of this angle is given in equation (3.16). The
tensile criterion (equation (3.11)) is used if the normal traction on the potential fracture surface τn is positive,
while the compression criterion is used only if the same traction is negative.

fi ndext =
√(

τN

YT

)2

+
(
τL

SL

)2

+
(
τT

ST

)2

(3.11)

fi ndexc =
√(

τL

SL −ηL ·τn

)2

+
(

τT

St −ηT ·τN

)2

(3.12)

τN = cos2 (α)σ22 +2cos(α)sin(α)τ23 + sin2(α)σ33

τT = −sin(α)cos(α)(σ22 −σ33)+ (cos2(α)− sin2(α))τ23

τL = cos(α)τ12 + sin(α)τ13

(3.13)

ηT =− 1

tan(2φ0)
(3.14) ηL = SL

ST
ηT (3.15) φ0 ≈ 53◦±2◦ (3.16)

3.2.4 Discussion of results

Unlike the simulation performed with XFEM, presented in section 3.1, which could not converge past an
incipient state of failure, when the FNM is used no convergence issue is encountered in the analysis until it is
manually stopped at an applied displacement of u1=-0.5 mm. These results will be used as a reference in the
assessment of the kinking constitutive law proposed in Chapter 4.

The stress - displacement curve of the laminate is presented in figure 3.15. The estimated panel strength isσ≈
−430 MPa. This result is approximately 15% larger than the experimental average stress of 373 MPa presented
in table A.1. Unfortunately, the author [46] only provides the obtained panel strengths not allowing for a more
detailed comparison. The first significant event that can be seen in the simulation as the load progresses is the
onset of fiber damage on the 0◦ ply right near the hole (formation of the damage zone discussed in Chapter
2).
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The displacement and far-field stress
at this event can be seen σ11 − u1

curve and is depicted in figure 3.16.
Shortly after that, delamination oc-
curs at the [-45/0] interface near the
hole as depicted in figure 3.17, arti-
fact predicted also by the XFEM model
(which also predicted high loads at
the panel edges). This damage zone,
represented before in figure 2.1, in-
creased in size without any noticeable
effect on the panel stiffness until u1 ≈
−0.25 mm when a sudden decrease in
stiffness occurs. After a short soften-
ing region the stress recovers until the
strength of the panel is reached. At
this moment in time, the fiber damage
has propagated away from the hole
as can be seen in figure 3.18. Finally,
the the fully propagated fiber damage
pattern, occurring in the post failure
state, is displayed in figure 3.19.
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Figure 3.15: Stress - Displacement curve of the FNM based simulation with Maximum
Stress criterion governing the fiber failure onset

Figure 3.16: Fiber damage initiation near hole Figure 3.17: Delamination initiation near the hole

Figure 3.18: Fiber damage state at maximum load Figure 3.19: Fiber damage in post failure state

A summary of the main events that occurred during the analysis and the pictures describing them can be
found in table 3.1. The full set of results obtained from this simulation can be found in Appendix B. The results
of this simulation will serve as a reference in order to asses the performance of the compression constitutive
law proposed in chapter 4.
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Table 3.1: Critical points on the Force - Displacement diagram of the FNM based OHC simulation with the Maximum Stress failure
criteria

Location Figure Displacement [mm] Stress [MPa] Note
• Fig 3.16 -0.115 -195 Fiber damage onset
• Fig 3.17 -0.18 -306 Delamination at 0/45 interface
• Fig 3.18 -0.3 -429 Maximum stress
• Fig 3.19 -0.435 -138 Post failure state





4
Modelling of longitudinal compression in

composites

The investigation in Chapter 2 identifies the need for a more accurate and physically based CDM representing
the failure mechanisms of fibers under compression in the Progressive Damage Analyses based on the FNM.
Researchers like Andrew C. et. al. [7] support the idea that the insufficient physical basis of the current PDA
is one of the main factors for their poor accuracy when modelling compressive tests. Recent studies have
shown that the dominant in plane failure mechanism governing composite longitudinal compression is fiber
kinking [64]. In the last decade, some new constitutive laws have been proposed for modelling longitudinal
compression that consider fiber kinking as the mechanism governing the failure [1] [65] [63] [37] [38] [7].

4.1 Background

Generally, axially loaded FRP plies show a linear elastic behaviour up to failure. If the stiffness is known,
the first important aspect of a compressive meso-scale model is a failure trigger function which separates the
undamaged and damaged state of the material in the ply. An abundance of stress-strain based criteria exist for
damage initiation having different levels of physical background. To ensure however that the current work is
of actuality, only those that are more recent are investigated in this chapter to be used in the OHC simulation.
To the knowledge of the author, these are: the three models of Gutkin et. al. [37], [38] and [50]; the DGD based
model of Bergan et. al. [7]; two models of Pinho et. al. [63] and [65]; and the model of Cantalanotti et. al. [16].

Gutkin et. al. [37] proposed a model to predict fiber kinking and splitting in FRP under combined longitudinal
compression and in plane shear. His work is based on the hypothesis that the strength associated with fiber
kinking is reached when the strain energy released per unit area of crack generated (between an undamaged
and a damaged state) is equal to the energy required to create a unit area of cracks (fracture energy). In depth
investigation of the method reveals the need of an undetermined parameter α. The latter should account for
the characteristics of the microcracks in the system, but in the absence of a more clear definition of this term
and how it can be measured, this approach cannot be used in the current work. In another works, Gutkin et.
al. [38] (and [36] and [9], all three are needed for a complete understanding) proposes a method that mod-
els kink-band growth and longitudinal crushing of composites under a three dimensional stress state, while
accounting for frictional stresses at microcrack closure. A great advantage of this method is that, at concept
level, the approach is simple and logical. The kinking response is estimated by solving simultaneously: 1) the
stress equilibrium between applied global stresses and nonlinear local stresses; 2) the nonlinear constitutive
law of the material contained in the kink band; 3) the strain compatibility equations. While in this work the
parameter α mentioned earlier is no longer needed, the method cannot be considered for the current work.
Using this method in a simulation, many non-trivial experimental parameters were needed which could not
be determined accurately. For example, one requires knowledge of a shape parameter p that is found exper-
imentally from cyclic shear tests. Furthermore, friction coefficients (µL , µT ) and the internal pressures p0T

25
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and p0L caused during manufacturing also need to be known. Finally, for the last of the mentioned methods
of Gutkin et. al. [50] the same problem was encountered. This method makes use of the parameters β f , βg ,
and βh which are material properties representative of the degradation of the matrix shear, fiber crushing
and longitudinal fiber shear response respectively. Since an explanation on how to obtain them is missing
the method cannot be used.

The next method, proposed by Bergan et. al. [7], adopts a Deformation Gradient Decomposition (DGD)
technique to represent kink bands as displacement jumps in cohesive interfaces. An asset of this model is
that it can objectively represent the matrix failures that occur in the misalignment frame. Another advantage
is that it has already been implemented as VUMAT in Abaqus and is available online [54]. But much like the
methods proposed earlier, this model requires as input non-trivial experimental data i.e.: the constantsα and
η (representing material properties that define the shear stress-strain curve); the constant cl (a non-linearity
coefficient), etc.. The model is also expected to have a high computational cost due to the iterative processes
which it makes use of [7].

Relying on Argon‘s 1 hypothesis [4], Dávila et. al. [17] used it in combination with the LaRC02/03 matrix fail-
ure criteria and proposed a 2D kinking model. The latter assumes that the fibers in a laminate are initially
misaligned and, as the load increases, the misalignment angle increases. The stresses in the misalignment
frame are computed and substituted in a matrix failure criterion. Different matrix failure criteria are used
depending on the sign of the normal stress in the fracture plane τn . Pinho et. al. [63] extended the model of
Dávila to three dimensions and adopted a modified matrix compression failure criterion, proposed by Puck
and Schürmann [2], arguing that it is better suited for 3D applications (for matrix tensile failure a simple
quadratic interaction criteria was used as it was deemed the most accurate). In the opinion of the author,
Pinho‘s approach is very attractive for modelling by virtue of its physical basis and ease of applicability. How-
ever, a limitation should be addressed to improve the method. In the proposed model no differentiation is
made between the fiber kinking and fiber splitting failure modes. The latter, being essentially a continuous
and long line of matrix failure, is generally found in composite plies subjected to large shear stresses [58] and
does not localize in a kink band [37]. The two phenomena mentioned are distinct and using Pinho‘s approach
may lead to fiber kinking onset in false situations. In a later publication [65], the same author completes the
model addressing this issue. It is added that fiber kinking should occur if the local axial compressive stress
σ11 is larger in magnitude than Xc /2, criterion based on experimental observations. However, no undergoing
physical mechanism is described that may lead to this observation. Just like in the method of Whiney and
Nuisemer [77] discussed in chapter 2, this criterion may hold only for the laminates where the observation
was made. In the absence of a physically-based criterion to distinguish fiber kinking from fiber splitting, the
prediction of fiber kinking should be adopted with care.

Other updates on Pinho‘s model [63] were made by both Pinho [65] and Cantalanotti [16]. The new ap-
proaches both account for in situ effects (increase of a ply shear strength when used in a multi-directional
laminate). These will however not be adopted as the procedure used to determine the in situ strengths is
based on a fracture mechanics analysis of an idealized crack in a unidirectional ply, method proposed by
Dvorak and Laws [26]. The derivation of the in situ strengths is based on Linear Elastic Fracture Mechanics
(LEFM) [61]. This is an alternative method to the already employed Cohesive Zone Modelling (CZM) used for
crack propagation by the FNM. Using a LEFM based term would represent an inconsistency of the simulation
framework proposed for OHC.

In conclusion, Pinho‘s approach [63] to model fiber kinking is physically based and easy to implement but has
a limitation in distinguishing between fiber kinking and fiber splitting. An improved model for fiber kinking
will now be proposed, build on top of Pinho‘s [63] original model.

4.2 Proposed constitutive law

The next section will detail how Pinho‘s kinking initiation works and how will it be supplemented by the
proposed improvements. After that, in sections 4.2.2 and 4.2.3 the proposed constitutive law for softening is
discussed.

1Kink bands are triggered by localized matrix failure in the vicinity of misaligned fibers. This is due to the loss of support that the matrix
would otherwise provide to the fibers.
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4.2.1 Failure Onset

Pinho [63] considered, like Argon [4] proposed, that fiber kinking is initiated when the matrix around the
kinked fibers fails. In addition to this condition, two additional requirements are proposed to assure that
the undergoing failure mechanism can indeed be associated with fiber kinking and not another failure mode
(such as fiber splitting).

For fiber kinking to occur, the matrix around the kinking fibers needs to have failed.

The first part of the criteria requires for kinking onset that the tractions on the fracture plane t (ϕ)
N , t (ϕ)

L and

t (ϕ)
T , given in equation 4.1, cause the matrix failure index φK M (in equation (4.2)) to exceed 1. The fracture

plane is the plane in the misalignment frame where the tractions mentioned maximize the failure indexφK M .
The fracture plane depicted in figure 4.1(c) and one can see that it is determined by the angle α.

t (ϕ)
N = cos2 (α)σ(ϕ)

22 +2cos(α)sin(α)τ(ϕ)
23 + sin2(α)σ(ϕ)

33

t (ϕ)
T = −sin(α)cos(α)(σ(ϕ)

22 −σ(ϕ)
33 )+ (cos2(α)− sin2(α))τ(ϕ)

23

t (ϕ)
L = cos(α)τ(ϕ)

12 + sin(α)τ13

(4.1)

The fracture plane where the failure criteria are applied is not known apriori. Angles θ, ϕ and α need to be
determined such that the components of the traction vector in equation (4.1) are determined after making
the necessary stress transformations. In a standard FE simulation, the stresses available at integration point
level are the standard stresses acting on the (1-2-3) coordinate system depicted in figure 4.1(a): σ11, σ22, σ33,
τ12, τ13 and τ23. As it will be explained later in this section, two successive stress transformations need to be
performed before the tractions acting on the fracture plane can be determined.

Depending on the sign of the normal traction component t (ϕ)
N , a matrix failure criteria specific to tension

(Quadractic Stress criterion) or to compression (Puck criterion [2]) is used to deem matrix failure. These are
given in equations (4.3) and (4.4) respectively.

φK M =
{
φK MT , if t (ϕ)

N > 0

φK MC , if t (ϕ)
N < 0

(4.2)

φK MT =
(

t (ϕ)
N

YT

)2

+
(

t (ϕ)
L

SL

)2

+
(

t (ϕ)
T

ST

)2

(4.3)

φK MC =
(

t (ϕ)
L

SL −ηL t (ϕ)
N

)2

+
(

t (ϕ)
T

ST −ηT t (ϕ)
N

)2

(4.4)

The terms SL , ST and YT are known ply material strength properties presented in table A.2 for the IM7/8552
material system used throughout this report. Furthermore ηL and ηT represent the longitudinal and traverse
angle of internal shear, friction like parameters that can be obtained from a 15◦ off-axis compression test.
Pinho [63] however provides an estimation method for ηL and ηT given in equations (4.5) and (4.6), avoiding
thus the need for any test. The only parameters that need to be known in the last two equations are are
actually exactly the ply shear strengths SL , ST and the fracture plane angle for pure compression φ0 (typically
φ0 ≈ 53◦).

ηL = SL
ηT

ST
(4.5) ηT =− 1

tan(2φ0)
(4.6)

The stress matrix σ in equation (4.7) represents the loading on a material point in the (1-2-3) coordinate
system. It is formed using the known stresses σ11, σ22, σ33, τ12, τ13 and τ23 acting at that point.

σ=
σ11 τ12 τ13

τ12 σ22 τ23

τ13 τ23 σ33

 (4.7)
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Figure 4.1: Transformation planes [16]

Following the depictions in figure 4.1, the first necessary stress transformation turns stresses from the ma-
terial coordinate system into the kinking plane, from σ to σ(θ), over the angle θ. This is done using relation
(4.8). Since the rotation is done around the vertical axis 1 (in the fiber direction), the rotation matrix R(θ) is
given by equation (4.9).

σ(θ) = R(θ) ·σ ·R(θ)T
(4.8) R(θ) =

1 0 0
0 cos(θ) sin(θ)
0 −sin(θ) cos(θ)

 (4.9)

The angle θ is the angle that will eventually maximize the failure index φK M for a given set of stresses σ.
Some estimation methods for the rotation angle θ exist [16], but the most accurate way is to follow an iterative
approach and manually search for the optimal value.

The second transformation, from σ(θ) to σ(ϕ) (from the kinking plane to the kink band angle), is done by
rotating via the angle ϕ around the third axis of the kinking plane (3θ). The transformation is done using
equation (4.10) where the transformation matrix R(ϕ) is given in equation (4.11). Determining the misalign-
ment angle ϕ is less straightforward than θ and requires a bit of explanation. The method for its finding was
first proposed by Dávila et al. [17].

σ(ϕ) = R(ϕ) ·σ ·R(ϕ)T
(4.10) R(ϕ) =

 cos(ϕ) sin(ϕ) 0
−sin(ϕ) cos(ϕ)) 0

0 0 1

 (4.11)

The total misalignment angle is defined as the sum of an initial misalignment angle ϕ0 and an angle γm that
varies with the shear loading. This is written in equation (4.12).

ϕ= sgn(τ12)(ϕ0 +γm) (4.12)

For the initial misalignment fiber, consider in
a 2D problem a misalignment coordinate frame
denoted with the superscript (m), as depicted in
figure 4.2. The stresses in this coordinate frame
can be estimated as in equation (4.13). Under a
purely axial compression load, the failure is ex-
pected to occur when σ11 =−Xc ,σ22 = τ12 = 0. Figure 4.2: Stresses in a 2D misalignment frame [16]

σ(m)
11 = cos2(ϕ)σ11 + sin2(ϕ)σ22 +2sin(ϕ)cos(ϕ)|τ12|

σ(m)
22 = sin2(ϕ)σ11 +cos2(ϕ)σ22 −2sin(ϕ)cos(ϕ)|τ12|

τ(m)
12 = sin(ϕ)cos(ϕ)(σ22 −σ11)+ (cos2(ϕ)− sin2(ϕ))|τ12|

(4.13)

Under such a loading, equation (4.13) can be rewritten as equation (4.14), where ϕc represents the misalign-
ment angle at failure.
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σ(m)
11 = −cos2(ϕc )Xc

σ(m)
22 = −sin2(ϕc )Xc

τ(m)
12 = sin(ϕc )cos(ϕc )Xc

(4.14)

Substituting these stresses in the LaRC03 [17] failure criterion for matrix failure (shown in equation (4.15))
and rearranging, equation (4.16) for ϕc is obtained.

SL = Xc (sin(ϕc )cos(ϕc )−ηL sin2(ϕc )) (4.15) ϕc = arctan


1−

√
1−4

(
SL
Xc

+ηL

)
SL
Xc

2
(

SL
Xc

+ηL

)
 (4.16)

Considering again only an axial compression being applied and assuming the material exhibits a linear be-
haviour up to failure, the shear strain at failure γmC can be written as relation (4.17).

γmC = sin(2ϕC )XC

2G12
≈ ϕC Xc

G12
(4.17)

The initial misalignment angle can now be determined by replacing equations (4.16) and (4.17) into equation
(4.18).

ϕ0 =ϕC −γmC (4.18)

With the initial misalignment fiber determined, only the shear strain γm is still needed for finding the total
misalignment fiber ϕ. This is done considering a generic load (not exclusively axial compression) applied.
The strain γm can be found by solving equation (4.19). If small angle approximation is assumed, equation
(4.19) can be rearranged to the form in equation (4.20). In the latter, Pinho et al. [63] suggested using the
stresses in the kinking plane σ(θ)

11 ,σ(θ)
22 ,τ(θ)

12 instead of σ11,σ22,τ12

f (γm) =−sin(ϕ)cos(ϕ)(σ11 −σ22)+ (cos2(ϕ)− sin2(ϕ))|τ12| (4.19)

γm = ϕ0G12 +|τ12|
G12 +σ11 −σ22

−ϕ0 (4.20)

The misalignment angleϕ can now be determined by replacingϕ0 and γm into equation (4.12) and following
the stress transformation in equation (4.10) the stress matrix σ(ϕ) is found.

The last angle to be found before the tractions on the fracture plane t (ϕ)
N , t (ϕ)

L and t (ϕ)
T can be determined is α.

The latter is needed to transform the stressesσ(ϕ) from the misalignment fiber frame (ϕ) in figure 4.1(b) to the
fracture plane in figure 4.1(c). Similar to the determination of the kink plane angle θ, no specific procedure is
used for determining the fracture angleα. An iterative approach will be again employed. Therefore, the angles
θ and α are those which together maximize the value of the failure index φK M . The traction components in
the misalignment frame are found applying equation (4.1) and the matrix fails if φK M > 1, thus satisfying
Argon‘s hypothesis and the first requirement in the here-proposed kinking onset criterion.

The second part of the failure criterion (which represents an addition to the work of Pinho [63]) is here pre-
sented. To reduce computational expense, this requirement will only be checked after the former has been
satisfied.

A micrograph of the kink band in a T300/913 specimen is presented in figure 4.3 and another of a IM-7-
12K/411-C50 specimen in figure 4.4. The following observation may be made: possibly helped by the matrix
cracks formed in the region of the kink band, fibers in the presented images have bent to a point where, due
to the bending stresses, they broke at one end of the kink band and then at the other. The following kinking
requirement may be proposed based on the observation made:
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Figure 4.3: Kink band failed T300 fibers
[56]

Figure 4.4: Kink band failed IM7-12K fibers [52]

For fiber kinking to occur, the maximum bending stress in a fiber should be large enough to break it
|σbmax | >σ f i bmax

.

To explain how the second requirement works consider the kinking plane in figure 4.1(b) which is extracted
here for convenience and placed on the left side figure 4.5. The kinking plane is acted upon by the stresses
σ(θ)

11 ,σ(θ)
22 and τ(θ)

12 from σ(θ) (obtained previously from equation (4.8)). If an individual fiber is to be examined,
as on the right side of figure 4.5, one can see that it is acted upon by the same longitudinal normal stress
σ(θ)

11 (which is in fact always equal to σ11). The other stresses in the kinking plane, σ(θ)
22 and τ(θ)

12 , are indirectly
acting on the fiber by influencing the misalignment angle ϕ.

Due to the angleϕ, an offset wM A exists between vertical forces acting on the fiber (follow figure 4.5). It can be
written as wM A = wki nk ·sinϕwhereϕ is known and wki nk is the kink band width. A plethora of experimental
data suggests that the kink band width is between 10 to 20 times the fiber diameter wki nk [10] [29][35]. It
will be assumed here that the kink band width is the averaged wki nk = 15d f i b . The moment created by the
stresses can be calculated as in equation (4.21). In this equation d f i b represents the diameter of a single fiber,
a material parameter always provided by the manufacturer.

M = F ·wM A =σ11 A f i b wki nk · sinϕ=σ11

d 2
f i b ·π

4
·15d f i b · sinϕ= 15

4
σ11d 3

f i bπ · sinϕ (4.21)

Due to this moment, a bending stressσb(y) is expected to arise in the fiber as depicted in figure 4.5. Assuming
the fiber can be modelled according to Euler-Bernoulli beam theory, the maximum bending stress σbmax is at
a distance y = d f i b/2 from the neutral axis. The expression for the absolute value for the maximum bending
stress in the fiber is given in equation (4.22). The term I f i b represents the area moment of inertia of a single
fiber. Since the fiber is expected to have a circular cross section with uniform material distribution, the I f i b

can be calculated with equation (4.23).

|σbmax | =
M · y

I f i b
= M ·d f i b

2I f i b
= 120|σ11 · sinϕ| (4.22) I f i b =

π ·d 4
f i b

64
(4.23)

Remembering the hypothesis of the second requirement: for kinking to onset, the fiber must break under the
bending stress. This can now be written as in equation (4.24). The only extra data needed for this criterion is
therefore the fiber strength σ f i bmax

, always supplied by the manufacturer.

|σbmax | >σ f i bmax
≡ 120|σ11| · |sinϕ| >σ f i bmax

(4.24)
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Figure 4.5: Kinking plane and with fiber bending stresses depicted

Equation (4.22) for |σbmax | can be expanded using equations (4.12), (4.20) and (4.24) to obtain the relation

presented in equation (4.25). Examining the latter shows that |σbmax | increases with τ(θ)
12 and with σ11 (since

the latter is less straightforward, it was plotted for proof in figure 4.6 for generic values of σ22 and τ12).

|σbmax | = 120 ·
∣∣∣∣∣σ11 · sin

(
ϕ0G12 +|τ(θ)

12 |
G12 +σ11 −σ(θ)

22

)∣∣∣∣∣ (4.25)

Figure 4.6: For σ22 = 200 MPa, τ12 = 0 and ϕ0 = 2◦ Figure 4.7: For σ22 = 50 MPa, σ11 = 400 MPa and ϕ0 = 2◦

The fact that |σbmax | increases with τ(θ)
12 is what sparks the need for the next and final kinking criterion. Anal-

ysis of the graph in figure 4.7 shows that |σbmax | can attain relatively large values for relatively low σ11, pro-

vided τ(θ)
12 is sufficiently large. For example, consider the IM7 fiber used so far in this report, it has a strength

of σ f i bmax
= 5516 MPa [22], meaning that under the conditions of figure 4.7 the second requirement for fiber

kinking would be satisfied despite the axial stress σ11 being only 400 MPa in magnitude. Of course the τ(θ)
12

values in figure 4.7 are quite large, larger than a typical ply shear strength St . To prevent kinking from oc-
curring in these shear dominated scenarios, the obvious solution would be not allowing kinking to occur if
τ(θ)

12 > St (as it is expected to result in fiber splitting). This approach is however ill fated if meant to be used
in a complex FE simulation. To demonstrate this consider an element of the plate that was modelled before
with the FNM. This is depicted in figure 4.8.
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Figure 4.8: Generic FE element in an OHC plate simulation

The element is acted upon by stressesσ11,σ22,σ33, τ12, τ13 and τ23. After the kink plane angle θ is determined
(as described earlier in this section), the stresses σ(θ)

11 , σ(θ)
22 and τ(θ)

12 in the kink plane can be determined. The
kinking plane is depicted in figure 4.5. Using equation (4.25) the stresses in the kink plane can be related to
the maximum bending stress |σbmax |. Assuming that σ(θ)

22 has a negligible contribution to |σbmax |, the latter

can be plotted against the kink plane shear stress τ(θ)
12 for a number of σ11 values as in figure 4.9. In the same

graph a horizontal black line indicates the IM7 fiber strength of σ f i bmax
= 5516 MPa while a vertical black

line indicates the traverse shear strength St . If the requirement for kinking is that τ(θ)
12 < St as mentioned

earlier, the quadrant representing the region of allowed kinking would be the top left one in figure 4.9. The
|σbmax | >σ f i bmax

and τ(θ)
12 < St .

Now, consider that at certain time step i the axial stress in the element is σ11 = 850 MPa and the shear stress
in the kinking plane is τ(θ)

12 = 25 MPa. For the IM7/8552 material system the described scenario can be repre-
sented like in figure 4.9. At time step i clearly the second kinking criterion is not satisfied as the axial bending
stress in the fiber is not sufficiently large to break it (|σbmax | < σ f i bmax

). Even if until time step i+1 only the

shear stress τ(θ)
12 increases while σ11 stays constant, the stress would go through the region of allowed kinking

depicted, to arrive in a region which, perhaps due to a too large time increment, is outside the allowed kinking
zone. This is of course because the kinking zone is limited by τ(θ)

12 < St . Clearly the element should have been
deemed failed by the kinking criteria, but kinking was not allowed because at time increment i+1 the shear
stress was too large.

Instead of not allowing kinking to initiate if τ(θ)
12 > St , a better approach in practice would be to impose a

minimum axial stress magnitude for kinking to occur. This results in the third and last criterion for fiber
kinking initiation in the current proposed method.

For kinking to occur, the minimum applied longitudinal stress σ11 should be large enough such that the
maximum bending stress |σbmax | can be larger than the fiber strength σ f i bmax

for a kink plane shear stress

τ(θ)
12 < St

Taking equation (4.25) and replacing |σbmax | with σ f i bmax
, τ(θ)

12 with St and assuming that σ(θ)
22 is negligible

compared with G12 and σ11, equation (4.26) is obtained for the minimum axial stress σ11mi n . This equation
has to be solved for σ11mi n iteratively.

σ f i bmax
= 120

∣∣∣∣σ11mi n sin
ϕ0G12 +St

G12 +σ11mi n

∣∣∣∣ (4.26)
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Figure 4.9: Justification kinking condition

Taking again the IM7/8552 material system, this criterion means that kinking should be allowed if and only
if σ11 < −660 MPa, that is, if step i+1 is above the orange line in figure 4.9. In section 4.1 it was stated that
Pinho [65] has suggested that fiber kinking should occur if σ11 < −0.5Xc . For the IM7/8552 material system
Xc = 1690 MPa according to table A.2, meaning that the requirement would be σ11 < 845[MPa]. The proposal
of Pinho, based on experimental observations, is seen as supporting the criterion proposed here as the re-
quirements proposed are close. But through the procedure presented here it was shown that the requirement
proposed can provide an otherwise missing physical basis for the criterion.

To summarize the current section, the fiber kinking onset criteria proposed consists of three requirements.
The first was proposed by Argon [4] and solved in the adopted form by Pinho [63]. The latter two are proposed
in this thesis. All three are enumerated:

1. For fiber kinking to occur, the matrix around the kinking fibers needs to have failed

2. For fiber kinking to occur, the maximum bending stress in a fiber should be large enough to break it
|σbmax | >σ f i bmax

3. For kinking to occur, the minimum applied longitudinal stress σ11 should be large enough such that
the maximum bending stress |σbmax | can be larger than the fiber strengthσ f i bmax

for a kink plane shear

stress τ(θ)
12 < St

4.2.2 Softening Behaviour
Once fiber kinking has initiated in a material point, the load carrying capacity of that point decreases. This
phenomenon is called softening. The most common approach to include softening in cohesive laws is to
linearly decrease the load carrying capacity at that point such that when the load carrying capacity is lost
completely, the area under the stress - displacement curve is equal to the fracture toughness Gc

f c of that

material. A typical cohesive law is depicted with red in figure 4.10.
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The kink-band physics could be better cap-
tured if a multilinear softening curve is used.
Dávila et. al. [27] proposed a method of su-
perimposing two bilinear cohesive laws to ob-
tain a trilinear law, like depicted in figure 4.10.
For the case of fiber kinking one can see the
two cohesive laws as modelling different un-
dergoing phenomena. For example, the red
curve could model the failure of the fibers
while the blue curve could be modelling the
frictional stresses at microcrack closure like
the aforementioned model of Gutkin [38].

Figure 4.10: Superimposition of Cohesive Laws

The two bilinear laws can be related to a trilinear one using the parameters m and n depicted in figure 4.10.
These parameters represent ratios of the fracture toughness and the peak stress respectively. The exact proce-
dure for determining them is beyond the scope of this work, but the most popular way is to use a crack growth
resistance curve from a compact compression test of the material system used. For a detailed explanation on
how to determine these parameters, the reader is referred to [27] [14]. The m and n for the IM7/8552 material
system in longitudinal compression are m=0.375 and n=0.75, provided by Leone Jr. et. al. [54].

With the m and n determined, the displacements at the traction free state δc1 and δc2 (shown in figure 4.10)
of the two bilinear curves can be calculated using equations (4.27) and (4.28) respectively.

δc1 = 2
mGc

f c

nE11ε0
(4.27) δc2 = 2

(1−m)Gc
f c

(1−n)E11ε0
(4.28)

Where ε0 represents the stain at failure onset. With the help of δc1 and δc2, the damage parameters d1 and
d2 can be defined. Those damage parameters are equivalent to the fiber damage parameter d f defined in
section 3.2.2. They are given in equations (4.29) and (4.30) respectively.

d1 = min

(
1,
δc1(u1 −u0)

u1(δc1 −u0)

)
(4.29) d2 = min

(
1,
δc2(u1 −u0)

u1(δc2 −u0)

)
(4.30)

In equations (4.29) and (4.30), the term u1 represents the instantaneous longitudinal displacement while u0 is
the displacement at failure onset. The strains and displacements are related via u = ε · clen , where clen repre-
sents the characteristic element length (a quantity provided by Abaqus at each integration point). Depending
on the relative size of the displacements u0, δc1 and δc2, the assembly into the final d f is done as shown in
equation (4.31), where d f is the damage parameter prescribing the fiber degradation of the final cohesive law.

d f =
{

n(d1 −d2)+d2 if u0 < δc2

1 if otherwise
(4.31)

4.2.3 Crushing
Most PDAs representing fiber kinking have a govern-
ing cohesive law that after failure onset decreases
until a traction free state is achieved [7]. Such a trac-
tion free state is not specific to compression as the
two sides of the kink band will still be in contact even
after its complete collapse [7]. Typically, when under
compression, after reaching the failure stress, FRPs
soften until a stable crush zone is reached [12], as
illustrated in figure 4.11. This section will investi-
gate when and how should a residual crushing stress
be enforced on the kinking constitutive law. The
discussion starts by investigating figure 4.12 which
presents a fractographic image of a 0◦ ply undergo-
ing kinking. Next to it, figure 4.13 presents similar
kink band in an advanced state of failure. Figure 4.11: Illustration stable crushing zone in composites [12]
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It can be seen in the later figure that after the misalignment angle has increased by a lot, the two sides of the
kink band are pushed into one another while they try to escape on the sides. Clearly in figure 4.13 the edges
of the kink band do not have space to escape. They are thus forced into one another, causing a contact force.
If a delamination would be present near the kink band or the same kink band would be on a ply at the edge
of the laminate, the sides would be free to escape. The following hypothesis is then proposed:

If a kink band is supported on both sides by an undamaged ply interface, the stress in the material will
converge towards the crushing stress of that material system σcr ush , otherwise it will go to a traction free state.

Figure 4.12: Kink band early failure [56] Figure 4.13: Kink band crushing state [23]

The Floating Node Method is perfectly suited to implement this hypothesis numerically. As mentioned in
section 3.2, the FNM allows for the sharing of information between the different plies and interfaces that
belong to the same local (laminate) element.

The crushing stressσcr ush has to be determined experimentally. For the IM7/8552 material system theσcr ush

is estimated from the crushing tests of composite tubes of the same material. A quasi-static Specific Sus-
tained Crushing Stress (SSCS) of 46.8 kJ/kg is measured for a quasi-isotropic layup [24]. The SSCS is equal to
the mean crushing stress σmean divided by the material density ρ. The obtained mean crushing stress for a
material density of ρ = 1.6 [g/cm3] is σmean = σcr ush ≈ 75 MPa. The crushing stress is enforced by changing
the definition of the fiber damage variable d f previously defined in (4.31). If lateral support exists and the
d f defined in equation (4.31) is larger than the d f in equation (4.32), the d f adopts the value from equation
(4.32).

d f = 1− σcr ush

E11ε
(4.32)
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Verification

A short summary of the proposed simulation framework for OHC:
It was concluded that some of the most important deficiencies of the previous PDAs representing OHC are the
CDM representation of matrix cracks and the insufficient physical basis behind the modelling of the failure
mechanisms specific to fibers in compression. The suggested simulation framework makes use of a relatively
recent DCM, named the FNM to model matrix cracks and delaminations while a new CDM for fiber kinking
is developed chapter 4.2 and used.

At this point, all aspects of the proposed simulation framework have been discussed. Before jumping into
modelling complex problems, the material model proposed in section 4.2 shall be tested in this chapter on
smaller scales to verify its validity, robustness and implementation. The FNM has been verified before [21].
The results presented in this chapter have been generated using the properties of the IM7/8552 material
system.

5.1 Failure Envelope

A complete evaluation of the fiber kinking initiation criteria discussed in section 4.2.1 can be done by gener-
ating and evaluating the failure envelope. These show the interactions between the longitudinal compressive
σ11 and other stresses. The three independent kinking onset requirements are be plotted on the same graph.
The change from one criteria being the limiting factor to another is characterized by a change of trend in the
envelope. The three requirements for kinking initiation are repeated here for convenience:

1. For fiber kinking to occur, the matrix around the kinking fibers needs to have failed

2. For fiber kinking to occur, the maximum bending stress in a fiber should be large enough to break it
|σbmax | >σ f i bmax

3. For kinking to occur, the minimum applied longitudinal stress σ11 should be large enough such that
the maximum bending stress |σbmax | can be larger than the fiber strengthσ f i bmax

for a kink plane shear

stress τ(θ)
12 < St

Because the third kinking onset requirement, the maximum axial compressive stress σ11 needed for kinking
onset for the IM7/8552 material system is −660 MPa, obtained by solving equation (4.26). For this reason, the
kinking region can only exist for σ11 >−660 MPa for all envelopes.

As one may expect from a transversely isotropic material, the normal stresses σ22 and σ33 have the same ef-
fect on an element. For this reason the σ11 −σ22 and σ11 −σ33 interactions are identical and are presented
in figure 5.1. The green zone in the envelope represents the region where all the kinking onset requirements
are satisfied. One can immediately notice that the first kinking requirement dictates the shape of the enve-
lope for larger magnitudes of σ11. Also, the plot representing this requirement is asymmetric with respect to

37
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σ22 = 0, suggesting the existence of different failure mechanism for tensile and compressive traverse stresses.
This behavior will now be explained. As mentioned in section 4.2.1, the kink plane angle θ maximizes the
matrix failure index φK M in equation (4.2). A positive σ(θ)

22 promotes a tension related failure, maximizing

φK MT and thus the traction t (ϕ)
N (from equation for φK MT ). The latter traction component is maximized for

larger positive σ(ϕ)
22 , which is in turn highly dependent on σ(θ)

22 . The kink plane angle θ is then chosen such

that σ(θ)
22 is maximized. Therefore if only σ22 is applied alongside σ11, θ = 0◦. Similarly, when σ33 is applied

alongside σ11, θ = 90◦. The angle θ does not change for the entire upper part of the matrix associated failure

envelope. A negative σ22 on the other hand maximizes φK MC , where the traction components t (ϕ)
L and t (ϕ)

T

play a greater role. The latter traction components are dependent on both σ(ϕ)
22 and τ(ϕ)

12 which are in turn are

highly related to the values of σ(θ)
22 and τ(θ)

12 . The choice of kink band angle θ when one lateral compressive
stress is applied is not straightforward. Moreover, θ changes for different applied negative σ22 trying to maxi-

mize either t (ϕ)
L or t (ϕ)

T . Finally, when σ11 =−X c =−1690 MPa, no other stresses are needed to satisfy the first
kinking requirement. If howeverσ11 is applied simultaneously withσ22 andσ33 the failure envelope in figure
5.2 is obtained. One can see that if both σ22 and σ33 are applied (and are negative), the axial stress needed to
induce kinking increases in magnitude above Xc . This is due to the lateral support provided to the kink plane
by σ22 and σ33, not allowing the misalignment angle ϕ to grow. Since the matrix failure criterion is the one
that is not being satisfied, the same behavior can be seen in Pinho‘s [63] model in figure 5.5. When positive
σ22=σ33 are applied however, the envelope stays identical to that of figure 5.1.

When it comes to the plot representing the second requirement it can be seen that an axial compressive stress
of σ11 =−1040 MPa is sufficient to meet the criterion when no other stresses are applied. The asymmetry of
the plot is also attributed to the different values of the kink plane angle θ for tensile and compressive σ22. A
positive σ22 induces a θ = 0◦, as stated above, meaning that σ(θ)

22 =σ22. In this case τθ12 = 0 therefore |σbmax | in
equation (4.25) increases slightly for increasing positive σ22. When a negative σ22 is applied, no noticeable
effect can be seen on on the maximum bending stress |σbmax |. No negative σ22 can satisfy the second kinking
requirement for σ11 > 1040 MPa. The characteristic just described occurring in figure 5.1 can be physically
justified. Imagining the kinking plane depicted in figure 4.5, located at an angle θ relative to the 1-2-3 plane
in which σ22 is acting. Regardless of the kink plane angle θ, there is no physical way in which a compressive
σ22 can increase the bending of the fibers in the kink plane, meaning that indeed no negative lateral stress
should be able to initiate the failure of the fibers. Positive lateral stresses on the other hand may promote the
bending of the fibers as they can increase the misalignment of the fibers.
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Figure 5.1: Failure Envelope when only σ22 and σ11 are applied
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Figure 5.2: Failure Envelope when σ22 =σ33 and σ11 are applied
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Figure 5.3: Failure Envelope when only τ12 and σ11 are applied
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Figure 5.4: Failure Envelope when only τ23 and σ11 are applied
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Figure 5.3 displays the failure
envelope for whenσ11 is applied
together with the shear stress τ12

or τ13 (identical effect). As ex-
pected the curves are symmetri-
cal to τ12 = 0 MPa since kinking
onset should not be affected by
the direction of the shear stress.
Since the kink plane angle θ is
chosen iteratively to minimize
the kinking load, when only a
shear stress is applied, the kink
plane rotates such that τ12 =
τ(θ)

12 . As expected, since the mini-
mum σ11 is calculated such that
fibers fail for a kink plane shear
stress τθ12<St , the envelope end-
ings are at shear stresses equiva-
lent to St = 120 MPa.

Figure 5.5: Strengthening effect from side support by Pinho [65]

Finally, the failure envelope whenσ11 and τ23 are applied is displayed in figure 5.4. Like in figures 5.1 and 5.2,
when the fiber failure requirement can no longer be satisfied by a large in magnitude σ11, large values of τ23

become needed for kinking to initiate, due to the reduced effect τ23 has on the second requirement.

5.2 Cohesive Law

The shape of the implemented cohesive law as well as the area underneath it can best be checked by running
one element simulations. The example element used here is depicted in figure 5.6 with its dimensions. The
material has an orientation of 0◦ (fibres in the direction of the loading).

At first, only a negative vertical displacement is applied at the top while the bottom is constrained from mov-
ing. The stress-displacement curve can be seen in figure 5.7. One can immediately verify that the peak load
is equal in magnitude to the axial compressive stress Xc in table A.2. The stiffness of the element can be
calculated by determining the strain in the element at failure: ε = u1/0.2 = −0.0023/0.2 = −0.0115 and then
dividing the failure stress Xc by it: E = X c/ε = −1690/− 0.0115 ≈ 150 GPa (as in table A.2). Since only one
element exists in the thickness direction (one ply), no crushing behaviour is present (as there is no lateral
support from other plies). Therefore, the area under the cohesive law should be equal to the compressive
fracture toughness Gc

f c . The numerically calculated area under the curve in figure 5.7 is approximately 26,

which matches the fracture toughness Gc
f c = 25.9kJ/m2.

Figure 5.8 presents the (axial) stress-displacement curve for an element identical to the one used before, but
where an axial shear stress of τ12 = 20 MPa is also applied. One can see that the critical axial stress is now
σ11 = −1290 MPa, which matches the result of the failure envelope 5.3. As expected, despite the lower peak
stress, the area under the curve in figure 5.8 remains equal to Gc

f c . Since in the model depicted in figure 5.6

the element has no neighbouring plies, no lateral support is provided and therefore no crushing behaviour
can be observed.

In order to verify the implementation of the crushing behaviour in the material, the model depicted in figure
5.9 is implemented. This model consists of 3 elements stacked in the thickness direction, each of them rep-
resenting a ply, the layup is [90◦/0◦/90◦]. To make sure no delamination occurs at any of the two interfaces
(allowing material to escape), the normal and two shear strengths of the interface cohesive material (τnc ,τl c

and τtc ) have been set to the very high value (90 GPa) to prevent any separation between the plies. In this
way, the failed material in the 0◦ ply will not be able to escape and will be crushed. Being interested only in
the behaviour of the 0◦ ply (where kinking should occur), figure 5.10 shows the stress-displacement curve of
only the top nodes of the middle 0◦ ply. One can see that the stress does no longer decrease to 0 MPa, but
instead converges to the crushing value of σcr ush ≈ 75 MPa. Note also that the peak stress is bigger than Xc .
This is cased by the lateral support provided by plies and requirenment no.1 on kinking onset (see figure 5.2).
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Figure 5.6: Single element geometry

Figure 5.7: Single Element Compression Figure 5.8: Single Element Compression when τ12 = 20 MPa

Figure 5.9: Three plies laminate element Figure 5.10: Stress-Displacement curve of supported 0 deg ply
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5.3 Delamination and cracks in compression

In order to see the interaction of the axial compression method with other failure modes, such as delamina-
tion, a coupon like model is tested. The geometry of the coupon is presented in figure 5.11. This shape was
chosen in the detriment of a rectangular one in order to control the failure onset location (which is the necked
region).

Figure 5.11: Coupon model with [0/90/0]
layup
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Figure 5.12: Force-Displacement curve for the coupon model

A simple vertical velocity is applied like in the case of the single element. The layup used is a [0/90/0]. The
load-displacement curve is shown in figure 5.12. The first point on the graph corresponds to the formation of
the matrix splits traversing the entire height of the coupon ( suggesting matrix failure criterion has been satis-
fied), depicted in figure 5.13. Around the peak load, fiber kinking initiates in the 0◦ plies in the necked region,
a mild softening can be seen in figure 5.14. The structural strength is almost entirely lost between the third
and fourth points. The stiffness degradation factors for the 0◦ ply elements in the necked region increases
from a range of df=0.27-0.285 to df=0.915-0.917. The strength left after the load drop is associated with the
90◦ ply which tries to move laterally into the outer plies. The load increase after the -0.08 mm displacement is
thought to be caused by the penalty stiffness preventing sides of 90◦ ply above and below the crack to overlap
each other.

Table 5.1: Critical points on the coupon Force-Displacement curve

Step Depiction Displacement [mm] Force [N] Note
• Figure 5.13 -0.012 -231 Matrix cracks appear in the 0◦ plies
• Figure 5.14 -0.014 -262 The 0◦ plies in the necked region start softening
• Figure 5.15 -0.016 -267 Last step before load drop. Crack in the middle ply
• Figure 5.16 -0.028 -70 Clear full delamination

5.4 Mesh dependency

The proposed model should show no mesh dependency in the energy absorbed as long as the element size
is not large enough to cause "brittle failure". To understand how brittle failure can occur, consider the two
elements in figure 5.17.
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Figure 5.13: Matrix splits in the 0◦ plies Figure 5.14: Fiberkinking softening

Figure 5.15: Crack in the 90◦ ply Figure 5.16: Full interface delamination

These elements have the same width and depth but
the height of the second element is twice that of the
first element. At the failure stress Xc , the strain ε0 for
both elements should be given by:

ε0 = Xc

E11

While the failure strain is the same for both elements,
since the height of the second element is twice that
of the first, the displacement at failure initiation for
the big element should also be double, thus 2u0. Ex-
amining again the cohesive law for a single element
in figure 5.7, once can imagine that if the magnitude
of u0 is sufficiently large, there comes a point when
the area under the stress displacement curve is larger
than Gc

f c , at failure initiation.

Figure 5.17: Element size and brittle failure

Since the Gc
f c has been exceeded, no softening is permitted and the element jumps to a traction-free state

(unless a crushing state exists). This is called a brittle failure of an element.
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Figure 5.18: One element plate Figure 5.19: Four elements plate Figure 5.20: 16 elements plate Figure 5.21: 32 elements plate

For the case when the element size d is smaller than the critical value inducing brittle failure, the mesh sen-
sitivity can be checked. For this, a square specimen 10 mm x 10 mm x 2 mm (equivalent thickness of 16 uni-
directional plies oriented at 0◦) is meshed with 1, 4, 16 and 32 elements. The panel is depicted in figures 5.18,
5.19 5.20 and 5.21 respectively. Those panels are loaded vertically uniformly in compression via an applied ve-
locity. Figures 5.23, 5.24 5.25 and 5.21 show the final failure pattern of those models. The stress-displacement
curves can be seen in figure 5.22. The curves are nearly identical when 1, 4 and 16 elements are used, the
very small variations being probably caused by the small differences in the onset stress: -1699.5 MPa, -1694
MPa and -1692.6 MPa (in turn caused by the time step used since all models overshoot the Xc = 1690 MPa
in table A.2). The slight offset of the plot representing the 32 elements model is probably associated with
the unusual failure pattern presented in figure 5.26, where the top elements are clearly experiencing shear
loading. The unusual failure pattern occurred because no artifice is used to trigger failure at any particular
location in the panel, therefore random elements failed simultaneously throughout the panel. Nevertheless
as expected the failure pattern is predominantly in bands perpendicular to the direction of loading and the
stress displacement curves are practically identical.
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Figure 5.22: Stress-displacement curve for 4 mesh refinement levels

Figure 5.23: Failed plate 1 Figure 5.24: Failed plate 2 Figure 5.25: Failed plate 3 Figure 5.26: Failed plate 4
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Finally, the demonstration in this section only goes to show that the current method does not suffer from a
pathological mesh dependency in the energy absorbed. However, more complex simulations, such as OHC,
are expected to suffer from mesh dependency. The latter is because the volume of damaged material is still
mesh dependent in CDMs and because of the mesh specific spatial discretization of the continuum. For this
reason, another mesh dependency investigation will be performed for the OHC panel in chapter 6.





6
Validation

In this chapter the proposed simulation setup will be used to model some of the notched plate specimens de-
scribed in appendix A. This is a considerably more complex simulation than what was presented in chapter
5. The results obtained from these simulations will be compared with the results of the FNM based simu-
lation presented section 3.2.4 (where fiber damage was predicted by the Maximum Stress failure criterion).
Furthermore, this chapter will test the convergence capabilities of the model, its mesh dependency, sensitiv-
ity to the used time increment as well as its ability to capture thickness size effects and in plane size effects.
Unstructured meshes, with one element per ply in the thickness direction are used. No damage trigger func-
tion is needed as the central hole acts as a stress raiser. Because the author of the experimental analysis [46]
only provided the strengths of the tested panels, no detailed comparison of the Load-Displacement curves is
possible. For the sake of fluency only the most important simulation results are mentioned in this chapter. A
complete set of results is however provided in Appendix B.

6.1 Comparison with the maximum stress based model

Experiment no. 1 from table A.1 was reproduced in section 3.2.4 with a simulation setup which relied on the
Maximum Stress criterion to capture fiber compressive failure. The same experiment was reproduced with a
simulation relying on the constitutive model for fiber kinking proposed in Chapter 4 instead of the Maximum
Stress. The exact same mesh, time step and material parameters are used. The mesh is depicted in figure 3.14,
the time increment used is ∆T =0.005 s, an applied vertical velocity of -1 mm/s is adopted and the material
properties used for both simulations are that of the IM7/8552 system, given in table A.2.

The load-displacement curves for the two simulations are compared in figure 6.1. The graphs look identical
until in the vicinity of the crushing onset point. The simulation relying on the proposed kinking constitutive
law predicts a panel strength of 404 MPa, about 26 MPa below the other simulation. Both simulations over-
shoot the experimental strength, but the new simulation is closer, only 31 MPa above the experimental value.
A possible reason for the Maximum Stress based simulation having predicted a higher panel strength is that
fiber failure can only be triggered by the longitudinal stress σ11 acting at a point. In reality, other stresses
would be acting at the same point, lowering the failure initiation load of that point. Another reason may
be associated with the Maximum Stress based simulation having a more extensive damage zone around the
hole at the panel maximum load, decreasing the stress concentration factor produced by the hole. The most
important aspects of the damage zones will now be described.

Due to its higher relative longitudinal stiffness, the 0◦ ply will absorb most of the load applied. This means
that the state of the 0◦ ply dominates the panel response. At the maximum applied load, the fiber damage
state in the 0◦ ply for the two simulations can be seen in figures 6.2 and 6.3. The kink band length in both
simulations is about the same, however in the simulation where the maximum stress failure criterion was
used (in figure 6.2), a significant amount of failed elements exist scattered outside the kink band. No physical
explanation can be found for this scatter.

47
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The delamination predicted by the two models at the [-45/0] interface can be seen in figures 6.4 and 6.5 (the
grip to grip splits appearing in the figures so far do not represent matrix cracks but just cohesive elements
where cracks may occur, an artifact of the FNM). Clearly a more extensive delamination is present in the
Maximum Stress based simulation. This can be caused by the delayed final load drop or by the effect fiber
failure has on delamination. It is interesting to point out, from the perspective of the new model, that fiber
failure advances faster from the hole towards the edges than delamination of the [-45/0] interface (see figures
6.3 and 6.5). This means that elements are initially "supported" from the sides, not allowing a traction-free
state to occur as discussed in section 4.2.3. The [90/-45] interfaces are depicted in figures 6.6 and 6.7. Lastly,
the [45/90] interfaces are shown in figures 6.8 and 6.9. The matrix cracks occurring in each simulation are
depicted in figures 6.10 and 6.11 . Since the matrix cracks in each ply are parallel to the fibers in that ply, they
can all be illustrated in a single figure without creating any confusion about the ply they are located on. One
can see that the amount of delamination as well as its location at each interface is closely related to the matrix
cracks in the adjacent plies. From the fiber damage, delamination and matrix cracks presented it is clear that
the damage zone at failure onset is more developed in the Maximum Stress based simulation.
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Figure 6.1: Comparison of stress-displacement curves of simulations based on the Maximum Stress and the proposed kinking constitu-
tive law to model fiber failure

Figure 6.2: Max Stress simulation fib. dam. at max load Figure 6.3: New Method simulation fib. dam. at max load

Moving past the failure onset point, one can see that no oscillation is present in figure 6.1 around the peak
load for the simulation based on the proposed kinking law. Furthermore, the now descending line follows a
less abrupt path than the other simulation. The reason for this is associated with the fact that the final load
drop in the Maximum Stress simulation occurs at an applied displacement almost 0.1 mm bigger than that
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Figure 6.4: Max Stress simulation: [-45◦/0◦] interface Figure 6.5: New Method simulation: [-45◦/0◦] interface

Figure 6.6: Max Stress simulation: [90◦/-45◦] interface Figure 6.7: New Method simulation: [90◦/-45◦] interface

Figure 6.8: Max Stress simulation: [45◦/90◦] interface Figure 6.9: New Method simulation: [45◦/90◦] interface

of the new simulation. Because of this, a lot more energy has been put into the panel when the final load
drop starts, meaning that the softening of the elements, governed by a cohesive law, need to follow a steeper
softening curve (keep the dissipated energy constant). If the final load drop of the two simulations would
occur simultaneously, it is expected that the new simulation would initially soften faster. This is because the
cohesive law in the new simulation (shown in figure 5.7) displays a more abrupt softening just after failure
than a simple linear softening law (which would connect the failure onset and traction free points).

Figures 6.12 and 6.13 provide the failure pattern pf the 0◦ ply in the two simulations at an applied displace-
ment of u1=-0.5 mm. The failure lines have begun at the edges of the hole and have progressed towards the
side edges of the panel. It can be seen that the simulation based on the proposed kinking law predicts a
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Figure 6.10: Max Stress simulation matrix cracks Figure 6.11: New Method simulation matrix cracks

fiber damage pattern that is almost continuous and horizontal, just like a kink band. At u1=-0.5 mm, delam-
ination (and thus also the matrix cracks) away from the hole (where the elements size is the smallest) is not
expected to be accurate as it will be explained in the next section. The fiber failure in the 45◦ ply as well as the
delamination and the matrix cracks for the two simulations at u1=-0.5 mm can be found in appendix B.

Figure 6.12: Max Stress Sim. late damage state Figure 6.13: New Method Sim. late damage state

6.2 Mesh dependency of the OHC problem
As with most FEM models, the shortcoming of mesh dependency is expected to play a role in the current
model. The main reason is that the damaged area depends on the elements orientation and size. Another
limitation that comes with using an unrefined mesh is that the minimum allowed spacing between two cracks
increases. This minimum spacing is artificially imposed to prevent crack arrest due to an insufficient density
of floating nodes [15]. The mesh sensitivity study is done by performing three panel simulations using meshes
of three different refinement levels, shown in figures 6.14, 6.15 and 6.16. In the coarse mesh element size
varies from 0.7 mm near the hole to 4 mm at the corners, in the (original) medium refined mesh they vary
from 0.35 mm to 3 mm while in the refined mesh, the element size varies from 0.2 mm to 2 mm.

Figure 6.14: Coarse Mesh Figure 6.15: Original Mesh Figure 6.16: Refined Mesh
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The force-displacement curves obtained from the 3 simulations are presented in figure 6.17. One can see that
the model with the coarse mesh predicts the smallest panel strength and is overall situated beneath the other
two curves. The simulation with the original mesh predicts the highest panel strength and is overall above
the other two curves. Finally, the simulation with the most refined mesh is situated between the other two,
suggesting the method converges towards a strength located in between that obtained with the coarse and
normal meshes.
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Figure 6.17: Force displacement curve for 3 mesh refinement levels and an applied time step of ∆T = 0.005s

As a purely theoretical discussion, in this model, delamination should be affected by a large extent by the
element size in the mesh as it is modelled via cohesive elements placed at the ply interfaces. The latter are
sensitive to the element size since a sufficient refinement level is required to capture the stress gradient in
the wake of the delamination/crack. While this discussion goes beyond the scope of this thesis, a general
rule when cohesive elements are sized for capturing delamiantion (mainly affected by mode II loading in this
case as the sides are supported), at least two elements should exist per cohesive zone length lcz [71]. For the
IM7/8552 material system, with the currently used ply thickness of 0.125 mm, the cohesive zone length lcz ≈
1.42 mm, meaning that elements should not exceed 0.71 mm. When choosing the three mesh refinement
levels, the elements size near the hole and along the horizontal were kept below this size. Meanwhile at the
corners larger elements could be placed as no significant delamination was expected up until a very late
post failure state. But this means that the delamination depiction in post failure states are not expected to
be completely accurate and will generally not be included in this chapter unless otherwise stated. They can
however be visualized in appendix B.

At failure onset the fiber failure in the 0◦ ply for the simulations with the three mesh refinement levels are
depicted in figures 6.18, 6.3 and 6.19. It can be seen from these images that when the original mesh is used,
the amount of CE modelling matrix cracks is more abundant then when the coarse and refined meshes are
used. Consequently, also less matrix cracks are present at failure onset as it can be seen in figures 6.20 and
6.21 (as compared to figure 6.11). Since there are less matrix cracks, delamination is also less spread in the
simulations with coarse and refined meshes, as presented in figures 6.22 and 6.23 respectively (all interfaces
can be represented by a single figure). The reason for the difference in the number of cohesive elements
representing cracks should still be investigated. Since the 0◦ ply has the greatest influence on the results of
these open hole compression tests the effect of delamination and cracks is reduced as it can be seen from
the comparison in figure 6.17. On the other hand, if buckling would not be prevented in the experiment by
the anti-buckling plates, as explained in appendix A, then delamination prediction would be crucial for an
accurate strength prediction.

The fiber failure at u1 = −0.5 mm for the coarse and refined meshes can be seen in figures 6.24 and 6.25
respectively while for the standard mesh it was already presented in figure 6.13. It can be seen that the kink
band size relative to the panel varies significantly because of the mesh element size.
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Figure 6.18: Coarse M. fib. dam. at maximum load Figure 6.19: Refined M. fib. dam. at maximum load

Figure 6.20: Coarse M. matrix cracks at maximum load Figure 6.21: Refined M. matrix cracks at maximum load

Figure 6.22: Coarse M. delamination at maximum load Figure 6.23: Refined M. delamination at maximum load

Figure 6.24: Coarse M. Fib. dam. at late dam. state Figure 6.25: Refined M. Fib. dam. at late dam. state
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6.3 Sensitivity to used time increment
Large time increments can have a significant negative effect on the results of FE simulations. To explain
why, imagine the panel being compressed by a vertical velocity like it was done so far. At time increment
i, the stresses in a hypothetical element near the hole are not large enough to onset kinking (φK M < 1 or
|σbmax | < σ f i bmax ). At time increment i+1 however, due to the large step, the stresses may have overshot the
minimum necessary ones for kinking by a large value. Since no artifice is used to account for this overshoot,
the stresses at time increment i+1 become the kinking initiation stresses. Because the false initiation stresses
are larger than the real ones and because these may further cause "brittle failure" (defined in section 5.4), the
panel will have a higher overall strength as more energy is being dissipated into it.

Studying the plot in figure 6.26 it can be seen that indeed the larger the used time step, the larger the predicted
panel strength is. Another effect of the large increment is the extensive spread of damaged elements at the
peak load depicted in figure 6.27 as opposed to when a smaller time increment is used as in figures 6.3 and
6.28. Due to the large increment non-critical elements fail together with the critical ones before the latter fail
and absorb a larger portion of the applied displacement. Another contributor for the significant difference
in the damage pattern is attributed to the significantly larger displacement u1 at which the maximum load is
reached in the three simulations, as it can be seen in figure 6.26 (more energy put into the system). This effect
is not observed on the matrix cracks and delamination as it can be seen in sections B.5 B.2 and B.6.
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Figure 6.26: Stress-displacement curves for the standard panel using 3 different time steps

Figure 6.27: Fiber damage at max load for large time
increment model

Figure 6.28: Fiber damage at at max load for small time
increment model

The damage pattern at u1 = −0.5 mm for the simulations with ∆Tmax = 0.025s and ∆Tmax = 0.001s can be
seen in figures 6.29 and 6.30 respectively. Despite the very large number of damged elements visible in the
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large time increment simulation, the kink band can still be distinguished. It is clear however that the proposed
simulation is greatly affected by the maximum allowed time increments in the simulation.

Figure 6.29: Fib. dam. for large time increment model
in late damage state

Figure 6.30: Fib. dam. for small time increment model in
late damage state

6.4 Thickness scaling
This section aims to assess whether thickness size effects can be captured by the simulation framework pro-
posed. Two types of thickness scaling exist, sublaminate scaling and ply-level scaling, both are depicted in
figure A.1. Only ply-level thickness scaling will be checked here. That is because, first of all, no significant size
effect has been captured for sublaminate scaling in the experiments of Lee et. al. [46] as can be seen in table
A.1 (e.g. comparing experiments 2 and 4). Secondly, due to the increased number of interfaces, a larger num-
ber of elements would have to be used in the thickness direction, making the analysis more computationally
restrictive. Lastly, it is generally believed that thickness size effects are harder to capture in ply level scaling
[71] [19] [67].

To reduce the possibility of mesh size effects or effects caused by the time step affecting the results, the same
mesh and time increment are used as with the standard panel. The only difference is that in the thickness
direction the elements are larger due to the ply thickness doubling. The stress displacement curve of the
simulation of the ply scaled panel can be seen alongside that of the standard panel (introduced in section
6.1) in figure 6.31. It can be seen that a strength increase has been predicted for the thicker panel and this
strength is just above the experimentally determined one. One of the driving factors for the strength increase
in the scaled laminate is the increase in fracture toughness Gc

f c of each ply, as described in section 3.2.3.

The toughness increase means that more energy will have to be dissipated to produce the same amount of
damage. This is confirmed by the delayed crushing onset of the thicker laminated as shown in figure 6.31.

The 0◦ ply fiber damage at the maximum panel load can be seen in figures 6.32 and 6.33 for the standard and
for the thick laminates respectively. The failed elements at the corner of the ply scaled laminate are probably
a result of: 1) the clamping of the upper and lower edges; 2) the higher shear stresses that come as a result of
having a stiffer adjacent −45◦ oriented ply.

The significant difference in the amount of matrix cracks predicted by the two simulations is visible com-
paring figures 6.34 and 6.35, at an applied displacement of u1 = −0.5 mm. As expected, the thicker plies of
the ply scaled laminate are more resistant to the formation of matrix cracks. The delamination estimation in
late crushing stage is depicted in figures 6.36 and 6.37. It can be clearly seen that the ply scaled panel sees
much less delamination. This is an unexpected result as usually, because ply blocked plies carry larger loads
than thinner plies, the interfaces are responsible for transferring more load. This should cause a more spread
delamination pattern. It appears however that the simulation only captures delamination related to matrix
cracks. A more spread out delamination was expected in the ply scaled laminated.

The final fracture pattern for the standard and ply scaled laminate simulations are presented in figures 6.38
and 6.39. From the latter it can be seen that failure is represented via a continuous band of damage. On the
other hand, the reason why a single cohesive element for matrix crack representation is present in the 0◦ ply
still needs to be understood.
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Figure 6.31: Force displacement comparison when ply-level scaling is performed

Figure 6.32: Fiber damage at maximum load Figure 6.33: Thick laminate damage at maximum load

Figure 6.34: Dense matrix cracks in normal laminate Figure 6.35: Sparse matrix cracks in thick laminate
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Figure 6.36: Delamination in normal laminate Figure 6.37: Little delamiantion in thick laminate

Figure 6.38: Fib. dam. thin panel in late damage state Figure 6.39: Fib. dam. thick panel in late damage state

6.5 In plane scaling

Finally, the in plane size effects are investigated by modifying the in plane dimensions of the panel while
maintaining a ratio between the panel width and the diameter of 5. The large panel has a width of 127 mm
compared to 32 mm. Since it has a thickness of 4 mm, it will be compared with the thick panel described in
the previous section, which also had a thickness of 4 mm. The element size in the mesh varies from 0.7 mm,
near the hole and along the horizontal, to 4 mm at the panel corners. The displacement rate is kept the same
(as opposed to keeping the strain rate the same) in order to reproduce the experiment exactly.

Since the displacements that need to be applied on the larger panel to fail it are much larger, the σ11 vs u1

curve that was shown until now has been transformed in σ11 vs u1/(width) such that the two plots can be
compared. The graph is displayed in figure 6.40. It can be immediately spotted that the larger panel has a
much lower strength (lower by 30%).

Due to the presence of the notch, the region of crushing initiation is limited to the vicinity of the hole, mean-
ing that the size effect weakest link theory does not play any significant role. On top of that, since the in plane
geometry is scaled and the layup is identical, the stress concentration factor near the hole stays the same.
The problem of in-plane size effects for quasi-brittle materials, such as carbon-fiber epoxy systems, under
compression has been investigated by Bažant et. al. [6]. He could proove that materials that undergo a pro-
gressive propagation of damage before final failure are affected by deterministic energetic size effects. For a
better understanding of this concept the reader is referred to [5] [6].

The obtained simulation results are in relatively good agreement with the experiment, suggesting that the
in plane size effects have been captured. The experiments show a decrease in strength of 32% for the larger
panel. Figures 6.41 and 6.42 present the fiber damage at crushing onset. It can be observed that the fiber
failure fracture pattern is more restrained for the large panel, due to the lower longitudinal stress at which
crushing is onset. On top of that, the elements at the corners have not failed as they did for the smaller panel.
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Figure 6.40: Stress-relative displacement curve showing in plane scaling size effects

The latter is probably associated with having a larger area to transmit the shear stresses from the −45◦ ply
to the 0◦ ply. Delamination is still limited to the regions where matrix cracks are present as it can be seen in
figures 6.43 and 6.44. The fully propagated fiber failure bands are illustrated in figures 6.45 and 6.46.

Figure 6.41: Fib. dam. in 4 mm thick panel at maximum load Figure 6.42: Fib. dam. of large panel at maximum load

Figure 6.43: Delamination in 4 mm thick laminate Figure 6.44: Delamination in large panel
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Figure 6.45: Fib. dam. of 4 mm thick panel in late damage state Figure 6.46: Fib. dam. of large panel in late damage state

6.6 Results Summary and experimental comparison

An overview of the simulated panel dimensions and their predicted strengths put in comparison with the
experimentally obtained ones is given in figure 6.47. The predicted panel strength is always larger by about
20-30 MPa than the experimental value. The predicted panel strength is more accurate when the proposed
kinking constitutive law is adopted instead of the maximum stress failure criterion, as shown in section 6.1.
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Figure 6.47: Comparison simulation and experimental results

One should keep in mind however that stability issues
were encountered by Lee et. al. [46] when testing the
32 mm x 32 mm x 2 mm panel. Bending stresses were
detected by back to back strain gauges near the hole.
An exact quantification of the effect this had on the ex-
perimental values is not possible. These isssues were
not encountered in the thicker lamiantes probably due
to the higher resistance the plies have against out of
plane displacement. Lee et. al. [46] indicates that the
observed failure mode for the panels simulated in this
chapter is push-out (caused by fiber kinking of the 0◦
plies). A depiction of the push-out failure mode on the
outer 45◦ ply can be seen in figure 6.48. Figure 6.48: Push-out failure of the 45◦ ply [46]

The simulation framework currently cannot model the push out failure explicitly. However since the latter is
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a consequence of fiber kinking, it is not needed for making a physcially accurate strength prediction. The 32
mm x 32 mm x 4 mm panel test was interrupted at 75-80% and 90-95% of the failure load and scanned with
X-Ray. At 75-80% of the failure load, matrix cracks are present around the hole, but no delamination, as can
be seen in figure 6.51. The simulation using the proposed compression model does predict matrix cracks on
the 0◦ ply, but not as large as the experiments (see figure 6.49). Furthermore, an additional crack in the 45◦ ply
is predicted which is not visible in the experiment. Finally, from figure 6.50 it can be seen that delamination
is predicted by the simulation at the edge of the hole. This delamination is not visible in the X-Ray. Extensive
delamination can be seen around the hole in the experiment at 90-95% of the failure load as in figure 6.54.
The predicted delaminatiom is however smaller and located to the side of the hole as can be seen in figure
6.53.

Figure 6.49: Matrix cracks Figure 6.50: Delamination
Figure 6.51: Experimental damage-zone in thick lami-
nate [46]

Figure 6.52: Matrix cracks Figure 6.53: Delamination
Figure 6.54: Experimental damage-zone in thick lami-
nate [46]

It appears that the current modelling of matrix cracks and delamination is not in agreement with the experi-
ments of Lee et. al. [46]. This issue may be connected with the problem pointed out in section 6.2 where it was
observed that the spread of matrix cracks was severely affected by the mesh used. Moreover it is concluded
that while the solution of the simulation is not very sensitive to the element size in the mesh, the maximum
allowed time increment is crucial. That is because non-critical elements fail and because no function has
been implemented to account for the overshoot of the imposed kinking requirements. Moreover, more accu-
rate simulations may be obtained if the assumption of perfect materials is removed, a structured mesh and a
small time increment are used.

All the simulations discussed in this chapter have been performed using a computer board containing 2x Intel
Xeon CPU E5-2640 v4 @ 2.40GHz (10 cores). The CPU time of the Maximum Stress based simulation and the
simulation based on the proposed kinking law are shown in figure 6.55. It can be seen that the simulations
based on the proposed fiber failure constitutive law reached panel strength load faster than the simulation
based on the maximum stress criterion. That is however caused by the oscillations around the peak load that
were present when the maximum stress is used, as can be seen in figure 6.1. The simulation time of T=0.5
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s (where the simulations were stopped) was reached faster by the Maximum Stress based simulation. That
is expected as the proposed method makes use of two iterative procedures for determining the failure onset
point. The effect on computational time of using more refined meshes can be seen in figure 6.56. Similarly,
the decrease in computational time associated with using a larger time increment can be seen in figure 6.57.
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Figure 6.55: Comparison CPU time simulations based on Maximum Stress and based on the proposed kinking method
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Figure 6.56: Effect of mesh refinement on CPU time
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7
Conclusions and Recommendations

Conclusions

Previously adopted approaches to model Open Hole Compression of Fiber Reinforced Polymers have been
investigated and basic Finite Element Modelling concepts have been introduced. It was determined that
meso-scale finite element based Progressive Damage Analyses have the highest potential of providing a rea-
sonably accurate and fast solution to the OHC problem. Two main shortcomings common in PDAs modelling
OHC have been identified: 1) The Continuum Damage Models used in Progressing Damage Analyses fail at
accurately representing cracks in complicated problems (such as OHC); 2) The lack of sufficient physical basis
of the constitutive laws governing compressive fiber damage initiation and propagation in the analysis.

Discrete Crack Models are a better alternative to CDMs for crack and delamination representation within
a finite element domain. The capabilities of the state of the art eXtended Finite Element Method as imple-
mented in Abaqus are assessed by trying to reproduce an OHC experiment. Convergence issues were however
encountered before the panel reached its maximum load. A more recent approach, called the Floating Node
Method, is found to be a better suited alternative.

For modelling longitudinal compressive fiber failure, a physically based 3D Continuum Damage Model for
kink band initiation and crushing is proposed in this thesis. Taking the form of a trilinear cohesive law this
material model incorporates the microscale bending stress of a fiber, under the assumptions of the Euler-
Bernoulli beam theory, while accounting for neighboring delamination in the softening behavior. Three
kinking onset requirements are necessary: 1) the matrix around the kinking fibers needs to have failed; 2)
the maximum bending stress in a fiber should be large enough to break it |σbmax | >σ f i bmax

; 3) the minimum
applied longitudinal stress σ11 should be large enough such that the maximum bending stress |σbmax | can be

larger than the fiber strength σ f i bmax
for a kink plane shear stress τ(θ)

12 < St . The first requirement represents
Argon‘s hypothesis [4] and is implemented in the form by proposed by Pinho [63]. The second is based on
fractographic investigation of kink bands. Finally, the third requirement, supported by experimental results,
is meant to distinguish fiber kinking from the similar shear dominated fiber splitting phenomenon. After
kinking onset, a bilinear curve obtained via superimposition, as proposed by Dávila et. al. [27], is used to
more accurately represent the physics behind softening and assure a mesh objective dissipation of fracture
energy. Finally, In the last softening stage, the proposed material model assumes that a traction free state
can only be achieved if the kink band endings are able to escape out of plane on either side of the kinked ply
through existing delaminations.

A finite element based simulation framework that uses the FNM to represent cracks and the fiber kinking con-
stitutive law proposed above to model fiber kinking. The described simulation framework is used to simulate
a number of OHC problems in laminates of [45/90/-45/0]s layup having a width to hole diameter ratio of 5.
The panel is modeled with an unstructured mesh and the ply material used is IM7/8552. The proposed sim-
ulation framework is validated against experimental OHC tests of different sized [45/90/-45/0]s laminates. In
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all cases, the predicted panel strengths do not exceed experimental data by more than 8% while both thick-
ness and in plane size effects are captured. The predicted and experimental panel strengths are shown in ta-
ble 7.1. Compared to a simulation where longitudinal compression was modelled using the maximum stress
method, the proposed simulation could predict the panel strength more accurately by 7%. However, the pro-
posed simulation was 2.2 times more computationally demanding. Both simulations have been performed
using a computer board containing 2x Intel Xeon CPU E5-2640 v4 @ 2.40GHz (10 cores).

Table 7.1: Comparison simulation results with experimental data for laminate layup of [45/90/−45/0]s

Width [mm] Thickness [mm] Hole diameter [mm] σtest [MPa] σsimulation [MPa]
31.75 2 6.35 373 404
31.75 4 6.35 424 445
127 4 25.4 288 313

Since the results of the simulations are dominated by the fiber failure of the 0◦ ply, the strength predictions
made are in good agreement with experimental results. It was determined however that the simulations did
not accurately capture the matrix cracks and delaminations encountered in the experiments. If out of plane
displacement was permitted, delamination could become the critical failure mode, in which case the strength
predictions would no longer be accurate. It was determined also that an unusual correlation exists between
the number of matrix cracks in a simulation and the mesh used. This issue represents a topic for further
investigation.

7.1 Recommendations for future work

This thesis has been focused on delivering a computational framework capable of simulating Open Hole
Compression problems of Fiber Reinforced Polymers. The framework proposed was validated against OHC
tests. The studies undertaken by this thesis have identified a number of additional areas of future work for
the proposed simulation framework as well as suggested subjects of investigation:.

• Imagine the stresses at a certain time step i are not large enough to satisfy the proposed kinking onset
requirements. At time step i+1 the requirements may be satisfied by a sufficient margin. The method
then decides that the kinking onset stress is equal to the stress at time step i+1: σ0 = σi+1. But in
reality σ0 is always smaller than σi+1, meaning that an error will accumulate in the simulation making
the material stronger than it actually is. A method to knock down the stresses σi+1 is needed. Since
the kinking onset criteria is 3D, all stresses acting at that point have a contribution to satisfying the
kinking onset criteria, it is not straightforward by how much should each stress be knocked down. An
investigation should be made and an appropriate knock down method implemented.

• The simulations performed show that matrix cracks and delamination are highly dependent on the
mesh used and they have been inaccurately captured. This issue needs to be further investigated.

• The constitutive law proposed accounts for the delamination at the neighbouring interfaces when a
crush state is reached. It is expected however that matrix cracks in the neighbouring plies may also
interact with kink bands. This possibility should be investigated and if relevant discoveries are made,
they should be implemented into the kinking model.

• Finally, because kink bands are only about 100 µm wide, an accurate representation at their size in a FE
model using a CDM would require a very refined mesh. It would be interesting to investigate the pos-
sibility of using a similar approach for modelling kink bands as the FNM uses to model matrix cracks.
Namely, when kinking is initiated in an element, that element is split and a CE added representing the
kink band.



A
Standard OHC-test setup

To aid a possible future validation stage as well as the comparison of results with different methods, standard
geometry, material parameters and boundary conditions will be used. These are taken from the experiments
on OHC performed by Lee et. al. [46].

The plies used are common carbon/epoxy pre-preg tapes of 0.125 mm thickness. The ratio between the hole
diameter and the plate width is always five. The base stalking sequence used is [45/90/−45/0]s which is be
scaled up at both ply and sub-laminate level ([04]ms , [45n/90n/−45n/0n]s and [45/90/−45/0]ms ). The two
scaling means are depicted in figure A.1. The dimensions and layups of the tested plates can be seen in table
A.1.

Figure A.1: Sublaminate and ply-level scaling [34]

Table A.1: Description of Experimentally tested Notched Panels

No.
Width
[mm]

Layup
[◦]

Ply t
[mm]

n m
Lamin t
[mm]

Hole D
[mm]

Strength
[MPa]

1 31.75 [45n/90n/−45n/0n]ms 0.125 2 1 2 6.35 373
2 31.75 [45n/90n/−45n/0n]ms 0.125 1 2 2 6.35 338
3 31.75 [45n/90n/−45n/0n]ms 0.125 4 1 4 6.35 424
4 31.75 [45n/90n/−45n/0n]ms 0.125 1 4 4 6.35 351
5 127 [45n/90n/−45n/0n]ms 0.125 4 1 4 25.4 288
6 127 [45n/90n/−45n/0n]ms 0.125 1 4 4 25.4 285
7 127 [45n/90n/−45n/0n]ms 0.125 8 1 8 25.4 263
8 127 [45n/90n/−45n/0n]ms 0.125 1 8 8 25.4 284

The ply properties correspond to that of the IM7/8552 unidirectional laminate and the material parameters.
The properties are collected from [46] [59] are given in table A.2. Note that the strength and stiffness proper-
ties in table A.2 are slightly lower than those provided by the manufacturer Hexcel Composite Ltd. [55] but
higher than the average values provided by Wichita State University [30].
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Table A.2: Ply material properties [46]

E1 E2=E3 G12=G13 G23 µ12=µ13 µ23 Xt

150 GPa 11 GPa 4.6 GPa 3.4 GPa 0.3 0.45 2400 MPa
Xc Yt Yc S12=S23 Gt

f c Gc
f c Gnc

1690 MPa 111 MPa 250 MPa 120 MPa 112.7 kJ/m2 25.9 kJ/m2 0.2 kJ/m2

Gs c σc
n σc

s =σc
t Gc

n σ f i bmax η ρ

1.0 kJ/m2 40 MPa 50 MPa 0.2 kJ/m2 5516 MPa 1.0 1.6 [g/cm3]

The specimens are loaded vertically in compression via a displacement control system progressing with 1
mm/min [46]. For stability concerns, specimens no. 1,2,5,6,7 and 8 have been tested with anti-buckling
plates. No side support is used, therefore, with the exception of the top and bottom sides of the panel (that
are clamped and only allowed to move vertically), the panel is allowed to move laterally. A depiction of the
test setup can be seen in figure A.2. For more information about the test setup, the reader is recommended
to read about the ICSTM test fixture [39].

Figure A.2: ICSTM test fixture exploded view [39] Figure A.3: ICSTM test fixture [39]

Lee et. al. [46], the authors of the OHC experiments reproduced here, mention stability issues were encoun-
tered in the 32 mm X 32 mm specimens. Despite using an anti-buckling plate, back to back strain gauges
near the hole revealed an out of plane bending that increased with the vertical load (displacement occurring
through the window area of the anti-bucking plate depicted in figure A.3). The extra stress around the hole
has influenced initial failure and hence the ultimate failure. An exception is made to the 32 mm X 32 mm X 4
mm specimens, discussed in section 6.4 where no bending stresses were found before failure initiation.



B
All Panel Simulation Results

This chapter provides a structured and complete set of results obtained from the FNM based simulations
done for the Validation chapter (chapter 6). The three mesh refinement levels mentioned in the section
names of this chapter are depicted below.

Figure B.1: Coarse Mesh Figure B.2: Original Mesh Figure B.3: Refined Mesh

B.1 31.75 mm × 31.75 mm × 2 mm;∆ T=0.005 s; Mesh: Original; Failure Criterion: Maximum Stress

This Floating Node Method based simulation used the maximum stress failure criterion to model fiber failure.

Strength prediction

σtest [MPa] σsimulation [MPa]
373 423

Fiber Damage

Figure B.4: Fiber damage 0◦ ply at failure onset Figure B.5: Fiber damage 0◦ ply in post failure state
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Figure B.6: Fiber damage 45◦ ply at failure onset Figure B.7: Fiber damage 45◦ ply in post failure state

Delamination and Splits

Figure B.8: Delamination 45◦/90◦ interface at failure onset Figure B.9: Delamination 45◦/90◦ interface in post failure state

Figure B.10: Delamination 90◦/-45◦ interface at failure onset Figure B.11: Delamination 90◦/-45◦ interface in post failure state



B.2. 31.75mm × 31.75mm × 2mm;∆ T=0.005 s;Mesh: Original; Failure Criterion: ProposedMethod 67

Figure B.12: Delamination -45◦/0◦ interface at failure onset Figure B.13: Delamination -45◦/0◦ interface in post failure state

Figure B.14: Matrix splits at failure onset Figure B.15: Matrix splits in post failure state

B.2 31.75 mm × 31.75 mm × 2 mm;∆ T=0.005 s; Mesh: Original; Failure Criterion: Proposed Method

Strength Prediction

σtest [MPa] σsimulation [MPa]
373 404

Fiber Damage

Figure B.16: Fiber damage 0◦ ply at failure onset Figure B.17: Fiber damage 0◦ ply in post failure state
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Figure B.18: Fiber damage 45◦ ply at failure onset Figure B.19: Fiber damage 45◦ ply in post failure state

Delamination and Splits

Figure B.20: Delamination 45◦/90◦ interface at failure onset Figure B.21: Delamination 45◦/90◦ interface in post failure state

Figure B.22: Delamination 90◦/-45◦ interface at failure onset Figure B.23: Delamination 90◦/-45◦ interface in post failure state



B.3. 31.75mm × 31.75mm × 2mm;∆ T=0.005 s;Mesh: Coarse; Failure Criterion: ProposedMethod 69

Figure B.24: Delamination -45◦/0◦ interface at failure onset Figure B.25: Delamination -45◦/0◦ interface in post failure state

Figure B.26: Matrix splits at failure onset Figure B.27: Matrix splits in post failure state

B.3 31.75 mm × 31.75 mm × 2 mm;∆ T=0.005 s; Mesh: Coarse; Failure Criterion: Proposed Method

Strength prediction

σtest [MPa] σsimulation [MPa]
373 378

Fiber Damage

Figure B.28: Fiber damage 0◦ ply at failure onset Figure B.29: Fiber damage 0◦ ply in post failure state
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Figure B.30: Fiber damage 45◦ ply at failure onset Figure B.31: Fiber damage 45◦ ply in post failure state

Delamination and Splits

Figure B.32: Delamination all interfaces at failure onset Figure B.33: Delamination all interfaces in post failure state

Figure B.34: Matrix splits at failure onset Figure B.35: Matrix splits in post failure state



B.4. 31.75mm × 31.75mm × 2mm;∆ T=0.005 s;Mesh: Refined; Failure Criterion: ProposedMethod 71

B.4 31.75 mm × 31.75 mm × 2 mm;∆ T=0.005 s; Mesh: Refined; Failure Criterion: Proposed Method

Strength prediction

σtest [MPa] σsimulation [MPa]
373 384

Fiber Damage

Figure B.36: Fiber damage 0◦ ply at failure onset Figure B.37: Fiber damage 0◦ ply in post failure state

Figure B.38: Fiber damage 45◦ ply at failure onset Figure B.39: Fiber damage 45◦ ply in post failure state

Delamination and Splits

Figure B.40: Delamination all interfaces at failure onset Figure B.41: Delamination all interfaces in post failure state
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Figure B.42: Matrix splits at failure onset Figure B.43: Matrix splits in post failure state

B.5 31.75 mm × 31.75 mm × 2 mm;∆ T=0.025 s; Mesh: Original; Failure Criterion: Proposed Method

Strength prediction

σtest [MPa] σsimulation [MPa]
373 473

Fiber Damage

Figure B.44: Fiber damage 0◦ ply at failure onset Figure B.45: Fiber damage 0◦ ply in post failure state

Figure B.46: Fiber damage 45◦ ply at failure onset Figure B.47: Fiber damage 45◦ ply in post failure state



B.5. 31.75mm × 31.75mm × 2mm;∆ T=0.025 s;Mesh: Original; Failure Criterion: ProposedMethod 73

Delamination and Splits

Figure B.48: Delamination 45◦/90◦ interface at failure onset Figure B.49: Delamination 45◦/90◦ interface in post failure state

Figure B.50: Delamination 90◦/-45◦ interface at failure onset Figure B.51: Delamination 90◦/-45◦ interface in post failure state

Figure B.52: Delamination -45◦/0◦ interface at failure onset Figure B.53: Delamination -45◦/0◦ interface in post failure state
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Figure B.54: Matrix splits at failure onset Figure B.55: Matrix splits in post failure state

B.6 31.75 mm × 31.75 mm × 2 mm;∆ T=0.001 s; Mesh: Original; Failure Criterion: Proposed Method

Strength prediction

σtest [MPa] σsimulation [MPa]
373 394

Fiber Damage

Figure B.56: Fiber damage 0◦ ply at failure onset Figure B.57: Fiber damage 0◦ ply in post failure state

Figure B.58: Fiber damage 45◦ ply at failure onset Figure B.59: Fiber damage 45◦ ply in post failure state



B.6. 31.75mm × 31.75mm × 2mm;∆ T=0.001 s;Mesh: Original; Failure Criterion: ProposedMethod 75

Delamination and Splits

Figure B.60: Delamination 45◦/90◦ interface at failure onset Figure B.61: Delamination 45◦/90◦ interface in post failure state

Figure B.62: Delamination 90◦/-45◦ interface at failure onset Figure B.63: Delamination 90◦/-45◦ interface in post failure state

Figure B.64: Delamination -45◦/0◦ interface at failure onset Figure B.65: Delamination -45◦/0◦ interface in post failure state
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Figure B.66: Matrix splits at failure onset Figure B.67: Matrix splits in post failure state

B.7 31.75 mm × 31.75 mm × 4 mm;∆ T=0.005 s; Mesh: Original; Failure Criterion: Proposed Method

Strength prediction

σtest [MPa] σsimulation [MPa]
424 445

Fiber Damage

Figure B.68: Fiber damage 0◦ ply at failure onset Figure B.69: Fiber damage 0◦ ply in post failure state

Figure B.70: Fiber damage 45◦ ply at failure onset Figure B.71: Fiber damage 45◦ ply in post failure state
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Delamination and Splits

Figure B.72: Delamination all interfaces at failure onset Figure B.73: Delamination all interfaces in post failure state

Figure B.74: Matrix splits at failure onset Figure B.75: Matrix splits in post failure state

B.8 127 mm × 127 mm × 4 mm;∆ T=0.005 s; Failure Criterion: Proposed Method
Strength prediction

σtest [MPa] σsimulation [MPa]
288 313

Fiber Damage

Figure B.76: Fiber damage 0◦ ply at failure onset Figure B.77: Fiber damage 0◦ ply in post failure state
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Figure B.78: Fiber damage 45◦ ply at failure onset Figure B.79: Fiber damage 45◦ ply in post failure state

Delamination and Splits

Figure B.80: Delamination all interfaces at failure onset Figure B.81: Delamination all interfaces in post failure state

Figure B.82: Matrix splits at failure onset Figure B.83: Matrix splits in post failure state
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