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Componentmode synthesis is commonly used to simulate the structural behavior of complex systems.Amongother

component mode synthesis techniques, the Craig–Bamptonmethod stands out for its popularity. However, for finely

meshed systems featuringmany components, the size of the resulting assembled system is dominated by the interface

degrees of freedom.The system-level interface reduction technique aims at reducing the size of the assembled reduced

model by extracting a few dominant interface modes. If the size of the interface degrees of freedom is large, the

resulting problem is almost as computationally expensive as the one associated to the full model. Conversely, the

local-level interface reduction technique reduces the interface of each substructure before assembly. In this case,

the computational effort associated to the local eigenvalue problem is moderate, but issues arise when enforcing

compatibility between interfaces. In this paper, the computational effort related to the interface reduction is

significantly reduced by performing two variants of the multilevel Craig–Bampton reduction when the subsystems

are assembled in subsets. This procedure localizes the interface reduction by applying amultilevel static condensation

and eigenvalue analysis on each subset in parallel. The different interface reduction techniques are assessed on

large-size realistic examples.

Nomenclature

B = signed Boolean matrix
g = external load vector
H = number of substructures
I = identity matrix
K = stiffness matrix
L = Boolean localization matrix
M = mass matrix
m = number of modal coordinates
n = number of physical degrees of freedom
p = connecting forces vector
q = physical degrees of freedom vector
U \ S = left singular vectors\diagonal singular value matrix

after singular value decomposition
V = number of interface sets
X = Craig–Bampton reduction basis
Z = number of second-level subsets when applying the

multilevel interface reduction
γ = generalized coordinates vector for Craig–Bamp-

ton subsystem
η = modal coordinates vector
ξ = unique set of generalized coordinates vector
ΦII \ ~ΦNN = internal vibration modes\interface-level internal

vibration modes matrix

~ΦCC = matrix of interface-level characteristic constraint
modes

~Φ = characteristic constraint modes
ΨIB \ ~ΨNC

= all constraint modes\interface-level constraint
modes matrix

ω = diagonal matrix containing eigenfrequencies

Subscripts

CB = referring to matrices and vectors after applying the
Craig–Bampton reduction

G = stacked matrices and vectors from all subsystems
LL = referring to matrices and vectors after applying the

local-level interface reduction
ML = referring to matrices and vectors after applying the

multilevel interface reduction
�s� = pertaining to the sth substructure
SL = referring to matrices and vectors after applying the

system-level interface reduction
Γ = pertaining to all subsets Γi assembled together
Γi = pertaining to the ith subsets named Γi

Superscripts

B = interface degrees of freedom
Bi = interface degrees of freedom with respect to the

interface set Bi

C = boundary component of the interface degrees of
freedom

I = internal degrees of freedom
N = internal component of the interface degrees of

freedom

I. Introduction

A SYSTEM consisting of multiple components can be modeled
efficiently with proper component mode synthesis (CMS)

techniques. In CMS, the dynamics of a substructure is described by a
truncated set of vibration modes of each subsystem combined with a
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set of static modes accounting for the coupling with neighboring
subcomponents [1]. The classic Craig–Bampton (CB) method was
first proposed in [2,3] and then simplified in [4,5]. It combines
the concepts of componentwise analysis and modal reduction
techniques, and it is one of thewell-known CMS technologies. In the
CB method, the coupling at an interface is realized by using a set of
constraint modes (CMs) and retaining all degrees of freedom (DOFs)
at the interface. However, the size of the CB basis may be dominated
by the CM’s DOFs if the finite element (FE) mesh is sufficiently fine.
Obviously, this limits the achievable reduction, and hence decreases
the efficiency of the substructuring approach. In this context, a proper
interface reduction technique is a must to bring the reduction basis to
a manageable size.
In 1977, Craig and Chang [6] proposed three interface reduction

methods by applying either a Guyan, Ritz, or modal reduction at the
interface. Castanier et al. [7] rediscovered the modal reduction
techniques by using a secondary eigenvalue analysis to the interface
partition of the CB system and proposing the commonly used system-
level characteristic constraint (SCC) modes. This technique was
applied after the system-level matrices were constructed. Con-
sequently, it did not offer flexibility for design runs because the SCC
modes must be recomputed for all the interface DOFs even if a design
change occurs at a single substructure. To bring the interface reduction
to a substructure level, Hong et al. [8] recently formulated the interface
reduction by generating the local-level characteristic constraint (LCC)
modes from mass and stiffness matrices associated to the interface
DOFs before assembly. The local-level interface reduction simplified
the eigenvalue problem by neglecting the coupling between
neighboring subcomponents. For specific systems where the stiffness
of adjacent substructures was significantly different, an undeformed
interface reduction [9] could also be applied by assuming that the
interface underwent only rigid-body motions.
Most of the interface reduction techniques mentioned here were

developed for the CB method, owing to its wide application in CMS
problems. Tran [10,11] indicated that the interface reduction
techniques could be implemented with the CB method, as well as
various free or hybrid interfacemode-based substructuring techniques,
like the CMS method proposed by MacNeal [12] and later by Rubin
[13]. The interface reduction idea could also be applied to the dual CB
method proposed by Rixen [14,15]. For large-scale structures with
multiple interfaces, Aoyama and Yagawa [16] introduced an optional
reduction method by analyzing the eigenmodes from adjacent
subcomponents to reduce the computational cost. Interface reduction
has also been efficiently extended to the CB approach for acoustic–
structure coupled fluid-filled piping systems [17]. Balmès applied the
generalized constraint modes, which were linear combinations of the
constraint modes, to provide a compatible model with an optimal
selection of the generalized constraint modes [18]. This idea could be
further extended to the system design process as shown in [19].
Bennighof and Lehoucq [20] proposed the automatic multilevel
substructuring (AMLS) method, which was a multilevel extension of
the CMS substructuring based on the sparsity of the system matrices.
The AMLS method was widely applied in the field of applied
mathematics by recursively applying the Gaussian block elimination
and modal condensation of the system matrices [21–23]. Besides all
the reduction methods using “interface modes,” an alternative method
called double modal synthesis [24,25] could also be applied to
compensate the modal truncation. The double modal synthesis was
further used to analyze brake squeal in [26]. The extension of the
current interface reduction techniques to geometrical nonlinear
domain remains a relevant topic. Recently, Sinou and Besset [27]
extended the double modal synthesis to study the self-excited
vibrations and time analysis of brake squeal in a nonlinear region.
Kuether et al. [28,29] recently proposed a nonintrusive model order
reduction technique by applying the system-level interface reduction.
The authors’ current efforts are directed to extend classic CBmethods
with both system-level interface reduction and modal derivatives (first
proposed in [30]) for problems characterized by distributed geometric
nonlinearities.
For linear systems, the system-level [7] and local-level [8]

interface reduction methods are two of the most commonly used

techniques for the CMS problem due to their easy implementation
and applicability. The system-level interface reduction can be
computationally expensive when the number of interface DOFs is
large. On the other hand, the local-level counterpart reduces
the computational effort by localizing the interface reduction at
each substructure. However, the interface compatibility will be
compromised if the independent reduction basis for each subsystem
is inadequate. In this paper, we present two variants of the multilevel
interface reduction method. We assemble the substructures into
localized subsets. A secondary CB substructuring procedure is then
applied in each subset. In the first variant, a secondary CB reduction
is applied to the interface DOFs of the subset only, whereas in the
second variant, the CB reduction is performed on all the DOFs of the
subset. As opposed to the local-level method, the proposed approach
does not simplify the interface coupling. Therefore, it is able to get
accurate approximation as compared to system-level interface
reduction methods while enabling computational savings by setting
smaller subsets and the possibility for parallelization for interface
reduction.
This paper is organized as follows: In Sec. II, the classic CB

method is briefly introduced. The subcomponents are assembled in a
primal manner, i.e., a unique set of interface DOFs is defined. In
Sec. III, the existing system-level and local-level interface reduction
techniques proposed in [7,8] are summarized and evaluated.
Section IV presents two multilevel interface reduction variants,
which were discussed previously. A computational complexity
analysis is presented in Sec. V, and the advantages of the proposed
approach are discussed and compared to the SCC and LCC mode-
based methods. In Sec. VI, representative numerical examples
are investigated. Discussions and conclusions are provided in
Sec. VII.

II. Classic Craig–Bampton Method and
Primal Assembly

In this section, we first briefly outline the CB method [4] for
subcomponents. Then, the subcomponents are assembled in a primal
manner [31] by choosing a unique set of interface DOFs. For a linear
undamped system composed of H subsystems, the equations of
motion (EOMs) of the global system with uncoupled substructures
can be written in a block-diagonal format as

MG �qG � KGqG � gG � pG (1)

where the subscript G indicates that the vectors and matrices of all
subsystems are stacked for the entire system by stating

MG � diag
�
M�1�; : : : ;M�H�

�
; qG � col

�
q�1�; : : : ; q�H�

�
;

KG � diag�K�1�; : : : ; K�H��; gG � col
�
g�1�; : : : ; g�H�

�
;

pG � col
�
p�1�; : : : ;p�H�

�

whereM�s� andK�s� are the constant mass and stiffness matrices; and
g�s�, p�s�, and q�s� are the external load vector, the connecting load
vector imposed by neighboring subsystems, and the generalized
nodal DOFs vector of the sth decoupled subcomponent, respectively.
Here, diag� : : : � and col� : : : � indicate block diagonal and column
stacking, respectively.

A. Craig–Bampton Method

Let us focus on the sth subsystem. The nodal DOFs q�s� in the sth
subsystem can be partitioned into internal DOFs qI�s� ∈ RnI�s� and
boundary DOFs qB�s� ∈ RnB�s� with nI�s� � nB�s� � n�s�.
The CB transformation is a linear combination of constraint

modes

ΨIB
�s� ∈ RnI�s�×n

B
�s�

WU, TISO, AND VAN KEULEN 2031
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and internal vibration modes (IVMs)

ΦII
�s� ∈ RnI�s�×m

I
�s�

by stating

q�s� �
2
4 qB�s�
qI�s�

3
5 �

2
4 IBB�s� 0

ΨIB
�s� ΦII

�s�

3
5
2
4 qB�s�
ηI�s�

3
5 ≜ X�s�γ�s� (2)

where ηI�s� is the vector of modal coordinates with respect to the

IVMs, and X�s� and γ�s� are the CB reduction matrix and

corresponding generalized coordinate vector of the sth subsystem.
To illustrate the concept, we consider here a ⊓-shaped model

composed of four substructures (S1 to S4) connected through three

interfaces (B1 to B3), as shown in Fig. 1. The model is fixed at the

bottom (z � 0). The CMs and IVMs for each substructure can be

calculated independently.
With Eq. (2), we generate a projection basis for the sth substructure,

where the interface DOFs qB�s� are retained without reduction. The

reduced EOMs for the substructure are obtained via a classic Galerkin

projection, and they are expressed by

2
4 ~MBB

�s� ~MBI
�s�

~MIB
�s� III�s�

3
5

|���������{z���������}
~M�s�

2
4 �qB�s�
�ηI�s�

3
5�

2
4 ~KBB

�s� 0

0 ω2
�s�

3
5

|��������{z��������}
~K�s�

2
4qB�s�
ηI�s�

3
5�

2
4 ~gB�s�
~gI�s�

3
5

|��{z��}
~g�s�

�
�
pB
�s�
0

�

(3)

where ω2
�s� is the diagonal matrix containing the eigenvalues of the

retained IVMs. For all the details, one should refer to the original

paper [4].

B. Primal Assembly of Component Models

The CB transformations [Eq. (2)] for each substructure can be

collected for the entire system in a block-diagonal form by stating

qG � XGγG, where XG � diag�X�1�; : : : ;X�H�� is a block-diagonal
matrix consisting of all substructure CB reduction matrices, and

γG � col�γ�1�; : : : ; γ�H�� is the assembled set of the generalized

coordinates of subsystems for the global system.
Classically, the subcomponents are assembled in a primal manner

[31]; i.e., a new reduced set of generalized coordinates of the

assembled system ξCB for the CB model is defined here as

ξCB � col
�
qBCB; η

I
CB

�
; with ηICB � col

�
ηI�1�; : : : ; η

I
�H�

�
(4)

where qBCB ∈ RnBCB consists of the unique choice of all interface DOFs

col�qB�1�; : : : ; qB�H��, and

ηICB ∈ RmI
CB

contains the internal generalized coordinates of all the substructures.
For internal vibration modes, it holds that

mI
CB �

Xs�H

s�1

mI
�s�

The compatibility condition ensures no relative motion between
the boundaries of connected substructures. The final primal EOMs
for the coupled system can be written as

LT
CBX

T
GMGXGLCB|������������{z������������}

~MCB

�ξCB � LT
CBX

T
GKGXGLCB|�����������{z�����������}

~KCB

ξCB � LT
CBX

T
GgG|����{z����}

~gCB

(5)

where LCB is the primal assembly operator, and the connected force
vectors from neighboring systems are eliminated to satisfy the force
equilibrium condition. The reduced-order model (ROM) in Eq. (5) is
denoted as CB-ROM. The detailed derivation of Eq. (5) can be found
in [1].
The assembled matrices and vectors ~MCB, ~KCB, and ~gCB can be

further partitioned, corresponding to the interface coordinates qBCB
and internal coordinates ηICB. The reduced EOMs [Eq. (5)] are
therefore rewritten in a partitioned style as

2
4 ~MBB

CB
~MBI
CB

~MIB
CB IIICB

3
5
2
4 �qBCB

�ηICB

3
5�

2
4 ~KBB

CB 0

0 ω2
CB

3
5
2
4 qBCB

ηICB

3
5 �

2
4 ~gBCB

~gICB

3
5
(6)

where ω2
CB � diag�ω2

�1�; : : : ;ω
2
�H��. The detailed formulation of the

partitionedmatrices ~MBB
CB and ~KBB

CB can be found in [31], and theywill
be not discussed here.
If the finite element mesh is sufficiently fine and many

subcomponents with distributed interfaces are considered, the size of
these reduced system-level matrices is dominated by the interface
DOFs. Although the number of DOFs is aggressively reduced, the
sparsity of the matrices is lost. The computational gain will thus be
limited. To overcome this problem, interface reduction can be applied
such that truly compact models can be obtained.

III. System-Level and Local-Level Interface
Reduction Methods

The interface reduction techniques aim to reduce the size of the CB
model by decreasing the number of interface DOFs. In principle, the
interface reduction techniques can be applied on both a substructure
level as well as on an assembly level. In this section, the commonly
used interface reduction techniques on the system level [7] and
substructure level [8] will be briefly discussed.

A. System-Level Interface Reduction

The system-level interface reduction was first proposed in [6] and
was further discussed in [7,18,32]. As a starting point, we recall the
assembled EOMs in Eq. (6) for the CBmodels. By fixing the internal
DOFs for all subcomponents, we obtain

~MBB
CB �qBCB � ~KBB

CBq
B
CB � ~gBCB (7)

where

~MBB
CB ∈ RnBCB×n

B
CB ; ~KBB

CB ∈ RnBCB×n
B
CB

are the interface partition of the assembled mass and stiffness
matrices in Eq. (6). This equation is used to find the interface

Fig. 1 Illustration of the CB reduction on a ⊓-shaped FE model
composed of four substructures.
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behavior. Hence, the interface modes can be computed from a

secondary eigenvalue analysis of Eq. (7) as

�
~KBB
CB − ~ω2

j
~MBB
CB

�
~ϕj � 0; j � 1; : : : ; nBCB (8)

where the system-level characteristic constraint modes

~ΦSL ∈ RnBCB×m
B
SL

are defined here as a truncated set of the eigenvectors as

~ΦSL � � ~ϕ1; : : : ; ~ϕmB
SL
�

with

mB
SL ≪ nBCB

The corresponding eigenvalues can be rewritten in diagonal

matrix as

~ω2
SL � diag

�
~ω2
1; : : : ; ~ω

2
mB

SL

�

Castanier et al. [7] suggested that the number of interface DOFs

could be reduced by using this new set of SCCmodes, where a single

SCC mode represented more global motion at the interface as

opposed to constraint modes. Depending on the frequency range of

interest, the SCCmodes could be used to generate a newCMSmodel

with the significantly reduced number of DOFs. By taking a selected

set of SCC modes, the interface DOFs were approximated by stating

qBCB � ~ΦSLηBSL

Essentially, the interface dominant behavior is given by the low-

frequency vibration modes obtained by Guyan reduction [33].
The final EOMs by applying the system-level interface reduction

techniques can be expressed as

2
4 IBBSL � ~ΦSL�T ~MBI

CB

~MIB
CB

~ΦSL IIICB

3
5

|����������������������{z����������������������}
~MSL

2
4 �ηBSL

�ηICB

3
5�

2
4 ~ω2

SL 0

0 ω2
CB

3
5

|���������{z���������}
~KSL

2
4 ηBSL

ηICB

3
5

�
2
4 � ~ΦSL�T ~gBCB

~gICB

3
5

|����������{z����������}
~gSL

(9)

where the SCC modes ~ΦSL are assumed to be mass normalized, and

the assembled stiffness matrix is now fully diagonal. The ROM in

Eq. (9) is denoted as SL-ROM.
For illustration, the first twoSCCmodes of the⊓-shapedmodel are

shown in Fig. 2. The SCC modes exhibit a global rotation and

translation at the interface DOFs. The internal DOFs follow the

motion statically, as dictated by the deformation at the interface. The

gray color denotes statically condensedmesh. Themain advantage of

this method lies in the fact that the interface compatibility across

coupled substructures is still exactly enforced. However, the system-

level reduction bears two major drawbacks. First, the stiffness and

mass matrices ( ~KBB
CB and ~MBB

CB ) are no longer sparse after the static

condensation. Second, because the SCCmodes are obtained after the

system-level matrices are constructed, the SCC modes must be

recomputed for all the interface DOFs, even if a design modification

is performed for a single substructure. Therefore, for a large-scale

system with multiple interface connections, the solution of the

eigenvalue problem [Eq. (8)] is expensivewhen considering the large

size of interface DOFs.

B. Local-Level Interface Reduction

An alternative way to achieve interface reduction was proposed in

[8] and named the “local-level reduction.”We briefly summarize the

method in this section. We start with the reduced equation of motion

[Eq. (3)] for the sth substructure. By fixing the internal DOFs ηI�s�,
we get

~MBB
�s� �qB�s� � ~KBB

�s�qB�s� � ~gB�s� � pB
�s� (10)

As for the system-level case, the local interface reduction

technique is also based on a secondary eigenvalue analysis of the free

vibration of each substructure. In this case, the interaction with

neighboring subcomponents is simply neglected by setting pB
�s� � 0.

This results in the eigenvalue problem:

Fig. 2 First two SCC modes for the ⊓-shaped FE model.
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�
~KBB
�s� − ~ω2

j;�s� ~MBB
�s�
�
~ϕj;�s� � 0; j � 1; : : : ; nB�s� (11)

where a truncated set of the eigenvectors

~ΦLL;�s� ∈ RnB�s�×m
B
�s�

called the local-level characteristic constraint modes is collected as

~ΦLL;�s� �
h
~ϕ1;�s�; : : : ; ~ϕmB

�s� ;�s�
i

with

mB
�s� ≪ nB�s�

The LCCmodes ~ΦLL;�s� are used to reduce the interface DOFs for
each substructure in a local sense.
Because the LCC modes are calculated without the knowledge of

adjacent substructures, the subcomponent-level interface reduction
may result in nonconforming interfaces and may cause so-called
interface locking if the reduction basis is inadequate and enforces
only weak compatibility between the substructures [34]. Therefore,
it is important to solve the compatibility problems during the
assembly step.
According to the method proposed by Hong et al. [8], the LCC

modes of each interface, denoted as ~ΦBi

LL for the interface Bi, are

simply combined from connecting substructures. Take, for instance,

the ⊓-shaped structure in Fig. 3: ~ΦB1

LL contains ~ΦB1

LL;�1� and ~ΦB1

LL;�2�.
This augmented set of LCC modes is used as the reduction basis for
the interface of every connected substructure. This guarantees that
the interface dynamics of each connected substructure are well
described, at the cost of increasing the size of the basis. As an
example, the ⊓-shaped model is again used to illustrate the
procedure; see Fig. 3. The LCCmodes are shown in different colors at
the interface DOFs for each substructure. The gray mesh indicates
that the internal DOFs are statically condensed. The LCC modes of
each interface are simply combined from all the connecting
subcomponents.
Due to the simple combination of multiple interface sets from

different subsystems, the resulting reduction basis may contain
linearly dependent vectors. To prevent ill conditioning, the basis
should be orthogonalized. This can be achieved by performing a
further singular value decomposition (SVD) for each interface Bi as

UBiSBi�DBi�T � ~ΦBi

LL (12)

whereUBi and SBi are the left singular vectors and diagonal singular
value matrix for interface Bi. In Hong et al.’s work [8], only the left

singular vectors corresponding to singular values larger than 0.01%
of the maximum singular value are kept, and they are placed inUBi

LL.
This yields the final reduction basis for all the interface DOFs as

qBCB � diag
�
UB1

LL; : : : ;U
BV

LL

�
⋅ col

�
ηB1

; : : : ; ηBV

�
≜ UηBLL (13)

where the subscript V is the number of interface sets. The detailed
assembly procedure can be found in [8], which was complemented
with a clear example. The final reduced equation of motion can be
obtained by substituting the interface reduction [Eq. (13)] to the
assembly of CB equations [Eq. (6)] as

2
4UT ~MBB

CBU UT ~MBI
CB

~MIB
CBU IIICB

3
5

|�������������������{z�������������������}
~MLL

2
4 �ηBLL

�ηICB

3
5�

2
4UT ~KBB

CBU 0

0 ω2
CB

3
5

|���������������{z���������������}
~KLL

2
4 ηBLL

ηICB

3
5

�
2
4UT ~gBCB

~gICB

3
5

|������{z������}
~gLL

(14)

where the ROM in Eq. (14) is denoted as LL-ROM.
The a priori interface reduction on the subcomponent level is easy

to accomplish, without knowledge of the adjacent substructures.
Moreover, the eigenvalue problem associated to the LCCmodes is of
limited size, and therefore computationally cheap. However, because
the interface behavior is dependent on all components to which it is
connected, the local-level interface reduction may give far less
accurate results than the system-level interface reduction because it
cannot properly account for the coupling between connecting
subsystems.

IV. Multilevel Interface Reduction

To combine the accurate system-level approach with the
computationally efficient local-level method, we present two
reduction methods based on a multilevel CB substructuring for the
local subset. Each subset is a collection of some adjacent (but not all)
substructures for the entire system. This procedure localizes the
interface reduction by applying a multilevel static condensation and
eigenvalue analysis on interface DOFs of local subsets and, as
opposed to traditional local-level techniques, does not compromise
the compatibility at interfaces. In practice, it is often the case that,
within the same organization, different subcomponent models have
to be assembled first into larger subsystems. Next, they are joined
with other subsystems developed by different organizations. The
multilevel approach we propose nicely fits this scenario.
The process can be summarized in the following steps:
1) The global system is divided into substructures. For every

substructure, a classical CB reduction basis is obtained, for which the
interface DOFs are fully retained and the internal DOFs are
reproduced by a combination of CMs and IVMs. This step has been
explained in Sec. II.A.
2) We group the reduced CB models of the substructures into

second-level subsets; the subcomponents within each subset are
assembled in parallel at this stage. For each subset, the total DOFs can
be partitioned into three sets: a) internal components of the interface
DOFs (denoted as NDOFs), which have been used to connect the
subsystems categorized in the same subset; b) boundary components
of the interface DOFs (denoted as CDOFs), which will be connected
with the neighboring subsets; and c) internal DOFs, which
correspond to the modal coordinates of IVMs for the subsystems
within the same subset, denoted here as IDOFs. To further reduce the
size of system matrices in each subset, two multilevel ROMs, named
ML1-ROM and ML2-ROM, have been proposed here. They are
specifically described as follows:

a) Regarding the ML1-ROM, for each subset, a secondary CB
reduction is performed for the interface DOFs (CDOFs and
NDOFs). More specifically, the NDOFs are treated as the internal

Fig. 3 Local-level interface reduction technique [8] for the ⊓-shaped
model.
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component of the secondary CB reduction, and thus replaced by a
truncated set of modal coordinates. The CDOFs are treated as the
interface component of the secondary CB reduction, and therefore
retained for exact interface compatibility during the subset
assembly in the next step.
b) Regarding ML2-ROM, for each subset, a secondary CB

reduction is performed for all DOFs (CDOFs, NDOFs, and IDOFs)
within the subset. AlthoughCDOFs are the interface component of
the secondary CB reduction, both NDOFs and IDOFs are the
internal component of the secondary CB reduction, and therefore
are further reduced.
3) The subsets are coupled together using the primal assembly. It is

worth noticing that step 2 can be applied recursively in the casewhere
extra assembly levels are required. For the sake of simplicity, in this
work,we assume that the assembled subsets obtained from step 2will
not be further connected with additional subsets. If the size of the
CDOFs is still too large and a further reduction is desired, a modal
truncation for the CDOFs can be performed as for the system-level
reduction in Sec. III.A.
To apply the multilevel interface reduction for an arbitrary

system, we start with the stage where all the substructures are

reduced with the CB method, as discussed in Sec. II.A. The

substructures within the ith subset Γi are then assembled together in

the primal way by defining a unique set of interfaceDOFswithin the

subset. The assembly procedure is identical to the primal assembly

introduced in Sec. II.B, and it will not be repeated here. The reduced

EOMs are analogous to Eq. (6) and arewritten here for the ith subset
Γi as

2
4MBB

Γi
MBI

Γi

MIB
Γi

IIIΓi

3
5

|����������{z����������}
MΓi

2
4 �qBΓi

�ηIΓi

3
5�

2
4KBB

Γi
0

0 ω2
Γi

3
5

|���������{z���������}
KΓi

2
4 qBΓi

ηIΓi

3
5

�
2
4 gBΓi

gIΓi

3
5

|��{z��}
gΓi

�
2
4pB

Γi

0

3
5; i � 1; 2; : : : ; Z (15)

where the connecting force imposed by the neighboring subset is

indicated by pB
Γi

to satisfy the force equilibrium, and Z is the

number of subsets for the entire system. For the ith subset, qBΓi
is a

unique set of the interface DOFs, and ηIΓi
is the internal DOFs. The

formulation of all partitioned mass matrices MΓi
, stiffness

matrices KΓi
, and external load vectors gΓi

can be derived as

described in Sec. II.B.

As mentioned in step 2, the interface DOFs qBΓi
of the subset Γi are

partitioned into two sets (i.e., CDOFs qCΓi
and NDOFs qNΓi

) by

expressing that

qBΓi
� col�qCΓi

; qNΓi
�

With this notation, Eq. (15) can be rewritten for an arbitrary

structure with Z subsets in a generalized fashion:

2
6664
MCC

Γi
MCN

Γi
MCI

Γi

MNC
Γi

MNN
Γi

MNI
Γi

MIC
Γi

MIN
Γi

IIIΓi

3
7775

|������������������{z������������������}
MΓi

2
6664

�qCΓi

�qNΓi

�ηIΓi

3
7775�

2
6664
KCC

Γi
KCN

Γi
0

KNC
Γi

KNN
Γi

0

0 0 ω2
Γi

3
7775

|�����������������{z�����������������}
KΓi

2
6664
qCΓi

qNΓi

ηIΓi

3
7775

�

2
6664
gCΓi

gNΓi

gIΓi

3
7775

|��{z��}
gΓi

�

2
6664
pC
Γi

0

0

3
7775 (16)

To further reduce the size of system matrices in Eq. (16), a

secondary CB projection is applied at each subset independently. As

mentioned in step 2, we propose two ROMs for the multilevel

interface reduction techniques. To assemble the neighboring subsets

in a fully compatible way, CDOFs qCΓi
are treated as the interface for

the CB reduction, and thus are not reduced in both methods.
For ML1-ROM, a secondary CB reduction is performed only for

the interface DOFs (CDOFs qCΓi
and NDOFs qNΓi

) by stating

2
6664
qCΓi

qNΓi

ηIΓi

3
7775 �

2
6664

I 0 0

~ΨNC
Γi

~ΦNN
Γi

0

0 0 I

3
7775

2
6664
qCΓi

ηNΓi

ηIΓi

3
7775 (17)

where the modes ~ΨNC
Γi

are denoted here as the interface-level

constraint modes (ILCMs), and the modes ~ΦNN
Γi

are called the

interface-level internal vibration modes (ILIVMs). The ILCMs ~ΨNC
Γi

and ILIVMs ~ΦNN
Γi

are calculated as

~ΨNC
Γi

� −
�
KNN

Γi

�−1
KNC

Γi
and KNN

Γi

~ΦNN
Γi

−MNN
Γi

~ΦNN
Γi

ς2Γi
� 0

(18)

The ILIVMs ~ΦNN
Γi

are truncated based on the frequency range of

interest, and ς2Γi
is the corresponding diagonal eigenfrequency

matrix. It is worth noticing that the size of the eigenvalue problems

[Eq. (18)] is much smaller than that of the system-level counterpart

[Eq. (8)], and therefore computationally less demanding.
For ML2-ROM, a secondary CB reduction is performed for all

DOFswithin the ith subset; theNDOFs qNΓi
and IDOFs ηIΓi

aremerged

together and further reduced during the modal truncation. The CB

reduction can be expressed as

2
664
qCΓi

qNΓi

ηIΓi

3
775 �

2
664

I 0

~ΨNC
Γi

~ΦNM
Γi

0 ~ΦIM
Γi

3
775
2
4 qCΓi

ηMΓi

3
5 (19)

where ~ΦNM
Γi

and ~ΦIM
Γi

are the rows of merged internal vibrationmodes

(MIVMs) ~ΦM
Γi
corresponding to NDOFs and IDOFs, respectively. To

calculate the MIVMs, the eigenvalue analysis is applied to the ROM

in Eq. (16), when CDOFs qCΓi
are fixed, as

2
4KNN

Γi
0

0 ω2
Γi

3
5
2
4 ~ΦNM

Γi

~ΦIM
Γi

3
5 −

2
4MNN

Γi
MNI

Γi

MIN
Γi

IIIΓi

3
5
2
4 ~ΦNM

Γi

~ΦIM
Γi

3
5τ2Γi

� 0

(20)

where the MIVMs ~ΦM
Γi

are truncated, as before, based on the

frequency range of interest; and τ2Γi
is the corresponding diagonal

eigenfrequency matrix.
It should be noticed here that the computational cost of the

eigenvalue solution in Eq. (20) is slightly more expensive when

compared to its counterpart in Eq. (18) because the IDOFs ηIΓi
are also

included. However, the size of ηIΓi
will not be large if assuming that

the internal DOFs of each subsystem have already been significantly

reduced during the CB projection as discussed in Sec. II.A.

Therefore, the computational cost of Eq. (20) will still be small when

compared to its counterpart [Eq. (8)] in the SL-ROM.
By substituting the interface CB reduction for the ML1-ROM

[Eq. (17)] and ML2-ROM [Eq. (19)] into Eq. (16) and projecting,

we obtain
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2
6664

~MCC
Γi

~MCN
Γi
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Γi
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Γi

~MNI
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Γi
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Γi

IIIΓi

3
7775

2
6664

�qCΓi

�ηNΓi

�ηIΓi

3
7775�

2
6664

~KCC
Γi

0 0

0 ς2Γi
0

0 0 ω2
Γi

3
7775

2
6664
qCΓi

ηNΓi

ηIΓi

3
7775

�

2
6664

~gCΓi

~gNΓi

~gIΓi

3
7775�

2
6664
pC
Γi

0

0

3
7775 forML 1-ROM (21)

and

2
4 ~MCC

Γi
~MCM
Γi

~MMC
Γi

IMM
Γi

3
5
2
4 �qCΓi

�ηMΓi

3
5�

2
4 ~KCC

Γi
0

0 τ2Γi

3
5
2
4 qCΓi

ηMΓi

3
5

�
2
4 ~gCΓi

~gMΓi

3
5�

2
4pC

Γi

0

3
5 forML 2-ROM (22)

where the formulation of all partitioned matrices and vectors can be
easily derived from the Galerkin projection, and it will not be
discussed here.
Once all the reduced subsets are constructed, we need to assemble

them in a primalmanner by choosing a unique set ofCDOFs,which is
denoted here as qCΓ . The assembly procedure is identical to the primal
assembly introduced in Sec. II.B. The reduced EOMs for the entire
system are analogous to Eq. (6) and are directly written here as

2
6664

~MCC
Γ ~MCN

Γ ~MCI
Γ

~MNC
Γ INN

Γ
~MNI
Γ

~MIC
Γ ~MIN

Γ IIICB

3
7775

2
6664

�qCΓ

�ηNΓ

�ηICB

3
7775�

2
6664

~KCC
Γ 0 0

0 ς2 0

0 0 ω2
CB

3
7775

2
6664

qCΓ

ηNΓ

ηICB

3
7775

�

2
6664

~gCΓ

~gNΓ

~gICB

3
7775 for ML1-ROM (23)

and

2
4 ~MCC

Γ ~MCM
Γ

~MMC
Γ IMM

Γ

3
5
2
4 �qCΓ

�ηMΓ

3
5�

2
4 ~KCC

Γ 0

0 τ2

3
5
2
4 qCΓ

ηMΓ

3
5

�
2
4 ~gCΓ

~gMΓ

3
5 for ML2-ROM (24)

where

ς2 � diag
�
ς2Γ1

; : : : ; ς2ΓZ

�

τ2 � diag
�
τ2Γ1

; : : : ; τ2ΓZ

�

ηNΓ � col
�
ηNΓ1

; : : : ; ηNΓZ

�

and

ηMΓ � col
�
ηMΓ1

; : : : ; ηMΓZ

�

The formulation of all the partitioned mass and stiffness matrices in
Eqs. (23) and (24) can be derived as described in [31], and they will
not be discussed here.
If a further reduction of the CDOFs qCΓ is still desired, we can apply

the system-level interface reduction technique as discussed in
Sec. III.A. By fixing ηNΓ and ηICB in Eq. (23) or fixing ηMΓ in Eq. (24),

we get

~MCC
Γ �qCΓ � ~KCC

Γ qCΓ � ~gCΓ (25)

where

~MCC
Γ ∈ RnCΓ×n

C
Γ ; ~KCC

Γ ∈ RnCΓ×n
C
Γ

are the mass and stiffness matrices when all DOFs are statically

condensed to the CDOFs, and nCΓ is the size of vector qCΓ . Then, the
motion of qCΓ is approximated by performing a modal truncation as

qCΓ � ~ΦCC
Γ ηCΓ ; with

�
~KCC
Γ − υ2j ~MCC

Γ

�
~ϕCC
j;Γ � 0; j � 1; : : : ; nCΓ

(26)

where the interface-level characteristic constraint (ILCC) modes

~ΦCC
Γ �

h
~ϕCC
1;Γ; : : : ; ~ϕ

CC
mC

Γ ;Γ

i

are a truncated set of the eigenvectors, with mC
Γ ≪ nCΓ . The

corresponding eigenvalues can be rewritten in a diagonal matrix form

as υ2 � diag�υ21; : : : ; υ2mC
Γ
�.

Substitution of the interface reduction [Eq. (26)] to Eqs. (23) and

(24) via a Galerkin projection then gives the final reduced EOMs for

the ML1-ROM as

2
6664

ICCΓ � ~ΦCC
Γ �T ~MCN
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Γ �T ~MCI

Γ

~MNC
Γ ~ΦCC

Γ INN
Γ
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Γ
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Γ IIICB

3
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2
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�ηICB

3
7775

�

2
6664
υ2 0 0

0 ς2 0

0 0 ω2
CB

3
7775

|������������{z������������}
~KML1

2
6664

ηCΓ

ηNΓ

ηICB

3
7775 �

2
6664
� ~ΦCC

Γ �T ~gCΓ
~gNΓ

~gICB

3
7775

|���������{z���������}
~gML1

(27)

and for the ML2-ROM as

2
4 ICCΓ � ~ΦCC

Γ �T ~MCM
Γ

~MMC
Γ ~ΦCC

Γ IMM
Γ

3
5

|������������������������{z������������������������}
~MML2

2
4 �ηCΓ

�ηMΓ

3
5�

2
4 υ2 0

0 τ2

3
5

|������{z������}
~KML2

2
4 ηCΓ

ηMΓ

3
5

�
2
4 � ~ΦCC

Γ �T ~gCΓ
~gMΓ

3
5

|���������{z���������}
~gML2

(28)

As can be noticed, the reduced stiffness matrices in both Eqs. (27)

and (28) are both fully diagonal, as is the case in Eq. (9) when

adopting the system-level interface reduction. Here, we stress that the

effort in obtaining Eqs. (27) and (28) is lower than its counterpart in

the system-level approach discussed in Sec. III.A.
For illustration, we take the ⊓-shaped model in Fig. 4 as an

example. The CB-reduced subsystems are grouped into two local

subsets: subset Γ1, comprising substructures S1 and S2; and subset

Γ2, comprising substructures S3 and S4. The interface DOFs of the
⊓-shapedmodel are here partitioned into three components asB1,B2,

and B3. In this model, the interface B2 acts as the boundary

component of the interface DOFs (CDOFs), which connects the

subsets Γ1 and Γ2. We show the different reduction bases of these

two multilevel interface reduction techniques in Fig. 4. For both the

ML1-ROM and ML2-ROM, we subdivide the interface reduction
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procedure into three steps. The first step, as discussed, is CB
reduction at the subsystem level. In the ML1-ROM, the gray mesh
indicates that the internal DOFs are condensed at step 2. All the
truncated eigenvectors (i.e., IVMs and ILVMs) from step 1 to step 2
are kept in the final reduction basis. In the ML2-ROM, the IVMs of
each substructure at step 1 are then discarded because the merged
vibration modes of the assembled subset are used to reproduce the
dynamics of the subset itself. With the same frequency cutoff
criterion, the ML2-ROM will generally result in a reduction basis
with smaller size when compared to the ML1-ROM.
In the next section, a detailed analysis of the computational cost

associated to the multilevel interface reduction will be given. We
show the computational advantages of the proposed methods as
compared to the system-level and local-level approaches.

V. Computational Complexity

We estimate here the computational cost associated to the
proposedmultilevel interface reduction and compare it to the system-
and local-level approaches. We start with the given CB basis in
Eq. (3) and reduced EOMs in Eq. (6), which are the foundation for all
the interface reduction methods.
For the SL-ROM, the solution of eigenvalue problems for the

interface partition of the assembled CBmatrices in Eq. (8) is themost

involved operation. For the dense matrices ~KBB
CB and ~MBB

CB , the

solution of the eigenvalue problem takes O��nBCB�3� flops using QR

and QZ methods [35], where nBCB is the number of a unique set of all

interface DOFs.
For the LL-ROM, the secondary eigenvalue analysis in Eq. (11) is

performed for the interface DOFs of each subsystem locally. Take the

sth subsystem, for instance; it takesO��nB�s��3� flops for the eigenvalue
analysis for the dense matrices ~KBB

�s� and ~MBB
�s� , where nB�s� is the

number of interface DOFs for the sth substructure. To prevent ill

conditioning, in Eq. (12), a singular value analysis is used to reshape

the LCC modes ~ΦBi

LL for each interface set Bi, which will take [36]

O�nBi × �mBi�2� flops where nBi is the number of DOFs at interface

Bi, and mBi is the number of truncated LCC modes from

substructures connecting through interface Bi.
For the ML1-ROM, solving the eigenvalue problem in Eq. (18) of

the interface-level subsetΓi takesO��nNΓi
�3� flops where nNΓi

is the size

of vector qNΓi
for the subset Γi. For the ML2-ROM, solving the

eigenvalue problem in Eq. (20) takes O��nNΓi
�mI

Γi
�3� flops where

mI
Γi
is the number of IVMs of the subsystems within the subset Γi. In

general, the IVMs in each subsystem have been efficiently truncated

so thatmI
Γi
≪ nNΓi

. Therefore, the extra computational cost associated

to the ML2-ROM when compared to the ML1-ROM will be only

marginal. The solution of interface-level CMs in Eq. (18) for subset

Γi is the same for both theML1-ROM andML2-ROM. It requires the

factorization of the dense matrix ~KNN
Γi

, which is also computationally

expensive. In fact, the complexity of the factorization of a dense

nNΓi
× nNΓi

matrix is given by O��nNΓi
�2.38� flops, see [37]. If a further

reduction of the CDOFs qCΓ is desired, the eigenvalue analysis in

Eq. (26) will take an extraO��nCΓ �3� operations where nCΓ is the size of

vector qCΓ .
All the estimated costs are summarized in Table 1. It shows that the

computational cost of the different techniques mainly depends on the

number of interface DOFs involved in the reduction procedures.

Table 1 Computational cost estimation of the most expensive operations of different interface reduction techniques

Method Significant operations

SL-ROM Eigenvalue analysis in Eq. (8)
O��nBCB�3�

LL-ROM Eigenvalue analysis in Eq. (11) Singular value decomposition in Eq. (12)
O��nB�s��3� k O�nBi × �mBi �2� k

ML1-ROM Eigenvalue analysis in Eq. (18) Matrix factorization in Eq. (18) Eigenvalue analysis in Eq. (26)
O��nNΓi

�3� k O��nNΓi
�2.38� k O��nCΓ �3�

ML2-ROM Eigenvalue analysis in Eq. (20) Matrix factorization in Eq. (18) Eigenvalue analysis in Eq. (26)
O��nNΓi

�mI
Γi
�3� k O��nNΓi

�2.38� k O��nCΓ �3�

Fig. 4 Illustration of the two multilevel interface reduction techniques for the ⊓-shaped model.
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As opposed to the system-level interface reduction, the local-level

andmultilevelmethods can be applied for each substructure/subset in

parallel. For clarity, we labeled the parallelizable operations for each

substructure/subset with the symbol k in Table 1. Each of these

models are of significantly smaller size as compared to the fullmodel.

Therefore, the computational cost for the LL-ROM,ML1-ROM, and

ML2-ROM only depends on the maximum cost associated to the

largest subcomponent/subset. Given a system with a large number of

substructures and interface sets, it always holds that

nBCB>max
�
nB�s�

�
; nBCB>max�nBi�; with s�1; :::;H; i�1; :::;V

(29)

when the SL-ROM and LL-ROM are compared; and

nBCB>nCΓ ; n
B
CB>max

�
nNΓj

�
; nBCB>max

�
nNΓj

�mI
Γj

�
;with j�1; :::;Z

(30)

when we compared the performances between the SL-ROM and

ML1-ROM or ML2-ROM.
Equations (29) and (30) indicate that the number of interfaceDOFs

for the entire system is much larger than the one of a single

substructure/subset. This highlights the potential computational

savings of performing the local-level and multilevel interface

reduction techniques with respect to the system-level interface

reduction when parallel computation is performed for each

substructure/subset with a much smaller size.
In this work, we also compare the computational efficiency of

different interface reduction methods when a transient analysis is

performed on the so obtained ROMs. The implicit Newmark method

is adopted for the time integration, with parameters α � 1∕2 and

β � 1∕4. The detailed procedure of the Newmark method can be

found in [38]. The calculation of the modal amplitude increment Δη
at each time step, which is the most time-consuming operation, is

given by

Δη � K−1r; with K � M� βΔt2K � αΔtC (31)

where K is the dynamic stiffness matrix, which can be computed

based on the reduced stiffness andmassmatrices in different interface

reduction basis. The Rayleigh damping is adopted, and the

coefficients are chosen to match amodal damping of 0.02 for the first

two modes (see [39] for details). The Cholesky factorization of the

dynamic stiffness matrices K is applied before the time integration.

The computational cost of the time integration is mainly determined

by the size of the ROMs, as shown in the following section.

VI. Numerical Examples

To assess the accuracy of the different methods, we compare the

eigenfrequencies and eigenmodes obtained by using different ROMs

for two numerical examples. The linear dynamic response is further

investigated in Sec. VI.B. In particular, we refer to the full model (i.e.,

without reduction) as Full, the CB-reduced model (without interface

reduction) as CB-ROM; the system-level, local–level, and two

multilevel reduced models are denoted by SL-ROM, LL-ROM,

M1L-ROM, and ML2-ROM, respectively.

A. Double-⊓ Shaped FE Model

Adouble-⊓-shaped FEmodel that consists of nine subcomponents

is considered here. The geometry of the structure and material

properties are shown in Fig. 5. The length isL � 0.4064 m, thewidth

isW � 0.3048 m, the height isH � 0.2030 m, and the thickness is

t � 0.003175 m. The Young modulus is E � 7.31 × 1010 Pa, the
Poisson’s ratio is ν � 0.33, and the density is ρ � 2795.7 kg ⋅m−3.

The structure has been divided into nine substructures (S1 to S9),
which are connected through eight interface sets (B1 to B8). For the

multilevel interface reduction, the interface sets are further split into

three subsets (Γ1 to Γ3). The structure is meshed with triangular

flat shell elements with six DOFs per node. The resulting FE model

has a total of 8814 DOFs, including nBCB � 624 interface DOFs and
nIG � 8190 internal DOFs, with

nIG �
X9
s�1

nI�s�

The system has been clamped at two ends.
We are interested in the first 30 eigenfrequencies and eigenmodes

of the system. For the CB-ROM, the first mI
�s� � 10 IVMs ΦII

�s� are
selected for each substructure; thus, the number of internal DOFs is

reduced from nIG � 8190 tomI
CB � 90DOFs, whereas all the nBCB �

624 interface DOFs are retained without reduction. The 624 CMs are

replaced with the first mB
SL � 80 SCC modes ~ΦSL by applying

further system-level interface reduction methods for the SL-ROM.

The LL-ROM is constructed by replacing the CMs in each

substructure with the firstmB
�s� � 12 LCCmodes ~ΦLL;�s�. By using a

SVD for each interface that is set to guard against ill conditioning and

by using the threshold discussed previously, finally, 145 interface

modes are retained in the reduction basis. The ML1-ROM is formed

by mN
Γi
� 20 interface-level IVMs ~ΦNN

Γi
for each subset (Γ1 to Γ3)

together withmC
Γ � 20 ILCCmodes ~ΦCC

Γ . TheML2-ROM is formed

by the first 50 MIVMs ~ΦM
Γi
for each subset and mC

Γ � 20 interface-

level characteristic constraint (CC) modes ~ΦCC
Γ . We determine the

number of kept modes for different interface reduction methods in

such a way that the SL-ROM, ML1-ROM, and ML2-ROM all result

Fig. 5 Illustration of the double-⊓-shaped FE model.
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in 170modes in the final reduction basis. For illustration, the number
of DOFs for different ROMs is summarized in Table 2.
The first 30 eigenfrequencies and the corresponding relative error

with respect to the full model are shown in Fig. 6. Note that any
interfaceROMwill not bemore accurate than its parent CB-ROM.As
can be seen in Fig. 6b, the eigenfrequency error for all the considered

ROMs is below 1% for the first 30 frequencies. Except for the
LL-ROM, the other considered ROMs keep the error within 0.1%.
The SL-ROM, ML1-ROM, and ML2-ROM lead to an accuracy that
is orders of magnitude better in the low-frequency range when
compared to the LL-ROM, although the latter one includes

much more interface modes than the SL-ROM, ML1-ROM, and
ML2-ROM.
An eigenfrequency comparison is usually carried out in

conjunction with a comparison of the associate mode shapes. One
commonly used method for comparing mode shape vectors is the
modal assurance criterion (MAC) [40].When themode shape vectors
are mass normalized, it is more appropriate to use the mass weighted
MAC, which computes the vector correlation between a pair of mode

shapes from the full model Φi;full and ROM Φj;red as

MACij �
jΦT

i;fullMΦj;redj2
�ΦT

i;fullMΦi;full��ΦT
j;redMΦj;red�

(32)

Along the diagonal terms, one finds the matching modes; whereas
the offdiagonal terms show the correlation between nonmatching
modes. Ideally, matching mode shapes should have a MAC value
close to one, whereas cross-correlating different mode shapes
should give a value close to zero. The relative mode error ϵi of the ith
mode Φi;red is thus calculated based on the matching modes as

ϵi � 1 −MACii. The relative mode errors of the interface ROMs are
shown in Fig. 7. The SL-ROM,ML1-ROM, andML2-ROM all yield
good results for the first 30 modes. Although the LL-ROM contains
more interface modes in the reduction basis, the error for the
LL-ROM is substantial for the higher-frequency modes.

B. NACA Airfoil Wing-Box Structure

We consider here a thin-walled wing-box structure proposed in
[39] and shown in Fig. 8. The cross section features a NACA 0012
profile; the structure is stiffened with ribs along the chord direction
and spars along the longitudinal direction. The structure is meshed
with triangular flat shell elements with six DOFs per node, resulting
in 135,570 DOFs and 49,968 elements for the full model. The Young
modulus is E � 70 GPa, the Poisson’ ratio is ν � 0.33, and the
density is ρ � 2700 kg∕m3. A uniform thickness of 1.5 mm is
adopted across thewhole structure. Thewing has a total length of 5m
and is cantilevered at one end. The significantly large number of
DOFs of the full model allows us to appreciate the computational
advantages associated to interface reduction. In Fig. 8a, the pressure
load has been applied at the highlighted area. In Fig. 8b, the skin
panels have been removed for a clear view, and the tip node is
highlighted. In Fig. 8c, the wing-box structure has been divided into
600 substructures. In Fig. 8d, the first 25 substructures associated to
one wing section has been plotted. In Fig. 8e, 600 substructures are
evenly grouped into four subsets for multilevel interface reduction.
The wing box is then divided into 600 substructures, connected

through 792 interface sets. The subdivision of thewing-box structure

Table 2 Number of modal coordinates of the double-
⊓-shaped model for different ROMs

ROMs
Number of modal

coordinates Total DOFs

CB-ROM qBCB ηICB col�qBCB; ηICB�
624 90 714

SL-ROM ηBSL ηICB col�ηBSL; ηICB�
80 90 170

LL-ROM ηBLL ηICB col�ηBLL; ηICB�
145 90 235

ML1-ROM ηCΓ ηNΓ ηICB col�ηCΓ ; ηNΓ ; ηICB�
20 60 90 170

ML2-ROM ηCΓ ηMΓ col�ηCΓ ; ηMΓ �
20 150 170

a) First 30 eigenfrequencies b) Relative error for the first 30 frequencies
Fig. 6 First 30 eigenfrequencies and the corresponding relative errors of the CB-ROM, SL-ROM, LL-ROM, ML1-ROM, and ML2-ROM.
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Fig. 7 Relative mode error of the ROMs as compared to the full model.
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is illustrated in Fig. 8c. Note that this subdivision can in fact reflect a
common industrial scenario, where rather detailed FEmodels of each
component might exist for component sizing and stress analysis. The
DOFs of the full model are split into nBCB � 28;944 interface DOFs
and nIG � 106;626 internal DOFs. We first investigated the accuracy
of the frequency and mode of the assembled systems using different
interface reduction techniques. The linear response of thewing box is
analyzed when a spatially uniform, multiharmonic pressure load is
applied locally on the structure skin at an area highlighted in Fig. 8a.
The dynamic load function is given as

f�t��1000
X15
i�1

�
1−

�i−1�2
392

�
sin�ωi× t�; with ωi�250×

�
i

15

�
2

(33)

The number of retained IVMs for each substructure is determined
by a frequency cutoff criterion: only IVMs associated to frequencies
lower than 1500Hz are kept in the reduced-order basis (ROB) of each
substructure. The CB-ROM therefore reduces the internal DOFs

from nIG � 106;626 to mI
CB � 1440. The SL-ROM is built with the

same frequency cutoff criterion by including the SCC modes ~ΦSL
associated to frequencies lower than 1500 Hz. This results into

keeping the first mB
SL � 1170 SCC modes in the final reduction

basis. As for theML1-ROMandML2-ROM, all the substructures are
collected into four subsets (Γ1 to Γ4), as shown in Fig. 8e. The same
frequency cutoff criterion is again used here. For theML1-ROM, the

interface DOFs are further reduced by replacing the nBCB � 28;944

CMs with the first mN
Γi
� 168 interface-level IVMs ~ΦNN

Γi
for subset

(Γ1 to Γ3), as well as m
N
Γi
� 180 interface-level IVMs for subset Γ4

together with the firstmC
Γ � 153 interface-level CCmodes ~ΦCC

Γ . This

results in shrinking the interface DOFs from 28,944 to 837. For the
ML2-ROM, the internal DOFs of each subset are reduced by using

mM
Γi
� 369 merged IVMs ~ΦM

Γi
for subset (Γ1 to Γ3) and mM

Γ4
� 373

merged IVMs for subset Γ4. The number of CDOFs are reduced by

including the first mC
Γ � 153 interface-level CC modes ~ΦCC

Γ . It will

result in 1480 internal DOFs and 153 interface DOFs in total for the
ML2-ROM. The LL-ROM is constructed by replacing the CMs in

each substructure with the LCCmodes ~ΦLL;�s� up to 1500 Hz in each
subsystem. Given the large number of substructures and interface

sets, the LL-ROM will result in a large number of LCC modes. By

using a SVD for each interface set to guard against ill conditioning

and using the threshold discussed previously, finally, 22,716

interface modes are retained in the reduction basis. For illustration,

the number of modal coordinates of the different ROMs is

summarized in Table 3.

The first 120 eigenfrequencies and corresponding relative errors

are shown in Fig. 9. Themode shape error is also presented in Fig. 10.

As indicated in Figs. 9b and 10, the SL-ROM, ML1-ROM, and

ML2-ROM can all lead to a good approximation by keeping the

relative frequency error below 0.5% for the first 120 frequencies

(up to 460 Hz). The SL-ROM has slightly better accuracy when

compared to the ML1-ROM and ML2-ROM, especially at the

frequency range of the applied load function (0–250 Hz). The

LL-ROM fails to provide a satisfactory frequency approximation,

although it includes 22,716 interface modes.

The time history of the displacement for the nodes on the tip node

in Fig. 8b is shown in Fig. 11. In addition, we also show the rootmean

square (RMS) error ϵRMS at an arbitrary time step ti defined as

a)

b)

d) c) e)
Fig. 8 Illustration of the wing-box structure.

Table 3 Number of modal coordinates of the

wing-box model for different ROMs

ROMs
Number of modal

coordinates Total DOFs

CB-ROM qBCB ηICB col�qBCB; ηICB�
28,944 1440 30,384

SL-ROM ηBSL ηICB col�ηBSL; ηICB�
1170 1440 2610

LL-ROM ηBLL ηICB col�ηBLL; ηICB�
22,716 1440 24,156

ML1-ROM ηCΓ ηNΓ ηICB col�ηCΓ ; ηNΓ ; ηICB�
153 684 1440 2277

ML2-ROM ηCΓ ηMΓ col�ηCΓ ; ηMΓ �
153 1480 1633
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ϵRMS�ti�

�
																																																																																																																							
1

n
�kqx�ti�− �qx�ti�k2�kqy�ti�− �qy�ti�k2�kqz�ti�− �qz�ti�k2�

r

(34)

where qx, qy, qz and �qx, �qy, �qz are the x, y, z components of the node

displacement from the full and ROMs, respectively (rotational DOFs

are excluded).
As observed in Fig. 11, although the LL-ROM is inaccurate, all the

other interface reduction techniques are able to reproduce the full

solution. The RMS error better highlights the difference in

performance between the various methods. It can be noticed that the

SL-ROMcan reproduce the full solution as accurately as theCB-ROM

(i.e., without interface reduction). Although theML1-ROMandML2-

ROM can both produce a satisfactory approximation, the accuracy of

the ML2-ROM is slightly better than that of the ML1-ROM.

C. Computational Efficiency

The computational complexity of the different interface reduction

methods has been discussed in detailed in Sec. V. In this subsection,

we compare the computational time required by each of the methods

proposed. All simulations are performed in MATLAB®R2015, on

the Delft University of Technology’s Precision and Microsystems

Engineering cluster, equipped with eight-core Intel® Xeon® CPUs

(E5-2630v3) at 2.4 GHz and with 128 GB of RAM.

Table 4 compares the computational cost for the wing-box
structure in Sec. VI.B. The complexity comparisons have been split
into three parts: 1) the construction of the reduction basis for different
substructuring methods, which are done offline; 2) the frequency
analysis of the assembled system; and 3) the transient analysis of the
response solution, which would be regarded as an online analysis.
Obviously, the full analysis does not carry any offline costs. The
reduction basis for each substructure and each subset can be
parallelized. Note that, in this particular example, the same
substructures and subsets are instanced many times along the
structure, so one needs to compute the reduction basis only once for
each repeated set. In amore general case, because of the possibility of
parallelization, the computational cost is mainly dependent on the
most time-consuming subsystems or subsets; see Table 1. The
computational efficiency is measured by the speedup factor, which is
defined as

S � Contfull
Cofftoff � Conton

; with Coff � Con � 1 (35)

The offline calculation cost is neglected by setting S1:Coff � 0,
Con � 1. The so obtained speedup factor S1 is justified when the
same ROM is used for many different load cases. Alternatively, one
can set an equal weightage to offline and online costs, i.e.,
S2:Coff � 0.5, Con � 0.5. This covers the limit case in which the
ROM is used only once. In addition, the accuracy of different ROMs
is measured in terms of global relative errors (GREs) by defining

GRE⋄ �
																																																																					P

t �q⋄�t� − �q
⋄
�t��T �q

⋄
�t� − �q

⋄
�t��

p
																																P

t q⋄�t�Tq⋄�t�
p × 100% (36)

where the subscript ⋄ designates the displacement of the full solution
q and reduced solution �q in the x, y, and z directions, respectively.
The computational time of the frequency analysis and transient

analysis cannot be significantly reduced by the CB-ROM, although
the internal DOFs are greatly reduced. In this wing-box example, the
size of the interface and internal DOFs is comparable, and therefore
the system matrices of the CB-ROM still contain a large number of
interface DOFs.
From the results shown in Table 4, one can see that all interface

reduction methods do deliver a slight advantage with respect to the
CB-ROM for frequency analysis, when offline cost is considered to
compute the speed-up factor. In particular, for this specific case, the
ML1-ROM and ML2-ROM cut the computation time of the
frequencies by factors of �46.5� 1.7�∕�1.79� 24.51� � 1.83 and
�46.5� 1.7�∕�34.98� 0.86� � 1.34 respectively. The LL-ROM
provides similar figures, but it was shown to be inaccurate. The

a) First 120 eigenfrequencies b) Relative error for the first 120 frequencies
Fig. 9 First 120 eigenfrequencies and the corresponding relative error of the CB-ROM, SL-ROM, LL-ROM, ML1-ROM, and ML2-ROM.

Fig. 10 Relativemode error of the ROMsas compared to the full model.
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SL-ROM, on the contrary, required large offline computations, and
therefore was not competitive against the CB-ROM.
The major advantage in performing interface reduction comes, in

fact, when a transient analysis is needed, as can be seen by looking at
the speedup factors reported in Table 4. It is emphasized here that the
final size of the ROMs, and therefore the computational savings,
depends on the cutoff criterion previously introduced in Sec. VI.B. In
this respect, the ML2-ROM features the smallest size, and therefore
results in the best speedup factor S1 of 10.93. In both theML1-ROM
and ML2-ROM, the offline computational cost can be reduced by
setting up smaller, parallelizable problems relative to each subset, and
the frequency analysis and online (transient analysis) computational
cost are reduced, owing to the final system matrices with much
smaller sizes.
The GRE is also shown in Table 4. The SL-ROM offers a reduced

solution almost as accurate as the CB-ROM. The LL-ROM, on the
other side, is largely inaccurate. The multilevel interface reduction
methods ML1-ROM and ML2-ROM still guarantee good accuracy
while increasing the speed. In particular, the ML2-ROM is more
accurate, and faster, than theML1-ROM, but it requires larger offline

calculations. It should also be noted here that the obtained results for
the ML1-ROM and ML2-ROM depend on the subset division. An
attempt at finding the best division to maximize the speedup is not
made in this work.
Although theML1-ROM andML2-ROM are clear winners for the

case discussed here, the selection of the “best” interface reduction
method is somewhat problem dependent. Here, we attempt to give
guidelines by making the following observations.
1) For the SL-ROM, the system-level interface reduction is

preferred when high accuracy is required and the offline cost can be
neglected, i.e., the speedup factor S1 is justified. Therefore, the
SL-ROM is suitable for problems in which the size of the interface
DOFs is moderate, and the ROM needs to be constructed only once.
2) For the LL-ROM, although its accuracy is the worst when

compared to its counterparts, the LL-ROM is still an option if one is
interested in the low-frequency spectrum of systems featuring a
limited number of substructures, which are connected through
simple patterns, such as the double-⊓-shaped FE model discussed in
Sec. VI.A. Therefore, the LL-ROM may be applied for relatively
simple systems during the design process, when design changes

Table 4 Computational time of wing-box structure for the CB-ROM, SL-ROM, LL-ROM,
ML1-ROM, and ML2-ROM

Computational time, s

Full CB-ROM SL-ROM LL-ROM ML1-ROM ML2-ROM

ROB construction (offline) —— 1.70 578.13 6.17 24.51 34.98
Frequency analysis 74.88 46.50 3.51 27.60 1.79 0.86
Transient analysis (online) 387.20 200.80 120.10 113.69 53.35 35.42
Speedup factor S1 —— 1.92 3.22 3.41 7.26 10.93
Speed up factor S2 —— 1.91 0.55 3.23 4.85 5.50
GREx, % —— 0.0466 0.0506 28.86 0.1112 0.1058
GREy, % —— 0.0033 0.0034 8.10 0.0050 0.0049
GREz, % —— 0.0050 0.0052 10.09 0.0162 0.0149

a) x displacement at the tip node

c) z displacement at the tip node d) RMS error

b) y displacement at the tip node

Fig. 11 Time history of solution (displacement) in x, y, and z directions at the tip node of the wing-box structure and the corresponding RMS error.
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occur in some parts of the structure; thus, the ROM has to be
frequently rebuilt. The LL-ROM benefits from a cheap offline cost.
However, it is not applicable when the substructures are connected
through numerous interfaces because the method does not properly
consider the contributions of neighboring subcomponents.
3) For theML1-ROM andML2-ROM, these twomethods provide

good speedup and accuracy for both frequency and transient
analyses. Therefore, they are applicable for problems where both
accuracy and computational efficiency are of concern. They are
suitable for the design process when changes occur within a few local
subsets. In this case, only theROBs relative to themodified parts need
to be rebuilt. TheML2-ROM ismore accurate and faster (online) than
the ML1-ROM, at the price of a slightly increased offline cost.

VII. Conclusions

The multilevel interface reduction techniques are proposed for
complex systems featuring multiple subcomponents and a large
number of interface DOFs. Themain idea is to group subcomponents
into different subsets and perform a secondary CB reduction for the
resulting subset DOFs. The methods localize the interface reduction
by applying a multilevel static condensation and eigenvalue analysis
on each subset in parallel. As opposed to a traditional local-level
technique, the proposed methods better consider the interaction
between interfaces. Because of this, the techniques advocated
provide accuracy comparable to system-level interface reduction
methods. At the same time, the proposed techniques enable
computational time savings by setting up smaller, parallelizable
problems relative to each subset. Two variants of the multilevel
interface reduction techniques (ML1-ROM and ML2-ROM) are
investigated. In the ML1-ROM, a secondary CB reduction is
performed for the interface DOFs of each subset. In the ML2-ROM,
the same CB reduction is performed for all DOFs of each subset. The
methods of both eigenvalues calculations and numerical time
integration are assessed.When a frequency cutoff criterion is applied
for the selection of modes, the ML2-ROM results in a smaller (and
therefore faster) and more accurate ROM. This comes at the expense
of a slightly larger offline cost.
All the interface reduction techniques have been tested for the

rather complex numerical examples featuring several subcompo-
nents and large meshes. The proposed multilevel methods
outperformed the system-level interface reduction in terms of
achievable speedup while delivering comparable accuracy. It was
indicated that the multilevel methods were particularly useful when
dealing with systems featuring large and multiconnected interfaces.
In cases of simpler and smaller interfaces, guidelines were provided
for the choice of the most suited reduction method.
The methods proposed are particularly suited for complex

industrial cases for which detailed, and therefore large, FE models of
subcomponents are required for simulation. The application of the
proposed ROMs (ML1-ROM and ML2-ROM) is straightforward
because the methods rely on existing well-known reduction
techniques, which are combined in a novel fashion.
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