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Veri�ed interval integration methods enclose a solution set corresponding to interval
initial values and parameters, and bound integration and rounding errors. Veri�ed meth-
ods su�er from overestimation of the solution, i.e., non-solutions are also included in the
solution enclosure. Two veri�ed integration methods, interval Taylor-series and Taylor-
model based methods and their implementation in VNODE-LP and VSPODE, are used
to reduce overestimation in veri�ed satellite orbit propagation. Furthermore, two orbital
state models based on integration constants, the modi�ed equinoctial elements (MEE) and
uni�ed state model (USM), are used to reduce overestimation. Earth-satellite trajectories
propagated using VSPODE have 2-3 times less overestimation than those propagated using
VNODE-LP. Using the USM and MEE state models, overestimation is further reduced by
a factor 4 to 10, depending on initial and parameter uncertainties. It is demonstrated that
veri�ed collision detection is feasible and may contribute to prevent satellite collisions to
reduce future space debris.

I. Introduction

Conventional numerical satellite-trajectory propagation methods are based on �xed-point initial values
and parameters, and give approximate �xed-point solutions at a �xed-point time. These methods are approx-
imations because they include truncation (integration) errors that propagate and accumulate throughout the
integration, possibly causing large deviations from the true solution for unstable systems, like the along-track
instability of satellites. The size of these errors is estimated at best, but often ignored and assumed to be
insigni�cant.

In reality, initial values come from uncertain measurements and we may want to know the solution over
a time interval. Furthermore, we want to place bounds on truncation errors so that we can be certain
that our simulation translates to reality. Veri�ed integration methods allow us to deal with both uncertain
initial values and parameters, represented by an interval, and the numerical integration errors, which can be
bounded by �nite upper and lower bounds.

Several veri�ed integration methods to solve ordinary di�erential equations have been developed by
Makino and Berz,1 Lin and Stadtherr,2 Nedialkov3 and others. Neher,4 Nedialkov3 and Hoefkens5 give an
overview of the di�erent methods.

Solutions created using veri�ed integration can be represented by an interval valid over a time interval.
Applied to satellite orbits, we can guarantee by mathematical proof that a satellite will be within a certain
position interval, during a certain time interval. The only assumption we have to make is that the satellite
starts within a certain position and velocity interval.

Berz and Makino6 were the �rst to apply veri�ed integration to a satellite orbit example in 2001. Hoef-
kens5,7 did the same in 2001 and 2003, comparing two methods. Alessi et al.8 used interval integration
to integrate the orbit of asteroid Apophis in 2007. The major problem with veri�ed integration is the
overestimation of the solution set, i.e., the inclusion of non-solutions in the solution enclosures. This means
that veri�ed integration methods can guarantee a solution to be within certain bounds, but not all points
within the bounds are true solutions. Signi�cant decreases in overestimation have to be made before veri�ed
integration can be useful in real non-linear problems like orbit propagation.8
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In this paper, we will try to reduce the overestimation by using and comparing VSPODE9 and VNODE-
LP10 for veri�ed integration, and two perturbation-based state models to model the motion of Earth satellites.
These models are based on constants or linear changes and may therefore su�er less from overestimation.

The feasibility of the application of veri�ed interval integration to Earth-satellite collision detection is
investigated. Space debris is an increasing problem and a single collision can greatly increase the amount of
debris in certain orbit ranges. It is therefore vital that we can guarantee that satellites will not collide, and
adjust orbits when this cannot be guaranteed. Veri�ed integration could provide this guarantee. The collision
between Iridium-33 and Cosmos-2251 is reconstructed to investigate the feasibility of veri�ed integration and
interval analysis to detect satellite collision.

We start with an introduction to interval analysis (Section II). Next, veri�ed integration of ordinary
di�erential equations (ODEs) is introduced in Section III. In Section IV, the di�erent orbital state models
that should reduce some disadvantages of veri�ed integration will be discussed. An application of veri�ed
integration to satellite-orbit propagation and satellite-collision detection is presented in Section V. Section
VI, �nally, will conclude this paper with some �nal remarks and recommendations.

II. Interval Analysis

Interval analysis (also called interval arithmetic or interval computing) was developed by Moore in the
early 1960s.11 It can be seen as an extension of real numbers, an interval, represented by a pair of real
numbers, the lower and upper bound. This interval contains all real numbers between its minimum and
maximum. This section gives a brief overview of the most important rules of interval analysis. The reader
is referred to the works of Moore12,13 for more information about interval analysis.

In mathematical terms, an interval is a closed bounded set of real numbers

[a; b] = fx : a � x � bg (1)

We denote intervals by [x], and the endpoints of the interval by
�
x and �x. Thus, [x] = [

�
x; �x].

II.A. Interval Arithmetic

Interval arithmetic describes the rules of elementary operations, like addition and multiplication, for intervals.
The rules for addition and subtraction are,

[
�
x; �x] + [

�
y; �y] = [

�
x+

�
y; �x+ �y] (2)

[
�
x; �x]� [

�
y; �y] = [

�
x� �y; �x�

�
y] (3)

The rules for multiplication,

[x] � [y] = [min(
�
x
�
y;

�
x�y; �x

�
y; �x�y);max(

�
x
�
y;

�
x�y; �x

�
y; �x�y)] (4)

When [x] is an interval not containing the number 0, the multiplicative inverse (reciprocal) is de�ned as,

1
[x]

=
�

1
�x
;

1

�
x

�
(5)

However, when [x] contains 0, the set is unbounded and cannot be represented as an interval whose
endpoints are real numbers; both bounds go to in�nity. This causes the loss of valuable information that
cannot be contained in a single interval. However, splitting the interval in two parts, [�1; 1=y1] and
[1=y2;1], and using two intervals can contain the information.

The division of two intervals is de�ned by

[x]
[y]

= [x] � 1
[y]

(6)

and can therefore be computed using Eq. (4) and (5).
Interval arithmetic has algebraic properties similar to real numbers. Addition and multiplication are

associative, commutative, but not always distributive. For example

[1; 2] � (1� 1) = [0; 0] = 0 (7)
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However
[1; 2] � 1� [1; 2] � 1 = [�1; 1] 6= 0 (8)

This means that interval functions are not uniquely de�ned; the resulting bounds depend on the form of the
function. However, the following algebraic property always holds

[x]([y] + [z]) � [x][y] + [x][z] (9)

This property is called subdistributivity and implies that if we rearrange an interval expression, we may
obtain tighter bounds, i.e. a smaller interval.14

Furthermore, the width of an interval, w([x]), is de�ned as the di�erence between the upper and lower
bounds,

w([x]) = �x�
�
x (10)

II.B. Inclusion Monotonic Interval Extensions of Functions

An interval extension of a function f(x1; :::; xn) is an interval-valued function F ([x1]; :::; [xn]) with the prop-
erty

f(x1; :::; xn) = F (x1; :::; xn) (11)

So an interval extension of f is an interval valued function, which has real values when the arguments are
all real and coincides with f .

F is an inclusion monotonic interval extension of f if

f([x1]; :::; [xn]) � F ([x1]; :::; [xn]) (12)

This means that an inclusion monotonic interval extension F gives bounds on the function when the function
variables are within the intervals [x1]; :::; [xn].

For example (from Moore13), consider the polynomial

p(x) = 1� 5x+
1
3
x3 (13)

and suppose we want the range of all values of p(x) when x is a number in the range [2; 3], i.e., x � [2; 3].
A natural interval extension of p is

P ([x]) = 1� 5[x] +
1
3

[x] � [x] � [x] (14)

Computing P([2,3]) using interval arithmetic

P ([2; 3]) = 1� 1� 5[2; 3] +
1
3

[8; 27] = [�34
3
; 0] (15)

All rational functions (the function can be expressed as a ratio of two polynomials) have natural inclusion
monotonic interval extensions; we only have to replace the real variables with interval variables and real
arithmetic operations with interval arithmetic operations. Moreover, one can construct inclusion monotonic
interval extensions of all commonly used non-rational functions.

II.C. Overestimation

The bounds placed on functions by evaluating them using interval analysis are generally larger than the
true bounds of the function. This so-called overestimation, including values that are not in the range of
the function, is mainly due to two reasons, the dependency problem and the wrapping e�ect.13 Methods to
reduce this overestimation are discussed in Section III.B.
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Figure 1. A demonstration of the wrapping e�ect. A three dimensional set enclosed by a three dimensional interval
box.

The Dependency Problem

Interval analysis cannot detect multiple occurrences of the same variable. This can lead to overestimation
as we demonstrate with the following example. In �xed-point arithmetic, x � x = 0. But if we evaluate
this expression using interval arithmetic for all x 2 [1; 2], the result is [�1; 1]. The true solution, [0; 0],
is contained in the result, but contains a large overestimation. This cause of overestimation is called the
dependency problem.

Writing an interval function in a di�erent form can change the enclosure. It may be useful to rewrite the
function such that the overestimation is reduced, but removing the dependency is not always possible. The
dependency problem can be the cause of signi�cant overestimation and should always be kept in mind when
using interval arithmetic.8,13

The Wrapping E�ect

Enclosing a 3-dimensional set (shape) that is not a rectangular cuboid (or parallelepiped, in the general
sense) in an interval, always includes points that are outside the set we try to enclose. In more practical
terms: you cannot �t a ball in a box without leaving some empty space. This is visualized in Fig. 1 where
the 3-dimensional set (red) is enclosed in a three dimensional interval box (green). There are many points
inside the green box that are not part of the original set; wrapping the set in a new set introduced elements
that were not part of the original set. This cause of overestimation is called the wrapping e�ect. It becomes
a signi�cant problem when used in iterative methods like numerical integration, where rotated intervals are
enclosed by new intervals.

III. Veri�ed Integration of Ordinary Di�erential Equations

A wide range of conventional numerical integration methods is available to compute solutions to di�er-
ential equations. However, these methods only yield approximate solutions due to truncation errors that are
at best approximated, but not placed between guaranteed bounds. Moreover, traditional methods can only
solve for �xed-point initial values, instead of interval-valued initial values. A traditional solution is a single
point in n-dimensional space. Also, traditional solutions are valid at a single moment in time and not over
a time interval.

Veri�ed (also called validated or guaranteed) integration methods are part of a group of integration
methods that provide guaranteed bounds, by mathematical proof, on solutions. These methods bound
truncation errors and can handle interval initial values and parameters. This guarantee is particularly
interesting for critical dynamical systems with high safety requirements such as chemical reactions,2 but can
also be used for veri�ed global optimization, sensitivity analysis or to verify results of conventional methods.

4 of 22

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 T

E
C

H
N

IS
C

H
E

 U
N

IV
E

R
SI

T
E

IT
 D

E
L

FT
 o

n 
Fe

br
ua

ry
 2

8,
 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

1-
66

53
 



The �rst idea of veri�ed integration came from Moore12 in 1968 when he worked on interval analysis, a
method to bound functions for a range (interval) of variables. His method is based on bounding truncated
Taylor series expansions by using interval arithmetic to evaluate the Taylor series at each integration step,
and using these bounds as initial values for the next step. Development of interval-analysis based methods
was continued by Eijgenraam,15 L�ohner,16 Corliss,17 Rihm18 and others. These methods, based on interval
analysis and Taylor series, are called Interval Taylor Series (ITS) methods.

A second group of veri�ed integration methods was developed by Makino and Berz19 in the 1990s, initially
to analyse the stability of particles in particle accelerators. Their method uses Taylor models (a Taylor
polynomial with an interval remainder bound) to propagate higher-order information about the dependency
of the solution on initial values.20 A good overview of Taylor models and a theoretical comparison with ITS
methods is given by Neher et al.4

A new hybrid method combining ITS with TM methods was created by Lin and Stadtherr in 2007.2 It uses
the traditional �rst steps of ITS methods to verify existence and uniqueness. However, where ITS methods
evaluate the coe�cients of the Taylor series using interval analysis, their method uses Taylor models for the
coe�cient to express the dependency on the interval initial values and parameters, reducing overestimation.
They implemented their method in VSPODE.9

Veri�ed integration has two important disadvantages. First, it often overestimates the solution set which
is mainly the result of the dependency problem and the wrapping e�ect. Most research focuses on reduc-
ing this overestimation. Second, veri�ed integration is computationally more expensive than conventional
integration. For the more complex algorithms and when using high orders, veri�ed integration can be a few
orders of magnitude slower.

III.A. Bounding Taylor Series

Most veri�ed methods use Taylor-series expansions of state variables with respect to time

x(t0 + h) = x(t0) + hf(x(t0)) +
1
2!
h2f 0(x(t0)) + :::+

1
n!
hnf (n�1)(x(t0)) +Rn(t) (16)

and then �nd bounds on this Taylor series by evaluating it using either interval analysis or Taylor models,
and bounding the remainder term, Rn(t), which represents all the higher-order terms. This is the truncation
error in numerical integration.

Lagrange Remainder Term

The remainder term, Rn, can be enclosed by several expressions, the most commonly used is the Lagrange
form of the remainder term,

Rn(t) =
fn(x(�))
(n+ 1)!

hn+1 (17)

� 2 [ti; ti+1]
h = ti+1 � ti

where we �rst need to enclose the solution x(t) on the interval t 2 [ti; ti+1], which is what we already try to
do by bounding the remainder term Rn(t); we need a-priori bounds on x(t) to create tighter bounds on x(t).

A crude a-priori enclosure of the solution is found by validating existence and uniqueness of a solution
within a certain interval, [x̂], on a certain time interval h = (t1 � t0).

Validating the existence and uniqueness is usually done using the Picard-Lindel�of theorem and Picard
iterator, which are results of the Banach �xed-point theorem.3 These theorems are modi�ed for the interval
case and require an initial guess for the enclosure, [~x], and stepsize, h, which can be checked for existence
and uniqueness using the Picard iterator in interval arithmetic.18

With a known a-priori enclosure, [x̂], we can write the remainder term in Eq. (17) as

[Rn(t)] =
fn([x̂])
(n+ 1)!

hn+1 (18)
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Taylor Coe�cients

The remainder part of the Taylor series expansion is now enclosed by an interval [Rn(t)] using a rough
solution enclosure. The Taylor series’ coe�cients, up to order n, can be bound by evaluating the series using
interval arithmetic (ITS methods), making use of the fact that a Taylor series is an inclusion monotonic
function. Or by writing the coe�cients as Taylor models that contain higher-order information about the
dependency on the initial values (TM methods).

A Taylor model consists of a polynomial, P , and interval, [R], part,

TM = P + [R] (19)

also denoted as, TM = (P; [R]). Just as with intervals, there is an arithmetic for computing with Taylor
models; the reader is referred to the work of Makino and Berz,21 and Neher4 for more information about
Taylor models and Taylor-model arithmetic.

The polynomial part is the Taylor-series expansion of �nite order n, and the interval part contains
truncation and rounding errors and depends on the algorithm used to compute it. Any function that can be
represented on a computer and is continuously di�erentiable can be modeled (bounded) by a Taylor model.

The Taylor-model methods do not result in an interval representation, but a Taylor-model representation
of the solution set. This Taylor model representation is generally tighter than an interval representation,
which is a cuboid or parallelepiped, and can also be evaluated using interval analysis (wrapped in an interval)
to produce interval solutions.

Taylor-series coe�cients are computed in a symbolic-numeric way using automatic di�erentiation, a way
to accurately compute Taylor coe�cients up to an arbitrary order using the chain-rule.

III.B. Reducing Overestimation

Veri�ed integration of ODEs is an iterative process where a new Taylor-series expansion of the solution is
created for each integration step. Each step uses the solution set of the previous step as initial value set.
These initial values are represented by intervals for ITS methods and Taylor models for TM methods.

Overestimation, the inclusion of non-solutions in the solution enclosure, occurs in both methods since
they all use some form of interval arithmetic and therefore su�er from both the dependency problem and the
wrapping e�ect. Because the integration is an iterative process, the overestimated solution is used as initial
value for the next step, where the solution is again wrapped in an interval including even more non-solutions.
This iterative wrapping can quickly cause the solution to grow out of bounds, rendering it useless; i.e., the
solution has exploded.

A wide range of methods has been created to reduce the overestimation. Taylor models instead of direct
interval evaluation of Taylor series were invented to reduce the huge overestimation of interval methods,
especially for non-linear di�erential equations.22

There are several methods to reduce overestimation for the di�erent types of veri�ed integration methods.
The major strategies are subdivision of the intervals, coordinate transformations, shrink wrapping and
preconditioning.

Subdivision divides the problem into multiple problems with smaller intervals.8 This is a simple and
e�ective method to reduce the wrapping e�ect, but su�ers from the curse of dimensionality.

Coordinate transformations reduce the wrapping e�ect. Instead of using an interval enclosure, [x], de�ned
by the unit vectors of the original coordinate system, we can also represent the solution as a single point
with a locally transformed interval box around it23

[x] = m([x]) +A[r] (20)

where A is the transformation matrix and [r] the interval vector. Di�erent coordinate transformations
exist, the most commonly used are QR factorization (orthogonal) and the parallelepiped (non-orthogonal)
method.3 This coordinate transformation using an orthogonal transformation is visualized in Fig. 2 where
the left graph shows the interval enclosure (grey) of a true solution set (white) in the original coordinate
system. The right graph shows the coordinate transformation, and the new smaller interval enclosure of the
same solution set.

Shrink wrapping and preconditioning are methods created by Berz and Makino24 to reduce overestimation
in their TM-based method. Shrink wrapping absorbs a part of the interval remainder term in the symbolic

6 of 22

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 T

E
C

H
N

IS
C

H
E

 U
N

IV
E

R
SI

T
E

IT
 D

E
L

FT
 o

n 
Fe

br
ua

ry
 2

8,
 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

1-
66

53
 



Figure 2. Visualization of local coordinate transformation to reduce overestimation of interval enclosures, using L�ohner’s
QR-factorization method. Source: Nedialkov3

polynomial part of the Taylor Model, P , by modifying the polynomial’s coe�cients. Preconditioning is a
coordinate transformation that makes the solutions sets less prone to wrapping, not very di�erent from QR-
factorization methods. The reader is referred to the works by Berz and Makino,24 Neher4,25 and Hoefkens7

for more information about shrink wrapping and preconditioning.

IV. Orbital State-Propagation Models

The state of an orbiting body, and the related equations of motion, are often described in Cartesian coor-
dinates. These Cartesian coordinates have a physical meaning (position and velocity) and the orthogonality
of the system results in simple equations of motion and transformations. It is therefore the preferred state
model in many celestial-mechanics applications.

However, an unperturbed two-body problem is an orbit, which shape and orientation can be described
by �ve constants, and the position along the orbit by one variable. The Cartesian model does not use
this information, causing a larger error or a smaller stepsize requirement. The two-body orbit-shape and
orientation description is the basis for the traditional Kepler elements. Such a state model, including the
equations of motion, is often more e�cient in numerical integration.

When used with veri�ed integration, the state variables and the "shape" of the solution in the state
space have a great inuence on the wrapping e�ect. Enclosing a linear ow does not su�er as much from
the wrapping e�ect as a non-linear ow. It is for this reason that using a state model that is based on
small variations of constants and/or linearly changing state variables, is expected to reduce overestimation.
This, in turn, results in smaller interval enclosures, a longer time to solution explosion (when the size of the
uncertainty box exceeds a certain value) and thus a more useful veri�ed solution.

A large number of orbital state models and related variational equations have been created over the years.
The inuence on overestimation of two such models, compared to traditional Cartesian coordinates, will be
investigated.

The �rst model is the modi�ed equinoctial element (MEE) set. This set is based on the classical Kepler
elements and is modi�ed to remove singularities in the inclination and eccentricity. The MEE set was chosen
as it was tested best for traditional orbit integration in a survey of orbit elements by Hintz.26

The second model is the uni�ed state model (USM), �rst proposed by Samuel P. Altman in 1972.27 It
uses quaternions for the orientation of the orbit and the velocity to describe the shape of the orbit, resulting
in seven state variables. This model is chosen, because it is based on di�erent integration constants than
Kepler-like state models such as the MEE, and has only recently been successfully applied to a few example
problems by Vittaldev et al.28

The equations of motion of both models are expressed in terms of accelerations in the following orthogonal
directions. A radial component, e1, a component in the orbital plane perpendicular to the radius vector,
e2, and a component perpendicular to the orbital plane, e3, completing the right-handed coordinate system.
The left graph of Fig. 3 shows the direction of e1 and e2.
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IV.A. Modi�ed Equinoctial Elements

The modi�ed equinoctial elemets are a modi�ed version of the traditional Kepler elements to remove math-
ematical singularities. MEE were �rst introduced by Walker in 1985.29 The relation between the MEE and
Kepler elements is as follows,

p = a(1� e2)
f = e cos(! + 
)
g = e sin(! + 
) (21)

h = tan
i

2
cos 


k = tan
i

2
sin 


L = 
 + ! + �

where a is the semi-major axis, e the eccentricity, ! the argument of periapsis, 
 right ascension of the
ascending node, i the inclination, and � the true anomaly. All but L are constant for an unperturbed two-
body problem. When perturbation forces act on the body, the following di�erential equations describe the
change of the MEE due to these forces30

dp

dt
=
r
p

�

2p
w
ae2

df

dt
=
r
p

�

�
sin(L)ae1 + ((w + 1) cosL+ f)

ae2

w
� (h sinL� k cosL)

g

w
ae3

�
dg

dt
=
r
p

�

�
� cos(L)ae1 + ((w + 1) sinL+ g)

ae2

w
+ (h sinL� k cosL)

f

w
ae3

�
(22)

dh

dt
=
r
p

�

s2

2w
cos(L)ae3

dk

dt
=
r
p

�

s2

2w
sin(L)ae3

dL

dt
=
p
p�
w2

p2
+

1
w

r
p

�
(h sinL� k cosL)ae3

where

s2 = 1 + h2 + k2

w = 1 + f cosL+ g sinL

r =
p

w

IV.B. Uni�ed State Model

The uni�ed state model uses seven state variables to describe the state of an orbiting body. Three to de�ne
the shape of the orbit in the velocity phase space and four quaternions to de�ne the orientation with respect
to the inertial reference frame.

C, Rf1 and Rf2 are functions of the radial and angular momentum that determine the energy of the
satellite and the size and position of the orbit in velocity phase space (the velocity hodograph), see the right
graph of Fig. 3. Rf1 and Rf2 are the components of R in a convenient intermediate reference frame that is
rotated about the line of nodes.28

R and C are velocity components, and have been de�ned in Fig. 3. R has a constant direction, and
points in the direction of the velocity at periapsis. C is always perpendicular to the radius vector. The
satellite’s velocity, v, is the sum of both

v = R + C (23)

For an unperturbed two-body problem, the magnitude of both R and C is constant. Since the orbit in
velocity phase space is constant for an unperturbed two-body problem, these variables are also constant for
the unperturbed case.
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Figure 3. Left: Position phase space of a Keplerian orbit with velocity components C and R together with the radial
and angular velocity components ve1 and ve2. Right: The velocity phase space of the same Keplerian orbit, again with
velocity components C and R as in the left �gure.

Where the MEE use the shape and size of an orbit (ellipse) in the position phase space, the USM uses C
and R to de�ne the obit (circle) in the velocity phase space.

The USM uses a quaternion to keep track of the orientation of the orbital plane.27 q4, q1, q2, q3 are the
four quaternions

q = q4 + q1i + q2j + q3k

and are also called Euler parameters. Since four parameters are used to de�ne three degrees of freedom, the
following constraint on the quaternions needs to be introduced

q24 + q21 + q22 + q23 = 1

Quaternions have two major advantages over Euler angles. No singular conditions occur in a rotation, the
degrees of freedom are never lost i.e., there is no gimbal-lock, and all angular functions are algebraic instead
of trigonometric.31

The uni�ed state variables C, Rf1 and Rf2 are constant for the unperturbed two-body problem. If
perturbing forces act on the body, the equations of motion in terms of the perturbing force components in
the e1, e2 and e3 direction were �rst derived by Altman27 and later corrected by Chodas32 and Vittaldev28

d

dt

264 C

Rf1

Rf2

375 =

264 0 �p 0
cos� �(1 + p) sin� �Rf2=ve2

sin� (1 + p) cos� Rf1=ve2

375
264ae1

ae2

ae3

375 (24)

d

dt

26664
q1

q2

q3

q4

37775 =
1
2

26664
0 !3 0 !1

�!3 0 !1 0
0 �!1 0 !3

�!1 0 �!3 0

37775
26664
q1

q2

q3

q4

37775 (25)

where "
sin�
cos�

#
=

1
(q23 + q24)

"
2q3q4
q24 � q23

#
(26)

which becomes singular for q3 = q4 = 0. This corresponds with retrograde equatorial orbits (i = 180�).
This means that the USM breaks down for retrograde equatorial orbits. This orbit can be avoided by
reformulating it with a negative orbital velocity and zero inclination.
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The body-�xed velocity components ve1 and ve1 are given by"
ve1

ve2

#
=

"
0
C

#
+

"
cos� sin�
� sin� cos�

#"
Rf1

Rf2

#
(27)

The parameter  in Eq. (24) is used for compactness, and is given by

 =
q1q3 � q2q4
q23 + q24

(28)

This term also becomes singular for q3 = q4 = 0, which are retrograde equatorial orbits as explained above.
The variable p is the ratio between C and the velocity perpendicular to the radius vector

p =
C

ve2
(29)

and !i are the body-�xed angular velocity components

!1 =
ae3

ve2
!2 = 0 !3 =

Cv2
e2

�
(30)

The angular velocity, !2, about the e2 axis is zero, because there is no velocity component out of the local
instantaneous orbital plane.

V. Applications and Results

This section presents the results of veri�ed interval integration applied to satellite orbit propagation with
interval initial values and parameters (forces). The equations of motion of a satellite from Section IV are
integrated using veri�ed integration discussed in Section III to create guaranteed satellite orbits. These are
essentially 4-dimensional (space and time) trajectory enclosures.

First, we present the performance of veri�ed orbit propagation using di�erent veri�ed integration methods,
orbital state-propagation models and interval initial value widths. Second, veri�ed interval integration is
applied to detect a collision between two satellites.

V.A. Propagation

We �rst compare two modern veri�ed integration software tools, VNODE-LP10 and VSPODE,9 for tightness
of the solution enclosures and computational cost. Second, we compare the three di�erent orbital state
models, Cartesian, MEE and USM, when used in veri�ed orbit propagation, to see how they inuence
solution tightness, and how the orbit type and initial interval widths inuence solution enclosures.

The orbit propagations in this section use an interval initial state and two interval parameters. They
also include three perturbation forces, i.e., atmospheric drag, J2 gravity perturbation and an unknown force
modeled as interval. The uncertainty in the atmospheric drag is modeled as an interval with upper and lower
bounds of 50% above and below the nominal value. The third, unknown force is an interval with a width of
2�10�8 km

s2 . This models the uncertainty in all other perturbing forces.
A third, state-of-the-art veri�ed TM-based integrator, COSY In�nity,33 could not be used due to pending

patent claims.

VNODE-LP and VSPODE

As described previously, there are veri�ed integration methods based on interval or Taylor-model evaluation
of a Taylor series expansion of the solution. In simple example problems, and applications from literature,5

the Taylor-model based integrators create tighter solution enclosures. This comes with the disadvantage of
10 to 100 higher computational cost.

The most modern ITS-based veri�ed integration library is VNODE-LP.10,34 We will compare VNODE-
LP with the TM based veri�ed integrator VSPODE.9,35 VSPODE was originally created to simulate bio-
reactors.36
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Figure 4. Comparison between veri�ed integrators VNODE-LP and VSPODE.

Both literature and simple example simulations suggest that VSPODE creates tighter enclosures than
VNODE-LP. Although this advantage comes with a high computational cost, the tightness of the solution
is more important, because solution overestimation is the main problem when applying veri�ed integration
and interval analysis to real-world problems.4

The volume of the solution enclosure as a function of time for a circular, 45�-inclined low Earth orbit
(LEO) at 800 km, computed using the di�erent state models, is shown in Fig. 4. VSPODE produces smaller
volumes and is able to propagate about twice as long for all tested cases. This con�rms that the Taylor-model
based integrator VSPODE produces better solutions, albeit at the cost of more CPU time. Anticipating
the discussion about the quality of the results obtained with the di�erent orbit-state models later on in this
section, it is obvious from Fig. 4 that there is a signi�cant di�erence in quality of the results. Both the MEE
and the USM seem to perform much better than the Cartesian model.

Interval Solution Enclosure Veri�cation

Fig. 5 shows the interval position and Monte-Carlo �xed-point solution set computed using MEE, for a
LEO, after 10 hours. The green cuboid represents the interval enclosure, valid both in space and time.
The Monte-Carlo solution set lies completely within the interval enclosure. This is evidence for the correct
implementation of MEE transformations, equations of motion and VSPODE integrator.

This �gure also shows the overestimation that occurs when enclosing a non-convex three dimensional
shape in 3 dimensional interval described by only 6 coordinates. The Monte Carlo solution set can be con-
sidered to be close to the true solution shape, although it does contain numerical integration errors. All other
positions inside the green interval box are non-solutions, i.e., extra information we do not need and want.
Although the true solution set will still be inside the interval, practical application of veri�ed integration
becomes useless when there are many non-solutions inside the solution enclosure, e.g., the knowledge that
a satellite is within a huge cuboid enclosing the Earth and all LEO space around it, is not useful in any
application.

Orbital State Models

The advantage of using perturbation state models like MEE and USM over Cartesian coordinates lies in the
almost constant or linearly changing variables of the perturbation models. The major gravity force of the
central body is removed from the di�erential equations and therefore has no contribution to overestimation.
However, the di�erential equations of the MEE and USM are more complex and may therefore su�er more
from the dependency problem, and are also computationally more expensive.

To compare the e�ect of the di�erent state models, we have to start with comparable initial intervals,
representing a similar uncertainty in position and velocity. Table 1 and 2 show the initial interval widths
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Figure 5. Left: The nominal orbit (blue) with the solution enclosure (small box) after 10 hour, valid over 5 seconds,
computed using the MEE. Right: A close-up of the interval solution box (green) shown on the left, now with Monte
Carlo solution space plotted as red dots and the nominal orbit in blue.

Table 1. Interval Monte Carlo coordinate transformation from Cartesian coordinates to MEE. The �rst two columns
give the width of the Cartesian velocity and position components. The last six columns give the resulting widths of
the MEE.

Cartesian MEE
w([x]) [m] w([ _x]) [m/s] w([p]) [km] w([f ]) [-] w([g]) [-] w([h]) [-] w([k]) [-] w([L]) [rad]

1.0 0.01 3E-2 3E-6 4E-6 6E-7 1E-6 1E-6
10.0 0.10 3E-1 3E-5 4E-5 6E-6 1E-5 1E-5

100.0 1.00 3E+0 3E-4 4E-4 6E-5 1E-4 1E-4
1000.0 10.00 3E+1 3E-3 4E-3 6E-4 1E-3 1E-3

Table 2. Interval Monte Carlo coordinate transformation from Cartesian coordinates to USM variables. The �rst two
columns give the width of the Cartesian velocity and position components. The last six columns give the resulting
widths of the USM variables.

Cartesian USM
w([x]) [m] w([ _x]) [m/s] w([C]) w([Rf1]) w([Rf2]) w([q1]) w([q2]) w([q3]) w([q4])

[m] [m/s] [km/s] [km/s] [km/s] [-] [-] [-] [-]
1.0 0.01 2E-5 3E-5 2E-5 5E-7 8E-7 5E-8 5E-7

10.0 0.10 2E-4 3E-4 2E-4 5E-6 8E-6 5E-7 5E-6
100.0 1.00 2E-3 3E-3 2E-3 5E-5 8E-5 5E-6 5E-5

1000.0 10.00 2E-2 3E-2 2E-2 5E-4 8E-4 5E-5 5E-4
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Figure 6. Interval enclosures as computed using the Cartesian, Equinoctial and USM orbital models. Enclosures are
valid for 2 seconds. Only 1 in 2 enclosures is plotted to prevent clutter.

(uncertainties) of MEE and USM variables corresponding to the interval widths of Cartesian coordinates
shown in the �rst two columns. These are computed using 100,000 Monte Carlo transformations by randomly
picking points from within a Cartesian interval and converting these to MEE or USM variables using �xed-
point transformations. The corresponding transformation equations can be found in the works by Vittaldev
et al. 28 for USM and Betts et al. for MEE.30 Monte-Carlo transformations are used, because interval
analysis su�ers too much from the dependency problem, which makes a fair comparison between the state
models impossible. Taylor model based transformations can probably solve this problem in future research.

A visualization of an interval trajectory is shown in Fig. 6. The cuboids enclose the solutions over a
time interval of 2 seconds. Only half of all intervals are shown in this �gure to prevent cluttering, but when
we would show all cuboids, they create a tube of overlapping cuboids enclosing the trajectory over the full
integration time interval, including all points within the time interval and thus not only at single moments
in time.

What happens when solution enclosures grow without bounds is shown in Fig. 7. In this example case,
the solution grows exponentially and becomes too large for the integration to continue, the solution explodes.
This is the result of accumulation and propagated overestimation of individual integration steps, and shows
the largest problem of using veri�ed integration.

The evolution of the volume of the position enclosure, valid over a 2-second time interval, is shown
for di�erent initial uncertainties in position and velocity, and di�erent orbital-state models in Fig. 8. The
example orbit is a circular 45� inclined LEO satellite at 400 km.

This �gure clearly shows that both the MEE and USM are able to integrate for about 5 times longer
than the Cartesian model before the solution explodes and becomes useless.

As expected, a smaller uncertainty in the initial values results in smaller position enclosure volumes and a
longer time to solution explosion. The di�erence between the smallest two initial uncertainties is very small
for the USM, this shows that a change in initial interval has no signi�cant e�ect on both overestimation and
true solution set size when the initial intervals are su�ciently small, i.e., 10 m and 0.1 m/s for the USM.
This insigni�cance of small changes in small initial values indicates that the only other uncertainties, the
interval perturbation forces, are the main contributor to the growth of the position intervals. The e�ect of
the size of initial intervals and interval perturbations is investigated next.

The relation between the uncertainty in initial interval position and velocity widths, and the time to
solution explosion is shown in Fig. 9. The time of solution explosion is de�ned as the moment when the
interval position volume is larger than 1�109 km3. This corresponds to cube with sides of 1000 km, although
the actual enclosure can be any parallelepiped. A larger interval initial value width results in a smaller time-
to-solution explosion for all three state models. Reducing the interval widths even further than 10 m and
0.1 m/s has little e�ect on the time-to-solution explosion as can be seen from the lines in the graph having
a smaller slope.

The MEE and USM are able to integrate about 4 times longer than the Cartesian model. USM and MEE
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Figure 7. Visualization of interval solution explosion for a LEO satellite propagated using Cartesian coordinates.

Figure 8. Time evolution of the volume of the position enclosure, for a circular LEO at 400 km, using the four di�erent
orbit models, for four di�erent sizes of initial position and velocity widths (the initial uncertainty). Enclosures are valid
over 2 seconds.
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Figure 9. Time to solution explosion as function of initial interval position and velocity width for a circular LEO at
400 km and with a low inclination.

are about equally good, although the MEE is slightly better for initial interval widths smaller than 400 m
and 0.4 m/s, and the USM for larger widths. However, this result depends on the orbit type and interval
perturbations and cannot be generalized to all orbits with all interval perturbation force widths.

An unexpected peak can be seen in the Cartesian line in Fig. 9. This peak is unexpected as smaller
intervals always lay within the larger intervals and should therefore create smaller or equally sized solution
enclosures. The cause of this peak could not be determined conclusively and is most likely the result of the
a-priori stepsize selection within VSPODE.

The relation between the uncertainty in the perturbation force, and the time to solution explosion, is
shown in Fig. 10. This �gure shows that the USM is able to integrate for a longer time than MEE for small
initial intervals, while MEE is better for shorter intervals. However, the time-to-solution explosion is not
the only indication of quality interval orbit propagation, the volume of the position enclosure can also be
important. Example applications are veri�ed collision detection, where smaller sizes create more guaranteed
safe trajectories, and global optimization, where the solution volume inuences how much of the search space
can be discarded.

Both MEE and USM have singularities for inclinations of 180� (retrograde equatorial orbits). Further-
more, the inclination determines the J2 perturbation force and the relation between inclination and time to
solution explosion. Fig. 11 shows the relation between the inclination and solution explosion.

It is clear that the inclination has a large inuence on both the MEE and USM, but especially on the
MEE model. This makes the MEE better than the USM for equatorial orbits (zero inclination), while it is
worse for inclined orbits with an inclination between 60� and 120�. This suggests that a change in size or
direction of the J2 perturbation force has a larger inuence in the MEE model. Using the right model or
combination of models for a speci�c inclination can therefore improve the interval integration signi�cantly.

The USM is only a�ected by the singularity when the initial inclination interval is chosen within half a
degree from 180� while the MEE model shows an abrupt halving of the time to solution explosion in the
inclination range from 177� to 183�. This shows that the USM is the more reliable and preferred state model
for inclinations around 180�.

V.B. Collision Detection

Veri�ed collision-detection methods try to guarantee that no collisions will occur, based on assumptions on
bounds of measurement uncertainties. This in contrast to conventional collision detection methods, which
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Figure 10. Time to solution explosion as function of the width of the uncertain interval force acting on the satellite,
for a circular LEO at 800 km with a 28.6 deg inclination.

Figure 11. Time to solution explosion as function of inclination for a circular LEO.
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Figure 12. The �ve possible cases of interval intersections of two 3-dimensional intervals. The general cases are 0, 1,
2, 4 or 8 corners of the �rst interval inside the second interval. The intersection is shown as a red volume.

estimate a collision probability. Veri�ed methods either guarantee no collision (a collision probability of 0%),
or a possible collision with unknown probability. Future applications may combine veri�ed integration with
probability-based methods, such that a veri�ed collision probability distribution can be given.

Veri�ed methods use veri�ed orbit integration to create a guaranteed satellite-trajectory enclosure in the
form of adjacent 3-dimensional boxes. Each box encloses the satellite position during a certain time interval.

A collision cannot be ruled out when the position enclosures of two satellites intersect during the same
time interval. In other words, if the satellite trajectories intersect both in space and time, their paths
may intersect. It should be emphasized that due to overestimation veri�ed methods only guarantee a safe
trajectory for satellites, i.e., a collision-free trajectory having interval trajectories that do not intersect.

Veri�ed collision-detection methods include any possible integration errors, uncertain initial conditions,
uncertain constants and uncertain perturbation forces. Furthermore, collisions are detected over a continuous
time interval, and not based on the approximated time of closest approach that conventional methods use.

The major disadvantages of current veri�ed methods are the lack of probability distribution propaga-
tion, the overestimation of the position enclosures introducing non-solutions, and its computational cost.
Probability information could theoretically be propagated using TM methods although they need major
modi�cations. Overestimation can be reduced by decreasing the integration stepsize and thereby the time
interval over which solutions are valid, by using di�erent state models, using higher integration order, sub-
division and applying methods as discussed in Section III.B.

Interval Intersections

The intersection of two, 3-dimensional intervals is the set of points that are within both intervals. This
intersection is a new 3-dimensional interval. 3-dimensional interval vectors can intersect in �ve di�erent
ways, as shown in Fig. 12.

Finding the intersection of two boxes requires only the position of the corners of both boxes. Here we use
the knowledge that both boxes have the same attitude because they are both de�ned in the same orthogonal
(Cartesian) coordinates. The position of the corners is given by the 3-dimensional intervals of both boxes.
A computer can quickly �nd interval intersections of n-dimensional intervals.
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Figure 13. The interval position volume as function of time for a MEE, USM and hybrid trajectory for a circular LEO
at 800 km.

For collisions between objects, we have to �nd the intersection of 4-dimensional intervals, three space
components and one time, because objects only collide when they are in the same place at the same time.

Hybrid Interval Trajectories

Interval intersections allow us to combine the best of multiple state models and integrators by creating a new
interval trajectory from the intersection of all individual trajectories. For example, if we have two interval
trajectories computed using the USM and MEE, only the points that are inside both trajectory enclosures
can be part of the true solutions. This means that the intersection of both trajectories is a new veri�ed
interval trajectory, which we will call a hybrid trajectory.

This hybrid trajectory will have a smaller volume than the individual trajectories if, and only if, one of
the trajectories is not completely included in the other. All positions that are not inside both trajectories are
discarded. The evolution of the position volume for a circular LEO at 800 km is shown in Fig. 13. The red
line in the graph represents the volume of the hybrid trajectory. This volume is, as expected, always equal
or smaller than the individual USM and MEE trajectory volumes. During some time periods, e.g., between
0.5 and 1 hour, the intersection of the two interval trajectories is signi�cantly smaller than the individual
trajectories.

The hybrid method can cause a large or no reduction in the volume (and everything in between), de-
pending on the satellite orbit, initial interval widths and propagation time. Finding the intersection of
two interval trajectories comes with a low computational cost compared to the interval integration and is
therefore always advised when multiple interval trajectories are available.

Iridium-33/Cosmos-2251 Collision

Few major accidental collisions have been detected since the launch of the �rst arti�cial satellite, Sputnik,
in 1957. One between two intact satellites, two between an operational satellite and large space debris, and
one between two rocket bodies. Collisions between inactive satellites are hard to detect and can only be
reconstructed from observed debris. Smaller collisions occur more often, but are also more di�cult to detect.

The largest and most notable collision in Earth orbit was the collision between two intact satellites, the
operational communication satellite, Iridium 33, and the inactive navigation satellite, Cosmos 2251, that
occurred at 16:56 UTC on February 10, 2009, at 789 km above the Taymyr Peninsula in Siberia. Both
satellites were completely destroyed. The incident was observed by the U.S. Space Surveillance Network,
above Siberia at an altitude of 790 km, and later tracked two large clouds of debris.37

Precise state information of both satellites is not openly available. The only available information are the
TLE from Space-Track.38 These provide no accuracy information and accuracy is often in the km range. A
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Figure 14. Nominal orbits of Iridium-33 and Cosmos-2251 and their projections on the three planes.

Table 3. Cosmos-33 and Iridum-2251 Cartesian state in an Earth-centered inertial reference frame at 00:00 UTC on
February 10, 2009, 16 hour and 56 minutes before the collision between the two satellites.

Satellite x [km] y [km] z [km] vx [km/s] vy [km/s] vz [km/s]
Cosmos 2251 2689.06 2726.88 6049.935 -6.53545 -1.16479 3.40109
Iridium 33 -3240.99 4759.60 4246.546 2.01107 -3.99140 5.98213

realistic veri�ed collision detection simulation using real measurements uncertainties is therefore not possible.
Nevertheless, this case is a good test to see if this collision can be detected, i.e., not ruled out, by veri�ed

collision detection. The initial interval widths used are 10 m in all position components and 0.1 m/s in the
velocity components. Drag and J2 are the perturbations that are explicitly modelled. The uncertainty in
the density is enclosed in an interval with a width of 2�10�6 kg/m3 and an uncertainty in the perturbation
acceleration is modelled by an interval with a width of 2�10�9 km/s2.

The nominal initial positions as computed from the TLE are input to SPG4 to propagate them to 00:00
UTC on February 10, 2009, i.e., 16 hour and 56 minutes before the actual collision. These nominal Cartesian
states are provided in Table 3.

The corresponding nominal orbits of both satellites are shown in Fig. 14 where the orbit of Iridium 33 is
shown in green and Cosmos 2251 in blue. The intersection of the two orbits on the Northern hemisphere is
the location of the actual collision.

Both orbits are propagated using veri�ed interval integration. VSPODE is used with a TM-order of 3,
ITS-order of 12 and initial stepsize of 10 seconds. Two possible collisions are found per revolution for the
initial integration with a stepsize of 10 seconds. One at the location where the actual collision occurred and
one at the close approach area of both orbits on the Southern hemisphere.

When the stepsize is reduced to 1.25 seconds, only possible collisions remain around the location of the
actual collision and all close approaches on the Southern hemisphere are determined safe. The �rst possible
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Figure 15. The veri�ed interval trajectories and interval collision between Cosmos 2251 and Iridium 33 that occurred
at 16:56 UTC on February 10, 2009, at 789 km above the Taymyr Peninsula in Siberia.

collision is detected at 15:15, the second between 16:55:48.75 and 16:55:51.25. This second collision is the
exact time of the real collision. Reducing the stepsize to 0.3125 seconds removes the possible collision at 15:15.
The real collision can still not be ruled out, as we expect since the satellites did collide. Further reduction
of the stepsize, changing state model and using a hybrid trajectory cannot rule out the real collision.

The interval trajectories and the detected collision interval computed using a stepsize of 5 seconds are
shown in Fig. 15. The blue and green line indicate the nominal trajectory of Cosmos 2251 and Iridium
33 respectively. The time dimension of the interval trajectory is indicated by the opacity of the intervals
where a darker interval indicates a later moment in time. Projections of the interval trajectory and the red
collision interval are shown on all three planes. This shows that a real collision can be successfully detected
by veri�ed collision detection.

The interval trajectories, even for the hybrid-trajectory with time intervals (stepsizes) of a fraction of
a second, still have interval sides of a few km, indicating large overestimation. It is therefore likely that
although this collision would have been correctly detected, collisions would also have been detected for cases
where they did not actually collide.

Socrates39 predicted a closest approach of 117 m between the two satellites.40 This is far smaller than the
interval enclosures of a few km computed using veri�ed integration. Approaches within 5 km occur about
a thousand times per week for one of the 66 active Iridium satellites with other tracked satellites. Interval
enclosure size thus has to decrease for practical applications.

VI. Conclusions and Recommendations

Veri�ed interval integration is successfully applied to satellite orbit propagation to create guaranteed
solution enclosures on satellite trajectories, valid over a time interval and taking uncertainties in initial state
and perturbation forces into account by enclosing them in interval. Also bounding truncation (numerical in-
tegration) and rounding errors are included. Modern veri�ed integration methods VNODE-LP and VSPODE
are applied in combination with orbital state models based on integration constants to try to create tight
solution enclosures and reduce overestimation, the largest problem of veri�ed interval integration.
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Overestimation in veri�ed interval integration of satellite orbits can be greatly reduced by using the
Taylor model based software implementation, VSPODE, combined with perturbation orbital state models
like the modi�ed equinoctial elements or the uni�ed state model. VPSODE is able to propagate orbits for
at least twice as long as VNODE-LP.

Earth-orbiting satellites can be veri�ed propagated for 15-20 orbits before the interval trajectory grows too
large and solution enclosures become useless, depending on the size of interval initial values and parameters
(forces). The example cases include an uncertainty of 10 m in all position components and 0.1 m/s in
the velocity components, an uncertainty in the atmospheric density, J2-gravity term, and an uncertain
perturbation acceleration of 1�10�8 km/s2. Although 15-20 orbits is still not much for many applications,
previous methods using interval Taylor series and Cartesian coordinates were only able to integrate for 2-4
orbits before breaking down.

The MEE produce the smallest solution enclosures for most orbit types, about 4-10 times smaller than
the Cartesian model and twice as small as the USM. However, the USM produces more consistent results for
di�erent orbit types. A hybrid method produced by combining interval trajectories computed using MEE
and USM combines the best characteristics of both methods.

Veri�ed interval trajectories can be used to detect collisions between satellites, as has been demonstrated
by the reconstruction and successful detection of the collision between the Iridium-33 and Cosmos-2251 satel-
lite in 2009. It can guarantee that no collisions will occur when certain bounds on measurement uncertainties
are assumed.

Further research is necessary to determine the performance of a veri�ed collision detection system that
detects collisions between a large number of satellites, including debris. Interval analysis has been proven
to be too crude for orbit propagation and Taylor model based computations should ideally be used in every
step of the veri�ed integration and collision detection.

To make veri�ed collision detection practically possible in the long term, it may be necessary to combine
it with conventional probability-based methods to be able to provide a veri�ed collision probability. This
makes it possible to prioritize possible collision avoidance maneuvers.
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